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Abstract

We study interactions between fishery and aquaculture using a 3D gen-

eralized Lotka - Volterra model, where we assume that the aquaculture pro-

duction may affect the growth rate in the fish stock and the productivity

in harvesting. In addition, input demands from both marine industries may

result in effort competition. We identify conditions for the coexistence of a

unique equilibrium state inside the first octant of the phase space and equi-

librium states on its boundary. Conditions for stability and instability of

these states are also given, thus showing the possibility of having bistability.

The equilibrium point inside the first octant is stable if the growth impact

on fishery from sea farming is below the potential productivity in harvesting.

In the complementary case we have an unstable interior equilibrium, and we

may then end up in stable equilibrium states on the boundary, where either

the fishery or the aquaculture are wiped out.
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Recommendations for Resource Managers

• More empirical and theoretical research is needed to reveal types of

interrelations between fisheries and aquaculture, and their importance

for long run stability between the sectors.

• When designing policies for the aquaculture industries, managers should

in particular be aware of possible long term harmful effects from aqua-

culture to fisheries.
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• Increased areas for sea farming reduces the relative profitability of the

fishery, and if the area increases above a certain level, this could wipe

out the fishery.

1. Introduction

The global production volume from the aquaculture industry has increased

considerably during the last fifty years, and the growth rate in this sector

is still high. In the same period the global catch volume in commercial

fisheries, by comparison has been almost constant. China represents more

than 60 percent of world aquaculture production and has played a major role

in this growth together with Vietnam (FAO, 2016; Abate et al., 2016).

Increased volume of farmed salmon has also contributed to the global

growth in aquaculture production the recent years (Abate et al., 2016). Al-

though several of the salmon species are available from both wild and farmed

sources, almost all commercially available Atlantic salmon is farmed. Most

of the cultured salmon comes from Norway, Chile, Scotland and Canada.

Among the salmon farming countries, Norway stands for the largest share

of the total production (FAO, 2016). Norwegian salmon production has in-

creased significantly the past decade.1

As reported in Read and Fernandes (2003), Sv̊asand et al. (2016), Os-

mundsen et al. (2017), and the references therein, aquaculture may have

significant effects on the aquatic environment and other user interests or

1From about 0.4 million tons yearly in 2001 to above 1.3 million tons yearly in 2015.
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stakeholders. The environmental challenges connected to the aquaculture in-

dustry have led the governments in the salmon farming countries to practise

a relatively strong capacity regulation (Hersoug, 2012; NFD, 2015). Still the

growth potential in the aquaculture industry stimulates to move seafarm-

ing further offshore, such that area - and environmental conflicts between

the aquaculture and the fishery sector may increase (EU, 2012; Read and

Fernandes, 2003).

Hoagland et al. (2003) exemplify conflicts between commercial fisheries

and aquaculture with cases from the western Mediterranean, the west coast

of Ireland, Norway, New Zealand and US. Such conflicts are likely to be-

come a bigger problem as the aquaculture industry continues to expand. In

several regions along the Norwegian coast the expansion of farmed salmon

production has intensified conflicts with both the wild salmon harvest and

the recreational fishing and commercial coastal fisheries, e.g cod, saith and

shrimp (Hersoug, 2012; Sv̊asand et al., 2016).

Some ecological interactions between fishery and aquaculture industry

have been analysed by using predator - prey models as a starting point.

These models focus on the fodder supply interactions and competition in the

seafood product market (Hannesson, 2003; Regnier and Schubert, 2016). In

Hoagland et al. (2003) and Mikkelsen (2007) externalities from marine farm

activity are included in the one - specie Gordon - Schaefer model and impacts

on equilibrium states are discussed. Effort and product market competition

are incorporated by Jiang (2010), studying the equilibrium state. McCaus-

land et al. (2006) also incorporate labor markets in a more detailed simulation
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model. Internalisation of environmental cost through an integrated produc-

tion system, using an interesting case study, is discussed in Whitmarsh et al.

(2006).

A wide range of interactions may arise between aquaculture and com-

mercial fisheries. One group of interactions consists of competition regarding

space and physical occupation of the ocean, feeding resources and human and

financial resources, in addition to consumer market competition for seafood.

Another group of interactions is external effects of aquaculture on a fishery.

Impacts on the ecosystem from aquaculture activity may have both direct

and indirect consequences for commercial fisheries. To a large extent such

effects are uncertain. Hence there is a need for more knowledge about these

consequences (Sv̊asand et al., 2016).

This serves as a background for the present paper. We combine possi-

ble ecological conflicts and effort competition between traditional fisheries

and aquaculture, focusing on the dynamics involved. We consider a single

species commercial fishery, and the proposed dynamical model is conceptual

in the sense that we explore possible interactions existing between this fish-

ery and an aquaculture activity in a particular coastal (ocean) region. The

model which can be seen as an adjusted version of the models presented in

Hoagland et al. (2003), Mikkelsen (2007), Foley et al. (2012) and Perrings

(2016) is of the 3D generalized Lotka - Volterra type. We examine biological

and economic conditions for existence and stability of different equilibria.

Unlike the above mentioned works, all possible equilibria are identified, also

those on the boundary, and we examine the connection between the unstable
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equilibrium and the stable equilibria on the boundary in order to explain

the dynamics in the model. Beyond this application, the generalized Lotka

- Volterra type systems have been extensively investigated in population dy-

namics, see for instance Smith (1995), Hofbauer and Sigmund (1998), Drossel

et al. (2004) and Martinez et al. (2006).

We consider two possible types of externality from the aquaculture in-

dustry. First of all, we assume that the growth rate in the wild fish stock

may be affected by the production level of the aquaculture industry. Several

possible direct and indirect ecosystem mechanisms motivate this assumption:

(i) The fodder supply to aquaculture may come from a resource (e.g.krill),

which also is fed on by the commercial species. For explicit modeling of this

mechanism using predator - prey models, see Hannesson (2003) and Reg-

nier and Schubert (2016) and the references therein. (ii) Fish farms activity

causes a release of nutrients, particles and fish waste. These releases may

effect migration, spawning behavior and spawning quality of the wild fish

species. As reported in Sv̊asand et al. (2016), such impacts are uncertain

and the evidences are limited. However, these effects cannot be excluded.

(iii) Diseases and treatment of diseases in fish farms, may also cause ecosys-

tem disturbances. Undesirable substances from medicine, or possible other

form of treatments, may harm the considered fish stock directly, or harm

resources which the commercial species feed on. Possible environmental im-

pacts of chemical use in aquaculture are summarized in Burridge et al. (2010).

Also regarding this impact, the evidence so far is limited, but it should not

be excluded (Sv̊asand et al., 2016). (iv) Due to e.g. production accidents
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farmed fish can escape from their facilities into natural environments where

they may survive.2 This release may have impact on wild fish populations

through ecological, genetic and technical interactions (Lorenzen et al., 2012;

Liu et al., 2014).

Secondly, we have assumed that the areas occupied by farming may in-

fluence productivity, harvest costs or market value in wild fish harvesting3.

The arguments for this assumption are; (a) The fishing vessels may be dis-

placed from good fishing grounds, occupied by fish farms. This may further

cause crowding in other areas, resulting in a need for more effort to catch

a certain volume. (b) The release of excess fodder and faeces have impacts

on behavior and quality of wild commercial species (Dempster et al., 2009;

Sv̊asand et al., 2016). The stock availability and fish quality may influence

harvest operations and market value negatively.

In addition to ecological interdependency between fisheries and aquacul-

ture, there may be different types of economic market dependencies. One

type of such dependencies can be the competition for limited input factors

2In Norwegian salmon and sea trout production about 0.5 mill individuals escaped

per year, during the period 1993 to 2005. After 2005 this number are more than halved

(Steinset, 2017).
3According to NFD (2015) there are approximately 950 approved sites for salmon and

sea trout production along the Norwegian coast, which occupy about 80 square kilometers

in physical surface area, and the present government aims to increase this area. Later

years the aquaculture activity has been given areas further offshore. This development

may increase the location conflicts.
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between these industries (e.g. in labor and/or capital markets). Such mar-

ket interactions are treated by Jiang (2010) in a steady state equilibrium

model. In another work McCausland et al. (2006) present a more detailed

bioeconomic model for fisheries and aquaculture, where labor mobility are

included. They argue that aquaculture in rural communities appears to have

a positive impact on employment. For instance in the west coast of Scot-

land aquaculture provides an important source of employment (McCausland

et al., 2006), which also is the case in Norway. Several coastal communities

in the western and northern part of Norway have a substantial employment

share in both aquaculture and fisheries. Hence, we consider the possibility

that these industries may compete for effort. There are at least two reasons

why such labor market competition may occur. Firstly, both aquaculture

and fishery production are located in coastal areas where people have marine

and maritime competence that could be used either in sea farming or in fish-

ing. It is likely that the possible earnings from these two industries affect the

actual choice of workplace. Secondly, it also seems likely that these seafood

sectors might be competing to employ highly educated candidates in marine

biology, technology and management.

The present paper is organized as follows: In Section 2 we present our

modeling framework. This framework captures the interactions between the

aquaculture activity and the wild fishery. Section 3 is devoted to the analysis

of the model. Here we transform the actual system to non - dimensional form

by means of scaling, before proceeding to the study of existence and stability

of equilibrium points. We also elaborate on different special aspects of the
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model. In Section 4 we present numerical illustrations of the dynamics,

whereas Section 5 contains concluding remarks and an outlook. Appendix

A, Appendix B and Appendix C contain the mathematical details underlying

the conclusions presented in Section 3.

2. Model

We will consider a fish harvesting industry where the Gordon-Schaefer

production function reads

H = qXEx (1)

Here H is the harvesting rate, X the wild fish population density (biomass),

Ex the harvest effort and q the harvest efficiency rate.

