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Abstract 
 

 

 

 

The uncertainty caused by the increased use of renewable energy sources makes it more essential 

to find good forecasting tools that can offset the increased risk in predicting elspot prices. 

Different supervised machine learning models are applied in this thesis to predict electricity 

prices for the different price areas in Norway using hourly data for elspot prices, energy prices 

and temperature collected for the period 2014-2020. The results show that some models are 

better suited for predicting elspot prices compared to others, with the Linear regression model, 

Gradient Boosting and Extra Randomised Trees regressor (ET) giving the best results out of the 

11 tested models. The findings also suggest that choosing seasonal forecasting horizon together 

with adding more explanatory variables such as system load and wind power will improve the 

predictive performance of the models by capturing price spikes and anticipating changes in the 

elspot prices that longer forecasting horizon fail to capture.  
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1.0. Introduction 

More increased use of renewable energy – such as wind and solar power – has given more 

attention to the practice of predicting electricity prices. As a result of this, there is an increased 

demand for better forecasting tools that accommodate the expanded vulnerability that has 

emerged – namely, incertitude about the utilisation of renewable energy for electricity 

generation. The aim of this thesis is to compare the performance of different machine learning 

models to predict elspot prices in Norway and ask if such methods produce more accurate 

forecasts than simple forecasting tools.  

As a commodity, there are certain characteristics of electricity that are interesting to study for the 

objective of this thesis. Firstly, electricity is a multidimensional commodity where different 

components that are involved in its output affects its pricing. These components include 

delivery-period withdrawals, quantity produced, transmission capacity, and time of withdrawal 

(Hope, 2000, pg. 22). A change in one of these components will inadvertently affect the others, 

which again, is reflected in the pricing. Secondly, it cannot be stored economically and requires 

immediate delivery which makes knowledge of demand and supply essential (Apergis, Gozgor, 

Lau, & Wang, 2019, pg. 129). Thirdly, the consumption and demand of electricity follows 

seasonal trends which are also reflected in the prices. This means that, in order to achieve the 

optimal production where the demand matches the supply, it is important that suppliers are 

anteriorly aware of their production capabilities, and how the demand will fluctuate in the 

coming hours, days and weeks. Perfection is difficult to achieve, especially when more 

uncertainty is introduced into the time horizon; which brings us to our third point. Electricity is 

characterised by uncertainty on the supply side. Over- and underproduction may occur due to 

variations that the prices cannot correct for, whether this be due to weather changes, falling gas 

prices, or bottlenecks in the transmission grid of connected areas – which make it difficult to 

trade electricity at the same price in all connected regions. By using market splitting where the 

market is divided into predefined geographic zones, we get different market clearing prices. This 

illustrates how prices are not only affected by demand and supply, but also by the constraints on 

the cable-lines between the regions (Glachant & Lévêque, 2009, pg. 46). Also, the electricity 

demanded in the short run is inelastic since consumers cannot react quickly to the changes in 

prices. Moreover, if those changes are caused by unforeseen disturbances, it creates an incentive 
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to invest in a grid system that can withstand and ensure uninterrupted power supply down to a 

time horizon of minutes and seconds (Hope, 2000, pg. 27). This invariably raises the costs that 

the end-user pays on electricity deliverance.  

1.1. Why machine learning? 

Predictive modelling - the process of applying an algorithm or a model on data in order to predict 

output is becoming much more exciting in this era of big data – where the access to large 

datasets gives the opportunity to combine the field of machine learning with that of statistics.  

Machine learning is a subset of artificial intelligence that allows the machine to learn patterns 

from data without being explicitly programmed. It solves the problem of prediction by 

uncovering generalisable patterns that we wouldn’t have picked up if we were to apply a model-

based prediction approach instead (Mullainathan & Spiess, 2017). The goal is to build a model 

that seeks to make predictions about an outcome on a dependent variable given a number of 

features using a set of tools developed within the fields of statistics and computer science (Athey 

& Imbens, 2019). Making good predictions is also valuable for policy makers, and machine 

learning models are shown in some studies to outperform alternative statistical methods when 

large data sets are available even though not all statistical properties are maintained (Athey & 

Imbens, 2019, pg. 2). 

Provided that machine learning is a term that is utilised both broadly and narrowly depending on 

which field it is applied to; it befits that we provide a more formal definition before continuing: 

Definition 1.1.   “A computer program is said to learn from experience E with respect to 

some class of tasks T and performance measure P, if its performance at 

tasks in T, as measured by P, improves with experience E.” (Mitchell, 

1997, pg. 2) 

Machine learning has three main categories – supervised, unsupervised, and reinforcement 

learning. Supervised deals with problems that use a set of predictors, covariates or features (X) 

to predict an outcome (Y). These terms are known in the statistical literature as independent or 

explanatory variables. By dividing the data into training and testing set, the user provides the 

algorithm with data (training set) to create a model that produces the desired output, and then 
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evaluate the goodness of fit for the given model on an out-of-sample data, i.e. test data. In 

contrast, the unsupervised-learning deals with problems that only have input data with no 

outcome measures, and the task of the user is to discover patterns amongst the set of input 

measures (Müller & Guido, 2016). Lastly, reinforcement-learning is a ‘self-taught learning’ that 

follows a sequential experimentation, where a machine optimises some tasks by operating within 

a reward system that rewards the machine if it guesses right or punishes if it guesses wrong 

(Varian, 2019, pg. 400-401). Different machine learning models are suited for different problems 

and for this thesis we choose supervised learning to evaluate the performance of our chosen 

models for the prediction task.  

The use of machine learning may give an advantage when predicting electricity prices, since we 

may estimate a model that takes into account – “the volatility inherent in deregulated markets for 

electricity-….- to predict the occurrence of price spikes.” (Mount, Ning, & Cai, 2006, pg. 63). 

This is achieved by adopting a model that is flexible in the sense that it –“manages to fit complex 

and flexible functional forms to the data without simply overfitting; it finds functions that work 

well out of sample ”(Mullainathan & Spiess, 2017, pg. 88). The use of machine learning in the 

field of statistics has had a slow uptake compared to other fields, the reason for this being that “-

economics journals emphasize the use of methods with formal properties of a type that many of 

the machine learning methods do not naturally deliver.”(Athey & Imbens, 2019, pg. 2). Some 

academic statisticians even view the predictive methodology that the machine learning is based 

on as unacademic; and oppose the notion of prediction being one of the main purposes of 

statistics if the formal properties are not fulfilled (Shmueli, 2011, pg. 3).  This is a point of 

discussion we will not cover here, but suffice it to say, that while statistics has four focus areas: 

prediction, summarisation, estimation, and hypothesis testing, machine learning is just concerned 

with prediction (Varian, 2014, pg. 5).   

1.2. Aim of thesis 

The aim of this thesis is to predict elspot prices in the Norwegian electricity market using 

supervised machine-learning models. We do this in two ways. The first is to compare the 

forecasting ability of the chosen models to see what fits our data best. The second is to evaluate 

the performance of the three best performing models on the other price areas in Norway. The 



4 
 

forecasting horizon we have chosen is medium-term, meaning, that we predict months ahead 

using historical price data and exogenous variables (Weron, Ziel, Soytaş, & Sarı, 2020). 

The paper is organised as follows. The next section introduces us to the Nord Pool market design 

coupled with a brief description of the price patterns for the years 2014-2020. In chapter 3, we 

first present literature review on the modelling of electricity prices, before giving a detailed 

presentation on the machine models which we assume to be unknown to the reader. The 

forecasting strategy is presented in chapter 4, where we describe the implementation of the 

models and the methodological challenges that we have faced. This is followed by chapter 5, 

where we present the results followed by discussions. Chapter 6 present the conclusion together 

with suggestion for further work. 
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2.0.  When supply meets demand: The Nordic market design 

2.1. Nord Pool power exchange 
 

The creation of Nord Pool comes as a result of market liberalisation for the electricity sector 

where the aim is to – obtain a well-functioning and competitive market that allows for efficiency 

gains (Hope, 2000). In the day-ahead market price is achieved by having customers submit bids 

and offers for each price area before 12:00 CET for delivery of electricity the next day. The price 

for each delivery hour is based on the aggregate demand and supply. This is commonly referred 

to as the elspot price. The elspot price variation for the different bidding areas within the same 

country is often due to the geographical positioning that makes it difficult to fully integrate with 

other markets, with integration level sometimes reaching only 20 or 30 percent of the time 

(Glachant & Lévêque, 2009, pg. 77).  Let us now assume that there are no transmission 

constraints in the regions, i.e. no congestion due to bottlenecks and the flow of electricity 

between bidding areas are within the limits set by the transmission system operators (TSO). 

