1	INTESTINAL PASSAGE AND ITS RELATION TO DIGESTIVE PROCESSES
2	Intestinal passage and digestion
3	
4	Birger Svihus ¹ and Khaled Itani
5	Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Aas, Norway
6	
7	
8	
9	Key words: Passage rate, small intestine, reflux, selective retention
10	
11	
12	Primary audience: Nutritionists, researchers
13	
14	
15	
16	
17	
18	¹ Corresponding author:
19	Birger Svihus
20	birger.svihus@nmbu.no

SUMMARY

Despite an effective nutrient retention, impaired digestibility is frequently observed. This 22 23 review aims to give an overview of retention time of material through the digestive tract, in an attempt to reveal mechanisms relating flow and retention of material to the digestive 24 process. The mean retention time based on marker content in the different segments of the 25 26 digestive tract or measured as time of 50 % marker excreted is remarkably short at between 5 and 6 h, but varies considerably due to method used, diet composition and feeding pattern. 27 Mean retention time in the small intestine is commonly reported to be around 3 h, with 1 h 28 retention time in the tract proximal to Meckel's diverticulum, and is less affected by diet or 29 feeding pattern. The mechanisms explaining a high nutrient digestion and absorption despite 30 this astonishingly short time is still a puzzle. A selective flow and reflux of material 31 throughout the small intestine seems to be a potential mechanism, but more research is 32 needed in this important and fascinating area of poultry research. 33

34

DESCRIPTION OF THE PROBLEM

A short retention time in the digestive tract is one of the fascinating features of poultry. The short retention time allows for a high feed intake despite the limitations to volume of the digestive system. Although the digestive tract contents of broilers [1] can be estimated to represent more than twice the percentage of body weight compared to e.g. the 91 d old pigs [2], the difference in body weight makes such direct comparisons difficult. McWhorter et al. [3] states that when compared at a similar body weight, birds have a smaller digestive tract volume than mammals.

42 Despite this short retention time, domesticated birds do not seem to normally be
43 compromising on nutrient digestibility, as digestibility of major nutrients such as fat, protein
44 and starch are not lower in poultry as compared to e.g. pigs. This is particularly fascinating

for the starch fraction of the diet. Starch is the quantitatively most important fraction of the 45 diet, and is largely present as intact starch granules in pelleted diets, which due to their semi-46 crystalline structure is hard to digest [4]. Starch is usually reported to have an ileal 47 digestibility of more than 95 % in poultry, but a low digestibility has frequently been 48 reported, e.g. of starch due to lack of structural components and/or due to the use of specific 49 cereals such as wheat [5]. In addition to the economic consequences due to loss of nutrients, 50 51 undigested nutrients may also have other harmful effects, such as being substrates for proliferation of potentially harmful microflora, or by facilitating wet litter problems. 52 Since retention time is an essential factor in intestinal digestion, this short review will attempt 53 to describe the mechanisms governing the flow of material in the poultry digestive tract, and 54 how this relates to digestive actions in relation to e.g. starch. In addition, knowledge gaps will 55 be presented, as well as some suggestions for future research to fill those gaps. The review, 56 while discussing flow of material in general, will focus on the small intestine, since this is 57 where digestion and absorption mainly takes place. The importance of the crop [6, 7] and the 58 gizzard [8] on digesta flow and digestion have been extensively reviewed previously, and will 59 thus not be discussed in detail here. A very significant and complex flux and reflux processes, 60 61 and degradation to absorbable nutrients via microbial activity, takes place in the ceca and colon [9], although this is also considered outside the scope of this review. 62

63

64

PASSAGE RATE AND MEAN RETENTION

Although retention time is the nutritionally relevant parameter, passage rate is the reciprocal
value and is often measured and used interchangeably as expressions of the same. However,
some methods of measuring passage rate are not really related to retention time, but are rather
measurements of *minimum* time needed for ingested material to pass. A simple method is to

use an indigestible marker, and record the time needed for this marker to appear in excreta. 69 For simplicity of recording this trait, the intensely red marker ferric oxide (Fe₂O₃) or the 70 71 green marker chromium oxide (Cr_2O_3) have often been used, where passage rate can be visually determined by recording the time it takes for the conspicious colour of the excreta to 72 appear. Typical minimum passage rates are presented in Table 1, and demonstrates a rather 73 short minimum retention time, averaging close to 3 h. It is worth noting the large variation in 74 75 values obtained, from less than 1 h to more than 5 h as an average for several birds within the same treatment. Probably, this reflects the inaccuracy of first appearance as a reliable 76 77 measurement of passage, as will be discussed below.

