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Univariate Community Assembly Analysis (UniCAA):
Combining hierarchical models with null models to test the
influence of spatially restricted dispersal, environmental
filtering, and stochasticity on community assembly
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Natural Resource Management, Norwegian Abstract
University of Life Sciences, As, Norway Identifying the influence of stochastic processes and of deterministic processes, such
Correspondence as dispersal of individuals of different species and trait-based environmental filtering,
Markus Arne Kjeer Sydenham, Faculty has long been a challenge in studies of community assembly. Here, we present the
of Environmental Sciences and Natural L. . . . . .
Resource Management, Norwegian Univariate Community Assembly Analysis (UniCAA) and test its ability to address
University of Life Sciences, As, Norway. three hypotheses: species occurrences within communities are (a) limited by spatially
Email: markus.sydenham@nina.no . . . . .
restricted dispersal; (b) environmentally filtered; or (c) the outcome of stochasticity—
so that as community size decreases—species that are common outside a local com-
munity have a disproportionately higher probability of occurrence than rare species.
The comparison with a null model allows assessing if the influence of each of the
three processes differs from what one would expect under a purely stochastic distri-
bution of species. We tested the framework by simulating “empirical” metacommuni-
ties under 15 scenarios that differed with respect to the strengths of spatially
restricted dispersal (restricted vs. not restricted); habitat isolation (low, intermediate,
and high immigration rates); and environmental filtering (strong, intermediate, and no
filtering). Through these tests, we found that UniCAA rarely produced false positives
for the influence of the three processes, yielding a type-| error rate <5%. The type-Il
error rate, that is, production of false negatives, was also acceptable and within the
typical cutoff (20%). We demonstrate that the UniCAA provides a flexible framework
for retrieving the processes behind community assembly and propose avenues for
future developments of the framework.
KEYWORDS
community assembly, dispersal, environmental filtering, stochasticity, traits
1 | INTRODUCTION disperse across the landscape and establish populations in habi-
tats—within reach—where the environment provides suitable con-
Understanding how and why the number and identities of species ditions (Keddy, 1992). Once established, biotic interactions, such
vary among habitats is a central goal in ecology. Species distri- as competition, determine how successful the newly arrived spe-
butions are the product of assembly processes whereby species cies will be, and thus influence abundances (Boulangeat, Gravel, &
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Thullier, 2012) and—in the long-term—species richness (Olsen &
Klanderud, 2014). However, even if species have similar habitat re-
quirements and are competitively equivalent, species richness will
not remain stable since random fluctuations in population growth-
rates eventually lead to monodominance by the initially most
abundant species (Hubbell, 2001; Rosindell, Hubbell, & Etienne,
2011). If species can disperse between communities at high rates,
the influence of such stochastic processes can be synchronized
at the metacommunity level, and result in purely stochastic spe-
cies distributions. Mechanisms of community assembly thus can
be classified as belonging to: (a) dispersal limitation resulting from
(i) habitat isolation, leading to low immigration rates so that local
community dynamics are partly independent of metacommunity
dynamics and (ii) spatially restricted dispersal of species, leading
to low spatial immigration rates because potential immigrants
mainly arrive from proximate source populations; (b) ecological
filtering based on how the species’ fitness varies according to bi-
otic and abiotic environmental conditions; and (c) stochastic pro-
cesses, such as ecological drift (Vellend, 2016). These assembly
processes can interact and reinforce each other. High immigration
rates may reduce the influence of environmental filtering, and
thus lead to mass-effect metacommunities. In contrast, if envi-
ronmental filtering is the dominant process, this leads to species-
sorting metacommunities (Leibold et al., 2004). The influence of
stochastic processes is also influenced by dispersal limitation and
are expected to decrease as immigration increase (Vellend, 2016)
since high immigration rates replenish the populations of rare spe-
cies, thereby allowing them to persist over time (Hanski, 1991).
Community size, that is, the number of individuals of all species,
is a proxy for the carrying capacity of the local habitat. Because
ecological drift is a probabilistic process, its influence increases as
community size decreases (Gilbert & Levine, 2017; Vellend, 2016).
In neutral metacommunities with high immigration rates, the ef-
fect of ecological drift will be synchronized at the metacommunity
level, so that the relative abundance of species within local com-
munities mirrors that of the metacommunity as a whole (Shipley,
2014). In lieu of environmental filtering and dispersal limitation,
species distributions will therefore be purely stochastic. Due to
their complexities, identifying the processes behind patterns
of species distributions remains a central challenge in ecology
(Cadotte & Tucker, 2017).

Dispersal limitation restricts the flow of species across the
landscape, and therefore results in spatially aggregated species
distributions and increased species compositional dissimilarity (i.e.,
B-diversity) between communities with increasing geographical
distance (Anderson et al., 2011; Chave & Leigh, 2002). Ecological
filtering may also cause species to aggregate into classifiable com-
munities. A distinction is made between biotic ecological filtering,
such as competition, and abiotic ecological filtering (hereafter “envi-
ronmental filtering”). Environmental filtering operates by excluding
species whose functional response traits do not allow them to per-
sist within a habitat, and result in species distributions being predict-
able along environmental gradients (Keddy, 1992; Kraft et al., 2015;

McGill, Enquist, Weiher, & Westoby, 2006). Here, we focus on envi-
ronmental filters, because they determine the potential combination
of species within communities, upon which biotic interactions in turn
operate (Boulangeat et al., 2012; Lawton, 1999). The influence of
environmental filtering versus ecological drift (and other stochastic
processes) can be estimated by comparing observed p-diversity val-
ues between communities with those obtained from null models in
which community assembly is neutral with regards to species iden-
tities (Chase & Myers, 2011; Tucker, Shoemaker, Davies, Nemergut,
& Melbourne, 2016). However, because the environmental filtering
and stochasticity often act in concert with dispersal limitation, the
influence of all three processes should ideally be captured in the
same analysis.