Following the logic of supply and demand, the market’s clearing price (MCP) announced by 

Nord Pool would be the same in Norway, Sweden, Denmark and Finland (Nord Pool, 2020b). 

This is termed as the system price – where price is achieved at the intersection of MCP and the 

estimated demand given by the market clearing volume (MCV) (Weron, 2007, pg. 77). 1 

 

Figure 2.1. Power exchange price formation. Figure adopted from (Weron, 2007, pg. 4) 

 
1 There are also other forms of bidding such as the block bids and flexible hourly bidding, but we will not cover 
them here.  
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By using a uniform-price auction, the MCP is given to both buyers and suppliers for their 

bidding areas even if they bid above or below the clearing price (Weron, 2007, pg. 6). When the 

information is published on how the electricity is bought and sold, the respective TSOs are 

notified to ensure that the schedule is feasible and within the transmission constraint. From the 

time the information is published to when electricity is physically delivered the next day, the 

TSO operate the balancing market – i.e. real-time market where they correct for price deviations 

due to changes of the demand and supply for the delivery hours. This enables the TSOs to call in 

extra production capacity and correct the deviations to ensure physical delivery and keep the 

system in balance. (Weron, 2007, pg. 7). 2 

If the transmission grid capacity for the different bidding areas are congested, then price 

equalisation won’t be achieved, which means that the clearing price for each of these areas will 

deviate from the system price calculated by Nord Pool.  In such instances zonal pricing is 

employed, which calculates the sum of generation marginal- and congestion costs for the specific 

region (Weron, 2007). Below is an example that illustrates the difference between system price 

(grey line) and zonal price (green line) for a randomly chosen price area in Nord Pool.  

 

Figure 2.2. Hourly day-ahead prices for 05.02.20 (SYS) stands for Nord Pool’s system price and SE4 is zone 4 in 

Sweden. We see a sudden spike in price for SE4 between 06:00-11:00 due to congestion (Nord Pool, 2020a). 

 

The Norwegian power market is divided into five price areas. NO1 is southeast Norway, NO2 is 

southwest Norway, NO3 is central Norway, NO4 is northern Norway, and NO5 is western 

Norway (Statnett, 2020).  

 
2 Such markets have extreme price fluctuations which creates a need for sophisticated forecasting tools compared 
to the day-ahead market (Weron et al., 2020).  
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2.2. Patterns in electricity consumption 

Electricity consumptions follows a seasonal pattern. Since the spot-price reflects the supply and 

demand at a given hour, the price will also follow the same seasonal pattern – with higher prices 

in periods with high demand and lower prices in others. Understanding these patterns are 

important with regards to the type of models we want to use when predicting elspot prices. An 

overview of the spot price development from our data for price area NO1 is given in figure 2.3 

(a). When it comes to the four seasons, the highest prices, i.e. spikes are typically observed in 

winter. This we see in jan-2015 with the prices going over 200 Euro/MWh. When spring arrives, 

the prices start decreasing following the demand, and it usually picks up during late summer 

months and autumn before it falls during winter.  

 

Figure 2.3 (a) Notice how the price spikes are in the winter around new year.  

It is not just with seasons that we observe these variations in prices but also hours within the day 

and weekends.  
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Figure 2.3 (b) Hourly prices for January 6th, 2020. Note how the price increases in the early hours and remains 

sustained till evening when it goes down since people go to sleep.   

 

Figure 2.3 (c)  First week of April. The price increases due to a fall in temperature which increases demand for 

electricity.  
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3.0. Theory 

When analysing a data sample the researcher wishes to extract information on the relationship 

between input variables and outcome measure by a) looking at the data-generating process, or b) 

predicting what the response is going to be to future input variables (Breiman, 2001b, pg. 199). 

Since statistics and machine learning are both concerned with what one can learn from the data, 

they share similarities in approaches when doing predictions but also differences (Stewart, 2019). 

Statistical modelling is more concerned with evaluating the significance of variables and the 

relationship between model parameters while machine learning obtains the model through the 

process that we have described earlier in chapter 1, where we train the algorithm till we achieve 

an acceptable prediction rate before testing its performance on out-of-sample data. We are not 

too concerned with the interpretability and the relationship between variables since the predictive 

accuracy is what ‘validates’ our model (Breiman, 2001b). We mention this because a 

consequence of conflating the two matters, i.e. “— of the difference between building sound 

explanatory models versus creating powerful predictive models— “ (Shmueli, 2011, pg. 2) — is 

assuming that a model with high explanatory power also has a high predictive power, which is 

not the case. Many researchers use now different approaches when developing prediction models 

based on previously learned experience by building sophisticated models that account for the 

unique characteristics found in electricity. 

3.1. Literature and contribution on price models  
 

Statistical models are very popular and commonly used to find trends and patterns in historical 

data used to predict price evolution without explicitly modelling the underlying physical 

processes (Gomez-Exposito et al., 2017, pg. 41) 3. These models are helpful in evaluating and 

understanding the performance of the variables, but the downside when used on their own is that 

they struggle to capture non-linear trends, even if such models can be approximated well by 

 
3 Point forecast, which is the focus of this exercise is the expected value of electricity price 𝑌𝑡 at a given horizon h, 

conditional on past observed values (Weron et al., 2020).  We only discuss the statistical models applied to 
predicting spot prices due to its relevancy. For discussion regarding other types of forecasts and models used for 
elspot prediction, refer to Weron (2014)’s ‘Electricity price forecasting: A review of the state-of-the-art with a look 
into the future’. 
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linear ones (Weron et al., 2020, pg. 512). Misiorek, Trueck and Weron (2006) propose an ARX 

model (X-standing for exogenous variable) for short-term prediction on elspot prices in 

California by estimating a model (using OLS) that has autoregressive terms which account for 

dependency between lagged observations4. Explanatory variables that they use include the load 

forecasts, non-linear effects, dummy variables which capture seasonality and exogenous features 

(i.e. energy prices and weather). Their model has provided basis for similar studies such as 

Guthrie and Videbeck (2007) who use periodic autoregression model (PAR) by including a 

periodic component when predicting electricity prices in New Zealand using half-hour data for a 

period of eight years. The model captures the volatility of spot prices for both peak and off-peak 

periods simultaneously, since the shocks in the peak periods are larger and less persistent than 

those in off-peak periods, with the shocks often reappearing in the following peak period (pg. 

5615). This spike-like behaviour is captured because they include volatility as a variable in the 

function.  Olsson and Söder (2008) also use a similar approach in modelling spot prices by 

combining seasonal ARIMA (SARIMA) and nonlinear models such as the discrete homogenous 

Markov-process on data from Nord Pool. By combing the two approaches they find that the 

generated price scenarios in the model shows the desired behaviour and resembles real-time 

balancing of power prices in Nord Pool (Olsson & Soder, 2008, pg. 450). 

Other forecasting models found within this category include models that predict elspot prices for 

the next 24-hours using the ARIMA methodology (Refer to Contreras, Espinola, Nogales, & 

Conejo, 2003) and exponential smoothing techniques where one takes the weighted average of 

past observations but gives higher weight to the most recent observations (Refer to Jonsson, 

Pinson, Nielsen, Madsen, & Nielsen, 2013). We also have the generalised autoregressive 

conditional heteroskedasticity model (GARCH) used in the context of volatile forecasting by 

being able to mirror price spikes and it builds on the assumption that the data is serially 

autocorrelated (Refer to Huurman, Ravazzolo, & Zhou, 2012). Threshold models are also types 

of models commonly used such as the Markov regime-switching model applied by Bessec, 

Fouquau and Meritet (2016). They use a double temporal segmentation to deal with seasonality 

and trading periods found in the data, and assess the forecasting ability of several classes of time-

series models for wholesale spot prices at a day-ahead horizon in France (Bessec et al., 2016, pg. 

 
4 To make the data stationary means that the statistical properties such as variance and autocorrelation stay 
constant over time.  
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361). The use of different models to predict prices for each season makes them discover that 

modelling each season independently yields more accurate forecasts. 

What all these approaches show is that when predicting spot prices using statistical models, we 

need sophisticated methods to achieve good results since electricity as a commodity possesses 

features that are not present in other markets (Hou, Liu, & Salazar, 2017).  Ziel and Weron 

(2018) do an empirical study on short-term electricity price forecasting and consider 

autoregressive models on a dataset that has more than 200 explanatory variables. They find that 

combining advanced structures such as uni- and multivariate LASSO5-implied structures 

significantly outperform autoregressive benchmarks (Ziel & Weron, 2018). Given this, it would 

be interesting to evaluate the performance of the machine learning models and how they compare 

to the benchmark model.  

