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Comparisons of two hand-held, 
 multispectral field radiometers and a 
 hyperspectral airborne imager in terms 
of predicting spring wheat grain yield and 
quality by means of powered partial least 
squares regression
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E-mail: SteinIvar.Overgaard@bioforsk.no
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cThe Norwegian University of Life Sciences, Department of Mathematical Sciences and Technology, 1430 Ås, Norway

Three radiometric instruments were compared as tools for predicting crop yield and grain quality: a CropScan instrument with 13 

photodiodes (485–1650 nm), a 2150-channel FieldSpec3 instrument (350–2500 nm) and a HySpex airborne hyperspectral line scanner 

with 160 image wavelength layers (400–1000 nm). The first two instruments are point spectroradiometers, while the HySpex is an imag-

ing instrument with a pixel size of 20 × 20 cm on the ground when the instrument is used at an altitude of 1000 m. A spring wheat field 

experiment of 160 plots was measured five times during the 2007 growing season. At harvest, grain yield was measured on each plot 

and analysed for moisture, protein, gluten, starch concentration and Zeleny sedimentation value. A recent statistical method, powered 

partial least squares (PPLS), was used for modelling and variable selection. The predictive performance of the calibrated models was 

very good, with coefficients of determination for the validation data (r2
pred) reaching 0.97 and 0.94 for grain yield and grain protein con-

centration, respectively. The predictions (r2
pred) of the other grain quality variables were in the range of 0.88–0.92. The airborne HySpex 

did not perform as well as the other instruments, most likely due to its limited spectral range. FieldSpec3 was significantly better than 

CropScan in most cases, probably as the former instrument has wider spectral range, a larger number of wavelengths and higher spec-

tral resolution than the latter. A PPLS variable selection was carried out, which reduced the analysed data set from 975 wavelengths 

to 3–5 wavelengths. Although the number of retained variables was very low, the reduced models still had almost the same predictive 

ability as the PPLS models based on the full data set. The obtained simplicity of the calibration models indicates that a very small and 

lightweight instrument could be suitable for crop monitoring. Lightweight instruments are crucial for the utilisation of small unmanned 

aerial vehicles (UAVs). UAV technology is evolving quickly and small, cost effective UAV platforms are already available on the market. 

The concept of combining a UAV with a specifically designed instrument could provide an extremely versatile and cost effective system 

for crop monitoring.
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The analysis of spectral reflectance measurements, in general, 
and near infrared spectral reflectance, in particular, has been 
used in a variety of fields in the recent decades, for example, 
in geology, chemistry, biology, agriculture and archaeology. 
In agriculture, remote sensing has several applications that 
are closely linked to the field of precision agriculture. The 
most widespread applications are monitoring of crop nitrogen 
status,1–3 yield forecasting,4,5 quality prediction,6,7 disease 
detection8 and monitoring plant stress.9

Several types of instrument have been used for remote 
sensing applications. The instrument platforms span from 
hand-held via airborne to space-borne and the corresponding 
viewing distances span from 10−3 m to 106 m. The spectral range 
can be as small as 1 or just a few wavelengths,10,11 or it may 
cover the whole range from ultraviolet radiation via visible light 
and well into the infrared zone of the electromagnetic spec-
trum.12 Detectors vary from single-channel cameras and radi-
ometers to hyperspectral cameras and spectroradiometers.

Different combinations of instrument platform, spectral 
range, spectral resolution and spatial resolution have different 
pros and cons, depending on the objective of the measurement. 
It is not possible, however, to determine beforehand which 
approach is optimum. Hence, there is a need for comparative 
studies. Many studies have been aimed at comparing two or 
more instruments,10,13,14 but due to the ongoing development 
of new and improved instruments, new comparative studies 
are needed.

Literature is scarce with respect to comparative studies that 
involve several instruments with different spectral resolutions 
and data spacings. Reyniers et al.13 included such instruments, 
but they did not discuss the reasons for the differences in 
predictive performance between the airborne and the ground-
based systems tested.

In this study, three instruments were compared: two hand-
held spectroradiometer instruments measuring at a point 
and one airborne imaging instrument. The two hand-held 
instruments represent completely different approaches to 
spectral reflectance measurement. The simplest instrument, 
CropScan, is a proven instrument that has been used for crop 
monitoring for many years,2,15 while the newer FieldSpec3 
is a continuous-range, scientific-grade spectroradiometer 
with wide spectral range, dense data spacing and high spec-
tral resolution. The airborne instrument is a relatively new 
imaging hyperspectral line-scanner with high spatial and 
spectral resolution but with a more limited spectral range 
than the two hand-held instruments.

The operational characteristics of each instrument type 
are quite different. The point spectroradiometers can deliver 
spectra with high spectral resolution and dense data spacing, 
but at a quite slow pace and only in close proximity to the 
sample. On the other hand, the airborne system may produce 
spectra with almost the same spectral resolution and data 
spacing but at a much higher temporal frequency and at a 
greater distance from the sample.

The instruments were compared in terms of their ability 
to predict grain yield and various grain quality variables of 
spring wheat. The rationale for this was that yield and quality 
prediction is an area where spectral reflectance is widely used. 
Moreover, the oldest instrument used in the current study 
(CropScan) was shown by Hansen et al.4 to be particularly 
suited for this purpose in spring wheat. The CropScan instru-
ment used in the present study was equipped with similar 
photodiodes to those in the study by Hansen et al.4

An important part of spectral reflectance analysis is the 
process of converting the acquired spectral data into models 
suitable for predicting selected properties. In the present study, 
we have, for three reasons, chosen to use variable selection 
in order to achieve as simple models as possible. First, a 
simple model with a low number of predictors can use input 
data from an inexpensive, simple and lightweight instrument. 
Second, it is easier to interpret a simple model than a model 
using the full spectrum of a hyperspectral instrument. Last, by 
removing unimportant predictor variables, the signal-to-noise 
ratio (SNR) in the data increases and the resulting model will 
be potentially more robust. In this study, we use the inverse 
variation coefficient as a measure of SNR.

On the other hand, retaining the full spectrum may be an 
advantage for various model diagnostics and outlier detec-
tion methods. However, in the present study we have chosen 
to emphasise the model (and hence instrument) simplicity. A 
simple instrument may weigh less than a more complicated 
one. Lightness of weight is a critical factor for the use of such 
instruments in small unmanned aerial vehicles (UAVs). The 
UAVs have great potential for acting as instrument carriers in 
a multitude of small-scale remote sensing applications. This 
potential has been increased further by the recent development 
of programmable, autonomous flight controllers for use in heli-
copters.16 The specification of a small and affordable remote 
sensing instrument and relevant prediction models will bring 
UAV-based crop management closer to practical usefulness.

Many approaches have been tried in order to select the most 
important variables for various remote sensing applications. 
The most common approaches are formation of traditional 
vegetation indices,17–20 inspection of correlation matrices,12 
analysis of variation (ANOVA)21 and various forms of stepwise 
linear regression.12,21,22 In hyperspectral instruments, dense 
data spacing leads to many highly correlated variables in the 
collected spectra. Some of these variables may have weak 
or even no correlation to the response variable. The use of 
traditional statistical methods with such data can poten-
tially lead to problems.23 There is also a risk that a data set 
with large spectral range and possibly thousands of wave-
lengths will contain a lot of information that is not relevant 
to the reference variable of interest. This fact suggests that 
methods based on latent variable structures should be used, 
such as members of the partial least squares (PLS) family 
of regression methods.24 The relatively new powered partial 
least squares (PPLS) method seems especially promising 
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in this context, due to its strong ability to weight variables 
that possess predictive ability with respect to the response 
 variables.23

For the current study, two main objectives were stated. The 
first objective was to perform a comparative study of instru-
ments in order to address how well each instrument can 
predict yield and quality variables. The second objective was 
to perform a variable selection to ensure that prediction is 
carried out with the simplest possible subset of the data.

Materials and methods
A comparison between two hand-held spectroradiometers 
(CropScan and FieldSpec3) and an airborne hyperspectral 
scanner (HySpex) was performed in 2007 in an ongoing field 
trial with spring wheat (Triticum aestivum L., var. “Bjarne”) in 
central SE Norway, at Bioforsk Apelsvoll arable crops division.

Field experiment
Apelsvoll (60° 42

�

 N, 10° 51
�

 E, 250 m above sea level) has a 
mean annual precipitation of 600 mm, a mean annual temper-
ature of 3.6°C and a mean growing season (May–September) 
temperature of 12°C. The experimental area, which slopes 
3–6% eastwards, is on an imperfectly drained brown earth 
(Gleyed melanic brunisoil, Canada Soil Survey25) with 
 predominantly loam and silty sand textures.

The field trial was established in 2006, on an area of 
26 × 160 m, which was divided into 20 replicate blocks (Figure 
1). Six nitrogen level treatments were represented within 
each block: 0 kg, 100 kg, 125 kg, 150 kg, 175 kg and 200 kg 
nitrogen ha−1 (designated N0, N100, N125, N150, N175 and 
N200, respectively). The border plots on either side of the 
randomised plots received 100 kg nitrogen ha−1, thus giving 
three plots with N100 per replicate block. Plant protection 
(herbicides, fungicides and insecticides) was carried out 
according to the current practice.

Figure 1. Experiment layout and sampling locations. Overall experiment layout to the left and one example plot enlarged to the right. 
Measurement areas for the respective instruments are shown with legends on the right-hand plot.
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Instruments
For a summary of instrument specifications, see Table 1. All 
spectral resolutions are manufacturer specifications given in 
the sense of full width at half maximum (FWHM).

CropScan
The hand-held device CropScan (version MSR16R; CropScan 
Inc., USA, www.cropscan.com) has the feature of dual optics 
which measure simultaneously both incoming irradiance and 
sample radiance (upwards and downwards pointing detectors) 
in all 13 wavelengths.

FieldSpec3
FieldSpec3 (version 3; Analytical Spectral Devices Inc., USA, 
www.asdi.com) is a hand-held device. It does not possess dual 
optics and calibration was performed on a Spectralon panel 
provided and calibrated by LabSphere (LabSphere Inc, USA, 
www.labsphere.com).

HySpex
The airborne device used in this study is a hyperspectral line 
scanner (HySpex VNIR-1600; Norsk Elektro Optikk AS, Norway, 
www.neo.no). Data from this instrument is calibrated to 
reflectance through extensive software processing, explained 
in the next section.

Measurements
Canopy radiance spectra were measured with the two hand-
held radiometers, on all 160 plots, five times during the growth 
season in 2007: 11 June, 3 July, 16 July, 21 August and 28 
August. These dates coincided with growth stages Z31, Z59, 
Z65, Z87 and Z90, respectively, given by Zadoks et al.26 The two 
hand-held spectroradiometers were mounted on the same 
pole and operated in parallel. The measurements were taken 
as near to simultaneously as possible. Two replicate measure-
ments were made on each sample plot and with each radi-
ometer. The pole must be kept in constant orientation with 

respect to the horizon and the sun27 in order to achieve the 
most stable reflectance measurements. To achieve this, we 
used a pole-mounted spirit level of the same type as used 
in land surveying equipment and by visually aiming the pole 
towards the instantaneous position of the sun.

