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Abstract. The estimation of population size remains one of the primary goals and challenges in
ecology and provides a basis for debate and policy in wildlife management. Despite the development
of efficient noninvasive sampling methods and robust statistical tools to estimate abundance, the
maintenance of field sampling is still subject to economic and logistic constraints. These can result in
intentional or unintentional interruptions in sampling and cause gaps in data time series, posing a
challenge to abundance estimation, and ultimately conservation and management decisions. We
applied an open population spatial capture–recapture (OPSCR) model to simulations and a real-life
case study to test the reliability of abundance inference to interruptions in data collection. Using indi-
vidual detections occurring over consecutive sampling occasions, OPSCR models allow the estimation
of abundance while accounting for lack of demographic and geographic closure between occasions.
First, we simulated sampling data with interruptions in field sampling of different lengths and timing
and checked the performance of an OPSCR model in deriving abundance for species with slow and
intermediate life-history strategies. Next, we introduced artificial sampling interruptions of various
magnitudes and timing to a five-year noninvasive monitoring data set of wolverines (Gulo gulo) in
Norway and quantified the consequences for OPSCR model predictions. Inferences from OPSCR mod-
els were reliable even with temporal interruptions in monitoring. Interruption did not cause system-
atic bias, but increased uncertainty. Interruptions occurring at occasions near the beginning and the
end of the sampling period caused higher uncertainty. The loss in precision was more severe for spe-
cies with a faster life-history strategy. OPSCR allows monitoring studies to provide contiguous abun-
dance estimates to managers, stakeholders, and policy makers even when data are noncontiguous.
OPSCR models do not only help cope with unintentional interruptions during sampling but also
offer opportunities for using intentional sampling interruptions during the design of cost-effective
population surveys.
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INTRODUCTION

Estimating population size remains one of the
most fundamental goals and challenges in wild-
life ecology. Statistical tools that can account for
imperfect detection, such as capture–recapture
(CR) methods, are instrumental for estimating
abundance of free-ranging populations (Seber
1982). Spatial capture–recapture (SCR) models, a
recent extension of CR models, enable investiga-
tors to obtain spatially explicit estimates of abun-
dance (Efford 2004, Borchers and Efford 2008,
Royle and Young 2008). SCR models estimate the
location of individual activity centers (ACs)
using an observation model that describes the
relationship between the spatial pattern of indi-
vidual encounters and distance from the AC (i.e.,
detection probability). This allows SCR models
to specify the spatial extent over which individu-
als occur and therefore generate spatially explicit
estimates of abundance.

The SCR framework is suitable for analyzing
observation data obtained using not only physi-
cal capture and marking, but also noninvasive
approaches, such as camera trapping (Efford
et al. 2009, Royle et al. 2009), genetic sampling
(Bischof et al. 2016a, Milleret et al. 2018), and
acoustic sampling (Dawson and Efford 2009).
Technical development in noninvasive methods
has greatly expanded the spatial scope of moni-
toring and long-term studies. Many monitoring
programs now collect individual detections with
the aim of fitting SCR models. SCR models have,
for example, been used to estimate density of
brown bears (Ursus arctos) in Norway (Bischof
et al. 2016a), of wolverines (Gulo gulo) in Alaska
(Royle et al. 2011), and wolves (Canis lupus) in
Spain (López-Bao et al. 2018). However, the
maintenance of long-term data series, which is
essential for establishing sound conservation and
management plans (Lindenmayer and Likens
2009), can be subject to economic, logistic, and
other constraints. These can ultimately lead to
intentional and unintentional interruption in
sampling and thereby modify the temporal fre-
quency of sampling (i.e., causing gaps in data
time series).

When individual encounter data are collected
over repeated sampling occasions spanning most
of the life span of the study species, open popula-
tion CR models can be used to account for the

lack of demographic closure (i.e., death and emi-
gration/recruitment and immigration) between
these sampling occasions. However, monitoring
projects can sometimes be exposed to interrup-
tion in the sampling which can result in gaps in
CR time series (Plummer 2003, Schmidt et al.
2007, Bears et al. 2009, Zabala et al. 2011, Zubero-
goitia et al. 2016, Sanz-Aguilar et al. 2019). A gap
causes unequal time intervals between sampling
occasions. Unequal time intervals are not a major
problem in traditional CR models (Schmidt et al.
2007, Bears et al. 2009, Sanz-Aguilar et al. 2019),
as it is possible to specify interval lengths when
estimating demographic parameters such as sur-
vival or recruitment (Schmidt et al. 2007, Bears
et al. 2009). However, when abundance estimates
are the goal of the study, unequal time intervals
in CR do not allow estimation of abundance at
the occasion without data. For example, the mon-
itoring strategy for brown bears in Sweden is to
conduct periodic sampling of different areas over
multiple years (Kindberg et al. 2011, Swenson
et al. 2017), which results in detections missing
for different region-year combinations. Since
information about annual brown bear popula-
tion size in Sweden is required by stakeholders,
estimates are currently derived by combining
periodic regional abundance estimates obtained
with CR methods and an observation index col-
lected on a yearly basis (Kindberg et al. 2011).
Clearly, there is a need for methodology to cope
with gaps in data time series.
Although individual detections are only avail-

