
Science of the Total Environment 717 (2020) 137068

Contents lists available at ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r .com/ locate /sc i totenv
Using prediction models to identify miRNA-based markers of low dose
rate chronic stress
Nur Duale a,b,⁎, Dag M. Eide a,b, Maria L. Amberger a,b, Anne Graupner a,b, Dag A. Brede b,c, Ann K. Olsen a,b

a Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
b Centre of Excellence “Centre for Environmental Radiation” (CERAD), Norway
c Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Ås, Norway
H I G H L I G H T S G R A P H I C A L A B S T R A C T
• Biopredictors of chronic low grade envi-
ronmental exposures such as radiation
are urgently needed.

• Expression analyses of miRNAs (~600)
in two mouse strains led to a signature
panel of 21 miRNAs.

• Advanced prediction statistical analyses
were used to compare exposure groups.

• The panel predicts i) irradiation and ii)
irradiation with chronic low dose rate
ionizing radiation.

• We present a powerful approach to de-
velop biomarkers of low grade stressors
in the environment.
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Robust biomarkers of exposure to chronic low dose stressors such as ionizing radiation, particularly following
chronic lowdoses and dose-rates, are urgently needed.MicroRNAs (miRNA) have emerged as promisingmarkers
of exposure to high dose and dose-rate. Here, we evaluated the feasibility of classifying γ-radiation exposure at
different dose rates based on miRNA expression levels. Our objective was to identify miRNA-signatures discrim-
inating between exposure to γ-radiation or not, including exposure to chronic low dose rates.
We exposed male CBA/CaOlaHsd and C57BL/6NHsd wild-type mice to 0, 2.5, 10 and 100 mGy/h γ-irradiation
(3 Gy total-dose). From an initial screening of 576 miRNAs, a set of 21 signature-miRNAs was identified based
on differential expression (N±2-fold or p b 0.05). This 21-signaturemiRNA panelwas investigated in 39 samples
from 4/5 livers/group/mouse strain. A set of significantly differentially expressed miRNAs was identified in all γ-
irradiated samples. Most miRNAs were upregulated in all γ-irradiated groups compared to control, and func-
tional analysis of these miRNAs revealed involvement in several cancer-related signaling pathways.
To identify miRNAs that distinguished exposed mice from controls, nine prediction methods; i.e., six variants of
generalized regression models, random-forest, boosted-tree and nearest-shrunken-centroid (PAM) were used.
The generalized regression methods seem to outperform the other prediction methods for classification of irra-
diated and control samples.
Using the 21-miRNA panel in the predictionmodels, we identified sets of candidate miRNA-markers that predict
exposure to γ-radiation. Among the top10miRNA predictors, contributingmost in each of the three γ-irradiated
groups, three miRNA predictors (miR-140-3p, miR-133a-5p and miR-145a-5p) were common. Three miRNAs,
miR-188-3p/26a-5p/26b-5p, were specific for lower dose-rate γ-radiation. Similarly, exposure to the high
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dose-rates was also correctly predicted, including mice exposed to X-rays. Our approach identifying miRNA-
based signature panels may be extended to classify exposure to environmental, nutritional and life-style-
related stressors, including chronic low-stress scenarios.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

There is an increasing demand for the development of novel bio-
markers with power to identify low-stress scenarios in relation to envi-
ronmental, nutritional and life-style-related stressors. Radiation
induces cancer as well as a range of non-cancer effects, depending on
the dose and dose rate. Nuclear accidents such as Fukushima Daiichi
inMarch 2011, occupational and diagnostic exposure, and the generally
increased threat level world-wide for larger-scale human radiation ex-
posure has brought about a renewed demand for rapid, feasible, accu-
rate, specific, and robust biomarkers to identify and quantify exposure
of individuals, to facilitate decisions of evacuation or treatment
(Borghini et al., 2017; Meineke and Dorr, 2012). Correct triage and do-
simetrywill prevent unnecessary and potentially life-threatening reme-
diation decisions, such as evacuation-related deaths, as was observed
following the Fukushima Daiichi-accident (Nomura et al., 2016).

There is thus a need for specific, feasible, stabile and robust bio-
markers of exposure to determine i)whether an individual has been ex-
posed to ionizing radiation including low dose rate radiation, and ii) if
exposed, to determine the dose and dose rate the individual have
been subjected to. Today there is a lack of suitable biomarkers to deter-
mine exposure, especially for lower doses and dose rates. Recently a
comprehensive review on the status of biomarker development for ion-
izing radiation in epidemiological studies was published, emphasizing
the shortcomings regarding low dose and low dose rate ionizing radia-
tion (Hall et al., 2017). In this review, an array of potential biomarkers
were proposed where non-coding RNAs (particularly, microRNAs)
emerged as promising. Others have also pointed to miRNAs as promis-
ing biomarker (Malachowska et al., 2020). A powerful strategy to iden-
tify novel biomarkers is the combination of measuring an array of
stabile biomolecules like miRNAs in conjunction with advanced predic-
tion statistics that exhibit the power to identify predictive biomolecule
signatures, which is the objective of this study.

MicroRNAs (miRNAs) are abundant classes of endogenous, small
noncoding RNAs (20–25 nucleotides in length), which negatively regu-
late specific target genes by mRNA degradation or translational repres-
sion (Ambros, 2001; Bartel, 2004; Carrington andAmbros, 2003; He and
Hannon, 2004). MiRNAs have fundamental roles in multiple cellular
processes and are also implicated in the development of multiple dis-
eases (Alvarez-Garcia and Miska, 2005; Cimmino et al., 2005; Meltzer,
2005; Reinhart et al., 2000; Sayed and Abdellatif, 2011). They are in-
volved in the regulation of all cellular functions from differentiation
and proliferation to apoptosis, and aberrant miRNA functions can lead
to the activation/inhibition of multifactorial physiological processes.
The strong stability of miRNAs in almost every biological specimen sug-
gests their promising potential as powerful biomarkers for a wide range
of diseases, or exposures. Since miRNAs also represents as promising
therapeutic targets and candidate biomarkers in pathophysiology, it is
an active area of research.

In recent years, miRNAs have been studied in different scenarios in
relation to exposure to ionizing radiation, and they are proposed as
markers of exposure to high dose and high dose-rate γ-radiation
(Beer et al., 2014; Kraemer et al., 2011), however, the impact of chronic
low doses or low dose rates γ-radiation on miRNA expression profiles
has scarcely been studied. MiRNA expression profiles have been used
to classify different types of cancers, and they may also have the poten-
tial to distinguish between low dose-rates γ-radiated and control sam-
ples, which is one of the objectives of this study.
We previously reported that the whole blood micronucleus flow-
cytometry assay is diagnostic of low dose-rate radiation in mice
(Graupner et al., 2017; Graupner et al., 2016). In this study our hypoth-
esis is that expression signature sets of miRNAs may serve as rapid,
high-throughput predictive biomarkers of exposure, also for chronic
low dose rate irradiation. We evaluate the miRNA responses of ~600
miRNAs in two strains of mice after continuous exposure to three dose
rates of γ-irradiation, including one low dose rate given over a
prolonged period. We assayed miRNA expression in liver because this
tissue is dominated by one cell type, hepatocytes, that are metabolically
active and capable of proliferation. Moreover, radiation induces liver
cancer and the liver is considered an important contributor of the
miRNAs circulating in the blood stream,which is the preferred sampling
medium for human biodosimetry. Thus, liver is suitable for establishing
an approach for generating predictor sets ofmiRNAmolecules aswell as
functional studies, although less relevant for screening purposes.