The FieldSpec3 was calibrated after measuring each 
 replicate block in the field experiment, so that the time 
between each calibration did not exceed five minutes. The 
measuring optic of the instruments were kept constant at 
1.8 m above the ground, which corresponds to a spot diameter 
of approximately 0.4–0.6 m for the two hand-held spectro-
radiometers (Figure 1). At Z31, the spot diameter was close 
to 0.6 m, while at harvest (Z90) the diameter had shrunk to 
0.4 m, due to higher plant canopy. Hyperspectral image data 
were recorded on 16 July (Z65), at the same time as the spec-
troradiometer measurements. During data collection, the 
instrument was mounted in a Piper PA31-350 Chieftain aero-
plane flown at 1000 m altitude. The HySpex instrument was 
co-mounted with an airborne laser scanner (Leica ALS50-II; 
Leica Geosystems AG, Switzerland, www.leica-geosystems.
com), which provided data to create a digital surface model 
(DSM) with accuracy < 30 cm of the HySpex data recording 
area. The instantaneous position and attitude (i.e. the spatial 
orientation with respect to an Earth-fixed global coordinate 
system) of the aircraft was provided by a real time kinematic 
(RTK) global positioning system (GPS) receiver (NovAtel 
OEM4; NovAtel Inc., Canada, www.novatel.com) feeding 
an inertial measurement unit (IMU) (Honeywell Micro IRS 
IMU; Honeywell Inc., USA, www.honeywell.com) with posi-
tion data. Together, the GPS and IMU provide dynamic posi-
tion accuracy of 1 cm + 1 ppm (i.e. 1 cm absolute accuracy 
plus 1 ppm of the distance between the aeroplane and the 
GPS reference station) and attitude accuracy at 0.1 degree 
level. Operation and set-up of the aeroplane, instrument and 
 positioning equipment was performed by TerraTec (TerraTec 
AS, Norway, www.terratec.no). A combined  orthorectification 
and georeferencing software, parametric geocoding and 

Specification CropScan FieldSpec3 HySpex

Number of variables 13 2150 160

Spectral range (nm) 485–1650 350–2500 400–100

Spectral resolution (nm) 10–12 2.8–12 10

Data spacing (nm) 1–700 1.4–2.0 3.7

Imager No No Yes

Reflectance calibration method Continouous dual-optic Spectralon panel Post processing software

Field of view (°) 28 25 17 (total image area)

Pixel size on the ground Diameter 0.4–0.6 m Diameter 0.4–0.6 m 20 × 20 cm throughout the whole 
image area

Number of pixels 1 1 1600 across flight track

Operating altitude (m) ~1.8 ~1.8 1000

Table 1. Instrument specifications.
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orthorectification for airborne optical scanner data (PARGE), 
was used to correct the images obtained by the instrument 
(PARGE; Remote Sensing Applications, Switzerland, www.
rese.ch). The DSM, position and attitude data were used as 
input to PARGE for orthorectification and georeferencing of 
the HySpex images. Further, atmospheric correction was 
performed using the ATCOR-4 software (ATCOR-4; Remote 
Sensing Applications, Switzerland, www.rese.ch). The same 
software also allowed for reflectance processing of the radi-
ance images. This processing is based on a MODTRAN-
derived (MODerate resolution atmospheric TRANsmission),28 
database of typical solar geometries and flight altitudes, 
where the solution is interpolated for the actual data 
recording geometry,29,30 thus excluding the need for a cali-
bration panel on the ground. An image excerpt of nine pixels 
from the central area of each plot was extracted and aver-
aged. The nine pixels were chosen in order to reduce image 
edge-effects on the plot borders. Averaging was performed to 
account for within-plot spectral variation. At maturity (Z90), a 
plot harvester was used to harvest 6.5 × 1.5 m plots between 
the sprayer tramlines (Figure 1). The grain samples were 
analysed gravimetrically for dry matter (DM) and moisture. 
Zeleny sedimentation value and concentrations of protein, 
starch and gluten were analysed by near-infrared transmis-
sion (Infratec 1241 Grain Analyzer; FOSS Tecator, Denmark, 
www.foss.dk). All reference variables were measured on a 
dry weight basis. The Infratec calibration model had serial 
number WH182126. This model is based on artificial neural 
network (ANN) calibrations performed by the instrument 
manufacturer. For an overview of the reference variables 
measured see Table 2.

Data treatment
All data analyses were carried out using the software package 
MATLAB (version R2007b; MathWorks Inc., USA, www.math-
works.com). Data from the FieldSpec3 and Hyspex were 
treated with the standard multiplicative scattering correction 
(MSC) algorithm.31,32 Differentiation and data smoothing were 
carried out with the Savitzky–Golay algorithm33 (differentia-
tion order 1, polynomial order 2, window width 15). The more 
discrete nature of the CropScan data did not allow for these 
pre-treatments. All spectral data sets were mean centred. 
After preprocessing, a good multivariate calibration could 

be obtained by a smaller number of latent variables than 
without MSC and differentiation (FieldSpec3 and HySpex 
data). Additionally, multivariate calibrations were performed 
using undifferentiated data from the FieldSpec3 and HySpex. 
The regression coefficients resulting from these calibrations 
allowed for a better visual comparison between instruments 
in terms of important wavelengths (i.e. peaks in regression 
coefficients). In the present study, the word peak is used for 
a sharp, local minimum/maximum in regression coefficients. 
Moreover, the regression coefficients were used as approxi-
mations for “integrated values” of the set of coefficients origi-
nating from the differentiated data, thus allowing easier inter-
pretation of peaks in absorption/reflection.

For HySpex, all the spectra had a considerable amount of 
noise in the upper part of the range, above 850 nm, and were 
discarded from further analysis. Preliminary tests revealed 
that all the FieldSpec3 data from the spectral region above 
1325 nm also contained much noise (SNR < ~2). All prediction 
models improved when data from the highest spectral range 
was removed. Consequently, the range above 1325 nm was 
omitted.

Calibration sample selection
All data sets (160 samples) were divided equally between 
a calibration set and a validation set. In order to make the 
two data sets as equal as possible, nearest neighbour (NN) 
 clustering, based on the ideas of Fix and Hodges,34 was used. 
Using the algorithm, 80 pairs (clusters) were created for each 
dataset (containing 160 samples). The distance calculations 
were performed on score values from a principal compo-
nent transformation of the original data matrix to reduce the 
computational load of the algorithm. One sample from each 
pair (cluster) was then selected for the calibration set, whereas 
the remaining samples were used in the validation set.

Model building and selection
To create models relating the reflectance data (X) to the refer-
ence variables (y), the PPLS algorithm23 was used. PPLS is a 
generalisation of the traditional PLS1 algorithm.24 The algo-
rithm is relatively new, but has proven to be a useful tool for 
extracting relevant information from NIR spectra, thus making 
it suitable for our application. The selection of the numbers 
of PPLS components was performed as a  conservative 

Variable Minimum Mean Maximum SE SEREF

Grain yield (g m−2) 151 638 812 172 5.0

Moisture (g 100 g−1) 14.3 18.6 24.4 2.62 0.13

Protein (g 100 g−1) 10.0 12.8 16.7 1.53 0.15

Starch (g 100 g−1) 63.9 65.9 68.3 1.06 1.0

Gluten (g 100 g−1) 19.4 30.9 40.2 5.28 1.5

Zeleny (−) 28.5 42.6 65.0 11.3 5.0

Table 2. Descriptive statistics of the measured reference variables, comprising minimum, maximum and mean values, standard error (SE) 
and assumed reference standard error (SEREF).
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 chi-squared test. One major difference between PPLS and PLS 
is the introduction of the control parameter �, which has the 
ability to direct the focus of the PPLS algorithm. A � value of 
0.5 degenerates PPLS to the PLS solution, whereas choosing 
values close to unity, the algorithm focuses almost exclusively 
on the predictors with strong predictive ability. Values below 
0.5 make the algorithm focus on predictors with high variance. 
When using the PPLS algorithm for modelling, the � param-
eter was optimised with golden section search and parabolic 
interpolation. To determine the significance of differences 
between prediction errors, chi-squared testing was performed 
in accordance with Indahl.23 The PPLS algorithm was also 
used for variable selection.

Creating simple multiple least squares 
 regression models: an alternative approach
In the sequence described above, a complex method relating 
reflectance data to reference variables is described. By using 
multivariate methods on the entire spectra, the method 
aims to explore all information contained in the spectral 
 measurement.

As an alternative to the complex method above, we wanted 
to test whether it would be possible to achieve similar results 
by simply performing a variable selection (i.e. pinpointing 
the three to five wavelengths which contain most of the 
 information in the data) and applying MLR on the retained 
variables. Variable selections based on PPLS models 
between FieldSpec3 data and the reference variables were 
carried out. All PPLS models from Z65 were run with � = 1, 
which  corresponds to variable selection based on correla-
tion only. For easier interpretability of the selected variables, 
all models in this section were run on the undifferentiated 
spectral data. The wavelengths that had loading weights 
smaller than the relative floating point accuracy in Matlab 
(i.e. 10−16) were discarded from the computation, as proposed 
by Indahl.23 The remaining variables were used as input to 
an MLR modelling procedure. As with previous models, the 
regression coefficients were calculated with a calibration 
set (50% of the samples) and validated with a validation set 
(the other 50% of the samples). The r2  coefficient for each 
model was computed and reported along with the selected 

wavelengths of each model. All regression coefficients were 
tested at 95% significance level.

Results
The measured reference variables were intercorrelated (Table 
3), particularly protein concentration, starch concentration, 
gluten concentration and Zeleny sedimentation value. The 
starch concentration component was highly negatively corre-
lated with all the other variables. The weakest correlation 
was found between grain yield and the Zeleny sedimentation 
value. The experimental error, expressed as the coefficient of 
variation (CV) for the N100 plots of each replicate block, was 
low (CV < 8.5%).

Shortly after heading of the spring wheat (Z65), radiometric 
measurements were performed with all the three instruments. 
Strongest relations between validation set predictions and 
reference measurements were found when using data obtained 
with the hand-held instruments (Figure 2, Table 4). The method 
based on airborne data acquisition yielded overall the poorest 
results, except for the prediction of grain yield and moisture, 
which did not differ between instruments (Tables 4 and 5).

The reference variables were generally predicted best when 
using the models developed using the data from the FieldSpec3 
(Figure 2 and Table 5), and the predictions were significantly 
better at Z65 for protein, starch and gluten concentration and 
for Zeleny sedimentation value (Figure 2 and Table 5). The 
CropScan models gave significantly superior predictions of the 
same variables relative to the HySpex models (Figure 2 and 
Table 5). The model performances did not differ significantly 
between any of the three instruments for grain yield and mois-
ture at Z65 (Figure 2 and Table 5).

The models derived from FieldSpec3 and HySpex data gave 
high � values (Table 4). The models fitted to the CropScan data 
differed, giving� values equal or close to 0.50. The regression 
models derived from the 13-wavelength CropScan instru-
ment gained very little predictive ability when using more 
than two PPLS components, unlike the models derived from 
the hyperspectral instruments (FieldSpec3 and HySpex). The 
latter could, in some cases, benefit from up to four and three 

Variable Protein 

(g g−1)

Starch 

(g g−1)

Gluten 

(g g−1)

Zeleny 

(−)

Moisture 

(g g−1)

Grain yield 

(g m−2)

Protein (g 100 g−1) 1 — — — — —

Starch (g 100 g−1) −0.98 1 — — — —

Gluten (g 100 g−1)  0.99 −0.98 1 — — —

Zeleny (−)  0.97 −0.94 0.95 1 — —

Moisture (g 100 g−1)  0.86 −0.85 0.87 0.83 1 —

Grain yield (g m−2)  0.71 −0.75 0.78 0.60 0.70 1
Entries in the table show correlation coefficients for the corresponding row and column labels. All P values for testing the hypothesis of no correlation were 
less than 10−16. 

Table 3. Correlation matrix (r values) for all combinations of the reference variables.
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PPLS components, respectively (Table 4). The growth develop-
ment stage affected the results. Best overall model perform-
ance was obtained when the radiometric measurements 
were performed at Z65, regardless of the instrument used 
(Figure 2). This  coincided in time with the only data acquisition 
performed with the airborne instrument. The models tended 
to improve their prediction ability with development stage of 
the wheat, from the first measurements at Z31 and up to the 
peak at Z65 (both  hand-held instruments). From Z65 onwards, 
the predictions were poorer, except for moisture, which was 
best predicted with data measured at Z87. Grain yield was 
best predicted of all the reference variables (Table 4). The yield 
measurements (and the corresponding predictions) appeared 

to have two different clusters (Figure 3, left plots). The data 
points in the low-yielding data all represented plots which 
were not fertilised. The predictions of the grain quality data 
were overall poorer than the corresponding predictions of 
grain yield (Table 4). Removing the N0-treatment from the Z65 
FieldSpec3-models reduced the r2 to 0.73 for grain yield, 0.67 
for moisture, 0.90 for protein concentration, 0.87 for starch 
concentration, 0.90 for gluten concentration and 0.89 for 
Zeleny sedimentation value.

The regression coefficients of the FieldSpec3 and the 
HySpex grain yield models appeared to have a comparable 
pattern (Figure 3). Both instruments gave large peaks in the 
regression coefficients (undifferentiated data) above and 
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Figure 2. Relations (r2) between measurements and predictions of the data for the validation set, with prediction models based on 
measurements conducted at five development stages of spring wheat by means of two hand-held radiometers, CropScan (filled bars) 
and FieldSpec3 (open bars) and an airborne hyperspectral scanner (stage Z65 only, grey bars). Bars with same letter (within the same 
day/stage) indicate non-significant differences in model fit (P = 0.05).
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below 530 nm and around 740 nm. With the CropScan grain 
yield model, the largest peaks were at 1650 nm, 660 nm and 
560 nm. In contrast, both the FieldSpec3 and the HySpex 
models had a local minimum at 660 nm. The FieldSpec3 model 

 (undifferentiated data), however, also had peaks at 800–900 nm, 
980 nm and 1070 nm.

