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Summary

With the rapidly evolving DNA technology today, there is a constant need of more ro-
bust statistical methods for analyzing the data. The sequencing techniques are improv-
ing, making more genetic markers available, and we are able to analyze even smaller
samples of degraded DNA gathered from crime scenes. Many of the traditional and
commonly used statistical methods need therefore to be updated.

When a crime is committed and a suspect is found, two competing hypotheses are
generally presented. The custom in forensic statistics has for long been to present
competing hypotheses verbally. The prosecutor may suggest the hypothesis Hp: “the
suspect contributed to the stain”, whereas the defense attorney may suggest the hy-
pothesis Hd: “an unrelated person contributed to the stain”. However, giving a more
statistical presentation of the problem can be beneficial as the statistical tools used
to test the hypotheses then can be more sophisticated. In particular, by giving the
problem a parametric form we are able to present the problem in a more conventional
statistical framework. Using parametric models makes it possible to apply already
well-known mathematical and statistical models for evaluating the hypotheses, and
we are able to get an alternative understanding of the problem. For instance, when
making kinship inference, a parametric formulation of the problem facilitates more
generalized alternative hypotheses, and we no longer need to test a specific relation
versus unrelatedness: the alternative can be any other relation.

This thesis aims at describing different parametric approaches for forensic applica-
tions. The thesis considers both pure kinship cases and forensic crime cases, and
cases where these two subfields of forensics overlap. We deal with complex DNA
mixture problems and present methods for identifying the contributors to the mixture.
We also study kinship cases where mixtures appear, and suggest methods for determin-
ing the relation between the mixture contributors. Methods for relationship inference
based on statistical estimation of the parameters is also presented, and we make use of
statistical theory that deserve attention in a forensic framework.
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Sammendrag

DNA teknologien utvikler seg i en stor fart, og med dette tempoet trengs det stadig
nye og mer robuste statistiske metoder for å analysere data. Sekvenseringsteknikkene
bedres også og fører til at vi i dag har langt flere genetiske markører tilgjengelig. Med
teknologien tilgjengelig i dag kan man analysere selv mindre mengder med degradert
DNA i kriminalsaker. Vi trenger derfor nye og bedre tilpassede statistiske metoder.

Etter at en kriminell handling har funnet sted presenteres det ofte to hypoteser. I rett-
sgenetisk statistikk har det i lang tid vært vanlig å presentere slike hypoteser verbalt.
Aktor kan for eksempel foreslå hypotesenHp: “mistenkte bidro til DNA-sporet”, mens
forsvaret har følgende hypotese Hd: “en urelatert person bidro til DNA-sporet”. En
tradisjonell matematisk statistisk formulering av problemet kan være fordelaktig. Mer
spesifikt vil en parametrisk tilnærming åpne for at vi kan bruke velkjente matematiske
og statistiske metoder for å teste hypotesene. Dette vil også gi oss en alternativ for-
ståelse av problemet. I slektskapsanalyser vil for eksempel en parametrisk fremstilling
gi oss muligheten til å gi mer generelle alternative hypoteser i den forstand at vi ikke
lenger trenger å teste en spesifikk relasjon versus ubeslektet: den alternative hypotesen
kan være generell.

Denne avhandlingen har som mål å beskrive slike parametriske metoder innen retts-
genetikk og statistikk. Avhandlingen tar for seg både rene slektskapssaker og krim-
inalsaker, samt saker dere disse to feltene innen rettsgenetikk overlapper. Vi tar opp
problemer med komplekse DNA blandinger og presenterer metoder for å identifis-
ere bidragsyterne til blandingen. Vi ser også nærmere på slektskapssaker der DNA
blandinger inngår, og studerer metoder for å bestemme familierelasjonen mellom bidrag-
syterne. Metoder for slektskapsidentifisering basert på statistisk estimering av para-
metere presenteres også, og vi tar i bruk statistisk teori som fortjener oppmerksomhet
i en rettsgenetisk sammenheng.
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1 Introduction

The kinship part of this thesis is motivated by cases where the family relationship
between individuals is questioned and evaluated using DNA evidence. Searching for
family roots and getting to know ones ancestral heritage is for many individuals im-
portant for identity purposes. With the diversity we see in different public groups,
kinship analyses are not that straightforward, and we need to consider several aspects
while reconstructing the family pedigrees. The population may for instance be subject
to inbreeding as individuals may choose to mate with individuals of the same origin
[33]. Traditionally in paternity testing, the hypothesis stating that a man is the biolo-
gical father of a child is compared to the alternative hypothesis that the alleged father is
unrelated. This alternative of unrelatedness may be too restrictive, and the parametric
approach of this thesis allows for more general alternatives. Similar problems appear
in other contexts like disaster victim identification. Again, the conventional formula-
tions of the problem may limit the evaluation approaches, and more alternatives should
be considered. If we turn towards forensic casework based on DNA mixtures, family
relationship between the contributors (those implicated in the case as perpetrators or
victims) may not easily be accounted for using existing methods and implementations.
Methods and a freely available implementation for handling such cases (the R package
relMix) are presented in this thesis.

The DNA technology has had an enormous progress over the last years [11], and
the advances have far ranging implications including cold cases being reopened and
solved. We are able to create DNA profiles using tiny amounts of often degraded
samples, and the profiling is just a step towards solving the case. There are, however,
some commonly known challenges in forensic casework and kinship testing that we
always need to consider, even with the improved technology. Artifacts like dropout (a
common problem for low template DNA samples), drop-in, silent alleles, mutations
and population stratification are some examples that we need to address in connec-
tion with the statistical analysis. Commonly used statistical methods today do include
such artifacts, however, there is no doubt that we need to develop the statistical meth-
ods according to the evolving DNA technology. In this thesis we propose a different

1
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Figure 1: The figure shows how the field of forensics is divided when DNA-evidence
is found. On one side we have family genetics, including kinship cases, immigration
cases and disaster victim identification/missing person identification, while on the
other side we find forensic crime cases based on mixtures.

perspective for solving kinship and crime cases, namely through statistical paramet-
rization.

Figure 1 gives an overview of how the field of forensics often is divided. The problems
met in this thesis will touch both family genetics and general forensic crime cases. We
are in other words working in a cross-over between these two forensic fields. As an
example, for papers II and III of this thesis, we could draw a line from the subfield of
"Biological stains" to "Paternity/Kinship" and "Disaster victim identification" in Fig-
ure 1. The parametric approaches we present in the papers of this thesis rely on many
well-known statistical theories that deserve more attention and should be explored
further for forensic applications.

To understand how forensic casework is solved, we need a proper understanding of
forensic DNA profiling. Some basic biological and statistical background is therefore
required, and in the following sections we aim at guiding the reader through some of
the biological and statistical concepts used in the papers included in this thesis.

2
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1.1 Genetic background

1.1.1 The DNA: chromosome, genes and alleles

DNA is today associated with the well known "double helix" as discovered by Francis
Crick, James Watson and Rosalind Franklin in 1953 [40]. But where is the DNA
found? We use Figure 2 to give an illustration of some of our essential building blocks.
The figure shows a random cell of an individual. The DNA is found in the nucleus
of the cell and consist of about 3 · 109 base pairs, packed into chromosomes. The
human DNA consists of 23 pairs of chromosomes, where 22 of these are autosomal
pairs, and the last pair is known as the sex chromosome (denoted XY for males and
XX for females). If we imagine that we pull out the DNA strands making up the
chromosomes, the strands turn out to be twisted double helical structures. A closer
inspection here shows that each DNA strand consists of the letters A (adenine), T
(thymine), C (cytosine), and G (guanine), known as bases. These are the building
blocks of our genes; the basic units of inheritance, storing our genetic code. Only a
small fraction of the DNA strands are coding regions with genes. The major part is
noncoding. The chromosomes of a pair are inherited one from each parent. A specific
location in the chromosome is called a genetic marker or a locus. Loci that show
variation between individuals are chosen as genetic markers to differentiate between
individuals. Most of the forensic markers are positioned in the none coding regions of
the chromosomes. A variant of a specific marker is called an allele.

Figure 2: Essential building blocks.

3



1 INTRODUCTION Navreet Kaur

1.1.2 Genetic markers - STR and SNP

The advances in forensic DNA profiling is without doubt highly related to the de-
velopment in use of genetic markers. Triggs et al. [57] describe three major stages of
technological advancement for finding genetic markers, namely the multilocus, single-
locus and STR stages. Short tandem repeat (STR) markers are most commonly used
in forensic casework today, and are a subclass of VNTR (variable number of tandem
repeats) markers. STRs were introduced for investigatory purposes around 20 years
ago, and are constantly subject to progressive development [30]. The characteristic of
STR markers is that they consist of repeated units of short sequences, usually between
2 and 6 base pairs. In other words, such markers consist of short DNA sequences, like
for instance "ACGA", which are repeated a specific number of times. The sequence
"ACGA" is called the motif, and it is the number of times the motif is repeated that
designates the allele name. If the motif "ACGA" is repeated, say, 16 times, this gives
us the allele name "16".

The main advantage of STR markers is that they are highly polymorphic. Intuitively, a
high variation in the alleles is desirable for human identification. The resulting DNA
profile is often regarded as identifying. Forensic trace samples is frequently of poor
quality with low DNA levels, often degraded, and may be found as mixture profiles
of two or more individuals. It is therefore of importance to use markers that can be
amplified regardless of poor quality, and STRs are considered to be easy to amplify
using polymerase chain reaction (PCR), even in small quantity. Even though shorter
markers (see SNPs below) perform better on degraded DNA, STRs are still the major
tool even for analyzing degraded trace samples.

Other classes of genetic markers are also proving to be very useful in forensic case-
work. Single nucleotide polymorphic (SNP) markers is one such class of markers.
SNPs are differences in one base occurring at single positions in the DNA, and can
be described as short binary markers. These markers present most of the common
human genomic variation. However, as SNPs are biallelic markers, these are not as
informative as STR markers per locus. As an example, Tillmar et al. [55] show that
52 SNPs are as informative as 11 STR markers in a kinship case testing for paternity
versus an uncle-nephew relation. Still, SNP markers have desirable properties that are
of interest in forensic use; they are theoretically more resistant to degradation since a
smaller target region is needed to recover information from DNA. They are are also

4
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more reluctant to mutations, and may therefore be considered more stable for kinship
testing. Our first paper make use of SNP markers, where the Illumina GoldenGate(R)
360 SNP test panel is used. This panel is hardly used for forensic problems, however,
the main focus of the mentioned paper and our thesis is on the statistical methods and
applications.

The use of SNPs over STR markers in forensic applications has been a topic of dis-
cussion over the recent years, and is discussed in papers like [12], [9] and [47]. STR
makers have a solid scientific foundation [11], and it is most unlikely that SNPs will
replace STR makers fully. SNPs are today an important supplement to STR markers.

1.1.3 Mendel, inheritance and pedigrees

Gregor Mendel established several rules of inheritance in the mid 1800s, and his work
revolutionized the science of genetics. After breeding various pea plants and estab-
lishing pure breeding lines, he cross-bred the pea lines and followed the result of their
outcome for some generations. He observed that the traits followed a specific pat-
tern, as illustrated in figure 3, where yellow and green peas are cross-bred. The first
generation gave pure yellow peas, indicating that yellow was dominant. However, in
the following generation the recessive green peas reappeared, and the overall ratio of
dominant to recessive trait was found to be 3:1 in his studies. The paper [19] explains
Mendelian inheritance and its forensic relevance using simple urn models.

Figure 3: An illustration of Mendel’s pea plant experiment, see [63]. Note that we already
here have a family pedigree, as we discuss further in Figure 4.

Inheritance may be defined as a trait transferred genetically. Mendel’s second law
states that alleles for separate traits are passed on independently of one another from

5
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parents to offspring. This law was later proven wrong, and Thomas H. Morgan (awar-
ded the Nobel Prize in Physiology and Medicine 1933) and others demonstrated that
genes are carried on chromosomes. The unit of the distance between the genes is
Morgan, or the more commonly used centi Morgan (cM).

Genetic linkage occurs when there is dependence in the inheritance pattern in a ped-
igree, i.e. alleles at different loci are not transmitted independently through the pedi-
gree. This thesis will not concern linkage analysis, and the interested reader is referred
to [53] and [54]. We mention Mendel’s experiment here as his work also has great im-
pact on general pedigree analysis and inheritance. In figure 4 we see two different
family pedigrees. Generally in pedigrees, females are presented by circles and the
males are presented by squares. The pedigree to the right shows a first-cousin mating
(between individuals (5) and (8)), denoted by a double line, and we say that the son
(9) is inbred. Figure 4 is made using the R library paramlink, see [23]. In human
genetics, several additional symbols are used. We have symbols denoting individuals
affected by a disease, individuals who are dead, individuals who are carriers etc. See
Ziegler et al. [64] for a complete list of plotting symbols.

Figure 4: Two pedigrees showing two different families. The pedigree to the left displays
two maternal half-brothers (individuals (4) and (5)), while the pedigree to the right involves
inbreeding.

1.1.4 Population genetics

Population genetics concerns the study of genetic variation within populations and
between. It is a broad subfield of genetics, and we will in the following paragraphs

6
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present the most essential population genetic effects that are needed to understand this
thesis. There is a large literature on population genetics focusing on the examination
and modeling of variation in the frequencies of alleles within and between populations,
over space and time. From a forensic point of view [4] and [26] provides a relevant
introduction.

Hardy-Weinberg equilibrium A population is said to be in Hardy-Weinberg equi-
librium (HWE) if the two alleles at a particular locus are statistically independent of
each other. In other words, what allele we inherit from one parent is independent of
what we inherit from the other at a particular locus in HWE. More commonly we say
that the allele and genotype frequencies remain constant over generations in the pop-
ulation. There are five underlying assumptions for HWE as described in [64], namely
random mating, no selection or migration, no mutation, no population stratification
(see next paragraph), and infinite population size.

Due to independence between the alleles, statistical calculations will be simplified if
a population is in HWE. From a practical point of view, it is sufficient to estimate
allele frequencies as genotype frequencies can be derived when HWE applies. Fung
et al. [26] explains in detail the steps for finding the genotype frequencies under HWE
conditions. Assume we have an autosomal locus with two alleles, A1 and A2. Then
there are three possible genotypes, given by A1/A1 (sometimes also denoted A1A1),
A1/A2 and A2/A2, with corresponding genotype proportions P11, P12 and P22. The
allele frequencies for A1 and A2 is then given by p1 = P11 + P12/2 and p2 = P22 +

P12/2. Further, we have that genotype frequencies of the offsprings of the second
generation will be given by p21 for homozygotes (i.e. A1/A1), 2p1p2 for heterozygotes
(A1/A2), and p22 for homozygotes (A2/A2) . Figure 5 shows the possible outcomes of
a standard mother-father-child trio from [26].

Population substructure (θ-correction) To account for population stratification and
relatedness, the θ parameter is commonly used. In paternity cases for instance, Hardy-
Weinberg will not apply in cases where the parents are related in a way not specified
by the pedigree. By including the θ parameter, we essentially correct for relatedness
of alleles with common ancestry. Consider an allele A1 with frequency pA1 and as-
sume that we have sampled n alleles, where x of these alleles are of type A1. With the

7
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Figure 5: Table from Fung et al. [26] giving outcomes of random mating in an infinite
population.

coancestry coefficient θ, the probability that the next allele will be of type A1 is given
by

xθ + (1− θ)pA1

1 + (n− 1)θ
.

See [4] for further details. The paper [7] gives estimates of θ for a wide range of
populations.

IBD and IBS Identical-by-descent and identical-by-state are two related concepts
that are important to have in mind while reconstructing pedigrees and family rela-
tions. Figure 6 gives an illustration of the concept. As explained in [24], an allele
in one individual is said to be identical by descent to an allele in another individual
if it derives from the same ancestral allele within the specified pedigree. In figure 6,
individuals 3 and 4 are brothers. We say that 3 and 4 share two alleles IBD if both
alleles in each brother derive from the same ancestral alleles (as they do in the first
marker), they share one allele IBD if only one allele is derived from the same ances-
tral allele (illustrated in the second marker), and they share zero alleles IBD if none
of the alleles derive from the same ancestral allele (third marker). Identical by state
(IBS) on the other hand refers to allele sharing (identical alleles) and does not require
the shared allele to derive from the same ancestor. For the brothers in figure 6, assume
the parents are not genotyped. Then the IBD status is no longer known. The three
markers now correspond to IBS being 2, 1 and 0.

8
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Figure 6: Figure illustrating the concept of identical-by-descent (IBD).

The κ parameter and the relationship triangle The concept of IBD can be used
to identify specific non-inbred pairwise relationships, by means of the κ parameters,
given by the vector κ = (κ0, κ1, κ2). Inbred relations would require nine parameters
as explained in Jacquard (see [24], [27]). In the vector κ, κi is the probability that two
individuals share 0, 1 or 2 alleles IBD, hence i = 0, 1, 2. We have that

∑2
i=0 κi = 1.

The most common relationships in terms of κ parameters are given in the table on
the left-hand side of figure 7. It is explained in [52] that we have the restriction that
κ21 ≥ 4κ0(1 − κ0 − κ1), hence the valid area for our κ parameters is the white area
beneath the dashed line illustrated in the plot on the right-hand side of figure 7. In
other words, we have that pairwise relations can be described by the two-dimensional
space given by

K∗ = {(κ0, κ2) : κ0, κ2 ∈ [0, 1] , κ21 ≥ 4κ0(1− κ0 − κ1)} (1)

See section 1.2.1 for an example on calculating the likelihood for a pairwise relation
based on κ parameters.

Coefficient of kinship and inbreeding Studies on how generations are affected by
mating between related individuals have for many years been a topic of discussion
both in human genetics and in population structure studies [33, 61, 62]. The kinship
coefficient between a pair of individuals is of particular interest in this area as human
geneticists often measure relationships through this numerical value. The coefficient
of kinship ψ between two individualsA andB measures the proportion of IBD alleles,

9
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Figure 7: The table to the left shows some well-known pairwise relationships given
in terms of κ parameters, while the figure to the right gives an illustration of these
relations. The figure is plotted using the function IBDtriangle of the R package
paramlink [23]. The valid domain for the κ parameters is the white area under the
curve given by κ2

1 = 4κ0κ2. Note that the term avuncular encompasses the three
relations halfsiblings, grandparent-grandchild and uncle/aunt - niece/nephew.

and is the probability that a randomly chosen allele in A is IBD to a randomly chosen
allele from B. For non-inbred individuals the parameter is

ψ =
2κ2 + κ1

4
.

This coefficient is also of interest as we operate with one single value and summarize
pairwise relationships through one single parameter, compared to the two-dimensional
setting we have using the three κi parameters presented in the previous paragraph.
However, this parameter reduction is not always beneficial, as some relations no longer
are distinguishable using ψ. For instance, using the κi values given in figure 7, we find
ψ = 2·0+1

4 = 1
4 for the parent-child relation. For siblings, we also find ψ =

2· 14+ 1
2

4 =
1
4 . Although these relations are located far from each other as is evident from the plot
in Figure 7 (see PO and S), they are presented with the same value using the kinship
coefficient.

The coefficient of kinship ψ and the inbreeding coefficient, f, are two related con-

10
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Figure 8: Figure used to explain the relationship between the kinship coefficient ψ and the
inbreeding coefficient f . Recall that the double line between individuals P and Q indicates
that their child R is inbred.

cepts, as explained in [54]. We use Figure 8 to explain the relation between these two
concepts. Two individuals P and Q are paternal halfsiblings, and both individuals
have inherited an allele (a) from their father. In other words, P and Q have one allele
identical by descent, and we denote their coefficient of kinship by ψP,Q. The halfs-
iblings mate (double line), and the pedigree is expanded by including an individual
R. If R inherits the same allele from her father and mother, we say that R is autozyg-
ous, i.e., a homozygote individual with alleles that are copies of the identical ancestral
gene, as a result of a consanguineous mating. The probability of R being autozygous
is the inbreeding coefficient of R, denoted fR. Hence, the inbreeding coefficient of
R and the kinship coefficient of P and Q, assumed to be non-inbred, are exactly the
same. The following reasoning, also included in paper IV, explains this relation step
by step:

ψ = ψP,Q = Pr(random allele of P is IBD with random allele of Q)

= Pr(R receives IBD alleles from her parents)

= Pr(R is autozygous)

= fR.