For a more representative measure of retention time there are chiefly two methods in use, of 78 which one is based on analysis of contents in the digestive tract, and the other is based on 79 analyses of excreta. In the former method, a marker is added to the diet, and after a period of 80 feeding to assure a steady state, where feed intake is also recorded, birds are killed and 81 82 marker content in different segments of the digestive tract is determined. An estimate of retention time is calculated by dividing the content of marker in each segment with the 83 marker intake per time unit. The method is particularly valuable due to the data often gained 84 85 on retention time in different segments, but a potential weakness is the assumption of steady intake and flow of material. For example, although birds may eat frequently, data have shown 86 87 that even ad libitum fed broiler chicken have distinct meals, eating in average twice per hour [21]. If birds are adapted to intermittent feeding, retention time may increase with many 88 hours, since the birds are able to store large quantities in the crop, which will gradually be 89 passed on to subsequent sections of the digestive tract [22]. 90

When excreta is used to measure retention time, a diet without marker is commonly replaced
by a diet with marker for a limited amount of time (normally 10 to 30 min), usually after a
short feed withdrawal period to stimulate feed intake. Excreta is then collected at timed

intervals (normally at least once per hour for the first 8-10 h), and analysed for marker 94 content. Feed intake of the diet with marker is also recorded. This method will measure total 95 96 tract retention time based on passage of a major quantity of marker, with mean retention time usually measured as time of 50 % marker excretion (t50), or as mean retention time based on 97 the product of marker excreted and time for passage, relative to total amounts of marker 98 excreted (MRT). However, the feed withdrawal period prior to measurement may be a 99 100 limitation if it is considerable, as a long feed deprivation time may affect passage rate, as will be discussed below. Alternatively, a marker can be provided directly to the birds, e.g. through 101 102 a gelatine capsule, thus forsaking the need for a feed withdrawal period. In Table 2, retention times using the steady state or t50 method are presented. 103 As shown in Table 2, when Steady state or t50 were used as methods, the total tract retention 104

As shown in Table 2, when Steady state of 150 were used as methods, the total flact retention
time averaged slightly more than 5.5 h, which is a considerably longer time and with less
variation than observed when minimum retention time is measured. Thus, first appearance is
not a representative measure of retention time.

108

109

FACTORS AFFECTING RETENTION TIME

As discussed, mean retention time and not first appearance of marker in excreta, must be 110 calculated to give a representative picture of retention time. However, measurements of mean 111 retention time (MRT) using the equation of Coombe and Kay [34] is often reported to be 112 much higher than the values presented in Table 2. Almirall and Esteve-Garcia [24] found 113 twice as high mean retention times when measured using this method as compared to when 114 115 t50 was used as a method, and Adeleye et al. [33] and Lázaro et al. [27] found values to be three times as high when MRT was calculated compared to t50. Duve et al. [31] also found 116 MRT to be higher than t50, although here the retention time was only approximately 50 % 117

higher. Rochell et al. [32], however, only found a small increase in calculated retention time 118 when MRT was used. The explanation for this large difference in observed values can be 119 found in the method used to calculate retention time. The t50 method is based on the time 120 when 50 % of the marker is excreted, and thus is based on the passage of the first 50 % of the 121 marker, without the need to fully take the fate of the remaining marker into consideration. 122 This would have given a valid estimate of mean retention time if marker flow followed a 123 124 steady state over time, but this is not necessarily the case. The remaining fraction of the marker after 50 % of the marker has passed often stays in the digestive tract far longer than 125 126 the first part. Thus, when retention time of this fraction is taken into consideration, the calculated mean retention time may become significantly longer. It is in this respect 127 interesting to note that the small difference in values for t50 and MRT observed by Rochell et 128 al. [32] was due to a very short collection period of only 12 h, as compared to the additional 129 collections at 24, 36 and 48 h in the other studies. The smaller difference between t50 and 130 MRT observed by Duve et al. [31] can likewise be explained by the fact that excreta was only 131 collected for 24 h in this study. 132

In addition to the potential retention time in the crop as already mentioned, a significant cause 133 for an uneven passage time of the marker is the extent to which material passes into the ceca, 134 as material entering the ceca can remain there for at least 48 h [9]. It is in this respect 135 136 interesting to note that Liu et al. [35] observed that it took 4 h for the marker to appear in the ceca after feeding. This indicates that the first passage will not be influenced by ceca 137 retention. A potentially even more serious flaw in the calculation based on the method of 138 Coombe and Kay [34], would be if all the material collected at 24, 36 and 48 h were dealt 139 with mathematically as if they were all excreted during these times, while they in fact were 140 excreted up to 12 h earlier. Coombe and Kay [34] corrected for this by using the mean time 141 between collections as a measure of time, but it is uncertain whether this important principle 142

was followed in the work reported here, and anyway, it is logical to assume that excretion decreases over time, and thus that the mean passage rate would be less than this figure. Thus, this potential flaw in this calculation method and the fact that retention in the ceca may not be relevant to the extent to which potentially digestible nutrients may be digested (since the material has already passed the small intestine at this point), estimates of retention time based on MRT may not be relevant. In other words, retention time should be based on t50, and not on the method described by Coombe and Kay [34].

Another factor affecting results of measurements is the behaviour of the marker. When 150 Rougiere and Carre [30] compared the use of a titanium marker (TiO₂) with the use of Cr-151 mordanted hay, the estimated retention time increased significantly, and in some cases to the 152 double. Vergara et al. [36] also found that soluble Cr-EDTA passed much faster than 153 insoluble Cr-mordanted rice hulls, and that a longer retention time in the gizzard was the 154 major reason for this difference. This is related to the fact that large fibre particles are 155 156 retained for a prolonged period in the gizzard, as demonstrated by Hetland et al. [37]. The particle size of the mordanted hay may thus be of importance, as retention of particles in the 157 gizzard is related to size of the particles. Thus, the lack of difference in passage of Cr-158 159 mordanted hay and Cr-EDTA observed by Rodgers et al. [38] could be due to the fact that the hay was ground to a fine powder in this experiment. Retention time in the gizzard therefore 160 161 will potentially have a significant influence on total tract retention time. In addition to particle size of the dissolved feed material, pelleting and other feed processing manipulations 162 may also have an effect, either indirectly through affecting feed intake, or directly through 163 particle reduction effects [8], but these topics are considered outside the scope of this review. 164 The above illustrates a very important principle, which is that the flow of materials through 165 the digestive tract is not even for all components of the diet, even when passage through the 166 tract anterior to the ileo-ceco-colonic junction only, is considered. Thus, the measurement of 167