All the protein models had a very pronounced peak at 740 nm, 
along with two much smaller peaks, at 660 nm and 690 nm 

Sensor and variable r2
cal

a r2
pred

b RMSECc RMSEPd � e #compf

CropScan

Grain yield (g m−2) 0.96 0.98 30.2 25.0 0.50 2

Moisture (g 100 g−1) 0.68 0.68 1.46 1.43 0.50 2

Protein (g 100 g−1) 0.88 0.82 0.50 0.64 0.50 2

Starch (g 100 g−1) 0.87 0.83 0.37 0.43 0.50 2

Gluten (g 100 g−1) 0.89 0.84 1.64 2.06 0.50 2

Zeleny (−) 0.85 0.79 4.26 5.15 0.54 2

FieldSpec3

Grain yield (g m−2) 0.97 0.96 31.8 32.9 0.95 1

Moisture (g 100 g−1) 0.71 0.74   1.42 1.30 0.88 3

Protein (g 100 g−1) 0.94 0.92   0.39 0.40 0.95 3

Starch (g 100 g−1) 0.92 0.91   0.30 0.29 0.89 4

Gluten (g 100 g−1) 0.94 0.92   1.32 1.36 0.91 3

Zeleny (−) 0.90 0.88   3.69 3.70 0.93 3

HySpex

Grain yield (g m−2) 0.96 0.95 33.6 35.6 0.50 3

Moisture (g 100 g−1) 0.57 0.60 1.59 1.73 0.95 2

Protein(g 100 g−1) 0.63 0.71 0.89 0.82 0.95 1

Starch (g 100 g−1) 0.67 0.74 0.60 0.54 0.95 1

Gluten (g 100 g−1) 0.69 0.75 2.87 2.61 0.95 1

Zeleny (−) 0.51 0.63 7.75 6.97 0.95 1
aCoefficient of determination from the calibration set 
 bCoefficient of determination from the prediction set 
 cRoot mean square error of calibration 
 dRoot mean square error of prediction 
 eOptimised � parameter from the PPLS algorithm 
 fFinal number of PPLS components.

Table 4. Relations between measurements and estimates based on sensor readings performed at Z65, and related model diagnostics for 
each of the three radiometric instruments.

Variable FS/CSa FS/HSb HS/CSc

Grain yield (g m−2) 0.948 (NS) 0.948 (NS) 0.899 (NS)

Moisture (w w−1) 0.971 (NS) 0.891 (NS) 0.915 (NS)

Protein (w w−1) 0.771. 0.434 0.564

Starch (w w−1) 0.803 0.498 0.620

Gluten (w w−1) 0.801 0.459 0.572

Zeleny (−) 0.865 0.476. 0.550
aFieldSpec vs. CropScan. 
bFieldSpec vs. HySpex 
cHySpex vs. CropScan 
NS, Non-significant differences with a critical test value of 0.869 (P = 0.05)

Table 5. Test values of the chi-squared test for differences between instrument performances using data obtained at Z65.
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(Figure 4, undifferentiated data). The FieldSpec3 had unique 
peaks at 715 nm, 990 nm and 1100 nm. The HySpex model, 
however, had two distinct peaks at 490 nm and 630 nm. The 
490 nm peak corresponded with a peak in the CropScan model, 
but the peak at 630 nm was unique for the HySpex model.

The relatively simple MLR models, using predictors (wave-
lengths) selected by a PPLS variable selection procedure, 
resulted in validation set predictions which were almost as 
good as those given by the full PPLS-models (Tables 4 and 6). 
There was no significant difference in model performance for 
any of the reference variables. For grain yield and moisture, the 
PPLS procedure selected three wavelengths, while the models 
for protein, starch, gluten and Zeleny sedimentation value 
consisted of five wavelengths (Table 6). All models, except 
protein and gluten, differed in terms of selected  wavelengths.

Discussion
In this study, two hand-held spectroradiometers and one 
airborne hyperspectral scanner were compared in terms of 

their usefulness for predicting selected properties of spring 
wheat grain. A recent multivariate method (PPLS) was tested 
in the analyses and compared with the traditional PLS1 
method. The PPLS method was first used to create models 
using the full data set (i.e. all measured wavelengths). As a 
simpler alternative, the PPLS algorithm was used to select the 
three to five wavelengths containing most of the information in 
each dataset, followed by MLR, in order to test their combined 
prediction ability.

General points
The model performances changed during plant develop-
ment (Figure 2). Since all the reference variables were meas-
ured at harvest time, one could assume that the predictive 
performance of the models should increase with decreasing 
time to harvest. This was not the case here, as the most 
favourable time for spectral measurements appeared to be 
after heading but before the yellow ripening stage. This is 
in agreement with Hansen et al.4 who predicted yield and 
protein content of spring wheat under Danish conditions. For 
winter wheat grown in China, the most favourable growth 
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Figure 3. Validation-set measurements of grain yield (g m−2) at harvest versus predictions based on radiometric measurements 
performed at Z65 (left-hand plots), and regression coefficients of the selected prediction models (right-hand plots, solid lines). The 
pre-treatment included differentiation (first derivatives) of the FieldSpec3 and HySpex data, but not of the CropScan data. Regression 
coefficients (normalised values) of models based on undifferentiated data are indicated for FieldSpec3 and Hyspex (broken lines).
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stage for predicting grain protein content has been reported 
to be at mid-filling.7

During the growth season, spectral signatures of the 
wheat plants change considerably, reflecting the change in 
colour and structure as the plants go through the various 
development stages. The results of this study and others4,7 
show that for predictions of grain quality properties, spec-
tral measurements should be performed when the wheat 
plants are in their generative stage. It appears, however, that 
 information obtained long before grain filling is completed 
may be relevant for the final quality features such as grain 
protein  concentration.

The accumulation and transfer of plant nitrogen into the 
grain is the key feature for determining the final grain protein 
content5 and high plant nitrogen status during grain filling 
is thus an indicator of high final grain protein content. High 
correlations between plant nitrogen status and leaf chlorophyll 
concentration have been reported2,35,36 and the regression 
coefficients of the protein models showed some peaks which 
were in the chlorophyll absorption bands (Figure 4). Towards 
maturity of the wheat plants, there was a continuous  reduction 

in leaf chlorophyll concentration observed as “greenness”. 
Our data indicate that the spectral signature of the maturing 
canopy contained less information related to the grain cereal 
quality than that of more indirect indicators such as plant N 
status during grain filling.

The observed peaks in the regression coefficients of all 
the models (Figures 3 and 4) may be explained by chlo-
rophyll absorbance (peaks at 490 nm, 630 nm, 660 nm and 
690 nm), whereas peaks in the area 710–740 nm are most 
likely due to the rapid rise of plant spectral reflectance 
above 700 nm, namely the red-edge phenomenon.37 The 
FieldSpec3 models showed additional peaks in areas of 
the spectrum where water is known to absorb radiation 
(for example, the peaks at 980–990 nm), and were other 
chemical bonds may have affected the measurements 
(for example, the peaks at 800–900 nm, C–H stretch and/
or amines; at 1100 nm, C–H stretch; and at 1070 nm, N–H 
stretch). The relationships between the spectral measure-
ments and the reference variables are quite indirect. Hence, 
further interpretation of the spectral peaks was difficult 
and, therefore, omitted.
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Figure 4. Validation-set measurements of grain protein concentration (g 100 g−1) at harvest versus predictions based on radiometric 
measurements performed at Z65 (left plots), and regression coefficients (r2) of the selected prediction models (right plots, solid lines). 
The pre-treatment included differentiation (first derivatives) of the FieldSpec3 and HySpex data, but not of the CropScan data. Regres-
sion coefficients (normalised values) of models based on undifferentiated data are indicated for FieldSpec3 and Hyspex (broken lines).
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There were strong correlations between several reference 
variables (Table 3). In particular, the protein concentration, 
starch concentration, gluten concentration and Zeleny sedi-
mentation value were strongly intercorrelated (|r| > 0.94). The 
correlations were reflected in the regression coefficients of 
the models (i.e. they were quite similar). This means that 
successful prediction of one of the correlated variables most 
likely involves successful prediction of all the four quality vari-
ables. Hence, the question arises of what is really being meas-
ured. Does the method react to central characteristic bonds 
of the chemical structure of the grain protein components or 
do we detect some other features which happen to be highly 
correlated with grain protein? The spectral region of interest 
for predicting protein in single wheat kernels is usually 
850–1050 nm.38 The five FieldSpec3 wavelengths selected for 
protein were 388 nm, 533 nm, 673 nm, 740 nm and 1019 nm 
(Table 6). Hence, only the latter wavelength was within the 
range of typical protein-related absorption bands. The other 
selected wavelengths may be related mostly to chlorophyll 
and moisture absorption. Although the quality variables were 
highly intercorrelated, the wavelengths selected for grain yield, 
moisture, protein, starch and Zeleny sedimentation value 
diverged, indicating several different indirect causal relation-
ships between spectral reflectance measurements and the 
reference variables.

Instrument comparison
The FieldSpec3 performed better than the CropScan in most 
cases (Figure 2) and the two hand-held instruments were 
superior to the airborne instrument for all the reference vari-
ables, except grain yield and moisture (Table 5). This may be 
explained by differences between instruments in their spectral 
range, spectral resolution, data spacing, recording altitude, 
data acquisition time span and calibration procedures.

Both the hand-held instruments measured radiation well 
into the shortwave infrared range of the electromagnetic 
spectrum. When inspecting the regression coefficients of the 
prediction models, we noticed several peaks for the hand-held 
instruments in the spectral area beyond 850 nm (Figures 3 
and 4). This implies that this spectral area contained informa-
tion relevant for predicting the quality variables, information 
unavailable from the HySpex models.

The instruments compared diverged not only in spectral range, 
but also in spectral resolution and data spacing. Inspection 
of the FieldSpec3 regression coefficients of the Z65 models 
(Figures 3 and 4, right hand plots) revealed several sharp 
peaks, indicating that there were some very local phenomena 
in the underlying spectral measurements. The presence of 
such local phenomena favours instruments with high spectral 
resolution and dense data spacing, such as FieldSpec3. The 
superiority of the FieldSpec3 relative to the CropScan (Figure 
2) may be partly due to the large data spacing in the CropScan 
spectra between 950 nm and 1650 nm.

The recording altitudes of the instruments varied greatly. 
Higher recording altitude exposes the instrument data to 
more atmospheric influence. These effects were corrected 
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for in the ATCOR-4 atmospheric correction procedure of the 
HySpex data. The reflectance spectra of the HySpex data 
showed more noise than the corresponding spectra of the 
hand-held instruments (data not shown). One possible reason 
for the noise in the HySpex data could originate from the 
correction procedure, since violation of the model assump-
tions made in the ATCOR-4 software may cause erroneous 
reflectance spectra.30 During HySpex data recording, a 2 × 2 
m panel with known spectral reflectance was placed on the 
ground next to the field experiment. A regression equation 
was fitted between the raw HySpex data of the reference 
panel and the known reflectance spectrum of the reference 
panel. The resulting regression equation was then applied to 
the remainder of the raw HySpex data to achieve locally cali-
brated reflectance data. The resulting reflectance spectra 
showed the same behaviour as the reflectance values from 
ATCOR-4 (R2 > 0.96). Thus, we can assume that the noise 
in the data did not originate from the ATCOR-4 correction 
procedure.

The data acquisition time of the HySpex lasted only a few 
seconds, whereas the hand-held spectroradiometer data 
was collected over a time span of approximately 2 h. The sun 
lighting conditions inevitably varied during this period, but 
frequent calibrations of the spectroradiometers should mini-
mise that effect. The calibration procedures differed, however, 
between the instruments. The CropScan had a dual optic 
system which constantly corrected for changing solar irra-
diance and was thus assumed to be the instrument which 
adapted best to changing conditions. The FieldSpec3 was 
calibrated on a Spectralon panel and relied completely on 
frequent calibrations in order to provide good data. During 
data collection with the FieldSpec3 instruments, consecutive 
calibration readings were taken on the Spectralon panel and, if 
more than 5% spectral drift was observed, the previous meas-
urement cycle was repeated. In this study, the measurement 
times were carefully selected with respect to stable weather 
conditions and as little cloud as possible and the observed 
spectral drift of the FieldSpec3 was generally low. The HySpex 
was calibrated using the ATCOR-429,30 procedure. The favour-
able weather conditions at the time of measurement (Z65) 
combined with the short data acquisition time of the HySpex 
instrument, give reason to believe that the difference in cali-
bration method was not an important reason for poorer results 
of the HySpex instrument.