We combine the production function (1) with a logistic growth model.

This assumption which is often used in analyses of fisheries represents a sim-

ple way of describing the saturation of the population due to the limited food

resources available. See Clark (2010); Flaaten (2010). Following the same

general principle as underlying Lotka - Volterra type of models for interspe-

cific competing species as outlined in for instance Hofbauer and Sigmund

(1998), Murray (2002) and de Roos (2014) and incorporating the possible

mechanisms (i) - (iv), described in the previous section, a modified logistic

growth equation for the wild fish specie can be formulated as

dX

dt
= σX

(
1− X + αS

K

)
−H (2)

Here σ is the intrinsic logistic growth rate and K the carrying capacity. The

term αS in (2) represents a possible decrease in growth of wild fish due to
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the presence of the aquaculture production. We assume that α ≥ 0 and S is

the aquaculture production volume. When αS = 0, the equation (2) reduces

to the standard logistic equation.

Moreover, we assume that the fishing productivity, q, might be nega-

tively affected as the ocean area allocated to the aquaculture industry, a,

increases. This assumption relates the mechanisms (a) and (b) described in

Section 1, where we emphasize that the fishing activity may be displaced

from steadily more good fishing grounds as the ocean area occupied by sea

farming increases. In order to simplify, we assume that these mechanisms

can be modeled by means of the linear function

q = q(a) = ρ− ϱa, ρ > 0, ϱ ≥ 0, ρ > ϱa (3)

In most countries the public authorities decide the ocean area that could be

disposed to aquaculture production as an important part of the governmental

policy in coastal zones. See for instance EU (2012) and Hersoug (2012).

This means that the aquaculture industry does not directly affect the area

allocated to sea farming production4.

The equations (2) and (3) together yield two possible negative externali-

ties from the aquaculture to the fishery. Equation (2) models an externality

on the biological growth potential in the wild fish stock, while (3) describes

a negative externality from the area usage in aquaculture which may cause

4For instance, in Norway, the different sea farming firms may apply to the public

authorities for new sea locations for farming plants. However, it is a governmental decision

whether such a permission is granted or not.
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more inefficient fishery operations.

Regarding the aquaculture industry, we assume that the production vol-

ume, S, is linearly increasing in the effort allocated to sea farming, Es:

S = S(a,Es) = raEs (4)

Here r is an exogenous efficiency parameter and a is measuring the ocean

area available for sea farming, exogenous for the aquaculture industry. For

a given level a, the industry may increase its production by inserting more

effort. Notice that the expression (4) must be regarded as an aggregated

production function for the whole industry. The assumption of exogenous

and constant marginal productivity in sea farming is made to obtain an easily

tractable model.

Due to the discussions related to regional labor markets in coastal areas

in Section 1, we suppose that the sea food industries have to compete in the

labor market to recruit employees. The total labor supply in the market,

E, is assumed to be a linear, increasing function of the wage level, ω. The

supply function written in the wage form is thus supposed to be given as

ω = w + µE (5)

where, w > 0 and µ ≥ 0. Additionally, we assume that the supply is equal

to the total demand, i.e. E = Ex + Es. The parameter µ expresses how

much the wage has to increase in order to impose one more unit labor into

the market. If the labor supply is perfectly elastic, µ is equal to zero, and

the wage level is given by w. Now, by taking the effort market equilibrium
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in (5) into account, we find that the profit πs in the aquaculture industry is

given as a function of the efforts in both industries:

πs(Ex, Es) = psraEs − ωEs = (psra− w)Es − µE2
s − µExEs (6)

Here ps denotes the market price per unit of production in sea farming.

The profit πx in the fish harvest industry can now be written as a func-

tion of stock volume and effort in both industries when taking the harvest

externality (3) and the effort market mechanism (5) into account:

πx(X,Ex, Es) = (px(ρ− ϱa)X − w)Ex − µE2
x − µEsEx (7)

Here px denotes the unit price for wild fish. Many authors have conducted

interesting analyses of fishery - aquaculture dynamics where the demands

for wild and farmed fish are dependent on prices in both sea food markets.

See for instance Anderson (1985), Ye and Beddington (1996) and Regnier

and Schubert (2016). Additionally, interesting seafood market dependency

has been investigated in Hannesson (1983) and Steinshamn (2017). They

introduce demands in the sea food markets that contain both direct and

possible indirect (cross) price effects, and hence end up with models with

endogenous output prices. In our analysis, however, where we explicit regard

the possibility of an interrelation between the sea food sectors though an

input market, we will, for the sake of simplicity, consider both px and ps as

exogenous variables.5

5By introducing interdependent demands, the profitability of an industry becomes de-
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We are now in position to prescribe the dynamics of the effort variables,

Es and Ex. In order to simplify, we assume that expansions and contractions

of effort in both industries correlate with positive and negative profits, re-

spectively. Similar types of effort enter - exit mechanisms, assuming frictions

and delays, are often used in fishery studies. See for example Smith (1969);

Chakraborty et al. (2012); Ghosh and Kar (2014); Regnier and Schubert

(2016). These adjustments include frictions and delays. In an open access

regime we consider an enter - exit mechanism, where the levels of labor in

the industries expand when the industry profit is positive, and contract when

the industry profit is negative. We assume that also the adjustment of ef-

fort in the aquaculture industry is followed by the profit motive. As long as

there is a positive profit margin, the effort is increased and when the profit

margin is negative, the labor usage is reduced, meaning that the equilib-

rium, analogously to the harvesting industry, is defined by zero profit6. We

take these properties into account by suggesting the instantaneous change of

rate of both Ex and Es to be proportional to the industry profit πx and πs,

respectively, i.e.

dEx

dt
= λxπx(X,Ex, Es),

dEs

dt
= λsπs(Ex, Es) (8)

pendent on the market supply of the other industry. This mechanism is similar to those

ones we obtain through input market dependence.
6Notice that our assumption of constant marginal productivity in sea farming, for given

input and output prices, either gives a positive or a negative profit. As the input price

varies due to the level of aggregated demand equal to supply, the long term equilibrium

is defined by zero profit.
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The positive proportionality constants λx and λs are determined by the ’speed

of adjustment’ measuring the intensity of reaction between the labor input

and perceived profit in the respective industries. These parameters (λx and

λs) may be different between industries, since the ’speed of adjustment’ for

each industry depends on conditions which may vary, including regulatory

policy in both sectors.

Inserting both production functions, (1) and (4), and the efficiency ex-

ternality (3) into the wild fishery growth equation (2), we get

dX

dt
= X

(
σ
(
1− X + αraEs

K

)
− (ρ− ϱa)Ex

)
(9)

By inserting the profit functions (6) and (7) into (8), we end up with the

rate equations

dEx

dt
= λxEx

((
px(ρ− ϱa)X − w

)
− µEx − µEs

)
(10)

dEs

dt
= λsEs

(
(psra− w)− µEs − µEx

)
(11)

The variables and the parameters in the 3D model of differential equations

(9) - (11) and their respective interpretations are summarized in Table 1. The

fundamental dimensions given in Table 1 are T for time (e.g. year,month),

M for mass (e.g. tons, kg), A for area (e.g. meter2, km2), E for effort (e.g.

employee, capital) and C for currency (e.g. Euro, Y uan). Notice also that

the dimensions of the quantities listed in Table 1 are power products of the

fundamental dimensions.

Notice that the 3D system of differential equations (9) - (11) is of the

generalized Lotka - Volterra type. Such types of systems have been exten-
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sively investigated in the population dynamics and game theoretical literature

Hofbauer and Sigmund (1998) with respect to existence of attractors, equi-

librium points, bistability and attraction basins. The forthcoming sections

will indeed reveal some of these properties.

3. Analysis of the model

3.1. Scaling and general properties of the model

The starting point is that our model (9) - (11) as well as any model of

processes in physics, biology, chemistry, engineering, economics etc. on di-

mensional form fulfills the following obvious requirements: The terms of the

equations have the same dimension (dimensional homogeneity) and the form

of the equations is invariant under the change of the fundamental dimen-

sions (form invariance). In accordance with Buckinghams Π - theorem, this

implies that our model is equivalent with a system in 6 dimensionless pa-

rameters and 4 dimensionless variables. The latter parameters and variables

are power products of the variables and parameters listed in Table 1. See for

example Chapter 1 in (Logan, 1987) for a general exposition of dimension

analysis of mathematical models. By transforming the model to dimension-

less form we detect power products that influence the dynamical evolution

described by the model. From a practical point of view is indeed an advan-

tage to reduce the number of parameters from 13 to 6. Here we will stress

that this reduction is a consequence of the homogeneity and form invariance

property of our model.