So far we have discussed DNA marker data from individuals, based on genotypes
from a reference sample of good quality. We will discuss problems that may occur
for degraded DNA (dropout) and artifacts like drop-in, silent alleles, and mutations
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later. Also, papers II and III of the thesis use mixture DNA profiles and this will be
addressed in section 1.4.1. We now turn towards statistical methods more specifically.

1.2 Statistical methods

Below we introduce some fundamental statistical methods and concepts for our applic-
ations. Some more standard methods, like multiple linear regression briefly reviewed
and used in paper I, are not discussed here.

1.2.1 Likelihoods

Likelihood inference can be understood from different perspectives, and detailed ex-
planations can be found in several basic statistical textbooks, like [49] and [18]. As-
sume we have independent and identically distributed data, y1, y2, ..., yn, following a
distribution described by the function fy(y;φ). Here φ is an unknown parameter that
we want to estimate from the data. If we let L be the joint probability distribution
function of the observations y1, y2, ..., yn, then

L = fy1,y2,...,yn(y1, y2, ..., yn;φ)

= fy(y1;φ) · · · fy(yn;φ)

=

n∏

i=1

fy(yi;φ).

We can look at the function L as a function of the data, that is, L = L(y1, ..., yn;φ).
From this perspective, the parameter φ is a fixed value and the dataset of yi’s are
considered as variables. However, in order to estimate unknown parameters from a set
of data, it is beneficial to rather look at L as a function of the parameter φ and consider
the yi’s as fixed. The function L is then presented by

L = L(φ) = L(φ; y1, y2, ..., yn) =

n∏

i=1

fy(yi;φ),

and L(φ) is defined as the likelihood function.

12
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The likelihood is found in several applications, presented in different forms. As an
example, which will be expanded on in paper IV of the thesis, we go back to the
context of the κ parameter presented in section 1.1.4.

Example 1. If the genotypes or data of two individuals 1 and 2 are given by g1 and
g2, respectively, the likelihood function for one marker will be given by

L(κ) = κ0UN(pg1 , pg2) + (1− κ0 − κ2)PO(pg1 , pg2) + κ2MZ(pg1 , pg2) (2)

Here, UN, PO and MZ are abbreviations of "unrelated","parent offspring", and "mono-
zygotic twins", respectively. We have that UN is the probability of the genotype given
that the individuals share no alleles IBD, PO is the probability of the genotypes given
that the individuals share one allele IBD, and MZ is the probability of the genotype
given that the individuals share two alleles IBD.

Consider two individuals with the genotypes g1 = 1/1 and g2 = 1/2, with corres-
ponding genotype frequencies p1, p2. Then UN = p21 · 2p1p2, PO = 1

2p1 · 2p1p2 and
MZ = 0. From the likelihood presented above, we find that likelihood must be given
by

L(κ) = κ0 × p21 · 2p1p2 + (1− κ0 − κ2)× 1

2
p1 · 2p1p2 + κ2 × 0

= κ0 × 2p31p2 + (1− κ0 − κ2)× p21p2.

For the unrelated case (UN), we have that κ = (1, 0, 0) and so L(κ) = 2p31p2.

1.2.2 Estimation - Maximum Likelihood

We say that the maximum likelihood estimate φ̂ is the value of φ that maximizes the
likelihood function, L(φ). That is, for any φ̂ where

L(φ̂) ≥ L(φ), for all φ 6= φ̂,

φ̂ is said to be the maximum likelihood estimator of φ.

13
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1.2.3 Optimization

Optimization procedures differ from application to application. In this thesis, optimiz-
ation is met in paper IV in the context of κ parameters and the relationship triangle in
Figure 7. In our application we want to estimate the κ parameters in order to estimate
relations between individuals.

With n independent markers, we have that the log likelihood function is given by

l(κ) =

n∑

i=1

log(Li(κ)),

where Li(κ) is given in (2) and (κ0, κ2) ∈ K∗ as in (1). The problem is that we are
working with non-linear constraints. To get hold of the problem, we first reparametrize

using

α =
κ0κ2

(1− κ0 − κ2)2
≤ 1

4
.

This gives

κ2 = 1− κ0 −
√
κ20 + 4ακ0(1− κ0)− κ0

2α
(3)

By use of α, the point (κ0, κ2) is transformed to the point (κ0, α), and we solve the
problem by optimizing over (κ0, α) ∈ [0, 1]× [0, 1/4], before transforming back to κ2
using equation (3). The standard maximum likelihood theory, involving asymptotic
normality and optimality of estimators, does not apply when the parameter is on the
boundary as we comment on i paper IV.

1.2.4 Parametric bootstrap

Bootstrapping is a wide area of statistics, and there are several different bootstrapping
methods, see [16]. Parametric bootstrapping has been used in this thesis both for cre-
ating confidence regions of the estimates. The essential idea is as follows: Given gen-
otype data on two individuals whose relation is in question, an estimate κ∗ is obtained
from the data. Then the likelihood function (1) is used to generate a table describ-
ing the joint genotype probabilities of the two individuals for each marker. This table
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can then be used to simulate marker data B times from which we get the bootstrap
estimates κ̂1, . . . , κ̂B .

There exist several bootstrapping methods for creating confidence intervals or regions
as described in [16]. We use the percentile method independently for the parameters
κ0 and κ2 truncated to the interval [0, 1]. Note that the problems with parameter values
on the boundary mentioned previously for maximum likelihood estimates also apply
to bootstrap estimates as discussed in [2]. The confidence ellipses in paper IV ignore
the boundary issues and assumes that (κ̂0, κ̂2) follows a bivariate normal distribution
where the mean vector and covariance matrix is estimated from the bootstrap samples.
We have used the implementation in the R library ellipse which is based on [43].

1.3 Statistics in a forensic context

1.3.1 Likelihood ratio

The likelihood in section 1.2.1 is presented in a mathematical manner including para-
meters, and by doing so we are able to develop the theory further and include the the-
ory of maximum likelihood to estimate the parameters. In a forensic context, however,
the likelihoods usually take a more verbal form, and we also include the hypotheses in
question when stating the likelihoods. We say that the likelihood is the probability of
the data, conditioned on a given hypothesis (H) and some information I (like allele
frequencies) common to all hypotheses, see [6], [25]. We define the likelihood as

L = P (data|H, I).

When a crime is committed and DNA samples are gathered at the crime scene, it is of
interest to calculate the weight-of-evidence. We will in the following denote the DNA
evidence by E. It is generally accepted and also recommended that the weight-of-
evidence should be summarized by the likelihood ratio (LR). See Neyman et al. [44]
for a justification from a statistical point of view, Gjertson et al. [31] for kinship cases
(in such cases the LR is sometimes referred to as the paternity index) and Gill et al.
[28] for crime cases.

In court, two competing hypotheses stated by the prosecutor (Hp) and the defense
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attorney (Hd) may in crime cases typically be

Hp : The the person of interest (suspect) contributed to the evidence (E)

Hd : An unrelated man contributed to the evidence (E)

The likelihood ratio (LR) where I is omitted in the notation is then given by

LR =
P (data|Hp)

P (data|Hd)
=
P (E|Hp)

P (E|Hd)
.

The likelihood ratio is also applied as weight-of-evidence in kinship cases. It is then
usual to rather state the hypotheses as H1 versus H2.

1.3.2 Parametric formulations of the hypotheses

A core idea of this thesis is to formulate parametric statistical models and to state
the hypotheses in terms of the parameters in the model; this is the standard statistical
approach. Paper I presents a crime example, where we use linear regression. The
parameter β corresponds to the fraction contributed from the suspect or person of
interest (POI). Obviously, the hypothesis “POI did not contribute” is equivalent to
β = 0 and the alternative hypothesis “POI contributed” is equivalent to β > 0.

For a kinship example, discussed in paper IV, the standard paternity case may be
formulated as κ1 = 1 (‘paternity’) versus κ1 < 1. This latter alternative is much more
general than the verbal ‘unrelated’. We use this parametric approach to expand on the
case presented in Example 1:

Example 2. Recall the relations in terms of κ parameters given in Figure 7. If we want
to test the hypothesis of a parent-child relation (PO) between two individuals versus
unrelatedness (UN), we can formulate the hypotheses in terms of κ parameters, where

H1: κ = (0, 1, 0) versus

H2: κ = (1, 0, 0)

We have that the LR for evaluating these parametric hypotheses is formulated by
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LR =
P (data|H1)

P (data|H2)
=
L(κ = (0, 1, 0))

L(κ = (1, 0, 0))
.

If we turn to the the likelihood function found in Example 1: for two individuals with
genotypes g1 = 1/1 and g2 = 1/2 we found L(κ) = κ02p31p2 + (1− κ0 − κ2)p21p2.
This gives the LR

LR =
0× 2p31p2 + 1× p21p2
1× 2p31p2 + 0× p21p2

=
1

2p1
.

Note that this LR could have also been obtained intuitively by looking at the genotypes
g1 = 1/1 and g2 = 1/2 of the individuals in question:

LR =
P (child = 1/2 | father = 1/1)

P (child = 1/2)
=

p2
2p1p2

=
1

2p1
.

1.3.3 p-values

If the alternative hypothesis is not clearly specified, the classical likelihood ratio ap-
proach of forensics may not apply. In such situations, one should look at other ways for
evaluating the evidence based on classical hypothesis testing. Assume that some DNA
evidence is available and that two competing hypotheses, H1 and H2, are suggested.
As an example, consider two persons that may want to document that they are related,
whatever that means. One may then formulate the hypotheses H1 : θ ≤ θ0 versus
H2 : θ > θ0 for the previously defined θ parameter. One could use θ0 = 0, or some
larger value, say 0.05, in case we would like to demonstrate relatedness beyond the
background value. We could calculate a test statistic, for instance a likelihood ratio as
defined in Garcia-Magariños et al. [27] by ∆ =

supθ∈H1
L(θ)

supθ∈H1
⋃
H2

L(θ) , or some other test-
statistic. However, it remains to calculate a critical value T0 so that we reject whenever
∆ ≤ T0. Alternatively we can calculate

p− value = P (∆ ≤ ∆∗ | H1),
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where ∆∗ is the observed test-statistic. Intuitively, ∆ is the ratio of the maximum
likelihood under H1 divided by the maximum over all values of the parameter. This
explains why we reject for small ∆ values or, equivalently and more common, for large
values of −2 log(∆)).

If we assume that H1 is true, then the p-value is informally defined as the probability
of the observed test static or something more extreme under H1. We use the p-value
to decide whether or not H1 should be rejected, by comparing the p-value to a chosen
significance level, α. If the p-value is less than the given significance level (common
values to use are α = 0.05 and α = 0.01),H1 is rejected. A more theoretical statistical
understanding of the concept may be found in statistical textbooks, like [18] and [49].

The use of p-values for evaluating the strength of DNA evidence has been a topic
of discussion in the forensic community. There are those who promote the use of
p-values as a supplementary understanding in evaluating the evidence (like Gill et
al. [29]), and those who oppose the use of p-values as these in many cases may be
misused due to wrong understanding of the concept. Dørum et al. [20] for instance,
present p-values for complex DNA profiles were several individuals are involved. The
p-value is presented as a supplement to the likelihood ratio, giving a scaled version of
the LR. This view of the p-value, as a scaled test statistic or a map to the interval [0,1],
is presented in the much cited book by Box et. al [5]. Kruivjer et al. [39], however,
followed up on [20] with a paper recommending not to use p-values for evaluating
the strength of DNA evidence. They mention different pitfalls, like for instance the
prosecutor’s fallacy, i.e. wrongly interpreting the p-value as the probability of the al-
ternative hypothesis H2 being true. They also refer to Goodman [32], discussing how
commonly p-values are misinterpreted in scientific research. Their basic point is that
all relevant information from the data is contained in the LR. There is another substan-
tial problem with p-values or conventional testing of null hypotheses not mentioned in
[39]. This framework is designed for non-symmetric situations: It is more important
to avoid falsely rejecting the null hypothesis than failing to reject a null hypothesis
which should be rejected. Clearly, p-values need to be handled carefully. However,
as the promoters of p-values argue, these may give useful information when handled
correctly. Also, we point out here that when we are not able to state an appropriate
alternative hypothesis, the verbally based likelihood ratio may not work. In this thesis
p-values only appear in paper I. As we elaborate on in the discussion, the reason is
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that the mentioned paper is motivated by [36] which uses p-values extensively.

1.3.4 Bayesian approach

The LR may be used in a Bayesian framework. In this context, we are able to interpret
a given DNA evidence E relative to other types of evidences, and we instead look
at which of the two hypotheses in question, Hp and Hd, are most likely given the
evidence. This is known as the posterior probability, i.e. P (Hp|E) and P (Hd|E).
Using Bayes’ theorem, we convert the LR to a posterior probability, given by

P (Hp|E) =
P (E|Hp)P (Hp)

P (E|Hp)P (Hp) + P (E|Hd)P (Hd)
=

LR · P (Hp)

LR · P (Hp) + P (Hd)
, (4)

where the last equality is obtained by dividing the numerator and denominator by
Pr(E|Hd).

If we have several competing hypotheses, H1, H2, ...,Hk, the posterior probability
may be presented as

Pr(Hi|E) =
Pr(E|Hi)Pr(Hi)∑k
j=1 Pr(E|Hj)Pr(Hj)

.

Commonly, a so-called flat prior is used, such that Pr(Hp) = Pr(Hd) = 0.5. Using
the flat prior, we find that the relation in (4) is given by

Pr(Hp|E) =
Pr(E|Hp)

Pr(E|Hp) + Pr(E|Hd)
=

LR

LR+ 1
.

However, having prior information may provide useful details that may reduce or in-
crease theLR if we use the Bayesian framework. As explained in Egeland et al. [24], if
say 1000 persons are missing after a large scale disaster, and 10 of these are reported as
missing females, the prior probability of an unidentified person will be 1/(1000 + 1).
However, for families missing only a female, this probability will be 1/(10 + 1), and
zero for the remaining 990 families missing a male. Clearly, including this informa-
tion in (4) will provide substantial increase or decrease of posterior probability, hence
finding a more reliable LR.
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It is also possible to write Bayes theorem on odds form as

Pr(H1|data)

Pr(H2|data)
=

Pr(data|H1)

Pr(data|H2)
× Pr(H1)

Pr(H2)
.

This expression clearly demonstrates how the LR modifies our prior belief, as we
verbally may state

posterior odds = LR× prior odds.

The paper [14] discusses the relationship between likelihood ratios and posterior odds
in different settings.

1.4 Understanding the DNA profile

The use of forensic DNA profiling has been through a great journey and expansion
since it was first introduced in the mid 1980s by Sir Alec Jeffreys, [8]. The profil-
ing techniques have evolved rapidly, and forensic scientists from both biological and
mathematical sides are continuously working to develop the technologies and make
the analyzing methods more robust. After all, a slight error may result in a perpet-
rator going free, or an innocent person being convicted. DNA typed evidence is based
on scientific findings and is therefore considered to provide objective information in
crime cases. Forensic DNA profiling is widely recognized as the foremost method for
forensic identification, and the technique has even been referred to as "a gold standard
for truth telling" [3]. With the constantly improving DNA profiling techniques, cold
cases are reopened and solved [60].

The creation of a DNA profile includes several technological steps. After evidence
material is gathered from a crime scene, DNA cells are separated from other cell ma-
terial by DNA extraction (the extraction stage). This is followed by a polymerase chain
reaction (PCR) amplification where copies of the STR regions are created. Finally, the
capillary electrophoresis stage is reached, where the STR markers are separated and
electropherograms are made, presenting allelic peaks giving a visual understanding of
the DNA profile. We will not go through the technological steps behind creating a
DNA profile, however we recommend [10] to the interested reader. Figure 9 gives an
example of an electropherogram, using the ESX17 marker kit (used in Norway).
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A profile from a crime scene will typically be of poor quality and hence requires
more caution than a profile in a standard kinship case, where the profile most likely
will be complete. However, whether or not the profile is complete, there are many
considerations that need to be taken while creating a DNA profile, and we discuss
some of these in the following sections.

Figure 9: Figure showing an electropherogram (epg) from a two-person mixture.

1.4.1 Mixtures

A DNA mixture refers to a DNA sample where more than one individual has con-
tributed to the stain. A typical sign of a mixture is when the electropherogram shows
more than two peak heights at a single marker. The minimum number of individuals
contributing to the mixture can therefore be estimated by counting the peaks at the
marker with the maximum number of peak heights. Note that this intuitive method
fails for SNPs as we will never estimate more than one contributor. However, better
estimates are available using maximum likelihood, see Egeland et al. [21] for SNPs
and Haned et al. [34] for STRs. Important examples of cases where DNA mixtures
often are found are rape cases and murder cases. DNA mixtures have generally not
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been considered a major problem in kinship cases. However, as paper II and III of
this thesis show, mixture problems may occur in kinship cases as well, and need to
be handled even more carefully in such cases as the allele peaks may overlap due to
shared alleles between relatives.

Figure 9 shows a typical two-person mixture. The contributor with the larger peak
heights is referred to as the major component, whereas the contributor with the lower
peak heights is referred to as the minor component. Of course, cases in which both
individuals contribute in more or less equal amounts may also occur.

A detailed explanation of how two-person mixtures and higher order mixtures can be
detected and handled is explained in detail in [15]. The same paper also explains that
higher order mixtures cause computational problems, and suggests that in some cir-
cumstances it could be better to lower the dimensionality of the mixture by assuming
the presence of a known individual, and subtract this profile from the mixture. In pa-
per I of this thesis, however, we present a method for handling high-order mixtures
without needing to specify the number of contributors or lowering the dimension.

Whether the mixture consists of two persons or is more complex, there are several
considerations that need to be taken into account while interpreting the mixture. Stut-

ters and heterozygote imbalance are artifacts that may appear in the electropherogram
while handling low-level DNA samples, and may confuse the DNA interpretation. Ap-
pearing due to strand slippage, stutter bands typically lack one repeat unit relative to
the main allele [59]. Heterozygote imbalance is caused by stochastic effects during
the PCR amplification process. The imbalance occurs when the alleles are not amp-
lified with equal peak heights (as one should expect) during the PCR amplification.
Figure 10 gives an example of a stutter and heterozygote imbalance. The same figure
also gives an example of allelic dropout and drop-in. We will return to these issues
in section 1.4.3 and also discuss silent alleles, mutations and population stratifications
in more detail in the following sections. The important point for now is that we need
to handle artifacts that may appear in the electropherogram as contributing compon-
ents in the mixture, or vice versa, artifacts causing contributing components to miss
out from the electropherogram. The work presented in this thesis does not involve
heteozygote imbalance or stutters.
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Figure 10: Figure showing heterozygotic imbalance, allelic dropout and drop-in, and stutters,
see [10]

1.4.2 Mutations

Changes in DNA sequences are called mutations. The mutation may occur on the
somatic level, meaning that the change in the DNA only impacts on the individual
level, or in the germ line, impacting future generations as the mutation then occurs
in the sex cells. Mutations in the germ line are more severe for kinship cases, as the
mutation may effect pedigrees and relations that are questioned.

Mathematically, mutations are accounted for using a mutation matrix,

M =




m1,1 m1,2 · · · m1,K

m2,1 m2,2 · · · m2,K

...
...

. . .
...

mK,1 mK,2 · · · mK,K




Each elementmi,j in the matrix presents the probability that allele i ends up as allele j.
Hence, the diagonal elements are the probabilities of no mutation. There exist several
mutation models, and the simplest is the ‘equal’ mutation model, where the probability
of mutating from one allele to another is equal for all alleles. The ‘stepwise’ mutation
model, see [17] and [13] for a mathematical presentation, is an other model where each
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mutation probability mi,j in the matrix M can be expressed as

mi,j =





1−R if i = j,

kir
|i−j| if i 6= j.