Another reason for weaker model performance in the last 
part of the growing season may be poorer weather condi-
tions. The two last dates for spectroradiometer measure-
ments (Z87 and Z90) had slightly less favourable weather and 
lighting conditions (i.e. increasing cloud cover during meas-
urement) than the first three dates. Variable cloud cover 
may have caused an increase in the measurement noise, 
particularly for the FieldSpec3, which was not equipped 
with the dual optic calibration feature as the CropScan was. 
Chang et al.39 reported that the CropScan instrument was 
less prone to the effects of variable cloud cover than the 
FieldSpec instrument. The FieldSpec3 models performed 

better, however, than the CropScan models during the last 
two measurements, which indicates that the weather and 
lighting conditions were not of great importance for the 
results.

The data acquisition times with the hand-held instruments 
were in the range of 2 h for a field experiment of 160 plots. 
Evidently, these kinds of instrument are not suitable for 
large-scale remote sensing applications due to their slow 
operation. At the other extreme, HySpex measured the whole 
field experiment in a matter of seconds. If it is acceptable 
to sacrifice some predictive performance for the advantage 
of high productivity, HySpex would be the obvious choice for 
large-scale remote sensing of spring wheat properties.

The main difference regarding productivity between the 
two hand-held instruments is the calibration procedure. 
CropScan has no need for recalibration during a measure-
ment run and is also less sensitive to rapidly changing light 
conditions than FieldSpec3, due to the dual optic calibration 
feature.39 From an operational and productivity point of view, 
CropScan would be the most desirable hand-held instrument. 
On the other hand, FieldSpec3 provides a spectrum with high 
spectral resolution and with a very broad spectral range. If 
the objective is to conduct a variable selection for isolation of 
important wavelengths (predictors) in an unknown prediction 
task beforehand, FieldSpec3 is superior by far to CropScan. 
The outstanding performance of the FieldSpec3 comes at 
the cost of more cumbersome handling, operation and cali-
bration than the less sophisticated, but more user-friendly, 
CropScan.

Method comparison
For the Z65 models, the PPLS algorithm was superior to 
the PLS1 algorithm in all but six cases (indicated by � ≠ 0.50, 
Table 4). For five of these exceptions, CropScan data were 
used. The 13 wavelengths measured by the CropScan instru-
ment were selected on the basis of the results obtained by 
Hansen et al.4 who used CropScan for predictions of grain 
yield and grain protein in wheat. Thus, it came as no surprise 
that the selected CropScan setup was also well suited for 
the prediction tasks in the present study. Inspection of the 
regression coefficients (Figures 3 and 4, right plots) showed 
that all the CropScan wavelengths contributed to the models 
(large coefficients). This was, however, not the case for the 
FieldSpec3 and the HySpex instruments, for which several 
channels did not contribute to the models (coefficients near 
zero). The spectral data in the areas not contributing to 
the model would have a certain amount of variance and, 
thus, contribute to the y–X covariance computed in the PLS1 
 algorithm.24 Having such data in the models is known to 
cause problems with the PLS1 algorithm in cases where 
there is high variance in predictors that simultaneously 
have little correlation with the reference variables.23 The 
PPLS algorithm reduces this problem by weighting variance 
and correlation differently, which may explain the observed 
 superiority of this method for model building based on dense 
datasets (i.e. many wavelengths).
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Predictions based on variable selection and 
multiple least squares regression
After the PPLS variable selection, the grain yield and moisture 
could be predicted with only three wavelengths in the lower 
NIR region. The selected sets of wavelengths differed, however. 
Protein concentration, starch concentration, gluten concen-
tration and Zeleny sedimentation value could be predicted 
with five wavelengths in the visible/NIR region. Although some 
wavelengths of the models predicting the quality variables were 
the same, one to three out of the five selected wavelengths 
were unique for each quality variable, except for the protein 
and gluten models, which were similar (Table 6). This implies 
that three of the four strongly correlated variables can still, to 
some extent, be separated. All computed r2 values from the 
final MLR models had the same level as the r2 values from the 
full PPLS models, although the MLR models were computed 
without using the first derivatives. Thus, the PPLS algorithm 
seemed to have very strong properties for variable selection. 
Several of the wavelengths selected were similar, or close, to 
an existing CropScan wavelength, confirming that many of the 
wavelengths in the CropScan were selected quite well for crop 
monitoring purposes, although there is apparently room for 
improvement. In contrast, several of the PPLS-selected wave-
lengths were outside the effective spectral range of theHySpex 
(400–850 nm). Thus, extending the effective spectral range 
of this instrument to approximately 1240 nm would probably 
improve its performance considerably.

All models presented in this study performed very well 
compared to numerous other studies aimed at predicting grain 
yield and grain protein.4,40,41–43 Considering the models from 
Z65, only two models had predicted r2 below 0.8. All the other 
models had r2 considerably above 0.8 and five models achieved 
r2 well above 0.9. However, predictions at almost the same 
level have been presented,4,43 but these were the only studies 
that utilised PLS and PLS-like methods. Numerous studies 
utilise vegetation indices such as the normalised difference 
vegetation index (NDVI).17 The predictions based on vegeta-
tion indices hardly ever reach the same level of accuracy as 
predictions made with the PLS family of methods. A commonly 
used argument for using vegetation indices is that they are 
more robust.20,40,41,44 Since this study aims to be an instrument 
comparison, the robustness of the models was not tested in this 
study. However, independent validation datasets are currently 
being collected and model robustness will be addressed in a 
future study. Preliminary results from the ongoing work indi-
cate that the models presented here are robust.

Conclusion
The most favourable time to predict wheat grain yield and 
grain quality was after heading but before yellow ripening. The 
results imply that monitoring and forecasting of wheat yield 
and quality by means of spectral reflectance can be carried 
out relatively early in the season and with high prediction 
accuracy.

The FieldSpec3 was the instrument with the best overall 
performance. Radiometric data comprising a wide spectral 
range, a large number of wavelengths and a high spectral 
resolution have an advantage over simpler datasets as a basis 
for building predictive models. Instruments providing such 
data are, however, often expensive and cumbersome to handle, 
but they represent a good starting point for identifying key 
variables.

Good predictions can be achieved with a very low number 
of variables. Thus, screening of a dense radiometric dataset 
with the PPLS method appears to be a promising tool for 
developing simple and robust prediction models. This concept 
should be investigated further in other research areas.
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Abstract: 19 

 20 

Variable selection provides useful information about the most important predictors in the 21 

dataset, information which is not always available in the beginning of an analysis. Two 22 

recent variable selection methods, Backward Variable Selection for Partial Least Squares 23 

(BVSPLS) and Powered Partial Least Squares (PPLS), were compared against each other and 24 

against benchmark methods in terms of their ability to produce accurate prediction models 25 

in NIR spectroscopy data. These two variable selection methods were compared to the 26 

benchmarks Forward Stepwise Selection (FSS) and full spectrum Partial Least Squares 27 

(PLS). All four regression methods were studied using three different NIR datasets. PPLS 28 

and BVSPLS gave good prediction results in all three datasets even with a very limited 29 

number of calibration samples available (<40). All methods gave similar prediction results 30 

when the number of calibration samples was higher (>150). PPLS gave the best predictive 31 

performance of all methods and also gave the selections of variables that were most easily 32 

assigned to specific chemical bonds. Hence, the PPLS models were more easily 33 

interpretable than the other models. This study quantifies differences between the two 34 

recent variable selection methods as well as the differences between recent methods and 35 

established benchmark methods.36 
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1. Introduction 37 

 38 

 39 

Regression is probably the most widely studied and applied statistical analysis method in 40 

the chemometric literature. The aim is to develop models which can be used to predict 41 

properties of interest based on measurements of the chemical system, such as 42 

spectroscopic data. Multivariate calibration techniques such as Multiple Linear Regression 43 

(MLR), Principal Component Regression (PCR) and f Partial Least Squares regression (PLS)1 44 

can then be used to compute a mathematical model. It correlates the multivariate 45 

measurement (spectrum) to the concentration of the analyte of interest, and such a model 46 

can be used to predict the concentrations of new samples. 47 

 48 

When the number of measured predictor variables is large and it is not known beforehand 49 

which specific predictors are most influential on the responses, selection of variables could 50 

be feasible. Variable selection tries to identify a subset of variables that still possess the 51 

sufficient features to build a robust regression model. Moreover, due to a number of 52 

practical and statistical reasons (e.g. to avoid collinearity, reduce computational load), a 53 

large set of variables should be reduced to a smaller, more manageable set. The main goal 54 

of any variable selection technique is to obtain a small subset of variables that gives a 55 

model with the prediction and generalization abilities better or at least equivalent to a 56 

model based on the original set of variables. Variable selection in regression is a difficult 57 

part of model building because the number of subsets to be considered grows 58 

exponentially with the number of candidate variables. The advantages of variable 59 

selection are the exclusion of irrelevant and redundant variables leading to better signal to 60 

noise ratio, better data visualization and model interpretability, reduction of measurement 61 

requirements as well as increased prediction accuracy and precision. Subsequently, these 62 

properties could induce the development of cheaper instruments, cheaper analysis as well 63 
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as faster prediction models. Moreover, an increase in the model robustness can be 64 

achieved by the application of a variable selection technique. One possible drawback of 65 

doing variable selection is that certain outlier detection methods may be more difficult to 66 

undertake. Numerous methods have been developed for variable selection such as varieties 67 

of subset selection methods2, 3, stepwise regression, jack-knife or bootstrapping 68 

algorithms4-7, evolutionary algorithms8 genetic algorithms9-12 and thresholding algorithms13. 69 

Recently, a Backward Variable Selection method for PLS regression (BVSPLS) has been 70 

proposed14. Another relatively recent method is the Powered Partial Least Squares15, which 71 

is a generalization of the traditional Non-linear Iterative Partial Least Squares (NIPALS) 72 

algorithm. PPLS can also be used for variable selection purposes. The development of new 73 

variable selection methods is constantly evolving, and the need for comparative studies is 74 

raised. There are several studies aimed at comparing various methods16, but due to the 75 

ongoing development of new methods, comparative studies will always be needed.  76 

 77 

The objective of this paper is to compare between BVSPLS and PPLS and to  some 78 

established benchmark methods. The most established, simplest and most pragmatic 79 

method for variable selection is Forward Stepwise Selection of Variables (FSS). There are 80 

several examples in the literature where varieties of FSS have been used as a reference 81 

methods2, 16. Moreover, the FSS algorithm is implemented in a multitude of data analysis 82 

software and is hence widely used. For this reasons, FSS is a natural choice of benchmark 83 

method for this comparative study. Moreover, the traditional PLS solution without any 84 

variable selection should also be included as a benchmark method in order to address the 85 

question whether variable selection itself has a positive effect for the predictive ability of 86 

the models. In order to validate the feasibility of the methods, we chose to compute 87 

prediction models based on small datasets.88 
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2. Materials and methods 89 

 90 

 91 

2.1 Datasets, preprocessing and sample selection 92 

 93 

Three large datasets used in Fernández Pierna et al.14 were also used in this study: 94 

fat/feed (Feed) , fiber/maize (Maize I) and protein/maize (Maize II). All datasets had 95 

spectral range from 100 nm to 2498 nm, with every second wavelength removed, thus 96 

containing 700 variables each.  See Fernández Pierna et al.14 for more details. There were 97 

some duplicate samples in the datasets and in order to achieve a proper validation, 98 

duplicate response variable values and their corresponding spectra were removed from the 99 

datasets. Hence, the number of samples in each dataset (N) was reduced to 2721 for 100 

fat/feed, 2488 for Maize I and 1349 for Maize II. All datasets were preprocessed with the 101 

Standard Normal Variate procedure SNV, 17. Splitting of the data into calibration and 102 

validation sets was done with the DUPLEX algorithm 18. This algorithm splits a dataset (i.e. 103 

the spectra) into two parts by means of a Euclidean distance measure. The algorithm goal 104 

is to create two datasets with homogeneous statistical properties for calibration and 105 

validation purposes. A subset of 200 samples from each dataset were selected with DUPLEX 106 

and reserved for calibration purposes. The remaining samples were allocated as validation 107 

set. Since we chose to work with smaller calibration sets, the 200 selected samples were 108 

further decimated to 20 samples in 19 steps with the DUPLEX algorithm. The first step 109 

selected 190 samples out of the original 200 samples and the second step selected 180 110 

samples. For each successive step, the number of selected samples was decreased by 10.  111 