retention time is related to the specific behaviour of the indigestible component assessed, and
not necessarily to the passage of the ingested feed as a whole. While Cr-EDTA may pass
particularly fast, and Cr-mordanted fiber may pass particularly slowly, the insoluble but fine
particles in the form of TiO₂ or Cr₂O₃ seem to pass at rather similar rates.

The large difference in passage rate of different fractions of the ingested material is illustrated 172 173 elegantly when considering experimental data where birds have been starved to empty the digestive tract, and thereafter refed and killed at different times to quantify contents in 174 various parts of the digestive tract. Doing so, it has been demonstrated that the part of the 175 feed with the fastest passage will be found in the small intestine already within 25 min of 176 commencement of feeding [39]. Svihus et al. [40] even demonstrated that the jejunum was 177 full and operating at maximum capacity 30 min after feeding, as indicated by the fact that 178 marker content in the jejunum did not increase over time after 30 min. Such a rapid passage 179 would indicate literally no retention time in the anterior digestive tract. For the crop, this is 180 181 not surprising, as Chaplin et al. [41] clearly established the important principle that material will bypass the crop when the gizzard is not full. In addition, there are no significant 182 digestion processes taking place in the crop, and thus it would be logical to bypass the crop in 183 such a situation. For the gizzard, however, this rapid passage is surprising, since retention 184 time in the gizzard is important for the digestive processes taking place there. As already 185 186 discussed, a selective retention is taking place in the gizzard. Thus, although experimental data is lacking, it is logical to assume that the material which bypasses the gizzard is the most 187 finely ground fraction of the feed, where there is no need for further grinding in the gizzard. 188 However, the lack of time for chemical degradation through hydrochloric acid and pepsin is 189 puzzling. A rapid passage of material into the small intestine is neither dependent on using 190 starved birds. Svihus et al. [17] gave broiler chickens a capsule containing Cr₂O₃ without feed 191 withdrawal, and found that a majority of the marker had passed into the small intestine within 192

45 min, without any considerable differences in marker content in the jejunum and the ileum. 193 Slightly slower passage rates were observed by Liu et al. [35], when a contrast agent were 194 195 added without prior feed withdrawal, and the exposed digestive tract were assessed by x-ray scanning. In this experiment, no significant amounts were observed in the ileum before after 196 1 h. Interestingly, no marker was detected in the small intestine after 15 min in this 197 experiment, but large amounts were observed in the jejunum after 30 min. Also Vergara et al. 198 199 [36] found extremely fast passage into the small intestine even for ad libitum fed birds. When the soluble marker Cr-EDTA was administered using a capsule, 22 % of the marker had 200 201 entered the small intestine already after 5 min.

Thus, as the above discussion has demonstrated, the passage of material through the digestive tract is not even, but varies due to selective retention in different segments, which again is affected by both physical characteristics of components in the feed and the feeding pattern. For example, the above seems to indicate a mechanism where material is rapidly passed into the small intestine when this segment is not full, possibly to maximize the digestive processes to compensate for a short retention time.

In addition to the experimental implications, such as being aware of that nutrient digestibility values obtained by the use of markers assumes that the nutrient and the marker has a similar passage pattern, this fact also has implications for understanding the interaction of intestinal retention time and the digestion process, as will be discussed in the next section.

212

RETENTION TIME IN THE SMALL INTESTINE

A pertinent question is the time available for digestion in the small intestine. This is obviously related to retention time in this segment, and this important question has been assessed in several experiments where birds have been killed and dissected following marker administration. Some results from such assessments are summarized in Table 3 below.

As Table 3 shows, retention time in the jejunum is most commonly reported to be around 1 h, 217 although some authors report up to 2 h retention time. Retention time in the ileum is longer 218 than retention time in the jejunum, often approaching 2 h or more. Although the weight of the 219 jejunum is higher than the ileum [30, 38]) and the holding capacity of the ileum is smaller 220 than the jejunum [1, 22], a longer retention time in the ileum is a logical consequence of the 221 reduced amount of digestible components, which will allow for a slower flow. A retention 222 223 time in the small intestine of about 3 h fits well with studies of flow of material through the small intestine, carried out by timed killing of birds after feeding a marker [40, 35]. 224 Surprisingly, retention time seems to be rather insensitive to a number of factors assumed to 225 have an important role. In the publications presented in Table 3, a number of different diets 226 and fasting times have been used, although no clear pattern seems to be apparent in regards to 227 small intestinal retention time. As already discussed, retention in the crop due to intermittent 228 feeding or retention in the gizzard due to structure can affect total tract retention time, but 229 230 passage through the small intestine seems to be rather insensitive to diet or feeding manipulations. 231 232

233

THE RELATION BETWEEN RETENTION TIME AND DIGESIVE FUNCTION

With 3 h retention time in the small intestine, this means that the digestion process must be completed and nutrients must have been absorbed within that short time period. However, since the digestive and absorptive capacity is not considered to be equal throughout the small intestine, the effective time available could be shorter. It is well established that the anterior digestive tract is very active in digestion and absorption. Since the retention time in the duodenum is reported to be only a few min [42, 43, 44, 26, 29], the quantitative effect of the duodenum would be thought to be limited. However, Sklan et al. [48], reported that 95 % of the fat was enzymatically degraded by the end of this segment, and Riesenfeld et al. [49]
concluded that the duodenum was the major site for starch degradation and glucose
absorption. Zimonja and Svihus [50] found that between 30 and 70 % of the starch had been
digested and absorbed in the duodenum, and Gutierrez de Alamo et al. [45, 46] found that
around 50 % of the starch had been digested by the proximal jejunum.