able before and after the interruption, the Marko-
vian structure of individual survival should help
estimate the hidden state of the individual (i.e.,
dead or alive) during the interruption. Indeed,
by modeling demographic processes (e.g., sur-
vival and recruitment) between occasions (e.g.,
years), the individual-based information is prop-
agated across occasions. This means that the
state of individuals at each occasion (e.g., alive)
can be reconstructed from the time series of
detections (Fig. 1). Therefore, open population
CR models make effective use of the information
obtained from multiple occasions compared with
a series of independent CR models. Open popu-
lation SCR (OPSCR) models, which are a spatial
extension of open population CR models, could
offer practical solutions to deal with interrup-
tions in sampling. OPSCR models do not only
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use information from individual detection col-
lected during several occasions (such as CR mod-
els), but also use the spatial information
contained in the detections and model movement
of individuals between occasions (Ergon and
Gardner 2014, Royle et al. 2014, Bischof et al.
2016a). In OPSCR, modeling individual move-
ment between occasions allows estimating the
probability of the individual being alive but off
the sampling grid, which should facilitate abun-
dance estimates (Ergon and Gardner 2014, Gard-
ner et al. 2018), especially during the gap years.
The use of data collected over multiple occasions
and propagation of individual information on
spatial location and demographic status across
time steps should help OPSCR bridge gaps in
data collection, allowing inferences about abun-
dance during occasions with sampling interrup-
tion. Although OPSCR models have already
been used to infer abundance at occasions with-
out individual detections (Chandler and Clark
2014, Augustine et al. 2019), there is a lack of
knowledge about the quantitative consequences
of sampling interruptions under different condi-
tions (i.e., multiple interruptions, different life-
history characteristics).

We built an OPSCR model to estimate abun-
dance, recruitment, survival, and movement of
individuals between sampling occasions. We
then tested its reliability for inferring abun-
dance in the presence of gaps in data collec-
tion. We artificially generated sampling
interruptions of various temporal configura-
tions to assess their consequences for the preci-
sion and accuracy of abundance estimates.
First, we introduced artificial sampling inter-
ruptions to simulated data sets for populations
with different life-history strategies (along the
slow–fast continuum; Stearns 1992). Because of
the low survival rate of species with a fast life-
history strategy, we expected sampling gaps to
induce a more pronounced loss in precision
compared with species with a slow life history.
Most free-ranging populations are subject to
demographic stochasticity in vital rates, which
can be challenging to model in the presence of
interruption. We therefore checked the effect of
demographic stochasticity in vital rates on
abundance estimates by simulating populations

with and without temporal stochasticity in
their vital rates. We then applied the OPSCR
model to data from the noninvasive monitoring
program of wolverines (Gulo gulo) in Norway
as a real-life example, but with artificial gaps
introduced. We provide recommendations for
practitioners on how and under which condi-
tions OPSCR can be used to obtain contiguous
abundance estimates from noncontiguous mon-
itoring data.

MATERIALS AND METHODS

OPSCR model
We built a Bayesian OPSCR model that con-

tained three main components: (1) an encounter
model to estimate individual activity centers and
account for imperfect detection of individuals
(Royle et al. 2014), (2) a multistate population
dynamic model to estimate recruitment and sur-
vival (Seber 1965, Schwarz and Arnason 1996),
and (3) a movement model to capture the move-
ment of AC locations between years (Ergon and
Gardner 2014). We used Markov Chain Monte
Carlo (MCMC) and data augmentation to ana-
lyze OPSCR models and obtain estimates of
abundance (Royle et al. 2007, 2009). Although
OPSCR models can accommodate secondary
occasions (such as in a robust design framework;
Pollock 1982), we only considered primary occa-
sions for which the closure assumption is not
met, such as in the sampling design of our empir-
ical example.
The SCR model.—The SCR model is the core ele-

ment of our OPSCR model. SCR models use the
spatial location of detections and non-detections
at a set of detectors to estimate the latent loca-
tions of individual activity centers (ACs). SCR
models are hierarchical state-space models com-
bining (1) a point process model that describes
the spatial distribution of individual ACs, and
(2) a detection model conditional on the point
process model, which describes the relationship
between individual detection probability and
distance to its AC. The half-normal detection
model commonly used in SCR assumes that the
probability p of detecting individual i at detector
j and time t decreases with distance between the
detector and the AC (Dijt):
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Fig. 1. Illustration of the benefits of open population spatial capture–recapture (OPSCR) models to estimate
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pijt ¼ p0�exp
�D2

ijt

2σ2

 !
(1)

where p0 represents the detection probability at
the location of the AC, and σ represents the
width of the utilization distribution. The scale
parameter σ is related to the extent of space used
over the period of study.