Thus, 19 calibration sets (200,190,…,20 samples) and one validation set (all samples except 112 

the 200 calibration samples) were calculated from each main dataset. 113 

 114 

2.2 Software 115 
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 116 

All analyses were performed using MATLAB (version R2007b, MathWorks Inc., USA, 117 

www.mathworks.com) with PLS Toolbox (version 4.2, Eigenvector Research Inc., USA, 118 

www.eigenvector.com). The BVSPLS and DUPLEX algorithms were implemented in MATLAB 119 

code by the authors. The PPLS algorithm was implemented in MATLAB by the authors based 120 

on the original code from Ulf Indahl. 121 

 122 

 123 

2.3 Variable selection methods 124 

 125 

2.3.1 Forward Stepwise selection (FSS) 126 

 127 

The FSS algorithm is a simple and widely used procedure for variable selection. Three 128 

different basic varieties of stepwise regression are commonly used: forward selection, 129 

backward elimination and stepwise method. Forward selection sequentially introduces new 130 

predictors into the model one at a time while the backward loop eliminates predictors one 131 

at a time from the current variable set. The stepwise method is a hybrid between forward 132 

selection and backward elimination. It starts as forward selection, but for each selection 133 

step it runs an elimination step to compute the need for deleting predictors. The algorithm 134 

uses a Fisher F-statistic in order to decide when variables should be removed or included. 135 

To construct the final prediction model, we used a PLS algorithm on the retained 136 

variables. We chose to set the inclusion and removal values such that the FSS algorithm 137 

selected 40-80 variables. The p-values for inclusion and removal were both set to 0.11 in 138 

order to let the FSS select approximately 40-80 variables in the used datasets. Selecting 139 

that many variables will almost certainly introduce some multicollinearity between the 140 

variables, but the PLS algorithm will handle this more robustly than for instance the least 141 

squares method in the MLR algorithm. 142 
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 143 

2.3.2 Backwards Variable Selection for PLS (BVSPLS) 144 

 145 

The BVSPLS is a recently proposed method and is a backward elimination method. Unlike 146 

the other algorithms in this study, the BVSPLS needs three datasets. In addition to the 147 

usual calibration and validation set, a dedicated dataset (the stop-set) for decision on 148 

which variables to retain is needed. The first algorithm step is to compute a PLS model 149 

based on the full calibration dataset with all variables included. Consequently, one 150 

variable is removed each time the algorithm loop executes. For each loop execution, the 151 

RMSEP (Root Mean Square Error of Prediction) of the stop-set, is computed. When all 152 

variables have been discarded, a plot of the RMSEP from the stop-set against the number 153 

of variables can be presented. The algorithm then chooses the number of variables 154 

corresponding to the minimum RMSEP. This subset of variables is then retained for the 155 

final model which is a traditional PLS algorithm. For further details, see Fernández Pierna 156 

et al. 14. In order to provide a stop to BVSPLS, we chose to let 10% of the calibration 157 

samples form the stop-set. Hence, for a 100 samples calibration set, 10 of the samples 158 

(selected with DUPLEX) were put in the stop-set. 159 

 160 

2.3.3 Powered Partial Lest Squares (PPLS) 161 

 162 

The PPLS is a generalization of the traditional NIPALS algorithm. Rather than optimizing 163 

the covariance between the predictors and the response, the PPLS splits the covariance 164 

expression in the weight vector optimization criterion into a variance part and a 165 

correlation part. The user can then choose the weighting between the variance component 166 

and correlation component through an additional control parameter, gamma ( ). The 167 

algorithm can be used both for modelling and variable selection through the choice of . A 168 

 value of 0.5 makes the PPLS solution equivalent to the traditional PLS solution, whereas 169 
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values close to 0 or 1 makes the algorithm select variables based on predictor variance and 170 

correlation with the response, respectively. It is also possible to let the algorithm optimize 171 

the γ value within a predefined numerical range using an optimization procedure that 172 

maximises the correlation between PPLS scores and the response. In this study, we chose 173 

to let the PPLS work with  values optimized from the interval [0.99,1]. The algorithm 174 

hence focuses almost exclusively on the variables with strong corrrelation to the response 175 

and also possibly strong predictive ability. As suggested by Indahl15, the variables that had 176 

loading weights less than the relative numerical resolution of MATLAB (2.2204x10-17) were 177 

discarded.  See Indahl15 for further details. 178 

 179 

2.4 Selection of optimal number of PLS/PPLS factors 180 

 181 

All methods tested in this study have the feature of latent variables. Hence, model 182 

complexity has to be selected by the user. To make the resulting models more 183 

comparable, we chose to perform the selection of latent variables just once for each 184 

combination of method and dataset. For each dataset, the model complexity was 185 

determined on the basis of the complete calibration set of 200 samples and the number of 186 

factors was held constant throughout the whole range of calibration sets. Selection of the 187 

number of PLS/PPLS components was carried out as a conservative chi-square test. The 188 

main idea is to consider the minimum mean square error of cross-validation (MSECV) as a 189 

realization of the true model error variance, σ0
2. Using the chi-square power function, an 190 

acceptance region for MSECV can be computed. The model with the fewest number of 191 

components that also have an MSECV inside the acceptance region is then selected as the 192 

final model. See Indahl 15 for further mathematical details. However, several numbers of 193 

factors for each model were computed and compared, but the differences between models 194 

were only modestly affected by the choice of number of factors. 195 

 196 
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2.5 Validation procedure 197 

 198 

Each of the 19 calibration sets was used to construct a prediction model, which was used 199 

to predict the validation set, which was the same for all 19 models and for all four 200 

regression methods. We chose to use a dedicated validation set instead of cross-validation 201 

for comparison of the predictive ability of each model because several studies have 202 

pointed out that cross-validation can lead to severe over-fitting and over-optimistic 203 

estimated of the models diagnostic measures2, 19, 20. The test procedure was performed in 204 

the following way: 205 

 206 

1. The number of PLS factors was determined by computing a model with the full 207 

calibration set of 200 samples. The same number of factors was used for every 208 

variable selection method.  209 

2. Each variable selection algorithm was executed once on the 19 smaller calibration 210 

sets (200,190,…,20 samples), and predictions for the validation set were computed 211 

each time.  212 

3. Based on these validation set predictions, coefficient of determination (R2) between 213 

measured and predicted constituents for each method were computed and 214 

reported. 215 

4. Step 2 to 3 was repeated for each main dataset (fat/feed, Maize I and Maize II). 216 

 217 

Hence, R2 for 20 to 200 calibration samples were obtained in a comparable way with 10 218 

samples increments.219 
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3. Results 220 

 221 

Figures 2-3 show the coefficient of determination between measured and predicted 222 

constituents from the validation-set predictions as a function of the number of calibration 223 

samples for the Feed, Maize I and Maize II samples, respectively. For all datasets, variable 224 

selection gave little or no prediction error improvement over the PLS algorithm for 225 

calibration sets larger than approximately 60 samples (Feed, Fig. 1), 120 samples (Maize I, 226 

Fig, 2) and 160 samples (Maize II, Fig. 3). For calibration datasets smaller than this, all 227 

variable selection techniques gave better predictive performance compred to full spectrum 228 

PLS. Especially for low sample numbers, the BVSPLS and PPLS gave better performance 229 

than both PLS and FSS. 230 

In the Feed dataset (Fig. 1), all models were stable at a high R2 above 50 samples 231 

calibration sets. From 50 to 20 calibration samples, BVSPLS and PLS started to show a 232 

decrease in performance. Especially the PPLS had an advantage over the other methods for 233 

calibration sets smaller than 50 samples. 234 

For the Maize I case (Fig. 2), the situation was similar in the sense that all solutions were 235 

stable at a relatively high level of explained variance for calibration sets larger than 120 236 

samples. Here, the PPLS gave the best predictions for all datasets smaller than 120 237 

samples with the BVSPLS slightly lower prediction ability. FSS had performance between 238 

PLS and PPLS/BVSPLS for calibration sets smaller than 120 samples. 239 

In the last dataset, the Maize II (Fig. 3), all methods performed poorer than in the first two 240 

datasets. Full spectrum PLS gave the lowest prediction ability for datasets smaller than 241 

170 samples. For datasets larger than 170 samples, there were just small differences 242 

between the methods. For smaller datasets than 170 samples, the PPLS gave slightly better 243 

performance than FSS and BVSPLS. 244 

 245 
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For all datasets, the PPLS and BVSPLS selected more variables for inclusion in the 246 

prediction models than the FSS did (Fig. 4-6).  247 

 248 

All variable selection methods differed markedly with regard to frequency of the selected 249 

variables. The PPLS and FSS selected some variables in the spectrum more often than other 250 

variables and especially PPLS gave a quite clear and structured image of which variables 251 

that contributes positively to the prediction models. BVSPLS, however, selected variables 252 

more evenly spread throughout the spectrum (Fig. 7-9). 253 

 254 

To illustrate the improvement of variables selection (Fig. 10), an example for 60 255 

calibration samples of the Feed dataset is illustrated (Fig. 1). We chose the PPLS and the 256 

PLS models for this case and plotted the predicted fat content data against the measured 257 

fat content from each method.258 
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4. Discussion 259 

 260 

Two recent methods, BVSPLS and PPLS, were compared against each other and against FSS 261 

and PLS methods. Even after extensive literature reviews, we could not find comparative 262 

studies on variable selection methods similar to BVSPLS and PPLS. 263 

 264 

All variable selection techniques gave improvements over PLS in some cases and the 265 

improvements were more pronounced at smaller calibration sets. The numbers of PLS 266 

factors were determined using the full 200 samples calibration sets and the numbers of 267 

components found were held constant for all other calibration sets. The actual numbers of 268 

components were determined with a conservative Chi-square-test. We tried, however, 269 

several other model dimensionalities, but the general results and improvements in 270 

prediction ability were only slightly affected by this. 271 

To explain the differences in predictive ability, we have pointed out three reasons. 1. 272 

Some predictor variables have only remote relevance to the response variable. 2. The 273 

signal to noise ratio (S/N) in some predictor variables may be so low that the elimination 274 

of those variables improves the model. 3. Some predictor variables may have a nonlinear 275 

relationship to the response. Thus, elimination of these variables may give more 276 

parsimonious and linear prediction models and hence improve the prediction abilities. All, 277 

or a subset of these reasons could explain the prediction error improvements that we have 278 

presented, but further research is needed to exploit the details in the mechanisms behind 279 

this phenomena. 280 

 281 

FSS and especially PPLS selected very interpretable sets of variables (Fig. 7-9). For the 282 

Feed dataset, the PPLS and FSS emphasized strongly the C-H stretch bands in the 1700 nm 283 

range (Fig. 7).  This tendency also held in the Maize I dataset where the PPLS and FSS 284 

selected many variables in the O-H stretch band at 1450 nm and the C=O stretch band from 285 
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2000 nm to 2200 nm (Fig 8). An even stronger interpretability was found in the Maize II 286 

dataset where the FSS and PPLS focused very strongly on the N-H stretch bands in the 1800 287 

nm, 2000 nm and 2400 nm regions (Fig. 9). For the BVSPLS, the picture was more difficult 288 

to interpret because the algorithm selected variables almost evenly spread out in the 289 

measured spectrum (Fig. 7-9) but still with better prediction results than those obtained 290 

with PLS and similar as those of PPLS. 291 

 292 

293 
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5. Conclusion 294 

 295 

In this paper, several validation procedures were conducted on the recent variable 296 

selection methods BVSPLS and PPLS and compare these to the bechmarks FSS and ful 297 

spectrum PLS. The comparisons were carried out on three different NIR spectroscopic 298 

datasets predicting fat in compound feed (Feed), fiber in maize(Maize I) and protein in 299 

maize (Maize II). We have drawn three conclusions from this study. 300 

1. Variable selection gave a positive effect on the prediction ability of small calibration 301 

sets. Since calibration samples are often costly to collect, this may be important finding in 302 

order to make the best regression models out of few calibration samples. 303 

2 The results clearly showed a consistent and well-structured selection of variables. FSS 304 

and BVSPLS gave not so consistent variable selections as PPLS. 305 

3. Both PPLS and BVSPLS showed very high ability to compute good prediction models on 306 

small datasets, clearly better than more established regression methods. This shows that 307 

variable selection techniques are evolving and requires continued comparisons with 308 

existing algorithms. 309 

310 
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Table 1. Overview of the datasets (calibration and validation set together) 382 

Product Constituent Range1  
[w/w - %] 

STD1 

[w/w - %] 
No. of 
validation 
samples 

SREF
2  

Feed  Fat 0.660 – 33.9 5.07 2521 0.20  
Maize I Fiber 24.3 – 67.3 6.82 2288 0.60  
Maize II Protein 4.02 – 13.7 1.60 1149 0.20  
 

383 
1Standard deviation for calibration and validation set together 384 
2Standard error of reference method385 
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 386 
Figure 1. Coefficient of determination (R2) between measured and predicted constituents 387 

from the validation-set predictions of the Feed dataset as a function of the number of 388 

calibration samples for the fat content in feed mixture. The regression models used was 389 

full spectrum Partial Least Squares (PLS), Partial Powered Least Squares (PPLS), Forward 390 