3.2. Machine learning’s approach to prediction 

One of the main goals for machine learning models in achieving a good out-of-sample prediction 

is to generalise beyond the examples in the dataset that the algorithm is trained on (Domingos, 

2012) . This assumes that the researcher must have knowledge about how the data is and then use 

the assumptions needed for generalisation when building the model. This is termed as the ‘no 

free lunch’- theorem by David Wolpert and it states that –“ the average performance of any pair 

of algorithms across all possible problems is identical ”(Wolpert & Macready, 1997, pg.67). This 

means that there is no one method which outperforms all others for all possible datasets. One 

approach works better on a given dataset than others, which makes this in many ways the most 

challenging part of performing statistical learning in practice (James et al., 2013, pg. 29). 

Before we delve into the different machine learning models, it behoves that we first introduce 

machine learning’s approach to prediction. There are two separate goals we wish to achieve with 

machine learning prediction. The first one is the model selection where we estimate different 

models to select the best performing one on the data. The second is to assess the chosen model’s 

performance on out of-sample data (Hastie et al., 2009, pg. 222). Since our focus is on 

 
5 The least absolute shrinkage and selection operator (LASSO) is a ‘penalising’ regression model that reduces the 
coefficients of explanatory variables to zero if they don’t explain the output variable in the model. Commonly used 

in machine learning. 
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supervised learning, we define prediction as a setting where we have a database that provides us 

a training sample where we have already recorded the values of input variable 𝑋𝑖 and output 

variable 𝑌𝑖. We run the algorithm on a training sample provided by this model,  

                        𝑇 = {𝑋𝑖, 𝑌𝑖}𝑖
𝑁                                                          (𝟑. 𝟏)                                            

where the goal for the learning 6 algorithm is to obtain a reliable pattern in predicting 𝑌𝑖, so that 

when we provide only the values of 𝑋𝑖 from a test sample which we hold back, the algorithm will 

manage to predict 𝑌𝑖 accurately (Friedman, 1997, pg. 55). 

i. Model estimation  

Let X ∈ ℝ𝑛 express a random input vector where its components are accessed by the subscripts 

𝑥𝑡 , with the predictor space showing all set of possible values for  𝑥𝑡 = (𝑥1𝑡, 𝑥2𝑡,  𝑥3𝑡 , … . . , 𝑥𝑛𝑡,) 

and a joint distribution conditional on Pr(X,Y ). We assume for simplicity’s sake that the 

discussion is restricted to point forecasts which are constructed as approximations to the 

conditional expectation of 𝑌𝑡 given 𝑥𝑡 (White, 2006, pg. 461). Let us also assume 𝑥𝑡 to be 

observed prior to the realisation of 𝑌𝑡, with the subscript t used as an observation index for the 

time a prediction is to be made (White, 2006). The optimal point forecast given the predictors 𝑥𝑡 

and output 𝑌𝑡 at a given time t is the provided by (3.2),                                                                     

                          𝑌𝑡 =   𝑓(𝑥𝑡) + 𝜀𝑡                                       (3.2)                

(Hastie et al., 2009, pg. 18)                                                                  

where 𝑓(𝑥𝑡) is the ‘true’ function that provides the output value, and 𝜀𝑡 is the random error 

which shares the same conditional joint distribution with the mean E(𝜀|𝑥)=0.  Our target function 

becomes,  

                             𝑓(𝑥𝑖) = 𝐸(𝑦𝑖|𝜀𝑖)                                   (𝟑. 𝟑) 

 
6 Learning is a term that can be used broadly, but in this instance it refers to how the algorithm improves from 
experience (i.e. the data it is trained on) in a straightforward, measurable way (Mitchell, 1997).  
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We estimate it using the training data till we achieve an acceptable prediction rate before testing 

its performance on unseen data. This means that, 

                             𝑓(𝑥𝑖|𝑇) = 𝐸̂(𝑦𝑖|𝑥𝑖 , 𝑇)                                   (𝟑. 𝟒) 

(Friedman, 1997, pg. 58) 

ii. Model assessment and selection 

Hyperparameter optimisation is the tuning of the algorithms’ parameters7, where the aim is to 

optimise the performance of a machine learning algorithm before finalising the model and test its 

performance on out-of-sample data (Brownlee, 2016). Different strategies are applied to reach 

this goal and we will later use examples from each machine learning model used in this thesis. 

To evaluate the performance of the model after training the algorithm, we must find a way to 

obtain good prediction and quantify the extent to which the predicted value is as close to the true 

value for a given observation, i.e. obtain a loss function. One of the most common ways of 

measuring this is the mean squared error (MSE) , 

                         𝑀𝑆𝐸 =  
1

𝑛
∑∑(𝑦𝑖

𝑛

𝑖=1

− 𝑓(𝑥𝑖))
2                             (𝟑. 𝟓) 

where we sum up the residual from the estimated function and then divide by the number of 

samples that we have (James et al., 2013, pg. 29). Another performance metric used is the mean 

absolute error that measures the average extent of error, 

              𝑀𝐴𝐸 = 
1

𝑛
∑∑(𝑦𝑖

𝑛

𝑖=1

− 𝑓(𝑥𝑖))                  (𝟑. 𝟔)   

If we train the model on a set of observations [(𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3), … . (𝑥𝑛 , 𝑦𝑛)],  and through this 

training we gain experience8 used in estimating a function 𝑓(𝑥𝑡) that helps us obtain 𝑦̂-values 

 
7 It is important to differentiate between the coefficients found by the machine learning algorithm which is 
referred to as parameters, and the parameter of the algorithm itself being called hyperparameters.  The latter are 
adjusted to increase model performance (Brownlee, 2016).  
8 Refers to the definition provided by (Mitchell, 1997) in chapter 1. 
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close to the true value of 𝑦, then the training MSE given by (3.5) will be small. The opposite is 

also the case, but this is not what we are interested in. We are more concerned with knowing 

whether the estimated model is generalisable and applicable to unseen data that shares the same 

characteristics as the training set that we saw earlier.  

This leads to a central concept in machine learning called overfitting; which refers to a 

worsening of generalisation performance for the model on unseen data, because the estimated 

model picks up the ‘white noise’ in the training set as a pattern for predicting spot prices (Müller 

& Guido, 2016).  To build a successful model we must avoid overfitting and choose a method 

that gives us the lowest testing MSE by computing the average squared prediction error for test 

observations (𝑥0𝑦0) from a large number of data points (James et al., 2013, pg. 30). This yields 

us the following,  

                                                𝑀𝑆𝐸𝑡𝑒𝑠𝑡 =  𝐴𝑣𝑒 (𝑦0 − 𝑓(𝑥0))
2

                 (𝟑. 𝟕)     9 

Another thing to consider for all supervised models is the trade-off between the flexibility of the 

model and how well it performs on out-of-sample data. If we are only concerned with prediction 

and we also have large dataset with many predictors, we may prefer a model that is more flexible 

since it is better at capturing non-linear relationship trends in data. Below is a figure that shows 

how the U-shape shown in test MSE curve is a result of two competing properties of statistical 

learning methods, i.e. the bias-variance trade-off  (James et al., 2013) 

 

 
9 We square this to remove any negative sign and give more weight to large differences,  because if the 
parameters/features in the model are meaningful in explaining the output, we do not want to the features to 
cancel out each other. 
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Figure 3.1.  Training and testing error shown as function of the model complexity. The more flexible the model is, 

i.e. the more we fit the model to the data, the more the test MSE increases after a certain point due to increased bias 

of the model even though for the training MSE the prediction error decreases till it reaches zero. When bias is high 

and variance is high, the algorithm fails to catch important relationship between the features that explain outcome 

variable, so that the model is ‘underfitted’. If the bias is low and the variance is high, the model ‘overfits’. Figure 

adopted from (Hastie et al., 2009, pg. 38) 

The function that captures the expected test MSE for a given value 𝑥0 is obtained by taking the 

error average over repeatedly realised testing samples of the same size N from the data 

(Friedman, 1997, pg. 59). This gives us the three ingredients found in the bias-variance trade off, 

 𝐸𝜏(𝑓(𝑥0) − 𝑦̂0))
2⏞            

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑡𝑒𝑠𝑡 𝑀𝑆𝐸 

=   𝑉𝑎𝑟(𝑓̂(𝑥0)|𝑇) + [𝑏𝑖𝑎𝑠 (𝑓̂(𝑥0))]
2 + 𝑉𝑎𝑟(𝜀).                   (𝟑. 𝟖)            