Current methods for disentangling the effects of the three
community assembly processes (reviewed in Vellend et al., 2014)
include: partitioning the variation in species composition along
gradients of spatial and environmental dissimilarity (Peres-Neto,
Legendre, Dray, & Borcard, 2006); comparing changes in the
functional and species turnover along environmental and spatial
gradients (Pavoine & Bonsall, 2011); and parallel analyses of, for
example, phylogenetic, functional and species diversity indices
(Munkemdiller et al., 2012). An alternative approach is to focus on
species occurrences (or abundances) rather than species compo-
sition. By combining matrices that contain information on species
distributions, environmental conditions, and species traits, ecol-
ogists can test for trait-environment relationships (Dray et al.,
2014; Dray & Legendre, 2008). Model-based approaches that allow
explicit testing of how community assembly processes influence
species occurrences or abundances have recently been developed
(Ovaskainen et al., 2017; Warton et al., 2015). These model-based
approaches focus on the distribution of species (or individuals)
as a function of their traits, rather than modeling changes in trait
values as a function of species distributions along environmental
gradients. Using the presence (or absence) of species as response
variables in statistical models, and including interaction terms be-
tween functional traits and site-specific environmental variables as
explanatory variables, makes it possible to test the influence of en-
vironmental filtering (Jamil, Ozinga, Kleyer, & Braak, 2013). Existing
methods allow estimating the relative importance of spatially re-
stricted dispersal, environmental filtering, and biotic interactions
for species occurrences and abundances within local communities
(Boulangeat et al., 2012; Ovaskainen et al., 2017). An important
limitation of current approaches is that they either test the influ-
ence of spatially restricted dispersal versus environmental filtering,
or stochasticity versus environmental filtering, but not all three
processes simultaneously (but see Munoz et al., 2018 for estimat-
ing the influence of immigration rates together with stochasticity
and environmental filtering).

Here, we present a framework for simultaneously testing the
influence of spatially restricted dispersal, environmental filtering,
and stochasticity on species occurrences in terrestrial ecosystems,
hereafter UniCAA (Univariate Community Assembly Analysis). The
approach builds on the framework developed by Sydenham et al.
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(2017), who modeled the occurrence of wild bee species in south-
east Norway. In the present study, we used simulated data gener-
ated under 15 distinct parameter state combinations with varying
degrees of spatially restricted dispersal; immigration rates; and en-
vironmental filtering to assess the applicability of UniCAA, based on
its ability to identify:

1. Spatially restricted dispersal in metacommunities, in cases
where species migrations are most likely between proximate
habitat patches. The influence of spatially restricted dispersal
on metacommunity structure can take three primary forms
(Leibold & Chase, 2018): Dispersal limitation whereby species
fail to occupy all potential habitats within the metacommu-
nity; Dispersal sufficiency where dispersal rates are inter-
mediate and species occur in the majority of suitable habitats;
and Dispersal surplus whereby dispersal and immigration
rates are sufficiently high to mask the influence of species-
sorting mechanisms (e.g., environmental filtering). Under
dispersal limitation, spatially restricted dispersal results in
spatially aggregated species distributions and should be most
pronounced in metacommunities with a high temporal species
turnover (i.e., high immigration rates) and with ecologically
equivalent species, because environmental filtering otherwise
prevents dispersing species from establishing within com-
munities. UniCAA should not confound spatially restricted
dispersal with environmental filtering and produce false
positives (type-l errors) in metacommunities, if species are
free to disperse but environmental conditions are spatially
correlated.

2. Environmental filtering in metacommunities where species have
narrow niche widths, and thereby lower probability of remaining
in habitats with environmental conditions outside their funda-
mental niche. In such cases, the probability of occurrence should
differ systematically between species, depending on their func-
tional traits and local environmental conditions. The role of envi-
ronmental filtering can be obscured if immigration rates are
sufficiently high, that is, under mass-effect metacommunities
(Leibold et al., 2004). In such cases, habitats may be occupied by
species that are not adapted to local environmental conditions.
However, such habitats should act as “sink-habitats” and—on av-
erage—have a lower probability of containing species whose
traits do not match local conditions than species whose traits do
match the local conditions.

3. ldentify stochasticity in metacommunities in cases where spe-
cies are ecologically equivalent and not dispersal limited.
Stochastic dynamics should be synchronized at the metacom-
munity level when immigration rates are high and when species
are ecologically equivalent. Deviations from the patterns ex-
pected under stochastic species distributions suggest that
communities are dispersal limited or environmentally filtered,
so that local community dynamics are at least partly independ-
ent of the dynamics in distant or environmentally different

communities.
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2 | METHODS

2.1 | The UniCAA framework

UniCAA uses Generalized Linear Mixed Models (GLMMs) with the
probability of species occurring within communities as a response
variable. UniCAA differs from other model-based approaches (Hui,
2016; Ovaskainen et al., 2017; Warton et al., 2015) in two impor-
tant aspects; (a) Spatially restricted dispersal is modeled as a fixed
effect and as function of the species-specific geographic distance
to the nearest source population. This adds flexibility in that users
can specify species-specific distance matrices based on prior infor-
mation on barriers to dispersal, and that the geographic distance
can be transformed to improve model fit. (b) UniCAA compares the
influence of the three community assembly processes to that ex-
pected from a null model, thus allowing an assessment of whether
the observed influence of each process differs from what would be
expected under stochastic community assembly. Species and site
identities are included as random intercepts in the model, to ac-
count for multiple observations from the same sites and species.
Thus, the modeled response is the probability of occurrence of an
average species in an average site given the constraints imposed by
spatially restricted dispersal, environmental filtering, and stochastic
processes (Table 1).

1. The influence of spatially restricted dispersal is tested by in-
cluding the fixed effect term Distance to source habitat, which
for all species-by-site combinations specifies the geographic
distance to the nearest site where the species is found
(Sydenham et al.,, 2017). A decrease in the mean probability
of occurrence with Distance to source habitat would suggest
that species are spatially aggregated, so that the mean prob-
ability of occurrence decreases with the geographic distance
to the nearest community from which the species could im-
migrate (MacArthur & Wilson, 1967).

2. The influence of environmental filters is tested by including
Traits x Environmental conditions terms, that is, interactions be-
tween the environmental conditions and functional traits (e.g.,
body size) of species (Jamil et al., 2013). If community assembly is
environmentally filtered, the probability of species occurring
within communities depends on the environmental conditions
and differs systematically between species depending on their
functional traits (Keddy, 1992).

3. The influence of stochasticity is tested by including the interac-
tion term Community size x Commonness, that is, between the
total number of individuals sampled within a given site
(Community size) and the proportionate contribution of a species
to the total number of individuals found outside a given commu-
nity (Commonness). The influence of stochastic community as-
sembly is here understood as leading to patterns of species
occurrence that are solely probabilistic. If species are ecologically
equivalent and not subjected to spatially restricted dispersal,
then—on average—the relative abundance of species within
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communities should mirror that of the regional species pool
(Shipley, 2014; Vellend, 2016). In UniCAA, the regional species
pool is defined from the species composition of the set of sam-
pled communities. We therefore expect regionally rare species to
have a lower probability of occurrence within small communities
than common species. As community size increases, regionally
common species should always be present, whereas rare species
will have an increased, but not definite, probability of

occurrence.

