Norges miljg- og

U
r _I biovitenskapelige

universitet

Master’s thesis 2020 30 ECTS
Fakultet for kjemi, bioteknologi og matvitenskap

Developing and validating tests for
a metabolic model of Atlantic
salmon (Salmo salar)

Ingunn Marie Verne Ruud
Chemistry and biotechnology

Acknowledgements

This thesis marks the end of a five-year education on NMBU, As. These years have been
wonderful and filled with laughter, challenges and good memories. First, I would like to thank
the DigiSal group for being so welcoming and friendly. I would like to thank my supervisors
Jon Olav Vik and Ove Qyas for guiding me through this process. Special thanks to Filip Rotnes
and Marie Gulla for infinite patience for my unending flow of questions. I would also like to
thank Kathrine Frey Froslie for introducing me to the Biostatistics and DigiSal group.

I would like to thank my flat mates Anniken and Juliane for supporting each other and
keeping our spirits up through this very special and out-of-the-ordinary spring. Being a trio in
the same situation really helped on motivation. Special thanks to Asblast’n for making these
five years a blast. Finally, I would like to thank my family for always supporting and believing
in me.

Developing and validating tests for a metabolic
model of Atlantic salmon (Salmo salar)

Ingunn Marie Verne Ruud

June 2, 2020

Abstract

The fish farming industry is expanding, and to achieve economic and ecological
sustainability, new fish feeds are being developed. When developing new feeds, it can be useful
to first simulate on a computer how the biological network will react. This can be done with
metabolic models. Metabolic models consist of the reactions and metabolites arranged into a
stoichiometric matrix. Constraints on the network are imposed in the form of stoichiometric
coefficients and bounds on reaction rates. To trust the results from a simulation, it is important
that the model is well annotated and internally consistent, i.e. of high quality. The software
Memote tests the model for a set of quality criteria and presents the score in a report. This thesis
will discuss the application, development and validation of Memote’s tests. This is done by
implementing three possible improvements iteratively to a model and testing with Memote for
each iteration, eventually composing a Memote history report to inspect the change in score for
the different model versions. There is an overall emphasis on annotations to databases in the
tests; a wide range of annotations for genes, metabolites and reactions will increase the score.
Including physiologically important reactions, such as secretion of CO, will also increase the
score. Memote is a good tool to show what the model contains, the scope and notify you if a
feature you think was added to the model, was in fact not added. To more thoroughly review
the models, adding organism-specific tests could be a possibility.

Sammendrag

Akvakulturneringen er 1 vekst, og for & oppnd ekonomisk og ekologisk barekraftighet mé
nytt for utvikles. Under forutviklingen kan det vare nyttig a forst simulere pad datamaskin
hvordan det biologiske nettverket vil reagere. Dette kan gjores med metabolske modeller.
Metabolske modeller inneholder reaksjonene og metabolittene satt i en stokiometrisk matrise.
Begrensninger pa nettverket blir pafert i form av stekiometriske koeffisienter og grenser for
reaksjonsrater. For & kunne stole pé resultatene fra en simulering er det viktig at modellen er
godt annotert og internt konsistent, med andre ord av god kvalitet. Programvaren Memote kan
teste en modell for bestemte kvalitetskrav og presenterer poengene i en rapport. Denne
avhandlingen vil diskutere anvendelsen, utviklingen og validering av Memote sine tester. Dette
gjores ved & implementere tre mulige forbedringer iterativt til en modell og teste med Memote
for hver iterasjon, og til slutt lage en Memote historierapport for & se endringene i score for de
forskjellige modellversjonene. Det legges stor vekt pa databaseannoteringer i testene og et bredt
spekter av annoteringer for gener, metabolitter og reaksjoner vil eke poengene. Memote er et
bra verktey for & vise hva modellen inneholder, hva den kan gjere og varsle hvis en egenskap
man trodde ble lagt til i modellen, ikke ble lagt til allikevel. For en enda grundigere
gjennomgang av modellene kan det veere en mulighet & legge til organismespesifikke tester.

Table of contents

N [o Yo [0 4 o o F PR PPPP 1
1.1 ST o0 =1 011 =P USUUR 1
1.2 Systems biology and mathematical Modelscccuvveeeiiiiiiiicciceee e 1
1.3 V<3 =Y oTo] [Tol 0T Yo =1 1 o V- SURR 2

1.3.1 FIUX balance @nalysis......cooocciiiiiiiieiee ettt e e e e e e e e r e e e e e e e e e 3
1.4 Testing of Metabolic MOMEISeeeeiiiiii e 4
1.5 Y 1=T 0 Yo L £ T PP PUTPPUPRPPP 4
1.6 BiGG reference databasecuuiie ittt e aare e s 6
1.7 OULIINE Of PrOBIEM c.ceiiiieeeeeee e e e e e e e e e et a e e e e e e e e as 6

P V11 To Yo [PP PP RRRPPPPPPRIN 7
2.1 PYthon and COBRAPYuuiiiiiiiiieeee e ettt e e e e e e e e ettt r e e e e e e eaeesessanbbasaeeeaaaaeeeessnsnsranaeees 7
2.2 [V T=T0 gLo) (=R H= Y A1 = PP UPPPRR PPN 7

2.2.1] o] 1ol o TeT 1 0] d 2 UEEURR 7

2.2.2 ANNOTATION .. e e e e e e e e e e e e e e e e et e e e et e et e eeeb e re b b n b s 8

223 BiOMass FEACTION ..cciiiiiiiiiitt e e e 8

224 2 N (ol T £ PP P TP PPPPPPPP 8
2.3 Adding new features the Model ... 9
2.4 Essentiality of amin0o @Cidsceeeiiiiiiiiiiiiiiiiieeeee e e e 9

3 RESUIES ittt ettt e e e st e e e s e a e e e e e e e b aaaeeeeenabraeeeeeanns 10
3.1 V1T gTo) d=l o1 (o] VA =T o Yo o (U PPRPURR 10
3.2 (0] o) 410 g = 1Yo 11 4 o] o ISR PPRPPR 15
3.3 Essentiality of @amin0 @Cidsuueeiiieiiiiiiiiiiiiieeeee e e e e e e e e e e e e e eannes 17

A DISCUSSION .ieieeeeiettttititt e e e e e e e e ee e et e et ettt eeb s s e s e e eeeaeeeeeeeeeenenassn s e aeeeeaaaeaaeenenes 19
4.1 MEMOTE NISTOIY FEPOIT ... iiiiiiiieieee e ettt e e e e e e e es et rre e e e e e e e e e e e esanbebbaeseeeaaeeeesaannsnes 19
4.2 USability Of MEMIOTE ..ottt e e e e e e e e e et r e e e e e e e e e e e eennnnes 21
4.3 OPtiMIZING the MOTE] ..uueeeeiiii e e e e e e e e e rareeaaaeeeas 21
4.4 Essentiality of @amin0 @Cidsuueeiiieiiiiiiiiiiiiieeeee e e e e e e e e e e e e e eannes 22

5 Conclusions and OULIOOKcoevuviiiiiiiiiiiiiiee et e e s s aeee e e e e 23

I 20=Y (=T =Y o ol TP PRSP PPPN 25

A X i 7= Yo 010 0 1=] 0 L KPP OO TP ORI 27

List of Figures

Figure 1. Panel (A) shows the first few reactions of glycolysis in a graphical form as a network of interacting
reactions with shared substrates. Panel (B) shows the corresponding stoichiometric matrix to the reactions in
panel (A). As indicated, the columns correspond to reactions and the rows to metabolites. Figure taken from ref.

(6). 2

Figure 2. Diagram showing an unconstrained solution space, allowable solution space after constraints are
imposed, and after the system is optimized with objective function to maximize Z. Figure taken from ref. (14). 3
Figure 3. An example of how the score for a test in a Memote snapshot report is presented. There is a small section
with information about the test, such as which metabolites or reactions are included. The green box in the upper
right corner shows a percentage score for the test, in this case how many of the total reactions are mass balanced.
At the bottom is also a list of reactions the test found to be not mass balanced. This picture is from a Memote

snapshot report. 5

Figure 4. A graph showing the change in score for BiGG annotations for reactions. The exact score for the points

is, respectively, 0, 75.38, 75.13, 75.13 and 30.9. 11

Figure 5. A graph showing the transport reactions for the different versions of the model. The exact score for the

points is 137, 137, 138, 138 and 784. 12

Figure 6. A graph showing the total reactions in the different versions of the model. The exact score for the points

is, respectively, 593, 593, 595, 595 and 1 246. 13

Figure 7. A graph showing the total metabolites for the different versions of the model. The exact score for the

points is, respectively, 452, 452, 453, 453 and 645. 13

Figure 8. The total score on the Memote test for the last version of the model. The highlighted dot shows the
score for the model version after adding the automatically generated transport reactions. The exact score for the

points is, respectively, 49, 51.29, 51.19, 50.43 and 44.17. 14

Figure 9. The total score on the Memote test. The highlighted dot shows the score for the model version after
adding BiGG IDs. The exact score for the points is, respectively, 49, 51.29, 51.19, 50.43 and 44.17. 15
Figure 10. A code chunk from a Jupyter Notebook showing optimal solution for the model after adding BiGG IDs.

16

Figure 11. A code chunk from a Jupyter Notebook showing optimal solution for the model after adding the CO2

transport and exchange reactions. 16

Figure 12. A code chunk from a Jupyter Notebook showing optimal solution for the model after adding the

automatically generated transport reactions. 17

Figure 13. A code chunk showing a for loop iterating through a list of all the amino acid transport reactions,
setting the uptake to zero for whichever reaction the loop is on and lastly optimizing the model. The reaction
identification is in the left column and the value for the optimal solution is in the right column. Arginine is the

third from the bottom. 18

1 Introduction
1.1 Fish farming

The aquaculture market is an important economical asset. Following the industry’s rapid
growth (1), resources for traditional feeds such as fish meal and fish oil have become scarce
and increasingly expensive. Other potential alternatives have been tested, such as insect-based
feed and protein sources from land animals (2), but due to considerations regarding ecological
and economical sustainability, the feed is now more plant-based (3). Atlantic salmon (Sa/mo
salar) can eat feed containing up to 50% plant proteins without any negative effects on growth
or issues regarding welfare (4). However, salmon has evolved as a carnivore and plants are not
a natural diet for the fish. If the portion of plant proteins in the feed exceeds 50% it causes
amino acid deficiency, non-beneficial changes to the gut microbiota, and lower growth rate
(4)(5), but this has so far been mitigated by food processing and dietary supplements. To
achieve ecological and economical sustainability researchers are trying out more plant-based
feeds, especially ones that are inedible for humans such as sawdust and seaweed. To determine
how the fish can be fed with these novel feeds while animal health and welfare is sustained will
require detailed insight into the systems biology of the salmon.

1.2 Systems biology and mathematical models

Systems biology is an approach to biological research that tries to understand how different
processes in the cell are interconnected (6). Rather than looking at individual genes or proteins
one at a time, it investigates the behavior and relationships of all the elements in a particular
biological system while it is functioning (7). To better understand the biological system of
choice the molecules and reactions are often systemized into mathematical models.

Mathematical models are a way to describe a system using mathematical concepts and
language. A mathematical model is not a perfect representation of reality but can be useful for
prediction and increase our understanding of the system. When the model has correctly
predicted results for known conditions, it can be used to predict outcomes of conditions not yet
investigated. Mathematical models can be used to simulate processes within the cell, or bigger
networks such as the whole cell (6)(8). An example of such a network is the metabolism of an
organism, which can be analyzed with metabolic modeling.

1.3 Metabolic modelling

Metabolic networks are complex and consist of hundreds or thousands of metabolites and
reactions (6). These form pathways and the reactions and metabolites in the pathways can be
arranged in the stoichiometric matrix, which has become an indispensable tool for studying the
systems biology of metabolism (9). The rows in the matrix represent the metabolites and the
columns represent the reactions (Figure 1). The metabolites and the stoichiometric coefficients
of the metabolites impose constraints on the rates of reactions in the network. The matrix is
then a model of the metabolic network and depending on what is to be studied, the model can
encompass a varying degree of the metabolic network. A small model would encompass just
the core carbon metabolism and on the other end is the genome-scale reconstruction which
models the entire metabolic network. Eukaryotes have different compartments within the cell
which must be considered and are therefore more difficult to model than prokaryotes.
Multicellular systems further complicate the reconstruction.

Figure 1. Panel (4) shows the first few reactions of glycolysis in a graphical form as a network of interacting reactions
(arrows) with shared metabolites (dots). Panel (B) shows the stoichiometric matrix corresponding to panel (4). As indicated,
the columns correspond to reactions and the rows to metabolites. Figure taken from ref. (6).

A metabolic system will in most cases have more reactions than metabolites. Consequently,
the stoichiometric matrix § contains more columns than rows. In other words, there are more
unknown variables than equations, so there is no unique solution to the system of equations
(10). The mass balances of metabolites can be expressed as a system of differential equations,
with metabolite concentrations ¢ (11):

dc(t)
dt

=5 -v(t) 1

Where S is the stoichiometric matrix and w(t) is the vector of reaction rates. However, since
this equation is difficult to solve, we assume a quasi-steady-state on the system (11). This leads
to the system of linear equations shown below:

S-v=0 2

The solutions to this system of linear equations define the null space of S, in which each
point is a feasible combination of reaction rates at steady state known as a flux distribution. The
solution space of the model consists of the portion of the null space that also satisfies other
linear equality and inequality constraints on the network such as upper and lower flux bounds

1.3.1 Flux balance analysis

As Orth et al. (10) write, flux balance analysis (FBA) is a mathematical approach for
analyzing the flow of metabolites through a metabolic network. This method uses an objective
function to find an optimal solution within the solution space. This means that the output of
FBA is a particular flux distribution which maximizes or minimizes the objective function. As
for the constraints on the network, there are constraints from the coefficients in the
stoichiometric matrix as well as capacity constraints distinguishing between reversible and
irreversible reactions. The latter are in the form of upper and lower bounds. These constraints
create an allowable solution space (Figure 2). Because the constraints are linear, the formed
solution space is convex. This means that wherever you are in the solution space, you can
always move to any other solution via a straight line. This also helps to find the optimal solution,
as it will always be in a corner (Figure 2).

V3 v3 V3
A A
Constraints Optimization
1)0=Sv maximize Z
2)a<v;V, >V, >V,
Unconstrained Allowable - ')
Solution Space Solution Space Optimal Solution
%) v,

Figure 2. Diagram showing an unconstrained solution space, allowable solution space after constraints are imposed,
and after the system is optimized with objective function to maximize Z. Figure taken from ref. (10).

The objective function is often related to cellular growth in models simulating the metabolic
networks of microorganisms, because cells with a maximized cell growth tend to outcompete
the other cells in the population (12). Since the aquaculture industry is interested in fast-growing
fish, having biomass production as the objective function seems fitting. The biomass function
has a reaction rate which is defined to be equal to the specific growth rate and has the unit ‘per
hours’. Specific growth rate is defined as the percentage of size increase per day.

Before you give the fish food that it is not evolved to digest, it can be helpful to simulate this
on a computer to see how the metabolic network responds. Simulations can increase the
understanding of processes that take place in the fish and can guide scientists to choose a feed
to test or experiment to run. Such a simulation can be done using FBA. The molecules and
reactions are, as mentioned, represented by a stoichiometric matrix. The environment or growth
medium is represented by the rates of the uptake and secretion reactions. You can then simulate
different feed compositions by regulating the uptake flux of metabolites into the metabolic
network. This makes it possible to study how new feeds, e.g. differing in amino acid
composition, can affect the biological network. In salmon farming, we are interested in large
fish, which would require high growth rate for the cells in the body of the fish, so this is an
important criterion for potential feeds.

1.4 Testing of metabolic models

To ensure that a metabolic model is as close to the metabolic network as possible, the quality
of the model should be evaluated. There are protocols for constructing models, but a
standardized means of quality control for metabolic models has been lacking (9)(13)(14). There
is, however, a general consensus that the quality of the model is reflected in some fundamental
features, such as the presence of a biomass reaction, multiple database annotations for genes
and reactions, reactions being charge and mass-balanced, the presence of reactions and
metabolites, and the portion of genes per reaction (13). Testing the model for the presence of
these features and how they function in the model would give a score as to the quality of the
model. Besides these model features, having a standard file format would encourage reuse,
reproducibility and collaboration. Lieven et al. work towards having the Systems Biology
Markup Language (SBML) as an official community standard (13). Additionally, having a
standard file format would ensure that the test suite code can read the information in the model.