Stepwise Selection (FSS) and Backwards Variable Selection for PLS (BVSPLS). The number of 391 

PLS factors was 7 for all models.392 
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Figure 2. Coefficient of determination (R2) between measured and predicted constituents 394 

from the validation-set predictions of the Maize I dataset as a function of the number of 395 

calibration samples for the fiber content in maize. The regression models used was full 396 

spectrum Partial Least Squares (PLS), Partial Powered Least Squares (PPLS), Forward 397 

Stepwise Selection (FSS) and Backwards Variable Selection for PLS (BVSPLS). The number of 398 

PLS factors was 8 for all models.399 
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 400 

Figure 3. Coefficient of determination (R2) between measured and predicted constituents 401 

from the validation-set predictions of the Maize II dataset as a function of the number of 402 

calibration samples for the protein content in maize. The regression models used was full 403 

spectrum Partial Least Squares (PLS), Partial Powered Least Squares (PPLS), Forward 404 

Stepwise Selection (FSS) and Backwards Variable Selection for PLS (BVSPLS). All models had 405 

5 PLS factors.406 
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 407 

Figure 4. Number of selected variables for the three variable selection methods Powered 408 

Partial Least Squares (PPLS), Forward Stepwise Selection (FSS) and Backwards Variable 409 

Selection for PLS (BVSPLS) as a function of the number of calibration samples for fat 410 

content prediction in the Feed dataset.411 
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 412 

Figure 5. Number of selected variables for the three variable selection methods Powered 413 

Partial Least Squares (PPLS), Forward Stepwise Selection (FSS) and Backwards Variable 414 

Selection for PLS (BVSPLS) as a function of the number of calibration samples for fiber 415 

content prediction in the Maize I dataset.416 
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 417 

Figure 6. Number of selected variables for the three variable selection methods Powered 418 

Partial Least Squares (PPLS), Forward Stepwise Selection (FSS) and Backwards Variable 419 

Selection for PLS (BVSPLS) as a function of the number of calibration samples for protein 420 

content prediction in the Maize II dataset.421 
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 422 

Figure 7. Frequencies of the selected variables for Powered Partial Least Square (PPLS), 423 

Forward Stepwise Selection (FSS) and Backwards Variable Selection for PLS (BVSPLS). 424 

Histogram of the selected variables in each method (i.e. the number of times each variable 425 

was selected of in total 19 models) versus the wavelength for fat content in the Feed 426 

dataset.427 



26 

 

1200 1400 1600 1800 2000 2200 2400 2600
0

10

20
PPLS

F
re

qu
en

cy

1200 1400 1600 1800 2000 2200 2400
0

10

20
FSS

F
re

qu
en

cy

1200 1400 1600 1800 2000 2200 2400
0

10

20
BVSPLS

Wavelength (nm)

F
re

qu
en

cy

 428 

Figure 8. Frequencies of the selected variables for Powered Partial Least Square (PPLS), 429 

Forward Stepwise Selection (FSS) and Backwards Variable Selection for PLS (BVSPLS). 430 

Histogram of the selected variables in each method (i.e. the number of times each variable 431 

was selected of in total 19 models) versus the wavelength for the Maize I dataset.432 
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Figure 9. Frequencies of the selected variables for Powered Partial Least Square (PPLS), 434 

Forward Stepwise Selection (FSS) and Backwards Variable Selection for PLS (BVSPLS). 435 

Histogram of the selected variables in each method (i.e. the number of times each variable 436 

was selected of in total 19 models) versus the wavelength for the Maize II dataset. 437 

438 
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Figure 10. Predicted fat content from Partial Least Squares (PLS, upper plot) and Partial 440 

Least Squares (PPLS, lower plot) in feed mix plotted against the measured fat content. The 441 

PLS gave a coefficient of determination (R2) between measured and predicted constituent 442 

of 0.78, whereas the PPLS model gave R2=0.93. Both models were calibrated using a 443 

calibration set with 60 samples and validated on the full validation set (N=2521, Fig. 1). 444 
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Abstract 16 

 17 

 18 

FieldSpec3, a portable field spectroradiometer was used to measure canopy 19 

reflectance in spring wheat. Spectral reflectance data was collected on three 20 

different experiment locations in up to four different years in the period 21 

2007-2010, so that seven unique site-years were included, comprising altogether 22 

976 individual plots. Prediction models for grain yield and grain protein 23 

concentration were computed by means of the recent statistical method Powered 24 

Partial Least Squares (PPLS). Several datasets had moderate to severe lodging, 25 

which had a markedly negative influence on the prediction results. To correct for 26 

this problem, a classification model for the classes “lodging” and “standing crop” 27 

was calibrated from the spectral data. The model gave a total classification 28 

accuracy of 98.3 %. Models were calibrated and validated on several combinations 29 

of the spectral datasets in order to reveal spatial and temporal effects on the 30 

prediction performance. The grain yield predictions explained 94 % 31 

(RMSEP = 156 g m-2) of the variance and the predictions of grain protein 32 

concentration explained 67 % (RMSEP = 1.51 g DM 100 g-1) of the variance. The 33 

model performance generally increased with increasing variation in the calibration 34 

data, both in time (i.e. more years included) and space (i.e. more sites included), 35 

and the study showed that one year of spectral measurements is not sufficient for 36 

building fully operational models for cereal property predictions. The performance 37 

of the grain yield PPLS models was compared with that of models based on some 38 

widely used vegetation indices (Normalized difference Vegetation Index (NDVI), 39 

Modified Soil Adjusted Vegetation Index (MSAVI), Red Edge Inflection Point (REIP) 40 
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and d-chl-ab). The explained variance of the vegetation indices approach did not 41 

exceed 55 %, and this method was thus clearly inferior.   42 
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1. Introduction 43 

 44 

 45 

Precision agriculture is concerned with using new technology in order to observe 46 

and respond to within-field variation. A technology driven area which has expanded 47 

rapidly in recent years, is reflectance remote sensing by the use of various forms of 48 

spectroradiometers and cameras 1-6. Several properties, covering a range of crops, 49 

have been addressed using such techniques, with grain yield and protein 50 

concentration of cereals being among the most frequently reported7-10. These are 51 

properties of great practical and economical interest. Systems for yield mapping 52 

are requested as a foundation for planning the next cropping season and for 53 

locating potential problem areas (i.e. low yielding zones). Remote sensing 54 

techniques represent a promising alternative to current yield mapping systems, 55 

which are based on various monitors mounted on the combine harvester. The latter 56 

systems rely heavily on challenging correction procedures, due to the many errors 57 

that often occur during monitoring/data aquisition11. An operational system for 58 

mapping grain protein concentration could be used for targeted harvesting of 59 

cereals in order to maximize the quality and economic benefits from the crop.  60 

 61 

Prediction models for such use have a high demand on robustness in order to be 62 

fully operational, and they have to handle perturbed situations that are frequently 63 

encountered in practice (e.g. lodging and various cases of misgrowth). Most studies 64 

present prediction models which are based on only 1-2 years of data 5, 12-14. Hence, 65 
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the models do not reflect the large variation between years that are often 66 

encountered in practical agriculture. Other studies validate prediction models on 67 

sites that lie in the same place and on the same type of soil as the calibration 68 

experiment 15-18. These models do not take into account the variations in soil type 69 

and weather conditions during crop growth. The effects of variation between sites 70 

and years on model calibration and their validation is as yet poorly understood, and 71 

this appears to be a limiting factor for the conversion of scientific findings into 72 

real-life applications. 73 

In this study we have chosen to use the statistical-empirical approach, where a 74 

model is calibrated from one dataset and validated on another, in an attempt to 75 

make the model applicable to other situations9, 15. An alternative could have been 76 

to use model inversion based on either the Radiative Transfer Equation (RTE) or 77 

Kubelka-Munk theory19, 20. The model inversion approach was considered less 78 

suitable for the purpose of this study, due to its high requirement of ground truth 79 

data for calibration.  80 

 81 

Several statistical-empirical studies rely on the use of previously developed 82 

vegetation indices for the prediction of plant properties5, 21-23. Historically, such 83 

indices were computed from 2-3 wavelengths in order to maximize the extraction 84 

of data from a limited number of wavelengths, typically available from the first 85 

satellite images. However, the use of such indices are still frequently reported5, 24, 86 

25 and an often cited rationale for this is that vegetation indices give more stable 87 

and robust predictions of plant properties (i.e. under varying conditions). A very 88 

limited number of studies utilize a larger part of the spectral signature without the 89 
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formation of vegetation indices7, 8. Literature is scarce on direct comparisons 90 

between these two main approaches. 91 

 92 

We had two main objectives for this study. The first objective was to develop 93 

prediction models for grain yield and grain protein concentration in spring wheat, 94 

and to test how the model performances were affected by variation between years 95 

and sites. Our second objective was to compare the prediction performance of 96 

models based on some widely used vegetation indices with that of models based on 97 

full spectrum data. To achieve this, data from three experimental sites were 98 

collected in four different years, comprising seven unique site-years with 99 

altogether 976 individual plots.  100 



7 
 

2. Materials and methods 101 

 102 

 103 

Spectroradiometer measurements were carried out in specially designed field-trials 104 

with spring wheat (Triticum aestivum L., var. ‘Bjarne’) in SE Norway, at Bioforsk 105 

Arable Crops Division.  Reflectance measurements, grain yield data and grain 106 

protein concentration data were collected from three different experimental sites 107 

during the growing seasons 2007-2010. Not all of the sites were used each year, so 108 

that there were data from seven site-years altogether. On the basis of these data, 109 

prediction models for grain yield and grain protein concentration were computed 110 

and validated. 111 

 112 

2.1 Field trials 113 

 114 

Almost identical field trials were established at sites A, B and C in 2007, 2008 and 115 

2010, respectively. The trials covered 26 x 160 m (Site C: 26 x 144 m), and 116 

comprised 20 (Site C: 18) replicate blocks (Fig. 1). Each block consisted of eight 117 

2 x 8 m plots, with fixed locations in all years. The sites were selected so as to 118 

maximise variation in soil texture, organic matter and/or drainage status between 119 

blocks and to minimize it within replicate blocks. Six nitrogen (N) level treatments 120 

were applied within each block: 0, 100, 125, 150, 175 and 200 kg nitrogen ha-1 121 

(designated N0, N100, N125, N150, N175 and N200, respectively). The border plots 122 

on either side of the randomized plots received 100 kg N ha-1, thus giving three 123 

N100 plots per replicate block. Plant protection (herbicides, fungicides and 124 

insecticides) was carried out according to the current practice. Soil samples were 125 
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taken at 2 depths (0-25 cm and 25-60 cm) from each replicate block at site A and 126 

B. At site C, samples were taken only from 0 25 cm. Soil samples were analysed for 127 

total C content by dry combustion (CHN analyzer, Eurofins, Norway) and total N 128 

(Kjeldahl, Eurofins, Norway). Moreover, the soil samples were analysed for particle 129 

size , ignition-loss, pH, P-AL (AL denotes the ammonium lactate/acetic acid 130 

mixture used for extraction26), Mg-AL, Ca-AL, Na-AL, K-AL and K-HNO3. An overview 131 

of these soil properties is given in Table 1.  132 

 133 

Sites A and C were located at Apelsvoll farm (60° 42” N, 10° 51” E, 250 m asl), 134 

which is part of Bioforsk Arable Crops Division, and which has a mean annual 135 

precipitation of 600 mm, a mean annual temperature of 3.6° C and a mean growing 136 

season (May-September) temperature of 12° C. The trials were established in 2007 137 

(site A) and 2010 (site C) on imperfectly drained brown earth (Gleyed melanic 138 

brunisol, Canada Soil Survey) with dominantly loam and silty sand textures, and 139 

moderate soil variation (see table 1 for details). 140 

 141 

The experimental area of site A slopes 3-6 % eastwards. Measurements from this 142 

site were performed during all cropping seasons in the period 2007-2010. Due to 143 

unfavourable weather conditions during some measurements sequences and 144 

reduced labour capacity in 2008, some datasets do not contain measurements from 145 

all 160 plots (Table 2). Data from 2007 have been published previously27. 146 

 147 

Site B is located on a nearby farm, Hoff (60° 41” N, 10° 51” E, 250 m asl), where 148 

the experimental area slopes 1-7 % southwards. The weather conditions at site B 149 

are comparable with those at sites A and C, but the site has a soil ranging from 150 
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imperfectly drained brown earth (Gleyed melanic brunisol, Canada Soil Survey) to 151 

humified peaty gley (Terric humisol, Canada Soil Survey). The variations in the 152 

measured soil properties were largest for site B, and this applied particularly to 153 

ignition-loss and total N and C (table 1). The trial at site B was established in 2008 154 

and was run for two years. In both 2008 and 2009, there was some severe lodging 155 

due to the combination of occasional heavy rain and probable high N mineralization 156 

in the blocks dominated by peaty soil. 157 

 158 

The experimental area of site C, which slopes 2-5 % eastwards, is located approx. 159 