2.2 | Step 1 model specifications

The influence of spatially restricted dispersal, environmental fil-
tering, and stochasticity on species occurrences is first tested by
fitting separate GLMMs and using likelihood ratio tests to assess
the statistical significance (a = 0.05) of Distance to source habitat,
Traits x Environmental conditions and Community size x Regional
commonness, respectively. Subsequently, a full model containing
only the significant terms from the three separate GLMMs is built.
The full model is then reduced to a final model through backward
elimination of variables, retaining only those with significant contri-
butions to model fit. In the case where species occurrences are dis-
persal limited, subjected to environmental filtering and stochasticity,

the final model formula becomes:

Y, =Bin(1,p;)

logit(p;;) = a + p1 x Distance to source habitat;; + B, x Environmental fiter;
+ 3 x Species trait; + p, X Species trait;
xEnvironmental conditions; + 5 x Community size;
+p¢ x Commonness; + ; x Community size;

xCommonness; + Species identity; + Site identity,

Species identity; ~ N(0,62)

Site identity, ~N(0,62)

where Y,.j is the probability of the ith species being present in the jth
site. Distance to source habitat, Environmental conditions, Species
traits, Community size, and Commonness are fixed effect terms,
whereas Species identity and Site identity are random intercept
terms (Zuur, leno, Walker, Saveliev, & Smith, 2009). Although indi-
vidual species may show unimodal responses to the environmen-
tal gradient(s), the Species traits x Environmental conditions term
models the average occurrence of species, with a given trait value
as a function of the environment. Depending on the combined niche
width of species belonging to a trait group, the mean occurrence
of species within that trait group can be expected to be linear or

unimodal. Misspecified models should result in non-normally dis-
tributed residuals around the predicted estimates for species oc-
currences. The residual distribution of binomial GLMMs can be
assessed using the DHARMa package in R (Hartig, 2018). As in the
model selection, the statistical significance of the main effect terms
in the model can be tested using likelihood ratio tests.

2.3 | Step 2 model specifications

To assess whether the observed relationship between spe-
cies occurrences and Distance to source habitat, Species
traits x Environmental conditions, and Community
size x Commonness differ from that expected under stochastic
community assembly, the regression coefficients from the fixed
effect terms in the final model (step 1) are compared to those ob-
tained from a null model. In the null model, species are ecologi-
cally equivalent, immigration rates are high and species are free
to disperse across the entire landscape—that is, species distribu-
tions are purely stochastic—resulting in a neutral metacommunity
(sensu Leibold et al., 2004). In step 2, the final model from step 1

is refitted:

logit(p;) = @ +(p, x Distance to source habitat;;
+B, X Environmental fiter; + p3 x Species trait;
+p,4 X Species trait; x Environmental conditions;
+p5 x Community size; + f, x Commonness;
+p7 x Community size; x Commonness;)
x Data source
+Species identity; / Dataset|D
+Site identityl /DatasetID

where Data source is a categorical variable with two levels: empiri-
cal data or data from the null model (simulated data), ensuring that
the null model does not affect parameter estimates for the empiri-
cal data. Dataset ID is a categorical variable specifying the identity
of the data in the model. Dataset #1 is the empirical data, whereas
each of the simulated metacommunities making up the null model
is assigned a unique identifier. The random effects thereby become
crossed that is: Species identity given Dataset ID; and Site identity
given Dataset ID so that the number of groups for which the random
effects are estimated, increase with the size of the null model.

The null model is constructed by reshuffling the original species-
by-site data frame while keeping the row and column sums constant.
This null model retains the species’ relative abundances in the whole
metacommunity as well as community sizes. Multiple randomizations
are required because metacommunities will differ between differ-
ent randomizations and because we are interested in obtaining a null
model with parameter estimates reflecting the “average” randomized
metacommunity. The computation time for fitting the model in step 2
will increase with the number of randomizations used when specify-
ing the null model (i.e., Dataset IDs). Our fn.UniCAA.sim.eval function
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Illustration of the four data frames used in UniCAA. (a) The site-by-species (Sp.) data frame contains the abundance of the ith

species at the jth site. (b) The species-by-trait data frame contains the ith species’ functional trait value for each nth trait. (c) The site-by-
environment (Env.) data frame contains the environmental variable values (ecological filter) for the jth site. (d) The site-by-spatial geographic
positions data frame contains the geographical coordinates for each jth site. (€) The UniCAA.df dataframe is used for the analyses in step 1.
Prior to analyses, species only occurring within a single site are removed because the Distance to source habitat variable will return a missing
value. See Supporting information Appendix S1 for a fully worked example

a b c d

Sp. A Sp.B Sp.C Trait Env. Lat. Lon.
Site 1 10,, 551 0, Sp. A 0 Site 1 0 Site 1 1 1
Site 2 5 2 104, 5 Sp.B 0.5 Site 2 0 Site 2 2 1
Site 3 03 5453 10 o, Sp.C 1 Site 3 1 Site 3 3 1
Site 4 @ o 5 Site 4 1 Site 3 4 1
e
Presence Dist. to source habitat Trait Env. ComSize Commonness SpeciesID SitelD
1 1 0 0 15 0.125 Sp. A Site 1
1 1 0 0 20 0.286 Sp. A Site 2
1 1 1 1 15 0.250 Sp.C Site 3
1 1 1 1 5 0.300 Sp.C Site 4

Note. Dist. to source habitat is the distance from the jth community to the nearest community where the ith species is found. Inter-site distances are
calculated using the spatial coordinates information in data frame d. For the combination Sp. A and Site 1 the Dist. to source habitat is 1 because Sp. A
is found in Site 2, which is only one step away from Site 1. Community size (ComSize) is the total number of individuals within a community, calculated
from data frame a. The ComSize of site 1 is: 10,, + 55, + O, = 15. Commonness is calculated using the information in data frame a as the proportionate
contribution of the focal species to all individuals sampled outside the focal site, for example, the Commonness of species A outside site 1is: 5,,/(5,,

+ 1082 + 5C2 + 583 + 10(:3 + 5(:4) =0.125.

(Supporting information Appendix S1) makes it possible to evaluate
how many (e.g., 19, 49, 99, or 199) randomizations are required by plot-
ting the p-diversity between each randomized metacommunity and the
empirical metacommunity against the randomization number (Dataset
ID). The null model has saturated when there is no detectable relation-
ship between p-diversity and randomization number.

Each of the randomized site-by-species matrices is combined
with the original site-by-environment, site-by-coordinates, and
species-by-traits matrices into UniCAA.df data frames by using the
fn.UniCAA.df function (Supporting information Appendix S1). The
UniCAA.df data frames are then merged with the empirical UniCAA.
df data frame and two columns are added: the Dataset ID column
contains a unique identifier for each of the, for example, 100 data-
sets (99 simulated + 1 empirical), and the Data source column con-
tains a categorical variable with two levels (empirical or simulated).
Statistically significant deviations from the null model suggest that
the observed (empirical) community compositions differ from that
expected if species were ecologically equivalent and free to disperse
across the entire region.