The parameterR is the mutation rate and ki are constants defined such that each row in
the matrix M sums to 1. The underlying assumption for the stepwise mutation model
is that the alleles are considered as repeats or steps [58], and "larger steps" are more
unlikely than smaller steps. There exist extensions of the stepwise model, discussed
in [38] and [24]. This model distinguishes between integer mutations (like a mutation
from 9 to 10) and the rarer mutations between integers and non-integer alleles (like 9
to 9.3 or 9.3 to 9).

Software like Familias provides options for handling mutation problems computa-
tionally. There is both a Windows version of this software (see [38]) and an R version
(see chapter 5 of [24]). The latter R implementation is used in our relMix software
presented in paper III. To look at a practical example, consider a parent-child case. As
explained in section 1.3.1, to test the hypotheses of whether or not an alleged father
is the biological father of a child, we need to calculate the likelihood ratio. For such
parent-child cases, there exist a general likelihood ratio formula. Assume that the par-
ent’s genotype is a/b and that the child’s genotype is c/d. Here the alleles a, b, c and
d may or may not differ. Then the likelihood ratio including mutations is generally
given by

LR =
1

4

(ma,c +mb,c)pd + (ma,d +mb,d)pc
pcpd

,

where p is the allele frequency. We have used this formula to check implementations
in our papers. For the ‘equal’ mutation model, the above LR is simplified even more
as we then have mi,i = R and mi,j = 1−R/(n− 1) if i 6= j and n is the number of
alleles. If the alleged father and the child do not share any alleles, the LR accounting
for mutations will be reduced to

LR =
1

2

m(pc + pd)

pcpd
,

where m = 1−R/(n− 1).
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1.4.3 Drop-in, dropout and silent alleles

Dropout and drop-in was introduced in section 1.4.1. The electropherograms in Figure
10 gave an example of how both terms may cause a misleading understanding of a
DNA profile. Recall that problems with dropout is often observed when we work with
degraded and low-template DNA.

Drop-ins are observed as additional allele peak heights in the electropheorgram, and
appear as a result of sporadic addition in the DNA sample. Generally drop-ins are by
definition restricted to one or two alleles in one profile, such that if multiple alleles are
observed at more than two loci, these sample are more likely to contain information
from an additional individual [29].

Dropouts on the contrary refer to failure of detecting alleles (one or both) at a locus.
For diallelic markers we use the term allelic dropout when there is loss of one single
allele, while the term locus dropout is used when both alleles are missing. If dropouts
appear, heterozygous markers may falsely be assumed to be homozygous.

Dropouts may also be confused with silent alleles. Both dropouts and silent alleles
may appear when an allele in the sample fail to amplify during the PCR reaction. The
difference, however, is that dropouts are considered as a random, stochastic effect, and
do not occur if the DNA sample is of good quality. Silent alleles on the other side are
inherited and may effect several contributors in a family pedigree.

How to account for drop-ins and dropout in DNA profiling have been a topic of dis-
cussion over the last years, and Gill et al. [29] give a set of recommendation on how
these effects can be handled.

1.5 Implementation

For the papers included in this thesis, three different R packages have been developed
that are freely available. We here give a short summary of these libraries.

Package betamix The package betamix is introduced in paper I. This package
may be used for regression analysis on DNA mixtures, and contains two functions;
sim.mod and reg1. Using the function sim.mod, data for a number of SNP markers
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are simulated, which further can be scaled and standardized. Data is returned on a
format convenient for regression analysis, for which the function reg1 can be used.
With this function, the proportion contributed from an individual to the mixture is
estimated and a p-value is computed. The scaling coefficients are computed and data
is returned. The package has been recompiled to work for the current R version 3.3.3
and is available from the webpage: arken.nmbu.no/~theg/betamix_1.1.zip (up-
dated link compared to paper I).

Package relMix This package is first introduced in paper II, and is later expanded on
in paper III. The package is used for for relationship inference based on mixtures and
missing reference profiles, and calculates likelihoods for such cases by including drop-
in and dropout, mutations, silent alleles and theta correction. The package uses the R
version of Familias [38]. The implementation of the likelihood including dropout
and drop-in presented in relMix is based on Equations (2.1) and (2.2) of Slooten
[50], originally described in the appendix of Haned et al. [35]. The package is freely
available at CRAN R, and also comes with a user-friendly graphical user interface
(GUI) under function named relMixGUI().

Package IBDest2 In this package, maximum likelihood estimates of IBD coeffi-
cients (the κ parameters) are obtained with nonlinear constraints. The functions presen-
ted in this package are based on the R library paramlink [23]. We handle three dif-
ferent cases: 1) Standard - estimates are only restricted to the relationship triangle, see
Figure 7. 2) Constrained - estimates are constrained to the permissible region (white
area of Figure 7). 3) BIC - we use the Bayesian Information Criteria to find the es-
timate. Furthermore, parametric bootstrap is implemented so that we can simulate for
a pedigree with an arbitrary κ and a confidence ellipse is estimated and drawn. The
package is available from http://familias.name/IBDest2_1.0.zip and is used
in the fourth paper of this thesis.
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2 Paper summaries

Figure 11 gives a visual understanding of how the papers in this thesis are ordered.
Paper I concerns mixture cases, and we discuss how contributors may be detected.
Papers II and III handle mixture problems in kinship cases. Paper IV concerns estim-
ation of relations in kinship cases. In the following sections we summarize the main
points of each paper.

Figure 11: The figure summarizes some of the main aspects met in the four papers of this
thesis.

Paper I – Regression models for DNA-mixtures

The paper deals with DNA mixtures involving several contributors, and presents a
parametric approach for detecting contributors to mixtures. The conventional meth-
ods used in forensics casework are often based on a limited number of STR markers.
The paper suggests use of SNP markers as power may be increased. Moving away
from the conventional verbal presentation of the hypotheses testing for whether the
suspect contributed to the mixture or not, parametric hypotheses are presented, where
a person is said to contribute to the mixture if and only if his contribution fraction (de-
noted by the parameter β) is greater than zero. A regression model is presented based
on this contribution fraction β. The model does not require the number of contributors
of the mixture to be known, as the contribution from the unknown contributors is re-
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placed by expected values from the population frequencies. Data from 25 controlled,
blinded experiments are used to test the model, with contributors to the mixtures vary-
ing between 2-5 and their contribution fractions range in the interval (0.01, 0.99), see
[22]. These fraction were accurately estimated by the regression analyses, with no
false positives, and some false negatives for the small contribution fractions of 0.1 or
lower.

Paper II – Relationship inference based on DNA mixtures

The paper was developed while handling a rape case involving DNA mixtures and
missing reference profiles. The scenario is as follows: a rape resulted in an unwanted
pregnancy, and an abortion was performed. A suspect was later found, and a paternity
test was ordered. However, the fetus material obtained from the abortion came in form
of a mixture with the mother of the unborn child, and for some reason the victim (the
mother) refused to give her reference DNA. Conventional methods for paternity testing
did no longer apply, and new methods were needed. Whereas the main emphasis
for solving cases involving DNA mixtures often is to determine the contributors to
the mixture, we here instead focus on the relationship between the contributors to
the mixture. Statistical methods that may handle general relationship inference based
on DNA mixtures are presented. The basic idea is that likelihood calculations for
mixtures can be decomposed into a series of kinship problems. The development of
the R library relMix started with this paper. The software was, however, extended and
we refer to paper III for the updated version.

Paper III – Pedigree based relationship inference from complex
DNA mixtures

This paper extends on paper II of this thesis. The calculations have been extended
to additionally account for dropout and drop-in as well as mutations, silent alleles
and population substructure. An improved version of the relMix package is presen-
ted, both as a user-friendly graphical user interface (GUI) and as several command
line functions in R. The motivational example for this paper is as for the previous
paper a paternity test where the child’s DNA profile only is available as a mixture
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with the mother’s profile. More specifically, the improved method here is developed
based on non-invasive prenatal paternity testing cases, where a blood sample taken
from a pregnant woman is analysed with next generation sequencing. A highly unbal-
anced mixture and a very low amount of foetal DNA make dropout and drop-in likely.
Whether the aim is to identify the contributors to a mixture who may be related, or to
determine the relationship between individuals based on a DNA mixture, both types
of problems can be handled by the method and software presented here. We focus on
paternity cases in most of the examples in the paper, however, we do emphasize that
our software can handle all types of relationships between individuals in a mixture,
and the hypotheses may involve any number of relatives. Simulation study shows that
the ability to identify true trios is drastically reduced if there is dropout in the data that
is not accounted for. The method is also demonstrated on data from a real prenatal
paternity case as proof of concept.

Paper IV – Relationship inference: Estimation and model selection

In this paper, we take the parametric framework of identity-by-descent (IBD) probab-
ilities further. The methods and implementations of this paper are relevant whenever
parameters describing the relationship between two non-inbred individuals are needed,
as their relation may be described by a point κ = (κ0, κ1, κ2) in the IBD relationship
triangle. Based on these κ parameters we formulate parametric hypotheses suggesting
a certain relation versus another specified relation. Hence, we no longer need to state
unrelatedness as an alternative hypothesis which is conventionally done when formu-
lating such hypotheses verbally. We expand on already known methods for estimating
κ from genetic markers, and take a deeper look into the estimation properties of para-
meters found on the boundary of the permissible area in the relationship triangle. The
main novelty of the paper is that we introduce optimization with non-linear constraints
and model selection based on the Bayesian Information Criterion (BIC) to get hold of
the boundary issues. Also, we introduce parametric bootstrapping in order to create
confidence regions for the estimated κ parameters. The kinship coefficient ψ is also
introduced for practical purposes, and plotting methods are presented to visualize the
estimated relations.
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3 Discussion

In this thesis we have discussed statistical approaches to be applied in both kinship
cases and forensic crime cases. Traditional testing of hypotheses in forensic genetics
differ from most other applications of statistics as verbal formulations of the hypo-
theses are used. The main point in paper I and IV is that parametrical models are
formulated and that hypotheses are expressed using the parameters of the model. This
is the standard approach of applied statistics.

In [36] it was claimed that “mixtures where an individual contributes less than 0.1%
of the total genomic DNA” could be handled. The paper [22] critically examined
the statistical methods of [36] and stated: “We conclude that it is not possible to
reliably infer the presence of minor contributors to mixtures following the approach
suggested in [36]”. The purpose of paper I was to present appropriate methods for
identification of contributors to a mixture. The basic idea is the previously mentioned
parametric approach: the hypothesis “POI contributed" is reformulated as β > 0,
where the fraction POI contributes is β. This formulation makes classical statistical
theory available. For instance, the statistical power of the test can be studied in the
conventional way. In paper I a simple regression model was used. Obviously, more
complex models may be needed in future cases. For instance, if more markers are
used, the resulting dependence (linkage disequilibrium) must be modeled. However,
we emphasize that the specific model is not the main message of paper I, but rather
the parametric formulation.

There is a large literature on pairwise relationships. The paper [45] puts these kin-
ship cases into context. Paper IV of this thesis addresses kinship problems and builds
on the work of Elizabeth Thompson starting with [51]. Here, verbal statements of
questioned kinship relations are replaced by parametric versions with the advantages
mentioned above. The classical paternity framework, testing the alleged father against
an unrelated man, is restrictive. It may also be problematic if a close relative of the
alleged father may be the biological father. This restriction is removed with the para-
metric formulation as explained further in [27]. Whereas [27] discusses asymptotic
distributions of test statistics, paper IV uses simulation and parametric bootstrapping
to estimate parameters and confidence regions.

Paper II and the extension, paper III, address cases where both mixtures and individual
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profiles are available. Some of the contributors may be related and the objective is to
determine who contributed to the mixture or to infer relationships between the contrib-
utors of the mixture. For these papers, classical verbal formulations of the hypotheses
are used. In terms of computations, the likelihoods can be reduced to sums of kinship
likelihoods. Dropout and drop-in are modeled using the general formulation of the
likelihood in [50]. The paper [42] presents an alternative approach.

There is an R library for each of the four papers. The one mentioned in paper II is
replaced by the more general and user friendly version of relMix discussed in paper
III. We expect this package to have some general interest and it has been used for
casework not mentioned in the papers. The other libraries, betamix and IBDest2

probably need further testing and some extensions to be of practical general use, but
they serve to check the examples of the papers.

Figure 12: The red diamond indicates the true relationship. We have simulated 100 times,
each with 10 markers. See Example 3.1 of paper IV for further details.

In [36], p-values are used extensively, and mainly for this reason we also use p-values
in paper I as we are comparing and discussing findings. The use of p-values was
discussed in [39] based on [20]. However, much of the controversy around p-values
exists due to danger of misinterpretations of the conclusions in court. Sometimes p-
values are related to fact finding and not interpretation of evidence, and then the issue
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is less controversial. Also, if it is impossible to formulate a few specific hypotheses
verbally, classical hypothesis testing in parametric models may be needed.

Finally, we like to mention scopes for future work. Most importantly, methods and im-
plementation must be developed and implemented to accommodate new data sources.
In several respects more data is needed. For instance, mixture cases with say four
or more contributors, are likely to be beyond the reach of analyses based on conven-
tional kits. Similarly, it may be difficult to distinguish close family relationships as
paper IV shows. Even testing siblings against half-siblings is difficult based on the
limited number of unlinked markers available as discussed in [41]. Figure 12 is based
on Example 3.1 of paper IV. Only ten markers are used. The 100 simulated points
from the κ (indicated with a red diamond) clearly show that there is not enough data
to reliably estimate the relationship. More data is also needed to deal with inbred rela-
tionships. There are data sources available of forensic relevance that is not discussed
in this thesis, as X-chromosomal markers [56, 46], Y-chromosomal markers [1, 37],
and mtDNA [48]. In summary, methods and software must be further developed to
solve problems of practical importance while being tailored for new data sources.
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1. Introduction

The topic of this paper is the evaluation of DNA mixture
evidence which refers to cases where there are, or could be, several
contributors to a biological stain. The basic question is whether a
specific individual has contributed to the mixture and we present
new statistical methods which are tested on data from a controlled
(blinded and randomised) experiment.

When analysing DNA-mixtures from a crime scene, the tradition
has been to use STR analysis in forensic case work. By use of
electropherograms, the DNA-mixtures are characterized by markers
showing more than two peaks [1]. Instead of using the conventional
STR-markers, we present an approach based on SNP-markers. Such
markers have been studied previously in forensic contexts in e.g., [2–
5], but typically aiming for kinship applications rather than mixture
interpretation. But as SNP-markers are diallelic, the mixtures are not
that easily recognized and proper statistical methods are required.

Still, using SNPs in forensic case work can be very helpful, mainly
because a much larger set of markers will be available. This in turn
can be useful to handle mixtures where many contributors are
involved, and also to extend the forensic case work so that
individuals contributing a very small amount (close to 0) can be
detected. The indicated forensic applications are those we have in
mind for the methods developed in this paper. However, statistical
methods for DNA-mixtures are relevant also for pooled data typically
used in Genome Wide Analysis Studies (GWAS). DNA from a large
number of individuals are then mixed to be able to estimate allele
frequencies from one sample. A widely cited paper [6] presented
statistical methods designed to determine contributors to a mixture
with both pooling and forensic applications. In GWAS, there is
typically a large number of individuals contributing to the pooled
sample, whereas for forensic cases, the number of contributors will
generally be small, say up to 5. Also, the contribution amount is
assumed to be equal for all contributors in a pooled sample, which
typically will not be the case in a forensic setting. Last, there are
issues related to the amount and the quality of the DNA obtained
from the crime scene; degradation or inhibition may lead to DNA
profiles of poor quality.
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Homer [6] claimed that ‘‘mixtures where an individual
contributes less than 0.1% of the total genomic DNA’’ could be
handled. The paper [7] critically examined the statistical methods
of [6] and stated ‘‘We conclude that it is not possible to reliably
infer the presence of minor contributors to mixtures following the
approach suggested in Homer et al. (2008)’’.

Clearly, more robust methods are required to handle DNA-
mixtures in forensic casework. We here present a new statistical
method to resolve DNA-mixtures based on SNP-markers, where
the number of contributors do not need to be specified. This is done
by including a term accounting for the expected contribution from
unknown contributors. Testing whether a person has contributed
to a DNA-mixture is reformulated in terms of a parameter: a person
contributes to a mixture if and only the proportion he contributes
is greater than 0. While this may appear as a trivial statement, it
has wide ranging implications. The tradition of forensic genetics is
to formulate hypotheses using verbal statements. This contradicts
virtually all other areas dealing with statistical testing of
hypotheses. There are several advantages to the parametric
approach. In our context it is important to realise that this
approach provides access to standard statistical methods and
implementations.

2. Data and methods

2.1. Data

The data were collected by performing twenty-five controlled
experiments, where DNA-mixtures were made from a number of
contributors varying between two and five, as explained in [8].
Information on the number of contributors was not used or available
during data analyses. We used the Illumina GoldenGate(R) 360 SNP
test panel. SNPs not on the autosomes were removed, as were
monomorphic SNPs, leaving 313 markers for the analyses. The
alleles are denoted by 1 and 2, and their relative frequencies have
been found using the Utah residents with Northern and Western
European ancestry from the CEPH collection in the HapMap
database. The contributors were randomly chosen among five
reference persons (denoted F, D, B, H and C), with contribution
proportion ranging from 0.01 to 0.99. Information on the
contributors was kept blinded until the analyses were completed.
Table 1 shows excerpts of the data. Line 8 of Table 4 gives an
example of a two-person mixture, where individuals D and F by
design contribute a fraction of 0.5 each to the mixture Blind8.

2.2. Method motivation

To motivate the statistical method, we start by looking at Fig. 1.
The figure gives a simple picture of a DNA mixture where DNA from
two individuals (a victim and a suspect) is mixed in different

fractions. The victim (solid area) only has a peak for allele 1,
corresponding to the victim being homozygous 1/1, whereas the
suspect (shaded area) only has a peak for allele 2. As a result, the
DNA mixture has one peak for each allele, but a larger peak height
for allele 1 as the victim contributes with a larger fraction than the
suspect. For the statistical method we will assume that the
genotype of one potential contributor, typically the suspect, is
available and summarized by the number of 1-alleles (denoted by
x) and the peak heights for each allele (denoted by y). See Table 2
for a summary of the genotype for the suspect in question.

To investigate whether the suspect did contribute to the
mixture, we can formulate two basic hypotheses:

� H0 : the suspect did not contribute to the mixture;
� H1 : the suspect contributed to the mixture:

Letting b1 denote the fraction contributed by the suspect, the
hypotheses correspond to

�H0 : b1 ¼ 0;
�H1 : b1 > 0:

(1)

If we know let b2 denote the fraction contributed by the victim, we
must have that b1 + b2 = 1. The number of 1-alleles for the suspect
and the victim is given by x1 and x2, respectively, and therefore the
total expected signal of the DNA-mixture for allele 1 is

EðyÞ ¼ b1x1 þ b2x2:

The model we will develop only assumes that the genotype of the
suspect is available. Therefore the contribution from the victim is
replaced by the expected contribution

EðyÞ � b1x1 þ b2Eðx2Þ
¼ b1x1 þ b2m;

where m is estimated from population data as explained in the next
section. In terms of regression analysis, the signal y can now be
expressed as

y ¼ b1x1 þ ð1 � b1Þm þ noise: (2)

The regression model given in (2) allows for statistical inference
on our hypothesis that the suspect did not contribute to the
mixture (H0 : b1 = 0). As mentioned in the introduction, the
parametric formulation of the hypothesis corresponds to the
approach most widely used to test hypotheses in statistics; the
tradition in forensic genetics deviates by using the verbal
statements. We return to a discussion of the pros and cons of
the two approaches and also discuss more precise formulations of
the hypotheses. A basic idea of the present paper is, however, to
explore the parametric approach.

2.3. Statistical model

2.3.1. Basic model

Using the parametric representation of the hypothesis in (1), we
now extend model (2) to involve several contributors. Let i = 1, . . .,
n be an index for the SNP, j = 1, 2 indicate the allele, and let xkij give
the number of 1-alleles from individual k (k = 1, . . ., K). Let bk be the
proportion contributed by individual k, so that

PK
k¼1 bk ¼ 1. With

an error term eij, standard multiple regression theory gives us the
following regression model for calculating the peak height y:

yij ¼ b1x1ij þ b2x2ij þ � � � þ bK xKij þ eij (3)

For the applications we have in mind, the total number of
contributors is unknown and only the suspect is genotyped. We
replace the contribution from the unknown contributors by the

Table 1
Excerpts of data from the DNA-mixture named Blind8. The y column gives the signal

strength for the allele and the SNP indicated. Data are shown for two SNPs (denoted

1 and 4) and two of the five persons (F and D) involved in the experiment. Only x, the

number of 1-alleles, varies between individuals. For instance, individual F has

genotype 2/2 for SNP 1.