The multistate model.—Individual state mem-
bership zit takes the value 1 if not yet entered, 2
if alive, and 3 if dead. State z is the result of a
Markovian process and changes with time
according to a categorical distribution (Gimenez
et al. 2007, Kery and Schaub 2011). During the
first occasion, individuals can only be desig-
nated as not yet entered or alive so that zi1 ~
dcat(1–ψ, ψ, 0), where ψ represents the inclusion
probability.

For t ≥ 2, zit is conditional on the state of indi-
vidual i at t−1:

1. If zit−1 = 1, individual i is potentially avail-
able to be recruited (transition to state 2), so
zit ~ dcat(1 − γt, γt,, 0), where γt is the
recruitment parameter and is derived as

γt ¼
N:recruitst

N:availablet�1
(2)

where N.available represents the number of aug-
mented individuals with the state not yet entered
(i.e., individuals available for transitioning to the

alive state at each occasion), and N.recruits is the
number of new individuals recruited into the
population:

N:recruitst ¼ ρ�Nt�1 (3)

where ρ is the per capita recruitment parameter.

1. If zit−1 = 2, individual i can either survive
and remain zit−1 = 2 or die and transition to
zit = 3, so that zit ~ dcat(0, Φ, 1 − Φ), where
ϕ represents the survival probability.

2. If zit−1 = 3, individual i is dead and will
remain in this (absorbent) state.

Only individuals with the state alive can be
detected. The detection data yijt are modeled as
the realization of a Bernoulli process conditional
on both the individual state zit and the individ-
ual, detector, and time-specific detection proba-
bility pijt:

yijt ∼Bernoulliðpijt� Iðzit¼ 2ÞÞ (4)

where I is an indicator function returning 1 for
individuals in state 2, and 0 for individuals in
state 1 or state 3.
Estimates of abundance (N̂t) were obtained as.

N̂t ¼ ∑
M

i¼1
Iðzit ¼ 2Þ (5)

The state zit of an individual is a latent vari-
able, except at occasions when the individual

abundance when the interruption in the sampling results in a gap in the data time series. The illustration is based
on the detection history of one female wolverine during five winters (2013–2017) using scat-based noninvasive
genetic monitoring in Norway. “Sampling” shows a timeline with a scat emoji at the occasion where the individual
was detected and NAwhen not detected during the searches. A sampling interruption occurred during the winter
2015 (i.e., no individuals were detected during that occasion). “State” shows the inferred individual state each year.
When the individual was detected (2013, 2014, 2016), the individual was certain to be alive (black wolverine silhou-
ette), as well as during the interruption (2015) because the individual was detected alive before and after the inter-
ruption. The probability of the individual being alive at all occasions between 2013 and 2016 (Palive,) equals to 1
from 2013 to 2016 (even for the occasion with interruption), because we could reconstruct with certainty the state
of the individual to "alive." At the last occasion, Palive was estimated as follows: (1–p) × ϕ, which is the probability
for the individual to survive ϕ to the last occasion and not be detected (1–p). “Movement” represents themovement
process that models the individual’s activity center from one occasion to the other. The three maps (2014–2016) rep-
resent aerial photograph of the study area, and green to gray colors show low to high probability of the AC being
located in a given pixel, as predicted by the OPSCR model, respectively. During the interruption, the individual is
certain to be alive, and the model uses population-level information about AC movement patterns to predict the
most likely AC location of the individual. Individual detections are represented by red dots.

(Fig. 1. Continued)
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was detected alive where it can be set to alive. In
certain cases, it is also possible to reconstruct
with certainty the state of individuals at occasion
during which they were not detected (Fig. 1). For
example, an individual is known to be alive in
years in which it was not detected, if that period
is framed by alive detections.

The movement model.—ACs at t = 1 were placed
according to a homogenous binomial point pro-
cess (Illian et al. 2008). Under this model, AC
positions were independently and uniformly dis-
tributed in the study area (S). In order to distin-
guish between temporary emigration and
mortality, we integrated a movement model in
the OPSCR model allowing shifts of individual
activity centers between occasions. This is an
important component of the OPSCR model as it
can improve survival estimates and can take into
account the impact of animals moving within
and out of the sampled area (Ergon and Gardner
2014, Gardner et al. 2018). It is a particularly
important feature of the model in the context of
sampling interruption, as it helps propagating
spatial locations of individual across occasions.
Movement was modeled as a Markovian spatial
point process. The outcome of each movement
event was placed according to an inhomoge-
neous binomial point process (Illian et al. 2008)
with only a single point (AC) simulated for each
movement event. The functional form of the
intensity surface that determined the location of
the AC placement was a combination of an iso-
tropic multivariate normal distribution centered
around the source coordinates (location of the
AC at previous occasion) with a standard devia-
tion τ, and an intensity surface representing habi-
tat quality within the spatial domain. For
simplicity, we considered homogenous
habitat quality in this study (see Appendix S1:
Section 1).