1.5 Memote

Memote (MEtabolic MOdel TEsting) is a Python software that was introduced for quality
control of metabolic models (13). This software runs a series of tests to evaluate the quality of
a model but is only a few years old and still in development. Version 0.1.0 of Memote was
released in January 2017 (15). Memote tries to collect the quality criteria from the general
consensus into four standardized categories: biomass reaction, annotations, stoichiometric
consistency and basic tests. There are still shortcomings, such as no organism-specific and few
functional tests (16). A functional test would for example be checking if the model can produce
biomass. The tests give scores for different features in a metabolic model and present them in
a report. Before each test result there is also a small section explaining the reasoning behind
adding a specific test to the test suite and why this test is important to consider. See Figure 3
for the report for Mass balance. The report will often list which metabolites or reactions do not

4

meet the criteria in the test. This is because the test framework is designed to illuminate issues
in the model so these can be fixed. At the end of the report the total score is presented, based
on the score for the four categories. Memote uses Git, an open-source system for version
control, to keep track of changes done to models. This is especially important in the Memote
history report, which is a report where different scores for different versions of the models are
displayed chronologically in graphs.

Mass Balance 97.2% ~

This will exclude biomass, exchange and demand reactions as they are unbalanced by
definition. It will also fail all reactions where at least one metabolite does not have a
formula defined. In steady state, for each metabolite the sum of influx equals the sum of
efflux. Hence the net masses of both sides of any model reaction have to be equal.
Reactions where at least one metabolite does not have a formula are not considered to
be balanced, even though the remaining metabolites participating in the reaction might
be. Implementation: For each reaction that isn't a boundary or biomass reaction check if
each metabolite has a non-zero elements attribute and if so calculate if the overall
element balance of reactants and products is equal to zero.

A total of 15 (2.82%) reactions are mass unbalanced with at least one of the metabolites
not having a formula or the overall mass not equal to 0: plcc1, plcf1, DNA_pol,
Carbohydrates, Lipid_pol, ...

["plcct""plcf1","DNA_pol*"Carbohydrates","Lipid_pol","Protein_pol""RNA_pol","T_Chitin" "*fas1","ppc1b1®,“ce
pt1","chdeg1”,"atp4b”,"ATP_synthase","ACGAMK"]

7~
Figure 3. An example of how the score for a test in a Memote snapshot report is presented. There is a small section with
information about the test, such as which metabolites or reactions are included. The green box in the upper right corner

shows a percentage score for the test, in this case how many of the total reactions are mass balanced. At the bottom is also a
list of reactions the test found to be not mass balanced. This picture is from a Memote snapshot report.

1.6 BiGG reference database

BiGG is a database consisting of genome-scale metabolic network reconstructions (17).
Each network, as well as the components in the network, have an identifier called a BiGG ID.
The genes in the BiGG models are mapped to NCBI genome annotations and metabolites are
linked to external databases such as KEGG, PubChem and many more (17). This makes it easy
to, for example, look up a metabolite in KEGG to inspect which other reactions the metabolite
is connected to. You can search the BiGG database by typing in the name of a metabolite,
reaction, gene or organism in the search bar. When working with metabolic models, we try to
follow the BiGG ID conventions and make sure metabolites and reactions have IDs conforming
to BiGG patterns.

1.7 Outline of problem

This thesis will discuss the development, application and validation of metabolic tests for a
metabolic model of Atlantic salmon. This will be done by adding suggested improvements
iteratively to the model and test it with Memote for each iteration, to see how Memote responds
to and displays the model changes. To keep track of the changes, Git will be used.

2 Methods
2.1 Python and COBRApy

Python version 3.7.4 was used to make changes to the SBML-formatted metabolic model.
The Python package COBRApy (COnstraint-Based Reconstruction and Analysis) was also
necessary to work with the models (18). COBRApy version 0.17.1 was used. This package
contains metabolic models for various organisms and software for refinement and analysis of
the models. The toolbox is community-generated, allowing improvements on metabolic models
to be added by every user. The coding that implemented changes to the model was done with
Python in Jupyter Notebooks. A Jupyter Notebooks is an open-source web application for
Python that allows live code, narrative text and visualizations of plots as well as tables.

2.2 Memote testing

For this work, Memote version 0.9.13 was used. It was run locally on a computer in the
Terminal window. The unaltered model was first committed to Git for version control. When
the model received a new feature in the Jupyter Notebook and was saved to keep the changes,
Git would notice the file had changed and the new file had to be committed to version control.
Then you could run the command “memote run” in the Terminal and Memote would evaluate
the model and store the results in a JSON file. When all the planned additions were implemented
and evaluated with Memote after each addition, the Memote history report could be composed
using the command “memote report history” in the Terminal. Memote would then use Git to
find the commits in which the model had been altered and compose a history report. It was
important that the file kept the exact same file name throughout the editing, otherwise Git would
view it as a new file if it had a different name and you would lose the file tracking.

2.2.1 Stoichiometry

A metabolic network in a living cell will be mass-balanced (19), but this will not
automatically be the case in a model of such a network. Therefore, this category checks the
consistency of stoichiometry and mass in the model. Errors in the stoichiometry can result in
metabolites being produced from nothing which is not the case for a living cell or any other
mass-balanced system (13). The mass balance of reactions is checked by counting how many
metabolites have a mass equal to zero and counting reactions where overall mass is not equal
to zero, see the Memote report attachment. The consistency tests also look for gaps in the
network by checking for universally blocked reactions, orphan metabolites and dead-end
metabolites. Universally blocked reactions are reactions that cannot carry any fluxes while all
model boundaries are open. Orphan metabolites are metabolites that are consumed but not
produced by any reactions in the model, and dead-end metabolites are produced but not
consumed by reactions in the model.

2.2.2 Annotation

The annotation testing checks annotations for metabolites, reactions, genes and Systems
Biology Ontology (SBO) terms and whether these annotations conform to specific patterns
defined in the MIRIAM guidelines, i.e. matching the patterns on https://identifiers.org/ (13).
Only when the patterns can be identified consistently is the ID truly machine-readable. Some
of the databases that are included in the testing are Rhea, KEGG, MetaNetX and BiGG, see the
Memote report attachment. The testing checks whether the model has included annotations for
at least one of these, and the more annotations, the higher the score. The Systems Biology
Ontology (SBO) annotations are also included in the testing. SBO annotations are controlled
vocabularies of terms used in systems biology (20). This ensures standard terms for components
in the models so there are fewer misunderstandings when comparing different models.

With the recent explosion of bioinformatics information, the number of unannotated genes
is rapidly increasing (21). Further, Griesemer at al. (21) state that 30-50% of genes in a typical
genome are still lacking annotation. More than 30% of these unannotated genes are estimated
to have some metabolic function, which leaves a gap in our understanding of the underlying
metabolic processes. In other words, there are still lots of models made based on genes lacking
annotations, and yet, annotations are essential for collaboration and sharing as well as providing
proof of the existence of the metabolite or reaction. The database annotations make it possible
to identify metabolites, reactions and genes and enable cross-referencing between databases.
Furthermore, collaborating, comparing and combining models is more manageable when the
annotations are according to community standards. Another reason why annotations are
valuable is that they make it possible to compare different model systems, by saying which
parts of a model corresponds to parts in another model.

2.2.3 Biomass reaction

This test looks for the presence of a biomass reaction. This is a pseudo reaction in the model
accounting for biomass synthesis in the modeled organism (13). This is biologically very
important, since all organisms have evolved to produce biomass with the intention to grow and
multiply. This is especially important in single-celled organisms, as the organism with the
highest growth rate will often outnumber and therefor outcompete the other organisms in the
environment (12). The test also looks for the biomass reaction precursors, if they have chemical
formulas assigned and whether the model can synthesize them. The tests also check whether
the growth rate is realistic, which means that it cannot exceed the growth rate of the fastest
growing organism, Vibrio natriegens, with a reported doubling time of 14.8 minutes (22).

2.2.4 Basic tests

These tests verify the presence of metabolites, reactions and genes as well as gather
information about them. They also calculate the metabolic coverage (13), which indicates the
modeling detail of a reconstruction. This is tested because even though there are more and more
metabolic network reconstructions released every year, the number of new reactions added to
the models is not increasing (23). That means that the metabolic coverage in models has not
progressed in line with the rising number of publications. Above 1 metabolic coverage is good
and indicates high level of detail in the modeling. Below 1 in metabolic coverage indicates low

level of detail, and implies that many gene products and their enzymatic transformations are
lumped together (23).

The number of counted reactions and metabolites indicate how big the model is, i.e. whether
the model covers a small part of the metabolic network such as the central carbon metabolism
or the full genome-scale network of a cell (13). Gene-protein-reaction (GPR) associations are
also assessed. GPR annotations are important to justify the existence of reactions in the model,
see the Memote report attachment. There can, however, be valid reactions that lack GPR. This
can be the case in spontaneous reactions and known reactions with yet undiscovered genes.

2.3 Adding new features the model

The model received three new features that were added through three iterations and tested
with Memote for each new addition, see the Jupyter Notebook attachment. The results for each
Memote test were stored as JSON formatted files and were eventually used to generate a history
report, where the score for the additions to the model could be viewed in graphs.

2.4 Essentiality of amino acids

In an early phase of the work, to demonstrate testing of metabolic functions, we looked at
essentiality of amino acids. To test essentiality, we iterated through all the uptake reactions for
amino acids, cancelled the uptake rate of the current amino acid into the model and optimized
the model with maximal growth as the objective function. Amino acids that were required for
growth were identified as essential.

3 Results

3.1 Memote history report

The model to be developed was missing features and under development. Two of the many
shortcomings were missing BiGG database annotations and transport reactions. Suggested
improvements that were to be implemented included addition of BiGG IDs, transport and
exchange reactions of CO,, and addition of automatically generated transport reactions. They
were implemented in that order.

In the following plots, the leftmost dot represents the first version of the model, and each dot
following to the right represents a new version of the model. Now, there are three features added
to the model, but four dots in the plots (not counting the very first dot). The two rightmost dots
represent the same feature: the automatically generated transport reactions. They were
unknowingly added unsuccessfully first, and the Memote history report was composed. It was
discovered when looking at the history report, that the number of reactions was not increasing
when they should be. The transport reactions were then added and the score altered accordingly.

The Memote report is interactive when viewed on the computer. When you first open the
report, all the test results are hidden. If you click on the title of a test, it will expand and reveal
the result and informational text, such as in Figure 3, showing Mass balance from a snapshot
report. When the mouse cursor hovers over the points in the plots, a small box with information
appears, such as exact value for the point, commit identification as well as to which Git branch
the commit was made. The branch overview on the right side of the graph shows with color-
coding which commits are from which branches, see Figure 4. This is especially handy if you
have separate work in two different branches. In the plots in this thesis, however, the branches
master work and origin/master work contain the same work. The work was done in the branch
master work, but also pushed to the branch origin/master work.

As Memote was run in the terminal and needed Git version control, it was tricky to get
started and get the hang of it. Both Memote and Git needed to be installed through the terminal
as well as run from there. Memote can also be run on the Memote web page, but then only a
snapshot report of a single model. This somewhat difficult method may deter potential users.

After adding the BiGG IDs, the CO; transport and exchange reactions and the automatically
generated transport reactions, the Memote history report was composed. Upon inspecting it,
there is an overall score increase following the BiGG ID addition to the model. In the category
“BiGG annotations” for reactions there is an increase from 0% to 75%. After version 2 the score
decreases (Figure 4). Another annotation category, Systems Biology Ontology (SBO)
annotations, are barely present in the model.

10

Presence of Reaction Annotation v
Reaction Annotations Per Database Info v

bigg.reaction

100%

Branch
90%

master_work
80%

70% @ origin/master_work
60%

50%

Reaction Annotations Per Database

40%
30%
20%
10%

0%
commit

Figure 4. A graph showing the change in score for BiGG annotations for reactions. The exact score for the
points is, respectively, 0, 75.38, 75.13, 75.13 and 30.9.

In the category “Transport reactions”, there is an increase from 137 to 138 from version 2 to
version 3, and then from 138 to 784 from version 4 to version 5 (Figure 5). Total reactions
increase from 593 to 1246 (Figure 6). Total metabolites increase by 1 from version 2 to 3 and
by 192 from version 4 to version 5 (Figure 7). Although these results are not unexpected, it is
reassuring to see the Memote report confirming that reactions and metabolites have been added
to the model. It also shows that the additions have been coded properly in the SBML-file so the
model and the Memote tests can read it.

In Figure 5, the two rightmost dots, which both represent the automatically generated
transport reactions, illustrate how Memote works. It tells you whether the feature, in this case
reactions, was added to the model or not. When the automatically generated transport reactions
initially were added, it was unsuccessful, but there was no error message to alert us. In this
instance, Memote was very useful in helping to discover the mistake. It would have taken longer
without Memote as one would have to manually inspect the number of reactions in the model.
The mistake could possibly have gone by unnoticed. A failed addition to the model going
unnoticed can cause problems further down the line, for example in giving an unexpected value
for the optimal solution.

11

Transport Reactions -

Cellular metabolism in any organism usually involves the transport of metabolites across a lipid bi-
layer. This test reports how many of these reactions, which transports metabolites from one
compartment to another, are present in the model, as at least one transport reaction must be present
for cells to take up nutrients and/or excrete waste. Implementation: A transport reaction is defined as
follows: 1. It contains metabolites from at least 2 compartments and 2. at least 1 metabolite
undergoes no chemical reaction, i.e., the formula and/or annotation stays the same on both sides of
the equation. A notable exception is transport via PTS, which also contains the following restriction: 3.
The transported metabolite(s) are transported into a compartment through the exchange of a
phosphate. An example of transport via PTS would be pep(c) + glucose(e) -> glucose-6-phosphate(c)
+ pyr(c) Reactions similar to transport via PTS (referred to as "modified transport reactions") follow a
similar pattern: A(x) + B-R(y) -> A-R(y) + B(y) Such modified transport reactions can be detected, but
only when the formula is defined for all metabolites in a particular reaction. If this is not the case,
transport reactions are identified through annotations, which cannot detect modified transport

reactions.
7
800 2
S Branch
3
600 & @ master_work
2 .
2 @ origin/master_work
a0
200
L . 2 . 2
0

commit

Figure 5. A graph showing the transport reactions for the different versions of the model. The exact score for the points
is 137,137, 138, 138 and 784.

12

Total Reactions

To be useful a metabolic model should consist at least of a few reactions. This test simply
checks if there are more than zero reactions. Implementation: Check if the cobra.Model
object has non-empty "reactions" attribute, this list is populated from the list of
sbml:listOfReactions which should contain at least one sbmil:reaction.

A

12k Branch
1.1k

@ master_work
1k

Total Reactions

900 @ origin/master_work
800
700
600
500
400
300
200
100

commit

Figure 6. A graph showing the total reactions in the different versions of the model. The exact score
for the points is, respectively, 593, 593, 595, 595 and 1 246.

Total Metabolites

To be useful a metabolic model should consist at least of a few metabolites that are
converted by reactions. This test simply checks if there are more than zero metabolites.
Implementation: Check if the cobra.Model object has non-empty “metabolites” attribute,
this list is populated from the list of sbml:listOfSpecies which should contain at least one
sbml:species.

600 Branch

@ master_work
500

Total Metabolites

@ origin/master_work

400
300
200
100

0 i
commit

Figure 7. A graph showing the total metabolites for the different versions of the model. The exact
score for the points is, respectively, 452, 452, 453, 453 and 645.

13

The total score for the model versions is at the highest for version 2, after which it decreases
(Figure 8 and Figure 9). In the figures the three leftmost dots with the value zero are early
versions of the model that were discarded.

Total Score
100% o
% Branch
90% E
@ essential_amino_acids
80%
— @ master
60% @ master_work
50% ——"—o @ task tests
] " |
40% origin/HEAD
30% -
branch master_work
20% commit b42aac919ed8745bb55d51f1728d48201843bad9
10% metric 4417%
0% @ e 4 »
commit origin/master_work

Figure 8. The total score on the Memote test for the last version of the model. The highlighted
dot shows the score for the model version after adding the automatically generated transport
reactions. The exact score for the points is, respectively, 49, 51.29, 51.19, 50.43 and 44.17.