The main purpose of this study was to identify sets of differentially
regulated miRNAs that can predict i) exposure to γ-radiation, ii) expo-
sure to low dose rate γ-radiation, and iii) exposure to high dose rate
X-ray exposure. Moreover, we aimed at identifyingmiRNAs that are dif-
ferentially regulated due to exposure to ionizing radiation to get insight
into their role in the biological response to low dose rate radiation.
2. Material and methods

2.1. Experimental design: Mice and exposure to ionizing radiation

Male (specific pathogen free) mice (8–9 weeks old at start of γ-
irradiation) CBA/CaOlaHsd and C57BL/6NHsd mice (Envigo, The
Netherlands) were continuously exposed to γ-irradiation in the Figaro
γ-facility (NMBU, Ås, Norway), described in Graupner et al. (2016,
2017) to the following dose rates; 2.5, 10 and 100 mGy/h γ-
irradiation for 1200, 300 and 30 h, respectively, receiving a pre-
calculated total dose of ~3 Gy (STable 2). Dosimetry was measured
using nanoDots as described earlier (Graupner et al., 2017). The nu-
meric value of the air kerma to whole body absorbed dose conversion
coefficient for the chronic exposures was 0.932 ± 0.008 (Graupner
et al., 2017), resulting in a whole body absorbed dose of 2.60 ±
0.19 Gy for the 2.5 mGy/h-group, 2.67 ± 0.16 Gy for the 10 mGy/h-
group and 2.65 ± 0.13 for the 100 mGy/h-group, all denoted as ~3Gy
throughout the article. The animals were kept at 21 ± 2 °C at 45 ±
15% relative humidity in individually ventilated cages (Innovive, San
Diego, USA) at 50 air changes/hour. Five mice were housed per dispos-
able PET plastic cage with aspen bedding (Nestpack, Datesand Ltd.,
Manchester, UK). Water (tap water in PET water bottles) and feed
(SDS RM1, Special Diet Services, Essex, UK), were given ad libitum to
all mice. The continuous irradiation was interrupted daily for 30 min -
2 h for animal care purposes, and the beam-on time was correspond-
ingly adjusted to achieve the pre-calculated total dose of 3 Gy. All
cages were moved one position to the right in the racks daily to assure
uniform exposure of cages throughout thewhole irradiation period. Un-
exposed control mice were outside of the irradiation field behind lead
shielding in separate cage racks. Separate groups of mice (10 or
14weeks of age) were acutely exposed to X-rays (whole body absorbed
dose of 2.6±0.1 Gy (~ 3 Gy) total dose; 117.6 s at 1.51 Gy/min absorbed
dose to water, 225 kV, 13 mA, 0.5 mm Cu-filter, with the numeric value
dose conversion coefficient of 0.87 ± 0.04 for the absorbed dose to
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water to whole body absorbed dose, in an X-RAD 225 irradiator from
Precision X-ray, North Branford (Graupner et al., 2017)).

Mice (N = 50; 25 CBA/CaOlaHsd mice and 25 C57BL/6NHsd mice)
were randomly divided into five treatment groups: Control group
(kept outside of the irradiation field; N = 10 mice; 5 CBA/CaOlaHsd
mice and 5 C57BL/6NHsd mice), 2.5 mGy/h γ-irradiation group (N =
10 mice; 5 CBA/CaOlaHsd mice and 5 C57BL/6NHsd mice), 10 mGy/h
γ-irradiation group (N= 10 mice; 5 CBA/CaOlaHsd mice and 5 C57BL/
6NHsd mice), 100 mGy/h γ-irradiation group (N = 10 mice; 5 CBA/
CaOlaHsd mice and 5 C57BL/6NHsd mice) and X-rays group (N = 10
mice; 5 CBA/CaOlaHsd mice and 5 C57BL/6NHsd mice), in total 50
mice (40 mice in the γ-irradiated group (i.e., 10 mice/treatment
group) and 10 mice in the X-rays group). One control mouse (CBA/
CaOlaHsd) in the γ-irradiated group was excluded in miRNA profiling
analysis due to technical issues. The day after exposure stop for γ-
irradiation group and 2 days after exposure stop in the X-ray-exposed
group, mice were administered anaesthesia (ZRF-cocktail) followed by
heart puncture (EDTA coated S-Monovette®, Sarstedt, Germany) prior
to cervical dislocation, and organs (including liver) were collected and
frozen immediately in liquid N2 and stored at−80 °C until use. The ex-
perimentwas approved by theNorwegian Food Safety Authority (NFSA,
Approval no. 8803). No mice showed any clinical signs or died during
the experiment.

2.2. miRNA expression analysis

Quantitative real-time PCR (qPCR) was used to analyze the miRNA
expression response ofmice liver tissue samples. Total RNAwas isolated
from fresh frozen liver tissues using Quick-RNA™ miniPrep kit, cat. #
R1055 (Zymo Research, Nordic BioSite, Norway) according to the man-
ufacturer's instructions. In brief, liver tissue samples (~ 46mg)were ho-
mogenized in 600 μl lysis buffer plus 5 mm stainless steel-bead by
TissueLyser II using following program 3 × 2 min at 20/s (Qiagen,
Hilden, Germany). Homogenized samples were centrifuged for 15 s at
10,000 ×g and supernatants were transferred into new 1.5 ml
Eppendorf tubes. The total RNA was isolated from the supernatants.
Liver RNAs were isolated from five animals from each treatment
group (n = 5; i.e., 5 animals/treatment group/mouse strain; 25 liver
samples per mouse strain; i.e., in total 50 liver samples). The quantity
and quality of isolated RNA was determined as previously described
(Aarem et al., 2016; Duale et al., 2014) using a NanoDrop Spectropho-
tometer (Thermo Fisher Scientific, Massachusetts, USA) and Agilent
2100 Bioanalyzer (Agilent Technologies, Santa Clara, California, USA).
RNA purity was estimated by examining the OD 260/280 and the OD
260/230 ratios. RNA integrity numbers (RIN) from 1 to 10 (low to
high RNA quality) were calculated using the 2100 Expert software
(Agilent Technologies, Santa Clara, California, USA). RNA samples were
stored at−80 °C until further use.

The cDNA synthesis was performed with 1000 ng total RNA from
samples as template as previously described (Aarem et al., 2016),
using the miScript II RT kit (Qiagen, Hilden, Germany) according to
the manufacturer's protocol. The cDNA concentration and quality
were assessed by a NanoDrop 1000 spectrophotometer (Thermo Fisher
Scientific, Massachusetts, USA). All cDNA samples were stored at
−20 °C prior to miRNA expression analysis.