Simulations
We conducted a simulation study to evaluate

the performance of our model under sampling
interruptions of different magnitudes and config-
urations. We created a spatial domain (S) of
40 × 40 distance units (du) within which we cen-
tered a 20 du × 20 du detector grid (with a
minimum distance of 1.5 du between detectors).
We released 50 individuals (N1) in the first

occasion and sampled the location of their ACs
uniformly within S. During the subsequent occa-
sions, we simulated individual movements as
Markovian spatial point processes with the
intensity surface being a multivariate normal dis-
tribution centered on the previous AC location.
Individual AC movements were constrained
within S. We simulated population dynamics
assuming that the sampling occasion occurred
just prior to reproduction. We drew the number
of recruits (ρ) for each alive individual from a
Poisson distribution. Note that if the sampling
period does not start exactly after birth, ρ is a
composite parameter of the number of offspring
produced by an individual and their survival
rate until the start of the sampling. Each alive
individual had a probability ϕ to survive to the
next sampling occasion.
Population and survey characteristics.—We simu-

lated individual detections occurring at five con-
secutive primary occasions (e.g., for simplicity,
we considered a one-year time interval between
instantaneous occasions) using σ = 2 and
p0 = 0.25, which led to an overall occasion-speci-
fic detectability of 65% (95% quantiles:
0.57–0.73). We used a multivariate normal distri-
bution with τ = 3 for the movement of ACs
between occasions. This τ represents an average
movement distance of 3.6 du (SD = 1.9 du),
which corresponds to approximately 1.5σ,
matching ratio between σ and τ in wolverines, as
revealed by preliminary analyses. We considered
two stable populations (asymptotic growth
rate = 1) with contrasted life-history characteris-
tics along the slow–fast continuum (Stearns 1992;
Table 1). We simulated populations having a
slow and intermediate life-history strategy with
ϕ = 0.85 and ρ = 0.15, and ϕ = 0.65 and ρ = 0.35
(Table 1), respectively. We did not consider a
population having a faster life-history strategy
because the relative life span of individuals
would be too short compared with the time inter-
val between two consecutive occasions (a year).
In addition to the stochastic realization of zit, we
also considered scenarios with larger temporal
stochasticity by drawing ϕt and ρt on a logit link
from a normal distribution centered on the aver-
age values of the respective life-history strategy
and SD = 0.2. In addition, we simulated a few
interruption scenarios with a lower detectability
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rate (p0 = 0.1, overall occasion-specific
detectability of 43%; 95% quantiles: 0.38–0.50).

Sampling interruption scenarios.—We created
nine different sampling interruption scenarios

(Fig. 2) and one scenario without interruptions
over five consecutive occasions (scenario 11111;
Fig. 2). Given the five primary occasions, we
tested the most realistic interruption scenarios

Table 1. Characteristics of the four simulated populations used to assess the consequences of sampling interrup-
tion on abundance estimates from open population spatial capture–recapture models.

Life history Stochasticity
Median

survival time
Asymptotic
growth rate

SD growth
rate

Average super
population size

Average ρ
[min–max]

Average ψ
[min–max]

Slow None 4.9 1 0.07 80 0.15 [0.15–0.15] 0.85 [0.85–0.85]
High 4.9 1 0.10 80 0.15 [0.01–0.32] 0.85 [0.68–1]

Intermediate None 2.1 1 0.12 119 0.35 [0.35–0.35] 0.65 [0.65–0.65]
High 2.1 1 0.13 119 0.35 [0.23–0.49] 0.65 [0.5-–.8]

Notes: Median survival time is expressed in years. Super population size represents the average number of individuals (from
all simulated data sets) that were ever alive during the study. ρ and ψ are the per capita recruitment and survival parameter,
respectively. Average and min–max values represent the parameter set used from the 50 different data sets simulated for each
population and scenario.

Occasions

11111

11011

10011

11001

10111

11101

10101

01111

11110

10001

1 2 3 4 5

S
ce

na
rio

s

NA

NA NA

NA NA

NA

NA

NA NA

NANA

NANA

NA NA NA

Fig. 2. Visual representation of the 10 sampling interruption scenarios considered in the analysis. The x-axis
denotes five consecutive sampling primary occasions. The 10 different scenarios are arranged along the y-axis
and are coded by binary values corresponding to whether sampling was performed (1) or not (0) during each
occasion and is visually represented by + and NA, respectively.
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possible. When no sampling occurred during
occasion t, we set pijt in the OPSCR model to 0 to
specify that there was no possibility of detecting
any individuals during that occasion.