14

Total Score

100%

o
@ Branch
90% E
00% . essential_amino_acids
70% @ nmaster
60% master_work
50% ° @ task tests
40% origin/HEAD
30% branch master_work
commit 8e672b00a7a22bd05cfc4387f902603de4e4690d
20% metric 51.29%) &
10% .
origin/master
0% o} »
commit origin/master_work

Figure 9. The total score on the Memote test. The highlighted dot shows the score for the model version afier
adding BiGG IDs. The exact score for the points is, respectively, 49, 51.29, 51.19, 50.43 and 44.17.

3.2 Optimal solution

The optimal solution, with maximal biomass production as objective, also increases due to
the additions to the model. Even so, this does not occur until the CO, transport and exchange
reactions are added. From the unaltered version of the model to the version with BiGG IDs, the
objective value remains the same. Upon adding the CO; reactions, the solution increases from
78.358 per hour to 80.691 per hour, see Figure 10 and Figure 11. After adding the automatically
generated transport reactions, the optimal solution increases to 114.139 per hour, see Figure 12.

15

In [11]: ver2.optimize()

Out[11]: Optimal solution with objective value 78.358

fluxes reduced_costs

EX_pchol_cho_e 0.000000 0.000000e+00
EX akg e 71.422365 0.000000e+00
EX_adn_e 0.000000 0.000000e+00

EX _Butyrate e 0.000000 0.000000e+00
EX _chol_e -11.897725 0.000000e+00

DNA pol 0.015577 8.881784e-16
Glycogen_pol 0.035319 -8.881784e-16
Lipid_pol 0.118977 0.000000e+00
Protein_pol 1.204576 -2.220446e-14
RNA_pol 0.005802 -2.842171e-14

593 rows x 2 columns

Figure 10. A code chunk from a Jupyter Notebook showing optimal solution for the model
after adding BiGG IDs.

In [12]): ver3.optimize()

Out[12]: Optimal solution with objective value 80.691
fluxes reduced_costs

EX_pchol_cho_e 0.000000 0.000000e+00
EX akg e -131.738793 0.000000e+00
EX_adn_e 0.000000 0.000000e+00

EX_Butyrate e 0.000000 0.000000e+00
EX_chol_e -12.251954 0.000000e+00

Lipid_pol 0.122520 0.000000e+00
Protein_pol 1.240440 -6.217249e-15
RNA_pol 0.005975 -4.529710e-14

EX co2_e 1000.000000 2.954120e-03
CO2t -1000.000000 -0.000000e+00

595 rows x 2 columns

Figure 11. A code chunk from a Jupyter Notebook showing optimal solution for
the model after adding the CO2 transport and exchange reactions.

16

In [4]: verd.optimize()

Out[4]: Optimal solution with objective value 114.139

fluxes reduced_costs

EX_pchol_cho_e 0.000000 0.0
EX akg e -558.347400 0.0
EX_adn_e 918.384172 0.0

EX_Butyrate e 0.000000 0.0
EX_chol e -17.330620 0.0
FOLTle 0.000000 0.0
MLTHFte 0.000000 0.0
5MTHFt 1000.000000 0.0

r0963 0.000000 0.0
MLTHFte3 0.000000 0.0

1246 rows x 2 columns

Figure 12. A code chunk from a Jupyter Notebook showing optimal solution
for the model after adding the automatically generated transport reactions.

3.3 Essentiality of amino acids

Arginine is supposed to be an essential amino acid in Atlantic salmon (24)(25), and therefore
when cutting off arginine uptake and then optimizing the model, should give an optimal solution
of zero. This was however not the case, as arginine was, according to the model, non-essential.
In other words, the solution when optimizing the model was not zero. However, the optimal
solution for arginine is slightly lower than the optimal solution for the other non-essential amino
acids (Figure 13). Version 2 of the model was used in these computations. The model
characterized all the other amino acids correctly as essential or non-essential.

17

In [6]: for r in aax.members:
old bounds = r.bounds # setting the default bounds as the variable old bounds
r.bounds = (0,1000) # setting uptake of r-th amino acid to 0
print(r.id, sasa.optimize().objective_value) # printing the r-th amino acid along with the objective value
#when the model is optimized
r.bounds = old_bounds # setting the bounds back to the default value

EX _ trp_L e 0.0

EX orn__ L e 78.39269391555355
EX_asn__L e 77.76695390722615
EX his_L e 0.0

EX tyr L e 78.39269391555354
EX_phe_L e 0.0

EX ile_L e 0.0

EX_asp_ L e 78.39269391555354
EX val L e 0.0

EX pro_ L e 78.39269391555347
EX_leu_L e 0.0

EX cys_L_e 78.30607999911464
EX_ ala_L e 78.39269391555356
EX_ser L e 78.39269391555356
EX lys_L e 0.0

EX gly e 77.78096336434935
EX glu_L e 78.3926939155536
EX thr L e 0.0

EX_arg_ L e 75.00467289066887
EX met_ L e 0.0

EX gln_ L e 78.39269391555355

Figure 13. A code chunk showing a for loop iterating through a list of all the amino acid transport reactions, setting the
uptake to zero for whichever reaction the loop is on and lastly optimizing the model. The reaction identification is in the left
column and the value for the optimal solution is in the right column. Arginine is the third from the bottom.

18

4 Discussion
4.1 Memote history report

The score increase for BiGG annotations for metabolites exceeded that of reactions. This
may be because it was easier to add IDs for metabolites than reactions, as there is not always
one answer to which metabolites a reaction contains. Perhaps the same reaction is in two
databases but in one of the reactions there is a proton that has been left out in the other database.
This can also be seen in the code for adding BiGG IDs: the chunk regarding the reactions is
longer and more extensive than the chunk for metabolites. Sometimes the BiGG IDs for
reactions are not following the same pattern and therefore the code must be more extensive to
recognize the different IDs.

The importance of collaboration and sharing is heavily emphasized in the Memote report,
where the category for annotations of metabolites, reactions and genes make up a large portion
of the report. This is reflected in the total score change after adding BiGG IDs, it increases by
2% and confirms the importance of a wide range of annotations. Similarly, when the score
increases when annotations are added, it will also decrease when reactions and metabolites are
added without annotations. This is evident in the total score variation in Figure 8. After version
2 the total score declines. The two last alterations consisted of adding multiple reactions and
metabolites, but since they were added after the BiGG IDs additions, they did not receive BiGG
IDs and thus there are less annotations percentage-wise. Version 4 has the most reactions
without BiGG annotations, so that may explain why the score is the lowest at the last version.
Additionally, the model does not include many Systems Biology Ontology (SBO) annotations.
SBO annotations are also important for collaboration and comparison, as they provide standard
terms for components in the models. The lack of SBO annotations may negatively affect the
score.

In Figure 8, there are three dots to the left with the value 0. These are from previous work
with the model. This work was however discarded, but the points still show up in the report.
When composing the history report, Git finds all the commits in which the model has been
altered and looks for the results of “memote run” in a JSON file. These JSON files from the old
commits were moved to another folder and so Git couldn’t find them and the score for that
commit in the report was consequently zero. Why these old commits only show up in the Total
score graph in the Memote report may be because the Total score graph is composed slightly
differently than the other graphs in the report. When composing the history report, Git looks
for all the commits in which the model has been changed and then looks for the JSON files
containing test results. Then it uses the located result files to extract test results, for example
for Total reactions, and assemble graphs. When making the Total score graph, all the commits
are included, regardless of whether there are corresponding result files. That might be the reason
why the old commits only show up in the Total score plot.

There are tools to help reconstructing metabolic networks (26). These tools are developed to
speed up the reconstruction process by automating several tasks, such as gap filling and draft
network generation. Mendoza et al. have evaluated these tools (26), and evaluating their
performance can help researchers choose the best tool to help their reconstruction. However,
when the reconstruction is finished and you have a metabolic model, there are fewer tools to
choose from to evaluate the model. Now, Memote can evaluate a metabolic model, but it is still
very new, and before Memote there were few quality control systems for metabolic models
(27). Working with and trying to improve a metabolic model without having a test system is
challenging. The network reconstruction work is in itself time-consuming and cumbersome,

19

and chances are you will overlook a reaction or metabolite. The same can be said about adding
new features to the model. Additionally, when you think you have added a feature, but it was
in fact unsuccessful, it can go unnoticed. Without a test system like Memote, you have to use
your own knowledge to search for and find solutions for issues in the model, which can be
frustrating and time-consuming. Another issue with which Memote really helps, is if features
for some reason disappear during the model development. COBRApy is still under
development and bugs can happen (18). This can cause components to disappear from the
model when writing and reading models. Components disappearing is not something you think
to check for, so Memote notifying us is very useful.

Another question is how much you trust the model when it gives unexpected results,
especially beyond known conditions. When the marine flagellate Chrysochromulina blooms it
can cause mortality in marine organisms, including fish in aquaculture (28). This of course has
financial consequences for the fish breeders and it could perhaps be useful to simulate how
much of this toxin the fish can withstand to get an idea as to what to do to prevent fish death.
However, one must exert caution if such a simulation were to take place, because if the fish
breeders thought the model was of high quality, but the model produced inaccurate results, e.g.
indicating that the fish could handle more toxin than what was actually true, it would result in
high fish mortality. If a metabolic model were to be used for this kind of simulation one must
be extremely certain of the model quality. Metabolic models do not always contain the
components with which toxins react, but it is an example of a situation where one must be very
careful when interpreting the results, and even more cautious to trust them.

Simulations are useful as a preliminary round of experiments. The more you trust your
model, the more you can trust the simulation results to reflect reality. Even so, it is important
to remember that a simulation can only give pointers and not replace in vivo experiments.
Memote can aid in validating the quality of the model, but only to a certain point, only as far as
the Memote tests go. Beyond that, you have to use your own knowledge and manually inspect
the code of the model. Only what is presented in the report is tested, so you will know which
aspects and areas of the model it is more likely that you will have to inspect yourself. Moreover,
Memote can perhaps shorten the distance between simulations and in vivo experiments by
providing a quick and trusted quality control of the model.

Simulations done with this metabolic model, such as optimizing for biomass growth, are
reproducible in the sense that the model follows a standard format: SBML, and it is not hard-
coded for a single experiment (29). It is possible that Memote can help in ensuring that the
model meets these two requirements. Memote encourages models to be in the SBML format,
as the Memote tests are coded to read SBML. By testing the model for the agreed-upon quality
criteria, it contributes to making a model less specific for only one experiment by reporting
which of the general quality criteria are lacking and needs to be added or adjusted in the model.
Furthermore, a model hard-coded for a single experiment will perhaps lack annotations, which
Memote will report.

Adding organism-specific tests would increase our knowledge of what the model is capable
of. Some examples are: For a model on an anaerobic organism, testing whether the model
requires oxygen would be beneficial for the quality of the model. For a model describing a
biological network of a eukaryote, checking for reactions in mitochondria would be central.
The same could be applied for networks of plant cells, but then also checking for photosynthesis
reactions. As well as testing essentiality of amino acids in the model. Additionally, perhaps a
test that checked whether waste-product metabolites were consumed would be a good idea to
add. This would require a list in a database and it would contain known waste products such as

20

CO, and urea. A similar test could be added for metabolites that should not be produced in the
model, such as essential amino acids and other essential nutrients.

This metabolic model covers the metabolic network of Atlantic salmon and can hopefully
be used in predictions for novel feeds once the model quality is good. During the work for this
thesis, a small contribution was made to improve the model quality, but seeing as the total score
is below 50%, the model still needs plenty of development. As we worked with this model, the
objective function was always biomass growth, but there may be additional criteria contributing
to the meat quality. Around the world, fish is an extremely important food because of its
nutritional value (30). Perhaps the objective function in metabolic models can be reformed to a
weighted sum of different equations from the model, for example biomass growth counting
70% and nutritional content counting 30% of the total. Further, the aquaculture industry could
then consider, based on simulations, whether a novel feed will not only produce fish with large
muscles, but also if the meat contains sufficient nutrients. Fat content can maybe also be
interesting to consider as a factor in the objective function. Fish breeders could subsequently
decide if a particular feed is worth testing or developing further.

4.2 Usability of Memote

The more Memote is used by different researchers, the lower the threshold for sharing
models will become. This will increase the use of metabolic models as well as our
understanding of biological systems and biology as a whole. But many users may find it
challenging to use Memote. The Memote history report is very useful for looking at how the
model score develops, but a history report can only be composed from the Terminal window
on a computer. A function on the Memote website to make a history report will make it available
for a larger user group.

It would be very beneficial if the Memote report could be converted to a PDF file and still
be neat and readable. On my system setup, I had to go through the “Print”-function on the
computer to save it as a PDF file, and the resulting file becomes unreadable. The graphs and
text boxes are piled on top of each other. This was something my colleagues also experienced.
A nice PDF file would make it easier to share the Memote report. Additionally, in a Memote
snapshot report, when showing the total score, there is also a graph showing the percentage of
total possible score for each category. This provides a good overview of which categories are
lacking the most in score and which areas in the model need fixing or additions. The Memote
history report does not include this, but it would be beneficial if it did. If the total score
decreases, it would be useful if there was a graph displaying the scores in each category for
each version of the model and one could see exactly where it decreased. Further development
will then be more targeted for a wider user group.

4.3 Optimizing the model

The increase of 2.333 in the optimal solution from version 2 and 3 of the model suggests the
CO; transport and exchange reactions were beneficial to include in the model. From version 3
to 4 the optimal solution increases by 33.448. The transport reactions are from the extracellular
area to cytosol, for the metabolites already in cytosol. This increase in biomass production can
be caused by more available pathways to transport the metabolites into the model. With these

21

new transport reactions, if there now are two new pathways available for a metabolite, the total
flux of that metabolite into the network would increase three-fold, given the flux is equal in all
the transport reactions. An abundance of metabolites in the network could increase the biomass
production. Additionally, if an essential metabolite could now access a pathway that required
less fuel, such as ATP or NADP, it would contribute to the increasing biomass growth.

4.4 Essentiality of amino acids

The model showed arginine as a non-essential amino acid. According to the Food and
Agriculture Organization of the United Nations (FAO), arginine is an essential amino acid in
Atlantic salmon (24). In channel catfish (Ictalurus punctatus) there are indications that arginine
is a conditionally essential amino acid. If the diet of the catfish contained a surplus of glutamine,
dietary arginine requirements were reduced (25). This is however not the case for Atlantic
salmon as there has not been observed a pathway connection between arginine and glutamine
yet (31). Arginine should therefore behave like an essential amino acid when processed in the
model, even though it did not. Furthermore, the optimal solution was slightly lower than the
optimal solution for the other non-essential amino acids, see Figure 13. This was interesting
because it showed that even though the model could give a feasible solution, it was not ideal
for the model to manage without arginine. Since the optimal solution was lower than for the
other non-essential amino acids, the model has perhaps used alternative and less effective
pathways when arginine was cut off, which would result in a slightly lower value. On the
positive side, this shows that we know enough about the metabolic processes of salmon to create
a model that works, since many of the other amino acids were processed normally by the model.

This could be an example of a metabolic function which is relevant to test. It would then be
an organism-specific test, since essential amino acids differ from different organisms. As this
incident revealed a big flaw in the model, such a test would be useful to add to the model
development. Adding such a custom test to the test suite would be quite straight-forward, you
simply make a Python script with the test and place it in the Memote test suite folder on your
computer.

22

5 Conclusions and outlook

In this thesis, I have added three new features iteratively to an SBML-formatted metabolic
model, and tested the model with the software Memote. We found that the model did not handle
arginine correctly, and this error was not reported by Memote. We also found that the biomass
growth increased after adding CO, transport and exchange reactions. The automatically
generated transport reactions were first unsuccessfully added unsuccessfully by me, and they
were correctly reported missing by Memote. Further developments for this model could include
adding lipid pathways into the model and SBO annotations.

Adding BiGG annotations to the model made the total score increase, this indicates the
importance of annotations in the model. It also implies that as more models are developed, there
needs to be a focus on including several database annotations, as this will enable cooperation
and comparison of models between different research groups and environments.