15



Variables/ Biological/ Measurement

parameters economical interpretation dimensions

t Time T

X Wild fish population density M

H Harvesting rate of wild fish MT−1

K Carrying capacity of the wild fish biomass M

σ Intrinsic growth rate for the biomass T−1

a Area occupied by aquaculture activity(constant) A

α Aquaculture production effect on biomass growth T

ρ Fixed efficient coefficient fishery E−1T−1

ϱ Harvest efficiency area effect A−1E−1T−1

r Efficiency coefficient aquaculture MA−1E−1T−1

Ex Labor input in fishery E

Es Labor input in aquaculture E

px Product price fishery CM−1

ps Product price aquaculture CM−1

w Exogenous wage rate CE−1T−1

µ Market wage rate impacts from the two industries CE−2T−1

λx Speed of adjustment (wild fishery) EC−1

λs Speed of adjustment(aquaculture industry) EC−1

Table 1: The fishery - aquaculture model (9) - (11). All the parameters and variables

are non-negative. The fundamental dimensions are T for time (e.g. year,month), M (e.g.

tons, kg), A for area (e.g. meter2, km2), E for effort (e.g. employee, capital) and currency

C (e.g. Euro, Y uan).
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In our situation with a mathematical model given as a set of differential

equations we obtain a dimensionless form of the model in the standard way

by means of a scaling technique. See Chapter 1 in Logan (1987) for an

exposition on scaling techniques for differential equations. We proceed in

the following way: Introduce the dimensionless quantities τ , ξ, η, θ and

γi; i = 1, 2, ...6 defined by

τ = σt, X(t) = Kξ(τ), Ex(t) =
σ

ρ−ϱa
η(τ), Es(t) =

K
αra

θ(τ)

γ1 =
λxw
σ
, γ2 =

λxpx(ρ−ϱa)K
σ

, γ3 =
λxµ
ρ−ϱa

(12)

γ4 =
λxµK
σαra

, γ5 =
λs(psra−w)

σ
, γ6 =

λs

λx

We then get

ξ′ = ξf(ξ, η, θ), η′ = ηg(ξ, η, θ), θ′ = θh(ξ, η, θ) (13)

where f , g and h are the linear functions

f(ξ, η, θ) = 1− ξ − η − θ (14)

g(ξ, η, θ) = −γ1 + γ2ξ − γ3η − γ4θ (15)

h(ξ, η, θ) = γ5 − γ3γ6η − γ4γ6θ (16)

from (9) - (11). Here the notation ′ means differentiation with respect to

τ . 7

7Notice that the present model that there are infinitely many ways of scaling the model

(Logan, 1987). Notice also that the scaling technique also makes it possible to compare

the relative strengths of the different terms in the model. This is an issue dealt with in a

forthcoming part of the present paper (Subsubsection 3.4.2).
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Parameter definition Intepretation

γ1 = w/( σ
λx

) The relative exogenous unit cost of effort.

γ2 = px(ρ− ϱa)K/( σ
λx

) The relative potential gross profit

per unit of effort in the fishery

γ3 = µ/(ρ−ϱa
λx

) The relative direct cost impact from fishery

γ4 = µ K
αra/(

σ
λx

) The relative indirect cost impact

due to stock externality from aquaculture

γ5 = (psra− w)/( σ
λs
) The relative net profit per unit effort

in aquaculture

γ6 = λs

λx
Relative speed of adjustment

γ3

γ4
= σαra

K(ρ−ϱa) The relative growth impact

Table 2: Nondimensional parameters. All the parameters except γ5 are non-negative.

The dimensionless input parameters γ1, γ2, γ3, γ4, γ5 and γ6 play a crucial

role in the present model. A notable feature is that they measure the relative

strengths of parameters involved in the model versus some reference values.

The interpretation of the dimensionless parameters γ1, γ2, γ3, γ4, γ5 and γ6

is summarized in Table 2, based on the role of the parameters in the model

(9) - (11). The definitions and our interpretation of the scaling parameters

in Table 2 are given in order to facilitate the interpretation of the results in

the forthcoming analyses.

We next describe some fundamental properties of the nondimensional system
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(13) - (16). Introduce the vector field F : R3 → R3 as

F(x) = D(x){b−Ax} (17)

where

x =


ξ

η

θ

 , b =


1

−γ1

γ5


(18)

D(x) =


ξ 0 0

0 η 0

0 0 θ

 , A =


1 1 1

−γ2 γ3 γ4

0 γ3γ6 γ4γ6


Then the system (13) - (16) can conveniently be rewritten on the compact

vector form

dx

dτ
= F(x) = D(x){b−Ax} (19)

We finally point out a well - known property which the system (19) shares

with other generalized Lotka - Volterra systems, namely the existence of

invariant regions: We first notice that the coordinate axes as well as the

coordinate planes in the x - phase space are invariant regions of the system

i.e. orbits emanating from initial conditions located on these axes (in these

coordinate planes) will remain on these axes (in these planes). Hence, orbits

starting in the first octant Σ+ defined by

Σ+ = {x ∈ R3; ξ, η, θ > 0} (20)

will remain in Σ+, which means that Σ+ is an invariant region of the system

under consideration.
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3.2. Equilibrium points of the model

In this subsection we study the existence of equilibrium points of the

model (13) - (16) in the set Σ+ and on its boundary ∂Σ+. We first search

for the equilibrium point on ∂Σ+. They are given as

Q0 = (0, 0, 0), Q1 =
(
0, 0, γ5

γ4γ6

)
, Q2 = (1, 0, 0)

(21)

Q3 =
(
1− γ5

γ4γ6
, 0, γ5

γ4γ6

)
, Q4 =

(
γ1+γ3
γ2+γ3

, γ2−γ1
γ2+γ3

, 0
)

Q0, Q1, Q2, Q3 and Q4 correspond to the equilibrium points

R0 = (0, 0, 0), R1 =
(
0, 0, psra−w

µ

)
, R2 = (K, 0, 0)

(22)

R3 =
(
K − αra(psra−w)

µ
, 0, psra−w

µ

)
, R4 =

(
K(w

σ
+µ

q
)

pxqK
σ

+µ
q

, σ
q

(
pxqK−w
pxqK+µσ

q

)
, 0

)
of the original system (9) - (11), respectively. This clarifies the role of the

equilibrium points on the boundary ∂Σ+: R1 models an equilibrium situa-

tion with no wild fish population, no harvest effort and a finite aquaculture

effort. The equilibrium effort in aquaculture Es,e is determined by the prof-

itability per unit effort when adjusted for the industries own factor price

impact in the absence of fishery activity, i.e the exogenous aquaculture in-

dustry profitability, (psra−w), relative to the parameter µ, which expresses

how much the wage has to increase in order to impose one more unit labor

into the market. R2 represents the equilibrium state with no efforts for both

industries and the unexploited and unharmed fish biomass will of course be

equal to the carrying capacity (Xe = K) in this case. R3 is an equilibrium

state with no fishery effort but with a finite aquaculture activity. Here we
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notice that this biomass equilibrium, compared to R2 is reduced by a term

capturing the possible negative biomass growth externality from aquaculture

(αraEs,e). Finally, but not least R4, models an equilibrium situation with no

aquaculture effort. The equilibrium biomass Xe and the equilibrium fishery

effort Ex,e are determined by price, cost and growth parameters in a similar

manner as in the standard Gordon - Schaefer model. For instance it follows

that the equilibrium biomass Xe decreases when the fish price px increases.8

We have also made use of the fact that

γ1γ6 + γ5 =
λspsra

σ
> 0 (23)

to show nonexistence of equilibrium points for which ξ = 0 and η > 0, θ > 0.

In order to ensure that these equilibrium points are located on the boundary

of Σ+, we must have γ5 > 0 for Q1 , 0 < γ5
γ4γ6

< 1 for Q3 and γ2 > γ1 for Q4,

respectively. Notice that Q3 merges together with Q1 when γ5/γ4γ6 → 1−

and with Q2 when γ5/γ4γ6 → 0+. We will return to the equilibrium points

Q0, Q1, Q2, Q3 and Q4, when dealing with the stability analysis.

Next we search for possible equilibrium states of the system (17) - (19) in

the first octant Σ+ of the phase space. If such states exist, they must satisfy

the system of linear equations

Ax = b (24)

8If µ = 0, the wage level is given by w. In this case the equilibrium point R4 corresponds

to Xe = Kξe = w/qpx and Ex,e = σ
q (1 − w/qpxK) when restoring to the dimensional

parameters. This is the open access equilibrium (X∞, E∞) in the standard Gordon -

Schaefer model. See for example Flaaten (2018).
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The linear system (24) has a unique solution called xe given by

xe = A−1b (25)

Here it is tacitly assumed that det(A) ̸= 0 so that the matrix A is invertible.

Simple computation reveals that

det(A) = γ2γ6(γ4 − γ3) (26)

Hence xe given by (25) exists if and only if γ3 ̸= γ4. The components ξe, ηe

and θe of xe are given as

ξe =
γ1γ6+γ5
γ2γ6

ηe =
γ4

γ3−γ4

(
ξe − 1 + γ5

γ4γ6

)
(27)

θe =
γ3

γ3−γ4

(
1− ξe − γ5

γ3γ6

)
provided γ3 ̸= γ4. By appealing to (23) and the fact that γ2, γ6 > 0, we

conclude that ξe > 0. Moreover, we readily find that

ξe =
psra

px(ρ− ϱa)K
(28)

when restoring to the original parameters i.e by using the expressions listed

in Table 2. This fraction is interpreted as the relative aquaculture industry

profitability. The nominator (psra) is the revenue per unit effort in the

aquaculture industry whereas the denominator (px(ρ−ϱa)K) is the potential

revenue per unit effort in the fishery. Higher relative profit for the aquaculture
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industry leads to allocation of effort to aquaculture from the fishery and

thereby causes a higher equilibrium biomass.

We choose the parameters γi, i = 1, 2, ..., 6 such that xe ∈ Σ+. We notice

that the parameters γ3 and γ4 play a crucial role when studying the existence

of this equilibrium point. More information about the role of these two

parameters can be extracted from the structure of the dynamical system (13)

- (16): If the parameter vector (γ1, γ2, γ3, γ4, γ5, γ6) produces the equilibrium

point (ξe, ηe, θe), then the parameter vector (γ1, γ2, γ4, γ3, γ5, γ6) yields the

equilibrium point (ξe, θe, ηe). This reflection symmetry follows from the role

of the parameters γ3 and γ4 in (13) - (16). An interchange of the parameters

γ3 and γ4 produces an interchange of the effort coordinates. By appealing to

Table 2, the interpretation of this property goes as follows: The demand for

one extra unit effort in both industries induces the same cost pressure impact

in the effort market. γ3 captures how the fishery effort directly influences

the fishery profit via this market mechanism, while γ4 captures how the

aquaculture effort indirectly affects the fishery profit via the biomass growth

mechanism. At the same time we notice that the aquaculture industry has

a constant unit profit in the absence of the labor market impact (µ = 0),

while the fishery profit is still influenced by the aquaculture industry via a

possible harmed biomass growth. Hence, an interchange of the parameters γ3

and γ4 alters these mechanisms in a symmetric way and consequently should

result in an interchange of the two industries effort coordinates in the interior

equilibrium state. We will exploit this symmetry in the numerical study of

the dynamical system (17) - (19) in different parameter regimes.
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The transition case γ3 = γ4 (corresponding to det(A) = 0) must be

treated separately. Appendix A is devoted to a detailed analysis of this case.