Evaluation of model performance
We simulated 50 data sets for each of the 10

scenarios and each of the four populations,
resulting in 2000 simulated data sets. For each
simulated data set, we calculated the relative bias
ðRB¼modeðN̂Þ�NÞ and the coefficient of varia-
tion ðCV ¼ ðSDðN̂Þ=modeðN̂ÞÞ�100Þ , where SD
is the standard deviation, N̂ is the MCMC poste-
rior samples of population size, and N is the true
value of population size (Walther and Moore
2005). In addition, we calculated the 95% credible
interval coverage as the percentage of simula-
tions for which the credible interval contained
the true value.

The wolverine data
We fit the OPSCRmodel to noninvasive genetic

sampling data from the national monitoring pro-
gram of wolverines in Norway (see description in
Flagstad et al. 2004, Brøseth et al. 2010, Bischof
et al. 2016b, Gervasi et al. 2019). We used data col-
lected during five consecutive winters (January–-
May) between 2013 and 2017 in central Norway
(Appendix S1: Fig. S1). The data consisted of 632
detections from 126 individually identified female
wolverines. Samples were collected by field per-
sonnel from the management authorities (Norwe-
gian Nature Inspectorate) using a search-
encounter method on snow. During searches, the
GPS coordinates of search tracks were recorded.
We used the partially aggregated binomial obser-
vation model (Milleret et al. 2018), which divides
detectors into K subdetectors and models the fre-
quency of subdetectors with more than one detec-
tion as a binomial response with a sample size of
K. We located primary detectors in the center of
grid cells (4-km resolution) and subdetectors in
the center of subdetector grid cells (800-m resolu-
tion). We only placed subdetectors when search
tracks overlapped with the subdetector grids. The
configuration of active grid cells changed every
year to account for spatial–temporal variation in
searches (Appendix S1: Fig. S1). However, the
same spatial domain (S) was considered, which
included the counties of Hedmark, Oppland,
Møre og Romsdal, Nord Trøndelag, and Sogn og

Fjordane (Appendix S1: Fig. S1). We used a buffer
of 20 km around the detector grid (approximately
4σ). We also estimated year-specific p0 to account
for annual variation in sampling intensity. To
increase computing efficiency, we used a local
evaluation of the state space to reduce the number
of detectors considered for each individual during
the model fit (Milleret et al. 2019, Sutherland et al.
2019). Searches were conducted continuously
from 2013 to 2017, which allowed us to introduce
different artificial gaps in the data time series,
while having a reference point (scenario without
gaps: 11111). We simulated sampling interruption
by removing all detections from all individuals at
the occasion(s) designated as interruption. We
implemented the same 10 interruption scenarios
used in the simulations (Fig. 2). We compared the
mode of N̂ and its CV (i.e., obtained when exclud-
ing the buffer area, 63,584 km2) between the dif-
ferent scenarios.

Model fitting
We fitted the Bayesian OPSCR models using

Markov chain Monte Carlo (MCMC) with nimble
(Turek et al. 2016, de Valpine et al. 2017, NIMBLE
Development Team 2019) in R version 3.3.3 (R
Core Team 2017). NIMBLE provides a new
implementation of the BUGS model language
coupled with the capability to add new func-
tions, distributions, and MCMC samplers to
improve computing performance (Turek et al.
2020). We ran four chains with 40,000 iterations
each following a 2000-iteration burn-in. We con-
sidered models as converged when Rhat was ≤
1.1 (Gelman and Rubin 1992) for all main
parameters and by visually inspecting a sample
of all repetitions of all scenarios. We reran mod-
els that did not reach convergence for 60000 iter-
ations per chain following a 20,000-iteration
burn-in, and excluded them from the results if
they still did not reach convergence. R and nim-
ble codes for the OPSCR model, related custom
functions, and simulations used are provided in
Appendix S2, wolverine data in Data S1, and list
of priors used in Appendix S1: Table S1.

RESULTS

Simulations
On average, 57% (95% quantiles: 40–75%) and

32% (16–51%) of the individuals detected before
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the interruption were also detected at the occa-
sion following the interruption, for species with
a slow and intermediate life history, respectively.
This proportion was about 10% lower when
there were two consecutive interruptions
(Appendix S1: Tables S2, S3).