Mixture SNP y x Allele Freq. Person

Blind8 1 12,929 0 1 0.49 F

Blind8 1 19,691 2 2 0.49 F

Blind8 1 12,929 2 1 0.49 D

Blind8 1 19,691 0 2 0.49 D

Blind8 4 17,962 2 1 0.65 F

Blind8 4 13,888 0 2 0.65 F

Blind8 4 17,962 1 1 0.65 D

Blind8 4 13,888 1 2 0.65 D
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expected counterpart. From the definition of mathematical
expectation and theta-correction as explained in [9] we find for
any contributor k

EðxkijÞ ¼ 1 � 2 pið1 � piÞð1 � uÞ þ 2ðu pi þ ð1 � uÞ � p2
i Þ ¼ 2 pi;

where pi is the probability of allele ‘2’. The total signal sign in the
DNA-mixture can now be expressed by

yij � b1x1ij þ Eðb2x2ij þ � � � þ bK xKijÞ þ eij

¼ b1x1ij þ ðb2 þ � � � þ bKÞmij þ eij

¼ b1x1ij þ ð1 � b1Þmij þ eij;
(4)

giving us a similar model as in Eq. (2). If we let zij = yij � mij and
uij = xij � mij, the regression model in (4) may be rewritten in terms
of a simple linear regression model, which can be used to test the
null hypothesis (1):

zij ¼ buij þ eij: (5)

We refer to (5) as our basic model. As opposed to other
statistical models for mixtures like in [10], our model does not
require the number of contributors to be estimated. This, and the

fact that the contribution amount from unknown contributors is
replaced by expected values from population frequencies, makes
our model more robust to handle mixture cases.

2.3.2. Assumptions

Several assumptions have been made for our regression model.
We have assumed that the residual terms eij are independent and
normally distributed with constant variance s2. The estimate of the
slope b is reasonable without these assumptions as it can be
considered a least square estimate. Normality, constant variance,
independence is needed foremost when p-values are calculated. In
any case, assumptions can be checked based on the residuals. The
normality assumption may not be so important given the large
sample in view of the central limit theorem. The simplest version of
this theorem requires the error terms to be independent and
identically distributed but both assumptions can be relaxed to
some extent. Linkage and linkage disequilibrium (LD) may imply
dependence and may therefore potentially lead to assumptions
being violated. However, this is no problem for our data as using
only 313 markers allows the distance between markers to be large
enough to avoid LD and linkage.

Allele frequencies may vary between populations and this may
cause problems for calculations. For this reason it was important to
perform controlled, blinded experiments which allow the accuracy
of the approach to be verified. Moreover in Section 3.2 we look at
some simulations that consider cases where the pi may vary and
differ from the valued used in the calculation.

p-Values are used to test hypotheses in line with most other
applied areas. As a large number of hypotheses are tested in our
controlled experiment, we have corrected for multiple testing. This

Fig. 1. DNA-mixture: two individuals contributing to a mixture with different amounts.

Table 2
Peak heights for a mixture and genotypes for the suspect for two SNP markers.

SNP y (peak height) x1 Allele Individual

1 0.7 2 1 Suspect

1 0 0 2 Suspect

2 1 1 1 Suspect

2 1 1 2 Suspect
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can be done in several ways, we have used Bonferroni correction
which allows for dependence between the hypotheses tested.

2.3.3. Scaling

The specific model typically depends on the data and may
therefore need adjustment depending on the chosen set of
markers. From our data, it was apparent that the signal strength
corresponding to allele 1 and 2 differed. This can be seen by
considering markers for which all contributors are heterozygous.
The peaks differ much more than would be expected from random
fluctuations. For instance, the ratio of the mean peak height for
allele 2 to allele 1 for our data is 3.0. (Note that this could be
checked without breaking the code, i.e., revealing the true
contributors and their fractions contributed of the blinded
experiment.) To correct for the differing values of y for two alleles,
we scale the data based on the model:

yij ¼ c j½b1x1ij þ ð1 � b1Þmij� þ eij: (6)

Observe that E(yij) = cjmij and so the moment estimate becomes

ĉ j ¼
y: j

m: j

; where y: j ¼
1

n

Xn

i¼1

yij; and m: j ¼
1

n

Xn

i¼1

mij:

Therefore, if we let zij ¼ yij=ĉ j � mij and uij = xij � mij, the
regression model in (6) may be written in the generic form (5).

2.4. Simulations and implementation

The regression model was tested by a simulation algorithm that
generates a set of data from model (6). The algorithm tests how
well the model performs under different conditions by varying the
contribution amount b and the number of SNPs. To make the data
realistic, the mean and standard deviation of peak height was
simulated to resemble the data described previously.

For all numerical calculations we have used the freely available
R package (http://cran.r-project.org/) and also functions in our R
package betamix which is freely available from arken.umb.no/

�theg/betamix_1.1.zip. The data described in Section 2.1 is
available as part of the package. Throughout, key computations of
the paper appear as documented examples of betamix and for
some central results we provide pointers to the relevant functions.
Note that we reduce the analysis to standard statistical models and
so a great number of programs can do similar analyses for most
cases.

3. Results

3.1. Simulation experiment

Fig. 2 displays the effect of increasing the number of SNPs. The
fraction contributed, b, ranged from 0 to 0.10. Clearly, the figures
show that there is a pronounced effect from increasing the number
of SNPs from 300 to 4000.

Fig. 2. The figures show the effect of increasing the number of SNPs (n). The estimated b-values and corresponding p-values are found in the tables under each figure.
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Contribution amounts close to 0 seem to be hard to detect in all
three cases. The p-values are high and for b = 0 the model may give
negative estimated values. This may be handled by adding the
restriction b̂ ¼ maxðb̂; 0Þ. Note that this restriction does not effect
the p-values.

3.2. Testing robustness: allele frequencies

To investigate the robustness of the model, calculations were
done to test how the model handles uncertainty in the allele
frequencies. By adding a standard deviation term to the allele
frequencies pi, we tested how the model works when the estimated
allele frequencies differ from the true allele frequencies. The
results are given in Table 3. With two different standard deviations
for the allele frequency pi (0.01 and 0.05), b is estimated twice for
4000 SNP markers. We see that the estimated contribution amount
b̂ are reasonably close to the true b. The p-values were also found
to be close to 0 for all cases (data omitted), suggesting that our
statistical model may handle uncertainty in the allele frequencies.

3.3. Data analysis: the controlled, blinded experiment

The analyses of the data presented in Section 2.1 are
summarised in Table 4. To exemplify, note that reference person
F contributes a proportion of 0.1 by design for experiment ‘Blind1’
(first row of Table 4). The estimated proportion is 0.09, with p-
value at 0.0046. In other words we find that the model accurately
estimates the proportion contributed. There is no reason to doubt
the assumptions of the model based on the standard checking (the
documentation of the function reg1 in betamix includes the
commands needed to check the assumptions).

Next we consider the complete Table 4 (the documentation of
the function makeTable in betamix includes commands for the
coming analyses). A total of 125 comparisons are made. Consider
first the conventional significance level of a = 0.05. Then, the false
negative fraction (corresponding to b > 0, p � value > a) is 0.04
(five cases); all occurring for designed fractions of 0.05 or less. The
false positive fraction (corresponding to b = 0, p � value < a) is
also 0.04 (five cases) with all occurring for designed fractions of
0.05 or less. It can be argued that it is reasonable to correct for
multiple testing. The Bonferroni correction corresponds to a
significance level of 0.05/125 = 0.0004. With this level, no false
positive remains, while the false negative fraction increases to
0.096; all corresponding to designed proportions of 0.1 or less.

4. Discussion

In the previous sections, a regression model for analysing DNA
mixtures has been presented and exemplified based on simulated
data as well as a controlled experiment. However, the general
approach is not restricted to SNP-markers. The parametric
formulation of hypotheses applies equally well for STR-markers.
Similarly, by replacing the contributions from unknown contribu-
tors by the corresponding expected value, there is no need to specify
or estimate the number of contributors. However, the expected
contribution depends on allele frequencies. It may be hard to
estimate allele frequencies accurately and also allele frequencies

Table 3
Testing robustness: results for estimating b̂ with two different allele frequencies, pi.

b is estimated twice; when pi has a standard deviation term (sd) 0.01 and 0.05. The

number of SNPs n was set to 4000 for all simulations.

b pi b̂ (sd = 0.01) b̂ (sd = 0.05)

0.05 0.5 0.049 0.047

0.05 0.2 0.049 0.044

0.10 0.5 0.098 0.095

0.10 0.2 0.097 0.089

0.20 0.5 0.200 0.190

0.20 0.2 0.200 0.180

0.30 0.5 0.300 0.290

0.30 0.2 0.290 0.270

0.40 0.5 0.390 0.380

0.40 0.2 0.390 0.350

0.50 0.5 0.490 0.480

0.50 0.2 0.490 0.440

Table 4
Results from running the statistical model on the 25 controlled experiments (indicated by the 25 rows). For each reference person (F, D, B, H and C) we have three columns,

giving the true contribution amount (F for reference person F), the estimated contribution amount (est.F for reference person F) and the corresponding p-value (p.F) found in

the analysis.

F est.F p.F D est.D p.D B est.B p.B H est.H p.H C est.C p.C

1 0.10 0.09 0.0046 0.30 0.27 0.0000 0.30 0.33 0.0000 0.30 0.40 0.0000 0.00 0.01 0.8529

2 0.10 0.08 0.0021 0.23 0.23 0.0000 0.23 0.31 0.0000 0.23 0.31 0.0000 0.23 0.22 0.0000

3 0.10 0.10 0.0019 0.45 0.42 0.0000 0.45 0.50 0.0000 0.00 0.08 0.0131 0.00 0.05 0.0730

4 0.10 0.13 0.0009 0.90 0.87 0.0000 0.00 0.05 0.3747 0.00 0.04 0.3327 0.00 0.05 0.2347

5 0.20 0.16 0.0000 0.20 0.21 0.0000 0.20 0.28 0.0000 0.20 0.28 0.0000 0.20 0.19 0.0000

6 0.33 0.30 0.0000 0.33 0.33 0.0000 0.33 0.37 0.0000 0.00 0.05 0.1056 0.00 0.03 0.3021

7 0.25 0.21 0.0000 0.25 0.24 0.0000 0.25 0.32 0.0000 0.25 0.36 0.0000 0.00 0.02 0.5499

8 0.50 0.49 0.0000 0.50 0.51 0.0000 0.00 0.05 0.2340 0.00 0.05 0.1637 0.00 0.03 0.4324

9 0.45 0.40 0.0000 0.25 0.26 0.0000 0.30 0.37 0.0000 0.00 0.06 0.0321 0.00 0.04 0.2144

10 0.50 0.41 0.0000 0.10 0.13 0.0000 0.15 0.24 0.0000 0.25 0.37 0.0000 0.00 0.00 0.9013

11 0.70 0.63 0.0000 0.10 0.14 0.0000 0.01 0.09 0.0334 0.09 0.16 0.0000 0.10 0.12 0.0002

12 0.80 0.76 0.0000 0.20 0.24 0.0000 0.00 0.04 0.3598 0.00 0.04 0.3158 0.00 0.02 0.4927

13 0.80 0.73 0.0000 0.05 0.11 0.0040 0.15 0.21 0.0000 0.00 0.05 0.1859 0.00 0.02 0.6434

14 0.30 0.23 0.0000 0.10 0.11 0.0001 0.25 0.32 0.0000 0.35 0.46 0.0000 0.00 0.00 0.9184

15 0.20 0.17 0.0000 0.25 0.25 0.0000 0.30 0.38 0.0000 0.15 0.25 0.0000 0.10 0.12 0.0000

16 0.01 0.05 0.2448 0.99 0.94 0.0000 0.00 0.05 0.3276 0.00 0.04 0.3094 0.00 0.05 0.2229

17 0.40 0.40 0.0000 0.60 0.59 0.0000 0.00 0.05 0.2843 0.00 0.04 0.2154 0.00 0.02 0.4993

18 0.15 0.12 0.0000 0.20 0.20 0.0000 0.25 0.30 0.0000 0.30 0.39 0.0000 0.10 0.11 0.0001

19 0.10 0.08 0.0058 0.20 0.18 0.0000 0.30 0.33 0.0000 0.40 0.49 0.0000 0.00 0.00 0.9796

20 0.20 0.18 0.0000 0.30 0.30 0.0000 0.50 0.54 0.0000 0.00 0.08 0.0088 0.00 0.05 0.0732

21 0.30 0.30 0.0000 0.70 0.67 0.0000 0.00 0.04 0.3448 0.00 0.03 0.3227 0.00 0.03 0.4273

22 0.05 0.03 0.1949 0.24 0.23 0.0000 0.24 0.32 0.0000 0.24 0.32 0.0000 0.24 0.23 0.0000

23 0.05 0.04 0.1514 0.32 0.28 0.0000 0.32 0.34 0.0000 0.32 0.43 0.0000 0.00 0.01 0.6585

24 0.05 0.05 0.1567 0.48 0.44 0.0000 0.48 0.51 0.0000 0.00 0.07 0.0401 0.00 0.05 0.1529

25 0.05 0.08 0.0609 0.95 0.88 0.0000 0.00 0.05 0.3322 0.00 0.03 0.4700 0.00 0.04 0.3057
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may differ depending on ethnicity. In fact, the STR-markers used in
forensics are typically chosen to have uniform frequencies across
populations; this may not be the case for the SNP-markers we have
used. The experience from the controlled experiment and simula-
tions indicate that the results are robust.

For practical reasons, we used a relatively small number of
markers for the experiment. Also, we have emphasized that our
approach is not specifically linked to one set of markers. Hopefully,
the statistical methods presented in this paper will be used to
analyze data coming from different platforms in the future. In
particular, NGS approaches are gaining attraction as explained in
several chapters of [11]. Also, insertion deletion polymorphisms
(Indels) markers have been demonstrated to be promising [12].
The sequence balance obtained from each allele for NGS and Indels
are likely to be better than that obtained from GWAS methods.
Therefore, the approach of the present paper is likely to be well
suited. The scaling presented in Section 2.3.3 can only take care of
systematic differences in signal strength from the two alleles.
Obviously, more experience with small amounts of (possibly
degraded) DNA is needed.

The regression analysis requires that the residuals are
independent. If a large number of markers is used, say more than
4000, the independence assumption may be dubious and there
may be a need for more sophisticated modelling. Also, Fig. 2 shows
some tendency towards underestimation of b for 40,000 simula-
tions. Moreover, if there are family relations, linkage becomes an
issue.

Artefacts like drop-out and drop-in give no principal problems for
our regression approach. Drop-out and drop-in become a part of the
noise. Obviously, if the noise dominates the signal, the resulting
output from the model will be of little use. These effects can be
studied using simulation; performing experiments that mimics real
forensic cases involving degraded DNA is more difficult.

The hypotheses have been formulated in terms of parameters
and tested based on the conventional p-value rather than the
likelihood ratio or random match probability used in most forensic
applications. Obviously, there are alternatives to p-values also
within our framework. The problem can be set up in a Bayesian
framework with priors on the hypotheses and then the posteriors
can be calculated. Also likelihood ratios can be calculated.
However, we have preferred the simple approach most people
are used to from other applications. It can be argued that the cut-
off to use for p-values, the significance level, is arbitrary. While this
is true, the problem is more pronounced for LR values. Several
publications have recommended verbal translations for LR-values,
but we are not aware of any justification for a particular value; why
LR � 10,000 or LR � 100,000. The advantage of p-values are that
they are scaled and can be interpreted as probabilities. However,
with some few recent exceptions including [6,13], forensic
evidence has not been summarised using p-values. For this reason,
the use of p-values could well be challenged in court applications.
However, we maintain that p-values are relevant for several
reasons. In a large number of cases, numerical evidence is not
presented to the court. This applies typically to complex cases.
Rather the reporting officer bases his opinions on the calculations
done and in this case p-values may be better suited than LR-s. A
similar comment applies to non-court applications. Then, typically
there is a general understanding of p-values whereas LR-s are less
well known and, as indicated above, there is no justification for the
thresholds adopted.

A p-value can be small because there is a large effect or because
the sample size is large. Therefore significance can be reached
when the effect is minor just because the sample size is large. In
our case, any fraction above 0 leads to the same conclusion so this
problem is not as pronounced for the forensic applications we have
in mind. It could be helpful to accompany the p-value with a
confidence interval for the fraction contributed. The length of the
confidence interval reflects the amount of markers used. The b
estimates are of interest in their own right. In forensic cases, they
can give some indication of consistency, different sets of markers
should give similar estimates. For pooled data, b values can be used
to check that the different contributors contribute roughly similar
amounts. Otherwise, estimates of allele frequencies from pooled
data need to be adjusted.

Some extensions have already been discussed. There are other
directions for future work. Most importantly, we would like to
extend the model and the implementation to be able to handle
several genotyped individuals. This extension seems straightfor-
ward, but there is a need for more experiments, preferably with
different marker sets, before conclusions can be drawn. However,
based on the experience so far, we find the model and the approach
to be promising.
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Abstract Today, there exists a number of tools for solving
kinship cases. But what happens when information comes
from a mixture? DNA mixtures are in general rarely seen
in kinship cases, but in a case presented to the Norwegian
Institute of Public Health, sample DNA was obtained after
a rape case that resulted in an unwanted pregnancy and
abortion. The only available DNA from the fetus came in
form of a mixture with the mother, and it was of interest to
find the father of the fetus. The mother (the victim), how-
ever, refused to give her reference data and so commonly
used methods for paternity testing were no longer applica-
ble. As this case illustrates, kinship cases involving mixtures
and missing reference profiles do occur and make the use
of existing methods rather inconvenient. We here present
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statistical methods that may handle general relationship
inference based on DNA mixtures. The basic idea is that
likelihood calculations for mixtures can be decomposed into
a series of kinship problems. This formulation of the prob-
lem facilitates the use of kinship software. We present the
freely available R package relMix which extends on the
R version of Familias. Complicating factors like muta-
tions, silent alleles, and θ -correction are then easily handled
for quite general family relationships, and are included in
the statistical methods we develop in this paper. The meth-
ods and their implementations are exemplified on the data
from the rape case.

Keywords DNA mixtures · Kinship analysis · Unknown
reference profiles · Likelihood ratios

Introduction

While solving kinship and paternity cases, it is rather
unusual to make use of DNA mixtures. In such cases, buc-
cal swabs or personal items are normally used as reference
samples, generally collected or taken at a specific time, and
mixtures are therefore rarely seen. However, in a case han-
dled by the Norwegian Institute of Public Health, a paternity
case was to be solved based on a DNA mixture from a
mother and a fetus, and data from a specified, genotyped
man. The alleged father was a suspect after a rape case,
which resulted in an unwanted pregnancy followed by an
abortion. Sample DNA was extracted from a uterine curet-
tage, and the only available DNA from the fetus came in
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form of a mixture with the mother, the victim. Reference
data from the mother was unavailable as the mother refused
to give her reference sample. New methods and software
was therefore needed.

The scenario presented may seem unusual, and of course,
courts in different countries may have the judicial rights
to act in a different manner. However, the example here
also illustrates another set of problems that may arise
while handling mixture samples; the samples may show
that there is a relationship between the persons involved
and it may then be of interest to determine the relationship
between the contributors to the mixtures, or relatives of the
contributors.

There is a large literature on DNA mixtures and crime
cases, and the general methods are summarized in textbooks
like [5, 8]. Most cases and most papers assume the contribu-
tors to be unrelated, but there are exceptions [7, 9]. Whereas
these papers focus on determining contributors to the mix-
ture, our focus is on determining the relationships between
contributors to a mixtures (or relatives of contributors).
From a statistical point of view, some of the calculations
needed to solve the problems we address can also be solved
based on methods and implementations presented in the
mentioned papers.