By making use of Table 2 we interpret this transition case in the following

way: The aquaculture production impact per unit of effort on the wild fish

population growth (measured by means of σαra) is exactly equal to the

potential productivity for the fishing industry i.e. the potential harvest per

unit of effort (measured by means of qK = (ρ− ϱa)K). From the structure

of the system (9) - (11) we notice that only the total effort of both industries

are determined in this transition case, and from the parametrisation (A.3)

in Appendix A we have a continuum of equilibrium points. The condition

(A.3) in terms of the dimensional quantities is

Ex,e + Es,e =
σ

q

(
pxqK − w

pxqK + µσ
q

)
(29)

where

Ex,e =
σ

q
ηe, Es,e =

σ

q
θe,

σ

q
=

K

αra

Interestingly, the total effort in this case is equal to the fishery effort in the

equilibrium state R4. Notice that our system possesses the equilibrium points

Q0, Q1, Q2, Q3 and Q4 given by (21) even in this case. The properties of

these points are detailed in Appendix A.

3.3. Stability of the equilibrium points

The detailed stability assessments of the boundary equilibrium points

Q0, Q1, Q2, Q3, Q4, and the interior equilibrium point xe are presented

in Appendix B. Here, we only summarize the main results regarding the
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stability of the equilibrium points: For the parameter regimes γ4 ̸= γ3, the

system (13) - (16) possesses a unique equilibrium point xe in the first octant

Σ+ in the phase space. This equilibrium point is stable (unstable) provided

γ4 > γ3 (γ4 < γ3). In accordance with Appendix B, no local bifurcations of

the equilibrium point xe take place in the regimes γ4 > γ3 and γ4 < γ3. We

have only a change of the stability property of xe when passing γ4 = γ3 in

the 6 - dimensional parameter space.

When restoring to the definition (12) of the nondimensional parameters,

we find that the equilibrium point xe ∈ Σ+ corresponds to an equilibrium

point Xe=(Xe, Ex,e, Es,e) of the system (9) - (11). The condition γ4 > γ3 for

stability of the equilibrium point Xe is now translated into the condition

a < a∗, a∗ ≡
ρ

ϱ+ σαr
K

(30)

by means of Table 2. This condition implies that there is an upper bound a∗

on the aquaculture area a in order to ensure the stability of the equilibrium

point Xe. This bound is determined by six of the parameters in the origi-

nal model, (9) - (11). A notable feature is that a higher carrying capacity

K will increase the bound a∗. The bound is proportional to the carrying

capacity, K, in the absence of harvest productivity impact (ϱ = 0). More-

over, efficient harvest in the fishery, i.e an increase in ρ, also results in an

increase in a∗, whereas an increase in the negative harvest efficiency impact

from aquaculture (which means an increase in ϱ) and an increased negative

growth externality (i.e. a higher α, will both reduce the area a∗). Notice that

the stability condition γ4 > γ3 also can be expressed in terms of the fraction
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interpreted in Table 2: γ3
γ4

= σαra
K(ρ−ϱa)

< 1. This fraction measures the growth

impact from aquaculture relative to the fishery productivity.9

The stability properties of the points given by (21) and (27) are examined

in Appendix B and the results are summarized in Table 3. A notable feature

which can be extracted from Table 3 is the nonexistence of the equilibrium

point Q3 in the regime producing a stable equilibrium point Q1. This behav-

ior is to be expected since Q3 is an equilibrium state with no fishery effort but

with a finite aquaculture activity causing a negative biomass growth exter-

nality, while Q1 models an equilibrium situation with no wild fish population,

no harvest effort and a profitable aquaculture effort. In the complementary

regime,0 < γ5 < γ4γ6, for which Q1 is unstable, Q3 is stable for γ2 below the

threshold value γ∗
2 ≡ γ4

γ1γ6+γ5
γ4γ6−γ5

, whereas it will be unstable for γ2 exceeding

this threshold value. This seems also reasonable since the equilibrium point

9Notice that the reproductivity rate f ≡ σ
(
1−X+αraEs

K

)
−(ρ−ϱa)Ex in the wild fishery

growth equation (9) in our modelling framework can be viewed as a linear approximation

of a more general reproductivity growth function in the population density X and the

effort variables Ex and Es. Here we follow the line of thought in Drossel et al. (2004) and

Martinez et al. (2006) with respect to the modelling of a foodweb. This means that the

reproductivity function contains terms describing saturating functional responses. This

type of chemostat - like conditions of the resource level will indeed alter the equilibrium and

stability analysis presented in this paper. In particular, we expect that it will change the

interpretation of the result relating the stability of the interior equilibrium to the carrying

capacity K (i.e. the condition (30)). Alternative specification of the model regarding (1),

(2) or (4) could also be considered. We do not pursue this problem in the present paper,

however.
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Equilibrium points in Σ+, Stability property

and on its boundary ∂Σ+

Q0 = (0, 0, 0) Unstable

Q1 =
(
0, 0, γ5

γ4γ6

)
Stable (unstable) if γ5 > γ4γ6 (0 < γ5 < γ4γ6),

stability analysis inconclusive if γ5 = γ4γ6

Q2 = (1, 0, 0) Stable if γ2 < γ1 and γ5 < 0, stability analysis inconclusive

if γ1 = γ2 and γ5 ≤ 0, unstable otherwise

Q3 =
(
1− γ5

γ4γ6
, 0, γ5

γ4γ6

)
Stable if γ2 < γ4

γ1γ6+γ5

γ4γ6−γ5
, stability analysis

inconclusive if γ2 = γ4
γ1γ6+γ5

γ4γ6−γ5
, unstable otherwise.

Q4 =
(

γ1+γ3

γ2+γ3
, γ2−γ1

γ2+γ3
, 0
)

Stable if γ5 < γ3γ6
γ1+γ3

γ2+γ3
, stability analysis inconclusive if

γ5 = γ3γ6
γ1+γ3

γ2+γ3
, unstable otherwise

xe = (ξe, ηe, θe) Stable (unstable) if γ4 > γ3 (γ4 < γ3)

Table 3: Equilibrium points of (13) - (16) in Σ+ and its boundary ∂Σ+. xe is given by

(27). It is tacitly assumed that γ5 > 0 for Q1, γ2 > γ1 for Q2 and 0 < γ5

γ4γ6
< 1 for Q3,

respectively. See Appendix B for a detailed interpretation.
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Q3, which represents an equilibrium state with no fishery effort is stable when

the potential gross profit in the fishery (measured by means of γ2) is below

the threshold value presented in Table 3, while Q4 which is an equilibrium

with no aquaculture effort is stable for γ5 (the net profit in the aquaculture

industry) below a certain threshold value. These threshold values depend on

the parameters in the model in a complicated way. See Appendix B for a

more detailed discussion.

The equilibrium points alternate between being stable and unstable, which

means that we can have coexistence of two stable equilibrium points in both

these regimes (the bistability issue). Hence the first octant Σ+ of the phase

space can be expressed as a union of attraction basins for the compact attrac-

tors such as stable equilibrium points. We do not pursue a detailed analysis

of the attraction basins in the present paper, but rather conclude that the

system under consideration permits a multitude of dynamical scenarios. The

reason for this is the parametric complexity of the system: The dynamical

evolution depends on the six parameters γ1, ...,γ6. These parameters can be

varied independently of each other. Notice that these results resemble those

ones which have been observed for different generalized Lotka - Volterra sys-

tems. See for example Smith (1995) and Hofbauer and Sigmund (1998).

3.4. Special cases

To elaborate on the mechanisms present in our model, it is useful to con-

sider simplified versions of the model. In the subsections below we examine

how the model functions when we omit the labor market interaction and the
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biomass growth impact, respectively.

3.4.1. Simplified model with no labor market impact from wild fishery and

aquaculture industry

Let us consider the special case where labor market impact from wild

fishery and aquaculture industry is neglected. In the modeling framework

(9), (11) and (10) this means that µ = 0. This situation corresponds to

letting γ3 = γ4 = 0 in the nondimensional setting (13) - (16). The actual

model simplifies to

ξ′ = ξ(1− ξ − η − θ), η′ = η(−γ1 + γ2ξ), θ′ = γ5θ (31)

The last equation in this system possesses the solution

θ(τ) = θ0 exp[γ5τ ] (32)

where θ0 denotes the initial condition, θ(0) = θ0. This means that the model

under consideration reduces to the 2D non - autonomous dynamical system

ξ′ = ξ(1− ξ − η − θ0 exp[γ5τ ]), η′ = η(−γ1 + γ2ξ) (33)

γ5, interpreted as the relative net profit per unit of effort in the aquaculture

industry, is not sign - definite, it is of interest to study the solution of this sys-

tem for both negative and positive values of this parameter. In the negative

γ5 - case we have an exponential decay of θ. The solution of the system is in

this case expected to approach the solution of the 2D autonomous dynamical

system.