The first term in the equation captures the variance of the estimated function 𝑓(𝑥0|𝑇) which 

reflects the sensitivity in the training sample, so that less sensitivity makes the estimated model 

more stable against changes caused by resampling of data (Friedman, 1997, pg. 60). The squared 

bias of 𝑓(𝑥0), measures the sensitivity to the target function by taking the average of correct 

predictions the function makes for our target variable  𝑌̂𝑡. The last term shows the variance of the 

error term 𝑉𝑎𝑟(𝜀)  and it is the irreducible prediction error which is independent from the 

previous two terms and it cannot be reduced unlike the previous terms10. The first two terms are 

squared to remove any negative sign guaranteeing that the test MSE never goes below the 

𝑉𝑎𝑟(𝜀) (Friedman, 1997, pg. 60).  

iii. Improving model performance 

Provided that the training MSE is less than the test MSE when model complexity increases (refer 

to figure 3.2), different analytical tools are used to  help identify and improve the model’s 

goodness of fit. We have the Akaike information criterion (AIC) and the Bayesian information 

Criterion (BIC) which are used to evaluate and choose the best performing model where we 

adjust the training error for the model size by adding a penalising term (James et al., 2013). This 

 
10 The mathematical proof of the bias-variance decomposition is shown below. 𝜏 stands for the training data. (Hastie et al., 
2009, pg. 24) 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑀𝑆𝐸𝑡𝑒𝑠𝑡(𝑥0)  =  𝐸𝜏[𝑓(𝑥0) − 𝑦̂0)]
2                                         

                                                 = 𝐸𝜏[𝑦̂0 − 𝐸𝜏(𝑦̂0 )]
2 + [𝐸𝜏(𝑦̂0 ) − 𝑓(𝑥0]

2) 
                               = 𝑉𝑎𝑟𝜏(𝑦̂0)

2 + 𝑏𝑖𝑎𝑠2(𝑦̂0)                    
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is provided by the models below, where 𝐿̂  is the maximum likelihood estimate (measure of 

goodness-of-fit), with K being the number of parameters included in the models and N the 

sample size.  

     𝑨𝑰𝑪 =  2𝐾 − 2 log(𝐿̂)                             𝑩𝑰𝑪 =  𝐾 log(𝑁) − 2 log(𝐿̂)                        ( 𝟑. 𝟗)  

(Li & Nyholt, 2001, pg. 273) 

The intuition is as follows: The first term increases when model complexity increases which 

leads to a higher penalty-term, and the second term decreases as the model gets better in 

explaining the data. We want to minimise both AIC and BIC, and if the complexity of the model 

does not increase with the sample size (N) then BIC is preferred. Otherwise we stick with the 

AIC (Li & Nyholt, 2001: Burnham and Anderson, 1998). Another advantage in using AIC is that 

the model is derived from obtaining good predictions rather than accurately inferring the ‘true 

distribution’ of data, which is in line with the machine learning approach. (Shmueli, 2011, pg. 

13).  

Other methods used to achieve the same objective are the resampling techniques such as the 

cross-validation methods (James et al., 2013). The standard way of applying cross-validation in 

machine learning is to shuffle the observations randomly without considering the relationship 

between datapoints, and this presents a challenge for timeseries data which we will be handling 

in this thesis. For this reason, only the cross validation specific to timeseries data is described 

here.  
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Figure 3.2.  Cross-validation with timeseries data. We split the data like a ‘moving window’ so that all testing 

periods are tried on a model trained to the most recent/relevant data. Figure adopted from (Scikit-learn: Pedregosa et 

al., 2011). 

The cross-validation method applied to timeseries data takes the training data and divides it into 

training and validation sets, and it does this in sequence due to the observations not being 

independent. A set of n-observations that are not overlapping are split into training and testing 

set in an equally spaced time interval, where in each split the test indices must be higher than 

before. The test error (given by the validation set) is provided by the average of all splits (James 

et al., 2013).  We will now describe the theory behind the different machine learning models 

used in this exercise. How it is implemented comes in the next chapter.  

3.3. Machine learning models 

3.3.1. Parametric and non-parametric regression models 

Parametric models are commonly used in prediction tasks, and they make strict assumptions on 

the functional form of  data when choosing and fitting a model (White, 2006). These strict 

assumptions are an advantage both in application because they are simple, and the results are 

interpretable. If we assume that the functional form of 𝑓(𝑥) or parameters are linear then this 

gives rise to the well-known linear regression model, 

                                                                      𝑌 =  𝑋𝛽 + 𝜀                                                      (𝟑. 𝟏𝟎)   

 where we seek to estimate our coefficients in the following equation,                                               

                                          𝑌̂ =  𝛽̂0 +  𝛽̂1𝑋1 +  𝛽̂2𝑋2 +⋯+  𝛽̂𝑘𝑋𝑘                      (𝟑. 𝟏𝟏) 

𝜀~𝑁(𝜃, 𝜎2) 

where the regression parameter is given by 𝛽 = (𝛽1,𝛽2,…..,𝛽𝑛)
𝑡
. The parameters help us obtain the 

predicted change in 𝑌 given the changes in X, while the error term 𝜀 captures the part of the 

outcome that is not explained by the predictors. Note that for the assumptions to hold, how the 

𝜎2 is known and the distribution of error is independent from 𝜃. We estimate this using one of 

the most common methods, namely the ordinary least squares (OLS). We seek to fit the model to 

the data by minimising the sum of squared residuals and obtaining the best linear unbiased 

estimator (BLUE) (Wooldridge, 2020, ch. 3).  
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                                  𝛽𝑂𝐿𝑆 = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑(𝑦𝑖 − 𝛽0 −∑𝑋𝑖𝑗

𝑝

𝑗

𝛽𝑗)

𝑁

𝑖

 2                                    (𝟑. 𝟏𝟐)    

We minimise the function with respect to the parameters and reproduce it by means of a vector-

form where our input matrix 𝚾 is transposed and has 𝑝 rather than 𝑝 + 1 columns. This gives us,  

                                                                           𝑋𝑇 (𝑦 − 𝚾𝛽) = 0                                (𝟑. 𝟏𝟑)       

To achieve the optimal value of 𝛽𝑂𝐿𝑆 we take the inverse of (X𝑇𝑿) so that, 

                                                                  𝛽𝑂𝐿𝑆 = (𝐗𝑇𝑿)−1𝐗𝑇𝑦                         (𝟑. 𝟏𝟒)  

i. Penalised regression models (Ridge, Lasso and Elastic Net) 

It is not always feasible to use the OLS method,  especially if one is dealing with many 

predictors in a linear model where having correlated variables results in poor estimation of the 

coefficients of 𝛽𝑂𝐿𝑆 (Hastie et al., 2009, pg. 63). Several methods are proposed to tackle this 

problem by introducing a constraint parameter which restricts the size of the estimated 

coefficients, such as the Ridge regression model. The term used for these techniques is called 

regularisation.  

  𝛽𝑅𝑖𝑑𝑔𝑒 = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑(𝑦𝑖 − 𝛽0 −∑𝑋𝑖𝑗

𝑝

𝑗

𝛽𝑗)

𝑁

𝑖

 2     𝑠. 𝑡 ∑𝛽𝑗
2 ≤ 𝑐2

𝑝

𝑗⏟      
𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

          (𝟑. 𝟏𝟓)  

We follow the same steps as the OLS and we minimise the function using the Lagrange 

multiplier, 

        𝑓(𝛽0, 𝛽𝑗, 𝜆) = (𝑦𝑖 − 𝛽0 − ∑ 𝑋𝑖𝑗
𝑝
𝑗 𝛽𝑗) + 𝝀𝟐(𝜷𝟎 + 𝜷𝒋 − 𝒄𝟐)

⏞          
𝑃𝑒𝑛𝑎𝑙𝑖𝑠𝑖𝑛𝑔 𝑡𝑒𝑟𝑚 𝑓𝑜𝑟 𝑅𝑖𝑑𝑔𝑒

         𝝀𝟐 > 𝟎             (𝟑. 𝟏𝟔)                                                                                   

which then provides us after derivation and a rearranging of terms using  (3.13-6),  

                       𝛽𝑅𝑖𝑑𝑔𝑒 = (𝐗T𝐗 + 𝝀𝟐𝐈)
−1𝐗𝑇𝑦                                                                            (𝟑. 𝟏𝟕)   
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Except for 𝝀𝟐 and 𝐈 which is an identity matrix,  the equation is the same as 𝛽𝑂𝐿𝑆. 