Software packages for DNA identification, like DNA-
view [1] and Familias 3 [2], are available for general genetic
testing and relationship inference. But our main exam-
ple case presents a more complicated scenario than cases
usually handled by these softwares: not only is the refer-
ence from the mother unavailable, but the reference from
the child is also found in a mixture with the mother. In
relationship inference, there is also a tradition of includ-
ing mutations, θ -corrections, and silent alleles. The models
developed in this paper and associated freely available soft-
ware makes it possible to handle DNA mixtures and at
the same time incorporate such complicating factors. We
present the R [7] package relMix. As far as we know,
there is no freely available software that may handle rela-
tionship inference involving mixtures in complex pedigrees
that also accounts for mutations, θ -correction, and silent
alleles.

Material and methods

Data

As mentioned, the cases we have in mind will be based
both on reference profiles (typically of good quality) and
DNA mixtures. We develop the methods for discrete data

(i.e., only allele designations are used), as is common for
relationship inference. It is sufficient to explain our method
and approach for one marker as we assume that the markers
are independent, i.e., markers are assumed to be in linkage
disequilibrium and unlinked. The latter assumption is not
needed for our main example, but is generally required for
larger pedigrees. Throughout this paper, we denote the mix-
ture sample by E and let the reference profiles for the N

individuals involved be denoted by g1, g2, ..., gN .

Statistical methods

Basic method

In general, there could be several hypotheses H1, . . . , HT ,
each corresponding to a specific family relationship. For our
main case, only two competing hypotheses will be consid-
ered, and the hypotheses are H1: the alleged father is the
father of the child, and H2: the alleged father is an unrelated
man. Figure 1 gives a picture of the relationship and the
hypotheses to be tested. The hypotheses specify the number
of contributors. Typically, K of these will not be geno-
typed, and in our methods we condition on their genotypes
u1, . . . , uK . In the main example, the mother and the child
are not genotyped and therefore K = 2.

The evidence is then summarized by a likelihood ratio
(LR), given by

LR = P(data | H1)

P (data | H2)
. (1)

The basic calculation involves computing

P(data | Ht) = P(E, g1, . . . , gN | Ht)

=
∑

u1,...,uK∈AHt

P (u1, . . . , uK, g1, . . . , gN | Ht), (2)

where AHt is the set of possible genotypes for the untyped
individuals under hypothesis Ht . Note that E is a subset of
the union of alleles in AHt and those from the known con-
tributors. Each term of the above formula can be calculated
using software implementing likelihood calculations for
pedigrees. Pedigrees can then be arbitrary, possibly involv-
ing inbreeding, and artefacts like mutation, θ -correction,
and silent alleles can be accommodated as explained in
the next section. As we assume that markers are indepen-
dent, the overall likelihood is obtained by multiplying across
markers.
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AF
= /

Under 
= / /

CH

MO MO

CH

AF
= /

TF

Under 
= / /

AF = alleged father
MO = mother
CH = child
TF = true father

Fig. 1 Pedigrees for the main case. H1: the alleged father (AF) is the father of the child (left pedigree), and H2: the alleged father is an
unrelated man (right pedigree)

Example 1: an illustration

Consider the relationship shown in Fig. 1, whereE = 1/2/3
and the genotype of the alleged father is gAF = 3/4. In
order to be consistent with the alleles found in the mixture
and the alleged father (AF) being the father, the alternative
allele combinations for the child and the mother must be as
shown in Fig. 2 (mutations are for now disregarded). Let
AH1 be the set of all possible genotypes of the mother and
the child under H1. From Fig. 2, we see that the set AH1

must be given by

AH1 = {(gCH, gMO)} = {(1/3, 1/2), (2/3, 1/2)}.

Following the generic form given in Eq. 2, we can now
show that
P(data | H1) = P(E, gAF | H1)

=
∑

gCH ,gMO∈AH1

P(gCH , gMO, gAF | H1)

=
∑

gCH ,gMO∈AH1

P(gCH | gMO, gAF , H1)

×P(gMO)P (gAF )

= P(gCH = 1/3 | gMO = 1/2, gAF = 3/4)
×P(gMO = 1/2)P (gAF = 3/4)

+ P(gCH = 2/3 | gMO = 1/2, gAF = 3/4)
×P(gMO = 1/2)P (gAF = 3/4)

= 2p1p2p3p4.

AF
= /

Alterna�ve allele combina�ons
for mother and child under :

Under 
= / /

1 / 3 1 / 2

2 / 3 1 / 2

CH

MO
= 1/2

= 1/2

Fig. 2 Pedigree under H1 with alternative allele combinations of mother and child
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Fig. 3 Pedigree under H2 with
alternative allele combinations
of mother and child Alterna�ve allele combina�ons

for mother and child under 

Let now AH2 be the set of possible genotypes of the
mother and the child under H2. Finding AH2 is a bit more
complicated. For E = 1/2/3 and gAF = 3/4, we have that
both the mother and the child must be heterozygous. Figure
3 shows the six alternative allele combinations under H2,
giving

AH2 = {(1/2, 1/3), (1/2, 2/3), (1/3, 2/1), (1/3, 2/3),
(2/3, 1/2), (2/3, 1/3)}.

We find that the denominator in the likelihood ratio is
given by

P(data | H2) = P(E, gAF | H2)

=
∑

gMO,gCH ∈AH2

P(gCH , gMO, gAF | H2)

=
∑

gMO,gCH ∈AH2

P(gCH | gMO, H2)P (gMO)P (gAF )

= 12p1p2p
2
3p4.

Finally, we find that the likelihood ratio in this case is
given by

LR = P(E, gAF | H1)

P (E, gAF | H2)
= 2p1p2p3p4

12p1p2p
2
3p4

= 1

6p3
.

Mutations, θ -correction, silent alleles

We made several assumptions to derive the likelihood ratio
in Eq. 1. We here generalize the method presented by
including mutations, θ -correction and silent alleles in our
basic model.

Mutations A mutation model is specified by a mutation
matrix,

M =

⎡

⎢⎢⎢⎣

m11 . . . m1K

m21 . . . m2K
...

. . .
...

mK1 . . . mKK

⎤

⎥⎥⎥⎦

where mij is the probability that allele i in the parent end
up as allele j in the child. Generally, we have that 0 ≤
mij ≤ 1 and

∑K
i=1 mij = 1. There are four mutation models

available, denoted ‘Equal,’ ‘Proportional,’ ‘Stepwise,’ and
‘Custom’ [2, 3]. Mutations involving silent alleles are not
modeled in the models we present. Choosing the ‘Equal’
model, the probability of mutation from one allele to another
is set to be equal for all alleles, given that a mutation occurs.
With a ‘Proportional’ mutation model, the probability of
mutation of an allele is proportional to its frequency. The
‘Stepwise’ model divides the mutations into two types: all
alleles adding or subtracting an integer to the allele, and all

Table 1 The possible genotypes and likelihoods for the silent case
when AF is the father (H1)

MO CH AF P(data | H1)

1 A/A A/A A/A p4
A

2 A/A A/A A/S p3
ApS

3 A/A A/S A/A 0

4 A/A A/S A/S p3
ApS

5 A/S A/A A/A p3
ApS

6 A/S A/A A/S p2
Ap2

S

7 A/S A/S A/A p3
ApS

8 A/S A/S A/S 2p2
Ap2

S
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Table 2 Results from using our statistical methods on the case data

Marker E gAF Basic LR LRθ = 0.01 LRmut = 0.1 %

D3S1358 14/16/18 15/18 1.1821 1.1477 1.1816

TH01 6/7/9 9/9.3 1.1827 1.1482 1.1818

D21S11 28/30.2 28/30 1.7611 1.6310 1.7633

D18S51 13/15/16 14/16 1.4355 1.3740 1.4351

D2S1338 20/23/25 18/23 1.8772 1.7535 1.8751

D1S1656 11/12 12/13 1.8669 1.7326 1.8745

VWA 16/18 16/17 1.1573 1.1246 1.1574

D8S1179 12/13 12/16 1.5394 1.4736 1.5450

FGA 21/26 21/22 1.8216 1.6801 1.8260

D19S434 12/13/15 13/14 0.6859 0.6851 0.6867

Total LR 27.5745 17.1158 27.8528

Total posterior 0.9650 0.9448 0.9653

We find the basic LR, the LR correcting for mutations (mutation rate is 0.1 % for both males and females), and the LR including kinship correction
(with θ = 0.01)

alleles adding or subtracting a fractional amount, see [3]. By
using the ‘Custom’ model the user may specify the muta-
tion model herself. Different mutation matrices follow these
models, and for the ‘Equal’ model the mutation matrix is
given by

M =

⎡

⎢⎢⎢⎣

1 − R R
N−1 . . . R

N−1
R

N−1 1 − R . . . R
N−1

...
. . .

...
R

N−1
R

N−1 . . . 1 − R

⎤

⎥⎥⎥⎦

θ -correction To account for population stratification and
relatedness, we can introduce a θ -parameter to our calcula-
tions. In paternity cases for instance, Hardy-Weinberg will
not apply in cases where the parents are related in a way
not specified by the pedigree. The θ -correction essentially
corrects for relatedness of alleles with common ancestry. To
see how the θ -correction works, consider an allele A with
frequency pA and assume that we have sampled n alleles,
where x alleles are of type A. With coancestry coefficient θ ,
the probability that the next allele will be of type A is

xθ + (1 − θ)pA

1 + (n − 1)θ
,

see [12].

Silent alleles Silent alleles may be present in cases where
the individuals tested for relatedness are (apparently)
homozygous. The alleles may fail to amplify, and individ-
uals are mistakenly assumed to be homozygous. The term
null alleles has also been used for such cases. However,

silent alleles can be modeled by modifying our calcula-
tions: we let the silent allele frequency and the frequencies
of the other alleles sum to 1. If there is a possibility of a
silent allele S with frequency pS , an apparently homozy-
gous A/A could be A/S and the genotype probability is
P(A/S) = p2

A+2pApS . The following example shows how
silent alleles may be handled for a paternity case.

Example 2—a silent case

Consider first a paternity case where the alleged father (AF),
mother (MO), and child (CH) all have genotype A/-, and so
there is a silent allele S with frequency pS .

From Table 1,

L1 = P(data | H1) = p4
A + 4p3

ApS + 3p2
Ap2

S

= p2
A(p2

A + 4pApS + 3p2
S)

When AF is not the father, a similar argument gives

L2 = P(data | H2) = p2
A(p2

A + 3pApS + p2
S)(pA + 2pS)

From this,

LR = p2
A + 4pApS + 3p2

S

(p2
A + 3pApS + p2

S)(pA + 2pS)
= 6.82.

However, for the mixture problem, the answer will be
slightly different as we then also could have gCH = S/S or
gMO = S/S (but not both).
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Fig. 4 Plots showing how the
LR is affected for 1) different
θ values with mutation rate
R = 0 (plot to the left), 2)
different mutation rates (R)
and θ = 0 (plot in the middle),
and 3) when the mutation rate
changes and θ is kept at 0.01
(plot to the right)
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Results

In our introductory case, data was first collected using the
SGM Plus kit, giving data for ten genetic short tandem
repeat (STR)-markers. The data was later expanded by ana-
lyzing the fetus material using ESX17, giving 16 genetic
markers.

Table 2 contains the results for our main example. The
calculations are done using the package relMix developed
in R, and is freely available with documentation from http://
arken.umb.no/∼nkaur/relMix 1.0.zip. We found the basic
LR, the LR with mutations incorporated (mutation rate of
0.1 % for both males and females), and a LR that considers
θ -correction (θ = 0.01). The total basic LR for all markers
in the data was found to be 27.6, suggesting that it is 27.6
times more likely to observe the data given H1 compared
to H2. In other words, the total basic LR value supports the
use of H1 (see “Discussion” section). The mutations do not
seem to affect the LR much, but if we correct for general
kinship, the change in LR is more evident. If more mark-
ers were available, including the mother’s genotype, clearer

conclusions could be reached. Silent alleles are not consid-
ered here as there is no homozygosity for any of the markers
found in the data. Figure 4 shows how the LR is affected for
different mutation rates and θ -values.

Discussion

In this paper, we have presented statistical methods that may
handle general relationship inference involving DNA mix-
tures. The methods are based on likelihood calculations,
and the evidence is summarized by calculating the likeli-
hood ratio (LR) comparing two hypotheses. Whereas the
main emphasis for solving cases involving DNA mixtures
often is to determine the contributors to the mixture, we here
instead focus on the relationship between the contributors
to the mixture. We draw conclusions based on likelihood
ratios. The methods developed were used on the data from
our main case to test H1: the alleged father is the father of
the child, versus H2 : the alleged father is an unrelated man.
In the “Results” section, we found the LR for this case to be
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27.6, and we drew a conclusion in support ofH1 (the alleged
father being the father of the child). A conclusion based on
such a small LR is not obvious, but a discussion on this is
not a topic for this paper.

We have shown that our calculations can be extended to
consider complicating factors like mutations, θ -correction,
and silent alleles. For the data at hand, including a muta-
tion rate of 0.1 % did not influence the total likelihood
ratio noticeably (see Table 2). However, if the genotype
of the alleged father (gAF ) for marker D19S434 had been,
say 14/14, the total LR using the basic model would be 0.
This emphasizes the importance of allowing for mutations.
Including a θ -correcting factor had a greater impact on the
LR than the mutation rate. We note that ignoring kinship in
the calculations leads to overestimation of the evidence, giv-
ing larger LR values for θ = 0 than θ > 0 (see Fig. 4). We
therefore suggest that the θ -correction should be included
in the calculation. We have also modified our calculations
so that silent alleles (S) may be handled. However, the pres-
ence or absence of silent alleles may be determined using a
kit of different primers [5, 6].

Our main example involved a simple pedigree with a
child, mother, and an alleged father. Our methods may also
handle complicated pedigrees, possibly involving inbreed-
ing. The family relations could be more complex; for
instance, the DNA profile of the alleged father may not be
available, but rather genotypes of some of his known rel-
atives may be available. The methods presented here may
handle such more complicated cases, and is implemented
in the software. Also, several alternative hypotheses can
be tested and compared. For instance, it could be that one
would like to test an alternative hypothesis stating that the
alleged father’s brother is the father of the child.

The framework presented can be extended in several
directions. Other complicating factors and artefacts like
dropouts/dropins, linkage, and linkage disequilibrium can
be included. Another suggestion could be to look at a con-
tinuous model, extending the model presented to incorpo-
rate peak heights of the genotyped data using a continuous

approach, see [13]. An alternative to our approach is to use
Bayesian networks. [11] describes how complex problems
of relationship testing using DNA profiles can be modeled
using Bayesian networks instead. The Bayesian network can
further be extended to handle mutations, linkage, and link-
age disequilibrium between STR markers as described in
[10].
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Abstract We present a general method for analysing DNA
mixtures involving relatives that accounts for dropout and
drop-in, mutations, silent alleles and population substruc-
ture. Whether the aim is to identify the contributors to a
mixture who may be related, or to determine the relationship
between individuals based on a DNA mixture, both types of
problems can be handled by the method and software pre-
sented here. We focus on the latter scenario, motivated by
non-invasive prenatal paternity testing where the profile of
the child is available only in the form of a mixture with the
mother’s profile. Relationships are represented by pedigrees
and can include kinship between more than two individuals.
The software is freely available as a graphical user interface
in the R package relMix.

Keywords DNA mixtures · Kinship · Likelihood ratio ·
Dropout · Drop-in · Mutations · Non-invasive prenatal
paternity testing · NGS

Introduction

There is an increasing demand for analysis of DNA mix-
tures that involve relatives, both in criminal cases and in
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relationship inference, and so there is a need for meth-
ods and software that can handle this type of cases. Since
relatives are likely to share more alleles than unrelated indi-
viduals, the result of ignoring this relationship may be an
overestimation of the weight of evidence. One example of
this type of cases is non-invasive prenatal paternity testing.
In this new application, foetal cell-free DNA that is present
at low levels in a pregnant woman’s blood is analysed by
sequencing STRs using massive parallel sequencing (MPS)
[5]. As the vast majority of the blood’s cell-free DNA orig-
inates from the mother herself, foetal DNA can only be
accessed through a highly unbalanced mother-child mixture.
As an example, Lo et al. [11] measured on average 3.4 %
foetal fraction of total cell free DNA in early pregnancy
and 6.2 % in late pregnancy, but this may vary signifi-
cantly. Another challenge is that cell-free DNA is heavily
degraded, and the abundance of the child’s DNA is very low,
so artefacts such as dropout and drop-in alleles are likely to
appear.

DNA mixtures with relatives have previously been dis-
cussed in the literature [4, 13, 14]. These publications do
however only address pairwise relationships. Egeland et al.
[3] described a method to handle mixtures with general
family relationships but did not consider artefacts such as
dropout and drop-in that may result in partial profiles. In
addition, the aforementioned papers focus on determining
the contributors to a mixture. Mortera et al. [12] presented a
mixture-based paternity case analysed with an approach that
included deconvolution of the mixture followed by kinship
testing with the resulting profiles.

Kaur et al. [9] introduced a pedigree-based approach to
relationship inference-based on DNA mixtures. Here, we
present an extensionof theirwork to also account for dropout
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and drop-in. In addition, we introduce a user friendly
software. Our approach can handle general relationships
described by pedigrees, with any number of contributors to
the mixture and any number of relatives. The kinship calcu-
lations are based on the R version of Familias (http://
www.familias.name), which allows incorporation of
complicating factors like mutations, silent alleles and pop-
ulation substructure. The model can also handle multiple
replicates. While our main focus is determining relation-
ships between individuals based on mixtures, we also
present an example where the aim is to determine the con-
tributors to a mixture in a crime case setting. The software is
freely available in the R package relMix that can be found
on CRAN (https://cran.r-project.org), both in
the form of a graphical user interface and as command line
functions for more flexible use.

We present detailed calculations for some simple exam-
ples and demonstrate the effect of dropout and drop-in in
mixture-based paternity cases in a simulation study. Finally,
the method is used to analyse real data in a prenatal paternity
case.

Methods

Motivational example

As a motivational example, we will use a fictional prena-
tal paternity case. A DNA profile of the child (CH) is only
available in the form of a mixture with the mother (MO).
Since the mother is the major contributor, we can assume
that all her alleles are in the mixture (i.e. no dropout), while
some of the child’s alleles may have dropped out from the
mixture with a certain probability. Reference profiles for
the mother and the alleged father (AF) are available. We
consider the two hypotheses

H1: AF is the father of CH
H2: Someone unrelated to AF is the father of CH

Let E denote all available evidence; in this case, the mix-
ture alleles and the reference profiles of MO and AF. We
summarise the evidence by computing the likelihood ratio

LR = P(E | H1)

P (E | H2)
. (1)

The model

Each likelihood in Eq. 1 can loosely be described as involv-
ing terms of the kind P(mixture | contributor genotypes)
and P(genotypes | relationship). The first term concerns
only the probability of the mixture conditioned on the geno-
types of the contributors, while the second term concerns

the probability of the genotypes conditioned on the relation-
ship. In the following sections, we present calculations for
the mixture term and the kinship term.

Mixture model

We adopt the mixture model described in Haned et al.
[6, Appendix]. This is a semi-continuous model that
accounts for dropout and drop-in in the likelihood calcu-
lations but does not consider peak heights. We will try to
stay close to the notation in Slooten [13]. For simplicity, we
will concentrate on one marker, but since the markers are
assumed to be independent, the total likelihood is simply the
product of the per-marker likelihoods.