MicroRNA specific qPCR analysis were carried out as previously de-
scribed (Aarem et al., 2016; Duale et al., 2014) in 384-well plates
usingmiScript SYBR Green PCR Kit according to themanufacturer's pro-
tocol (Qiagen, Hilden, Germany) on a CFX384 Touch Real-Time PCR De-
tection System (Bio-Rad, Hercules, California, USA). In brief, for an initial
miRNA expression profile screening, cDNA (1:80 dilution) from each
treatment group, i.e., 3 mice/treatment group; in total liver samples
from 12 mice, were analyzed. All liver samples and several different
miRNA assays were simultaneously measured in one 384-well plate.
This qPCR layout allowed simultaneous measurement of all samples in
one run, reducing errors due to run-to-run variations. The expression
profile of 576 miRNA assays was performed using this qPCR layout.
The cycling program included an initial enzyme activation step at
95 °C for 15 min, and then 40 cycles of denaturation, annealing and ex-
tension steps at 94 °C for 15 s, 55 °C for 30 s and 70 °C for 30 s, respec-
tively. The melting curve (Tm) analysis was included in each run. Non-
template controls (NTC) were included in each run. Subsequent to the
initial miRNA expression profile screening, wemeasured the expression
levels of 21 selected target miRNAs and four stably expressed reference
miRNAs – based on the initial screening results – in all 49 liver samples
by qPCR; i.e. 4–5 mice/treatment group/mouse strain.

2.3. Data analysis

The quantification cycle (Cq) values were recorded with CFX
Manager™ Software (Bio-Rad, Hercules, California, USA). The qPCR
data analysis was performed as previously described (Duale et al.,
2014) by the comparative Cq-method (Livak and Schmittgen, 2001;
Schmittgen and Livak, 2008).

For the initial miRNA screening data, the raw data Cq-values from
576 miRNAs were pre-processed and miRNAs with inadequate mea-
surements, with multiple Tm peaks and Cq-values above 30 and Cq-
values below 15were removed from downstream analyses. In addition,
filtering criteria for missing values was set to 70%, and all patterns with
b70% existing values were removed. The outcome of the quality assur-
ance filtering criteria was an expression matrix consisting of 197
miRNAs × 12 samples, and thesemiRNAswere used in the downstream
analysis. The Cq-values were normalized with mean expression value
for individual samples; i.e., ΔCq (sample) = Cq (target miRNA) – Cq
(geometric mean Cq-values of all expressed miRNAs). The normalized
relative expression between exposed and control samples were then
calculated as following: ΔΔCq (sample) = ΔCq (sample) - ΔCq (mean
control) and then the ΔΔCq-value was transformed to linear scale;
i.e., fold change (FC)=2−ΔΔCq(sample). AllmiRNA expression data are re-
ported either as FC or as log2-FC between the control and the exposed
samples.

From the initial screening 21 target miRNAs were selected based on
statistically differentially significance, fold change N ± 2.0 in one of the
treatment groups and/or treatment-related trend, and four reference
miRNAs based on NormFinder stability test (Andersen et al., 2004). Of
the four reference miRNAs, the two most stable miRNAs (miR-17-5p &
miR-431-5p) according to NormFinder, were used to normalize the se-
lected 21 miRNAs. The Cq-values of the 21 miRNAs were normalized as
mentioned earlier using the geometric mean of miR-17-5p & miR-431-
5p.

2.4. Statistical methods

To identify miRNAs with a statistically significant difference in ex-
pression compared to the control group, the initial miRNA screening
data (576 miRNAs and 12 samples) was analyzed by one-way ANOVA
followed by post hoc Dunnett's test. ΔCq values were log transformed.
Ordinary linear regression was used to identify any log-linear effect of
miRNA levels (Log(Fold-Change) on log(dose-rate+1)). These tests
were used to select the final set of miRNAs for qPCR analysis of the full
set of samples.

Expression of the final set of 21 miRNAs was analyzed for signifi-
cance using the limma package in R (Ritchie et al., 2015). MiRNAs
were regarded as differentially expressed when the fold change N ±
1.5 and the adjusted p b 0.05 (Benjamini-Hochberg (BH) correction).
Pearson's correlations and principal components were inspected for
clustering of miRNAs.

Logistic regression was used to identify miRNAs that could classify
mouse samples as γ exposed or not for each dose-rate level. In a multi-
variate approach to classify samples into the correct dose rate group, we
applied a set of nine methods: The nearest shrunken centroids (PAM
(Tibshirani et al., 2002)), random forest, bootstrap tree and generalized
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regression (elastic net, lasso, double lasso and their adaptive counter-
parts). K-fold cross validation with 5 folds was used for all methods ex-
cept random forest and boosted tree. (Details on the prediction run in
Supplementary material.) Random forest and boosted tree were run
with different validation set ratios, and with a tuning design with 120
combinations of tuning parameters (including bootstrap options for
random forest). No tuning design calibration could give a stable set of
predictors with any validation sample size. Thus, only the results from
the training sets are reported. Splitting the sample in training set and
validation set according to mouse strain was attempted, but the sample
sizewas too small to give anymeaningfulmodels. Partial contribution of
eachmiRNA and the prediction accuracywith the differentmethods are
presented. PAM, generalized regression and boosted tree also select the
minimum number of miRNA predictors (variable reduction) by adding
or removing predictor miRNAs from the model until misclassifications
are at a minimum. The various prediction sets from the methods were
compared and evaluated.

This set of predictionmethodswere selected because they could give
reasonably consistent results with this small data set. Initial attempts to
analyze the data set with PLS, K-means clustering, naïve Bayes were not
successful. Neural networks would always classify the samples without
misclassifications, but the solutions differed widely. The sample size is
too small for the caret or tidymodels packages in R. Besides, JMP has all
models easily available, while using the R packages requires a lot
more effort.

Statistical analysis was done using PAM package, R statistical soft-
ware (Version 3.6.0., R Development Core Team, http://www.r-
project.org) and JMP Pro 14 (SAS institute, NC, USA).

3. Results

3.1. miRNA profiling

To identify potentially modified miRNA expression levels following
low dose-rate γ-irradiation, we investigated the expression profiles of
576 miRNAs in twelve randomly selected liver samples (i.e., 3 mice/
treatment group) from mice of both strains exposed to 0, 2.5, 10 and
100mGy/h γ-irradiation, respectively. Using stringent selection criteria,
i.e., removing miRNAs with inadequate measurements, miRNAs with
multiple Tm-peaks, Cq-values N35 andmiRNAswith expression pattern
with b70% existing values, we obtained a miRNA informative matrix of
197miRNAs × 12 samples (data not shown) thatwas used in the down-
streamanalysis. The normalized datawere used to calculate FC between
γ-irradiated samples and control samples (SFigure 1).