Mathematically we know that a singular matrix is invertible, which is also why the Ridge 

regression helps us obtain coefficients by adding a positive constant to the diagonal of  𝐗T𝐗, 

making it non-singular before inverting (Hastie et al., 2009, pg. 64). The key difference between 

the 𝛽𝑂𝐿𝑆 and the 𝛽𝑅𝑖𝑑𝑔𝑒 is due to the behaviour of 𝝀𝟐 which captures the level of complexity in 

the model. The larger the value of 𝝀𝟐, the greater the amount of shrinkage faced by the estimated 

coefficients which goes towards zero without actually reaching it (Hastie et al., 2009). We 

choose a value of 𝝀𝟐 that gives us the lowest test error without sacrificing the predictors ability to 

help explain the model. Ridge regression works best when all features in the model are useful in 

explaining the output. This becomes a problem when we have features that are not useful, since 

the model fails to produce a parsimonious model that reduces model complexity while sustaining 

the same explanatory power (Zou & Hastie, 2005, pg. 301). The Lasso regression model solves 

this issue by combining both variable selection and continuous shrinkage when penalising the 

model for complexity. 𝝀𝟏 is the regularisation parameter for Lasso and it shrinks the coefficients 

that do not explain the model to zero giving us a sparse representation that makes interpreting 

easier. The steps are very similar to the Ridge regression, which is why we only show the results 

for the Lasso estimator, 

              𝛽𝐿𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛{∑(𝑦𝑖 − 𝛽0 −∑𝑋𝑖𝑗

𝑝

𝑗

𝛽𝑗)

𝑁

𝑖

 2     𝒔. 𝒕     ∑𝛽𝑗
2 ≤ 𝑐2

𝑝

𝑗

 

  𝛽𝐿𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛 {
1

2
∑(𝑦𝑖 − 𝛽0 −∑𝑋𝑖𝑗

𝑝

𝑗

𝛽𝑗)

𝑁

𝑖

 2 +

  

  𝝀𝟏∑|𝛽𝑗|

𝑝

𝑗

}        𝝀𝟏 > 𝟎               (𝟑. 𝟏𝟖) 

Finally, we have the Elastic net model which is shown to outperform the Lasso when p>n since 

the Lasso cannot select more predictors than datapoints, by combining the two approaches when 

penalising the model. This approach enjoys the sparsity of representation provided by the Lasso, 

whilst also encouraging a grouping effect where strongly correlated predictors are included or 

excluded together out of the model (Zou & Hastie, 2005, pg. 301). The estimator is provided as 

follows,  
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𝛽𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑁𝑒𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑(𝑦 − 𝐗𝛽)

𝑁

𝑖

 2 +
  

  𝝀𝟐 |𝛽|
2 + 𝝀𝟏|𝛽|𝟏}     𝜆1 > 0  ,     𝜆2 > 0     (𝟑. 𝟏𝟗) 

We use cross-validation to test the different 𝝀’s in order to find which one gives us the lowest 

test error. Below is a 2-D illustration that portrays what we have discussed so far geometrically. 

We subject our level curves (which shows the value of our estimated function) , to the constraint 

𝑐2 applied by each model to achieve the objective function.11 

 

Figure 3.3.  Geometry of all three models. Penalised regression models shown as a constrained optimisation 

problem where the dark blue shows the constraint value and the light blue shows the given level curve. 

ii. K-nearest neighbour 

The K-nearest neighbour (KNN) is a non-parametric regression model that does not make any 

rigorous assumptions on the functional form of underlying data. This flexibility is useful if 

dealing with non-linear data since the model adapts easily to the data. It is an algorithm that uses 

instance/memory-based learning where a new observation encountered in the test set is compared 

to other instances that were encountered from the training sample which are stored in memory. 

The KNN takes the average of a k-target of 𝑥𝑖 (in the training set) closest to the input space 𝑥 and 

then estimates 𝑌̂ (Hastie et al., 2009, pg. 14). This is built on the assumption that there is a 

 
11 For more visualisations and an in-depth discussion concerning this, refer to (Hastie et al., 2009, chapter 3.4)  
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Euclidean distance between the points 𝑥𝑖 and 𝑥 , making the Euclidean space metric. The model 

is defined as, 

                                                                  𝑌̂(𝑥) =
1

𝑘
 ∑  𝑦𝑖 ,                    (𝟑. 𝟐𝟎)𝑥𝑖 ∈ 𝑁𝑘(𝑥) 

     

where 𝑁𝑘(𝑥) shows the k-points of  𝑥𝑖  in the training data closest to the input 𝑥 (Hastie et al., 

2009, pg. 14). We choose a  k-number that is odd to prevent a tie so that when the algorithm 

assigns an observation it only assigns to one input space. The optimal k-number (a 

hyperparameter) chosen should help us obtain the lowest expected test error using the bias-

variance trade-off when fitting the model.  Using a non-linear model like the KNN poses 

numerous challenges relative to the linear models. Estimating the parameter is much more 

difficult to compute and interpret, the model is unstable so that a small change like adding data 

or resampling causes the estimated error to change, and the model is prone to overfitting which 

worsens its performance on unseen data (White, 2006, pg. 467). So, if we can fit a parametric 

model to the data which gives us good results, we should choose it instead.  

3.3.2. Tree-based models and Boosting 

i) Decision Trees 

Decision tree is a tree-based algorithm that does both regression and classification tasks. The 

main idea behind this algorithm is to build a tree that divides the data into sub-categories within 

the predictor space by using if and else statements (James et al., 2013).  
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Figure 3.4.  An illustration of a decision tree for classification that predicts morning routine given some features. A 

regression tree follows the same steps but uses numerical values instead of categories. 

We restrict our discussion to regression trees due to its relevancy. The tree is built by trying 

different thresholds, i.e. internal nodes where we split the predictor space to  𝑅-regions that are 

not overlapping for each step to find the smallest sum of squared residuals (RSS). We then seek 

the value that minimises (3.21) which helps us predict the test-observation by taking the mean 

value for the training observation within the j-th box (𝑦 ̂𝑅𝑗),  

                             ∑∑  (𝑦𝑖  − 𝑦 ̂𝑅𝑗)
2

𝑖∈𝑅𝑗

 

𝐽

𝑗=1

           (𝟑. 𝟐𝟏)      

(James et al., 2013, pg. 306).  

The best threshold becomes a candidate for the tree root. This is done for all thresholds so that 

when we compare the candidates, the best one with the lowest value becomes the tree-root. 

Depending on the number of splits we allow for the data points (stopping criterion), the tree 

reaches a level when it cannot split the data anymore and this becomes the leaf node. The leaf-

nodes correspond to the average output for the different clusters of data points (James et al., 

2013, pg. 305-6). Since it is time-consuming and costly to allow every possible partition of the 

predictor space into j-boxes, we must adopt a strategy that allows us to choose the number of 
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splits and try different partitions. A strategy named in the literature is the recursive binary 

splitting, that adopts a top-down approach by starting at the top of the tree and dividing the 

predictor space using two new branches for each level down the tree. It is also greedy because 

the best split is made by comparing different thresholds at a given step rather than adjusting the 

split by looking ahead and therefore getting better results (James et al., 2013, pg. 307). To 

implement this strategy, we consider all predictors in the regions 𝑋1,   𝑋2 , … , 𝑋𝑗 and a number of 

possible values for the splitting point 𝑠 , and then choose a predictor and a splitting point that 

provides us the lowest RSS. Using the following equation, we define two regions  𝑅1 and  𝑅2 as, 

                          𝑅1 (𝑗, 𝑠) = {𝑋| 𝑋𝑗 < 𝑠} and  𝑅2 (𝑗, 𝑠) = {𝑋| 𝑋𝑗 ≥ 𝑠}                   (𝟑. 𝟐𝟐) 

And based on the minimising function (3.21) that we described earlier to obtain the best values 

for 𝑠 and 𝑗, we get 

                        ∑  (𝑦𝑖  − 𝑦 ̂𝑅1)
2

𝑖: 𝑥𝑖∈𝑅1(𝑗,𝑠)
+ ∑  (𝑦𝑖  − 𝑦 ̂𝑅2)

2
𝑖: 𝑥𝑖∈𝑅2(𝑗,𝑠)

              (𝟑. 𝟐𝟑) 

The next step is to do the same for each region separately, and then use the mean of the training 

data in the region to predict the output on the test sample.  A common problem with applying 

decision tree models on data is that they tend to overfit12. Several solutions are proposed to deal 

with this overfitting, with the most common one being the cost-complexity pruning method, also 

called post-pruning where you grow a large tree T0 and then prune it back to select a sub-tree that 

gives you lowest test MSE. You use a non-negative tuning parameter 𝛼 to obtain a sequence of 

the best sub-trees by using cross-validation (James et al., 2013, pg. 309). The 𝛼 captures the bias-

variance trade-off and resembles the penalty-term found in penalised regression models (James 

et al., 2013, pg. 309). 

ii) Boosting models 

Several methods of leveraging models to improve their predictive performance are proposed in  

literature. The Boosting models by Freund and Schapire (1996) achieve this by building a large 

 
12 Hastie et al. (2009, pg. 352) state that trees have ‘-- one aspect that prevents them from being the ideal tool for 
predictive learning, namely inaccuracy’ .  
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set of ‘weak’ base-learners in a stagewise manner to produce a ‘strong’ learner. This is done by 

generating base-learning algorithm from the training sample and building many decision trees13  

(Zhou & Yu, 2009). We assume the weak learners to have an error rate that performs slightly 

better than random guessing,  and we boost it using a stagewise additive modelling by applying 

them to reweighted versions of the training data following a sequence given by 𝐺𝑚(𝑥) =

1,2, … ,𝑀. Applying reweighted versions from training data at each step decorrelates14 the trees 

where regressors focus on the more difficult regions missed by past trees (Hastie et al., 2009). 