ξ′ = ξ(1− ξ − η), η′ = η(−γ1 + γ2ξ) (34)
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for large values of τ . We notice that this special case, (34), is actually the

standard Gordon - Schaefer model, only extended with a dynamic adjust-

ment mechanism in the effort, i.e a wild fishery without aquaculture, where

the fishery profit determines the expansion/contraction of the industry em-

ployment.

The system (34) has three equilibrium points P0 = (0, 0), P1 = (1, 0)

and P2 = (γ1
γ2
, 1− γ1

γ2
)10. Table 4 summarizes the stability properties of these

equilibrium points as a function of the parameters γ1 and γ2. Notice that

P2 belongs to the fourth quadrant in the ξ, η - plane when γ1 > γ2. Due

to the interpretation in Table 2, where γ2 is the relative (potential) gross

profit per unit of effort in the fishery and γ1 is the relative unit cost of effort,

it is reasonable to assume that γ1 < γ2. As well known from the standard

Gordon - Schaefer case, the two equilibrium points P1 and P2 merge together

in the transition state γ1 = γ2. P1 and P2 swap the stability properties as

one passes this transition state. The simulations in Section 4 confirm the

predictions obtained from the stability analysis of the equilibrium points P0,

P1 and P2: The solutions which approach the stable equilibrium point P2

represent damped oscillations.

In the complementary regime (γ5 > 0), the θ grows exponentially and

unbounded. Finite labor market impact effects (γ3, γ4 ̸= 0) present in the

10When the labor supply is perfectly elastic, µ = 0, and the wage level is given by w,

then the equilibrium point P2 correspond to
(
w/qpx,

σ
q (1− w/qpxK)

)
when restoring to

the dimensional parameters.

30



Equilibrium points P0 P1 P2

γ1 < γ2 Unstable Unstable Stable

γ1 > γ2 Unstable Stable Unstable

Table 4: Stability of the equilibrium points P0(0, 0), P1(1, 0) and P2(
γ1

γ2
, 1− γ1

γ2
).

complete model (13) - (16) may saturate this growth, however. In the absence

of this saturating mechanism, the unbounded growth of θ will cause increased

negative impact in the fish stock growth rate and the productivity in the fish

harvesting industry.

3.4.2. Simplified model with low aquaculture production effect on biomass

growth.

We want to study the model (9) - (11) in the limit α → 0. This means

that we assume the effect on biomass growth from aquaculture production

to be weak (or negligible). Hence, this case isolates the impact from effort

market competition between the two industries. We conveniently carry out

this study within a nondimensional modeling framework derived by scaling

the model (9) - (10). This will enable us to define what it means that the

growth impact from aquaculture production is weak (or negligible). The

question which naturally arises is if one could use the system (13) - (16) in

this study. The choice (12) will not work, as it predicts the amplitude factor

in Es to go to infinity as α → 0. In order to avoid this problem we proceed

as follows: We define τ , ξ and η as in (12), but change the amplitude scaling
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of Es to

Es(t) =
σ

λxµ
θ̃(τ) (35)

The corresponding nondimensional system which we can derive from (9) -

(10) reads

ξ̃′ = ξ̃F (ξ̃, η̃, θ̃), η̃′ = η̃G(ξ̃, η̃, θ̃), θ̃′ = θ̃H(ξ̃, η̃, θ̃) (36)

where F , G and H are the linear functions

F (ξ̃, η̃, θ̃) = 1− ξ̃ − η̃ − εθ̃

G(ξ̃, η̃, θ̃) = −γ1 + γ2ξ̃ − γ3η̃ − θ̃ (37)

H(ξ̃, η̃, θ̃) = γ5 − γ3γ6η̃ − γ6θ̃

Here

ξ = ξ̃, η = η̃, θ = εθ̃ (38)

and

ε ≡ γ−1
4 =

σαra

Kλxµ
(39)

whereas the remaining parameters are as given in (12). We aim at studying

the system (36) - (37) in the regime 0 < ε ≪ 1 for ξ̃, η̃, θ̃ ≥ 0. This regime

will be referred to as the regime of weakly aquaculture production effect on

the biomass. By using (39), we translate the inequality 0 < ε ≪ 1 into the

condition

α ≪ Kλxµ

σra
(40)

Table 5 summarizes the results concerning existence and stability of the equi-

librium points in the case ε = 0. We also show that the phase portrait of the
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Equilibrium points Stability property

M1 =
(
0, 0, γ5

γ6

)
with γ5 ≥ 0 Always unstable.

M2 =
(
1, 0, γ5

γ6

)
with γ5 ≥ 0 Asymptotically stable if γ5 > max{0, γ6(γ2 − γ1)},

stability analysis inconclusive if

γ5 = max{0, γ6(γ2 − γ1)}, unstable otherwise.

M3 =
(

γ1+γ3

γ2+γ3
, γ2−γ1

γ2+γ3
, 0
)
with γ2 > γ1 Stable if γ5 < γ3γ6

γ1+γ3

γ2+γ3
,

stability analysis inconclusive if γ5 = γ3γ6
γ1+γ3

γ2+γ3
,

unstable otherwise.

M4 =
(
ξ̃e, 1− ξ̃e, (

γ5

γ6γ3
− (1− ξ̃e))γ3

)
,

ξ̃e =
γ1

γ2
+ γ5

γ2γ6
Always asymptotically stable.

Table 5: Equilibrium points of (36) - (37) in the ε = 0 - limit.

system (36) - (37) in the vicinity of its equilibrium point is mapped one - to

- one and onto the phase portrait of the same system (36) - (37) with ε = 0

in the vicinity of M4. A detailed analysis is presented in Appendix C.

4. Numerical illustrations

In this section we illustrate numerically the results of the general analysis

presented in the previous sections. We start out by studying the simplified

descriptions presented in the previous two subsubsections. We then show

different solutions for the full model (13) - (16). Finally, we give an example

of public regulation policy as exogenous shift in the area occupied by the

aquaculture industry i.e. the parameter a. In all the numerical simulations

to be presented we let γ1 = 1 and γ2 = 2. Notice that these values of γ1 and
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Parameters Values Measurement units

K 2000000 M

px 4000 CM−1

ρ− ϱa 0.00001 E−1T−1

λx/σ 0.000025 ETC−1

w 40000 CE−1T−1

Table 6: Reference parameters. The measurement units are M = Tons, C = Euro,

E = Employees and T = Y ear.

γ2 are computed on the basis of the reference values summarized in Table 6.

4.1. Simplified versions and characteristics of the model

First, we illustrate the model (9) - (11) with no labor market impact

(µ = 0 V γ3 = γ4 = 0). Hence, this case isolates the impact of the biomass

growth externality from aquaculture to the wild fishery. The outcome here is

crucial depending on the sign of the exogenous relative profit in the aquacul-

ture industry, i.e. on the sign of γ5. Assuming γ5 < 0, i.e. negative relative

net profit in aquaculture, we have an exponential decay of θ. Moreover, as

pointed out in Subsection 3.4.1 the solution is expected to approach the so-

lution of the Gordon - Schaefer model (34) for large values of τ . The phase

portrait of (34) is depicted in Fig.1a and the density evolution in Fig.1b.

This simulation confirms the predictions obtained from the stability analysis

summarised in Table 4. The solutions approach the stable equilibrium point
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Figure 1: Wild fishery without aquaculture. (a) The phase portrait of the system (34).

Input data: γ1 = 1, γ2 = 2. P2 = ( 12 ,
1
2 ) is the stable equilibrium point. (b) The normalized

fishery employment, η (red curve), and the normalized stock density, ξ (blue curve), as

function of the normalized time τ for the system (34). Input data: γ1 = 1, γ2 = 2, and

initial condition ξ(0) = 3
10 , η(0) =

7
10 . P2 = ( 12 ,

1
2 ) is the stable equilibrium point.

P2 = (γ1
γ2
, 1 − γ1

γ2
) = (1

2
, 1
2
) and represent damped oscillations. This result is

in accordance with what one would expect in a wild fishery without aqua-

culture, where the fishery profit determines the expansion/contraction of the

industry effort (employment). From the initial condition, shown in Fig.1b,

representing relative high level of effort and relative low stock volume, the

fishery will be unprofitable. This will lead to a reduction in effort which is

followed by increase in the stock volume, which makes the fishery more prof-

itable causing increased effort, which then leads to reduced biomass density,

and so on. Secondly, we study the simplified model with no labor market

impact (γ3 = γ4 = 0), but now with γ5 > 0, i.e. positive relative potential
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net profit in the aquaculture. In this case there is an exponentially increase

of θ, and no saturation mechanism in the aquaculture industry. Fig.2 illus-

trates the fish stock and fishery effort development within the framework of

the 2D non - autonomous dynamical system (33). This simulation shows

that the fishery development in the initial stage is similar to the develop-

ment described in Fig.1b. But instead of stabilizing at a sustainable level,

the activity will gradually be squeezed by the negative external stock impact

following from unbounded aquaculture production development. The final

outcome is that the fishery, after a transient phase, will gradually decline,

and eventually wound up. The fishing activity (employment) will be unprof-

itable and close down in finite time, and later on the population (fish stock)

will go extinct. Notice that this result, is based on the special case assuming

unbounded growth in aquaculture effort, following from permanent positive

relative net profit in the aquaculture (γ5 > 0). The saturation mechanism

via effort market µ > 0 competition alter will prevent such a development.

Next, we consider the system (36) - (37) and the ε = 0 - limit of the same

system. As pointed out, these simplified models describe the special case

with no or weakly impact from aquaculture on wild fish biomass growth.