From the results of the initial miRNA screening, miRNAs with ex-
pression level difference over ±2-fold or p b 0.05 between exposed
and control samples were selected for single sample analysis in all
mice: Based on these selection criteria,we identified a panel of 21 signa-
ture miRNAs (SFigure 1). The miRNA expression level of the identified
21 signature miRNA panel were subsequently analyzed in all samples
(N = 39 samples; i.e., 4–5 mice/treatment group/mouse strain in liver
samples from 39mice) of the experiment. MiRNAswere called as statis-
tically significantly differentially expressed when the fold change N ±
1.5 and the adjusted p b 0.05 (Benjamini-Hochberg (BH) correction
for multiple testing). Seven miRNAs (miR-125b-5p, miR-130a-3p,
miR-140-3p, miR-145a-5p, miR-181a-5p, miR-455-3p and miR-499-
5p) were identified as statistically significantly differentially expressed
(FC N ±1.5; adjusted-p b 0.05, BH-method) in all γ-irradiated groups
(i.e., both mouse strains) compared to the control group (Table 1).
Two other miRNAs miR-126a-3p and miR-133a-5p were also signifi-
cantly differentially expressed (FC N ±1.5; p b 0.05) upon γ-
irradiation, but they were not significant in all γ-irradiated groups
after BH correction (Table 1). These seven miRNAs including miR-
126a-3p and miR-133a-5p were all upregulated following γ-
irradiation. Furthermore, when we searched for significantly differen-
tially expressed miRNAs for each treatment group separately, we
identified eleven miRNAs in the 2.5 mGy/h exposed group, seventeen
miRNAs in the 10 mGy/h exposed group and nine miRNAs in the
100 mGy/h exposed group, following γ-irradiation (Table 1). Upon γ-
irradiation, most of significantly identified miRNAs were upregulated
compared to the control group, except one miRNA (miR-23a-5p)
which was downregulated in the 10 mGy/h group (Table 1).

3.2. Functional enrichment analysis

To identify biochemical signaling pathways affected by γ-irradiation
induced miRNA expression changes, we analyzed the predicted target
genes of the seven significantly affected miRNAs in both mouse strains
(Table 1). The target genes of the seven identified miRNAs were ex-
tracted from miRWalk database (Dweep and Gretz, 2015; Dweep
et al., 2011), and the intersection of identified target genes from at
least seven prediction programswas chosen. To investigatewhich path-
ways may be affected by the seven dysregulated miRNAs, we evaluated
the biological functions of their predicted target genes using
WebGestalt tool (Wang et al., 2013; Wang et al., 2017), and correlated
their predicted target genes with the KEGG (Kyoto Encyclopedia of
Genes and Genomes) biochemical pathways (Kanehisa, 2009) in order
to identify enriched pathways. The results from enrichment analysis
represent a global picture of pathways that are significantly enriched
with target genes for dysregulated miRNAs following γ-irradiation ex-
posure. Significantly (FDR b 0.05) enriched top 20 KEGG pathways an-
notating the predicted target genes for the seven dysregulated
miRNAs following γ-irradiation are presented in Fig. 2. The KEGG en-
richment analysis indicated that the seven miRNAs targeted genes
were involved in a range of signaling pathways. Of the top 20 enriched
KEGG pathways, miR-125b-5p was the only miRNAwhose target genes
were enriched in all 20 KEGG categories. KEGG enrichment analysis
showed a link between the γ-irradiation induced miRNA target genes
and several cancer-related pathways (Fig. 2) such as pathway of cancer,
Wnt signaling pathway, MAPK signaling pathway, ErbB signaling path-
way, apoptosis, PI3K-Akt signaling pathway, and p53 signaling
pathway.

3.3. Correlation analysis

Each miRNA can regulate numerous target genes and therefore has
the potential to alter multiple biochemical pathways. MiRNA target
gene sharing principle is based on that if two miRNAs share a common
set of target genes, they may probably influence or co-regulate similar
biological pathway(s). To investigate how miRNAs co-regulate biologi-
cal processes together, we first conducted correlation analysis of the
21 miRNA panel and the result is presented in Fig. 3. Visual inspection
of the correlation heat map (Fig. 3) reveals that the 21 miRNA panel
clustered together into three main clusters: cluster 1 (seven miRNAs)
and cluster 3 (two miRNAs) mainly consisting of miRNAs significantly
expressed in only one or none of the γ-irradiated groups; while twelve
miRNAs cluster together in cluster 2. The seven statistically differen-
tially expressed miRNAs in all γ-irradiated groups (Table 1) were
among the twelve miRNAs in cluster 2 (Fig. 3).

Correlated miRNAs may have similar target genes and miRNAs
targeting the same genesmay infer a broader range of target level alter-
ation. To investigate shared target genes among themiRNAs in cluster 2,
we focused on the identified seven significant miRNAs in all γ-
irradiated groups in cluster 2 (miR-125b-5p, miR-130a-3p, miR-140-
3p,miR-145a-5p,miR-181a-5p,miR-455-3p andmiR-499-5p). The pre-
dicted target genes of the seven miRNAs were compared and the num-
ber of shared target genes for the seven miRNAs are presented in
STable 1. Three miRNAs (miR-181a-5p, miR-125b-5p and miR-130a-
3p) have N600 predicted target genes. The miRNA pairs sharing the
highest number of target genes was miR-181a-5p and miR-499-5p,
and these two miRNAs co-target N60 target genes (STable 1). This anal-
ysis indicated that some genes may be regulated by several miRNA
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Table 1
Differentially expressed miRNAs in both mouse strains.

miRNA ID
FC (2.5
mGy/h) pval adj.pval

FC (10
mGy/h) pval adj.pval

FC (100
mGy/h) pval adj.pval

mmu miR 122 3p 1.13 5.79E 01 6.08E 01 1.14 3.76E 01 3.95E 01 1.01 9.69E 01 9.69E 01
mmu miR 125b 5p 1.77 1.28E 02 2.99E 02 1.48 1.14E 02 1.49E 02 1.80 7.68E 03 2.31E 02
mmu miR 126a 3p * 1.83 8.47E 03 2.99E 02 1.67 4.23E 03 7.41E 03 1.63 2.91E 02 6.12E 02
mmu miR 130a 3p 2.03 2.02E 03 1.41E 02 1.93 1.08E 03 3.42E 03 2.04 2.62E 03 1.74E 02
mmu miR 133a 5p * 1.60 4.00E 02 7.01E 02 1.89 3.78E 04 1.98E 03 1.74 1.35E 02 3.15E 02
mmu miR 140 3p 2.16 7.76E 04 1.41E 02 2.03 7.11E 05 1.49E 03 2.36 3.38E 04 7.11E 03
mmu miR 145a 5p 1.67 2.47E 02 4.72E 02 1.76 1.47E 03 3.42E 03 1.78 1.14E 02 3.00E 02
mmu miR 181a 5p 1.85 7.05E 03 2.99E 02 1.64 6.12E 03 9.89E 03 1.88 7.55E 03 2.31E 02
mmu miR 188 3p 1.78 1.17E 02 2.99E 02 1.09 6.03E 01 6.03E 01 1.07 7.73E 01 9.02E 01
mmu miR 18a 01 2.65E 01 1.77 1.42E 03 3.42E 03 1.02 9.15E 01 9.69E 01
mmu miR 200a 3p 1.33 2.16E 01 2.67E 01 1.55 8.20E 03 1.15E 02 1.02 9.27E 01 9.69E 01
mmu miR 221 3p 1.46 9.48E 02 1.42E 01 1.61 3.11E 03 5.93E 03 1.10 6.89E 01 8.51E 01
mmu miR 23a 5p 1.14 5.68E 01 6.08E 01 1.81 6.60E 03 9.90E 03 1.27 3.39E 01 4.90E 01
mmu miR 26a 5p 1.28 2.83E 01 3.30E 01 1.76 3.62E 04 1.98E 03 1.22 3.50E 01 4.90E 01
mmu miR 26b 5p 1.37 1.69E 01 2.37E 01 1.88 3.14E 04 1.98E 03 1.21 4.22E 01 5.54E 01
mmu miR 361 5p 1.04 8.75E 01 8.75E 01 1.72 1.15E 03 3.42E 03 1.28 2.63E 01 4.37E 01
mmu miR 378a 3p 1.51 7.27E 02 1.17E 01 1.82 4.98E 04 2.09E 03 1.90 4.14E 03 1.74E 02
mmu miR 455 3p 2.08 1.44E 03 1.41E 02 1.53 1.68E 02 2.08E 02 2.04 2.48E 03 1.74E 02
mmu miR 499 5p 1.77 1.25E 02 2.99E 02 1.81 1.91E 03 4.01E 03 2.03 3.61E 03 1.74E 02
mmu miR 744 5p 1.68 2.33E 02 4.72E 02 1.18 2.74E 01 3.03E 01 1.53 5.00E 02 9.55E 02
mmu miR 758 3p 1.79 1.12E 02 2.99E 02 1.25 2.53E 01 2.95E 01 1.28 2.71E 01 4.37E 01