Testing metabolic models is important because it contributes to verifying the quality and
clarifying the scope of the model. Having a clear view of the scope of the model will make it
easier to choose in which experiments the model can be used. Even though simulations will
only act as a guide to choose which wet lab experiment to run, it is important that the
simulations give as accurate results as possible. Testing with Memote can aid researchers in
this process. Additionally, having a solid and trusted model which follows a standard file format
will contribute to reproducibility (29)(32). This means that a high quality model will be a good
machinery for testing robustness in the results, using different conditions.

Memote can help scientists choose what direction to take in the model development.
Knowing what the model contains is a good starting point for further development. The addition
of organism-specific metabolic tasks could also be important for improvement. Furthermore,
there is a possibility that Memote can aid in the integration of new knowledge into existing
models, i.e. provide a quick testing of the model after the new features are implemented to
ensure that they are added correctly. Besides, it is also possible that with Memote’s support, the
speed of model development will rapidly escalate.

High quality models can contribute to an increased understanding of biology. With Memote,
the model can be developed until it gives accurate results for known conditions. Given that the
model then is near identical to the metabolic network it covers, it can then be used to simulate
unknown conditions. Moreover, there could even be a possibility to use the model in
simulations with conditions that would be unethical to carry out in vitro or even in vivo, such
as how the metabolic system reacts to a possible toxin, or studying which feeds are lethal or not
to an organism. This could open up possibilities for the aquaculture industry to try out even
stranger new feeds, if the simulation results seem promising. If it is possible to change the
objective function to a weighted sum of different equations, fish breeders can also get an
estimate of other qualities in the meat, e.g. the nutritional value or fat content.

If a software could be developed which integrates reconstruction tools, such as the ones
Mendoza et. al (26) evaluate, and Memote to help in the reconstruction of a genome. It could
then be a possibility to regularly test the model during the early development. Imaginably, a
high-quality model could open new possibilities for simulations. It could be possible to use the
model in a reverse way to search for new metabolites, i.e. add different non-existing metabolites
with an invented molecular formula to the model to see if any of them increase the biomass
growth substantially, or in other ways affect the network positively. The next challenge would
then be to synthesize such a metabolite in a laboratory.

23

With a model of good quality, new possibilities for simulations may open and our
understanding of biology may increase. To achieve good quality, many users must use and
develop the model. Memote has a contributing role in both the quality and increased use of
metabolic models. Memote is a great tool for systems biology and metabolic modelling, but it
can be even better with further development.

24

6 References

1. Directory of fisheries. Totalt, hele naringen [Internet]. Fiskeridirektoratet. 2016 [cited
2020 Mar 27]. Available from: https://www.fiskeridir.no/Akvakultur/Tall-og-
analyse/Akvakulturstatistikk-tidsserier/Totalt-hele-naeringen

2. Belghit I, Liland NS, Waagbg R, Biancarosa I, Pelusio N, Li Y, et al. Potential of
insect-based diets for Atlantic salmon (Salmo salar). Aquaculture. 2018 Apr;491:72-81.

3. Ayadi FY, Rosentrate KA, Muthukumar K. Alternative Protein Sources for
Aquaculture Feeds. J Aquac Feed Sci Nutr. 2012 Jan 1;4(1):1-26.

4. Egerton S, Wan A, Murphy K, Collins F, Ahern G, Sugrue I, et al. Replacing fishmeal
with plant protein in Atlantic salmon (Salmo salar) diets by supplementation with fish protein
hydrolysate. Sci Rep. 2020 Dec;10(1):4194.

5. Collins SA, @verland M, Skrede A, Drew MD. Effect of plant protein sources on
growth rate in salmonids: Meta-analysis of dietary inclusion of soybean, pea and
canola/rapeseed meals and protein concentrates. Aquaculture. 2013 Jun 20;400—401:85-100.

6. Palsson BO. Systems Biology: Constraint-based Reconstruction and Analysis. First.
Cambridge University Press;

7. Ideker T, Galitski T, Hood L. A new approach to decoding life: systems biology.
Annu Rev Genomics Hum Genet. 2001;2:343-72.

8. Karr JR, Sanghvi JC, Macklin DN, Gutschow MV, Jacobs JM, Bolival B, et al. A
whole-cell computational model predicts phenotype from genotype. Cell. 2012 Jul
20;150(2):389—401.

9. Thiele I, Palsson B@. A protocol for generating a high-quality genome-scale metabolic
reconstruction. Nat Protoc. 2010;5(1):93-121.

10. Orth JD, Thiele I, Palsson B@. What is flux balance analysis? Nat Biotechnol. 2010
Mar;28(3):245-8.

11. Terzer M, Maynard ND, Covert MW, Stelling J. Genome-scale metabolic networks.
Wiley Interdiscip Rev Syst Biol Med. 2009 Nov;1(3):285-97.

12. Schuetz R, Kuepfer L, Sauer U. Systematic evaluation of objective functions for
predicting intracellular fluxes in Escherichia coli. Mol Syst Biol [Internet]. 2007 Jul 10 [cited
2020 Apr 8];3. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1949037/

13. Lieven C, Beber ME, Olivier BG, Bergmann FT, Ataman M, Babaei P, et al.
MEMOTE for standardized genome-scale metabolic model testing. Nat Biotechnol. 2020
Mar;38(3):272—-6.

14. Ravikrishnan A, Raman K. Critical assessment of genome-scale metabolic networks:
the need for a unified standard. Brief Bioinform. 2015 Nov 1;16(6):1057—68.

15. History — memote [Internet]. [cited 2020 May 23]. Available from:
https://memote.readthedocs.io/en/stable/history.html#id49

25

16. Uhlén M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al.
Tissue-based map of the human proteome. Science [Internet]. 2015 Jan 23 [cited 2020 May
41;347(6220). Available from: https://science.sciencemag.org/content/347/6220/1260419

17. Schellenberger J, Park JO, Conrad TM, Palsson BO. BiGG: a Biochemical Genetic
and Genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics.
2010 Apr 29;11(1):213.

18. Ebrahim A, Lerman JA, Palsson BO, Hyduke DR. COBRApy: COnstraints-Based
Reconstruction and Analysis for Python. BMC Syst Biol. 2013 Aug 8;7(1):74.

19. Nelson DL, Nelson DL, Lehninger AL, Cox MM. Lehninger principles of
biochemistry. New York: W.H. Freeman; 2008.

20. Novere NL. BioModels.net, tools and resources to support Computational Systems
Biology. :9.

21. Griesemer M, Kimbrel JA, Zhou CE, Navid A, D’haeseleer P. Combining multiple
functional annotation tools increases coverage of metabolic annotation. BMC Genomics
[Internet]. 2018 Dec 19 [cited 2020 May 2];19. Available from:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6299973/

22. Lee HH, Ostrov N, Wong BG, Gold MA, Khalil AS, Church GM. Vibrio natriegens ,
a new genomic powerhouse [Internet]. Genomics; 2016 Jun [cited 2020 Apr 13]. Available
from: http://biorxiv.org/lookup/doi/10.1101/058487

23. Monk J, Nogales J, Palsson BO. Optimizing genome-scale network reconstructions.
Nat Biotechnol. 2014 May;32(5):447-52.

24. FAO: Nutritional requirements [Internet]. [cited 2020 Apr 28]. Available from:
http://www.fao.org/fishery/affris/species-profiles/atlantic-salmon/nutritional-requirements/en/

25. Espe M. Functional amino acids in fish nutrition health and welfare. Front Biosci.
2016;8(1):143—-69.

26. Mendoza SN, Olivier BG, Molenaar D, Teusink B. A systematic assessment of current
genome-scale metabolic reconstruction tools. Genome Biol. 2019 Aug 7;20(1):158.

27. Gilbert J, Pearcy N, Norman R, Millat T, Winzer K, King J, et al. Gsmodutils: a
python based framework for test-driven genome scale metabolic model development.
Bioinformatics. 2019 Sep 15;35(18):3397—-403.

28. Simonsen S, Moestrup ©. Toxicity tests in eight species of Chrysochromulina
(Haptophyta). Can J Bot. 1997 Jan 1;75(1):129-36.

29. Cooper J, Vik JO, Waltemath D. A call for virtual experiments: Accelerating the
scientific process. Prog Biophys Mol Biol. 2015 Jan;117(1):99-106.

30. Pal J, Shukla B, Maurya AK, Verma HO. A review on role of fish in human nutrition
with special emphasis to essential fatty acid. :4.

31. Andersen SM, Holen E, Aksnes A, Rennestad I, Zerrahn J-E, Espe M. Adult Atlantic

26

salmon (Salmo salar L.) adapts to long-term surplus dietary arginine supplementation. Aquac
Nutr. 2015;21(3):355-63.

32. Drummond C. Replicability is not Reproducibility: Nor is it Good Science. :4.

7 Attachments

Jupyter Notebook — 9pages

Memote history report — 22pages

27

31.5.2020 Implementing improvements to a salmo salar model

Adding new features to a metabolic model

This Jupyter Notebook contains the code for adding three new features to a metabolic model.

In [1]:

import cobra # importing the package for constraint based reconstruction and ana
lysis

Adding BiGG IDs

Will add BiGG IDs to the existing metabolites and reactions in the model.

In [12]:

from ontology_ translator import * # importing all the functions from the python
script ontology translator

In [13]:

from addBiggIDs import * # importing all the functions from the python script ad
dBiggIDs

file:///Users/Ingunn/Downloads/Implementing improvements to a salmo salar model.html 1/9

31.5.2020 Implementing improvements to a salmo salar model

m = cobra.io.read sbml model('Salmo salar.sbml') # reading the model

for met in m.metabolites:

add_bigg metabolite(met) # using a function from the addBiggIDs script
m = convertMetIDsBiGG(m)
id to bigg(m)

d = bigg rxn set()
for rxn in m.reactions:
try:
results = reaction to sets(rxn)
except:
results=[False]
for result in results:
bigg = d.get(result, False)
if bigg:
rxn.annotation['bigg.reaction'] = bigg

[add _bigg reaction(r) for r in m.reactions]
m = biggify exchanges(m) # update exchanges, must do before convertMetIdsBiGG
m = biggify metabolites(m) # Add BiGG IDs from curation text file
for reaction in m.reactions:
bigg = reaction.annotation.get('bigg.reaction', False)
if bigg:
try:
reaction.id = bigg
except:
continue
for r in m.reactions:
if r.annotation.get('alternative.bigg',6False):
r.annotation.pop('alternative.bigg')

cobra.io.write sbml model(m, 'Salmo salar.sbml')

ver2 = cobra.io.read_sbml model('Salmo_salar.sbml')

ver2.optimize()

Will then run memote on the updated model. Have committed and pushed the model to origin. Will do this
step after every addition.

Adding manual curations

Transport and exchange reaction for CO2

file:///Users/Ingunn/Downloads/Implementing improvements to a salmo salar model.html 2/9

31.5.2020 Implementing improvements to a salmo salar model

importing the necessary packages

from cobra import io

import cobra

from cobra import Model, Reaction, Metabolite
import libsbml

from cobra.core import Group

#import memote

import pytest

#import memote.support.basic as basic

import copy

¢matplotlib inline

#import plot helper

import cobra.test

from cobra.flux_analysis.loopless import add loopless, loopless solution
from cobra.flux_analysis import pfba

import hashlib

from collections import defaultdict
from copy import copy, deepcopy
from functools import partial

from operator import attrgetter
from warnings import warn

from six import iteritems, iterkeys, string types

from cobra.exceptions import OptimizationError
from cobra.core.gene import Gene, ast2str, parse gpr, eval gpr
from cobra.core.metabolite import Metabolite
from cobra.core.object import Object
from cobra.util.context import resettable, get context
from cobra.util.solver import (
linear reaction coefficients, set objective, check solver status)
from cobra.util.util import format long string

file:///Users/Ingunn/Downloads/Implementing improvements to a salmo salar model.html 3/9

31.5.2020

model = cobra.io.read sbml model('Salmo salar.sbml') # reading the newest versio

n of the model

add co2 metabol

co2_e = cobra.Met
'co2 e,
formula = 'CO
name = 'CO02',
compartment=

)
model.add metabol

#Add exchange of
rxn_co2_exchange
rxn_co2_exchange.
rxn_co2_exchange.
rxn_co2_exchange.
model.add reactio

model .reactions.E
model .metabol

})

model.reactions.E
model .reactions.E

Implementing improvements to a salmo salar model

ite
abolite(

2',

e
ites(co2_e)

co2 reaction

= cobra.Reaction('EX co2 e')
name = 'Exchange of CO2'
lower_bound = -1000.0

upper bound = 1000.0
n(rxn_co2 exchange)

X co2 e.add metabolites({

ites.co2 e : -1.0

X _co2_e.upper_bound = 1000.0
X co2 e.lower bound

#Add transport of co2

rxn_co2 transport
rxn _co2_ transport
rxn _co2_ transport
rxn_co2_transport

model.add reactio
model.reactions.C

model .metabol
model .metabol

})

check if EX is

In [8]:

model = cobra.io.read sbml model('Salmo salar.sbml') # reading the newest versio

n of the model

= cobra.Reaction('C0O2t")
.name = 'Transport of CO2'
.lower bound = -1000.0
.upper bound = 1000.0

n(rxn_co2_transport)
02t.add metabolites({

ites.co2 e: -1.0,
ites.co2 c: 1.0

in exchanges

Checking that the reactions and metabolites are in the model

file:///Users/Ingunn/Downloads/Implementing improvements to a salmo salar model.html

-1000.0

4/9

31.5.2020 Implementing improvements to a salmo salar model
In [3]:
model.exchanges.EX co2 e
Out[3]:
Reaction identifier EX_co2_e

Name Exchange of CO2

Memory address 0x01022dc41d0

co2_e <=>

Stoichiometry
CO2 <=>

GPR
Lower bound -1000.0
Upper bound 1000.0

model.reactions.CO2t
Outf[4]:
Reaction identifier CO2t
Name Transport of CO2

Memory address 0x01022dc48d0

co2_e <=>Cc02_cC
Stoichiometry

CO2 <=> C02

GPR
Lower bound -1000.0
Upper bound 1000.0

In [5]:

model.metabolites.co2 e.reactions

Out[5]:

frozenset ({<Reaction CO2t at 0x1022dc48d0>,
<Reaction EX co2 e at 0x1022dc41d0>})

In []:

cobra.io.write sbml model(model, 'Salmo salar.sbml')

ver3 = cobra.io.read_sbml model('Salmo_salar.sbml')

file:///Users/Ingunn/Downloads/Implementing improvements to a salmo salar model.html 5/9

31.5.2020 Implementing improvements to a salmo salar model

ver3.optimize()

Adding automatically generated transport
reactions

Here transport reactions for Atlantic salmon and human is compared using KEGG annotations. Transport
reactions found to be in human and Atlantic salmon are added to the model.