All models reached convergence, with the
exception of scenario 10001 for species having
an intermediate life-history strategy (25% non-
converged Appendix S1: Table S4). We detected
no systematic bias in N̂ regardless of whether
sampling interruption occurred or not
(Appendix S1: Table S5). Relative bias of the
other model parameters was always < 10%
(Appendix S1: Table S6).However, the precision in
N̂ generally decreased towards the first and last
occasions (e.g., Fig. 3, scenario 11111). Regard-
less of when the interruption(s) occurred, the
precision in N̂ decreased for the affected occa-
sion(s). For example, for the scenario 11011, CV
of N̂ was on average 1.3 times higher during the
third occasion (i.e., interruption) compared to

the scenario without interruption in sampling
(Fig. 3; Appendix S1: Table S6). The increased
uncertainty caused by interruptions also propa-
gated to estimates for sampled occasions, espe-
cially for those adjacent to interruption(s).
Precision of N̂ decreased as the number of inter-
ruptions increased. CV was on average 1.8 times
higher for interruptions at the beginning or at
the end of the study period, than for an inter-
ruption at the third occasion. Regardless of the
interruption scenario, uncertainty in N̂ was lar-
ger for the intermediate life-history scenario, but
the presence of stochasticity in vital rates did
not seem to amplify the depressing effect of
interruptions on the precision of N̂ . Overall, the
pattern was similar for the population with the
low detectability rate (p0 = 0.1), but models had
difficulties converging (especially for the τ
parameter) and uncertainty in N̂ was larger (CV
approximately 1.5 times higher than with a
higher detectability rate p0 = 0.25; Appendix S1:
section 7).

Fig. 3. Violin plots (points: medians; solid colors: 2.5th and 97.5th percentiles) for the coefficient of variation
(CV) of abundance estimates (N) obtained using an open population spatial capture–recapture model fit to simu-
lated data sets (50 repetitions for each scenario). Shown are results for simulations representing combinations of
life-history strategies (slow and intermediate), and with and without temporal stochasticity in vital rates. The five
consecutive N estimates (i.e., corresponding to the five sampling occasions) are colored and grouped according
to the sampling interruption scenario (x-axis). Sampling scenarios are presented by a series of 1 s and 0 s indicat-
ing whether sampling was considered to have occurred or not, respectively.
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Wolverines
All models fit to the empirical wolverine data

converged, except scenario 10001 for which the
standard deviation of the Gaussian dispersal
kernels (τ) did not reach the convergence crite-
rion. Wolverine population size N̂ in the absence
of sampling interruptions was relatively stable
over the five consecutive years (>60 individuals,
Fig. 4; 11111). We did not detect marked
changes in N̂ estimates when the data set was
subjected to sampling interruptions (CI of all N̂
overlapped with each other regardless of the
scenario; Fig. 4). However, patterns in CV of N̂
in response to sampling interruptions were simi-
lar to those observed for simulated data sets,
with a higher uncertainty toward the first and
last occasions and with a sampling interruption
(Fig. 4).

DISCUSSION

Simulations and a case study on wolverines
revealed that OPSCR models can be a valuable
tool for abundance inferences when there are
gaps in data time series. Although uncertainty in
abundance estimates increased during occasions
with a sampling interruption, the interruption
did not seem to cause any systematic bias. Uncer-
tainty in abundance estimates increased with the
number of interruptions and the speed of the
study species’ life history. Similarly, the simu-
lated sampling interruptions in the wolverine
example (a species with an intermediate life-his-
tory strategy; ϕ = 0.7, 95% CI: 0.62–0.78; ρ = 0.3,
95% CI: 0.21–0.39) showed that interruptions
caused higher uncertainty around abundance
estimates, but that abundance estimates were
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Fig. 4. Violin plots (points: mode; solid colors: 95% credible interval) of the posterior distribution of abundance
(N; top panel) and its coefficient of variation (CV; bottom panel) obtained using an open population spatial cap-
ture–recapture model on noninvasive genetic sampling data of wolverines collected in south central Norway.
The five consecutive annual N̂ estimates and CV (2013–2017) are colored and grouped according to the sampling
interruption scenario (x-axis). Sampling scenarios are presented by a series of 1 s and 0 s indicating whether sam-
pling was considered to have occurred or not, respectively.
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relatively similar to those in the absence of inter-
ruptions (Fig. 4). The effect of interruptions on
precision was generally less pronounced when
the gap in the time series was framed by several
consecutive sampled occasions (11011).
Although OPSCR models have already been
used to infer abundance in the presence of inter-
ruptions (Chandler and Clark 2014, Augustine
et al. 2019), our study is the first to explore the
conditions under which reliable abundance infer-
ences can be obtained when SCR data time series
include temporal gaps in sampling.

Compared to a series of independent SCR
models, OPSCR models use detections to model
population dynamics and individual movement
between several consecutive sampling occasions.
As a result, individual detections in previous
and/or subsequent occasions inform the Marko-
vian model about the spatial location and demo-
graphic status of each individual and help
determine its fate (Molinari-Jobin et al. 2018;
Fig. 1). This explains the increase in precision of
the estimates for gaps framed by multiple occa-
sions with data (Fig. 3, scenario 11011). Despite a
loss in precision of abundance estimates, the
OPSCR model, and its Markovian structure,
allows the reliable estimation of abundance in
the presence of interruptions. However, the pres-
ence of sampling interruption poses a greater
challenge to estimation when the lifetime of the
species is short relative to the interval between
sampling occasions and when detectability rate
is low. Indeed, we found that for species with
intermediate life histories precision of abundance
estimates was lower and models took longer to
converge than for species with slow life histories
(Appendix S1: Table S4).