Note. MiRNAswith FC above±1.5 aremarkedwith green arrow or red arrow, bold and italic markedmiRNAs (N= 6miRNAs) in column 1 are statistically (p-value and adjusted p-value
b0.05; BH-method, limma-method) significantly differentially expressed in all γ-irradiated groups. p-Values (pval) and adjusted p-values (adj.pval) b 0.05 are indicatedwith pink, green
or yellow depending on dose rate group. *mmu-miR-126a-3p and mmu-miR-133a-5p were significantly differentially expressed (FC N ±1.5; p b 0.05) limma-method, but adjusted p-
value N0.05. MiRNA was regarded as statistically significantly differentially expressed when the fold change N ±1.5 and the adjusted p b 0.05 (BH correction for multiple testing).
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following γ-irradiation andmay explain the regulatory role of dysregu-
lated miRNAs in biological process.

3.4. Prediction of dose rate

To identify potential miRNA predictive markers of γ-irradiation, we
first conducted linear regression analysis, and the linear regression of
dose rate on miRNAs revealed several significant linear effects
(SFigure 2). However, the R2 and beta coefficients were small which in-
dicates that there is little general linear effect of dose rate on miRNAs.
Because many of the miRNA transcript levels are correlated (Fig. 3), a
principal component analysis of the relative miRNA transcript values
was conducted to reveal similarities and contrasts between the miRNA
predictors. The partial contribution plot (Fig. 4A) shows that the princi-
pal component 1 and 2 separates groups of miRNAs quite well into two
clusters. Principal component 3 (blue bars) consists mainly of two
miRNAs (23a-5p and 758-3p) that can also be seen close to the center
of the biplot (Fig. 4B). The biplot also shows that the control group is
separate from the three exposed groups indicating that using the full
set of the 21 miRNA panel in prediction analysis may improve the pre-
diction of the exposed group.

The next approachwas to investigatewhether the expression values
of the 21 miRNA panel could separate the three dose groups and con-
trols when considered as discrete categories by clustering techniques.
PAM, K-means clustering, or naïve Bayes could not identify sets of
miRNAs from the panel that could separate the dose rates without mis-
classifications (data not shown). Further, a linear prediction model was
applied, considering the dose rates as a linear dose-response to the set
of miRNAs with lasso and elastic net. None of these methods could
comeupwith significant predictors. Finally, three contrasting categories
were fitted separately: controls versus 2.5 mGy/h, controls versus
10 mGy/h, and controls versus 100 mGy/h. Initial logistic regression re-
vealed up to 15 significant predictors (p b 0.05) for exposure at the
three dose rate levels (SFigures 3, 4 and 5). With a few exceptions, the
probability of samples being classified as irradiated increased with in-
creased miRNA transcript level. However, none of the miRNAs could
alone predict exposure with high sensitivity and specificity
(i.e., without misclassifications).
We combined the whole set of 21 miRNAs as predictors of each con-
trast and analyzed them using several prediction methods (generalized
logistic regression, random forest, boosted tree and PAM). The r-
squares, p values and misclassification numbers for the prediction
methods are presented in Table 2. The results from neural networks and
partial least squares (PLS) are not shown because of the results changed
for each repeat of the analyses, while K-means clustering and naïve
Bayes could not present any prediction results. Several models revealed
significant effects (Mean –log p b 0.05), and the predictions for the lowest
dose rate are generally better than the highest dose rate. Note that the
high significant boosted tree values are for the training sets only, cross
validation weakens the predictions considerably. The contribution from
each of the miRNAs in the prediction analysis is shown in Fig. 5, and fif-
teen miRNAs could predict one, two or all three γ-irradiated groups.
Among the top 10 miRNA predictors which contribute highest for each
three contrasting categories (unexposed controls vs 2.5 mGy/h; unex-
posed controls vs 10 mGy/h; and unexposed controls vs 100 mGy/h) in-
cluded three miRNA predictors (miR-140-3p, miR-133a-5p and miR-
145a-5p) common for all γ-radiated groups (Fig. 5). The average contri-
bution across allmodels (Fig. 5B) illustrates the ranking of themiRNAs ac-
cording to importance. The lower right panel sums up the average
contribution of each miRNA across all contrasts.

3.5. miRNAs affected by X-ray exposure

Separate groups ofmice (n=10mice)were exposed acutely to high
dose rate X-rays (91,200 mGy/h, 3 Gy total dose) in order to compare
and verify predictor miRNA signature panel. The miRNA expression
levels of the identified 21 miRNA panel were analyzed in all samples
(N = 10 liver samples; i.e., combined both mouse strains; 5 CBA/
CaOlaHsd and 5 C57BL/6NHsd mice). In the acutely exposed X-ray
group, fifteen miRNAs were significantly differentially expressed:
eleven upregulated and four downregulated miRNAs (Table 3 and
SFigure 6). Of the identified significantly expressed miRNAs in the X-
ray group, six of them are among the seven commonmiRNAs identified
in the γ-irradiated groups (Table 3 and SFigure 6). Then, the same pre-
diction methods as those exposed to γ-radiation were used to identify
candidate miRNAs that predict exposure to X-rays. Mice exposed to X-



Table 2
Comparison of the models used for prediction.