Although no comparative studies surprisingly have been found, e.g. whether the amylase secreted by the chicken is particularly effective in digesting starch, a particularly effective system for digestion and absorption of nutrients would be thought to be an important cause for a high digestibility despite a short retention time.

Although no histologically distinct segments exist posterior to the duodenum, the remainder 250 251 of the digestive tract is conveniently divided into the jejunum and ileum using the remnant of 252 the yolk sac (Meckels diverticulum) as a demarcation. The length of the villi, however, decreases throughout the small intestine [51], indicating reduced digestive capacity as the 253 254 digesta passes down the intestine. Thus, the duodenum and the jejunum are obviously the most important sites for digestion and absorption, where a large majority, usually reported to 255 be higher than 75 %, of the starch is digested and absorbed [49, 52, 45, 46, 50]. The retention 256 time of perhaps 1 h in these segments taken into consideration, this high rate of digestion is 257 truly remarkable. Even more remarkable is the fact that the mechanisms governing this high 258 259 rate of digestion and absorption within a very short time is still poorly understood, as discussed in a previous review [53]. The issue of a high digestion rate despite a low retention 260 time was also discussed extensively by McWhorter et al. [3]. A high paracellular absorption 261 262 was presented as one possible contributing factor, although it was pointed out that more research is needed in this fascinating and important area. 263

As already discussed, the retention time in the small intestine posterior to Meckels 264 diverticulum is longer than in the jejunum, and thus could contribute significantly to the 265 266 digestion and absorption process, although the extent to which this segment of the digestive tract is able to digest and absorb nutrients has been questioned [54]. As there are villi below 267 Meckels diverticulum as discussed above, this at least partly can explain the significant starch 268 digestion taking place posterior to Meckels diverticulum [49, 50]. Ferrer et al. [55] even 269 270 found the lower ileum, defined as the segment of the ileum attached to the ceca, to be able to absorb glucose, although the capacity was lower than more anterior segments. Gutierrez de 271 272 Alamo et al. [45, 46] assessed starch digestibility in the proximal and distal portions of the jejunum and the ileum, and demonstrated that although half the starch was digested by the 273 proximal jejunum, considerable amounts of starch was digested in the distal jejunum and the 274 proximal ileum. However, little further digestion took place at the distal ileum. A similar 275 pattern was observed for protein, although only a small part of the protein was digested by 276 the proximal jejunum. These observations indicate that little digestion takes place in the distal 277 ileum. However, the cause for this could simply be that the remaining part of the diet 278 reaching the distal ileum is not digestible. It is in this respect interesting that Yamauchi [56], 279 in his review of own and other's work on functionality of the small intestine, noted that when 280 the jejunum was resected, the ileum resumed a considerable digestive and absorptive 281 capacity, resulting in normal digestion in the resected birds. Thus, it is possible that a large 282 part of the ileum is able to take part in digestion and absorption if needed. 283

As discussed above, material may pass very rapidly into the small intestine. Sacranie et al. [22] starved birds for 16 h to empty the digestive tract, and observed that within 1 h of refeeding, both the jejunum and the ileum (using Meckels diverticulum as demarcation) contained its maximum content of DM. Equally fascinating, the starch content in the ileum was very high after 1 h of feeding, and slowly levelled off during the subsequent hours. In

fact, the content of the ileum contained more than 30 % starch 1 h after refeeding for the diet 289 which contained no gizzard-stimulating structural components. Although starch digestion 290 may take place in the ileum as already discussed, another mechanism facilitating digestion in 291 this situation is reflux. Clench and Mathias [57] observed a unique mechanism of contraction 292 throughout the small intestine in starved chickens, with about one-third of these being 293 refluxing contractions. Thus, Basha and Duke [58] demonstrated a considerable reflux of 294 295 material from as far as the proximal ileum to the duodenum and gizzard. Although these refluxes were observed during starvation, they also seem to be taking place during normal 296 297 feeding. Sacranie et al. [59] injected a marker into the cloaca of intermittently and ad libitum fed broiler chickens, and 2 h later found significant quantities of this marker throughout the 298 small intestine and in the gizzard, without significant differences between feeding regimes. 299 300 Although these data need to be confirmed in further experiments, they demonstrate a 301 considerable reflux throughout the digestive tract. In recent unpublished research from our lab, very little starch was observed to be excreted despite a rather high starch content in the 302 ileum within 1 h after refeeding starved broiler chickens. Reflux seems to be a plausible 303 mechanism explaining this effect. Thus, the surprisingly high digestion rates observed in the 304 proximal jejunum and even in the duodenum as discussed above, may be due to the fact that 305 this section of the digestive tract contains significant amounts of digesta refluxed from the 306 ileum. However, if reflux is indeed an important process taking place even in high-307 performing birds, a mechanism of selective retention would be necessary to avoid a negative 308 effect of reflux on feed intake, which needs to be high in these birds. Studies needs to be 309 undertaken to study e.g. whether large fibrous particles are passing fast and without being 310 refluxed, while e.g. starch granules are retained and even refluxed until digested. 311