2.4 | Testing the UniCAA framework

We generated “empirical” metacommunities through simula-

tions, where community assembly followed 15 different scenarios

differing in terms of the influence of spatially restricted dispersal,
immigration rates, strength of environmental filtering, and subse-
quently stochasticity (Figure 1). Taken together, the 15 scenarios
represented a wide range of metacommunity dynamics. The simu-
lated scenarios without spatially restricted dispersal, and with
three different levels of immigration rates (low, intermediate, and
high), allowed us to test whether UniCAA was able to distinguish
between environmentally filtered and stochastically assembled
metacommunities. Whereas the scenarios with spatially restricted
dispersal and three levels of environmental filtering (strong, inter-
mediate, and not restricted), and three levels of immigration rates
(low, intermediate, and high) allowed us to test whether UniCAA
was able to identify the role of spatially restricted dispersal in
community assembly. To evaluate whether UniCAA consistently
identified the processes that had shaped the distribution of spe-
cies within the metacommunity, we simulated 25 replicates of each

of the 15 scenarios.

2.5 | Metacommunity simulation

Metacommunity simulations were performed on a data-generated
landscape consisting of 3,969 communities where both environmen-
tal conditions (Figure 1a) and community sizes (Figure 1b) were spa-

tially correlated (Bivand, Pebesma, & Gomez-Rubio, 2013; Hijmans
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et al., 2016; Pebesma & Bivand, 2005). We implemented the spatial
correlation by applying a Gaussian filter with sigma values 0.2 for en-
vironmental conditions, and 0.4 for community sizes to a raster map
with uniformly distributed values. This ensured that environmental
gradients were steeper than community size gradients (Figure 1a,b)
so that regions with a certain community size could harbor different
habitat types (Supporting information Appendix S2). The environ-
mental gradient consisted of two-digit values between zero and one
(Figure 1a). Community sizes varied from 10 to 200, by increments of
10 (Figure 1b). Within this landscape, we placed a grid of 64 evenly
spaced sampling locations, thus removing the spatial autocorrela-
tion in environmental conditions (r = -0.066) and community sizes
(r=-0.065) between sampling points.

We adopted the approach of Sokol, Brown, and Barrett (2017)

to build a metacommunity simulation program in R (Supporting

0.0 0.2 0.4 0.6 0.8 1.0
Environment and sampling points

information Appendix S2) that allowed us to simulate metacom-
munities that consisted of several local communities assembled
with or without spatially restricted dispersal, with varying degrees
of habitat connectivity (i.e., immigration rates) and with strong,
intermediate, and no environmental filtering. Other spatially im-
plicit simulation approaches allow simulating metacommunity dy-
namics under environmental filtering, stochastic dynamics, and
immigration rates (Munoz et al., 2018). However, a strength of
the simulation approach of Sokol et al. (2017) is that it is spatially
explicit so that the pool of potential immigrants that can reach a
community changes as the metacommunity evolves, that is, the
simulated metacommunities never reach a stable equilibrium. We
therefore deemed the approach by Sokol et al. (2017) to result in
more realistic metacommunities. During the simulation process,

the species composition within each community evolved over n

(b)

I T T T T 1
10 48 86 124 162 200

Community size and sampling points

(c) (d)
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FIGURE 1 Landscape and parameter settings used in the metacommunity simulations. All simulations were conducted on a landscape
consisting of (a) an environmental gradient and (b) varying community sizes. Each raster pixel in (a) and (b) contained a local community.
Black dots in (a) and (b) show the location of the local communities that were used in the subsequent analyses. The relative abundance of
species in the regional species pool differed at the onset of the metacommunity simulations (time step 0), emulating a typical species pool
with few common and many rare species. (d) In scenarios where species were dispersal limited, the colonization weight of species decreased
with distance to the receptor community. (€) In scenarios where community assembly was subjected to strong environmental filtering, the
niche width of species prevented them from being recruited into local communities with unsuitable environmental conditions. (f) Under
intermediate environmental filtering, species were allowed to establish within habitats with suboptimal environmental conditions, but had
lower recruitment probabilities in these habitats. (g) When species were neutral, recruitment probabilities were arbitrary with respect to

environmental conditions. Figure layout inspired by Sokol et al. (2017)



SYDENHAM ET AL.

time steps from its initial state (time step,). The evolution of each
community was determined by: the local environmental condi-
tions; the size of the community; the geographic position of the
community; the immigration rate; whether or not dispersal was
spatially restricted; the habitat requirement of each species, that
is, its fundamental niche; and the environmental tolerance of each
species, that is, its niche width.

The species composition within a community at time step, was
determined by calculating the environmentally weighted recruit-
ment probability of each sp species (RPSD) following Equations (1)
and (2).

—(E-nsp)?

UW.RP,, =RA, xexp > (1)

UW.RP,

RP,=—— % 2
® "~ Y UWRP,, 2

where UW.RPSP was the unweighted recruitment probability of spe-
ciessp. RAsp was the predetermined regional relative abundance for
a species. RASp was defined by randomly selecting 60 numbers (one
for each species) of a g-distribution with a = 1, and = 10, thus en-
suring a typical species abundance distribution with many rare and
few common species in the metacommunity (Figure 1c). E was the
environmental conditions, p the species-specific environmental op-
tima, and o the niche width. ZUW.RP_ was UW.RP summed across
all species in the community. The species composition within each
community was then determined by sampling individuals of each
species, with their probability of being sampled weighted according
to their community-specific RPSp, until the community was saturated.

During each subsequent time step, the species composition
within each community was determined through three steps. First,
the relative abundance of each species within an immigration pool
was calculated (RAIPSP) following Equations (3) to (5):

DBW —wxr?) (3)

— (
source community = €XP

UW.RAI Psp = Z RAspinsourcecommunity X DBWsourcecammunity (4)

UW.RAIP,
RAIP = —— 2 (5)
¥ UW.RAIP,,

where DBW . community Was the predetermined distance based
weight (w.slope) with which to weight potential immigrants from
source communities according to their geographic distance (r) to
the receptor community. Site distances were scaled between zero
UW.RAIPsp was

the unweighted relative abundance of speciessp in the immigration

and one prior to calculating the DBW,

source community*
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pool, RAsp in source community Was the proportionate abundance of
speciesSp within a potential source community. RAIPSID was the
weighted relative abundance of speciesSp in the immigration pool,
and ZUW.RAIPSp was the sum of UW.RAIPsp for all species that
might immigrate into the focal community. The relative contribu-
tion of the relative abundance of each species within the focal

community (RA ) at the previous time step, and that of

focal community:
the species in the immigration pool was weighted according to the
immigration rate.