Contrast Estimation method Entropy RSquare
Mean   
-Log p RMSE

Mean 
Abs Dev

Misclassi-
fication Rate N

9108440.07570.0840.06039.0teN citsalE
Adaptive Elastic Net 0.9984 0.0011 0.0018 0.0011 0 19

9107550.08380.07950.07319.0ossaL
Adaptive Lasso 0.9902 0.0068 0.0105 0.0067 0 19
Double Lasso 0.8851 0.0795 0.137 0.0644 0.0526 19
Adaptive Double Lasso 0.9996 0.0003 0.0006 0.0003 0 19
Random Forest 0.5551 0.3078 0.2746 0.2592 0 19
Boosted Tree 0.6482 0.2434 0.2225 0.2132 0 19

91652.0elbatsnudiortnec neknurhs tseraeN
9107231.07271.03151.03187.0teN citsalE

Adaptive Elastic Net 0.6323 0.2543 0.2581 0.2072 0.0526 19

9103931.05481.01161.02767.0ossaL

Adaptive Lasso 0.5351 0.3216 0.3017 0.2551 0.0526 19

Double Lasso 0.9185 0.0564 0.0868 0.052 0 19

Adaptive Double Lasso 0.8672 0.0919 0.1187 0.0837 0 19

Random Forest 0.6651 0.2317 0.2243 0.1997 0 19

Boosted Tree 0.9885 0.008 0.0138 0.0079 0 19

91602.0elbatsnudiortnec neknurhs tseraeN
913501.06142.01992.02703.09555.0teN citsalE

Adaptive Elastic Net 0.3447 0.4533 0.3791 0.3262 0.1579 19
913501.08323.08743.01014.01704.0ossaL

Adaptive Lasso 0.3033 0.4819 0.3928 0.3557 0.2105 19
Double Lasso 0.4784 0.3609 0.3241 0.2745 0.1053 19
Adaptive Double Lasso 0.3703 0.4356 0.3701 0.2923 0.1053 19
Random Forest 0.5467 0.3136 0.2817 0.2608 0 19
Boosted Tree 0.9972 0.0019 0.0027 0.0019 0 19

91602.0elbatsnudiortnec neknurhs tseraeN

0 vs 2.5
mGy/h

0 vs 10
mGy/h

0 vs 100
mGy/h

Note. Generalized regression methods with K-fold cross validation provide the best models. Random forest and Boosted tree were run without cross validation. High R-Square is better
prediction, Mean -Log p indicates significance. Green bars indicate the level of R-square.
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rays were correctly classified using the full set of the 21 miRNA panel
(Fig. 6A). The average contribution across all models (Fig. 6B) illustrates
the ranking of themiRNAs according to importance, andmiRNA predic-
tors which contributed highest includedmiR-122-3p andmiR-125b-5p.
Table 3
Differentially expressed miRNAs in both mouse strains upon X-ray exposure.

miRNA_ID X ray pval adj.pval
mmu miR 122 3p 1.85 2.54E 03 4.44E 03
mmu miR 125b 5p 2.47 1.05E 05 1.41E 04
mmu miR 126a 3p 1.55 3.02E 02 4.23E 02
mmu miR 130a 3p 1.98 8.41E 04 1.96E 03
mmu miR 133a 5p 1.91 1.49E 03 2.84E 03
mmu miR 140 3p 2.06 4.18E 04 1.25E 03
mmu miR 145a 5p 1.92 1.33E 03 2.79E 03
mmu miR 181a 5p 2.19 1.27E 04 5.32E 04
mmu miR 188 3p 2.02 5.54E 04 1.45E 03
mmu miR 18a 5p 1.26 2.52E 01 2.94E 01
mmu miR 200a 3p 2.31 4.51E 05 3.16E 04
mmu miR 221 3p 2.44 1.35E 05 1.41E 04
mmu miR 23a 5p 1.10 6.32E 01 6.32E 01
mmu miR 26a 5p 1.31 1.84E 01 2.28E 01
mmu miR 26b 5p 1.73 7.11E 03 1.15E 02
mmu miR 361 5p 1.15 4.84E 01 5.35E 01
mmu miR 378a 3p 1.14 5.15E 01 5.41E 01
mmu miR 455 3p 2.20 1.21E 04 5.32E 04
mmu miR 499 5p 1.31 1.78E 01 2.28E 01
mmu miR 744 5p 1.61 1.91E 02 2.86E 02
mmu miR 758 3p 2.08 3.41E 04 1.19E 03

Note.MiRNAswith FC above±1.5 aremarkedwith green arrow or red arrow, p-value and
adjusted p-value b0.05; BH-method significantly differentially expressed in X-ray groups
(limma-method). P-values (pval) and adjustedp-values (adj.pval) b 0.5 are indicatedwith
pink, green or yellow depending.
4. Discussion

Our study has identified a 21miRNA signature panel of a total of 576
miRNAs in mice liver tissue samples, and the expression level of these
miRNAs were analyzed by nine prediction methods to identify whether
a mouse have been subjected to oxidative stress such as ionizing radia-
tion, including low grade chronic exposure or not.

In this study, two differentmouse strains were used to evade strain-
specific results and generate miRNA predictor sets that are general for
more than one specific mouse strain. This designwas chosen to account
for potential differences in strain-associated radiation susceptibility. To
mimic a scenario where individuals are subjected to chronic low grade
oxidative stress or low dose rates ionizing radiation for longer periods,
mice were subjected to low dose rate γ-irradiation (2.5 mGy/h, which
is below the threshold (b 6 mGy/h) defined by The United Nations Sci-
entific Committee on the Effects of Atomic Radiation (UNSCEAR)
(UNSCEAR, 2010) and others (Brooks et al., 2016), or to higher dose
rates (10 and 100 mGy/h) in a continuous manner in the Figaro γ-
facility (Graupner et al., 2016). The mice obtained a total dose of
~3 Gy (Fig. 1), demonstrated in previous experiments to give rise to
genotoxic effects (Graupner et al., 2017). Dose-response-related differ-
entially expressed miRNAs were analyzed in liver, since this tissue is
metabolically active, mainly consist of one cell type (hepatocytes), it is
capable of proliferation and probably contribute with a significant por-
tion of the circulatingmiRNAs present in blood plasma.Moreover, most
solid cancers including liver carcinomas are significantly associated
with radiation (Grant et al., 2017; Preston et al., 2007; UNSCEAR, 2010).

miRNAs can be measured in many biological materials such as
exosomes (Szatmari et al., 2019), plasma, saliva (Gai et al., 2018),
tears and can also be extracted from paraffin-embedded materials
(Anastasov et al., 2012), which opens up possibilities for assessing
miRNA expression in historical materials. MiRNAs are quite stable in bi-
ological specimens after storage (Mraz et al., 2009). MiRNAs are also
quite stable in the host organism after ionizing radiation compared to
other biomarkers of radiation exposure (Tomasik et al., 2018).



Fig. 1. Experimental exposure design:Malemice of two different strainswere continuously exposed to three dose rates of γ-radiation, or to acute high dose rate X-rays, to an accumulated
total dose of 3 Gy.
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We identified seven statistically significantly differentially expressed
miRNAs present in all γ-irradiated groups (i.e., both mouse strains) com-
pared to the control group (Table 1). The target genes of these seven
miRNAs were involved in several cancer-related pathways. The seven
miRNA target prediction and pathway enrichment analysis demonstrated
that a single miRNA can affect a large number of genes and its targeted
genes are involved in several signaling pathways. Furthermore, several
miRNAs collectively work together to regulated set of genes, and these
genes likely participate in common signaling pathways. Comparison of
shared target genes for the sevenmiRNAs is presented in STable 1.MiRNAs
targeting the same genes may infer a broader range of target level alter-
ation. Regulation of a target gene may depend on the combined effect of
multiple miRNAs, and therefore, some target genes may be regulated by
several miRNA following γ-irradiation. The outcome of miRNA dysregula-
tion upon γ-irradiation may have marked effects in many biological
functions.