312	From	the above, a logical conclusion seems to be that the whole small intestinal tract is
313	involv	ed in digestion and absorption, and that reflux mechanisms may contribute further to an
314	effecti	ve digestion process despite a short retention time.
315		
316		CONCLUSIONS AND APPLICATIONS
317	1.	The retention time in the digestive tract of poultry is remarkably short, averaging
318		between 5 and 6 h.
319	2.	The retention time in the small intestine is usually around 3 h, of which 1 h is in the
320		duodenum and jejunum.
321	3.	While total tract retention time will be affected by feeding system and the extent to
322		which material enters the caeca, the average retention time in the small intestine
323		seems to be much less affected by such factors.
324	4.	Selective rapid passage of material from the gizzard to the small intestine seems to be
325		an important mechanism which may increase digestion capacity when time available
326		for digestion is a limited factor.
327	5.	Reflux of material from the distal to the proximal small intestine is another
328		mechanism which could contribute to increased digestive capacity, although this
329		hypothesis needs experimental substantiation.
330	6.	More research is certainly needed to understand the high digestion capacity despite a
331		short retention time, which is a hallmark trait of our successful commercial bird
332		species.
333		
224		DEEEDENCES AND NOTES

REFERENCES AND NOTES

335	1.	Hetland, H., and B. Svihus. 2001. Effect of oat hulls on performance, gut capacity and
336		feed passage time in broiler chickens. Br. Poult. Sci. 42: 354-361.
337	2.	Overholt, M. F., J. E. Lowell, E. K. Arkfeld, I. M. Grossman, H. H. Stein, A. C.
338		Dilger and D. D. Boler. 2016. Effects of pelleting diets without or with distillers'
339		dried grains with solubles on growth performance, carcass characteristics, and
340		gastrointestinal weights of growing-finishing barrows and gilts. J. Anim. Sci.
341		94:2172-2183.
342	3.	McWhorter, T. J., E. Caviedes-Vidal and W. H. Karasov. 2009. The integration of
343		digestion and osmoregulation in the avian gut. Biol. Rev. 84:533-565
344	4.	Svihus, B., A. K. Uhlen, and O. M. Harstad. 2005. Effect of starch granule structure,
345		associated components and processing on nutritive value of cereal starch: A review.
346		Anim. Feed Sci. Technol. 122: 303-320.
347	5.	Svihus, B. 2011. Limitations to wheat starch digestion in growing broiler chickens: a
348		brief review. Anim. Prod. Sci. 51:583–589.
349	6.	Classen, H. L., J. Apajalahti, B. Svihus and M. Choct. 2016. The role of the crop in
350		poultry production. World's Poult. Sci. J. 72:459-472.
351	7.	Kieronczyk, B., M. Rawski, J. Dlugosz, S. Swiatkiewicz and D. Jozefiak. 2016. Avian
352		crop function – a review. Ann. Anim. Sci. 16:653-678.
353	8.	Svihus, B. 2011. The gizzard: function, influence of diet structure and effects on
354		nutrient availability. Worlds Poult. Sci. J. 67: 207-223
355	9.	Svihus, B., M. Choct and H. L. Classen. 2013. Function and nutritional roles of the
356		avian caeca: a review. World's Poult. Sci. J. 69:249-263.
357	10.	Washburn, K.W. 1991. Efficiency of feed utilization and rate of feed passage through
358		the digestive system. Poult. Sci. 70:447-451.

359	11. Barash, I., Z. Nitsan, and I. Nir. 1992. Metabolic and behavioural adaptation of light-
360	bodied chicks to meal feeding. Br. Poult. Sci. 33: 271-278.
361	12. Buyse, J., D. S. Adelsohn, E. Decuypere, and C. G. Scanes. 1993. Diurnal-nocturnal
362	changes in food intake, gut storage of ingesta, food transit time and metabolism in
363	growing broiler chickens: a model for temporal control of energy intake. Br. Poult.
364	Sci. 34: 699-709.
365	13. Ritz, C. W., R. M. Hulet, B. B. Self and D. M. Denbow. 1995. Effects of protein level
366	and enzyme supplementation upon growth and rate of digesta passage of male
367	turkeys. Poult. Sci. 74:1323-1328.
368	14. Son, J. H., Y. Karasawa and K. H. Nahm. 2000. Effect of caecectomy on growth,
369	moisture in excreta, gastrointestinal passage time and uric acid excretion in growing
370	chicks. Br. Poult. Sci. 41:72-74.
371	15. Amerah, A. M., V. Ravindran, R. G. Lentle, and D. G. Thomas. 2008. Influence of
372	feed particle size on the performance, energy utilization, digestive tract development,
373	and digesta parameters of broiler starters fed wheat- and corn-based diets. Poult. Sci.
374	87: 2320-2328.
375	16. Hughes, R. J. 2008. Relationship between digesta transit time and apparent
376	metabolisable energy value of wheat in chickens. Br. Poult. Sci. 49:716-720.
377	17. Svihus, B., A. Sacranie, V. Denstadli, and M. Choct. 2010. Nutrient utilization and
378	functionality of the anterior digestive tract caused by intermittent feeding and
379	inclusion of whole wheat in diets for broiler chickens Poult. Sci. 89: 2617-2625.
380	18. Kim, J. H., S. Seo, C. H. Kim, J. W. Kim, B. B. Lee, G. I. Lee, H. S. Shin, M. C. Kim
381	and D. Y. Kil. 2013. Effect of dietary supplementation of crude glycerol or tallow on
382	intestinal transit time and utilization of energy and nutrients in diets fed to broiler
383	chickens. Livest. Sci. 154:165-168.