Movement of ACs between occasions is an
important feature of OPSCR models, and a miss-
specified movement process can have important
consequences for inferences (Ergon and Gardner
2014, Gardner et al. 2018). For the purpose of this
study, we developed a Markovian movement
model assuming distance between consecutive
individual ACs being normally distributed. The
movement model is essential to distinguish
between mortality and emigration (Ergon and
Gardner 2014) and assists the OPSCR in predicting
the fate of individuals that are not detected during
interruptions in sampling (Fig. 1). Based on the
locations of the AC at occasions prior to and

following interruption(s), and with population-
level information about AC movement, the model
makes prediction about the location of individuals
ACs during occasions with missing data (e.g., pre-
diction of the movement of individuals in and out
of the study area). This is particularly useful as the
OPSCRmodel not only yields population size esti-
mates that bridge interruptions in sampling, but
can also estimate density across the study area dur-
ing years without sampling.
Other possibilities for modeling movement are

available (e.g., random, constant; Ergon and
Gardner 2014, Royle et al. 2014, Gardner et al.
2018) but were not explored in this study, as the
choice of the movement model is specific to each
study system (Gardner et al. 2018). Modeling
movement of individual ACs (e.g., Markovian,
as in this study) or assuming their constant loca-
tion over the course of the study period is likely
a key feature of OPSCR models in the presence
of interruptions. Such movement models provide
information about the potential location of indi-
viduals during the gap years (Fig. 1). However,
the application of OPSCR with a Markovian
movement model to cases with several consecu-
tive interruptions and sparse data can be chal-
lenging. The problem of convergence of OPSCR
models (especially the movement parameter) has
previously been described and can become prob-
lematic for data series with interruptions, when
few individuals are detected over consecutive
occasions (Gardner et al. 2018).
The main goal of many wildlife monitoring pro-

grams is not only to obtain reliable estimates of
population size and trends therein, but also to
understand themechanisms (e.g., recruitment, sur-
vival) involved in population size fluctuations
when planning conservation and management
actions. Although individual survival between
occasions is informed through the reconstruction
of individual states during interruptions, under
some circumstances, parameter identifiability can
beweakwhen parameters are allowed to vary over
time (see Appendix S1: Section 8). In order to esti-
mate survival and recruitment in the presence of
sampling interruptions, it may be necessary to
assume that these vital rates are constant over time,
as we did in our example. However, estimation of
time-dependent vital rates, despite gaps in the data
time series, may be facilitated through the use of
random effects (e.g., year on survival or
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recruitment) or time-dependent covariates
explaining temporal variation in vital rates (e.g.,
changes in environmental conditions, hunting
intensity). In the simulations, we added unmod-
eled temporal stochasticity in vital rates, which did
not have a marked impact on inferences. This sug-
gests that OPSCR models are relatively robust to
temporal stochasticity in vital rates, as long as its
magnitude remains relatively low. Additionally,
the integration of other types of data (e.g.,
unmarked individuals, Sollmann et al. 2013, Chan-
dler and Clark 2014; and dead recoveries, Proffitt
et al. 2015) could be used to mitigate the loss of
information due to sampling interruption.

In this analysis, we considered that interruptions
occurred at random and not because of a specific
event (e.g., unfavorable climatic conditions) that
could have not only prevented the occurrence of
sampling, but also affected the population. This is
an important assumption as the probability of
interruptions should be independent from the
occurrence of biological processes affecting param-
eters of interest (Nakagawa and Freckleton 2008).
When the assumption is met, key parameters (e.g.,
σ, ϕ, ρ) are transferable between years and the
model should return unbiased abundance esti-
mates for gap years. Otherwise, investigators
should use caution when drawing inferences for
gap years, especially if constant vital rates over
time are assumed in themodel.