Rlg, =RAIP, ximmigration rate + RAc,,| community

x(1—immigration rate) (©)

Where immigration rate was the predetermined weight assigned to
the immigration pool, relative to the relative abundance of species
within the focal community during the previous time step. Lastly,
the species composition within the community at time t was de-
termined following the same random selection procedure as when
determining the species composition at time step, (Equations 7-8).
We reiterated the entire process from Equations (1)-(8) through t

time steps.

~(E-psp)?

UW.RP,, =Rl , xexp > 7)
wp _ UWRPy, -
®~ T UW.RP,,

2.6 | Data simulations

We simulated spatially restricted dispersal by weighing the recruit-
ment probabilities of species into the immigration pool, based on the
distance between the receptor and source community (Figure 1d).
Under spatially unrestricted dispersal, species received the same
weight regardless of the distance they would have to travel to enter
a community (Sokol et al., 2017). The fundamental niche optima of
species was defined by first allocating 20 species to each of three
groups: those with optima close to the lower (0.12), medium (0.5),
or higher (0.88) end of the environmental gradient. We allowed the
niche optima of species within each group to evolve following a
Brownian motion under 1,000 simulations, but always bound within
the initial niche optima £0.125, to emulate a scenario where traits
evolve within functional guilds.

We ran 25 independent metacommunity simulations for each
of the 15 metacommunity scenarios resulting in a total of 375 data-
sets. Each metacommunity scenario was defined by species: having
a narrow (0.1), intermediate (0.5), or a wide niche width (10); having
spatially restricted dispersal so that the distance based immigra-
tion weight (Equation 3) decreased with the distance between sites
(w.slope = 1,000) or being allowed to disperse across the entire land-
scape (w.slope = 0). The immigration rate (Equation 6) was set to
three different levels: low (0.25), intermediate (0.5), or high (0.75).
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In each of the metacommunity simulations, the metacommunity
evolved through 50 time steps, enough for the dissimilarity between
the resulting metacommunity and the metacommunity at time step,

to stabilize.

2.7 | Data preparations

We sampled 64 evenly spread communities within each of the 375
simulated metacommunities, emulating a scenario where ecolo-
gists sample local communities within a wider regional metacom-
munity (Figure 1a,b). We split the species optima that had been
used in the data simulations into a two-level categorical variable
(low, high) to exemplify the typical scenario where functional re-
sponse traits serve as proxies for species optima. The categorical
trait variable was used in the subsequent analyses (hereafter re-

ferred to as Trait).

2.8 | Applying UniCAA to the simulated datasets

2.8.1 | Step 1: Identifying the drivers of
community assembly

We applied the UniCAA framework to each of the 375 datasets.
Because of the large number of models, we did not perform the man-

ual variable selection described above. Instead, we developed an R

(@) Dist o 8o (b) Log(Dist)
Env 523 25 c gnv
ComSize 3 ompolee
& Commonness:ComSize
Comr_por)r.\gss g. Commonness
rait. Env Po Trait:Env
Trait 5 Trait
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-20 -5 5 15
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(d) i . @ Dist
Log(Dist) - 55 Log(Dist)
ComSize o5 . ComSize
Commonness:ComSize . 55 Commonness:ComSize
Commonness - ese Commonness
Intercept oo Intercept
-20 0 20
z-values

function that automatically constructed two versions (log-transform-
ing vs. untransformed Distance to source habitat) of a full model (i.e.,
including all interaction terms and their main effects) and selected the
version with the lowest Bayesian information criterion (BIC) value. We
then used the automated model selection function dredge() in MuMIn
(Barton, 2013) to select the final model with the lowest BIC value. We
applied this model selection procedure on each of the 375 datasets,
extracted the z-score (effect size) for each parameter estimate from the
25 models per scenario, and calculated the average z-score, its standard
deviation, the minimum and maximum z-scores, as well as the number
of simulations in which a fixed effect term was included. We used the
DHARMa package in R (Hartig, 2018) to validate the final model for-
mulations by visualy inspecing the residual distributions for each of the
375 models. We did not detect any systematic relationships between
the standardized residuals and the predicted values of the models, and
only in few cases within each of the 15 scenarios did the residual dis-
tribution deviate from normality. These cases were mainly restricted to
scenarios with either spatially restricted dispersal and/or environmen-
tal filtering and low immigration rates. This indicates that, overall, the

models were correctly specified (Supporting information Appendix S3).
2.8.2 | Step 2: Final model versus null model

We tested if the relationships between species occurrences and

spatially restricted dispersal, environmental filtering, and ecological
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FIGURE 2 Step 1—without spatially restricted dispersal. Metacommunities were simulated with (a-c) or without (d-f) environmental
filtering and with low (left panels), intermediate (middle panels) or high (right panels) immigration rates. Black points show the mean and
red points show the minimum and maximum effect size for each explanatory term. Gray dashed lines mark the cutoff value for statistical

significance (i.e., an absolute value of two). Numbers above the mean z-values show the number of models (out of 25) in which a term was
included. Positive and negative effect sizes indicate if community assembly processes led to an increase or decrease in species occurrence,
respectively. For the Community size x Commonness interaction, a positive effect size indicates that the rate of increase in occurrence with
community size depends on the commonness of species. For the environmental conditions x functional traits interaction, a positive effect
size indicates that species occurrences along the environmental gradient (filter) depend on the functional traits of species
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drift that we had observed in step 1, differed from null models in
which species distributions were stochastic. We applied step 2 of
the UniCAA framework to all 15 scenarios with null models consist-
ing of 99 randomizations as the fn.UniCAA.sim.eval function showed
the null models saturated at this point.

To test whether the relationship between patterns of species
occurrence and community assembly processes differed between
the empirical data (in our case, simulated data) and the simulated
data (null models with 99 randomizations), we calculated the ef-
fect sizes (z-scores) from the interaction terms with Data source.
Effect sizes (z-scores) larger than an absolute value of two (1.96)
indicated a statistically significant difference. All analyses and
data simulations were conducted in R v. 3.5.0 (R core team, 2018),
and GLMMs were fitted using the R package Ime4 (Bates et al.,
2015).
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3 | RESULTS