700 m north of site A. The trial contains 18 replicate blocks (not 20 as those at site 160 

A and B), due to field size limitations. Hence a total of 144 plots were present at 161 

this trial. 162 

 163 

2.2 Instrumentation and measurements 164 

 165 

2.2.1 Radiometric field measurements 166 

 167 

FieldSpec3 (version 3, Analytical Spectral Devices Inc., USA, www.asdi.com) is a 168 

portable field spectroradiometer measuring spectra at one single spot in space, 169 

whose area depends on the choice of foreoptic and measurement height. For the 170 

current study, the foreoptic was operated at 1.1 m above the crop canopy with a 171 

field of view angle of 25 °, corresponding to a spot area of 0.2 m2. In order to 172 

transform the measured signal into reflectance data, calibrations were performed 173 

on a Spectralon panel provided and calibrated by LabSphere (LabSphere Inc, USA, 174 

www.labsphere.com). The instrument measures 2150 wavelengths in the spectral 175 



10 
 

range from 350 nm to 2500 nm with a spectral resolution (Full Width at Half 176 

Maximum: FWHM) between 2.0 nm and 2.8 nm. Highest resolution is achieved at 177 

the shortest wavelength. For further details on instrument specifications and 178 

modes of operation, see27. The measurement regime used in27 were duplicated for 179 

all seasons and experiments, i.e. reflectance spectra were collected from the 180 

experiments five times during each growing season at growth stages Z31, Z59, Z65, 181 

Z87 and Z90 according to the Zadoks decimal code28. All measurements were taken 182 

in duplicate and the instrument was recalibrated after every 40 measurements 183 

(approx. every 10 minutes). If a spectral drift > 5 % was observed between 184 

calibrations, the previous measurement cycle was repeated. Based on a screening 185 

performed at an earlier stage27, only the data acquired at Z65 were used for 186 

computing prediction models in the current study. All measurements were taken as 187 

reflectance spectra and all models were also computed in reflectance units. 188 

 189 

2.2.2 Measurements of yields and protein concentration 190 

 191 

At maturity, each plot was harvested and a grain sample was taken. The grain 192 

moisture and dry matter (DM) were analysed gravimetrically and grain protein 193 

concentration was analysed with a FOSS Infratek Grain Analyser 1241 194 

(FOSS Tecator, Denmark, www.foss.dk), using the calibration model number 195 

WH182126 provided by the manufacturer. For an overview of the grain properties, 196 

see Table 2.  197 

 198 

2.3 Data analysis 199 

 200 
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All data analyses were carried out using MATLAB (version 2007b, MathWorks Inc., 201 

USA, www.mathworks.com). PLS Discriminant Analysis (PLS-DA) and data 202 

preprocessing routines were provided by PLS Toolbox (version 4.2, 203 

Eigenvector Research Inc., USA, www.eigenvector.com). The Powered Partial Least 204 

Squares (PPLS) algorithm was programmed by the authors based on the original 205 

code29.  206 

 207 

2.3.1 Preprocessing 208 

 209 

The raw data were corrected for the detector splice point discontinuity at 1000 nm 210 

with a software routine provided by the instrument manufacturer (ViwSpec Pro, 211 

version 3.9, Analytical Spectral Devices Inc., USA, www.asdi.com). All spectral 212 

measurements were preprocessed with the Multiplicative Scattering Correction 213 

(MSC) method30. Thereafter, first derivatives were computed with the 214 

Savitzky-Golay algorithm31 (differentiation order: 1, polynomial order: 2, 215 

window width: 15). All data were mean centered prior to analysis. 216 

 217 

2.3.2 PPLS 218 

 219 

For prediction model computation, the recent method Powered Partial Least 220 

Squares29 was used. This variant of PLS has the ability to point its focus on variables 221 

with either high X variance or high X-y correlation through optimization of a 222 

method-specific parameter, called γ. When the γ value is preset to 0.5, the PPLS 223 

solution degenerates to the traditional PLS solution, whereas values below 0.5 224 

focus on variables with high variance and values above 0.5 focus on variables with 225 
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high correlation with the response. All PPLS models in this study were computed 226 

with γ allowed to float in the interval [0.5,0.99]. During the computation, the PPLS 227 

algorithm chooses the γ value that gives the highest correlation between the PPLS 228 

scores and the response variable. The number of PLS factors was selected with a 229 

conservative Chi-square test based on the cross-validated Root Mean Square Error 230 

(RMSECV). For further details on the PPLS algorithm and selection of model 231 

complexity, see ref.29. 232 

 233 

2.3.3 Data classification 234 

 235 

Approximately 7 % of the full dataset included moderate to severe crop lodging. 236 

Due to a very low signal-to-noise ratio of plots with lodging, it was necessary to 237 

exclude such plots from the data. Lodging is often encountered in practice, and the 238 

usefulness of the prediction models is strongly dependent on their ability to handle 239 

situations with lodging. In order to make the prediction models more operational, a 240 

pre-analysis step of “lodging-detection” was constructed in the form of a 241 

classification model. The spectral measurements were classified in the classes 242 

“standing crop” and “lodging” by PLS discriminant analysis (PLS-DA)32, using field 243 

observation of lodging as the response variable. This response variable was a binary 244 

dummy variable comprising the two values 0 for “standing crop” and 1 for 245 

“lodging”. A plot was considered as lodged if more than 20 % of the plants was not 246 

standing upright (as visually judged). The lodging model was cross validated and 247 

the number of PLS factors was selected with a conservative Chi-square test based 248 

on the RMSECV29. All predictions were then run using the lodging model as a pre-249 

analyses step to remove plots with lodging from the data set. Prediction models 250 
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computed from the classified dataset had significantly higher predictive ability 251 

than those computed from the datasets containing lodging plots. This implies that 252 

the prediction models presented were not able to provide any predictions of yields 253 

or grain protein concentrations in areas with lodging. 254 

 255 

2.3.4 Validation of prediction models for yields and protein concentration 256 

 257 

A stepwise validation strategy was chosen for the robustness assessment of the 258 

prediction models. The nomenclature for naming the datasets is year directly 259 

followed by site identification letter (i.e. 2007A means data from site A in 2007). 260 

In validation strategy 1, completely independent validation data were used. Site C 261 

only had data from 2010 and dataset 2010C was thus selected as the severest 262 

validation set possible for models based on the other sites and years. The first 263 

model was calibrated on only one site-year (2007A), whereas the succeeding 264 

models included one more site-year in the calibration set until all 6 available 265 

calibration site-years were used (Table 5). In validation strategy 2, all site-years 266 

except 2007A were initially used for validation. Then a successive translocation of 267 

data from validation set to calibration set was performed. In validation strategy 3, 268 

we carried out a “leave-year-out” cross-validation. Data from each of the four 269 

years were successively used alone for validation, whilst data from the remaining 270 

years were used for calibration. In validation strategy 4, a “leave-site-out” cross-271 

validation scheme was followed. Data from each of the three sites was successively 272 

used alone for validation, whereas data from the remaining sites were used for 273 

calibration. In all strategies, model performance was evaluated by four diagnostic 274 

measures between measured and predicted grain yield and protein concentration 275 
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values. The diagnostics were coefficient of determination (R2), root mean square 276 

error of prediction (RMSEP), standard error of performance (SEP) and bias. In order 277 

to reveal differences in yield and protein level between sites and years, an Analysis 278 

of variance (ANOVA) of the response variables were performed in combination with 279 

Tukey’s multiple comparison at a p-level of 5 %. 280 

 281 

2.3.6 Vegetation indices 282 

The PPLS models presented here use information from a large number of spectral 283 

bands. It was of interest to compare our method with a commonly used alternative, 284 

an approach based on vegetation indices. A vegetation index is an algebraic 285 

operation on a small number (often 2 or 3) carefully selected wavelengths. In the 286 

literature, several indices have been developed and many of these have been used 287 

for prediction of plant properties5, 15, 24, 33. Here, a subset of four indices was 288 

selected: Normalized Difference Vegetation Index (NDVI)34, Modified Soil Adjusted 289 

Vegetation Index (MSAVI)35, Red Edge Inflection Point (REIP)36 and d-chl-ab37 (Table 290 

3). All of these have been used with some success for predicting properties of 291 

wheat, especially grain yield15. Each vegetation index was computed from the full 292 

spectral dataset (based on the equations given in Table 3), and successively used as 293 

predictors in univariate least squares regressions, with either grain yield or grain 294 

protein concentration as the response variable. 295 

  296 



15 
 

3. Results 297 

 298 

There were significant (p < 0.001) yield differences between years, except 299 

between 2008 and 2010. For protein, there was significant (p < 0.001) differences 300 

between all years except 2008 and 2009. The yield levels differed significantly 301 

between all sites. This was also the case for protein, except for in 2008 and 2009, 302 

when there were no significant difference. The grain yield and protein 303 

concentration levels also differed markedly within sites (Table 2). Lodging was 304 

particularly pronounced in 2009 at site B, where moderate to severe lodging was 305 

observed in 29 % of the plots. Initial model runs showed that lodging had a 306 

markedly negative effect on the performance of the prediction models (data not 307 

shown). The PLS-DA classification model was able to classify 98 % of the lodging 308 

plots correctly (Table 4 and Fig. 2).  309 

 310 

In validation strategy 1, using the 2010C data only for validation (i.e. the most 311 

independent data), the grain yield and protein models showed in general quite 312 

similar behavior, although the amount of variance explained by the protein models 313 

was considerably lower than that explained by the grain yield models (Table 5). As 314 

the number of calibration samples increased (from model 1 to 6), all models 315 

became less biased and the number of significant PPLS factors increased. Using the 316 

2007A data only for calibration, 83 % and 66 % of the variation in grain yield and 317 

grain protein concentration was explained, respectively (Table 5, model 1). The 318 

prediction performances decreased slightly when calibration data from 2008 and 319 

2009 were included. When the 2010A data were added to the calibration set, the 320 

highest prediction performances in strategy 1 were reached, as more than 89 % and 321 
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68 % of the variation in grain yield and grain protein concentration was explained, 322 

respectively (Table 5, model 6). 323 

 324 

Strategy 2 utilized all available data in each model. The first model, which was 325 

based on the 2007A dataset for calibration, did not perform very well 326 

(Table 6, model 1). There was a tendency in strategy 2 that the yield model was 327 

improved with increasing amount of calibration data, whereas the explained 328 

variances in the protein models generally remained very low and did not exceed 329 

50 % until the 2010A data (i.e. all remaining data) were included in the calibration 330 

set (Table 6, model 6). The number of significant PPLS factors increased along with 331 

the number of calibration samples. Compared with strategy 1, the model biases 332 

varied more in strategy 2.  333 

 334 

Neither of the two first strategies took full advantage of the temporal and spatial 335 

distributions of the data. Therefore, a calibration approach with a “leave-year-out” 336 

cross-validation procedure was carried out in strategy 3 (i.e. site-years from one 337 

season at the time were used for validation and the remaining site-years were used 338 

for calibration). The grain yield models that were validated on the 2007 data had 339 

the best overall performance, accounting for more than 94 % of the variation 340 

(Table 7, model 1). Despite the high explained variance, the measured to predicted 341 

plot appeared to have a different slope than that of the other models 342 

(Fig. 3, upper left plot). The lowest bias occurred in the 2008 model (-14 g m-2), 343 

whereas the 2009 and 2010 models both had greater, positive biases 344 

(Table 7 and Fig. 3). All protein models showed poor (2008, 2009 and 2010) to 345 

modest (2007) predictive performance (Table 7). 346 
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 347 

In strategy 4, a “leave-site-out” cross-validation procedure was performed (i.e. 348 

site-years from one site at the time were used for validation, and the remaining 349 

site-years for calibration). Performance of the grain yield prediction models were 350 

modest when validated on data from site B (Table 8, model 2), but were markedly 351 

increased when validated on the data from either site A (model 1) or site C 352 

(model 3). Using site C for validation also explained the highest amount of variance 353 

in protein, whereas the use of validation data from sites A or B gave very poor 354 

protein prediction (Table 8).  355 

 356 

Common to all four strategies was that the protein models had a higher number of 357 

significant PPLS factors and thus a higher degree of complexity than the grain yield 358 

models. Only the grain yield models were examined further. 359 

 360 

As an alternative to PPLS regression on the full spectra, univariate least squares 361 

regressions between some widely used vegetation indices and the grain yield data 362 

were carried out. All regressions showed generally low prediction performance 363 