CONCLUSION

The framework described here allows ecologists
to assess the impact of sampling interruptions—
whether intentional or unintentional—on parame-
ter estimates from OPSCR models. Based on our
findings, we recommend intentional interruption
to be restricted to species with slow life histories
(relative to the monitoring interval) and to avoid
multiple consecutive interruptions. Methods
allowing the integration of different types of data
(e.g., unmarked individuals, dead recoveries) into
OPSCR models could help further mitigate the
negative impact of interruptions on the precision
of parameter estimates (see Chandler and Clark
2014 for an example). Here, we only consider inter-
ruptions occurring at the temporal scale and affect-
ing the entire spatial domain. However,
interruptions may occur both in space and in time,
and we encourage further research that

investigates the consequence of spatiotemporal
fluctuations in monitoring coverage, especially
given the importance of the definition of S in
OPSCR models (Gardner et al. 2018). Previous
studies testing the cost efficiency of nonspatial CR
surveys have focused on the importance of study
duration, proportion of different individuals sam-
pled, and detection probability (Lieury et al. 2017).
Unless the study species requires close monitoring
due to short response times for management inter-
ventions (e.g., endangered species), the use of
OPSCR model for cases with periodic interrup-
tions in sampling could be considered as an option
to distribute sampling efforts over time and make
long-term population-level monitoring cost-effec-
tive (Chandler and Clark 2014).
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S. Wölfl, F. Bled, C. Breitenmoser-Würsten, I. Kos,
M. Wölfl, R. Cerne, O. Müller, and U. Breiten-
moser. 2018. Mapping range dynamics from
opportunistic data: spatiotemporal modelling of
the lynx distribution in the Alps over 21 years. Ani-
mal Conservation 21:168–180.

Nakagawa, S., and R. P. Freckleton. 2008. Missing inac-
tion: the dangers of ignoring missing data. Trends
in Ecology and Evolution 23:592–596.

NIMBLE Development Team. 2019. NIMBLE: MCMC,
Particle Filtering, and Programmable Hierarchical
Modeling. https://cran.r-project.org/package=nimb
le

 ❖ www.esajournals.org 13 July 2020 ❖ Volume 11(7) ❖ Article e03172

MILLERET ETAL.

https://cran.r-project.org/package=nimble
https://cran.r-project.org/package=nimble


Plummer, M. 2003. JAGS: a program for analysis of
Bayesian graphical models using Gibbs sampling.
Page 125 in Proceedings of the 3rd international
workshop on distributed statistical computing.

Pollock, K. H. 1982. A capture-recapture design robust
to unequal probability of capture. Journal of Wild-
life Management 46:757–760.

Proffitt, K. M., J. F. Goldberg, M. Hebblewhite, R. Rus-
sell, B. S. Jimenez, H. S. Robinson, K. Pilgrim, and
M. K. Schwartz. 2015. Integrating resource selec-
tion into spatial capture-recapture models for large
carnivores. Ecosphere 6:art239.

R Core Team. 2017. R: a language and environment for
statistical computing. R Foundation for Statistical
Computing, Vienna, Austria.

Royle, J. A., R. B. Chandler, R. Sollmann, and B. Gard-
ner. 2014. Spatial capture-recapture. Academic
Press, Cambridge, Massachusetts, USA.

Royle, J. A., R. M. Dorazio, and W. A. Link. 2007. Anal-
ysis of multinomial models with unknown index
using data augmentation. Journal of Computa-
tional and Graphical Statistics 16:67–85.

Royle, J. A., K. U. Karanth, A. M. Gopalaswamy, and
N. S. Kumar. 2009. Bayesian inference in camera
trapping studies for a class of spatial capture–re-
capture models. Ecology 90:3233–3244.

Royle, J. A., A. J. Magoun, B. Gardner, P. Valkenburg, and
R. E. Lowell. 2011. Density estimation in a wolverine
population using spatial capture–recapture mod-
els. Journal of Wildlife Management 75:604–611.

Royle, J. A., and K. V. Young. 2008. A hierarchical
model for spatial capture–recapture data. Ecology
89:2281–2289.

Sanz-Aguilar, A., R. Pradel, and G. Tavecchia. 2019.
Age–dependent capture–recapture models and
unequal time intervals. Animal Biodiversity and
Conservation 42:91–98.

Schmidt, B. R., M. Schaub, and S. Steinfartz. 2007.
Apparent survival of the salamander Salamandra
salamandra is low because of high migratory activ-
ity. Frontiers in Zoology 4:19.

Schwarz, C. J., and A. N. Arnason. 1996. A general
methodology for the analysis of capture-recapture
experiments in open populations. Biometrics
52:860–873.

Seber, G. A. F. 1965. A note on the multiple-recapture
census. Biometrika 52:249–259.

Seber, G. A. F. 1982. The estimation of animal abun-
dance and related parameters. Second edition.
Edward Arnold, London, UK.

Sollmann, R., B. Gardner, A.W. Parsons, J. J. Stocking, B. T.
McClintock, T. R. Simons, K. H. Pollock, and A. F.
O’Connell. 2013. A spatial mark–resight model aug-
mented with telemetry data. Ecology 94:553–559.

Stearns, S. C. 1992. The evolution of life histories.
Springer, New York, New York, USA.

Sutherland, C., J. A. Royle, and D. W. Linden 2019.
oSCR: a spatial capture–recapture R package for
inference about spatial ecological processes. Ecog-
raphy 42:1459–1469.

Swenson, J. E., M. Schneider, A. Zedrosser, A. Söder-
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