The miRNA transcriptome profile in irradiated TK6 cells given 2 Gy
X-rays at six different times after exposure were assessed (Chaudhry
et al., 2013), and our predictive miRNA set were among the miRNAs
identified as differentially expressed at the latest time point in this
study. Others have used gene expression as approach to identify signa-
tures used as radiation biomarkers, following acute single exposures of
cells (Macaeva et al., 2016).

We then evaluated the potential biological relevance and impor-
tance of the predicted target genes of the 21miRNApanel. TheKEGG en-
richment analysis (presented in SFigure 7) indicated that the 21
miRNAs targeted genes were involved in a range of signaling pathways.
The predicted target genes have been implicated having important roles
in several cancer-related and radiation-induced cellular pathways
(SFigure 7). Overall, there were several overlapping pathways enriched
in both the seven significantly identified miRNAs and the 21 miRNA
panel target genes (Fig. 2 and SFigure 7).

Using nine predictionmethods, we identifiedmiRNA predictors that
distinguished samples exposed to γ-radiation from controls. In contrast
to differential expression analysis where each contrast is evaluated sep-
arately, prediction models will choose the most important miRNA from
possible clusters of correlated miRNAs. If there are many highly corre-
lated variables, the prediction models will select the one that explains
most of the dependent variable (a probability in logistic models). The
second variable to be included will be the one that is second best,
given the previous choice. Although the algorithms for the methods
used here are highly different, the outcome of the analysis is always
that each method comes up with a combined set of variables that can
separate controls from exposed mice with maximum confidence and
preferably without misclassifications. Generalized regression methods
frequently selected subsets of miRNAs in the model that correctly clas-
sified the mouse samples with no misclassifications (100% sensitivity
and specificity). Neither boosted tree nor random forest presented sta-
ble predictions when cross validation and parameter tuning was ap-
plied. Hence, we present these predictions without cross validation.
The nearest shrunken centroids method could not come up with a set
ofmiRNAs that could predictwithoutmisclassification. The relative con-
tribution of the predictor miRNAs differs between the estimation
methods, but a few miRNAs appear consistently in all methods with
similar contribution. Generalized regression seems to perform well
when classifying radiated and non-irradiated mouse liver samples.
The adaptive lasso and adaptive elastic net methods perform better
than elastic net (and lasso, data not shown). Adaptive elastic net tends
to select a higher number of predictors than adaptive lasso, but fewer
than elastic net. It can be seen that most of the extra predictors selected
by elastic net are also selected by random forest, boosted tree and PAM.
The predictions aremost consistent at the low dose rates, while the pre-
diction at 100 mGy/h is weak (Fig. 5), including the generalized regres-
sion methods. Considering that this is a limited dataset with few and
correlated predictors, it seems appropriate also to explore the potential
role of thosemiRNAs called statistically non-significant (limma analysis)
as biomarkers of radiation.

From the prediction analysis, miR-26a-5p appears as the most im-
portant predictor after exposure γ-irradiation (Fig. 5B) and it is the
highest predictor for 2.5 mGy/h and 10 mGy/h. Interestingly, miR-
26a-5p is just slightly significant in simple logistic regression at
2.5 mGy/h (not significant when using limma analysis) and much
more significant at 10mGy/h in both limma and logistic regression anal-
ysis. miR-26a-5p also appeared as a significant predictor at 100 mGy/h,
but this was inconsistent (data not shown). This illustrates that even
slightly dysregulated miRNA expression may have significant impact
after environmental stress. MiR-26a-5p belongs to themir-26 family to-
gether with miR-26b-5p, and the mir-26 family is implicated as poten-
tial tumor suppressor roles. These two miRNAs, miR-26a-5p and miR-
26b-5p are located at different chromosomes; 9 and 1, respectively.
MiR-26a has been associated with mouse liver function where up-
regulation of miR-26a reduce hepatocyte proliferation and induce
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Fig. 2.EnrichedKEGGpathways of the seven significantly identifiedmiRNAs. The enrichment analysis indicated that the seven significanly identifiedmiRNAs targeted geneswere involved
in a range of signaling pathways.
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signs of liver damage such as increased aspartate aminotransferase, al-
anine aminotransferase activities and increased levels of total bilirubin.
Human miR-26a has been associated with numerous biological pro-
cesses such as cell proliferation, apoptosis, tumorigenesis at different
stages of non-tumor diseases, growth and development of normal tis-
sues, and other biological processes, as reviewed (Gao and Liu, 2011;
Fukumoto et al., 2015; Kato et al., 2015; Miyamoto et al., 2016). In-
creased expression of miR-26b-5p was associated with radiation expo-
sure in a post-Chernobyl breast cancer epidemiology study (Wilke et al.,
2018). MiR-26a has similar functions in humans andmice, among them
inhibiting TGF-β (Koga et al., 2015). Thus, miR-26a-5p has tumor sup-
pressor activities. MiR-26a has also been observed to be involved in
the regulation of pro-inflammatory cytokines in microglia. Overexpres-
sion of miR-26a decreased the production of inflammatory cytokines
(TNFα, IL-6) and the activating transcription factor (ATF) 2was directly
Fig. 3. Correlation analysis of miRNAs. The 21miRNA panel clustered together into three main c
clustered in Cluster 2.
targeted by miR-26a in mice (Kumar et al., 2015). MiR-26a-5p is thus a
very likely candidate as a predictor and biomarker of radiation, as indi-
cated by previous studies showing links to cancer, liver function and
radiation.

An enigma is thatMiyamoto and co-workers (Miyamoto et al., 2016)
assigns the same role to miRNA-26a-5p and miR-26b-5p, while we ob-
served that these twomiRNAs have opposite estimates in the 2.5mGy/h
in the generalized regression analysis, and their logistic regressions also
go in opposite directions (SFigure 3). However, this is not observed at
the higher dose rates, where both predict in the same direction. One
can speculate that miR-26a and 26b may have opposing functions
below a certain dose rate threshold.

MiR-140-3p only appears as a predictor at 2.5 mGy/h in generalized
regression, while it is one of the top five most significant miRNAs in the
logistic regression for all three dose rates. PAM and random forestmake
Cluster 1 (N=7 miRNAs)

Cluster 2 (N=12 miRNAs)

Cluster 3 (N=2 miRNAs)

lusters and the seven statistically significnaly identifiedmiRNAs in all γ-irradiated groups
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miR-140 a favorite pick at most dose rates. Logistic regression
(SFigure 3) reveals that the expression level is increasing with dose
rate. It seems to be a good predictor for exposure in general in this
study, and even as predictor of dose-response. MiR-140 has been seen
to reduce radiation fibrosis after radiation therapy through inhibiting
TGF-β (Duru et al., 2016). Overexpression of miR-140-5p suppressed
cell proliferation/SOX4 expression/invasion in colorectal cancer. Similar
roles have been seen in many other cancer developments, including
hepatocarcinomas, some actions also related to the Wnt1 pathway
(Fang et al., 2017; Ji et al., 2018; Li et al., 2018; Lu et al., 2017; Song
et al., 2009; Takata et al., 2013; Wolfson et al., 2014; Wu et al., 2019).
It seems that miR-140 and miR-26a have similar roles, further
supporting that this miRNA could be a general predictor of radiation ex-
posure independent of dose rate.