Compared to the simplified versions detailed earlier in this subsection, the

labor market mechanism in this modeling approach involves a saturating im-

pact on the effort in both industries. In our numerical study we make use of

the parameters in Set 1 except that γ4 - value is replaced by ε = 0.1. The

corresponding interior equilibrium point x̃e of the unperturbed system (36) -
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Figure 2: Wild fishery without labour market competition (µ = 0) and steady growing

aquaculture (γ5 > 0). The normalized fishery employment, η (red curve), and the nor-

malized stock density, ξ (blue curve) for the 2D non-autonomous system (33) as function

of the normalized time τ in case of permanent positive aquaculture growth. Input data:

γ1 = 1, γ2 = 2, γ5 = 1
10 and initial condition ξ(0) = 3

10 , η(0) =
7
10 , θ(0) =

5
100 .

(37) is computed by means of the expression for P4 listed in Table 5. We get

x̃e = (ξ̃e, η̃e, θ̃e) =

(
11

20
,
9

20
,
13

400

)
(41)

Fig. 3 compares the dynamical evolution of the system (36) - (37) with the

outcome of the ε = 0 - limit of the same system. The evolution depicted

in Fig.3 is approaching the equilibrium point (41) in agreement with the

stability theory worked out in Subsection 3.4.2. Fig.3 also illustrates an ex-

ample with relative high initial employment levels in both industries. The

effort market competition will increase the unit cost of effort and will cause

a reduced profitability in both industries. This will cause a reduction and

stabilisation at a relative low level for aquaculture employment. The effort
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Figure 3: Low effect on biomass growth (α → 0). The normalized stock density, ξ (blue

curve), the normalized fishery employment, η (blue curve), and the normalized fishery

employment, θ (green curve), as function of the normalized time τ , for the system (36) -

(37) with ε = 0 (Bold curve) and the system (36) - (37) with ε = 1
10 (Dotted curve). Input

data: γ1 = 1, γ2 = 2, γ3 = 15
100 , γ5 = 1

10 , γ6 = 1. Initial condition ξ(0) = 3
10 , η(0) =

7
10 ,

θ(0) = 7
10 . The integral curves approach the stable equilibrium point (41).

and stock density for the fishery also stabilize after a transient stage consist-

ing of damped oscillations similar to the mechanism described in Fig.1b. We

also notice that the effort level in fishery stabilizes at a lower level compared

to Fig.1b because of the cost increase. This lower effort level will result in

stabilization of the stock volume at a higher level compared to Fig.1b.

Fig.3 shows that the integral curves of the system (36) - (37) appear as

slight continuous deformation of the corresponding curves in the ε = 0 -

limit of (36) - (37), in accordance with the structural stability property of

the system (36) - (37).

Finally we do numerical runs of the full model (13) - (16). We make use

of the two parameter sets given in Table 7. Set 1 and Set 2 in Table 7 yield
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Parameters γ1 γ2 γ3 γ4 γ5 γ6

Set 1 (Stable case) 1 2 15
100

3
10

1
10 1

Set 2 (Unstable case) 1 2 3
10

15
100

1
10 1

Table 7: Parameter sets underlying the numerical simulations of the model (13).

the interior equilibrium points

(ξe, ηe, θe) =

(
11

20
,
7

30
,
13

60

)
(42)

and

(ξe, ηe, θe) =

(
11

20
,
13

60
,
7

30

)
(43)

respectively. The equilibrium point (42) is asymptotically stable, whereas the

equilibrium point (43) is unstable, The simulations confirm the predictions

deduced from the stability analysis. In Fig.4a and Fig.4b the evolution of

the density volume is depicted in the stable case (γ3 < γ4) as bold curves,

and the unstable case (γ3 > γ4) as dotted curves. For Set 1 in Table 7, the

integral curves approach the equilibrium point (42), independently of the

initial conditions.

For the unstable case with Set 2 in Table 7 the dynamical evolution is

somewhat more complicated. The numerical simulations in this case indicate

that the two boundary equilibrium points Q3 and Q4 introduced in Subsec-

tion 3.2 play a fundamental role in this case. For Set 2 these two points are

given as

Q3 = (ξe, ηe, θe) =

(
1

3
, 0,

2

3

)
(44)
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and

Q4 = (ξe, ηe, θe) =

(
13

23
,
10

23
, 0

)
(45)

Moreover, our previous findings show that these two equilibrium points are

stable for Set 2. A notable feature is that in this case we get integral curves

which will either settle down on Q3 or on Q4, depending on the initial condi-

tions: In Fig.4a where we have chosen a relative low initial level of employ-

ment in both industries i.e. η(0) < ηe and θ(0) < θe, we get a decreasing

aquaculture employment which eventually wound up. In this case the cor-

responding solution ends up on Q4. In Fig.4b we have selected a somewhat

relative higher initial level of employment in both industries η(0) > ηe and

θ(0) > θe. Here the unstable parameter regime gives rise to an increase

in the aquaculture production to a substantial higher level, and the fishery

employment will gradually decline and eventually be wounded up, and the

stock volume stabilizes on a substantial lower level. In this case the integral

curves end up on Q3. We have carried out more numerical simulations in

the regime γ3 > γ4 and where Q3 and Q4 are asymptotically stable boundary

equilibrium points. These simulations support the idea that there always is a

proper subset Ω+ of Σ+ which acts as an attraction basin for Q3 whereas the

absolute complement ΩC
+ = Σ+\Ω+ of this subset in Σ+ will be an attraction

basin for Q4. We do not pursue any further analysis of this problem here,

however.
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Figure 4: Stable and unstable cases. (a) The normalized stock density, ξ (blue curve), the

normalized fishery employment, η (red curve), and the normalized aquaculture employ-

ment, θ (green curve) for the system (13) as function of the normalized time τ for Set 1

(bold curves) and Set 2 (dashed curves) in Table 7. Set 1 and Set 2 produce the interior

equilibrium points (42) and (43), respectively. Initial conditions: ξ(0) = 7
10 , η(0) = 1

10 ,

θ(0) = 1
10 . The integral curves approach Q4 given by (45) for Set 2. (b) The same in-

tegral curves for the system (13) as in 4a. New initial conditions: ξ(0) = 7
10 , η(0) =

3
10 ,

θ(0) = 3
10 . The integral curves approach Q3 given by (44) for Set 2.

4.2. Expansive sea farming policy: Increasing the areas for aquaculture pro-

duction

It is possible to study the effect on different equilibrium states by changing

the public regulation facing the two sea food industries, within the present

modeling framework. As mentioned in the introduction, the area accessible

for sea farming is normally controlled by the public authorities. Hence, an

example of an expansive policy for increasing the sea farming production,

could be that these authorities decide to increase the area available for aqua-
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Figure 5: Impact of aquaculture area. The normalized stock density, ξ (blue curve), the

normalized fishery employment, η (red curve), and the normalized aquaculture employ-

ment, θ (green curve) for the system (13) - (16) as function of the normalized time τ . Input

data: Set 1 in Table 7 (bold curve) as reference and the impact of 5 percent increased area

a yields γ1 = 1 γ2 = 1.9 γ3 = 0.158 γ4 = 0.286 γ5 = 0.105 γ6 = 1. (dashed curve). Initial

conditions: ξ(0) = 7
10 , η(0) = 3

10 , θ(0) = 3
10 . The equilibrium value for Set 1 is given

by (42). Equilibrium point with an increase of a with 5 percent: ξe ≈ 0.582, ηe ≈ 0.114,

θe ≈ 0.304)

culture industry. We proceed as follows: From the definitions in (12) we

notice that only γ2, γ3, γ4 and γ5 depend on the area a. Let us further as-

sume a policy change, interpreted as a 5 percent increase in aquaculture area

a. From the definition of γ2, γ3, γ4 and γ5, we compute the new values of

these four nondimensional parameters. Fig. 5 demonstrates the outcome of

this change: The bold curves are the integral curves of the system (13) - (16)

when using Set 1 in Table 7 as input parameters whereas the dashed curves

are the integral curves of the system after a 5 percent increase in the aqua-

culture area a. It is easily seen that the position of the stable equilibrium
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is changed, implying a higher aquaculture employment, a reduced fishery

employment, and normalized stock densities on slightly higher levels than

before. The explanation is that an increase in the aquaculture area, leads to

two direct effects on the industrial efficiencies in harvesting and aquaculture,

both reducing the relative profitability in the fishery. First, it is seen from the

production function in (4) that the sea farming efficiency increases, and, from

(3) the resources in harvesting become more inefficient. The values chosen

in our example, however, exhibit a new stable equilibrium where sea farming

has increased, the fisheries have decreased and the fish stock stabilizes on a

slightly higher level than before. As discussed the reasoning connected to our

stable equilibrium in example in Fig. 5 is dependent on a case where γ3
γ4

< 1,

meaning a < a∗. In a situation where the increase in the accessible area

for sea farming is so high that we after implementing the expansive policy

now get a > a∗(⇔ γ3
γ4

> 1), the stable equilibrium changes to an unstable

equilibrium. If this is the case we may end up in a stable equilibrium on the

boundary (Q3) where the aquaculture industry is the only sea food industry

surviving like the one we illustrated in Fig.4b.

5. Concluding remarks and extensions

In the conceptual dynamical model (9) - (11), we have focused on three

types of possible interactions within the seafood industries. First of all, we

suppose that a production increase in the aquaculture industry is likely to

reduce the growth rate in the exploited wild fish stock. Secondly, by in-

creasing the area available for sea farming, one could reduce the productivity
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in harvesting. In addition to these two negative externalities between the

sectors, we assume that there might be a competition between these two ma-

rine industries for input resources. Such an input market interaction means

that the price for input increases (decreases) when one of the industries is

increasing (decreasing) the input demand, which then may reduce (increase)

the profit of producing the other seafood. Based on the model (9) - (11),

we have identified biological and economic structural conditions for which

different equilibrium states exist. One possibility is that both the traditional

fishery and the aquaculture industry are profitable in the long run and will

coexist in the future. A crucial condition for such a stable equilibrium to

exist, is that the relative growth impact on fishery from sea farming produc-

tion (in our model measured by means of the ratio γ3
γ4
) is not too high (in our

model less than 1). Another way of expressing this is that the aquaculture

production impact (per unit of effort) on wild fish population growth (mea-

sured by means of σαra) must be below the potential productivity (per unit

of effort) in the fishing industry (measured by means of qK = (ρ− ϱa)K).