Let gi = (ai,1, ai,2) denote the genotype of mixture con-
tributor i. Define the vector g = (g1, ..., gn) to contain the
genotypes of all n contributors to the mixture, where n is
assumed known. We further define the mixture as a random
variable denoted by M. Each contributor i has a specific
dropout probability 0 ≤ di ≤ 1 for a heterozygous allele,
and a dropout probabilityDi for a homozygous allele, where
it is usually assumed that Di ≤ d2

i . For convenience, we
will use Di = d2

i throughout the paper, so we only have to
specify one dropout probability per contributor. Let the vec-
tor d = (d1, ..., dn) contain dropout probabilities for all n

contributors. Further, we define a drop-in parameter c. An
allele a drops in with probability cpa , where pa is the fre-
quency of allele a. Since the frequencies for all alleles in
a locus sum to 1, we can regard c as the expected number
of drop-in alleles per locus. Let ni,a = {0, 1, 2} denote the
number of times allele a is observed in the genotype of con-
tributor i. For each allele a in the locus, the probability that
it will not appear in the mixture is

P(a /∈ M | g, d, c) = (1 − cpa)
∏

i

d
ni,a

i , (2)

and the probability that it will appear in the mixture is thus

P(a ∈ M | g, d, c) = 1 − (1 − cpa)
∏

i

d
ni,a

i . (3)

Note that a dropout probability of 0 for a contributor that has
the allele a assures that the mixture will contain this allele
with probability 1. The probability of observing a set M of
mixture alleles is

P(M = M | g, d, c) =
∏

a /∈M

P(a /∈ M | g, d, c)

·
∏

a∈M

P(a ∈ M | g, d, c). (4)

By considering all alleles a in the locus, we account for the
probability that an allele that does not appear in any of the
genotypes may have dropped in. Replicates are assumed to
be conditionally independent given the parameters and the
genotypes of the contributors.
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Include kinship and sum over unknowns

If there are contributors in the mixture with unknown geno-
type, e.g. the child in the motivational example, we need to
consider a set of possible genotypes U for these individu-
als. Let nk and nu be the number of known and unknown
individuals in the mixture, respectively. Define the vec-
tors gK = (g1, ..., gnk

) and gU = (g1, ...gnu) to contain
the genotypes of the known and unknown contributors. Let
u ∈ U , then gU = u is one possible set of genotypes for
the unknown contributors. Further, let gA = (g1, ..., gnA

)

be a vector of genotypes for the nA additional genotyped
individuals in the pedigree who are not part of the mixture.
For the kinship part, we need to consider the probability
P(gA, gK, gU | Hj), where Hj specifies the relationship
between all individuals. We can now model each likelihood
in Eq. 1 to include both the probability of the mixture and
the kinship as

P(E | Hj) =
∑

u∈U

P (M = M | gK, gU = u,d, c)

·P(gA, gK, gU = u | Hj). (5)

Note that different Hj ’s may specify different contributors
and family relationships, in which case also the genotype
vectors will change depending on the hypothesis. This can
be specified by adding the subscript j to these vectors.

Model demonstrated on motivational example

Wewill use the motivational example to illustrate the model.
Assume a diallelic marker with alleles 1 and 2, and frequen-
cies p1 and p2. The mother’s genotype is gMO = 1/1 and
the alleged father’s genotype is gAF = 1/1. The observed
mother-child mixture is M = 1/2. We have gK = (gMO),
gA = (gAF ) and gU = (gCH ), where the set of possible
genotypes for the child is U = {1/1, 1/2, 2/2}. We set the
mother’s dropout probability to 0 since her DNA is present
in high quantity, while for the child, we assume dropout
probability d, and hence d = (0, d).

As an example, consider gU = (1/2). According to Eq. 2,
the probabilities of not observing alleles 1 and 2 in the
mixture is

P(1 /∈ M | gK, gU=(1/2),d, c) = (1 − cp1) · 02 · d =0,

P (2 /∈ M | gK, gU=(1/2),d, c) = (1 − cp2) · 00 · d

= d − dcp2.

and the probabilities of observing these alleles in the mix-
ture is thus

P(1 ∈ M | gK, gU= (1/2),d, c) = 1,

P (2 ∈ M | gK, gU= (1/2),d, c) = 1 − d + dcp2.

Since alleles 1 and 2 are the only two alleles for this marker,
and they both appear in the mixture, the probability of the
mixture according to Eq. 4 is

P(M = 1/2 | gK, gU = (1/2),d, c) = 1 − d + dcp2.

Moving on to the kinship part, the probability under each
hypothesis is

P(gA, gK, gU= (1/2) | H1) = 0,

P (gA, gK, gU = (1/2) | H2) = p4
1p2.

Since the father is 1/1, he cannot be the father of the child
(unless we consider mutations, which we will do in the next
section).

The calculations for all three genotypes in U are sum-
marised in Table 1. Note that the genotype 2/2 strictly could
have been omitted from the table since it has likelihood 0
under both hypotheses, but we have included it as a gener-
alisation for the next section where also mutations will be
considered. Finally, the likelihood ratio becomes

LR = P(E | H1)

P (E | H2)
= cp2 · p4

1

p4
1 · [cp1p2 + (1 − d + dcp2) · p2]

= c

cp1 + 1 − d + dcp2
.

Software

The model described in the previous section is implemented
in the R package relMix, freely available from http://cran.
r-project.org/web/packages/relMix. Figure 1 shows a screen
shot of the graphical user interface. The mixture profile, ref-
erence profiles and allele frequencies are read from files.
Silent allele and minimum allele frequency can be specified.
There are three built-in mutation models: ’equal’, ’propor-
tional’ and ’stepwise’ [2]. For flexibility with regard to the
hypotheses, user-defined pedigrees can be supplied, and
dropout probabilities can be specified per contributor. More
details can be found in the user vignette that comes with the
R package.

Table 1 Possible genotypes
for the child in the motivational
example, where gMO = 1/1,
gAF = 1/1, and M = 1/2,
with corresponding probability
of kinship and probability of
mixture. Mutations and silent
alleles are not accounted for

gU P(gA, gK, gU | H1) P (gA, gK, gU | H2) P (M = 1/2 | gK, gU, d, c)

1/1 p4
1 p5

1 cp2

1/2 0 p4
1 · p2 1 − d + dcp2

2/2 0 0 1 − d2 + d2cp2
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Fig. 1 The RelMix GUI

Mutations and silent alleles

In the previous section, we only considered dropout and
drop-in as possible explanations for inconsistencies in the
data. We will show how to incorporate mutations and silent
alleles together with dropout and drop-in, by application
to an example. For convenience, we have chosen to disre-
gard population substructure in all examples in this paper,
although theta correction is implemented in the method.
Assume a two-person mixture with one known (C1) and
one unknown (C2) contributor. We consider the hypotheses
illustrated in Fig. 2. Note that these hypotheses are formu-
lated differently compared to the motivational example. The
main focus is now the contributors to the mixture (which
may be related) rather than the relationship between the
individuals. This is all just formalities, however, the proce-
dure is the same as before. In this example, gK = (gC1)

and gU = (gC2), while gA is empty since there are no addi-
tional genotyped individuals involved. Consider a diallelic
marker with alleles 1 and 2 and frequencies p1 and p2. The

known contributor has genotype gC1 = 1/1, but may also
be 1/s if we include a silent allele with frequency ps . The
mixture is M = 1. We assume possible dropout in both
contributors. To factor in mutations, we use a mutation rate
r and a mutation model that assumes all mutations to be
equally likely, but that mutation to and from a silent allele
is not possible [2]. All possible genotypes for the contrib-
utors, with corresponding kinship probability and mixture
probability, are presented in Table 2. The silent allele is
indifferent to both drop-in and dropout since we cannot see
it in the mixture. Observe that if the mutation rate r , the
silent allele frequency ps and the dropout and drop-in values
d and c are all set to 0, it reduces to a mixture model without
artefacts, and the only possibility is that both contributors
are 1/1.

Table 3 gives the values of the formulas in Table 2 when
p1 = 0.4, p2 = 0.5 and ps = 0.1. Kinship probabili-
ties are calculated both without considering mutations, and
with an equal probability mutation model with mutation
rate 0.1. Mixture probabilities are calculated both without

−/−
C1
1/1

C2
−/−

−/−
C1
1/1

−/−

C2

Fig. 2 Example with mutations, silent allele, dropout and drop-in.
H1 and H2 disagree on whether the second, unknown contributor C2

is related to C1 or not. (a) H1: C1 and her child. (b) H2: C1 and an
unrelated individual
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Table 2 Example with
mutations, silent allele and
dropout/drop-in. The first two
columns give the possible
genotypes for the two
contributors, followed by the
kinship probabilities under H1
and H2, and finally the mixture
probability. We assume
identical dropout probability d

for both contributors

gK gU P(gK, gU | H1) P (gK, gU | H2) P (M = 1 | gK, gU)

1/1 1/1 p3
1(1 − r) p4

1 (1 − d4(1 − cp1))(1 − cp2)

1/s 1/1 p2
1ps(1 − r) 2p3

1ps (1 − d3(1 − cp1))(1 − cp2)

1/1 1/s p2
1ps(1 − r) 2p3

1ps (1 − d3(1 − cp1))(1 − cp2)

1/s 1/s p1ps(ps(1 − r) + p1) 4p2
1p

2
s (1 − d2(1 − cp1))(1 − cp2)

1/1 s/s 0 p2
1p

2
s (1 − d2(1 − cp1))(1 − cp2)

1/s s/s p1p
2
s 2p1p

3
s (1 − d(1 − cp1))(1 − cp2)

1/1 1/2 p2
1(p2(1 − r) + p1r) 2p3

1p2 (1 − d3(1 − cp1))d(1 − cp2)

1/s 1/2 p1ps(p2(1 − r) + p1r) 4p2
1psp2 (1 − d2(1 − cp1))d(1 − cp2)

1/1 2/2 p2
1p2r p2

1p
2
2 (1 − d2(1 − cp1))d

2(1 − cp2)

1/s 2/2 p1psp2r 2p1p
2
2ps (1 − d(1 − cp1))d

2(1 − cp2)

1/1 2/s p2
1psr 2p2

1p2ps (1 − d2(1 − cp1))d(1 − cp2)

1/s 2/s p1ps(p2 + psr) 4p1p2p
2
s (1 − d(1 − cp1))d(1 − cp2)

dropout/drop-in, and with a dropout probability of 0.1 and
a drop-in value of 0.05. Table 3 can be used to compute
several likelihood ratios for comparison. For example, if we
do not consider any artefacts, the LR is

LRsimple = 0.064

0.0256
= 2.5.

Note that the allele frequencies for p1 and p2 are still
assumed to be 0.4 and 0.5, respectively, although the silent
allele frequency is removed. With only dropout and drop-in
and no mutations and silent alleles, the possible genotypes
for C2 are 1/1, 1/2 or 2/2, while C1 is limited to 1/1.
Adding this extra uncertainty in the model reduces the LR to

LRdrop = 0.064 · 0.975 + 0.08 · 0.097 + 0 · 0.01
0.0256 · 0.975 + 0.064 · 0.097 + 0.04 · 0.01

= 2.22.

With mutations and silent allele, but no dropout and drop-
in, the possible genotypes for C2 are 1/1, 1/s or s/s, while
C1 can be 1/1 or 1/s. The LR is

LRsilMut = 0.0576]+0.0144+0.0144+0.0196+0.004

0.0256+0.0128+0.0128+0.0064+0.0016+0.0008
= 1.83.

Finally, if all artefacts are taken into account, the LR is fur-
ther reduced to LRall = 1.68. The last result is confirmed
with the RelMix software as shown in Fig. 3.

Results

Paternity scenarios

We consider five different scenarios of the motivational
example in Section “Motivational example” to illustrate the
effect of dropout, drop-in and mutations on the likelihood

Table 3 Values corresponding
to the formulas in Table 2 with
p1 = 0.4, p2 = 0.5 and
ps = 0.1

gK gU P(gK, gU | H1) P (gK, gU | H2) P (M = 1 | gK, gU)

r = 0 r = 0.1 d = 0, c = 0 d = 0.1, c = 0.05

1/1 1/1 0.064 0.0576 0.0256 1 0.975

1/s 1/1 0.016 0.0144 0.0128 1 0.974

1/1 1/s 0.016 0.0144 0.0128 1 0.974

1/s 1/s 0.020 0.0196 0.0064 1 0.965

1/1 s/s 0.000 0.0000 0.0016 1 0.965

1/s s/s 0.004 0.0040 0.0008 1 0.879

1/1 1/2 0.080 0.0784 0.0640 0 0.097

1/s 1/2 0.020 0.0196 0.0320 0 0.097

1/1 2/2 0.000 0.0080 0.0400 0 0.010

1/s 2/2 0.000 0.0020 0.0200 0 0.009

1/1 2/s 0.000 0.0016 0.0160 0 0.097

1/s 2/s 0.020 0.0204 0.0080 0 0.088
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Fig. 3 Computation with
RelMix confirms the result
LRall = 1.68 computed from
Table 3. The result window
displays the parameter values on
the left hand side and the
computed LR on the right hand
side

ratio. We will ignore silent alleles for now to limit the num-
ber of parameters. The scenarios are presented in Fig. 4.
We assume a single marker with alleles {1, 2, 3} with cor-
responding frequencies {0.2, 0.3, 0.5}. The mutation model
considers all mutations to be equally likely with a mutation
rate of 0.1, which in most cases is unrealistically high, but
it illustrates the effect of accounting for mutations. Figure 5
shows the LR as a function of the dropout probability for
each scenario.

In scenario 1, no drop-in, dropout ormutations are needed
to explain paternity, and the LR decreases with increas-
ing dropout. The inclusion of mutations represents another
source of uncertainty, and reduces the LR somewhat. With
a dropout probability close to 1, both the child’s alleles are
likely to have dropped out and we have no information, as

seen by the LR approaching 1. There is no effect of the
choice of drop-in value.

In scenario 2, a dropout or mutation is the only explana-
tion for paternity. As a consequence, the LR increases with
increasing dropout probability and is slightly higher if we
also include mutations. For high dropout values, the effect
of including mutations is small.

Scenario 3 requires a drop-in or mutation to explain pater-
nity. When c = 0, mutation is the only explanation, and the
LR is not affected by the dropout probability.When c=0.05,
however, the LR actually increases with increasing dropout
probability. If we look at the likelihoods for each hypothe-
sis separately (Fig. 6a), we see that both hypotheses show
decreasing likelihood as the dropout probability increases (as
expected), but H1 decreases more slowly than H2.

AF
1/2

MO
1/2

CH
−/−

Mixture = 1/2

AF
3/3

MO
1/1

CH
−/−

Mixture = 1

AF
1/1

MO
1/1

CH
−/−

Mixture = 1/2

AF
3/3

MO
1/1

CH
−/−

Mixture = 1/2

AF
3/3

MO
1/2

CH
−/−

Mixture = 1/2/3

Fig. 4 Five scenarios for the motivational example. The mother-child mixture alleles are given above the pedigree
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Fig. 5 LR for the five scenarios in Fig. 4 as a function of the dropout probability. Black lines equal mutation rate r = 0, red lines equal r = 0.1.
Solid line equals drop-in parameter c = 0 and dashed line equals c = 0.05. Silent alleles are not accounted for here

In scenario 4, either a combined dropout and drop-in inci-
dence or a mutation is required to explain paternity. The LR
is thus 0 when c = 0 unless we allow for mutations. A high
dropout probability and inclusion of mutations increases the
LR.

In scenario 5, there are three alleles in the mixture, and
dropout is impossible unless there has also been a drop-in.
When c = 0, the LR is indifferent to dropout if mutations
are not accounted for. When mutations are included, there
is a very weak increase in the LR with increasing dropout.
The likelihood for each hypothesis (Fig. 6b) shows that the
likelihood for H1 decreases more rapidly than for H2.

Simulations of true and false trios

To investigate the method’s ability to differentiate between
true and false paternities in prenatal paternity cases, we
simulated 3,000 cases similar to the motivational example.

Twenty-two real markers (part of prototype 24-plex STR
panel from Thermo Fisher) were used to simulate geno-
type data where the alleged father was the true father of
the child (true trios). Genotypes were simulated condi-
tional on the pedigree with the markerSim function
found in the R package paramlink (http://cran.r-
project.org/web/packages/paramlink). A mixture including
dropout and drop-in was generated from the geno-
types of the mother and child with the relMix function
generateMix. Each of the child’s alleles would drop out
with probability dtrue = [0, 0.1, 0.5, 0.9]. We used a drop-
in value of 0.1, which means that we expect 1 drop-in allele
per 10 markers. A likelihood ratio comparing H1 (pater-
nity) and H2 (not paternity) was computed with various
choices of dropout values dLR = [0, 0.1, 0.5, 0.9]. Note the
difference between dLR used in the LR computations and
dtrue used in the simulations. Calculations were done using
the correct drop-in value of 0.1.
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Fig. 6 Likelihood for each hypothesis in scenarios 3 and 5, with muta-
tion rate 0 (black lines) and 0.1 (red lines), and drop-in parameter
c = 0 (solid line) and c = 0.05 (dashed line). (a) Scenario 3: the top

four lines are likelihoods for H2; the lower lines are likelihoods for
H1. (b) Scenario 5: the top four lines are likelihoods for H1; the lower
lines are likelihoods for H2
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From the simulated data, we can compute P(LR>t |H1),
i.e. the probability that the LR will exceed a threshold t if
the alleged father is the true father of the child. We will
refer to this as an exceedance probability. The probability
of exceeding a threshold t if the alleged father and child
are unrelated, P(LR > t | H2), is also of interest. How-
ever, doing simulations under H2 (false trios) is challenging
because events where an unrelated man would get a high LR
by chance are rare, and a very large number of simulations

would be required. Therefore, we used importance sampling
as described in Kruijver [10] to compute exceedance prob-
abilities under H2 by using the simulations done under H1.
We estimated α = P(LR > t | H2) as

α̂ = 1

N

N∑

i=1

I (LRi > t) · W(LRi) (6)

where I is the indicator function, LRi is the likelihood
ratio computed from simulation i = 1, ..., N under H1,
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Fig. 7 Probability that LR will exceed threshold t for true trios with
different choices of dLR. Each plot shows a different dropout level in
the data (dtrue). The dashed vertical line corresponds to cut-off value
t = 1000. In general, the highest exceedance probability is achieved
when the correct dropout probability is used, and the exceedance

probability decreases with increasing dropout in the data. Not account-
ing for dropout when there is dropout in the data gives the lowest
exceedance probabilities. In fact, when the true dropout level is high
(0.5 or 0.9), dLR = 0 gives exceedance probability 0 for all values of
t . (a) dtrue = 0. (b) dtrue = 0.1. (c) dtrue = 0.5. (d) dtrue = 0.9
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and W(LRi) is a weight that compensates for the sampling
bias. The weight indicates how much more likely we are to
observe LRi under H2 compared to the hypothesis that we
sample from. Note that dtrue, the simulation dropout value,
may differ from dLR, the dropout value assumed in the cal-
culation ofLRi . Therefore, we define a third hypothesis, the
sampling hypothesis H3, which is equal to H1 except with
dropout value dtrue. The weightW(LRi) corresponds to the
likelihood ratio comparing H2 and H3.

In Fig. 7, the exceedance probability for true trios is
plotted as a function of the threshold t . The dashed verti-
cal line indicates a commonly used cut-off value of LR =
1000, which corresponds to a ’probability of paternity’ of
99.9 % if we assume equal prior probability for the two
hypotheses. In general, we achieve the highest exceedance
probability when the correct dropout probability is used,
while completely ignoring dropout when there is dropout in
the data severely reduces the exceedance probability. The

0 1 2 3 4

−
6

Log10(t)

dLR

0
0.1
0.5
0.9

dLR

0
0.1
0.5
0.9

0 1 2 3 4

−
3

0 1 2 3 4

−
1

0 1 2 3 4

−
1

Lo
g 1

0(
P

(L
R

 >
 t 

| H
2)

)

Lo
g 1

0(
P

(L
R

 >
 t 

| H
2)

)

Lo
g 1

0(
P

(L
R

 >
 t 

| H
2)

)

Lo
g 1

0(
P

(L
R

 >
 t 

| H
2)

)

dLR

0
0.1
0.5
0.9

dLR

0
0.1
0.5
0.9

−
7

−
8

−
9

−
10

−
11

−
12

Log10(t)

Log10(t) Log10(t)

−
4

−
5

−
6

−
7

−
8

−
2

−
3

−
4

−
5

−
6

−
7−
7

−
6

−
5

−
4

−
3

−
2

Fig. 8 Probability that LR will exceed threshold t for false trios with different dropout levels in the data (dtrue). The dashed vertical line represents the
cut-off value t = 1000. When dtrue = 0.9, dLR = 0 gives exceedance probability 0 for all t . (a) dtrue = 0. (b) dtrue = 0.1. (c) dtrue = 0.5. (d) dtrue = 0.9



638 Int J Legal Med (2017) 131:629–641

Fig. 9 Exceedance probabilities
for (a) true and (b) false trios
when the drop-in values vary.
Each curve represents a
combination of the true drop-in,
ctrue, and the drop-in value used
in the LR calculation, cLR. Both
dtrue and dLR are kept fixed at
0.1. The dashed vertical line
indicates LR = 1000
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exceedance probability decreases when the true dropout rate
increases.