This gives a final model that is the weighted average of all regressors, 

                                        𝐺(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑚

𝑀

𝑚=1

𝐺𝑚(𝑥))                            (𝟑. 𝟐𝟒)  

(Hastie et al., 2009, pg. 338) 

where 𝛼𝑚 is the coefficient and 𝐺𝑚(𝑥)  the weighted sample from training data for each weak 

learner. This stagewise additive modelling employed by boosting is also found within statistics in 

models such as the generalised additive models (GAM) and basis expansions such as the 

polynomial function where we optimise by jointly fitting parameters using estimation methods 

such as the OLS and maximum likelihood. Boosting on the other hand does this by optimising a 

single tree’s coefficients in a stagewise manner while holding the others fixed (Hastie et al., 

2009). This slows down the overfitting by not going back and adjusting what’s done in the past, 

by regularising the rate with which we overfit the data. Adapting boosting (AdaBoost) is such an 

algorithm that repeatedly fits the residuals using a reweighing scheme where at each stage one 

subproblem is minimised using a likelihood-based exponential loss function (Hastie et al., 2009, 

pg. 342-3). How this is  accomplished is provided in the figure below. 

 
13 Oftentimes trees but neural networks are also used. 
14 Decorrelation refers to correlation caused by growing many trees to the same dataset.  
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Figure 3.5.  The algorithm builds an additive logistic regression function and uses stagewise fitting.  (Schapire & 

Freund, 2012, pg. 5) 

The Gradient boosting model is another boosting technique used where we extend the loss 

functions from exponential/binomial to generalised loss functions. It provides a more flexible 

framework than the AdaBoost algorithm making it a viable model for prediction.  The model 

evaluates the gradient of the loss function estimated in step 2a (refer to figure 3.7) using training 

data, and then approximate the gradient on a regression tree, usually a stump15 which we later 

use to estimate and update the loss function (Hastie et al., 2009, chapter. 10.10) 

 
15 A small decision tree with only two terminal nodes.  
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Figure 3.6.  Implementation of the Gradient Descent Algorithm (Hastie et al., 2009, pg. 360) 

𝛾𝑗𝑚 is the optimisation vector that shows the tree stumps, 𝐼 is the shrinkage factor which slows 

the stagewise model-building to obtain better results. Boosting models tend to overfit when 

dealing with noisy data due to the shallowness of the trees built. Different tuning parameters are 

used to control for this, such as the number of trees, learning rate (shrinkage factor) and the 

depth of tree.16  Gradient boosting is better at dealing with this than the AdaBoost due to the 

added shrinkage parameter which slows the overfitting of data. Models that deal with this 

problem without much hyperparameter tuning are the Random Forest and the Extra Randomised 

Trees regressor.  

iii) Random Forest (RF) and Extra Randomised Trees regressor (ET) 

The Random Forest (RF) algorithm is proposed by Breiman (2001a) and it is a modified version 

of bagging17 where we build large number of decision trees independently using a bootstrapped 

 
16 A motivation for building shallow trees, is that the tree stumps are shown to work very well on nested-sphere 
problems where the decision-boundary of the stumps is at the surface of the sphere. The function that describes it 
has a quadratic form that gives good approximation. For more discussion and visualisation on this, refer to (Hastie 
et al., 2009, pg. 590) 
17 We fit many small or large trees to bootstrap resample versions of the training data, and then classify by 

majority vote.  Different from boosting where this is done stagewise.  
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replica. This differs from boosting which dedicates more effort to rectifying misclassification of 

data, whereas the RF includes additional randomisation when recursively splitting using a small 

subset of features at each step to ensure that the trees capture the variation in the data. This is 

then averaged which lowers the variance of the model (Breiman, 2001a). By taking small subsets 

at a time, we ensure that the model decorrelates the trees when building which results in vast 

improvement in prediction accuracy compared to a single decision tree.   

 

Figure 3.7.  Implementation of the Random Forest Algorithm for regression and classification tasks. Note how at 

each tree split, a random sample of m features is drawn and only these are considered for splitting. It is common that 

𝑚 = √𝑝 𝑜𝑟 𝑙𝑜𝑔2𝑝.   (Hastie et al., 2009, pg. 588) 

The out-of-bag sample (OOB) is another feature of the RF, and it is presented as  𝑂𝑂𝐵 = 𝑁 −

𝑍∗, which is the remaining 
1

3
 of the data that has not been used to create the bootstrapped replica.  

This is then tested on each tree that have been built on the bootstrapped data, and the 

label/regressor that gets the most votes is assigned to the OOB which gives us the OOB error 

estimate. Once this error stabilises when building the trees, we can terminate the training of the 

model and apply it on the test sample (Hastie et al., 2009, pg. 593). The hyperparameter tuning in 

the RF is very similar to that of the decision tree except that we increase the number of trees we 

want to build through the steps described earlier. As mentioned, the hyperparameter tuning deals 

with the overfitting of the model but according to Breiman (2001a) and Hastie et al. (2009) the 

RF does not overfit. The argument is that the randomisation which is added when splitting 
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introduces small bias into the model while simultaneously reducing the variance due to the 

corresponding ensemble of trees that is averaged. At one point, the increase in the number of 

trees averaged does not increase the bias, so that no benefit nor harm comes to the model since 

the test error just stabilises18.  

Extremely Randomised Trees regressor (ET) is another tree-based algorithm that extends the 

randomisation of the previous model by selecting thresholds at random in addition to the subset 

of feature selection for each step (Geurts, Ernst, & Wehenkel, 2006) . Unlike the RF, the ET uses 

the whole data as a learning base and tries to reduce the models’ dependence on the data 

structure by randomising both attribute and cut-point when splitting the tree nodes, and then 

averaging the trees to reduce variance (Geurts et al., 2006, pg. 2-6). 

 

Figure 3.8.  Implementation of the Extra Randomised Trees Algorithm for numerical attributes. (Geurts et al., 2006, 

pg. 6) 

If we assume that the optimal features which explain the results are available, then the advantage 

that the ET algorithm has over the RF is that it is less computationally expensive to run. Geurts 

et al. (2006) also do an analysis on the bias-variance trade-off by comparing results of different 

ensemble models, and they discover that the bias in ET increases compared to the RF since it 

 
18 It is important to state that this is a point of contention which we do not cover in this thesis. Some argue that the 
Random Forest has shown to overfit empirically. For the reader who’s inclined to read more on this, Louppe (2014) 
dissertation on ‘Understanding Random Forests- from theory to practice’ is a good place to start.  
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randomly selects attributes without considering the feature importance. The averaging helps 

reduce the variance but also increases the bias which leads to overfitting. The hyperparameter 

tuning applied to the RF is also applied on this algorithm, and we refer to them for reminder if 

needed.  

3.4. Benchmark model  

We will be using a simple persistent model as benchmark when comparing the predictive 

accuracy of the different models for different price areas in Norway. Naïve forecast are the 

simplest forecasting models to generate, and we take the random walk process where we use the 

most recent observed value in the past 𝑦𝑡−1to predict the value 𝑦𝑡. This is provided through,  

𝑦𝑡 = 𝑦𝑡−1 + 𝜀𝑡, 𝑡 = 1,2, …                                  (𝟑. 𝟐𝟓) 

where the variance changes as 𝑡 changes.  

(Wooldridge, 2020, pg. 376) 
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4. Forecasting strategy  

In this chapter a brief description of the data is given together with the considerations taken in 

choosing the three final models to test on the unseen data. We also present the methodological 

issues faced with the data pre-processing and the implementation of the methods presented in the 

previous chapter. 