Unlike many other papers in fishery dynamics, we have also discussed

unstable equilibrium states. An unstable equilibrium is identified when the

aforementioned condition regarding this relative growth impact is not sat-

isfied, i.e. cases where the sea farming has a relatively high impact on the

growth potential of the fishery. Dependent on the initial values of the indus-

tries effort and the fish stock, we then may end up in stable equilibrium states

where one of the industries is steadily decreasing and eventually disappear in

the long run. In a numerical example, we have seen that when the effort val-
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ues are equal and initially relatively low, we end up in a stable equilibrium

where the aquaculture industry is wiped out. The explanation for this is

simply that a relatively low level of the effort in the fishery and aquaculture

industry initially, makes harvesting more profitable. This increases fisheries

ability to compete for labor. However, when both effort levels are higher,

the opposite may happen, and in the long run there is no fishing activity.

The explanation of this outcome is that a relatively high level of the effort in

both industries cause negative externalities and effort costs which eventually

makes harvest activity unprofitable.

We have also seen that allocating more area to aquaculture (in order

to develop the sea farming industry) implies a lower activity in the fish-

ery. Larger area gives directly increased productivity in sea farming. The

following profitability will increase the effort and the production in the aqua-

culture, and may lead to three inhibitory effects on the fishery: Reduction

in the biomass growth, lower harvest efficiency and tougher effort market

competition. Furthermore, we have also argued that if the expansion of sea

farming area becomes too high, we may have a situation where the aqua-

culture activity leads to steadily reduction of the fishery. Eventually, both

harvest activity and fish stock could be wiped out in a long run.

Notice that we have not investigated the bistability issue from a rigor-

ous, mathematical perspective i.e. the coexistence of two stable equilibrium

states in Σ+ and on its boundary. This problem has been investigated in a

multitude of Lotka - Volterra models and their extensions. See for example

Smith (1995), Hofbauer and Sigmund (1998) and Kozlov et al. (2016). In
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a future work we aim at studying the convergence of the solutions toward

xe or the equilibrium states on the boundary as well as the possibility of

having periodic or chaotic attractors. This problem is indeed related to the

decomposition of Σ+ into attraction basins for such attractors.

We will emphasize that our reasoning is based on a simplified and concep-

tual model where we have made other simplifying assumptions. For instance,

we only consider one typical exploited wild fish stock and one sea farming

activity. In reality, coastal areas and oceans consist of rather complex ecolog-

ical and physical systems that need to be understood and modelled properly.

For instance, an interesting extension of our model would be to include fod-

der supply to aquaculture from feed fish where an edible fish feeds on the

same stock as the fodder supply depends on. See for instance Hannesson

(2003) and Regnier and Schubert (2016) for such modeling reasoning. An-

other possible extension could be to account for a complete description of the

resource level based on the chemostat condition. Here one could make use of

the modelling approach for foodwebs suggested by Drossel et al. (2004) and

Martinez et al. (2006). We conjecture that this will alter the equilibrium and

stability results detected in the present paper.

Moreover, in addition to the two specified marine industries, many other

economic activities are located in the coastal zones that also may interact

with both fisheries and aquaculture, and thereby affecting the dynamic struc-

ture and possible outcomes. For instance, some activities may cause marine

emissions that harm the fish growth, where also the history of emissions could

be of importance. Marine emissions could be taken into account by modify-
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ing our model by including their temporal influence in the logistic part of the

model i.e. in (9). This may change the dynamical features of the model. See

for instance Cushing (2013) and the references therein for further details.

In addition to ecological interdependence between fisheries and aquacul-

ture, there are many studies modelling economic market interactions through

price mechanisms in the product markets, see e.g. the model proposed by

Regnier and Schubert (2016). They show that when biological interactions

are moderate the aquaculture is beneficial in the long run. In their model it

improves consumer utility and alleviates the pressure on the commercial fish

stock. In addition to assume a competition in the input market, we could

also have modelled the sea food products stemming from fishery and aqua-

culture as perfect substitutes in consumption, and proposed a linear sloped

demand curve for sea food. The competition following from such an output

market would be analogous to the input market competition in the sense that

it brings economical dynamics between the two industries. Such a adjusted

model will have some of the same market interaction characteristics as our

model where the sectors compete for resources in the input market. The sim-

ilarity means that both input competition and possibly also the competition

in the consumption market, means that growth in one of the industries, giv-

ing an increase in the input price or a reduction in the output price, reduces

the profitability in the other industry.

As in other studies, the present analysis is carried out under the pre-

sumption that the industries are expanding (contracting) when profits are

positive (negative). In reality, both fisheries and aquaculture are often regu-
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lated by quotas and licenses, normally resulting in at least temporary quota

and license profits within the industries. In our model, this means that λx

and λs are quite low, or that the regulatory policies have direct effects on the

adjustment speed parameters (λx and λs). However, in future investigations

one should look at social preferable allocations of possible stable equilibrium

states between the traditional fishery and the sea farming industry. Public

regulatory mechanisms in such modeling attempts could be, in addition to

decide on available areas for aquaculture production, taxes and subsidies on

harvest and/or seafood production in farming.

Developing the model further, taking into account one or more of the pos-

sibly complicating aspects mentioned above, might be seen as an interesting

task for future research on fishery - aquaculture dynamics.
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Appendix A. Equilibrium and stability analysis in the transition

case γ3 = γ4.

Notice that our system possesses the equilibrium points Q0, Q1, Q2, Q3

and Q4 given by (21) even in the transition case γ3 = γ4 (corresponding to

det(A) = 0). If

γ3 = γ4,
γ2 − γ1
γ2 + γ3

̸= γ5
γ3γ6

(A.1)

we have no solutions of the linear system of equations (24). Hence we have

no equilibrium point inside the first octant Σ+ in this case. For the comple-

mentary situation

γ3 = γ4,
γ2 − γ1
γ2 + γ3

=
γ5
γ3γ6

(A.2)

the system (24) has infinitely many solutions. We find that these solutions

are located on the line segment

ξe =
γ1 + γ3
γ2 + γ3

, ηe + θe =
γ2 − γ1
γ2 + γ3

, γ2 ≥ γ1 > 0 (A.3)

Here either ηe or θe are free parameters satisfying the restrictions

0 < ηe, θe <
γ2 − γ1
γ2 + γ3

Notice that Q3 and Q4 are located on this line segment. The boundary point

Q2 with no fishery and no aquaculture effort, belongs to this line segment if

γ1 = γ2(⇔ γ5 = 0), which is reasonable since this condition corresponds to

the zero profit case for both industries.

In the degenerate case γ3 = γ4, we first notice that in the case with

nonexistence of equilibrium points inside Σ+ (i.e. when the condition (A.1)
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is fulfilled) the stability results remain the same as in the case γ3 ̸= γ4. The

degenerate case with the extra constraint (A.2) yields the following results:

The Jacobian evaluated the equilibrium point (A.3) is zero, which means that

at least one of the eigenvalues is zero, while the remaining two eigenvalues

are negative or have negative real part. Hence the stability test based on

linearization is inconclusive in this case. For the boundary points Q0, Q1

and Q2 we get the same results as summarized in Table 3, whereas for the

equilibrium points Q3 and Q4 it is not possible to assess the stability by

means of the linearization since both these two points are located on the line

segment (A.3).

Appendix B. Stability analysis of the equilibrium point on the

boundary and in the interior of Σ+ when γ3 ̸= γ4.

We examine the stability properties of the equilibrium points Q0, Q1,

Q2, Q3 and Q4 belonging to the boundary of the first octant Σ+, i.e. the

points given by (21) when γ3 ̸= γ4. In order to do that we must compute the

Jacobian of the vectorfield (17) evaluated at each of these five equilibrium

points and determine the location of the eigenvalues in each of these five

cases. Table 3 which summarizes the outcome of the stability analysis, is

based on the properties of these eigenvalues. We have taken into account

the fact that linear stability analysis is applicable to assess the stability

of these equilibrium points provided the real part of all the eigenvalues of

the actual Jacobian is nonzero, in accordance with Hartman - Grobmans

theorem (Guckenheimer and Holmes, 1983). An additional notable feature
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is the existence of parameter regimes which represent the transition between

stability and instability of the corresponding equilibrium point. Here at least

one of the eigenvalues of the Jacobian evaluated the equilibrium point is zero,

which means that the actual equilibrium point is subject to a codimension

- 1 bifurcation. The stability predictions cannot be based on the linearized

dynamics in this case. One has to take nonlinear terms into account when

dealing with the stability problem. We do not pursue this problem here,

however.

Here we prove the fact that the equilibrium point xe given by (25) is

asymptotically stable (unstable) if γ4 > γ3 (γ4 < γ3). It is tacitly assumed

that we are in a parameter regime for the γi, i = 1, 2, .., 6 for which are

guaranteed that xe ∈ Σ+. We proceed as follows: The Jacobian Je of the

vector field F of the dynamical system (17) - (18) evaluated at the equilibrium

point xe is given by

Je = −D(xe)A =


−ξe −ξe −ξe

γ2ηe −γ3ηe −γ4ηe

0 −γ3γ6θe −γ4γ6θe

 (B.1)

The characteristic polynomial P3 of Je is given by

P3(λ) = det{λI+D(xe)A} = λ3 + a1λ
2 + a2λ+ a3

Here I is the unit 3 × 3 - matrix, whereas the coefficients a1, a2 and a3 are

given as
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a1 = tr{D(xe)A} = ξe + γ3ηe + γ4γ6θe

a2 =
1
2
{(tr{D(xe)A})2 − tr{(D(xe)A)2}

= (γ2 + γ3)ξeηe + γ4γ6ξeθe

a3 = det{D(xe)A} = γ2γ6(γ4 − γ3)ξeηeθe

We observe that a3 > 0 if γ4 > γ3. Moreover, we find that the Routh -

Hurwitz determinants D1 ≡ a1 and D2 ≡ a1a2 − a3 are strictly positive i.e.