Figure 8 shows the exceedance probability for false trios,
which we may refer to as the false positive rate. With
no actual dropout in the data (dtrue = 0), a model with
dLR = 0.9 results in the lowest false positive rate, but
also in the lowest exceedance probabilities for true trios
(Fig. 7a). Similarly, when the dropout level in the data is
high (dtrue = 0.9), a model that ignores dropout (dLR = 0)
gives exceedance probability 0 for false trios but also for
true trios (Fig. 7d). With such a high dropout level in the
data, the probability of obtaining an LR above 1 is about
0.25 with dLR = 0.9; however, the false positive rate
quickly decreases as the threshold increases. In general,
these simulations indicate a low probability of obtaining an
LR above 1000 for false trios, even when the dropout value
is misspecified and there is a high level of dropout in the
data.

The above simulations only demonstrate the effect of
dropout. To study the effect of having drop-in in the data
and of misspecifying the drop-in value, we did some addi-
tional simulations where we kept both dtrue and dLR fixed
at 0.1, and let the drop-in value vary. Let ctrue and cLR
denote the drop-in value used in the simulations and in the

LR calculations, respectively. The plots in Fig. 9 show the
exceedance probabilities for true and false trios with differ-
ent combinations of ctrue and cLR. The plots are based on
1000 simulations.

The highest exceedance probabilities for the true trios is
observed when there is no drop-in in the data and we do
not account for it (ctrue = 0 and cLR = 0). The result of
misspecifying the drop-in value is that the exceedance prob-
abilities are somewhat reduced; however, the effect is rather
small and especially for higher thresholds. An exception is
when there is drop-in in the data and this is not accounted
for (ctrue = 0.1 and cLR = 0). The plot for false trios
show that the largest false positive rates are observed when
there is drop-in in the data. Again, the exception is when the
drop-in is not accounted for. For higher thresholds, there is
little effect both of having drop-in present and of the drop-in
value used.

Real data

We consider a real case from the non-invasive prenatal
paternity study in Gysi et al. [5]. Cell-free DNA was
extracted from a mother’s blood sample at 16 weeks of preg-
nancy. STRs were amplified with the prototype 24-plex STR

Fig. 10 Profiles for some loci in the real case. The x-axis indicates allele calls and the y-axis the number of reads. Grey bars indicate peaks that
were filtered out as stutter
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Table 4 Real data example showing the genotypes of the mother,
alleged father and the mixture of mother and child, in addition to the
full profile of the child. The 22 loci are part of the prototype 24-plex
STR panel from Thermo Fisher

Marker MO AF Mixture CH

CSF1PO 10/11 12/12 10/11/12 11/12

D10S1248 16/16 14/15 16 14/16

D13S317 12/14 8/9 9/12/14 9/12

D14S1434 10/13 14/14 10/13/14 10/14

D16S539 12/12 12/14 12/14 12/14

D19S433 13/14 12/16 12/13/14 12/13

D1S1656 15/16 11/16 15/16 16/16

D1S1677 13/13 12/14 13 12/13

D2S1338 17/25 16/24 16/17/25 16/25

D2S1776 9/12 9/9 9/12 9/12

D2S441 10/14 10/10 10/14 10/10

D3S1358 16/19 14/17 14/16/19 14/16

D4S2408 8/9 9/10 8/9/10 8/10

D5S2500 14/18 17/17 14/17/18 14/17

D5S818 10/12 11/11 10/12 10/11

D6S1043 11/12 11/11 11/12 11/11

D6S474 14/14 14/18 14/18 14/18

D7S820 9/11 8/14 8/9/11 8/9

D8S1179 10/13 12/13 10/13 13/13

D9S2157 7/14 11/13 7/11/14 7/11

TH01 7/9.3 6/6 6/7/9.3 6/9.3

TPOX 8/10 8/11 8/10 8/10

panel from Thermo Fisher and sequenced on the Ion PGM.
As the vast majority of cell-free DNA is of maternal origin,
the STR profile shows a mixture of mother and child with

the mother being the major component. Figure 10 shows the
profiles of some of the loci in the case.

A reference sample from the child was taken after
birth to evaluate the prenatal mixture profile; however,
we will ignore it in the likelihood ratio computations to
simulate a real scenario. Table 4 shows the profiles of
the alleged father, mother, mother-child mixture and child
(post-natal screening). Genotypes are listed for 22 out of
24 STR markers that were previously selected to perform
best for this type of extremely unbalanced mixtures. Stut-
ters were filtered based on sequence specific stutter ratios
[17] estimated from preliminary data (unpublished). An
analytical threshold of 0.005 (relative to the total num-
ber of reads per marker) was used. Since we know the
genotype of the child, we can observe dropouts in the mark-
ers D10S1248, D1S1677 and D5S818. Without knowing
the child’s genotype, the inconsistencies between the pro-
files can be explained by both dropout and mutation, and
for the marker D5S818 also a silent allele. Without peak
height information, we cannot determine whether the child’s
maternal alleles have dropped out, and neither for the pater-
nal alleles that are masked by maternal alleles. Three out
of 16 paternal alleles not masked by a maternal allele have
dropped out, and we can use 3/16 = 0.19 as a rough esti-
mate of the dropout probability. With the applied analytical
threshold, there are no visible drop-in alleles.

To compute likelihood ratios, we used allele frequencies
from Hill et al. [7, 8]. Figure 11 shows the LR as a function
of the dropout probability d. The LR was calculated first
without drop-in, then with drop-in c = 0.05, and finally,
also with mutations and silent allele accounted for. We used
a stepwise mutation model with mutation rate r = 0.001

Fig. 11 Total LR in the real
data example as a function of
the dropout probability d with
different artefacts included in
the model: drop-in c = 0.05,
stepwise mutation model with
rate r = 0.001 and range 0.5,
and silent allele frequency 0.01
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Table 5 LR per marker in the
real data example with various
values of the dropout
probability d, mutation rate r

and silent allele frequency ps .
A drop-in value of c = 0.05 is
used. The last column gives the
LR for the regular paternity
case (with no artefacts) where
the full profile of the child is
available

Marker r = 0, ps = 0 r = 0.001, ps = 0.01 Regular

d = 0 d = 0.19 d = 0 d = 0.19

CSF1PO 2.705 2.686 2.658 2.639 2.777

D10S1248 0.000 0.638 0.001 0.624 1.679

D13S317 6.348 6.286 6.405 6.342 6.446

D14S1434 2.541 2.523 2.500 2.483 2.611

D16S539 18.73 18.53 18.87 18.65 19.00

D19S433 6.867 6.801 6.915 6.848 7.078

D1S1656 1.752 1.413 1.709 1.393 3.684

D1S1677 0.000 0.495 0.001 0.488 6.119

D2S1338 13.18 13.04 13.28 13.13 13.37

D2S1776 2.837 2.103 2.784 2.079 2.837

D2S441 2.215 1.799 2.186 1.784 4.750

D3S1358 4.629 4.588 4.669 4.626 4.688

D4S2408 2.074 2.062 2.092 2.080 2.105

D5S2500 2.747 2.727 2.697 2.677 2.819

D5S818 0.000 0.346 0.060 0.383 2.809

D6S1043 1.875 1.608 1.858 1.597 3.374

D6S474 5.537 5.485 5.584 5.531 5.587

D7S820 3.408 3.380 3.436 3.408 3.471

D8S1179 1.157 1.102 1.142 1.092 1.517

D9S2157 1.668 1.661 1.683 1.675 1.686

TH01 4.136 4.100 4.009 3.975 4.247

TPOX 0.870 0.908 0.863 0.903 0.870

Total 0.0E + 00 2.1E + 08 4.7E + 02 2.1E + 08 2.1E + 12

and range 0.5 [2], and a silent allele frequency of 0.01.
The LR decreases when a drop-in probability is introduced.
There is little effect of also including mutations and silent
alleles. Dropout alone is sufficient to explain paternity in
this case, and the inclusion of drop-in, mutations and silent
allele introduces more uncertainty in the model. Indepen-
dent of the inclusion of artefacts, the LR appears sufficiently
large for all reasonable values of the dropout probability.

Table 5 lists the LRs per marker with different values of
dropout, drop-in, mutation rate and silent allele frequency.
The last column in the table gives the LR for the regular
paternity case (with no artefacts) where the reference profile
for the child is available.

Discussion

We have presented a method and software for calculation
of relationship inference based on mixtures. The method
can account for artefacts such as dropout and drop-in,
mutations, silent alleles and population substructure. The
software is freely available in the R package relMix, both
as a graphical user interface and as several command line
functions.

The primary motivation for the paper was paternity cases
where the child’s DNA profile is only available as a mix-
ture with the mother’s profile, and there may be dropout
and drop-in in the mixture. An example is non-invasive pre-
natal paternity testing based on cell-free DNA. The highly
unbalanced mixture and the very low amount of foetal DNA
makes dropout and drop-in likely. With the model presented
here, a high LR supporting paternity of an alleged father
was calculated in a real prenatal paternity case from a mix-
ture with three visible dropouts. Through simulations, it
could further be shown that true trios have a high proba-
bility of achieving an LR above 1000 (corresponding to a
”probability of paternity” of 99.9 % when assuming equal
prior probabilities) and that likelihood ratios that support
paternity for false trios are very unlikely. Together with a
sufficiently high LR for the real data example, this indicates
that the challenging mixtures obtained from typing cell-free
DNA in a pregnant woman’s blood sample can be handled
with this method, even if dropout and drop-in do occur.
Although paternity cases have been the focus in most exam-
ples presented here, we do emphasise that our software can
handle all types of relationships between the individuals in
the mixture, and the hypotheses may involve any number of
relatives.
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Our simulation study shows that the ability to identify
true trios is drastically reduced if there is dropout in the
data that is not accounted for. Approaches for estimating
the dropout probability are not discussed here, but several
methods for dropout estimation in capillary electrophore-
sis based data exist [15, 16]. In the real data example, the
STRs were sequenced using massive parallel sequencing.
There may be additional factors that influence the dropout
probability in MPS data; however, this is a topic beyond
the scope of this paper. We further note that dropout in
prenatal paternity cases may depend on the stage of preg-
nancy. In addition, Ashoor et al. [1] found a decrease in the
foetal fraction of total cell free DNA with increasing mater-
nal weight. In the real data example, we could count the
number of visible dropout alleles as a minimum estimate
of the dropout probability since we knew the child’s full
profile, but this information would usually not be available.
One approach to deal with the unknown dropout probabil-
ity is to do a sensitivity analysis by calculating the LR for
a range of dropout values to see how it varies. This was
done in the real data example and showed that the LR was
sufficiently high for all reasonable values of the dropout
probability.

In the real prenatal paternity case, stutters were filtered
based on sequence specific stutter ratios estimated from
preliminary data. More experiments are needed to obtain
precise estimates for MPS data. In mixtures where one con-
tributor is in large excess, defining stutter ratios precisely is
crucial to be able to call minor alleles in stutter position of a
major allele. Two of the three dropouts were in stutter posi-
tions of a maternal allele and it is not known whether these
foetal alleles dropped out or were masked by a stutter. van
der Gaag et al. [17] show that stutter ratios mainly depend
on the number of uninterrupted repeats of an STR allele and
therefore on the STR sequence. Massive parallel sequencing
thus enables lowering the threshold to call an allele in stut-
ter position of a major allele. We emphasise that the prenatal
paternity case data is only an example of data that can be
analysed with our model, and the technical details of MPS
data is therefore not the main focus here.

The mixture model we have used is a semi-continuous
model that includes dropout and drop-in, but does not
use information about peak heights. This model could be
replaced by a fully continuous model that also incorporates
peak heights and stutter. There are examples of the use of
continuous models [12, 14]. However, incorporating general
relationships that also consider artefacts such as mutations
and silent alleles into a continuous mixture model does
not appear trivial. Another possible extension of the model
could be to include linkage and linkage disequilibrium.
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Relationship inference: Estimation and Model
Selection

Navreet Kaur∗, Geir Storvik†, Magnus Dehli Vigeland‡and Thore Egeland∗

Abstract

The methods and implementations of this paper are relevant to
describe and test the relationship between two individuals. Forensics
is one of several important applications where family relationships are
questioned. Traditionally, both in crime cases and in kinship cases,
two competing hypotheses are presented verbally. The hypotheses
may for instance specify who contributed to a mixture versus an un-
related man or, in a kinship case, a specific relation between two in-
dividuals versus unrelatedness. However, the alternative parametric
formulations of hypotheses are relevant in forensic case work. The
alternative hypothesis can be completely general when testing a rela-
tion (for instance, there is no need to restrict attention to‘unrelated’),
and a parametric representation facilitates applications of well-known
statistical theory. In this paper, we take the parametric framework
based on IBD (identity-by-descent) further. An allele in one individ-
ual is IBD to an allele in another individual if the ancestral origin
is the same within a specified pedigree. Any pairwise relationship of
non–inbred individuals correspond to a point κ = (κ0, κ1, κ2) in the
so-called IBD triangle where κi, i = 0, 1, 2, is the probability that
the individuals share i alleles IBD. Methods for estimating κ from
genetic markers are well-known, but boundary issues (the parameters
are not inner points of the valid domain) present challenges. The
main novelty of the paper is that we address the problem by opti-
mization with non-linear constraints and model selection based on the
Bayesian Information Criterion (BIC). Moreover, we calculate para-
metric bootstrap confidence regions for the IBD parameters and the
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kinship coefficient. These can be used for testing purposes. Plotting
methods are presented in order to visualize the relations and their
location in the valid domain. The methods are implemented in the
freely available R library IBDest2 which is based on paramlink.

Keywords: Kinship estimation; IBD triangle; constrained maximum likeli-
hood; model selection; BIC

1 Introduction

The statistical analysis following kinship tests in forensic genetics tradition-
ally relies on a likelihood based approach. Verbal hypotheses are presented
suggesting a specific relationship between two individuals versus an alter-
native hypothesis, typically stating unrelatedness, and likelihood ratios are
calculated based on these hypotheses. The paper [13] presents pairwise kin-
ship analysis in the forensic context.

However, papers [9] and [6] discuss parametric representations of such
hypotheses. The papers show the relevance and usefulness of a parametric
approach for statistical inference in forensic genetics. It is worthwhile to
expand on such parametric approaches and explore these in new directions,
as this paper aims to do. A parametric presentation invites for a larger frame
of statistical tools that can more directly be used for forensic applications. A
classic verbal hypothesis presentation for testing paternity could for instance
be H1: “A is the biological father of B”, with the alternative hypothesis
stating unrelatedness, i.e., H2: “A and B are unrelated”. In [6], a parametric
formulation for such kinship testing is presented, and the hypotheses and the
model is formulated in terms of the identity-by-descent (IBD) parameters
κ = (κ0, κ1, κ2), where κi is the probability that the individuals share i
alleles IBD. Turning back to our paternity case, a parametric presentation of
the same hypotheses would be H1: κ1 = 1 versus H2: κ0 = 1.

The κ-coefficients were introduced by [3] and are used to specify the
relationship between any two non–inbred individuals. The main advantages
of a parametric approach in terms of the κ-parameters is that the alternative
hypothesis can be quite general: the alternative hypothesis above may be
H2: κ1 < 1.

Furthermore, a parametric formulation allows relationship testing to fol-
low the classical framework of hypothesis testing. With such a parametric
presentation, [6] argues that a proper distribution for the test statistic can be
obtained, hence mathematical approaches that earlier have been out of reach
in forensic research are made applicable. In other words, parametric infer-
ence as described above follows the classical approach of applied statistics: a

2



model is specified and hypotheses are formulated in terms of the parameters
of the model. We can study the power, i.e., the probability of rejecting H1

given that the alternative is true, as a function of the parameters of interest.
In the following we take the results presented in [6, 14, 16] a step further

and explore different directions of this application. We present a method for
estimating the κ-parameters based on maximum likelihood theory presented
in [14], and hence we estimate the relations in question. Further we introduce
the corresponding confidence regions of the estimates, based on parametric
bootstrapping methods. With such intervals we are able to assess the un-
certainty of estimates and these supplement visual inspection of plots. We
study so-called boundary issues, and find methods for handling situations
where the relations in question are found on the boundary of the valid do-
main of all possible relationships [15]. These methods are based on model
selection and optimization. Available methods, like the asymptotic theory
of [6] and implementation of kinship estimates, as the R library Relatedness,
are limited to SNP markers and therefore of limited forensic relevance.

The method of choice in many statistical applications for estimation is
generally based on the likelihood function. Intuitively, the maximum like-
lihood estimate is the value of the parameter that maximizes the likeli-
hood. This maximum likelihood estimator has many desirable properties,
like asymptotic normality (i.e., the distribution approaches a normal distri-
bution as the number of observations goes to infinity) and optimality, pro-
vided that some regularity conditions hold. One such regularity condition
is that the parameter should not be on the boundary of the valid domain.
In our case, the valid domain refers to the ‘relationship triangle’, illustrated
in the leftmost panel of Figure 1. As seen from the figure, many of the
most well-known pairwise relationships are found on the boundary of the tri-
angle. This boundary problem complicates the properties of the maximum
likelihood estimates and also the use of simulation based approaches like the
bootstrap methods, see [1]. In order to deal with such complicating factors,
we use an optimization and model selection approach to find the most ap-
propriate parameter estimate. Model selection is done based on the Bayesian
Information Criterion (BIC).

By controlling the boundary issues, we aim for more reliable confidence
regions for our κ estimates in order to state how closely or remotely related
two individuals are. Also, the estimated κ then corresponds to one or more
existing pedigrees as shown in [16]. In other words, given a specific κ, there
exists at least one pedigree with this κ.

The kinship coefficient ψ is another measure of relatedness and is often
used in human genetics. When there is no inbreeding, ψ = (2κ2 + κ1)/4.

The paper is organized in the following way: In Section 2 we review the

3



κ0

κ2

●●

●

●

● ● ●

●
●

UNPO

MZ

S

H,U,G FC SC

DFC

Q

0 1

0.00

0.25

κ0

alpha

●●

● ●

● ● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

UNPO

MZ S

H,U,G FC SC

DFC

Q

Figure 1: The IBD triangle to the left shows some common relationships, see Table 1.
The dashed curve is given by κ21 = 4κ0κ2, and the valid domain for κ is the white area
under the dashed line. The plot to the right illustrates the transformation explained in
Section 2.3.

concept of identity-by-descent (IBD), the IBD coefficients κ and the kinship
coefficient ψ. We describe how these parameters can be estimated by max-
imum likelihood methods, and discuss how boundary issues may be solved
by reparametrisation, constrained optimisation and model selection. In Sec-
tion 2.4 we turn to simulations and present methods for finding confidence
regions of estimates based on parametric bootstrapping. In Section 3 we give
examples for simulated and real data. Finally, recommendations, results and
limitations are discussed in Section 4.

2 Methods

Traditionally two competing hypotheses are formulated and compared using
the likelihood ratio. As a motivational example, we will look at two individ-
uals A and B who are questioned half siblings. The classical presentation of
two competing hypotheses is verbal and may for instance be

H1 : A and B are half siblings,

H2 : A and B are unrelated.

Given genotype data on A and B, the likelihood ratio is

LR =
Pr(data|H1)

Pr(data|H2)
.
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In the following sections, we will move away from this classical verbal pre-
sentation, and turn towards a parametric representation based on identity-
by-descent theory and κ parameters, together with the kinship coefficient ψ.