Using simulated data allowed us to test whether the UniCAA consist-
ently retrieved the processes behind community assembly in meta-
communities simulated with varying strengths of spatially restricted
dispersal, environmental filtering, and stochasticity (Figure 1). The
variables to be included in the second step of the analyses were
selected in step 1 (Figures 2 and 3). The parameter estimates for
these variables were compared with those obtained through null
models in step 2 of the analyses. UniCAA had low type-I error rates
(i.e., <5% false positives, Table 2, Figures 4 and 5) and the Distance
to source habitat variable was never significant in more than one
replication for a given scenario that was simulated without spatially
restricted dispersal (Figures 2 and 4). The Trait x Environmental

conditions term was never included in models that were simulated

a b’
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FIGURE 3 Step 1—with spatially restricted dispersal. Metacommunities were simulated with strong (a-c), intermediate (d-f) or without
environmental filtering (g-i) and with low (left panels), intermediate (middle panels) or high (right panels) immigration rates. Black points
show the mean and red points show the minimum and maximum effect size for each term. Gray dashed lines mark the cutoff value for
statistical significance (i.e., an absolute value of two). Numbers above the mean z-values show the number of models (out of 25) in which

a parameter was included. Positive and negative effect sizes indicate if community assembly processes led to an increase or decrease in
species occurrence, respectively. For the community size x commonness interaction, a positive effect size indicates that the rate of increase
in occurrence with community size depends on the commonness of species. For the environmental conditions x functional traits interaction,
a positive effect size indicates that species occurrences along the environmental gradient (filter) depend on the functional traits of species
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TABLE 2 The number of models (out of 25) in which the relationships between species occurrences and the drivers of community
assembly differed between the null model and the empirical models in step 2 of the UniCAA analyses. Results from each of the 15 scenarios
are ordered according to whether or not metacommunities were structured by: spatially restricted dispersal; environmental filtering; and
low, intermediate, and high immigration rates. The explanatory variables (fixed effect terms) were: the interaction term between the relative
abundance of a species outside the focal community (Commonness) and the size of the focal community (Community size); the species-
specific geographic distance from a focal community to the nearest community where the species was found (Distance to source habitat);
and the interaction term between the species-specific functional traits (Trait) and the community-specific environmental conditions
(Environmental conditions). For each fixed effect term, the number of models in which the null model showed a more positive (z > 2) or
negative (z s -2) relationship with species occurrences than that found in the empirical data is given. Fixed effect terms that were not
included in the final models in step 1, and therefore neither in step 2 are marked with n.a. The number of models per scenario that contained

each term is shown in Figures 2 and 3

Community size

log(Distance to Distance to Trait x Environmental

x Commonness Commonness Community size source habitat) source habitat conditions
Scenario - step 2 z>2 z<2 z>2 z<2 z>2 z<2 z>2 z<2 z>2 z<2 z>2 z<2
No dispersal limitation
No env. filtering
Low 25 0 25 0 25 n.a. n.a.
Intermediate 9 iLE 0 12 n.a n.a
High 1 0 1 0 0 n.a. n.a.
Strong env. filtering
Low n.a. n.a. 17 0 25 n.a n.a 0 1 25
Intermediate 2 0 25 0 25 1 0 n.a n.a. 25
High 6 0 25 0 25 n.a n.a 1 0 25
Dispersal limited
No env. filtering
Low 25 0 25 0 25 14 0 3 0 n.a. n.a.
Intermediate 25 0 25 0 25 22 0 1 0 n.a. n.a.
High 21 0 25 0 25 19 0 4 0 n.a. n.a.
Intermediate Env. filtering
Low 25 0 25 0 25 4 0 n.a n.a. 0 25
Intermediate 25 0 25 0 25 18 0 n.a. n.a. 0 25
High 25 0 25 0 25 23 0 n.a. n.a. 0 25
Strong env. filtering
Low n.a. n.a. 18 0 25 7 1 0 25
Intermediate n.a. n.a. 25 0 25 1 25
High 4 0 25 0 25 14 0 n.a. n.a. 0 25

without environmental filtering (Figures 2d-f, 3g-I, 4d-f and 5g-i).
Moreover, the Community size x Commonness interaction only dif-
fered from the null model in one case when metacommunities were
simulated to be stochastic (i.e., without spatially restricted dispersal,
high immigration rates, and no environmental filtering). Type-Il error
rates were also acceptable [i.e.,, <20% false negatives, (Johnson,
Baary, Ferguson, & Miiller, 2015)] as UniCAA only failed to identify
the Distance to source habitat variable as significant in two models
simulated with high immigration rates and no environmental filtering
(Table 2). Moreover, UniCAA did not confound stochastic with de-
terministic metacommunities as the Community size x Commonness
interaction term consistently differed between the null model data
and the empirical data when included in scenarios with environmen-

tal filtering (Figures 4a-c and 5a-f).

UniCAA correctly identified the influence of environmental fil-
tering in all scenarios. When metacommunities were simulated with
environmental filtering, the interaction term between Trait and
Environmental conditions was included in all models (Figures 2a-c
and 3a-f) and its influence differed between the empirical and the
null models (Figures 4a-cand 5a-f), irrespective of spatially restricted
dispersal and immigration rates (Table 2). The Trait x Environmental
conditions term was never included in the final models when meta-
communities were simulated without niche-based differences be-
tween species.

Spatially restricted dispersal led to decreasing probabili-
ties of species occurrence as the distance to the nearest site
containing conspecifics increased (i.e., negative z-values for

“Dist” in Figure 3a-i) and its influence depended on both the
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FIGURE 4 Step 2—without spatially restricted dispersal. Effect sizes (z-values) from step 2 of the differences in regression slopes

for community assembly processes between the “empirical” data (i.e., simulated “empirical” datasets) and null models for simulated
metacommunities without dispersal limitation. Metacommunities were simulated with (a-c) or without (d-f) environmental filtering and with
low (left panels), intermediate (middle panels) or high (right panels) immigration rates. Blue points show the z-value for the interaction terms
between the drivers of community assembly, identified in step 1, and the data source (“empirical” vs. null model). Points are shaded as to
reflect the density distribution of z-values so that dark blue indicates a high density of models with the corresponding z-value. Positive effect
sizes show that the rate of change in species occurrence brought on by a community assembly process was weaker than expected given

the null model. Negative effect sizes show the opposite, whereas effect sizes in the interval -2:2 show that the rate of change in species

occurrence matches that expected from the null model (i.e., it is neutral)

immigration rate and the presence of environmental filtering.
When immigration rates were reduced (low, intermediate), fewer
models contained the Distance to source habitat variable with a
parameter estimate that differed from the null model (Figures
3g-h and g-h) compared to when immigration rates were high
(Figures 3i and 5i). Similarly, under high immigration rates, the
number of models containing significant terms for the Distance
to source habitat variable were reduced under strong environ-
mental filtering (Figures 3c and 5c) compared to under inter-
mediate (Figures 3f and 5f) or in lieu of environmental filtering
(Figures 3i and 5i).