D1 ≡ a1 > 0

D2 ≡ a1a2 − a3 = (γ2 + γ3)(ξe + γ3ηe)ξeηe

+(ξe + γ4γ6θe)γ4γ6ξeθe + (γ2 + 2γ3)γ3γ6ξeηeθe > 0

Then, according to the Routh - Hurwitz criterion, all the zeros of the

characteristic polynomial P3 is located in the left λ - half plane provided

γ4 > γ3 (Hurwitz, 1964). Hence we arrive at the following conclusion: The

equilibrium point xe ∈ Σ+ is asymptotically stable if γ4 > γ3. Next, let us

explore the stability problem in the complementary regime γ3 > γ4. Here

we have P3(0) = a3 < 0. In that case P3 has at least one strictly positive

zero, which means that the Jacobian Je always has a one strictly positive

eigenvalue. This means that the corresponding equilibrium point xe is always

unstable when γ3 > γ4. Finally, let us examine the possibility of having

bifurcations of the equilibrium point xe in the regime γ3 ̸= γ4. First we

notice that since by (26) we have det(A) ̸= 0 and det(D(xe)) = ξeηeθe > 0,

the equation (25) shows that det(Je) ̸= 0. This means that the λ = 0 is

not an eigenvalue of the Jacobian Je. Hence we have no static bifurcation

56



at the equilibrium point xe. The previous arguments show that no Hopf -

bifurcation will take place the parameter regime γ3 ̸= γ4, either.

The threshold conditions for stability in Table 3 have the following inter-

pretations: The threshold condition for Q3 reads

psra

pxqK
> 1− αra

µK
(psra− w)

when restoring to the original dimensional parameters. Here the left hand

side fraction is interpreted as the relative aquaculture industry profitability.

The nominator (psra) is the revenue per unit effort in the aquaculture indus-

try whereas the denominator (px(ρ− ϱa)K) is the potential revenue per unit

effort in the fishery. Hence, the equilibrium state with no fishery effort and

with a finite aquaculture activity is stable if the relative aquaculture indus-

try profitability exceeds a certain threshold value: 1 − αra
µK

(psra − w). This

value is determined by labour market conditions and the biomass growth

impact. The threshold value is increasing in w an µ, and decreasing in α.

The threshold condition for Q4 in Table 3 with original parameters can be

written as

(psra− w) < µ
σ

q

(
w + µσ

q

pxqK + µσ
q

)
where the expression on the left hand side is the net aquaculture industry

profit. Hence, the equilibrium state with no aquaculture activity is sta-

ble if the aquaculture industry profit is below a certain threshold value:

µσ
q

(
w+µσ

q

pxqK+µσ
q

)
. This value is determined by several of the dimensional pa-

rameters, including those ones representing the labour market conditions and

the potential revenue in the fishery.
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Appendix C. Detailed analysis in the case of low aquaculture pro-

duction effect on biomass growth.

Here we present a detailed analysis of the dynamical system (36) - (37)

in the regime 0 < ε ≪ 1 can be viewed as a regularly perturbed system.

Hence the whole body of theory for such systems is available for the purpose

of determining a uniformly valid asymptotic approximation to the solution

of the system. To the leading order, we have
ξ̃(τ, ε)

η̃(τ, ε)

θ̃(τ, ε)

 =


ξ̃0(τ)

η̃0(τ)

θ̃0(τ)

+O(ε) (C.1)

for this approximation. Here ξ̃0, η̃0 and θ̃0 are the solutions to the system

ξ̃′0 = ξ̃0F0(ξ̃0, η̃0, θ̃0), η̃′0 = η̃0G0(ξ̃0, η̃0, θ̃0), θ̃′0 = θ̃0H0(ξ̃0, η̃0, θ̃0) (C.2)

where F0, G0 and H0 are the linear functions

F0(ξ̃0, η̃0, θ̃0) = 1− ξ̃0 − η̃0

G0(ξ̃0, η̃0, θ̃0) = −γ1 + γ2ξ̃0 − γ3η̃0 − θ̃0 (C.3)

H0(ξ̃0, η̃0, θ̃0) = γ5 − γ3γ6η̃0 − γ6θ̃0

See for example Vasil’eva et al. (1995) for a general exposition on the

theory for regularly perturbed dynamical systems.

Introduce the vector fields G0 and G1 defined as
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G0(x̃) = D(x̃){b−A0x̃}
(C.4)

G1(x̃) = −D(x̃)A1x̃

Here D and b are defined as in (18), whereas A0 and A1 are given as

A0 =


1 1 0

−γ2 γ3 1

0 γ3γ6 γ6

 , A1 =


0 0 1

0 0 0

0 0 0


The dynamical systems (36) - (37) and (C.2) - (C.3) can then be written on

the compact vector form

d

dτ
x̃ = G0(x̃) + εG1(x̃) (C.5)

and
d

dτ
x̃0 = G0(x̃0) (C.6)

respectively. Let us then detect the equilibrium points of the unperturbed

system (C.6) in the part of the phase space for which ξ̃, η̃, θ̃ ≥ 0 and their

corresponding stability properties. We conveniently introduce the set

Σ+ = {(ξ̃, η̃, θ̃) ∈ R3; ξ̃, η̃, θ̃ > 0} (C.7)

We first deal with possible equilibrium points located on the boundary of

Σ+. For the sake of convenience these equilibrium points are listed in Table

5 together with their respective stability properties. The stability analysis

underlying the conclusions summarized in Table 5 is based on linearization

of the dynamical system (C.6) about the actual equilibrium points M1, M2
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and M3 and Hartman - Grobmans theorem. Just as in Subsection 3.3 the

linearization procedure fails to give the correct stability prediction for pa-

rameter regime producing at least one zero eigenvalue of the corresponding

Jacobian i.e. in the regime of transition between stability and instability.

Next, let us examine the possibility of having an equilibrium point in the

interior of Σ+. The equation for the equilibrium point is

A0x̃e = b (C.8)

This system has a unique solution since det(A0)=γ2γ6 > 0. The components
of x̃e are given as

η̃e = 1− ξ̃e (C.9)

θ̃e = { γ5
γ6γ3

− (1− ξ̃e)}γ3 (C.10)

where
ξ̃e =

γ1
γ2

+
γ5
γ2γ6

(C.11)

The point M4 in Table 5 is given by the coordinates of xe. In order to

have x̃e ∈ Σ+, we must impose the requirement

1− γ5
γ6γ3

< ξ̃e < 1, γ5 ≥ 0

Notice that we have no equilibrium point in Σ+ when γ5 < 0.

The Jacobian - matrix J̃e,0 evaluated at this equilibrium point is given as

J̃e,0 = −D(x̃e)A0 (C.12)

The characteristic polynomial of J̃e,0 is given as
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P3(λ) = det{λI+D(x̃e)A0} = λ3 + b1λ
2 + b2λ+ b3 (C.13)

where

b1 = ξ̃e + η̃eγ3 + θ̃eγ6

b2 = (γ2 + γ3)ξ̃eη̃e + γ6ξ̃eθ̃e

b3 = γ2γ6ξ̃eη̃eθ̃e

We readily observe that D1 ≡ b1 > 0. Simple computation reveals that

the Routh - Hurwitz determinant D2 ≡ b1b2 − b3 is also strictly positive.

Hence, by the Routh - Hurwitz criterion (Hurwitz, 1964), we conclude that all

the zeros λi, i = 1, 2, 3 of P3 are located in the left λ - halfplane, i.e. Re{λi} <

0, i = 1, 2, 3. Hence the equilibrium point x̃e ∈ Σ+ is asymptotically stable.

We next consider the perturbed system (C.5). The Jacobian of the vector

field G ≡ G0 + εG1 evaluated at the point (x̃, ε) = (x̃e, 0) is equal to J̃e,0.

Since det(J̃e,0) = b3 = γ2γ6ξ̃eη̃eθ̃e > 0, we conclude that the Jacobian of

G evaluated at (x̃, ε) = (x̃e, 0) is invertible. Then, by the implicit function

theorem, the system (C.5) has a unique ε - dependent equilibrium point which

locally about ε = 0 is a smooth function of ε. Since the equilibrium point x̃e

is a asymptotically stable (hyperbolic) equilibrium point of (C.6), the same

holds true for the ε - dependent equilibrium point of (C.5) when 0 < ε ≪ 1.

Moreover, Hartman - Grobmans theorem implies that the unperturbed model
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(C.6) is locally structural stable. This means that the phase portrait of the

perturbed system (C.5) in the vicinity of its equilibrium point is mapped one

- to - one and onto the phase portrait of the unperturbed system (C.6) in the

vicinity of x̃e. See Guckenheimer and Holmes (1983) for details concerning

the general exposition of the theory for hyperbolic equilibrium points and

structural stability.

Finally, notice that the definition (39) of ε implies that the regime 0 <

ε ≪ 1, γ3 finite corresponds to the regime γ4 ≫ γ3. According to Subsec-

tion 3.3 the equilibrium point x̃e in Σ+ is asymptotically stable. Hence the

stability findings of this subsection are consistent with that result.
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