In [3]:

from transporters_from_kegg and_recon import * #importing functions from the scr
ipt

In [15]:

sasa = cobra.io.read sbml model('Salmo salar.sbml')
hsa = cobra.io.read sbml model('Recon3D 301.xml')

In [6]:
for m in [met for met in sasa.metabolites if met.compartment == 'c']:
try:

sasa.metabolites.get by id(m.id[:-1]+'e') #changing the last letter in t
he id to 'e'
except KeyError: #if the last letter is not 'c'
mb = m.copy() #copy the information about m
mb.compartment = 'e' #set compartment to 'e'
mb.id = mb.id[:-1] + 'e' #set the last letter in the id to 'e'
sasa.add metabolites([mb]) #add this metabolite to the list of metabolit

es in sasa
In [9]:

OT = orthologous_ transporters(hsa, sasa, 'hsa02000.json', 'sasa02000.json')

Read LP format model from file /var/folders/jl/y7hwkOw50p78nrjhcn7p
xwr0000gq/T/tmp7jzzkak3.1lp
Reading time = 0.02 seconds

645 rows, 1190 columns, 4852 nonzeros

file:///Users/Ingunn/Downloads/Implementing improvements to a salmo salar model.html 6/9

31.5.2020 Implementing improvements to a salmo salar model

In [10]:

OT.transporter_model

Out[10]:
Name Salmo_salar
Memory address 0x01028b1aal0
Number of metabolites 645
Number of reactions 1246
Number of groups 0

Objective expression 1.0"Biomass_pol - 1.0*"Biomass_pol_reverse_d3f73

Compartments mitochondria, cytosol, extracellular space, nucleus

In [11]:

cobra.io.write sbml model(OT.transporter model, 'Salmo salar.sbml')

Checking whether the number of reactions has increased

In [12]:

ver4 = cobra.io.read_sbml model('Salmo salar.sbml')

In [13]:
verd
Out[13]:
Name Salmo_salar
Memory address 0x0102124ce10
Number of metabolites 645
Number of reactions 1246
Number of groups 0

Objective expression 1.0*Biomass_pol - 1.0*Biomass_pol_reverse_d3f73

Compartments mitochondria, cytosol, extracellular space, nucleus

ver4.optimize()

Showing the essentiality of arginine

In [1]:

import cobra

file:///Users/Ingunn/Downloads/Implementing improvements to a salmo salar model.html 79

31.5.2020 Implementing improvements to a salmo salar model

In [3]:
sasa = cobra.io.read sbml model('Salmo salar BiGG curated.sbml')

Using license file /Users/Ingunn/gurobi.lic
Academic license - for non-commercial use only

In [4]:

aax = cobra.core.Group(id='Amino acid exchange') # making a group for the amino
acids

In [5]:

aax.add members([sasa.reactions.get by id(r) for r in
['EX gly e',
'EX ala L e',
'EX arg L e',
'EX asn_L e',
'EX asp L e',
'EX cys_ L e',
'"EX glu_ L e',
'EX gln_ L e',
'EX his L e',
'EX ile L e',
'EX leu L e',
'EX lys L e',
'EX met L e',
'EX orn_L e',
'"EX phe L e',
'"EX pro_ L e',
'EX ser L e',
'EX thr L e',
'EX trp L e',
'EX tyr L e',
'EX val L e']]) # adding the uptake reactions for all the amino acids to the g
roup

file:///Users/Ingunn/Downloads/Implementing improvements to a salmo salar model.html 8/9

31.5.2020 Implementing improvements to a salmo salar model

In [6]:

for r in aax.members:
old bounds = r.bounds # setting the default bounds as the variable old bound

r.bounds = (0,1000) # setting uptake of r-th amino acid to 0

print(r.id, sasa.optimize().objective value) # printing the r-th amino acid
along with the objective value

#when the model is optimized

r.bounds = old bounds # setting the bounds back to the default value

EX trp_ L e 0.0

EX orn_ L e 78.39269391555355
EX asn__ L e 77.76695390722615
EX his L e 0.0

EX tyr L e 78.39269391555354
EX phe L e 0.0

EX ile L e 0.0

EX asp L e 78.39269391555354
EX val L e 0.0

EX pro_ L e 78.39269391555347
EX leu_L e 0.0

EX cys_L e 78.30607999911464
EX ala L e 78.39269391555356
EX ser L e 78.39269391555356
EX lys L e 0.0

EX gly e 77.78096336434935

EX glu_L e 78.3926939155536
EX thr L e 0.0

EX arg L e 75.00467289066887
EX met L e 0.0

EX gln_ L e 78.39269391555355

file:///Users/Ingunn/Downloads/Implementing improvements to a salmo salar model.html

9/9

@ Collapse All Readme

Independent Section

Contains tests that are independent of the class of modeled organism, a model's complexity or
types of identifiers that are used to describe its components. Parameterization or initialization of
the network is not required. See readme for more details.

Consistency

Stoichiometric Consistency

Stoichiometric inconsistency violates universal constraints: 1. Molecular masses are always
positive, and 2. On each side of a reaction the mass is conserved. A single incorrectly
defined reaction can lead to stoichiometric inconsistency in the model, and consequently to
unconserved metabolites. Similar to insufficient constraints, this may give rise to cycles

which either produce mass from nothing or consume mass from the model. Implementation:

This test first uses an implementation of the algorithm presented in section 3.1 by
Gevorgyan, A., M. G Poolman, and D. A Fell. "Detection of Stoichiometric Inconsistencies in
Biomolecular Models.” Bioinformatics 24, no. 19 (2008): 2245. doi:
10.1093/bicinformatics/btn425 Should the model be inconsistent, then the list of
unconserved metaboalites is computed using the algorithm described in section 3.2 of the
same publication.

100% —

Branch
90%

@ master_work
80%

0% @ origin/master_work

60%

Stoichiometric Consistency

50%
40%
30%
20%

10%
commit

Mass Balance

This will exclude biomass, exchange and demand reactions as they are unbalanced by
definition. It will also fail all reactions where at least one metabolite does not have a formula
defined. In steady state, for each metabolite the sum of influx equals the sum of efflux.
Hence the net masses of both sides of any model reaction have to be equal. Reactions
where at least one metabolite does not have a formula are not considered to be balanced,
even though the remaining metabolites participating in the reaction might be.
Implementation: For each reaction that isn't a boundary or biomass reaction check if each
metabolite has a non-zero elements attribute and if so calculate if the overall element
balance of reactants and products is equal to zero.

100%

Branch
0%

@ master_work

Mass Balance

B80%
@ origin/master_work

70%
60%
50%
40%
30%

20%

10%

commit

Charge Balance

This will exclude biomass, exchange and demand reactions as they are unbalanced by
definition. It will also fail all reactions where at least one metabolite does not have a charge
defined. In steady state, for each metabolite the sum of influx equals the sum of efflux.
Hence the net charges of both sides of any model reaction have to be equal. Reactions
where at least one metabolite does not have a charge are not considered to be balanced,
even though the remaining metabolites participating in the reaction might be.
Implementation: For each reaction that isn't a boundary or biomass reaction check if each
metabolite has a non-zero charge attribute and if so calculate if the overall sum of charges
of reactants and products is equal to zero.

A

100% - o E—

g Branch
0% 2

@® master_wark
80% E ® -

e

O @ origin/master_work

70%

~

Specific Section

Covers general statistics and specific aspects of a metabolic network that are not universally
applicable. See readme for more details.

SBML
SBML Level and Version

This test reports if the model file is represented in the latest edition (level) of the Systems
Biology Markup Language (SBML) which is Level 3, and at least version 1. Implementation:
The level and version are parsed directly from the SBML document.

Branch
@ master_work

@ origin/master_work

SBML Level and Version

commit

FBC enabled

The Flux Balance Constraints (FBC) Package extends SBML with structured and semantic
descriptions for domain-specific model components such as flux bounds, multiple linear
objective functions, gene-protein-reaction associations, metabolite chemical formulas,
charge and related annotations which are relevant for parameterized GEMs and FBA
models. The SBML and constraint-based modeling communities collaboratively develop
this package and update it based on user input. Implementation: Parse the state of the FBC
plugin from the SBML document.

Branch

@ master_work

FBC enabled

@ origin/master_work

commit

Basic Information
Model Identifier

The MIRIAM guidelines require a model to be identified via an ID. Further, the ID will be
displayed on the memote snapshot report, which helps to distinguish the output clearly.
Implementation: Check if the cobra.Model object has a non-empty “id" attribute, this value
is parsed from the "id" attribute of the <model> tag in the SBML file e.g. <model
fbe:strict="true" id="iJO1366">.

Branch

@ master_work

Model Identifier

@ origin/master_work

Salmo_salar

commit

Total Metabolites

80%
To be useful a metabolic model should consist at least of a few metabolites that are
s0% converted by reactions. This test simply checks I there are more than zero metabolites.
40% Implementation: Check if the cobra.Model object has non-empty “metabolites” attribute,
this list is populated from the list of shml:listOfSpecies which should contain at least one
30% sbml:species.
20%
10% 7
o
0% b
commit GO0 'E Branch
H
Metabolite Connectivity ~ £ @ master_work
s 5 B
Disconnected metabolites are not part of any reaction in the madel. They are most likely = @ origin/master_work
left-over from the reconstruction process, but may also peint to network and knowledge 00
gaps. Implementation: Check for any metabolites of the cobra.Model abject with emtpy
reaction attribute.
300
A
200
100% .
= Branch
0% § 100
§ @ master_work
80% O -
E 0
0% 8 @ origin/master_work commit
%
B0 = Total Reactions
50%

To be useful a metabolic model should consist at least of a few reactions. This test simply
40% checks if there are more than zero reactions. Implementation: Check if the cobra.Model
object has non-empty "reactions" attribute, this list is populated from the list of

a0 sbml:listOfReactions which should contain at least one sbml:reaction.
20%
10% A
0% 1.2k g Bi
commit E=] ranch
1k §
Unbounded Flux In Default Medium ~ 1® g @ master work
k]
A large fraction of model reactions able to carry unlimited flux under default conditions 900 @ origin/master_work
indicates problems with reaction directionality, missing cofactors, incorrectly defined 800
transport reactions and more. Implementation: Without changing the default constraints run 700
flux variability analysis. From the FVA results identify those reactions that carry flux equal to o0
the model's maximal or minimal flux.
500
200
A
300
100% ¢
2 Branch 200
so% B 100
£ t k
aox 3 @ master_worl .
S it
0% 2 @ origin/master_work commi
k] Total Genes
60% T
- T A metabolic model can still be a useful tool without any genes, however there are certain
g methods which rely on the presence of genes and, more importantly, the corresponding
% 5 gene-protein-reaction rules. This test requires that there is at least one gene defined.
0% Implementation: Check If the cobra.Model object has non-empty "genes" attribute, this list
is populated from the list of foc:listOfGeneProducts which should contain at least one
20% fbc:geneProduct.
10%
A
0%
commit 1.6k 2
s Branch
1.4k %
Annotation - Metabolites & @ master work
- 12k @ origin/master_work

Presence of Metabolite Annotation

This test checks if any annotations at all are present in the SBML annotations field for each

metabolite, irrespective of the type of annotation i.e. specific database cross-references, 800
ontology terms, additional information. For this test to pass the model is expected to have
metabolites and each of them should have some form of annotation. Implementation: Check 600
if the annotation attribute of each cobra.Metabolite object of the model is unset or empty.
400
7 200
100% ¢ —
= Branch o
90% B commit
£ @ master_work
80% E] Total Compartments
0% 2 @ origin/master_work
£ While simplified metabolic models may be perfectly viable, generally across the tree of life
50% ?ﬁ organisms contain at least one distinct compartment: the cytosol or cytoplasm. In the case
s 8 of prokaryotes there is usually a periplasm, and eurkaryotes are more complex. In addition
g to the internal compartment, a metabolic model also reflects the extracellular environment
0% i.e. the medium/ metabolic context in which the modelled cells grow. Hence, in total, at least
two compartments can be expected from a metabolic model. Implementation: Check if the
a0% cobra.Model object has a non-empty "compartments" attribute, this list is populated from
20% the list of sbml:listOfCompartments which should contain at least two sbml:compartment
elements.
10%
0% A

commit

Metabolite Annotations Per Database Info A p Branch

@ master_work
Specific database cross-references are paramount to mapping information. To provide
references to as many databases as possible helps to make the metabolic model more
accessible to other researchers. This does not only facilitate the use of a model in a broad
array of computational pipelines, it also promotes the metabolic model itself to become an
organism-specific knowledge base. For this test to pass, each metabolite annotation should
contain cross-references to a number of databases. The currently selection is listed in 2
‘annotation.py’, but an ongeing discussion can be found at
https://github.com/opencobra/memote/issues/332. For each database this test checks for
the presence of its corresponding namespace ID to comply with the MIRIAM guidelines i.e.
they have to match those defined on https://identifiers.org/. Since each database is quite
different and some potentially incomplete, it may not be feasible to achieve 100% coverage
for each of them. Generally it should be possible, however, to obtain cross-references to at

@ origin/master_work

Total Compartments

least one of the databases for all metabolites consistently. Implementation: Gheck if the o commit
keys of the annotation attribute of each cobra.Metabolite of the model match with a
selection of common biochemical databases. The annotation attribute of cobrapy Metabolic Coverage

components is a dictionary of key:value pairs.
The degree of metabolic coverage indicates the modeling detall of a given reconstruction

.) calculated by dividing the total amount of reactions by the amount of genes. Models with a
bigg.metabolite "high level of modeling detail have ratios >1, and models with a low level of detail have
ratios <1. This difference arises as models with basic or Intermediate levels of detall are

A
assumed to include many reactions in which several gene products and their enzymatic
100% o . . . iy
& Branch transformations are ‘lumped’. Implementation: Divides the amount reactions by the amount
0% £ of genes. Raises an error if the model does not contain either reactions or genes.
0% L . master_wark
5
o
0% E @ origin/master_work 7
ko] @
so% 2 & Branch
£ 8
Q
50% £ 9 @ master_work
2 5
40% g % @ origin/master_work
30% =
20%
10%
0%
commit
biocyc A
A
100% o it
8 Branch commi
0% £
0% S . master_work
5
o - .
o & @ orgivmastar_ work Metabolite Information
2 . .
0% E Unique Metabolites
s0s 8 Metabolites may be transported into different compartments, which means that in a
E compartimentalized model the number of metabolites may be much higher than in a model
40% K with no compartments. This test counts only one occurrence of each metabolite and returns
0% this as the number of unique metabolites. The test expects that the model is

compartimentalized, and thus, that the number of unique metabolites is generally lower than
20% the total number of metabolites. Implementation: Reduce the list of metabolites to a unique
set by removing the compartment tag. The cobrapy SBML parser adds compartment tags

10%
to each metabolite 1D.

commit

chebi
350

Branch

100% 00 . master_work
Branch

250 @ origin/master_work

Unigue Metabolites

@ master_work

@ origin/master_work 200

150

100

Metabolite Annotations Per Database

50

commit

0% Duplicate Metabolites in Identical Compartments
commit

The main reason for having this test is to help cleaning up merged models or models from
hmdb automated reconstruction pipelines as these are prone to having identical metabolites from
different namespaces (hence different 1Ds). This test therefore expects that every metabolite

4 in any particular compartment has unique inchikey values. Implementation: Identifies
Ry Branch duplicate metabolites in each compartment by determining if any two metabolites have
rane identical InChl-key annotations. For instance, this function would find compounds with IDs
@ master work ATP1 and ATP2 in the cytoselic compartment, with both having the same InChl annotations.

. origin/master_work g

Branch

@ master work

Aetabolite Annotations Per Database

‘ompartments

inchi

100%

inchikey

100%

kegg.compound

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

metanetx.chemical

100%

90%

B0%

0%

60%

50%

40%

30%

20%

10%

pubchem.compound

© B
s 3
® R

Metabolite Annotations Per Database Metabolite Annotations Per Database Metabolite Annotations Per Database

Metabolite Annotations Per Database

Jatabase

commit

commit

commit

-8

commit

commit

Branch
@ master_work

@ origin/master_work

Branch
. master_work

@ origin/master_work

Branch
. master_work

@ origin/master_work

Branch
. master_wark

@ origin/master_work

Branch

@ origin/master_work

Duplicate Metabalites in Identical C

commit

Metabolites without Charge

To be able to ensure that reactions are charge-balanced, all model metabolites ought to be
provided with a charge. Since it may be difficult to obtain charges for certain metabolites
this test serves as a mere report. Models can still be stoichiometrically consistent even
when charge information is not defined for each metabolite. Implementation: Check if each
cobra.Metabolite has a non-empty "charge" attribute. This attribute is set by the parser if
there is an fbc:charge attribute for the corresponding species in the SBML.

Branch
@ master_work

@ origin/master_work

Metabolites without Charge

commit

Metabolites without Formula

To be able to ensure that reactions are mass-balanced, all model metabolites ought to be
provided with a chemical formula. Since it may be difficult to obtain formulas for certain
metabolites this test serves as a mere report. Models can still be stoichiometrically
consistent even when chemical formulas are not defined for each metabolite.
Implementation: Check if each cobra.Metabolite has a non-empty “formula” attribute. This
attribute is set by the parser if there is an fbc:chemicalFormula attribute for the
corresponding species in the SBML.

Branch
@ master_work

@ origin/master_work

Metabolites without Formula

commit

Medium Components

This test checks all boundary reactions in the model that permit flux towards creating a
metabolite, and reports those metabolites. This test does not have any mandatory 'pass’
criteria. Implementation: Identify the metabolite IDs of each reaction in the method
cobra.Model.medium. Model.medium returns exchange reactions whose bounds permit the
uptake of metabolites.