Species occurrences deviated more from purely stochastic
distributions when metacommunities had been simulated with
reduced immigration rates, spatially restricted dispersal and (or)
environmental filtering. When immigration rates were low, the
Community size x Commonness term, if included in the model, al-
ways differed between the empirical data and the null model. This
was also the case for scenarios simulated with either or both of
spatially restricted dispersal and environmental filtering except for
one scenario (spatially restricted dispersal, high immigration rates,
no environmental filtering) where the estimates for Community
size x Commonness did not deviate from the null model in four
cases. Thus, increasing immigration rates will—in rare instances—
generate the same patterns of species occurrences as expected
from stochastic community assembly, even if dispersal is spatially
restricted, as long as species are neutral with regards to their

niches.

4 | DISCUSSION

Simulating metacommunities with varying strengths of environmen-
tal filtering and dispersal limitation allowed us to assess whether
UniCAA was able to identify the processes behind community as-
sembly. UniCAA had acceptable type-I and type-Il error rates when
testing for the influence of spatially restricted dispersal, stochastic-
ity, and environmental filtering. UniCAA also captured the interde-
pendencies of the three processes through, for example, reduced
influence of spatially restricted dispersal under strong environmen-
tal filtering. A major innovation of the UniCAA framework is the use
of flexible mixed effect models to test the influence of all three pro-
cesses simultaneously, by comparing parameter estimates obtained
from the empirical data to those obtained from a null model (Table 2,
Figures 4 and 5).

Our results show that the UniCAA framework correctly iden-
tified stochastic species distributions. Such distributions scale
up to neutral metacommunities in which species are neither en-
vironmentally filtered nor dispersal limited (Leibold et al., 2004).
However, the influence of the Community size x Commonness in-
teraction differed between the “empirical data” and the null mod-
els when immigration rates were intermediate and low, because
communities became more isolated, and random extinctions thus
became less spatially synchronous. This is in line with the concept
of homogenizing dispersal whereby high dispersal rates decrease
spatial species turnover and lead to the species composition

predicted under pure drift (Stegen et al., 2013). The null model
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FIGURE 5 Step 2—with spatially restricted dispersal. Effect sizes (z-values) of the differences in regression slopes for community
assembly processes between the “empirical” data (i.e., simulated “empirical” datasets) and null models for simulated metacommunities with
dispersal limitation. Metacommunities were simulated with strong (a-c), intermediate (d-f) or without environmental filtering (g-i) and with
low (left panels), intermediate (middle panels) or high (right panels) immigration rates. Blue points show the z-value for the interaction terms
between the drivers of community assembly, identified in step 1, and the data source (“empirical” vs. null model). Points are shaded as to
reflect the density distribution of z-values so that dark blue indicates a high density of models with the corresponding z-value. Positive effect
sizes show that the rate of change in species occurrence brought on by a community assembly process was weaker than expected given

the null model. Negative effect sizes show the opposite, whereas effect sizes in the interval -2:2 show that the rate of change in species
occurrence matches that expected from the null model (i.e., it is neutral).

approach in UniCAA bears resemblance to the neutral prior imple-
mented in CATS [“Community Assembly through Trait Selection”
(Shipley, Vile, & Garnier, 2006)] where the goodness-of-fit statistic
(R?) of an empirical model is compared to that of a prior distribu-
tion. Similarly to the null model approach in UniCAA, the CATS
approach can be used to assess how much the relationship be-
tween local species abundances and their relative abundances in
the metacommunity diverges from what would be expected under
stochastic community assembly (Shipley, Paine, & Baraloto, 2012).
However, the comparisons between the empirical and null models
differ. CATS bases this comparison on the variance explained by
the empirical versus the prior distribution, whereas UniCAA tests
if the relationships (regression slopes) differ. Another important
distinction between CATS and UniCAA is that by including infor-
mation on the spatial location of communities, UniCAA allows
estimating the influence of spatially restricted dispersal on local
occurrences.

Distinguishing between the influence of environmental filter-
ing and dispersal limitation is often problematic because environ-
mental conditions tend to be spatially correlated between sampled
habitats (Gilbert & Lechowicz, 2004; Peres-Neto & Legendre, 2010).
Although our sampling scheme reduced the spatial correlation in

environmental conditions between our samples, thus allowing for
meaningful parameter estimates, the underlying environmental con-
ditions and community sizes that generated patterns of species dis-
tributions were still spatially correlated. While UniCAA—under our
simulation settings—did not confound spatially restricted dispersal
with environmental filtering, the degree of environmental filtering
did influence the influence of spatially restricted dispersal (Table 2).
This was expected, since the spatial component of community as-
sembly disappears under strong environmental filtering, because
species are unable to disperse across the landscape (Sokol et al.,
2017). Using the UniCAA approach, we were able to show how the
influence of spatially restricted dispersal becomes more important
as the influence of environmental filters decrease and immigration
rates increase (Table 2, Figure 5c). Testing the influence of spatially
restricted dispersal and environmental filteringis possible using other
frameworks (e.g., Ovaskainen et al., 2017). However, existing frame-
works do not make it possible to conclude that community assembly
is stochastic if neither parameter estimates for spatially restricted
dispersal or environmental filtering are significant, since one may not
have included all relevant traits or environmental gradients (Vellend
et al., 2014). The null model approach in UniCAA allows testing if
patterns of species occurrences differ from what would be expected



SYDENHAM ET AL.

under purely stochastic community assembly. Environmental filter-
ing will for instance lead to species aggregating within sites with
suitable environmental conditions (Kraft et al., 2015). Species may
therefore have locally large populations, and a relatively high relative
commonness, despite having restricted distributions. Under such
scenarios, the mean probability of occurrence will be lower than ex-
pected from the regional Community size x Commonness under the
null model setting (i.e., positive z-values in Table 2).