384	19.	Yamanaga, M. and M. Furuse. 2014. Preference and passage through the
385		gastrointestinal tract of paddy rice in young chicks. J. Poult. Sci. 51:47-51.
386	20.	dos Santos, T. T., H. V. M. O'Neill, G. Gonzalez-Ortiz, D. Camacho-Fernandez and
387		C. Lopez-Coello. 2017. Xylanase, protease and superdosing phytase interactions in
388		broiler performance, carcass yield and digesta transit time. Anim. Nutri. 3:121-126.
389	21.	Svihus, B., V. B. Lund, B. Borjgen, M. R. Bedford, and M. Bakken. 2013. Effect of
390		intermittent feeding, structural components and phytase on performance and
391		behaviour of broiler chickens. Br. Poult. Sci. 54: 222-230.
392	22.	Sacranie, A., X. Adiya, L. T. Mydland and B. Svihus. 2017. Effect of intermittent
393		feeding and oat hulls to improve phytase efficacy and digestive function in broiler
394		chickens. Br. Poult. Sci. 58:442-451.
395	23.	Salih, M. E., H. M. Classen and G. L. Campbell. 1991. Response of chickens fed on
396		hull-less barley to dietary β -glucanase at different ages. Anim. Feed Sci. Technol.
397		33:139-149.
398	24.	Almirall, M. and E. Esteve-Garcia. 1994. Rate of passage of barley diets with
399		chromium oxide: Influence of age and poultry strain and effect of β -glucanase
400		supplementation. Poultry Science 73:1433-1440.
401	25.	Dänicke, S., O. Simon, H. Jeroch and M. Bedford. 1997. Interactions between dietary
402		fat type and xylanase supplementation when rye-based diets are fed to broiler
403		chickens. 1. physicochemical chyme features. Br. Poult. Sci. 38:537-545.
404	26.	Dänicke, S., W. Vahjen, O. Simon, and H. Jeroch. 1999. Effects of dietary fat type
405		and xylanase supplementation to rye-based broiler diets on selected bacterial groups
406		adhering to the intestinal epithelium, on transit time of feed, and on nutrient
407		digestibility. Poult. Sci. 78: 1292-1299.

408	27.	Lázaro, R., M. Garcia, P. Medel and G. G. Mateos. 2003. Influence of enzymes on
409		performance and digestive parameters of broilers fed rye-based diets. Poult. Sci.
410		82:132-140.
411	28	Sieo, C. C., N. Abdullah, W. S. Tan and Y. W. Ho. 2005. Influence of β -glucanase-
412		producing Lactobacillus strains on intestinal characteristics and feed passage rate of
413		broiler chickens. Poult. Sci. 84:734-741.
414	29	Chee, S. H., P.A. Iji , M. Choct , L.L. Mikkelsen and A. Kocher. 2010. Functional
415		interactions of manno-oligosaccharides with dietary threonine in chicken
416		gastrointestinal tract. III. Feed passage rate. Br. Poult. Sci. 51:677-685.
417	30	Rougiere, N., and B. Carré. 2010. Comparison of gastrointestinal transit times
418		between chickens from D+ and D- genetic lines selected for divergent digestion
419		efficiency. Animal 4: 1861-1872.
420	31	Duve, L. R., S. Steenfeldt, K. Thodberg and B.L. Nielsen. 2011. Splitting the
421		scotoperiod: effects on feeding behaviour, intestinal fill and digestive transit time in
422		broiler chickens. Br. Poult. Sci. 52:1-10.
423	32.	Rochell, S. J., T. J. Applegate, E. J. Kim, and W. A. Dozier III. 2012. Effects of diet
424		type and ingredient composition on rate of passage and apparent ileal amino acid
425		digestibility in broiler chicks. Poult. Sci. 91:1647-1653.
426	33.	Adeleye, O. O., A. D. Ologhobo and B. T. Oje-Adetule. 2016. Influence of
427		carbohydrate source on digesta kinetics and postprandial glucose responses of broiler
428		chicks. Livst. Sci. 188:37-42.
429	34	Coombe, J. B. and R. N. B. Kay. 1965. Passage of digesta through the intestines of the
430		sheep. Br. J. Nutr. 19:325-338.