60 Branch

55
master_work
50 [] A

45 . origin/master_work

Medium Components

40

35

30

25

20

W master_work 0

s E commit
70% g . origin/master_work
2
60% E . .
x5 Reaction Information
0% % Purely Metabolic Reactions
@
0% = If a reaction is neither a transport reaction, a biomass reaction nor a boundary reaction, it is

counted as a purely metabolic reaction. This test requires the presence of metabolite
20% formula to be able to identify transport reactions. This test is passed when the model
contains at least one purely metabolic reaction i.e. a conversion of one metabolite into

10%
another. Implementation: From the list of all reactions, those that are boundary, transport
0% - and biomass reactions are removed and the remainder assumed to be pure metabolic
commit reactions. Boundary reactions are identified using the attribute cobra.Model.boundary.
reactome ~ Please read the description of "Transport Reactions” and "Biomass Reaction Identified" to
learn how they are identified.
A
100% o A
2 Branch
g 400 4 —
o @ master work % Branch
& 3s0
g @ origin/master_work g © master_work
= 5
‘E 300 ‘% @ origin/master_work
ém 250 i
£ z
2 &
£ 200
=
150
100
50
0%
commit
0
seed.compound . sommit
A Purely Metabolic Reactions with Constraints
100% - o Branch If a reaction is neither a transport reaction, a biomass reaction nor a boundary reaction, It is
g ranc counted as a purely metabolic reaction. This test requires the presence of metabolite
& @ master_work formula to be able to identify transport reactions. This test simply reports the number of
& purely metabolic reactions that have fixed constraints and does not have any mandatory
g @ origin/master_work ‘pass’ criteria. Implementation: From the pool of pure metabolic reactions identify reactions
g which are constrained to values other than the model's minimal or maximal possible
£ bounds.
:
]
] A
E
2
—E Branch
2
5 . master_work
£
E @ originvmaster work
0% 8
commit |
8
(3
o
Metabolite Annotation Conformity Per Database Info ~ 2
£
To identify databases and the identifiers belonging to them, computational tools rely on the f,
presence of specific patterns. Only when these patterns can be identified consistently is an E

1D truly machine-readable. This test checks if the database cross-references in metabolite

annotations conform to patterns defined according to the MIRIAM guidelines, i.e. matching

those that are defined at https://identifiers.org/. The required formats, i.e., regex patterns

are further outlined in “annotation.py’. This test does not carry out a web query for the 0
composed URI, it merely controls that the regex patterns match the identifiers.
Implementation: For those metabolites whose annotation keys match any of the tested
databases, check if the corresponding values match the identifier pattern of each database.

commit

Transport Reactions

Cellular metabolism in any organism usually invelves the transpert of metabolites across a
A lipid bi-layer. This test reports how many of these reactions, which transports metabolites
from one compartment to another, are present in the model, as at least one transport
A reaction must be present for cells to take up nutrients and/or excrete waste.

Implementation: A transport reaction is defined as follows: 1. It contains metabolites from at
Branch least 2 compartments and 2. at least 1 metabolite undergoes no chemical reaction, i.e., the

formula and/or annotation stays the same on both sides of the equation. A notable
@ master_work exception is transport via PTS, which also contains the following restriction: 3. The
transported metabolite(s) are transported into a compartment through the exchange of a
phosphate. An example of transport via PTS would be pepi(c) + glucose(e) -> glucose-6-
phosphate(c) + pyr(c) Reactions similar to transport via PTS (referred to as "modified
transport reactions”) follow a similar pattern: A{x) + B-R(y) -> A-R(y) + B(y) Such modified
transport reactions can be detected, but only when the formula is defined for all metabolites
in a particular reaction. If this is not the case, transport reactions are identified through
annotations, which cannot detect modified transport reactions.

bigg.metabolite

100%

@ origin/master_work

Metabolite Annotation Conformity Per Database

A
800 4
2
s Branch
8
0% : o0 §
commit d @ master_work
o
: 2
biocyc N 60 & @ origin/master_work
o
£
A 500
100%
400

Branch

Jatabase

s W master_work suu
a

-E‘ . origin/master_work 200

£

g 100

(5]

c

S

g o ;

& commit

£

<

P . . .

= Transport Reactions with Constraints

L

§ Cellular metabolism in any organism usually involves the transport of metabolites across a

lipid bi-layer. Hence, this test reports how many of these reactions, which transports
metabolites from one compartment to another, have fixed constraints. This test does not
0% - have any mandatory ‘pass’ criteria. Implementation: Please refer to "Transport Reactions”
oommit for details on how memote identifies transport reactions. From the pool of transport
reactions identify reactions which are constrained to values other than the model's median

chebi A~
lower and upper bounds.

100%
Branch

@ master_work Branch

@ origin/master work @ master_work

@ origin/master_work

Metabolite Annotation Conformity Per Database
Transport Reactions with Constraints

commit

hmdb ~ commit

A Thermodynamic Reversibility of Purely Metabolic Reactions

100% If a reaction is neither a transport reaction, a biomass reaction nor a boundary reaction, it is
Branch counted as a purely metabolic reaction. This test checks If the reversibility attribute of each
reaction agrees with a thermodynamics-based calculation of reversibility. Implementation:
To determine reversibility we calculate the reversibility index In_gamma (natural logarithm of
@ origin/master_work gamma) of each reaction using the eQuilibrator API. We consider reactions, whose
reactants’ concentrations would need to change by more than three orders of magnitude for
the reaction flux to reverse direction, to be likely candidates of irreversible reactions. This
assume default concentrations around 100 pM (~3 pM—3 mMjatpH=7,1=0.1Mand T =
298 K. The corresponding reversibility index is approximately 7. For further information on
the thermodynamic and implementation details please refer to
https://doi.org/10.1093/bioinformatics/bts317 and https://pypi.org/project/equilibrator-api/.
Please note that currently eQuilibrator can only determine the reversibility index for
chemically and redox balanced reactions whose metabolites can be mapped to KEGG
compound identifiers (e.g. CO0001). In addition to not being mappable to KEGG or the
reaction not being balanced, there is a possibility that the metabolite cannot be broken
0% - down into chemical groups which is essential for the calculation of Gibbs energy using
commit group contributions. This test collects each erroneous reaction and returns them as a tuple
~ containing each list in the following order: 1. Reactions with reversibility index 2. Reactions
with incomplete mapping to KEGG 3. Reactions with metabolites that are problematic
A during calculation 4. Chemically or redox unbalanced Reactions (after mapping to KEGG)
This test simply reports the number of reversible reactions that, according to the reversibility
Branch index, are likely to be irreversible.

@ master_work

Metabolite Annotation Conformity Per Database

inchi

100%

@ master_work

@ origin/master_work
Branch

@ master_work

. origin/master_work

Metabolite Annotation Conformity Per Database

commit

inchikey

Thermodynamic Reversibility of Purely Metabolic Reactions

100% commit

Branch
Reactions With Partially Identical Annotations

. master_work
Identify reactions in a pairwise manner that are annotated with identical database

@ origin/master_work references. This does not take into account a reaction's directionality or compartment. The
main reason for having this test is to help cleaning up merged models or models from
automated reconstruction pipelines as these are prone to having identical reactions with
identifiers from different namespaces. It could also be useful to identify a 'type' of reaction
that occurs in several compartments. Implementation: Identify duplicate reactions globally
by checking if any two metabolic reactions have the same entries in their annotation
attributes. The heuristic looks at annotations with the keys 'metanetx.reaction”,
"kegg.reaction”, "brenda", "rhea”, "biocyc”, “bigg.reaction” only.

Metabolite Annotation Conformity Per Database

s

commit Branch

kegg.compound @ master_work
@ origin/master_work

100%

Branch

@ master_work

. origin/master_work

Reactions With Partially Identical Annotatior

commit

Duplicate Reactions

Metabolite Annotation Conformity Per Database

Identify reactions in a pairwise manner that use the same set of metabolites including
potentially duplicate metabolites. Moreover, it will take a reaction’s directionality and

. commit compartment into account. The main reason for having this test is to help cleaning up
merged models or models from automated reconstruction pipelines as these are prone to
metanetx.chemical N having identical reactions with identifiers from different namespaces. Implementation:
g Compare reactions in a pairwise manner. For each reaction, the metabolite annotations are
checked for a description of the structure (via InChl and InChlKey).If they exist, substrates
100% - o and products as well as the stoichiometries of any reaction pair are compared. Only
% Branch reactions where the substrates, products, stoichiometry and reversibility are identical are
8 @ master_work considered to be duplicates. This test will not be able to identify duplicate reactions if there
& are no structure annotations. Further, it will report reactions with differing bounds as equal if
-E‘ @ origin/master_work they otherwise match the above conditions.
8
]
o A
§
E @
'E] Branch
5 k=]
2 g . master_wark
k] @ =
k|]
£ = @ origin/master_work
= 5
a
0%
commit
pubchem.compound ~
A
100% o
E Branch
8
o
S @ master_work
& commit
z @ origin/master_work
g Reactions With Identical Genes
E
=]
© Identify reactions in a pairwise manner that use identical sets of genes. It does "not* take
= into account a reaction's directionality, compartment, metabolites or annotations. The main
'E reason for having this test is to help cleaning up merged models or models from automated
5 reconstruction pipelines as these are prone to having identical reactions with identifiers from
= different namespaces. Implementation: Compare reactions in a pairwise manner and group
fé reactions whose genes are identical. Skip reactions with missing genes.
=
A
0% - ”
commit :I:: Branch
]
. ~ -
reactome E . master_work
A g
= @ origin/master_work
100% o =
2 Branch @
£ =]
Z B
- @ master_work g
& o
-E‘ @ origin/master_work
kel
5
o]
c
s
;
E-4
&
ﬁ commit
g
=
Gene-Protein-Reaction (GPR) Associations
0%
commit Reactions without GPR
seed.compound " Gene-Protein-Reaction rules express which gene has what function. The presence of this
annotation is important to justify the existence of reactions in the model, and is required to
7 conduct in silico gene deletion studies. However, reactions without GPR may also be valid:
100% Spontaneous reactions, or known reactions with yet undiscovered genes likely lack GPR.

s Implementation: Check if each cobra.Reaction has a non-empty "gene_reaction_rule”
@ master_work attribute, which is set by the parser if there is an fbc:geneProductAssociation defined for the
- corresponding reaction in the SBML.

@ origin/master_work

tion Conformity Per Database

o
160 o ‘\ Branch

£ 3
c o
£ 40 £ @ master_work
-] H
= 2
2 120§ @ origin/master_work
£ g
= 100 &
80
0% :
commit
60
Uniform Metabolite Identifier Namespace .
40
In well-annotated models it is no problem if the pool of main identifiers for metabolites
consists of identifiers from several databases. However, in models that lack appropriate 20
annotations, it may hamper the ability of other researchers to use it. Running the model
through a computational pipeline may be difficult without first consolidating the namespace. 0 commit
Hence, this test checks if the main metabolite identifiers can be attributed to one single
namespace based on the regex patterns defined at https:/identifiers.org/ Implementation: Fraction of Transport Reactions without GPR
Generate a table with each column corresponding to one database from the selection and
each row to a metabolite identifier. A Boolean entry indicates whether the identifier matches As it is hard to identify the exact transport processes within a cell, transport reactions are
the regular expression of the corresponding database. Since the Biocyc pattern matches often added purely for modeling purposes. Highlighting where assumptions have been
broadly, we assume that any instance of an identifier matching to Biocyc AND any other made versus where there is proof may help direct the efforts to improve transport and
database pattern is a false positive match for Biocyc and thus set it to “false”. Sum the transport energetics of the tested metabolic model. However, transport reactions without
positive matches for each database and assume that the largest set is the 'main’ identifier GPR may also be valid: Diffusion, or known reactions with yet undiscovered genes likely
namespace. lack GPR. Implementation: Check which cobra.Reactions classified as transport reactions
have a non-empty "gene_reaction_rule" attribute.
A
100% g A
g Branch .
] & Branch
3 @ master_work 5
-4 =]
= £ @ master_work
= @ origin/master_work z
E 5 @ origin/master_work
- k<]
2]
& [4
‘ﬂ% k=4
z 2
z 2
; z
T G
2 c
S
3
o
0%
commit
commit
Annotation - Reactions Enzyme Complexes
P of Reaction A ! A Based on the gene-protein-reaction (GPR) rules, it is possible to infer whether a reaction is
resence of Reaction Annotation catalyzed by a single gene product, isozymes or by a heteromeric protein complex. This test
This test checks if any annotations at all are present in the SBML annotations field for each checks that at least one such heteromeric protein complex is defined in any GPR of the
reaction, irrespective of the type of annotation i.e. specific database cross-references, model. For S. cerevisiae it could be shown that "essential proteins tend to [cluster] together
ontology terms, additional information. For this test to pass the model is expected to have in essential complexes” (https://dol.org/10.1074%2Fmcp.MB00490-MCGP200). This might
reactions and each of them should have some form of annotation. Implementation: Check if also be a relevant metric for other organisms. Implementation: Identify GPRs which contain
the annotation attribute of each cobra.Reaction object of the model is unset or empty. at least one logical AND that combines two different gene products.
A A
100% ¢ g
2 Branch] Branch
0% = 8
g 5
£ @ master_work 8 @ master_work
BO0% ¢ 2
Q
T i n/mast k
70% E . origin/master_work E @ origin/master_worl
o w
60% O
@
g
50%
g
&
40%
30%
20%
10%
o
o commit commit
Reaction Annotations Per Database Info A
Biomass

Specific database cross-references are paramount to mapping information. To provide

references to as many databases as possible helps to make the metabolic model more Biomass Reactions Identified
accessible to other researchers. This does not only facilitate the use of a model in a broad
array of computational pipelines, it also promotes the metabolic model itself to become an
organism-specific knowledge base. For this test to pass, each reaction annotation should
contain cross-references to a number of databases. The currently selection is listed in
‘annotation.py’, but an ongoing discussion can be found at
httpsz//github.com/opencobra/memote/issues/332. For each database this test checks for
the presence of its corresponding namespace ID to comply with the MIRIAM guidelines i.e.
they have to match those defined on https://identifiers.org/. Since each database is quite
different and some potentially incomplete, it may not be feasible to achieve 100% coverage
for each of them. Generally it should be possible, however, to obtain cross-references to at
least one of the databases for all reactions consistently. Implementation: Check if the keys
of the annotation attribute of each cobra.Reaction of the model match with a selection of
common biochemical databases. The annotation attribute of cobrapy components is a
dictionary of key:value pairs.

The biomass composition aka biomass formulation aka biomass reaction is a common
pseudo-reaction accounting for biomass synthesis in constraints-based modelling. It
describes the stoichiometry of intracellular compounds that are required for cell growth.
While this reaction may not be relevant to modeling the metabolism of higher organisms, it
is essential for single-cell modeling. Implementation: Identifies possible biomass reactions
using two principal steps: 1. Return reactions that include the SBO annotation
"SB0:0000629" for biomass. If no reactions can be identifies this way: 1. Look for the
“buzzwords™ "biomass”, “growth" and "bof" in reaction IDs. 2. Look for metabolite IDs or
names that contain the “buzzword” "biomass” and obtain the set of reactions they are
involved in. 3. Remove boundary reactions from this set. 4. Return the union of reactions
that match the buzzwords and of the reactions that metabolites are involved in that match
the buzzword. This test checks if at least one biomass reaction is present.

biga.reaction M

ied

100%
90%
B0%
0%
60%
50%
40%
30%
20%

10%

biocyc

100%

brenda

100%

ec-code

100%
90%
80%
70%
B60%
50%
40%
30%
20%

10%

kegg.reaction

100%

90%

80%

70%

60%

50%

40%

Reaction Annotations Per Database Reaction Annotations Per Database Reaction Annotations Per Database Reaction Annotations Per Database

Reaction Annotations Per Database

commit

commit

commit

commit

Branch
@ master_work

@ origin/master_work

Branch
@ master_work

. origin/master_work

Branch
@ master_work

@ origin/master_work

Branch
@ master work

@ origin/master_work

Branch
. master_work

@ origin/master_work

Brancn

@ master_work

. origin/master_work

Biornass Reactions Identif

commit

Biomass Consistency

This test only yields sensible results if all biomass precursor metabolites have chemical
formulas assigned to them. The molecular weight of the biomass reaction in metabolic
models is defined to be equal to 1 g/mmol. Conforming to this is essential in order to be
able to reliably calculate growth yields, to cross-compare models, and to obtain valid
predictions when simulating microbial consortia. A deviation from 1 - 1E-03to 1 + 1E-06 is
accepted. Implementation: Multiplies the coefficient of each metabolite of the biomass
reaction with its molecular weight calculated from the formula, then divides the overall sum
of all the products by 1000.