In our data simulations and analyses, all species had similar
dispersal capabilities. When testing the role of spatially restricted
dispersal, that is, Distance to source habitat, it is possible to test
whether dispersal abilities differ among trait groups by adding an
interaction term between the Distance to source habitat variable
and that trait (Sydenham et al., 2017). If the slopes for Distance to
source habitat differ significantly between trait groups, this would
indicate that the trait modifies dispersal limitation. This may be
important, as dispersal capabilities are unlikely to be neutral with
regard to species identities and functional traits (Lowe & McPeek,
2014). Another approach is to use p-diversity indices—calculated
for each trait group—to test for differences in dispersal limita-
tion between trait groups (Anderson et al., 2011). Alternatively,
one could compare differences in the relative importance of geo-
graphic distance versus environmental drivers on species turnover
(Konig, Weigelt, & Kreft, 2017). However, for continuous traits—
such as body size—this introduces some subjectivity as to how
to classify each trait group. In contrast, it is possible to include
continuous traits directly in the UniCAA framework. The flexibil-
ity of the UniCAA approach also allows accounting for environ-
mentally defined dispersal distances between sites. Since there
were no large barriers to dispersal, species in our simulations were
assumed to be able to disperse through all habitat types. Users
of the UniCAA should consider, whether the shortest geographic
distance between sites accurately reflects the shortest migratory
path between communities (Graf, Schadt, Fernandez, & Grimm,
2007). If for instance large water bodies separate terrestrial com-
munities, then the shortest migratory path may follow the coast-
line. In such cases, the species-specific inter-site distances used
when producing the UniCAA data frame should account for this
by, for example, using the gridDistance function in the Raster
package in R (Hijmans et al., 2016). Moreover, ecological surveys/
datasets are unlikely to include all potential source habitats from
which species can immigrate. The distance to source habitat may
therefore produce slightly biased estimates. However, because
UniCAA estimates the average decrease in occurrence with dis-
tance to source habitat, the influence of such outliers is likely to
be reduced as more species and sites are included in the analyses.
Additionally, the spatial configuration of study sites should be de-
signed so that the spatial correlation in environmental conditions
between sites is reduced (Gilbert & Lechowicz, 2004).

UniCAA incorporates the approach of Jamil et al. (2013),
that is, tests the influence of environmental filtering through
Trait x Environmental conditions terms. When formulating the mod-
els, Jamil et al. (2013) included species-specific random slopes for
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the environmental gradients. We did not include these in our anal-
yses because including the unimodal responses of species along
the environmental gradients as random slopes (i.e., second-order
polynomials for the environmental conditions) led to highly biased
parameter estimates of the Trait x Environmental conditions term.
However, if species are expected to show linear responses to an
environmental gradient, and to differ in these responses, a model
that includes random slopes should be compared to one that does
not. Despite leaving out random slopes, our simulation study
shows that the Trait x Environmental conditions term had accept-
able Type-I, and Type-ll errors; UniCAA always identified scenarios
with environmental filtering (Table 2). A strength of incorporating
the approach of Jamil et al. (2013) is that it allows testing multiple
Trait x Environmental conditions terms simultaneously, thereby
allowing for comparisons of their conditional effect sizes. This is
particularly important since multiple environmental filters often in-
fluence community assembly (de Bello et al., 2013).

Applying UniCAA requires specific hypotheses about trait-envi-
ronment relationships in order to test the influence of environmental
filtering, and therefore a set of functional traits for the species being
studied. Whereas traits for some taxa have been compiled in data-
bases (e.g., Homburg, Homburg, Scéfer, Schuldt, & Assman, 2014)—
or can be extracted from natural history books—identifying relevant
traits requires a careful consideration of traits and environmental
gradients (Petchey & Gaston, 2006). If trait data are not available—
or if the aim is not to test how environmental filters select for spe-
cies based on specific traits—then other approaches than UniCAA,
such as variation partitioning (Borcard, Legendre, & Drapeau, 1992;
Peres-Neto et al., 2006) will be more appropriate. Variation parti-
tioning identifies the fractions of variation in species composition
among communities that is attributable to environmental conditions,
geographic distances, the combination of the two, and the unex-
plained variation. Yet, whereas variation partitioning can be a more
flexible approach than UniCAA, an important assumption is that all
relevant environmental gradients (i.e., filters) have been measured. If
not, one cannot conclude that the variation in species composition
associated with spatial distances is not due to environmental filter-
ing (Vellend et al., 2014).

We believe that UniCAA has the potential to become a widely
applicable framework, but we also recognize potential limitations
and avenues for further development of the framework. Proxies for
Distance to source habitat, Community size, and Commonness can
be difficult to obtain for un-surveyed areas. UniCAA does therefore
not replace the need for models that provide quantitative predic-
tions of biodiversity in un-surveyed areas and how this biodiversity
may change according to environmental perturbations (D'Amen,
Rahbek, Zimmermann, & Guisan, 2017). In its current form, UniCAA
should therefore be viewed as a framework for testing hypotheses
related to how dispersal limitation, abiotic ecological filtering, and
ecological drift influence species occurrences within surveyed com-
munities. Since environmental filtering can influence species abun-
dances (Shipley et al., 2006), future studies should aim to expand the
framework to model species abundances and test the applicability
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of the framework when using such models. When extending the
UniCAA to model abundances, one should consider the spatial grain
of the sampling units, particularly if biotic interactions are likely to
be a central driver of differences in species abundances between
sampling units. Not accounting for biotic interactions may be prob-
lematic if communities are sampled at spatial grains where compe-
tition or facilitation is important, such as at the habitat resource
scale. Incorporating formal tests of the presence and strength of bi-
otic interactions would be a significant contribution to the UniCAA
framework and is currently a central theme in community and macro-
ecology (D'Amen, Mod, Gotelli, & Guisan, 2018; Morales-Castilla,
Matias, Gravel, & Araujo, 2015; Staniczenko, Sivasubramaniam,
Suttle, & Pearson, 2017). A potentially promising avenue is to use
the residual correlation matrix between species (random effects) to
identify species-pairs that co-occur less or more frequently than ex-
pected by chance (D'Amen et al., 2018; Warton et al., 2015), after
having controlled for the influence of spatially restricted dispersal,
environmental filtering, and stochasticity. Unfortunately, our meta-
community simulator did not allow us to incorporate the influence
of, for example, competition on community assembly. If competition
reduces the number of ecologically similar species that occur within
communities, the Trait x Environment interaction terms should still
allow identifying if community assembly is environmentally filtered.
In such cases, the influence of competition should simply reduce the
mean probability of occurrence and abundance of species within
trait groups. However, the probability of occurrence should still be
greater in habitats with suitable environmental conditions than in

habitats with non-suitable environmental conditions.

5 | CONCLUSIONS

The UniCAA framework can be used to answer fundamental
questions in ecology and enables exploration of novel questions.
For instance, since the influence of ecological drift is estimated
through the influence of Commonness—which may be deter-
mined by speciation and large-scale dispersal (Cornell & Harrison,
2014)—UniCAA enables us to study how processes that shape the
regional species pool in turn influence community assembly. The
framework can also be used to identify at which spatial scale (grain
size) stochastic species distributions emerges as a consequence
of non-deterministic community assembly processes. Future de-
velopments of the framework should focus on implementing the
influence of biotic interactions, and also on developing null mod-
els for stratifying randomizations within functional groups, as this
may allow testing if species with similar traits show stochastic
species distributions. Moreover, future studies should aim to com-
pare the outputs of UniCAA to those of other approaches aimed
at disentangling the influence of community assembly processes.
To accommodate the use of UniCAA, as well as future improve-
ments, we have included two R scripts to allow readers to directly
apply and further develop the framework (Supporting information
Appendixes S1-52).
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