4.1. Data description 

Understanding the data is essential in deciding which models helps us achieve the best results. 

Due to the many models we test in this exercise, we now restrict the discussion to the 

comparison of model performances for price-area 1 only. A comparison of the finalised models’ 

performance in the different price areas will follow in the next chapter. Below is a description of 

the variables used.  

Table 4.1.    Variable description used for the data analysis. 

Electricity 

Target variables: log [price_no1,  price_no2, 

price_no3, price_no4, price_no5] 

Hourly elspot prices determined with 

respect to each delivery hour for price 

area NO1, NO2, NO3, NO4 and NO5.  

Units are in Euro/MWh 

Essential climate variables (temperature) 

 

lcool = log {𝒄𝒐𝒐𝒍 =  𝐭𝐞𝐦𝐩_𝐧𝐨𝟏–  𝟐𝟐} 

 

lheat = log {𝒉𝒆𝒂𝒕 =  𝟏𝟓. 𝟓 –  𝐭𝐞𝐦𝐩_𝐧𝐨𝟏} 

Hourly temperature measured in ℃ for 

price area NO1 (temp_no1). 

 

We add heating and cooling degrees 

since temperature has an asymmetric 

effect.  

Additional variables (dummy variables) 

Hour, Day, Weeks(53 columns) 

The dummy variables are added to 

capture calendar-effects to improve 

predictive accuracy. 

 
Energy prices 

lpgas, lpoil, lpcoal, lpcarbon  

Log transformation of energy variables 

for gas, crude oil, coal and carbon 

prices.  
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4.2. Pre-processing and dealing with missing data 

The data is for the period 24.01.2014 to 31.01.2020. Different sources are used to collect them, 

and they come in different file-formats which makes it challenging to combine. The elspot prices 

are all from Nord Pool using their historical market data archive. Historical temperature data is 

collected from frost.met.no, which is owned by the Norwegian Meteorological Institute. Energy 

prices were harder to obtain freely, but after contacting Montel they kindly provided access to 

the needed data for our period of interest. Energy prices are important in explaining electricity 

prices because of the transmission cables we have with other countries. Since the electricity in 

Norway is mostly sourced from hydropower, many producers seek to minimise the cost and gain 

profit by increasing electricity production, which is exported when elspot prices are high. Or the 

opposite by holding back on production where the water is kept in reservoirs when prices are 

low.  

The data pre-processing is decidedly the most challenging and time-consuming part to do in this 

exercise. The first issue was dealing with the non-stationarity in data. Standard supervised 

models assume the data to be i.i.d, with the same distribution for training and testing set and for 

the distribution to be fixed over time. These assumptions are all violated with time-series data. 

There are two ways of dealing with this. The first is to identify the trend and seasonal 

components in the data and remove it using differencing techniques. The other strategy which we 

choose is to use the seasonal information as input features in the data such as hour, day and 

week(-s) so that the algorithm learns to better identify trends and use the information to increase 

its predictive performance (Brownlee, 2017, pg. 120).  Missing data is another issue that we dealt 

with. We solved it in two ways. When it comes to the missing values found in the data collected 

from Nord Pool (no more than 7 obs.19), we replace it with the row-average using the .isnull() 

function in Python. The energy prices are much more challenging to deal with since we had 72 

missing observations from the gas prices and 16 observations missing from each of the other 

three variables. We manually combed through the observations to find the missing values and 

discover that they are either randomly placed or missing as a result of market closure on 

weekdays due to Christmas, New year or Easter. We solve this by manually plotting in the day-

before price for the following reason20: Since we only have prices for weekdays when the 

 
19 This is a rough guess from memory. 
20 Only exception is 25.12.14 where we plot in the value of 26th instead 24th.  
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markets are open, we wanted to create a python code that covered the weekend by adding two 

more observations for each week using the last observation (Friday). Due to using this code, it 

was paramount to cover the missing holes for weekdays to avoid messing with the data. We also 

make a code where the daily price for energy variables counted 24 times for each day. This is 

done to match the hourly data of temperature and elspot prices.  

We also consider if rescaling our predictors could potentially better the models’ performance in 

capturing important relationship between the features and the output, by using machine learning 

techniques such as standardisation which gives the attributes a mean value of 0 and a standard 

deviation of 1. We apply and test the performance of the scaled attributes on some of the models 

and discover that the performance worsened with scaled variables compared to non-scaled. The 

standardisation assumes the data to have a Gaussian distribution, which we will later see is not 

applicable to our data. Also except for the linear regression model, the other two best performing 

models are the tree-based models which are scale-invariant, meaning that the models are 

indifferent to feature scales. Other than the log-transformation of our target and predicting 

variables, we choose to keep them non-scaled. To briefly describe the strategy employed, we 

first select models to apply on the data. We then divide the data using the SKLEARN’s  

train_test_split package where the training set are set to 75 % of data and cross-validation to 

25% for  price_no1. The plan is to fit our final models to this price area, and then use them to 

predict the prices in the other four price areas (price_no2 , price_no3, price_no4, and price_no5). 

Below is a correlation matrix of the explanatory variables.  
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Figure 4.1.  Correlation matrix of the variables (excluding dummy variables and target variables). Refer to Table 

4.1. for variable description.  
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4.3. Methods implemented 

The discussion on different evaluation metrics is something that we do not cover here but for 

most machine learning algorithms provided in the SKLEARN packages in Python, the mean 

squared error is given as the standard evaluation metric and we choose to use it out of 

convenience. For the parametric regression models and the Decision tree, we also include the 

R2–score which is a regression score function also known as the coefficient of determination 

(Wooldridge, 2020, pg. 35). It measures how much the dependent variable 𝑦
𝑡
 is explained by the 

input features. For practical purposes, the R2—score is often placed between 0 and 1, with 0 

showing the R2 being no better than the mean value of the data whilst 1 shows that the model 

perfectly fits the data. 

i. OLS and penalised regression models 

The Ridge, LASSO and Elastic-Net methods are proposed in the previous chapter, and they are 

used to assess the models’ performance on the training data. Below is a graph demonstrating how 

the increase of alpha as a penalty term for Ridge and Lasso reduces the MSE until a certain limit 

is reached.  

 

Figure 4.2.  Comparison of penalised regression models’ performance on training set. An increase in alpha reduces 

the MSE, especially in Ridge’s case which is more than halved.  

We then take the best alpha which gives the lowest MSE for the penalty regression and apply the 

models to the cross-validation set. Together with the OLS which did not need any 

hyperparameter tuning gives us the following result, 
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Table 4.2.  A comparison of the results of the penalised regression models. Note how the best result is provided by 

the OLS model. 

Models MSE R2 

OLS 0.07953219429515039 -0.08135429898167312 

Ridge  0.21791054810594912 -1.962806572560381 

Lasso 0.26223850775034496 -2.5655087883280703 

Elastic-Net 0.26223849325754456 -2.5655085912776534 

 

The introduction of penalty into the model increases the variance with the penalising models 

performing much worse than the OLS. This indicates that the coefficients which are either 

reduced or dropped are important in explaining the output, supporting the idea that penalised 

regression models are a bad fit for the data. It also appears that the linear models are more 

sensitive to outliers compared to other model-types, and we have plenty of this since electricity 

displays price spikes due to its volatile nature. Also note how the R2–score has a negative sign 

showing that the linear models fit the data much worse than random guessing, i.e. the mean-

value. To see if the model is worth going the extra length for by doing hyperparameter tuning, 

we look at the residual plot to see if there is a linear trend that we fail to capture. 

 

Figure 4.2.  The residual of the linear regression model.  
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The plot of residuals does not point to any trend that our models fail to capture when using the 

OLS. We could increase the penalty-term to try to lower the MSE even further but there is no 

point. We therefore wish to test if the non-linear models may be a better fit for the data. We 

decide not to use these models except for the linear regression further in the analysis due to the 

bad performance. We do not finalise and apply them on the other price areas. 

ii. K-nearest neighbour and Regression Trees 

The KNN and Decision tree (CART) models are used to test the performance of the non- 

parametric models. These models do not outperform the penalised models with the MSE for the 

training data for KNN being  0.277993 and CART: 0.237619.  

 

Figure 4.3.  Visual comparison of algorithm performance on training data. The score shows negative MSE.  

We suspected overfitting of the models due to its worse performance on the cross validation set 

and try to tune the hyperparameters to see if it was possible to obtain a reduced MSE for a model 

that could be generalised to the other price areas. For the KNN, a low K-number leads to 

overfitting which leads us to try different k-numbers larger than 1 to see which gives us the 

optimum neighbour with the lowest test error (Hastie et al., 2009, pg. 241). This is provided by 

the table below where the lowest test error for KNN is 0.261255. 
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Table 4.3.  KNN algorithm tuning where the optimum k-neighbour is 21. The score shows negative MSE. 