Branch

0.9 . master_wark

08 @ origin/master_work

Biomass Consistency

07

06

0.5

0.4

0.3

0.z

o1

commit

Biomass Production In Default Medium

Using flux balance analysis this test optimizes the model for growth in the medium that is
set by default. Any non-zero growth rate is accepted to pass this test. Implementation:
Calculate the solution of FBA with the biomass reaction set as objective function and the
model's default constraints.

1o Branch

100
@ master_work
80

a0 @ origin/master_work
70
60
50

40

Biomass Production In Default Medium

30

20

commit

Unrealistic Growth Rate In Default Medium

The growth rate of a metabolic model should not be faster than that of the fastest growing
organism. This is based on a doubling time of Vibrio natriegens which was reported to be
14.8 minutes by: Henry H. Lee, Nili Ostrov, Brandon G. Wong, Michaela A. Gold, Ahmad S.
Khalil, George M. Church in
https://www.biorxiv.org/content/bicrxiv/early/2016/06/12/058487.iull.pdf The calculation
In(2)/(14.8/60) ~ 2.81 yields the corresponding growth rate. Implementation: Calculate the
solution of FBA with the biomass reaction set as objective function and a model's default
constraints. Then check if the objective value is higher than 2.81.

Branch
@ master_work

@ origin/master_work

listic Growth Rate In Default Medium

30% »

20%
10%
0%
commit
A
100% o
7
E Branch
90% E
[=]
master_wark
BO% B [] -
o
2 .
70% § @ origin/master_work
E
60% E
50% 5
B
o
0% 2
30%
20%
10%
0% :
commit
reactome
A
100% o
]
2 Branch
[}
k|
% @ master_work
a
g .
5 @ origin/master_work
=
B
z
c
8
T
o
i
[:4
0% ;
commit
rhea
A
100% -
2 Branch
[
)=}
< @ master_work
&
@
5 @ origin/master_work
£
o]
B
£
£
=]
B
o
i
[is
0%
commit
seed.reaction
A
100% o
@
2 Branch
[
T
% @ master work
a
g @ origin/master_work
g
B
2
c
=]
B
o
i
[i4
0%
commit
Reaction Annotation Conformity Per Database Info

To identify databases and the identifiers belonging to them, computational tools rely on the
presence of specific patterns. Only when these patterns can be identified consistently is an
ID truly machine-readable. This test checks if the database cross-references in reaction

annotations conform to patterns defined according to the MIRIAM guidelines, i.e. matching

Unrea

commit

Biomass Production In Complete Medium

Using flux balance analysis this test optimizes the model for growth using a complete
medium i.e. unconstrained boundary reactions. Any non-zero growth rate is accepted to
pass this test. Implementation: Calculate the solution of FBA with the biomass reaction set
as objective function and after removing any constraints from all boundary reactions.

110 Branch

100
@ master_work
20

a0 . origin/master_work
70
60
50

40

Biomass Production In Complete Medium

30

20

commit

Blocked Biomass Precursors In Default Medium

Using flux balance analysis this test optimizes for the production of each metabolite that is
a substrate of the biomass reaction with the exception of atp and h2o. Optimizations are
carried out using the default conditions. This is useful when reconstructing the precursor
biosynthesis pathways of a metabolic model. To pass this test, the model should be able to
synthesis all the precursors. Implementation: For each biomass precursor (except ATP and
H20) add a temporary demand reaction, then carry out FBA with this reaction as the
objective. Collect all metabolites for which this optimization is equal to zero or infeasible.

A

Branch
@ master_work

. origin/master_work

Blocked Biomass Precursors In Default Medium

commit

Blocked Biomass Precursors In Complete Medium

Using flux balance analysis this test optimizes for the production of each metabolite that is
a substrate of the biomass reaction with the exception of atp and h2o. Optimizations are
carried out using a complete medium I.e. unconstrained boundary reactions. This is useful
when reconstructing the precursor biosynthesis pathways of a metabolic model. To pass
this test, the model should be able to synthesis all the precursors. Implementation: First
remove any constraints from all boundary reactions, then for each biomass precursor
(except ATP and H20) add a temporary demand reaction, then carry out FBA with this
reaction as the objective. Collect all metabolites for which this optimization is below or
equal to zero or is infeasible.

Branch
. master_work

@ originvmaster work

Blocked Biomass Precursors In Complete Medium

commit

Ratio of Direct Metabolites in Biomass Reaction

those that are defined at https://identifiers.org/. The required formats, i.e., regex patterns
are further outlined in “annotation.py’. This test does not carry out a web query for the
composed URL, it merely controls that the regex patterns match the identifiers.
Implementation: For those reaction whose annotation keys match any of the tested
databases, check If the corresponding values match the identifier pattern of each database.

bigg.reaction

100%

Branch
@ master_work

@ origin/master_work

Reaction Annotation Conformity Per Database

0% _
commit
biocyc
A
100% - o
a
& Branch
]
kil
L . master_wark
d
-E @ origin/master_work
]
E
Q
o
£
S
:
3
<
c
o
B
]
@
0% -
commit
brenda
A
100% o
a
g Branch
]
©
‘; @ master_work
a
-E‘ . origin/master_work
]
E
Q
(5]
c
S
:
£
<
c
o
B
g
@
0% _
commit
ec-code
A
100% o _
@
g Branch
90% &
. °
master_work
B0% & -
a
2
0% £ @ origin/master_work
£
60% ©&
O
c
50% 2
0% £
<
<
0% 2
]
g
20%
10%
0%
commit

kegg.reaction

100%

Branch

. master_work

ir Database

Some blomass precursors are taken from the media and directly consumed by the biomass
reaction. It might not be a problem for ions or metabolites for which the organism in
question is auxotrophic. However, too many of these metabolites may be artifacts of
automated gap-filling procedures. Many gap-filling algorithms attempt to minimise the
number of added reactions. This can lead to many biomass precursors being "direct
metabolites”. This test reports the ratio of direct metabolites to the total amount of
precursors to a given biomass reaction. It specifically looks for metabolites that are only in
either exchange, transport or biomass reactions. Bear in mind that this may lead to false
positives in heavily compartimentalized models. To pass this test, the ratio of direct
metabolites should be less than 50% of all biomass precursors. This is an arbitrary
threshold but it takes into account that while certain ions do not serve a relevant metabolic
function, it may still be important to include them in the biomass reaction to account for the
impact of their uptake energy costs. This threshold is subject to change in the future.
Implementation: Identify biomass precursors (excluding ATP and H+), identify cytosol and
extracellular compartment from an internal mapping table. Then, determine which
precursors is only involved in transport, boundary and biomass reactions. Using FBA with
the biomass function as the objective then determine whether the metabolite is taken up
only to be consumed by the biomass reaction.

Branch
@ master_work

@ originvmaster work

Ratio of Direct Metabolites in Biomass Reaction

commit

Number of Missing Essential Biomass Precursors

There are universal components of life that make up the biomass of all known organisms.
These include all proteinogenic amino acids, deoxy- and ribonucleotides, water and a range
of metabolic cofactors. This test reports the amount of biomass precursors that have been
reported to be essential constituents of the biomass equation. All of the following
precursors need to be included in the biomass reaction to pass the test: Aminoacids:
trp_L.cys L his_L.tyr L, met L phe L,ser L ,pro_L,asp_L,thr L gin_L,
glu_L,ile_L,arg_L,lys_L,val_L, leu_L,ala_L,gly, asn_L DNA: datp, dctp, dttp, dgtp
RNA: atp, ctp, utp, gtp Cofactors: nad, nadp, amet, fad, pydx5p, coa, thmpp, fmn and h2o
These metabolites were selected based on the results presented by
DOL:10.1016/.ymben.2016.12.002 Please note, that the authors also suggest to count C1
carriers (derivatives of tetrahydrofolate(B9) or tetrahydromethanopterin) as universal
cofactors. We have omitted these from this check because there are many individual
compounds that classify as G1 carriers, and it is not clear a priori which one should be
preferred. In a future update, we may consider identifying these using a chemical ontology.
Implementation: Determine whether the model employs a lumped or split biomass reaction.
Then, using an internal mapping table, try to identify the above list of essential precursors in
list of precursor metabolites of either type of biomass reaction. List IDs in the models
namespace if the metabolite exists, else use the MetaNetX namespace if the metabolite
does not exist in the model. Identifies the cytosol from an internal mapping table, and
assumes that all precursors exist in that compartment.

Branch

@ master_work

@ origin/master_work

o
Number of Missing Essential Biomass Precursors

commit

Energy Metabolism

Non-Growth Associated Maintenance Reaction

The Non-Growth Associated Maintenance reaction (NGAM) is an ATP-hydrolysis reaction
added to metabolic models to represent energy expenses that the cell invests in continuous
processes independent of the growth rate. Memate tries to infer this reaction from a list of
buzzwords, and the stoichiometry and components of a simple ATP-hydrolysis reaction.
Implementation: From the list of all reactions that convert ATP to ADP select the reactions
that match the irreversible reaction "ATP + H20 -> ADP + HO4P + H+", whose metabolites
are situated within the main model compartment. The main model compartment is assumed
to be the cytosol, yet, if that cannot be identified, it is assumed to be the compartment with
the most metabolites. The resulting list of reactions is then filtered further by attempting to
match the reaction name with anv of the fallowina huzzwaords ('maintenance’. 'atnm’

metanetx.reaction

100%

reactome

100%

100%

seed.reaction

100%

Reaction Annotation Conformity Pe

Reaction Annotation Conformity Per Database Reaction Annotation Conformity Per Database Reaction Annotation Conformity Per Database

Reaction Annotation Conformity Per Database

commit

commit

commit

commit

commit

@ origin/master_work

Branch
. master_work

@ origin/master_work

Branch
. master_waork

@ origin/master_work

Branch
@ master_work

. origin/master_work

Branch
@ master_work

@ origin/master_work

‘requirement’, ‘ngam’, ‘non-growth', ‘associated’). If this is possible only the filtered
reactions are returned, if not the list is returned as is.

Branch
@ master_work

@ origin/master_work

Non-Growth Associated Maintenance Reaction

commit

Growth-associated Maintenance in Biomass Reaction

The growth-associated maintenance (GAM) term accounts for the energy in the form of ATP
that is required to synthesize macromolecules such as Proteins, DNA and RNA, and other
processes during growth. A GAM term is therefore a requirement for any well-defined
biomass reaction. There are different ways to implement this term depending on what kind
of experimental data is available and the preferred way of implementing the biomass
reaction: - Chemostat growth experiments yield a single GAM value representing the
required energy per gram of biomass (Figure 6 of [1]_). This can be implemented in a
lumped biomass reaction or in the final term of a split biomass reaction. - Experimentally
delineating or estimating the GAM requirements for each macromolecule separately is
possible, yet requires either data from multi-omics experiments [2]_ or detailed resources
[1]_ . respectively. Individual energy requirements can either be implemented in a split
biomass equation on the term for each macromolecule, or, on the basis of the biomass
composition, they can be summed into a single GAM value for growth and treated as
mentioned above. This test is only able to detect if a lumped biomass reaction or the final
term of a split biomass reaction contains this term. Hence, it will only detect the use of a
single GAM value as opposed to individual energy requirements of each macromolecule.
Both approaches, however, have its merits. Implementation: Determines the metabolite
identifiers of ATP, ADF, H20, HO4P and H+ based on an internal mapping table. Checks if
ATP and H20 are a subset of the reactants and ADP, HO4F and H+ a subset of the products
of the biomass reaction. References: .. [1] Thiele, 1., & Palsson, B. @. (2010, January). A
protacol for generating a high-quality genome-scale metabolic reconstruction. Nature
protocols. Nature Publishing Group. http://dol.org/10.1038/nprot.2009.203 .. [2] Hackett, S.
R., Zanotelli, V. R. T., Xu, W., Goya, J., Park, J. O., Perlman, D. H., Gibney, P. A., Botstein, D.,
Storey, J. D., Rabinowitz, J. D. (2010, January). Systems-level analysis of mechanisms
regulating yeast metabolic flux Science http://doi.org/10.1126/science.aaf2786

Branch
. master_work

@ origin/master work

falze

Growth-associated Maintenance in Biomass Reaction

commit

Number of Reversible Oxygen-Containing Reactions

The directionality of oxygen-producing/-consuming reactions affects the model's ability to
grow anaerobically i.e. create faux-anaerobic organisms. This test reports hew many of
these oxygen-containing reactions are reversible. This test does not have any mandatory
‘pass’ criteria. Implementation: First, find the metabolite representing atmospheric oxygen in
the model on the basis of an internal mapping table or by specifically locking for the formula
"02". Then, find all reactions that produce or consume oxygen and report those that are
reversible.

Branch

. master_work

@ origin/master work

imber of Reversible Oxygen-Containing Reactions

Uniform Reaction Identifier Namespace

In well-annotated models it is no problem if the pool of main identifiers for reactions
consists of identifiers from several databases. However, in models that lack appropriate
annotations, it may hamper the ability of other researchers to use it. Running the model
through a computational pipeline may be difficult without first consolidating the namespace.
Hence, this test checks if the main reaction identifiers can be attributed to one single
namespace based on the regex patterns defined at https:/identifiers.org/ Implementation:
Generate a pandas.DataFrame with each column corresponding to one database from the
selection and each row to the reaction ID. A boolean entry indicates whether the metabolite
ID matches the regex pattern of the corresponding database. Since the Biocyc pattern
matches gquite, assume that any instance of an identifier matching to Biocyc AND any other
DB pattern is a false positive match for Biocyc and then set the boolean to “false”. Sum the
positive matches for each database and assume that the largest set is the 'main’ identifier
namespace.

commit

Network Topology

Universally Blocked Reactions

Universally blocked reactions are reactions that during Flux Variability Analysis cannot carry
any flux while all model boundaries are open. Generally blocked reactions are caused by
network gaps, which can be attributed to scope or knowledge gaps. Implementation: Use
flux variability analysis (FVA) implemented in cobra.flux_analysis.find_blocked_reactions
with open_exchanges=True. Please refer to the cobrapy documentation for more
information: https://cobrapy.readthedocs.io/en/stable/autoapl/cobra/flux_analysis/
variability/index.htmk#cobra.flux_analysis.variability. find_blocked_reactions

100%

Branch Branch

@ master_work @ master_work

@ origin/master_work @ origin/master_work

=
Universally Blocked Reactions

Uniform Reaction Identifier Namespace

commit commit

Orphan Metabolites

Annotation - Genes
Orphans are metabolites that are only consumed but not produced by reactions in the

~ model. They may indicate the presence of network and knowledge gaps. Implementation:
Find orphan metabolites structurally by considering only reaction equations and reversibility.
FBA is not carried out.

Presence of Gene Annotation

This test checks if any annotations at all are present in the SBML annotations field
(extended by FBC package) for each gene product, irrespective of the type of annotation i.e.
specific database, cross-references, ontology terms, additional information. For this test to
pass the model is expected to have genes and each of them should have some form of
annotation. Implementation: Check if the annotation attribute of each cobra.Gene object of
the model is unset or empty.