2.1 The IBD coefficients

An allele in one individual is said to be identical by descent to an allele in
another individual if the allele derives from the same ancestral allele within
the specified pedigree [17, 5]. Given two non-inbred individuals, let Z be
the number of IBD alleles at some autosomal locus. We define the IBD
coefficients κi = Pr(Z = i), i = 0, 1, 2. Note that κ0 + κ1 + κ2 = 1. As
discussed in [14] and [15], all pairwise relations fall within the domain

K∗ = {(κ0, κ2) : κ0, κ2 ∈ [0, 1] , (1− κ0 − κ2)2 ≥ 4κ0κ2} (2.1)

The likelihood function for one marker can be written ([17], p. 42)

L(κ) = κ0P (G | Z = 0) + κ1P (G | Z = 1) + κ2P (G | Z = 2)

= κ0UN(pg1 , pg2) + (1− κ0 − κ2)PO(pg1 , pg2) + κ2MZ(pg1 , pg2), (2.2)

where G := (g1, g2) are the genotypes. The functions UN, PO and MZ
correspond to the terms for ‘unrelated’, ‘parent offspring’, and ‘monozygotic
twins’, respectively. The dependence on g1 and g2 and the corresponding
frequencies pg1 and pg2 is omitted in the notation L(κ). Throughout we
assume Hardy Weinberg Equilibrium.

The IBD probabilities specify different relationships, and some common
relationships are given in Table 1 in terms of the three κ parameters. Using
these relations, the more traditional representation of verbal hypotheses may
now take a parametric form. Turning back to our motivational example, we
may instead state the hypotheses

H1 : κ0 = κ1 =
1

2

H2 : κ0 6=
1

2
or κ1 6=

1

2
.

Note that the alternative hypotheses now is quite general compared to the
conventionally adopted and restrictive alternative stating unrelatedness.

2.2 The kinship coefficient - ψ

The coefficient of kinship ψ between two individuals A and B measures the
amount of IBD sharing allele, and is the probability that a randomly chosen
allele in A is IBD to a randomly chosen allele from B.
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Table 1: IBD probabilities for some pairwise relationships. The term avuncular refers
to three relationships which are indistinguishable based on unlinked autosomal markers;
halfsiblings (H), grandparent-grandchild (G) and uncle/aunt-nephew/niece (U)

Relationship κ = (κ0, κ1, κ2) ψ = 2κ2+κ1
4

Parent-child (PO) (0, 1, 0) 1
4

Siblings (S) (1
4
, 1
2
, 1
4
) 1

4

Avuncular (H, G, U) (1
2
, 1
2
, 0) 1

8

First cousins (FC) (3
4
, 1
4
, 0) 1

16

Double first cousins (DFC) ( 9
16
, 6
16
, 1
16

) 1
8

Quadruple half first cousins (Q) (17
32
, 14
32
, 1
32

) 1
8

Second cousins (SC) (15
16
, 1
16
, 0) 1

64

Unrelated (UN) (1, 0, 0) 0

Monozygotic twins (MZ) (0, 0, 1) 1
2

The kinship coefficient is directly related to the inbreeding coefficient, f ,
as explained in [17], and made precise below where R is a (possibly hypo-
thetical) child of P and Q:

ψ = ψP,Q = Pr(random allele of P is IBD with random allele of Q)

= Pr(R receives IBD alleles from her parents)

= Pr(R is autozygous) = f.

Values of κ and ψ for some common relationships are shown in Table 1. We
will be comparing different ways of estimating κ and thus ψ. The mean
squared error,

MSE(ψ̂) = E(ψ̂ − ψ)
2

= var(ψ̂) +
(
Eψ̂ − ψ

)2
, (2.3)

is a widely used criterion for comparison of estimators. The estimator with
the smallest MSE is considered the best. Our applications are complicated
by the mentioned boundary problem, but we will still use MSE to supplement
visual inspection of plots.
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2.3 Optimization and model selection

The log likelihood function of n independent markers is

l(κ) =
n∑

i=1

log(Li(κ)), (2.4)

where Li(κ) is given in Equation (2.2). Recall that (κ0, κ2) ∈ K∗, see (2.1)
and Figure 1. Maximum likelihood estimation of κ amounts to maximiz-
ing the expression (2.4). In our case this is complicated by the boundary
conditions illustrated in Figure 1; without these boundary conditions, the
maximum likelihood (ML) estimates are optimal and asymptotically normal.
In other words, if the true κ is on the boundary of K∗, then the standard ML
theory does not work. One can, however, argue that in some applications it
is reasonable to ignore constraints beyond κi ≥ 0 and κ0 + κ1 + κ2 = 1. In
our implementation and examples the resulting estimates are referred to as
‘Standard’. The point is that the realised IBD pattern for a pair of individ-
uals may not fall in the permissible region and one may therefore choose not
to correct or constrain the estimates. The leftmost panel of Figure 3 shows
examples of such estimates.

If the objective is to estimate the true pedigree relating a pair of in-
dividuals, it is reasonable to constrain estimates to the permissible region.
In Section 2.3.1 this is approached via model selection, below more stan-
dard constrained optimisation is discussed. There are two numerical ap-
proaches for finding maximum values in the legal domain. The first is to use
constrained optimization. We have implemented this using the R package
maxLik [8]. There are some disadvantages to this approach: Only linear con-
straints are possible. To accomodate the non-linearity of the valid domain,
we reparametrize it and let

α =
κ0κ2

(1− κ0 − κ2)2
. (2.5)

From the definition of the valid domain given in (2.1), it follows that 0 ≤
α ≤ 1

4
. The only valid solution for the above equation is

κ2 = 1− κ0 −
√
κ20 + 4ακ0(1− κ0)− κ0

2α
. (2.6)

We may then optimize over (κ0, α) ∈ [0, 1] × [0, 1/4], before transforming
back to κ2 using (2.6). In addition we check the boundary, ∂K∗, i.e., we
also maximize along the boundary. In other words, transformation is only
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relevant for interior points of K∗ since we will check the border ∂K∗ sepa-
rately. The reparametrization and transformation from κ-space to α-space
explained above is illustrated in Figure 1. We started with half siblings, i.e.,
(κ0, κ1, κ2) = (0.5, 0.5, 0). Using the formula for α, we find

α =
κ0κ2
κ21

=
0.5 · 0
0.52

= 0,

and so we find the same half sibling relationship as (κ0, α) = (0.5, 0). Note
that the transformation (2.5) is not defined when κ0 + κ2 = 1 as is the case
for UN and MZ. On the right hand side of Figure 1 we have plotted these
points as the continuous limits: For MZ, the limit along the stapled line of
the plot to the left, for UN the limit along the x-axis. We return to this issue
in the discussion.

2.3.1 Model selection

In order to take into account that the estimation of κ includes boundary
values, we can look at our problem in terms of model selection: A solution
on the boundary involves only one parameter, and may be preferred to an
interior point even if the interior maximum of the likelihood is larger. In this
case, when the objective is to find the true model or pedigree, it is reasonable
to use the Bayesian Informative Criterion (BIC) [2],

BIC = −2 ln(L̂) + C ln(n),

where L̂ is the maximum likelihood value, C = 2 for an interior point and
C = 1 on the boundary, while n is the number of markers. With model
selection, the procedure for estimating κ is to first select the best model
using BIC and thereafter estimate κ within this model. This includes both
the vertices as well as the boundary lines. BIC is a consistent model selection
criterion, which means that as n increases we will get the right model. Within
a model, it follows from standard ML theory that the estimates are consistent,
so combined we get a consistent estimator. There are of course other model
selection criteria that may be used, like for instance Akaike’s Information
Criterion (AIC). However, AIC tries to select the model that most adequately
describes the unknown reality, while BIC tries to find the true model among
the set of candidates. We are in the latter situation, and therefore use BIC.

2.4 Parametric bootstrap and confidence regions

Simulation is an valuable tool also for the current application. For one thing,
it makes it possible to compare estimators and assess their uncertainty. Based
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on simulations, the parameters and the 2.5% and 97.5% percentiles can be
estimated. These intervals are relevant when the pedigrees are known and
the approach is exemplified in Example 3.2. More realistically, the family
relationship is not known, and then we can use parametric bootstrap as fol-
lows: First an estimate κ∗ is obtained from the data. Then the likelihood
function (2.2) can be used to generate a table describing the joint genotype
probabilities of the two individuals for each marker. This table can then
be used to simulate marker data B times from which we get the bootstrap
estimates κ̂1, . . . , κ̂B. There exists several bootstrapping methods for creat-
ing confidence intervals or regions as described in [4]. We use the percentile
method independently for the parameters κ0 and κ2 truncated to the interval
[0, 1] as exemplified in e.g. Table 4. Alternatively, we calculate a confidence
ellipse. The ellipses are based on the asymptotic bivariate normal distribution
for (κ̂0, κ̂2) where the mean vector and covariance matrix are estimated from
the bootstrap samples. The next section gives details on implementation.
Note that the problems with parameter values on the boundary mentioned
previously for ML estimates also apply to bootstrap estimates as discussed
in [1]. In particular, the confidence ellipse does not account for the boundary
problems and is likely to be most reliable for inner points of the IBD triangle
and a large number of markers.

2.5 Implementation

The methods and examples of this paper are implemented and documented
in the R library IBDest2 available as http://familias.name/IBDest2_1.0.
zip. In several respects this library is a wrapper based on paramlink. The
main extensions relate to model selection, constrained estimation and opti-
misation using the maxLik [8] library. Also, in some respects paramlink and
other libraries like Relatedness are restricted to SNP markers. Confidence
ellipses have been estimated using the library ellipse based on methods
described in [12]. We have constrained the ellipses to the valid domain.

3 Results

Three examples are presented below. The first is based on published data
and details the three different estimation methods. Then, in the second ex-
ample, we simulate from known pairwise relationships using available marker
databases. This allows us to compare the accuracy of the various estimates vi-
sually and also from estimates of the parameters describing the relationships.
Finally, parametric bootstrap with confidence ellipses are demonstrated on
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simulated data for varying number of markers. In all cases, markers are
assumed to be independent.

Table 2: Genotypes for two possible half-siblings on the SGMPlus loci, see [11].

Locus g1,1 g1,2 g2,1 g2,2

D2S1338 22 23 17 23
D3S1358 17 18 16 18

FGA 22.2 24 22 23
D8S1179 14 17 12 14

TH01 8 8 8 9
VWA 18 18 17 18

D16S539 12 12 12 13
D18S51 13 16 13 16
D19S433 13.2 16.2 14 14
D21S11 30.2 35.2 29 31.2

Table 3: Comparison of estimates in Example 3.1. All estimates except ‘Standard’
reparametrise the model. The last line of the table is the one with lowest BIC value
of the preceding four lines, in this case for κ2 = 0.

κ̂0 κ̂1 κ̂2 loglik AIC BIC ψ̂
Standard 0.532 0.403 0.065 -79.188 162.376 167.586 0.133

Constrained 0.532 0.444 0.024 -79.249 162.376 167.586 0.123
On curve 0.581 0.363 0.057 -79.249 160.498 163.103 0.119
κ0 = 0 0.000 0.986 0.014 -2114.080 4230.159 4232.764 0.254
κ2 = 0 0.527 0.473 0.000 -79.217 160.433 163.038 0.118

BIC 0.527 0.473 0.000 -79.217 160.433 163.038 0.118

Example 3.1. Genotype data for two individuals from [11] are presented
in Table 2. The first line of Table 3 gives the ‘Standard’ estimate obtained
by unrestricted optimisation of the log likelihood function. Next follows the
estimate constrained to the permissible region based on reparametrisation.
The subsequent three lines list the estimates on the border of the permissible
region. The BIC values are minised for κ2 = 0 and therefore these values
are reproduced as the BIC choice in the last line of the table. The rightmost
column gives the estimate of the kinship coefficient based on the κ–values. All
three estimates indicate that the individuals could be half siblings. However,
statistical tests or confidence regions are needed for a more formal conclusion
as next. Figure 2 shows the result of 100 samples from the constrained
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Figure 2: Figure for last part of Example 1 based on 100 samples from κ̂ =
(0.532, 0.444, 0.024) (red diamond).

Figure 3: Marker data is simulated for the 35 markers of the database
NorwegianFrequencies assuming a full-sib relationship (S), i.e., κ0 = κ2 = 0.25. Plots
for the three estimation methods are presented.

estimate κ̂ = (0.532, 0.444, 0.024). The variability is great and indicates that
10 markers are insufficient for a reliable estimate.

Example 3.2. The purpose of this example is to exemplify in some de-
tail and compare also the different methods of estimating κ and also ψ.
We do 100 simulations using marker data from the 35 loci available as
NorwegianFrequencies in the R library Familias. Consider first a full sib
relationship. The simulations are shown in Figure 3 for the three methods
‘Standard’, ‘Constrained’ and ‘BIC’. Note that the penalising term draws the
BIC estimate towards the boundaries. Next we consider quadruple half first
cousins. As opposed to the previous example, this relationship is an interior
point of the triangle. From Figure 4 we see that the BIC estimates are again
drawn towards the boundary. The simulations are summarised in Table 4
for the κ estimates. Table 5 shows estimates and MSE for ψ for the above
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Figure 4: Marker data is simulated for the 35 markers of the database
NorwegianFrequencies assuming a Q relationship, i.e., κ0 = 17/32, κ2 = 1/32. Plots
for the three estimation methods are presented.

Table 4: Estimates and percentiles for κ estimates for the sibling (κ = (0.25, 0.50, 0.25))
and Q (κ = (0.53125, 0.43750, 0.03125)) cases of Example 2, see also Figures 3 and 4.

Siblings Q
κ̂0 κ̂1 κ̂2 κ̂0 κ̂1 κ̂2

Standard 0.2451 0.4940 0.2610 0.5239 0.4423 0.0338
2.5% 0.0258 0.2676 0.1043 0.2623 0.1736 0.0000

97.5% 0.4564 0.6952 0.4422 0.8007 0.7185 0.1284
Constrained 0.2198 0.5373 0.2429 0.5171 0.4540 0.0288

2.5% 0.0276 0.4662 0.1043 0.2636 0.2249 0.0000
97.5% 0.3714 0.6951 0.4229 0.7668 0.7195 0.1010

BIC 0.2438 0.4972 0.2590 0.5235 0.4477 0.0288
2.5% 0.0437 0.4460 0.1328 0.2606 0.2251 0.0000

97.5% 0.3713 0.6197 0.4256 0.7666 0.7394 0.1221

relationships and two more.

Example 3.3. In the last example we make a more serious, but not defini-
tive, attempt at determining the best of the three estimates ‘Standard’, ’Con-
strained’ and ’BIC’. We simulate 100 times with 10 and 25 markers. There
are 10 alleles with frequencies proportional to i/10, i = 1, . . . , 10. For real
data, we would have estimated κ∗ and the parametric bootstrap would be
based on this estimate. In this simulation study, our point of departure is
κ corresponding to the sib case and in the second case, κ = (1

8
, 6
8
, 1
8
), abbre-

viated MI below. Recall that there exists at least one pedigree with this κ
according to [16]. We use parametric bootstrap to sample genotypes. Ta-
ble 6 shows MSE(ψ̂) for four different relationships. Figures 5–8 display the
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Table 5: Estimates and percentiles for the ψ estimates in Example 2.

PO (ψ = 0.25) Sibs (ψ = 0.25) HS (ψ = 0.125) Q (ψ = 0.125)
mean MSE mean MSE mean MSE mean MSE

Stand 0.2568 0.0002 0.2540 0.0017 0.1295 0.0012 0.1275 0.0013
Constr 0.2547 0.0002 0.2558 0.0017 0.1296 0.0012 0.1279 0.0013

BIC 0.2567 0.0001 0.2538 0.0017 0.1285 0.0011 0.1263 0.0012

simulations. Finally, we tried with 100 markers (more markers than can be
assumed independent), see Figures 9 and 10.

Table 6: MSE(ψ̂) for full sibs (FS), half sibs (HS), κ = ( 1
8 ,

6
8 ,

1
8 ) (MI) and quadruple half

first cousins (Q). The number of markers is 10 and 25 as indicated.

Standard Constrained BIC
FS:10 0.00530 0.00523 0.00528
FS:25 0.00223 0.00223 0.00227
HS:10 0.00445 0.00443 0.00432
HS:25 0.00196 0.00194 0.00183
MI:10 0.00273 0.00270 0.00274
MI:25 0.00124 0.00126 0.00146
Q:10 0.00486 0.00487 0.00481
Q:25 0.00160 0.00160 0.00148
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Figure 5: The sibs case in Example 3.3.

4 Discussion

Studies on how generations are affected by matings between related individu-
als have for many years been of interest both in human genetics and in popu-
lation structure studies [20, 19, 7]. In this paper we have taken the parametric
presentation of IBD parameters for estimating relationships, and suggest a
parametric formulation of the hypotheses using κ coefficients. We estimate
the relations in question by via the κ coefficients, and find the corresponding
confidence intervals and regions (ellipses) using parametric bootstrapping.
Boundary challenges appear as many of the common relations are found on
the boundary of the valid domain. We have used constrained optimisation
based on reparametrisation. As mentioned in connection with Figure 1, the
transformation is not continuous. This may possibly lead to numerical in-
stability even if the boundaries are checked separately. Further work should
be done to search for and analyse other transformations. It is also relevant
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Figure 6: The relationship corresponding to κ = ( 1
8 ,

6
8 ,

1
8 ) discussed in Example 3.3.

to compare the estimators of this paper to alternatives, also for other ap-
plications. There is a large literature, [18] is a recent paper. Furthermore,
we also tried model selection with the Bayesian Information Criteria (BIC).
Using BIC, we first find the best suitable model and thereafter estimate the
κ parameters and the kinship coefficient ψ using this model.

Our methods apply to pairwise relations, and it is not straightforward to
extend to relationships involving more that two individuals. The problem is
that many parameters are then needed as described and exemplified in [6].
Extending the methods to allow for inbreeding is similarly complicated as
the number of parameters needed increases substantially. We have assumed
markers to be independent (no linkage or disequilibrium) throughout. The
examples, see for instance Figure 3, indicate that for some relationships suf-
ficiently accurate estimates are beyond reach based even on 35 markers, cor-
responding roughly to the information content conventionally available for
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Figure 7: The half sibs case in Example 3.3.

forensic markers.
Asymptotic challenges relevant for κ estimators are discussed in [6]. The

main point here is that the likelihood ratio, denoted by Λ in [6], will con-
verge towards different distributions according to the location of κ. For κ

values located in the interior of the valid domain, −2 log Λ
d→ χ2

2, while for
κ on the boundary, the specific position of κ along the boundary will decide
which distribution −2 log Λ will converge towards. We will not review spe-
cific details here, however −2 log Λ converges to a mixture of a discrete and
continuous distribution. The asymptotic approach of [6] is limited to SNP
markers, and it may be difficult and impractical to extend to forensically rel-
evant markers. The confidence ellipses apparently work well when there are
many markers and the relationship correspond to an inner point of the IBD
triangle as in Figure 10. In other cases, see e.g. Figures 5–9, the confidence
regions have not been included as we are not confident that they are reliable.
Methods need to be developed further to obtain more reasonable confidence
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Figure 8: The quadruple half first cousin case in Example 3.3.

regions.
The code has been developed in R, and use both existing functions in the

package paramlink, as well as newly developed functions for the paper found
in package IBDest2. There exist other packages in R for estimating parame-
ters describing pairwise relationships, like for instance package Demerelate,
see [10], but the constrained maximum likelihood we present and implement
appears novel in this context and is importantly not restricted to SNP mark-
ers. The examples show that BIC tends to estimate relationships on the
boundary of the IBD triangle where many of the well known pedigrees are.
Based on the plots and to a lesser extent MSE(ψ̂), we recommend the ‘Con-
strained’ estimate if the objective is to find the underlying pedigree.

In summary, we hope that this paper has demonstrated the relevance
of the parametric approach. We acknowledge the limitations, particularly
the restriction to pairwise and also non–inbred relationships. However, it is
important to provide and assess methods supplementing the classical verbally
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Figure 9: Simulations and confidence ellipses using 100 markers for the sib case, see
Example 3.3.

Figure 10: Simulations and confidence ellipses using 100 markers for κ = ( 1
8 ,

6
8 ,

1
8 ), see

Example 3.3.

based approach of forensics.
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