For the Decision tree algorithm, Hastie et al.(2009) recommends post-pruning to achieve the best 

results for the Decision tree model. Instead, we do pre-pruning to deal with the overfitting of the 

model since the SKLEARN package does not include post-pruning. Different stopping criterions 

are used to find the optimal number of nodes and splits using a function that is built in Python. 

Once this is done, we iterate over different depths to examine the bias-variance trade-off.  

 

Figure 4.4.  Model performance on different depths (4, 5, 8, 9) with stopping criterion (max number of leaf nodes) 

used. 
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Figure 4.5.  Note how the MSETrain and MSETest do not converge at any point (!) in the bias-variance trade-off. 

The fact that they do not follow the expected trend gives us a cause for investigation.  

The performance of the Decision tree was ‘suspect’. For the training data the lowest MSE was 

0.05 given  by the hyperparameters tree depth 5 and the stopping criterion (maximum number 

of leaf nodes) equal to 30.00 . We took these hyperparameters and used it for the cross-

validation set which gives a test MSE of 0.156.This clearly shows that the model overfits. 

Added visualisation (figure 4.6) also show how the model manages to predict the mean-price for 

the test-period which could result in a lower MSE than the previous models. It is still a bad fit 

regardless.  

 

Figure 4.6.  Decision Tree model for price area 1. The model appears to take the average value for elspot prices 

instead of capturing variations.  
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A solution for this other than more hyperparameter tuning is to apply ensemble methods that deal 

with the overfitting better due to the averaging of many models. We therefore decide not to use 

these two models further in the analysis due to the better performance of ensemble methods that 

combine several machine learning models which we will address next. They are therefore not 

finalised and applied on the other price areas. 

iii. Ensemble methods (Random Forest, Extra Randomised Trees, Gradient Boosting, 

AdaBoost) 

Of all the ensemble models tested, the AdaBoost is the worst performing one with training MSE 

being 0.321113 . This can be due to its bad handling of outliers in the data which makes sense 

since more weight is given to weak learners that predict incorrectly, leading to the model fitting 

the noise in the data and increasing variance. For the other three models, the training MSE are as 

follows: Gradient Boosting (GBM) 0.182345, Random Forest (RF): 0.210320, and Extra 

Tree Regressor (ET): 0.194901. 

 

Figure 4.7.  Visual comparison of algorithm performance on training data. Except for the AB, the error is tightly 

distributed for the models. 

In finalising our three best models we find the optimal hyperparameters by performing grid 

search in Python, which is a machine learning technique that builds and evaluates models for 

different combinations of algorithm parameters specified in a grid (Brownlee, 2016, pg. 98). A 

grid search is computationally expensive to run but once the best hyperparameters are obtained 

for the models we save it and apply it later to finalise our models.  
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The bests three models of all the tested models are the linear regression, Gradient Boosting and 

Extra Randomised Trees regressor. For the linear regression, the OLS which has the lowest test 

MSE has no hyperparameters which needs to be tuned. The optimal trees, i.e. n_estimators for 

the Gradient Boosting was 700 trees which gave a test error of 0.161541. The Extra Tree 

regressor had an optimal number of trees 250 which gave a test error 0.189834.For the 

timeseries cross-validation, we split it in 4 parts and use the default setting recommended by the 

SKLEARN’s packages for the other hyperparameters. The random state for all algorithms were 

set to 42 to ensure that every time the code is run, we get the same results.  
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5. Results 
 

In this section we present the results of the finalised models on the other price areas in Norway. 

We first present the in-sample performance for our models to visually inspect how well they 

learn the trends and patterns on the training data before presenting their predictive performance 

on the out-of-sample data. This is followed by a table that compares performance using MSE as 

an evaluation method.  

5.1. Presentation of model performance for the different price areas 
 

i. In-sample performance  
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ii. Price area 2 
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iii. Price area 3 (excluding Naïve baseline model) 
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iv. Price area 4 (excluding Naïve baseline model) 
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v. Price area 5 (excluding Naïve baseline model) 
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Table 5.1.  A comparison of model performance for the four price areas in Norway. The decimals are rounded up to 

four digits. Extra Randomised Trees regressor has the lowest error rate for all price areas, while the baseline model 

has the highest error rate for all price areas.  

 Price area 2 Price area 3 Price area 4 Price area 5 

Linear regression 

Training MSE: 0.0795 

0.0756 0.0995 0.1069 0.0913 

Gradient Boosting 

Training MSE: 0.1615 

0.0717 0.0924 0.0832 0.0883 

Extra Trees Regressor 

Training MSE: 0.1898 

0.0533 0.0741 0.0643 0.0675 

Benchmark model 320.12 326.81 385.00 316.61 

 

5.2. Discussion 

It is no surprise to see that the persistent(naïve) model has the worst performance compared to 

the machine learning models for the time horizon that we have chosen. The Extra Trees regressor 

performs best on the out-of-sample data by giving the lowest test error for all price areas. The 

learning ability of the models on the training data also show that the Extra Trees regressor learns 

best by capturing both the trend and spikes found in the elspot price for price area 1, albeit at a 

higher training error compared to the linear regression model. Note also how the training error is 

higher for the Gradient boosting and Extra Trees regressor than the testing error. We suspect the 

reason for this to be due to the fundamental difference between the training and the testing data, 

since there is more noise or variance in the training data that the features fail to explain with 

regards to the elspot prices, due to the extended periods of low prices before 2018.  

Visually it appears that the Linear regression model is better at handling the trend found in the 

data whilst the Gradient boosting is better at mirroring the spikes to a smaller degree. This is not 

to say that the models are good at handling this since most of them fail to predict price spikes for 

all the price areas. Price spikes are difficult to predict, and a solution could be to add variables 

that measure abnormal load21 which gives the models needed information in modelling the price 

 
21 This refers to a sudden increase in the consumption of electricity that is unplanned for.  
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spikes. Another thing which is interesting to observe is how all the models fail to capture the 

downward trend that the prices are facing from winter 2019/2020. This raises an important 

question of choosing the optimal forecasting horizon, and we argue that employing seasonal 

forecasting will improve the models’ predictive performance since seasonal forecasting is more 

susceptible to capturing and anticipating changes in elspot prices compared to prediction for 

longer time horizons. It becomes especially important in the times that we are living in now with 

the low gas prices and oil prices affecting the energy market which lowers the elspot prices, in 

addition to the fall of demand of electricity consumption due to the Corona pandemic which 

exacerbates the downward trend of prices that we already observe.  

When it comes to machine learning models that can be applied to predicting elspot prices, it 

appears that models such as the Hidden Markov models can better capture the transition of elspot 

price from one ‘state’ (low prices) to another ‘state’ (high price).  Other machine learning models 

that manage to memorise observed patterns due to seasonality for elspot price forecasting can be 

different kinds of Neural Networks, such as the Long Short-Term Memory(LSTM) and the 

Recurrent Neural Network which we have not covered here. To further improve the performance 

of the models that we have tested in this exercise, we could also include more essential climate 

variables such as wind power to better the models’ forecasting ability since elspot price 

formation in recent time is shown to be more affected at a micro-level whereas temperature and 

hydropower are more important at a macro-level. Given this, it would be interesting to see what 

further research will discover in considering these issues to improve the predictive performance 

of the machine learning models that we have tested and proposed.   
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6. Conclusion  
 

The uncertainty caused by the increased use of renewable energy sources makes it more essential 

to find good forecasting tools that can offset the increased risk in predicting elspot prices. In this 

thesis, we have compared different machine learning models to evaluate which models are more 

suited to predicting elspot prices for the different price areas in Norway. Using hourly data for 

elspot prices and exogenous variables such as temperature and energy prices collected from 

different sources, we discover that machine learning models outperform simple forecasting tools 

such as the naïve model. We also discover that some models are better suited for predicting 

elspot prices than others. The Linear regression model with the OLS estimation method has 

shown to be a superior forecasting tool compared to many of the models tested. The other two 

best performing models such as the Gradient boosting and the Extra Trees regressor show to 

better emulate the seasonality and trends found in the elspot prices, which opens a door for 

further research to study on how to increase the models’ predictive performance.  

Another implication of our findings is that using seasonal forecasting horizon together with 

adding more explanatory variables such as system load and wind power may result in an 

improvement of the models’ predictive performance. This is especially important if the goal is to 

better predict better and predict price spikes which are an inherent feature of electricity.  
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