431	35. Liu, J. D., S. A. Secrest and J. Fowler. 2017. Computed tomographic precision rate-
432	of-passage assay without a fasting period in broilers: More precise foundation for
433	targeting the releasing time of encapsulated products. Livest. Sci. 200:60-63.
434	36. Vergara, P., C. Ferrando, M. Jimenez, E. Fernandez and E. Gonalons. 1989. Factors
435	determining gastrointestinal transit time of several markers in the domestic fowl.
436	Quart. J. Exp. Physiol. 74:867-874.
437	37. Hetland. H., B. Svihus, and M. Choct. 2005. Role of insoluble fibre on gizzard
438	activity in layers. J. Appl. Poult. Res. 14: 38-46.
439	38. Rodgers, N. J., M. Choct, H. Hetland, F. Sundby, and B. Svihus. 2012. Extent and
440	method of grinding of sorghum prior to inclusion in complete pelleted broiler chicken
441	diets affects broiler gut development and performance. Anim. Feed Sci. Technol.
442	171: 60-67.
443	39. Jackson, S. and G. E. Duke. 1995. Intestine fullness influences feeding behaviour and
444	crop filling in the domestic turkey. Phys. Behav. 58:1027-1034.
445	40. Svihus, B., H. Hetland, M. Choct, and F. Sundby. 2002. Passage rate through the
446	anterior digestive tract of broiler chickens fed on diets with ground or whole wheat.
447	Br. Poult. Sci. 43: 662-668.
448	41. Chaplin, S. B., J. Raven, and G. E. Duke. 1992. The influence of the stomach on crop
449	function and feeding-behavior in domestic turkeys. Physiol. Behav. 52: 261-266.
450	42. Shires, A., J. R. Thompson, B. V. Turner, P. M. Kennedy, and Y. K. Goh. 1987. Rate
451	of passage of canola meal and corn-soybean meal diets through the gastrointestinal
452	tract of broiler and white leghorn chickens. Poult. Sci. 66: 289-298.
453	43. van der Klis, J. D., M. W. A. Verstegen, and W. de Wit. 1990. Absorption of minerals
454	and retention time of dry matter in the gastrointestinal tract of broilers. Poult. Sci. 69:
455	2185-2194.

44. Noy, Y., and D. Sklan. 1995. Digestion and absorption in the young chick. Poult. Sci.
74: 366-373.

458	45. Gutiérrez del Álamo, A., P. Pérez de Ayala, L. A. Den Hartog, M. W. A. Verstegen
459	and M. J. Villamide. 2009a. Wheat starch digestion rate in broiler chickens is affected
460	by cultivar but not by wheat crop nitrogen fertilisation. Br. Poult. Sci. 50:341-349.
461	46. Gutiérrez del Álamo, M. W. A. Verstegen, L. A. Den Hartog, P. Pérez de Ayala and
462	M. J. Villamide. 2009b. Wheat starch digestion rate affects broiler performance.
463	Poult. Sci. 88:1666-1675.
464	47. Sydenham, C. J., H. H. Truong, A. F. Moss, P. H. Selle and S. Y. Liu. 2017. Fishmeal
465	and maize starch inclusions in sorghum-soybean meal diets generate different
466	esponses in growth performance, nutrient utilisation, starch and protein digestive
467	dynamics of broiler chickens. Anim. Feed Sci. Technol. 227:32-41.
468	48. Sklan, D., S. Hurwitz, P. Budowski, and I. Ascarelli. 1975. Fat digestion and
469	absorption in chicks fed raw or heated soybean meal. J. Nutr. 105: 57-63.
470	49. Riesenfeld, G., D. Sklan, A. Bar, U. Eisner, and S. Hurwitz. 1980. Glucose absorption
471	and starch digestion in the intestine of the chicken. J. Nutr. 110: 117-121.
472	50. Zimonja, O., and B. Svihus. 2009. Effects of processing of wheat or oat starch on
473	technical pellet quality and nutritional value for broilers. Anim. Feed Sci. Technol.
474	149: 287-297.
475	51. de Verdal, H., S. Mignon-Grasteau, C. Jeulin, E. Le Bihan-Duval, M. Leconte, S.
476	Mallet, C. Martin and A. Narcy. 2010. Digestive tract measurements and histological
477	adaptation in broiler lines divergently selected for digestive efficiency. Poult. Sci.
478	89:1955-1961.

479	52. Zimonja, O., A. Stevnebo and B. Svihus. 2007. Nutritional value of diets for broiler
480	chickens as affected by fat source, amylose level and diet processing. Can. J. Anim.
481	Sci. 87:553-562.
482	53. Svihus, B. 2014. Function of the digestive system. J. Appl. Poult. Sci. 23:306-314.
483	54. Osman, A. M. 1982. Amylase in chicken intestine and pancreas. Comp. Biochem.
484	Physiol. 73B:571-574.
485	55. Ferrer, R., M. Gil, M. Moreto, M. Oliveras and J. M. Planas. 1994. Hexose transport
486	across the apical and basolateral membrane of enterocytes from different regions of
487	the chicken intestine. Plügers Arch. 426:83-88.
488	56. Yamauchi, K. 2007. Review of a histological intestinal approach to assessing the
489	intestinal function in chickens and pigs. Anim. Sci. J. 78:356-370.
490	57. Clench, M. H. and J. R. Mathias. 1992. A complex avian intestinal motility response
491	to fasting. Am. J. Physiol. 262:G498-G504.
492	58. Basha, M. E. and G. E. Duke. 1999. Effect of fasting on small intestinal antiperistalsis
493	in the Nicholas turkey (Meleagris gallopavo). J. Exp. Zool. 283:469-477.
494	59. Sacranie, A., B. Svihus, V. Denstadli, B. Moen, P. A. Iji, and M. Choct. 2012. The
495	effect of insoluble fiber and intermittent feeding on gizzard development, gut motility,
496	and performance of broiler chickens. Poult. Sci. 91: 693-700.
497	
498	
499	
500	

- - -

- 502 Table 1. Typical passage rates (min) based on timed feeding and visual observation of first
- 503 appearance of marker in excreta. All values presented are averages for a treatment with
- 504 replicates.