Branch
@ master_work

. origin/master_work

Orphan Metabolites

100%
Branch
90%

. master_work
80%

0% @ origin/master_work

60%

Presence of Gene Annotation

50%

40%

30% commit

20% Dead-end Metabolites

10%
Dead-ends are metabolites that can only be produced but not consumed by reactions in the

0% i model. They may indicate the presence of network and knowledge gaps. Implementation:
ESHmmit Find dead-end metabolites structurally by considering only reaction equations and

reversibility. FBA is not carried out.
Gene Annotations Per Database Info ~

Specific database cross-references are paramount to mapping information. To provide
references to as many databases as possible helps to make the metabolic model more
accessible to other researchers. This does not only facilitate the use of a model in a broad
array of computational pipelines, it also promotes the metabolic model itself to become an
organism-specific knowledge base. For this test to pass, each gene annotation should
contain cross-references to a number of databases. The currently selection is listed in
‘annotation.py’, but an engoing discussion can be found at
https://github.com/opencobra/memote/issues/332. For each database this test checks for
the presence of its corresponding namespace ID to comply with the MIRIAM guidelines i.e.
they have to match those defined on https://identifiers.org/. Since each database is quite
different and some potentially incomplete, it may not be feasible to achieve 100% coverage
for each of them. Generally it should be possible, however, to obtain cross-references to at
least one of the databases for all gene products consistently. Implementation: Check if the
keys of the annotation attribute of each cobra.Gene of the model match with a selection of
common genome databases. The annotation attribute of cobrapy components is a
dictionary of key:value pairs.

Branch
. master_work

@ origin/master_work

Dead-end Metabolites

Q .
commit
asap A
Stoichiometrically Balanced Cycles
A
100% Stoichiometrically Balanced Cycles are artifacts of insufficiently constrained networks

resulting in reactions that can carry flux when all the boundaries have been closed.
Implementation: Close all model boundary reactions and then use flux variability analysis
(FVA) to identify reactions that carry flux.

Branch

. master_work

ns Per Database

@ origin/master work

ccds

100%

ecogene

100%

hprd

100%

Gene Annotatio

Gene Annotations Per Database Gene Annotations Per Database

Gene Annotations Per Database

kegg.genes

100%

Gene Annotations Per Database

commit

commit

commit

commit

commit

Branch
. master_work

@ origin/master_work

Branch
@ master_work

. origin/master_work

Branch
@ master_work

@ origin/master_work

Branch
@ master_work

@ origin/master_work

800
Branch

700
@ master_work

600 @ origin/master_work

500

400

Stoichiometrically Balanced Cycles

300

200

100

commit

Metabolite Production In Complete Medium

In complete medium, a model should be able to divert flux to every metabolite. This test
opens all the boundary reactions i.e. simulates a complete medium and checks if any
metabolite cannot be produced individually using flux balance analysis. Metabolites that
cannot be produced this way are likely orphan metabolites, downstream of reactions with
fixed constraints, or blocked by a cofactor imbalance. To pass this test all metabolites
should be producible. Implementation: Open all model boundary reactions, then for each
metabolite In the model add a boundary reaction and maximize it with FBA.

240
20 Branch
200 @ master_work
18 @ origin/master_work
160
140
120
100

&0

Metabolite Production In Complete Medium

60

40
20

commit

Metabolite Consumption In Complete Medium

In complete medium, a model should be able to divert flux from every metabolite. This test
opens all the boundary reactions i.e. simulates a complete medium and checks if any
metabolite cannot be consumed individually using flux balance analysis. Metabolites that
cannot be consumed this way are likely dead-end metabolites or upstream of reactions with
fixed constraints. To pass this test all metabolites should be consumable. Implementation:
Open all model boundary reactions, then for each metabolite in the model add a boundary
reaction and minimize it with FBA.

240
Branch
220
200 ® master_work
80 @ origin/master_work
160
140
120
100

80

60

Metabolite Consumption In Complete Medium

40
20

commit

Matrix Conditioning
Ratio Min/Max Non-Zero Coefficients

This test will return the absolute largest and smallest, non-zero coefficients of the
stoichiometric matrix. A large ratio of these values may point to potential numerical issues
when trying to solve different mathematical optimization problems such as flux-balance
analysis. To pass this test the ratio should not exceed 10/8. This threshold has been
selected based on experience, and is likely to be adapted when more data on solver
performance becomes available. Implementation: Compose the stoichiometric matrix, then
calculate absolute coefficients and lastly use the maximal value and minimal non-zero value
to calculate the ratio.

Branch

licients

nsuIyen e

100%
90%
80%
70%
60%
50%
40%
30%
20%

10%

ncbigi

100%

Gene Annotations Per Database

Gene Annotations Per Database

nchiprotein

100%

refseq

100%

uniprot

100%

Gene Annotations Per Database Gene Annotations Per Database

Gene Annotations Per Database

commit

commit

commit

commit

Branch
@ master_work

@ origin/master_work

Branch
. master_work

@ origin/master_work

Branch
@ master_work

. origin/master_work

Branch
. master_work

@ origin/master work

Branch
@ master_work

@ origin/master_work

@ master_work

@ origin/master_work

Ratio Min/Max Non-Zero Coefl

commit

Independent Conservation Relations

This test will return the number of conservation relations, i.e., conservation pools through
the left null space of the stoichiometric matrix. This test is not scored, as the dimension of
the left null space is system-specific. Implementation: Calculate the left null space, i.e., the
null space of the transposed stoichiometric matrix, using an algorithm based on the singular
value decomposition adapted from https://scipy.github.io/old-
wiki/pages/Cookbook/RankNullspace.html Then, return the estimated dimension of that null
space.

Branch

@ master_work

@ origin/master_work

Independent Conservation Relations

commit

Rank

The rank of the stoichiometric matrix is system specific. It is calculated using singular value
decomposition (SVD). Implementation: Compose the stoichiometric matrix, then estimate
the rank, i.e. the dimension of the column space, of a matrix. The algorithm used by this
function is based on the singular value decomposition of the matrix.

—

450

Rank

Branch

400
@ master_work

350 @ origin/master_work
300
250
200
150

100

50

commit

Degrees Of Freedom

The degrees of freedom of the stoichiometric matrix, i.e., the number of 'free variables' is
system specific and corresponds to the dimension of the (right) null space of the matrix.
Implementation: Compose the stoichiometric matrix, then calculate the dimensionality of
the null space using the rank-nullity theorem outlined by Alama, J. The Rank+Nullity
Theorem. Formalized Mathematics 15, (2007).

800
Branch
700
. master_work

600 @ origin/master work

Degrees Of Freedom

500

400

300

200

100

commit

Experimental Data Comparison
0%

commit

Gene Annotation Conformity Per Database Info ~

To identify databases and the identifiers belonging to them, computational tools rely on the
presence of specific patterns. Only when these patterns can be identified consistently is an
ID truly machine-readable. This test checks if the database cross-references in reaction
annotations conform to patterns defined according to the MIRIAM guidelines, i.e. matching
those that are defined at https://identifiers.org/. The required formats, i.e., regex patterns
are further outlined in “annotation.py’. This test does not carry out a web query for the
composed URI, it merely controls that the regex patterns match the identifiers.
Implementation: For those genes whose annotation keys match any of the tested
databases, check if the corresponding values match the identifier pattern of each database.

asap

100%

ccds

100%

ecogene

100%

hprd

100%

Gene Annotation Conformity Per Database Gene Annotation Conformity Per Database Gene Annotation Conformity Per Database

Gene Annotation Conformity Per Database

kegg.genes

100%

Annotation Conformity Per Database

Branch
. master_work

@ origin/master_work

commit
~
A
Branch
@ master_work
@ origin/master_work
commit
~
A
Branch
. master_work
@ origin/master_work
commit
-~
A
Branch
@ master_work
@ origin/master_work
commit
~

Branch
@ master_work

. origin/master_work

Gene

0% i
commit
ncbigene
100% o
a
= Branch
90%
& @ master_work
80% B
0% -E‘ @ origin/master_work
2
60% ©
(5]
1
50% é
40% 5
o
0% 5
@
20%
10%
0% i
commit
ncbigi
100% o
@
2 Branch
8
o
o @ master work
a
& origin/master_work
£ gl
£
15
=]
O
c
L
g
=
@
5
@
0%
commit
ncbiprotein
100% - o
@
kA Branch
£
o
e . master_work
d
' origin/master_wol
E‘ igin/mast; rk
£
£
Q
o
c
=]
g
2
@
g
@
0%
commit
refseq
100% - o
7
ki Branch
8
o
c @ master_work
<
E‘ @ origin/master_work
£
=
Q
(5]
c
S
g
<
@
g
Q
0% _
commit
uniprot
100% o
E Branch
8
o
[a] [

W s _wuis

. origin/master_work

Gene Annotation Conformity Per

commit

Annotation - SBO Terms

Metabolite General SBO Presence

The Systems Biology Ontology (SBO) allows researchers to annotate a model with terms
which indicate the intended function of its individual components. The available terms are
controlled and relational and can be viewed here http://www.ebl.ac.uk/sbo/main/tree.
Implementation: Check if each cobra.Metabolite has a non-zero "annotation” attribute that
contains the key “sbo".

100%
Branch
90%

. master_work
BO%

0% @ origin/master_work
60%

50%

Metabolite General SBO Presence

40%
30%

20%
10% /'
0%

Metabolite SBO:0000247 Presence

commit

SB0:0000247 represents the term ‘simple chemical’. Every metabolite should be annotated
with this. Implementation: Check if each cobra.Metabolite has a non-zero “annotation”
attribute that contains the key "sbo" with the associated value being one of the SBO terms
above.

100%
Branch
80%

® master_work
B80%

70% @ origin/master_work
B60%

50%

Metabolite SBO:0000247 Presence

40%
30%

20%
10% /-
0%

Reaction General SBO Presence

commit

The Systems Biology Ontology (SBO) allows researchers to annotate a model with terms
which indicate the intended function of its individual components. The available terms are
controlled and relational and can be viewed here http://www.ebl.ac.uk/sbo/main/tree.
Implementation: Check if each cobra.Reaction has a non-zero "annotation” attribute that
contains the key “sbo".

100%
Branch

@ master_work

. origin/master_work

Reaction General SBO Presence

commit

Metabolic Reaction SB0O:0000176 Presence

SB0:0000176 represents the term 'biochemical reaction’. Every metabolic reaction that is
not a transport or boundary reaction should be annotated with this. The results shown are
relative to the total amount of pure metabolic reactions. Implementation: Check if each pure
metabolic reaction has a non-zero "annotation” attribute that contains the key "sbo" with
the associated value being the SBO term above.

100%
Branch

. master_work

@ origin/master_work

Metabolic Reaction SB0:0000176 Presence

commit

Transport Reaction SBO:0000185 Presence

“SB0:0000185', 'SBO:0000588', 'SBO:0000587", 'SBO:0000655', 'SBO:0000654",
“SB0:0000660', "SBO:0000659', 'SBO:0000657", and 'SBO:0000658' represent the terms
‘transport reaction’ and ‘translocation reaction’, in addition to their children (more specific
transport reaction labels). Every transport reaction that is not a pure metabolic or boundary
reaction should be annotated with one of these terms. The results shown are relative to the
total of all transport reactions. Implementation: Check if each transport reaction has a non-
zero "annotation” attribute that contains the key "sbo" with the associated value being one
of the SBO terms above.

A
00% o
8
£ Branch
8
&
- . master_work
8
b=y .
g @ origin/master work
e}
@
@«
£
£
8
o
4
€
e
o
&
g
]
&
0%

commit

Exchange Reaction SBO:0000627 Presence

SBO:0000627 represents the term 'exchange reaction'. The Systems Biology Ontology
defines an exchange reaction as follows: 'A modeling process to provide matter infiux or
efflux to a model, for example to replenish a metabolic network with raw materials (eg
carbon / energy sources). Such reactions are conceptual, created solely for modeling
purposes, and do not have a physical correspondence. Exchange reactions, often
represented as 'R_EX_', can operate in the negative (uptake) direction or positive (secretion)
direction. By convention, a negative flux through an exchange reaction represents uptake of
the corresponding metabolite, and a positive flux represent discharge.' Every exchange
reaction should be annotated with this. Exchange reactions differ from demand reactions in
that the metabolites are removed from or added to the extracellular environment only.
Implementation: Check if each exchange reaction has a non-zero "annotation" attribute that
contains the key "sbo” with the associated value being one of the SBO terms above.

100%
Branch

@ master_work

@ origin/master_work

Exchange Reaction SBO:0000827 Presence

commit

Demand Reaction SBO:0000628 Presence

5B0:0000628 represents the term 'demand reaction'. The Systems Biology Ontology
defines a demand reaction as follows: 'A modeling process analogous to exchange
reaction, but which operates upon "internal” metabolites. Metabolites that are consumed by
these reactions are assumed to be used in intra-cellular processes that are not part of the
model. Demand reactions, often represented 'R_DM_', can also deliver metabolites (from
intra-cellular processes that are not considered in the model)." Every demand reaction
should be annotated with this. Demand reactions differ from exchange reactions in that the
metabolites are not removed from the extracellular environment, but from any of the
organism's compartments. Demand reactions differ from sink reactions in that they are
designated as irreversible. Implementation: Check if each demand reaction has a non-zero
“annotation” attribute that contains the key "sbo” with the associated value being one of the
SBO terms above.

100%
Branch

. master_work

@ origin/master_work

Demand Reaction SBO:0000628 Presence

commit

Sink Reactions SB0:0000632 Presence

5B0:0000632 represents the term 'sink reaction'. The Systems Biology Ontology defines a
sink reaction as follows: ‘A modeling process to provide matter influx or efflux to a model,
for example to replenish a metabolic network with raw materials (eg carbon / energy
sources). Such reactions are conceptual, created solely for modeling purposes, and do not
have a physical coirespondence. Unlike the analogous demand (SBO:....) reactions, which
are usually designated as irreversible, sink reactions always represent a reversible
uptake/secretion processes, and act as a metabolite source with no cost to the cell. Sink
reactions, also referred to as R_SINK_, are generally used for compounds that are
metabolized by the cell but are produced by non-metabelic, un-modeled cellular
processes.' Every sink reaction should be annotated with this. Sink reactions differ from
exchange reactions in that the metabolites are not removed from the extracellular
environment, but from any of the organism's compartments. Implementation: Check if each
sink reaction has a non-zero "annotation" attribute that contains the key "sbo" with the
associated value being one of the SBO terms above.

A

100% — o
2
E Branch
£
b ® master_work
g
§ @ origin/master work
e}
@
w
0
=
£
8
i}
4
x
=
w

0% i
commit
Gene General SBO Presence

The Systems Biology Ontology (SBO) allows researchers to annotate a model with terms
which indicate the intended function of its individual components. The available terms are
controlled and relational and can be viewed here http://www.ebl.ac.uk/sbo/main/tree.
Check if each cobra.Gene has a non-zero "annotation” attribute that contains the key "sbo".

A

00% o

g

£ Branch

3

&

o . master_work

&

5 @ origin/master_work

g

@°

ol

o

g

@°

LU
0%

commit

MRana QRN-NNNN2A2 Pracanra

SB0:0000243 represents the term 'gene’. Every gene should be annotated with this.
Implementation: Check if each cobra.Gene has a non-zero “annotation” attribute that
contains the key "sbo" with the associated value being one of the SBO terms above.

100%
Branch

@ master_work

. origin/master_work

Gene SBO:0000243 Presence

commit

Biomass Reactions SB0:0000629 Presence

5B0:0000629 represents the term 'biomass production'. The Systems Biology Ontology
defines an exchange reaction as follows: 'Biomass production, often represented
‘R_BIOMASS ', is usually the optimization target reaction of constraint-based models, and
can consume multiple reactants to produce multiple products. It is also assumed that parts
of the reactants are also consumed in unrepresented processes and hence products do not
have to reflect all the atom compaosition of the reactants. Formulation of a biomass
production process entails definition of the macromolecular content (eg. cellular protein
fraction), metabolic constitution of each fraction (eg. amino acids), and subsequently the
atomic composition (eg. nitrogen atoms). More complex biomass functions can additionally
incorporate details of essential vitamins and cofactors required for growth.' Every reaction
representing the biomass production should be annotated with this. Implementation: Check
if each biomass reaction has a non-zero "annotation” attribute that contains the key "sbo"
with the associated value being one of the SBO terms above.

100%
Branch

. master_work

@ origin/master_work

Blomass Reactions SBC:0000629 Presence

0% :
commit
Total Score
A
100% o
] Branch

9%0% £

@ essential_amino_acids
80%
0% @ master
0% @ master_work
50% @ task _tests
40% origin/HEAD
30% @ origin/custom_tests
20% @ crigin/essential_amino_z
0% origin/master
0% .

commit origin/master_work

U
- Norges miljg- og biovitenskapelige universitet Postboks 5003
I_ J Noregs miljg- og biovitskapelege universitet NO-1432 As
N Norwegian University of Life Sciences Norway