MiR-133a-3p appears as a predictor of dose rates ≥10mGy/h with
all prediction methods. Although its expression level was low in all
samples, the contrast is slightly higher than controls already at
2.5 mGy/h, higher at 10 mGy/h and higher still at 100 mGy/h. It
ranks as number two in the average contribution to the predictors
across dose rates (Fig. 5B). This indicates that MiR-133a is another
predictor of dose-response (SFigure 2). MiR-133a has been seen as
a conserved radiation predictor in mice and monkeys (Tomasik
et al., 2018), and is also associated with cancer (Jia et al., 2013), in-
flammation and oxidative stress (Law et al., 2015; Sturrock et al.,
2014). One report (Roderburg et al., 2013) describes a negative link
between TGF-β and miR-133a in human hepatocytes, and how it
suppresses collagen production and may prevent fibrosis. MiR-133a
serum levels were higher in patients with chronic liver disease. It is
involved in development and function of smooth and striatedmuscle
cells (Liao et al., 2013), linking it to muscular and cardiovascular im-
pairment (Liu et al., 2011) which is known to be one important non-
cancer effect of radiation.

MiR-145a is involved in the development from stem cells to mature
cells, particularly smoothmuscle cells, therefore indicating involvement
in cardiovascular disease (Turczynska et al., 2012).MiR-145directly tar-
get TGFβ receptor II (TβRII) (Ishii et al., 2018). Although the TGFβ path-
way has a complicated role in cell differentiation, it has also been
associated with liver fibrosis (Men et al., 2017).



A)

Fig. 5. Prediction of γ-radiation exposure at three dose rates bymiRNA levels. A) Contributions by eachmiRNA in six of nine estimationmethods, long barsmarkmore importantmiRNAs.
Red bars indicate significant (p b 0.05) predictors. Green bars are non-significant predictors, but still included in the lasso/elastic net models. No p-values for random forest and boosted
tree. Vacant spaces: predictor did not contribute to themodel (variable reduction). Original estimates from generalized regression are scaled down 50% to fit the x-axis scale for illustration
purposes. B) Ranking of the miRNAs according to the average percentage contributed across all nine methods, one panel for each contrast (N= 19) in addition to a summary panel with
average contributions across all contrasts. (N = 39).
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MiR-188-3p is the miRNA with the second highest estimate in gen-
eralized regression at 2.5 mGy/h, and it also contributes highly in the
other methods, including the logistic regression. It does not, however,
contribute to the principal components for the overall response to radi-
ation, thus it appears to be themost specific predictor of the lowest dose
rate. MiR-188-3p has no long record of proposed activities, however, it
is reported to lower macrophage inflammatory responses (Zhang
et al., 2018) connected to neurological and cardiovascular degeneration
(Lee et al., 2016). This may be related to radiation influence, since low
dose radiation may lower inflammatory reactions, while higher doses
stimulate inflammation. The dose of 3 Gy is not considered as a low
dose and there may be anti-inflammatory actions triggered at lowest
dose rate, while not at the higher dose rates (Arenas et al., 2012; Large
et al., 2015).

In our analyses miR-122-3p was non-significantly upregulated in
the 2.5 and 10 mGy/h-groups and downregulated in the 100 mGy/h-
group, whereas it was the most important downregulated miRNA in
the X-ray exposed group (Table 3). MiR-122 is liver-specific, and sup-
press the expression of the paternally expressed gene 10 (PEG10),
which is implicated in the primary liver malignancy hepatocellular car-
cinoma (HCC) (Shyu et al., 2016).

The small sample size in this study limits the conclusions aboutwhat
miRNAs andwhichmechanisms are involved in the biological processes
after γ- and X-ray exposures. We identify several significantly



B)

Fig. 5 (continued).
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expressed miRNAs, and we can predict radiation exposure at several
dose rates without misclassifications. However, no clear pattern of
dose-response to increasing dose rate was found. On the contrary, the
best predictions were at the lowest dose rate. This may be due to differ-
ent miRNA response patterns at the higher dose rates and our panel
works best on the lower dose rates. It is also clear that the prediction
methods applied were unstable with this small sample, although the
generalized regression methods gave consistent results most of the
time. Another limitation of the study was that these 21 miRNAs were
analyzed only in liver samples, and miRNAs usually exhibit tissue-
specific expression patterns. As discussed above several of the 21
miRNAs are reported to be expressed in other organs than liver, and
there is no reasonwhy these 21-miRNApanel cannot serve as candidate
markers of chronic low grade stress exposure in other organs. However,
in future study, the predictive capability of these 21-miRNA panel fol-
lowing chronic low grade stress exposure has to be demonstrated in
other organs. As far as we know the only liver-specific miRNA among
the 21-miRNA panel is miR-122-3p.

Overall, the biological response of radiation also includes conditions
such as inflammation and DNA damage responses that may be inflicted
by other stressors than radiation itself. Future studies will reveal the
specificity of the currently established miRNA predictor signatures.
The identified miRNA predictor panel in our study needs to be con-
firmed with a larger number of samples and other bio-specimens.

5. Conclusions

This study demonstrates an approach to establishmiRNA-based pre-
dictor signatures for stressors, such as radiation, with power to predict
also low chronic stressor scenarios, in this case chronic low dose rate
ionizing radiation. Our overall finding is that by selecting a small subset
of miRNAs (21 of 576 investigated miRNAs), one can predict whether a
sample has been exposed to γ-radiation or not with high accuracy. This
includes long-term exposure to a low dose rate γ-radiation. However,
the nine different estimation methods used for identifying the predic-
tors often present different combinations in their prediction models.
Partition models like random forest and boosted tree require larger
sample sizes to run the validation part with reproducible results,
hence, only training set results are presented. The nearest shrunken
centroid method is fairly consistent but does not come up with signifi-
cant predictors. Generalized regression showed superior performance
with our data and presented reproducible resultswith high R2, although
they differ somewhat in the choice of predictors. Signature sets of four
to six miRNAs distinguish between mice exposed to 2.5 mGy/h,
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Fig. 6. Prediction of X-ray exposure by miRNA levels A) Contributions by each miRNA in six of nine estimation methods, long bars mark more important miRNAs. Red bars indicate
significant (p b 0.05) predictors. B) Ranking of the miRNAs according to the average percentage contributed across all nine methods.
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10mGy/h or 100mGy/h γ-radiationwere identified. Because of the var-
iability in the predictor selection, the safest variable reduction is to omit
the least informative miRNAs in a selection of methods. However, pre-
diction of X-ray exposure required theuse of the full set of 21predictors.
Using lager samples, our miRNA-based signature identification ap-
proach may be extended to other stressors and biospecimens, as well
as species such as humans, and serve as powerful bio-predictors of a
wide variety of stressors such as environmental, nutritional and life-
style mediated stressors, also in chronic low stress scenarios.
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