Method used	Species and	Minimum	Maximum	Average	Reference
	age				
12 h feed	Broilers, 28-	166	267	200	[10]
withdrawal,	56 d				
fluorescent					
dye in					
capsule					
Fe ₂ O ₃ in diet	Layer	Approx. 240	Approx. 240	Approx. 240	[11]
	chicks, 25 d				
Fe ₂ O ₃ and	Broilers, 28	173	215	192	[12]
Cr ₂ O ₃ in diet	d				
Fe ₂ O ₃ in	Turkey, 7,	98	161	136	[13]
capsule	14, 21 and				
	28 d				
24 h feed	Layers,	114	130	122	[14]
withdrawal,	approx. 20 d				
Cr ₂ O ₃ in diet					
2 h feed	Broilers, 15	136	142	139	[15]
withdrawal,	d				
Cr ₂ O ₃ in diet					

Fe ₂ O ₃ in	Broilers, 26			206	[16]
capsule	d				
Fe ₂ O ₃ in	Broilers, 24	218	253	232	[17]
capsule	d				
Cr ₂ O ₃ and	Broilers, 26-	112	137	123	[18]
Fe ₂ O ₃ in diet	31 d				
Red dye in	Layers, 8-9 d	50	220	120	[19]
diet					
30 min feed	Broilers, 21,	149	339	237	[20]
withdrawal,	28, 35, 42 d				
Fe ₂ O ₃ in diet					
Average				177	

516	Table 2. Typical total tract retention times (min) observed assuming steady state flow of diet
517	and analysis of marker content in the digestive tract (Steady state), or cumulative excretion
518	and time of 50 % marker excretion (t50). All values presented are averages for a treatment
519	with replicates.

Method used	Species and	Minimum	Maximum	Average	Reference
	age				
2 h feed	Broilers, 14,	359	455	397	[23]
withdrawal,	28, 42 and				
Cr ₂ O ₃ in	56 d				
diet, t50					
8 h feed	Broilers, 14	329	533	431	[24]
withdrawal,	d				
Cr ₂ O ₃ in					
capsule, t50					
8 h feed	Leghorn	203	289	246	[24]
withdrawal,	Cocks, 1 y				
Cr ₂ O ₃ in					
capsule, t50					
Overnight	Broilers, 15	401	503	449	[25]
feed	d				
withdrawal,					
TiO ₂ in diet,					
t50					

Steady state,	Broiler 24 d	378	498	419	[26]
TiO ₂ in diet					
TiO ₂ in	Broilers, 15	284	314	302	[1]
capsule, t50	d				
8 h feed	Broilers, 20	253	388	321	[27]
withdrawal,	d				
Cr ₂ O ₃ in					
capsule, t50					
12 h feed	Broilers, 7,	250	409	358	[28]
withdrawal,	14 and 21 d				
Cr ₂ O ₃ in diet,					
t50					
12 h feed	Broilers, 16	348	392	373	[29]
withdrawal,	d				
TiO ₂ in diet,					
t50					
Steady state,	Broilers, 9	155	339	251	[30]
TiO ₂ in diet	and 29 d				
Cr ₂ O ₃ in	Broilers, 29	Approx. 240	Approx. 300	Approx. 270	[31]
diet, t50	d				
2 h feed	Broilers, 18	268	298	286	[32]
withdrawal,	d				
TiO ₂ in diet,					
t50					

	12 h feed	Broilers, 21	252	372	320	[33]
	withdrawal,	d				
	Cr ₂ O ₃ in					
	capsule, t50					
	Average				340	
520		1	I		I	
521						
522						
523						
524						
525						
526						
527						
528						
529						
530						
531						
532						
533						
534						
535						

Table 3. Typical small intestinal retention times (min) observed assuming steady state flow
and analysis of marker content in the digestive tract. All values presented are averages for a

538 treatment with replicates.

Marker used	Species and	Duodenum+jejunum	Ileum	Total	Reference
	age			small	
				intestine	
Ruthenium-	Broilers and	65 – 67	73 - 86		[42]
labeled TRIS	leghorn				
	cockerels,				
	16-86 d				
Cr ₂ O ₃	Broilers, 44	76	90		[43]
	d				
Cerium-141	Broilers, 10			Approx.	[44]
	– 21 d			115 –	
				120	
TiO ₂	Broilers, 24	92 – 128	104 - 140		[26]
	d				
CrO ₂	Broilers, 30	$45 - 53^{1}$	104 – 124	149 –	[45]
	d			177	
CrO ₂	Broilers, 30	$42 - 56^{1}$	94 - 114	145 –	[46]
	d			170	
TiO ₂	Broilers, 21	60 – 69	100 - 122		[29]
	d				

TiO ₂ and Cr-	Broilers, 9	42 - 69	44 - 83		[30]
mordanted	and 29 d				
hay					
Acid-	Broilers, 28	81 – 123 ¹	118 – 172	199 -	[47]
insoluble ash	d			291	

539 ¹Excluding duodenum