(Fig. 4). The NDVI and REIP indices were especially poor predictors of grain yield, 364 

as they tended to saturate at high yields.  365 
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4. Discussion 366 

 367 

In this study, data from seven site-years were combined in various validation 368 

strategies in order to assess the robustness and usefulness of prediction models for 369 

grain yield and grain protein concentration. The results showed in general that the 370 

predictions improved with increasing variance, both in time and space, of the 371 

calibration data. Grain yield was predicted best, with overall explained variance 372 

exceeding 80 % in most cases, reaching a maximum of 94 %. In contrast, none of 373 

the protein models obtained a degree of explanation above 70 %.  374 

 375 

4.1 Effect of year 376 

Model performance differed when the leave-year-out cross-validation procedure as 377 

carried out (Table 7), and it appeared to be beneficial to have calibration data 378 

from the same year as that in which the predictions were made for 379 

(Table 5, model 6). This finding was, however, not consistent, as the overall best 380 

model was calibrated from 2008-2010-data and validated on 2007-data 381 

(Table 7, model 1, grain yield). Since 2007A was the only field trial in 2007, it was 382 

not possible to check for a possible improvement of including other 2007-data in 383 

the calibrations. 384 

 385 

One rather general explanation of the benefit of having data from the same year in 386 

the calibration as in the validation data is that there are seldom two growing 387 

seasons that have the same conditions for crop growth. Changing micro-388 

meteorological conditions between years may, for example, cause diverging 389 

relations between spectral signatures of the canopy and plant properties of 390 
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interest. This effect could be direct (e.g. differing harvesting quotients) or indirect 391 

(e.g. unfavourable conditions for grain filling and ripening occurring after the 392 

spectral measurements). More specific reasons for the observed effect of year on 393 

the results may be altered weather conditions between times of the radiometric 394 

measurements, variations in weed density and lodging. 395 

 396 

On several occasions during data collection, especially during the 2009 and 2010 397 

seasons, the weather conditions were not optimal with respect to spectral 398 

measurement (i.e. variable cloud cover, which causes spectral drift in the 399 

measurements). The conditions at times of data acquisition can certainly explain 400 

some of the observed year-effect. We followed, however, the same 401 

spectroradiometer calibration regime as in ref.11 in which acceptable results were 402 

achieved even in conditions with quite severe cloud cover. Hence, we do not 403 

believe that this was a major contributing factor in the current study. It should be 404 

emphasized that high robustness towards changes in the measuring environment is 405 

a prerequisite for systems designed for use under practical conditions when such 406 

changes are more the rule than the exception. 407 

 408 

All field trials received plant protection according to current practice, but weeds 409 

were still present in some cases. This was particularly so in 2009, when the density 410 

of couch grass (Elymus Repens L.) was relatively high, mainly due to a poor effect 411 

of herbicide spraying the previous autumn (2008). The weed density was probably 412 

not so high that it would have significantly influenced grain yield or grain protein 413 

concentration, according to studies on the impact of weeds on wheat grain yield38.  414 

However, we assume that the spectral signatures may have been affected in some 415 



20 
 

cases. Other studies have showed that differences in spectral signature between 416 

cereals, shrubs, grasses and weeds were sufficient to separate between these 417 

groups39. Hence, spectral noise caused by the weeds present may explain the drop 418 

in model performance (grain yield) when 2009-data alone was used for validation 419 

(Table 7, model 3). Variation in weed density is normally encountered in real-life 420 

situations, and the results suggest that our approach may tackle such variation 421 

reasonably well. Nevertheless, greater weed densities than those observed in this 422 

study and/or the presence of other weed species, may potentially reduce the 423 

usefulness of the method. 424 

 425 

The application of a pre-treatment classification model successfully removed most 426 

of the lodging plots from the data. Hence, lodging was probably not an important 427 

factor that could account for the difference in prediction performance between 428 

years. Lodging often occurs in practice. In an operational system, the classification 429 

model developed could be used as an initial step to separate between areas with 430 

and without lodging. It is very difficult to predict yields and yield quality in cases 431 

with lodging, partly because the plant canopy may be covered by other plant parts, 432 

which radically changes the spectral signature, and partly because it is 433 

questionable to what extent the grain will actually be picked up by the combine 434 

harvester (depending on e.g. severity of lodging, time and weather conditions until 435 

harvest, and cereal variety). Hence, areas detected as being lodged could be 436 

discarded or the prediction result flagged as “unreliable”, whereas the remaining 437 

measurements could enter the prediction model and be used for a prediction. 438 

 439 

4.2 Effect of site 440 
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Prediction results differed markedly between the three sites A, B and C (Table 8). 441 

The predictions performed for site B were especially poor. This may largely be 442 

explained by differences in the soil properties between the sites. Whereas 443 

sites A and C, which were localized relatively close, had rather similar soil 444 

properties, site B diverged from the others by having the highest average topsoil 445 

contents of clay, soil organic matter and all of the measured nutrients, except 446 

K-HNO3 (Table 1). Moreover, this site also had the largest within-field soil variation 447 

of the three sites, thus representing the largest potential for site-specific variation 448 

in crop growth.  449 

 450 

The higher nutrient content of site B was reflected by the larger yield level of the 451 

unfertilized plots, indicated by enhanced minimum yields (Table 2). The mean 452 

yields and the yield variation within site did not, however, reflect the measured 453 

soil properties equally well. One reason for this was that the frequency of plots 454 

with lodging was higher at site B than at the other sites, resulting in reduced yields 455 

particularly on plots with high yield potential. One result of this was a smaller 456 

numerical range in the yield values of the datasets from site B than sites A and C 457 

(Table 2), which subsequently may account for some of the difference in prediction 458 

performance between the three sites (Table 8). Another factor which may explain 459 

the poor predictions for site B was the larger weed pressure at this site (see 460 

previous section). 461 

 462 

4.3 Diverging performance between yield and grain protein concentration models 463 

 464 
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The grain yield models performed overall much better than the models predicting 465 

grain protein concentration (Table 7 and 8). Similar performance differences have 466 

been showed by other authors7, 23.This is probably due to a more complex causal 467 

relationship between the spectral measurements and grain protein concentration 468 

than that between spectral measurements and grain yield8. The grain protein 469 

concentration models generally had a higher number of PPLS factors than the grain 470 

yield models, which supports our assumption. In a previous study27, we found that 471 

the spectral variables related to grain protein content were not the same as those 472 

commonly used to predict grain protein concentration directly on wheat kernels. 473 

This indicates that there is another, and probably more complex link between grain 474 

protein content and spectral measurements in the field as compared to that found 475 

for individual wheat kernels in a laboratory environment, which basically rely on 476 

the characteristic chemical bounds for protein40 477 

 478 

4.4 Biases of the grain yield models 479 

Why does the general yield level apparently affect the model bias? We believe that 480 

this may at least in part be caused by a change in the fraction of the total above 481 

ground biomass allocated to the grain (i.e. harvest index, HI) between years. Since 482 

the amount of biomass has been shown to affect the spectral signature 483 

significantly41, it is likely that a change in the HI would affect the yield predicting 484 

performance of the model. Harvest index, calculated for 25 plots at site A in 2008, 485 

2009 and 2010, was 0.49, 0.43 and 0.44, respectively (data not shown). The 486 

overestimation (positive bias) of the yield models in 2009 and 2010 could thus be a 487 

result of relatively lower HI in those years compared to that in 2008. 488 

 489 
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 490 

4.5 Vegetation indices 491 

The vegetation indices showed very poor performance compared to the PPLS 492 

models based on the full spectrum (Figs. 3 and 4). Most vegetation indices are 493 

based merely on 2-3 wavelengths and are often designed for extracting as much 494 

information as possible from a limited number of wavelengths (for instance a 495 

Landsat Thematic Mapper (TM) image with only 5 wavelengths). Several indices 496 

have previously been used with some success for crop property prediction15, 22, 24, 42. 497 

However, a common problem with most indices is the occurrence of saturation at 498 

high yield levels, making them less useful in such situations9, 37, 43. The saturation 499 

effect is especially evident in Figure 4 (left plots). Literature is scarce on the topic 500 

of crop property prediction using latent variable regression techniques on full 501 

spectrum data, but good results have been reported using PLS regression on colour 502 

image data to predict grain yield8. Another interesting approach is the use of multi-503 

way PLS (N-PLS) and repeated reflectance measurements to predict grain 504 

properties7. In recent years, development of small and affordable full-spectrum 505 

radiometers for field use has exploded. This development calls for more advanced 506 

data analysis techniques, but nevertheless, as our study shows, the potential 507 

benefit of combining full-spectrum data with multivariate analyses significantly 508 

outweighs the limitations of traditional approaches. 509 

 510 

4.6 Practical consequences and outlook 511 

The grain yield models presented here had good performance in most cases and 512 

could be used for several practical purposes. At the national agricultural authority 513 

level, early yield predictions are of interest for market regulating purposes. At 514 
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farm level, robust yield maps are in demand as a foundation for planning the next 515 

cropping season and for locating potential problem areas (i.e. low yielding zones). 516 

Current yield mapping systems, based on various monitors mounted on the combine 517 

harvester, rely heavily on challenging correction procedures. The yield prediction 518 

models presented here had some degree of bias and skewness. We are currently 519 

working on a method to correct these problems by the use of data fusion between 520 

NIR reflectance spectra and aggregated climate variables. The results from this will 521 

be published as part II of the current study. 522 

 523 

Models for grain protein concentration did not have the same degree of accuracy as 524 

the grain yield models. A high-performance model for grain protein concentration 525 

could be used for protein-mapping at field level and targeted harvesting, i.e. 526 

where zones high in protein concentration are harvested separately from zones 527 

with poorer quality, with the class intervals adjusted in accordance with the 528 

current quality payment regime. The models presented here did not, however, give 529 

performance sufficient to realize targeted harvesting. Improving the protein 530 

models is clearly one of the topics for further research work in this area. 531 

 532 

The models were calibrated for spring wheat, variety ‘Bjarne’. We assume that the 533 

grain yield model would need re-calibration in order to be applicable for other crop 534 

varieties and species. 535 

 536 

In this study the spectral measurements were obtained by hand-held equipment. If 537 

the model is to be applied under practical conditions at the field or farm level, 538 

another platform for measurements would be a prerequisite. The airborne 539 
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approach, as described in an earlier study27, appears to be promising, and we are 540 

currently exploring the use of Unmanned Aerial Vehicles (UAVs) as a flexible 541 

alternative. 542 

543 
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5. Conclusions 544 

 545 

As expected, single year or single site calibrations were not robust enough for the 546 

prediction of other years and/or sites. However, when a few or more years and 547 

sites were included, good predictions of grain yield were obtained. The results 548 

clearly indicate that the prediction performance and robustness both over year and 549 

site variations are of practical use for the farmers and/or agricultural authorities. 550 

 551 

The utilization of wide, multiband, spectral signatures in combination with the 552 

multivariate regression method PPLS outperforms the more traditional approach 553 

using vegetation indices and MLR, in terms of predictive ability.  554 

 555 

The rapid development of small and affordable full-spectrum radiometers for field 556 

use holds promise for the successful utilization of our results in future systems 557 

designed for practical precision agriculture.  558 
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 699 

Figure 1. Experiment layout and sampling locations. Overall experiment layout to 700 

the left and one example plot enlarged to the right. Measurement area is indicated 701 

with a circle and harvested area is indicated with dashed lines on the right-hand 702 

plot.  703 
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 Figure 2. Score plot from a PLS-DA classification of all spectral 704 

measurements. The 976 data points were divided between the classes 705 

lodging (asterisks) and non-lodging (triangles). The dashed line denotes the 706 

decision boundary line.  707 
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 708 

Figure 3. Measured grain yield (X-axis) plotted against predicted grain yield 709 

from the validation set (Y-axis). Prediction models were calibrated with 710 

Powered Partial Least Squares (PPLS) on spectral measurements from 3 711 

seasons and validated on measurements from one season (denoted inside 712 

each subplot along with the coefficient of determination, R2). The target 713 

lines have slope 1 and zero intercept.  714 
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 715 

Figure 4. Measured grain yield (X-axis) plotted against predicted grain yield 716 

(Y-axis). Predictions were based on univariate least squares regressions 717 

between yield data and vegetation indices derived from all spectral 718 

measurements. All target lines have have slope 1 and zero intercept. The 719 

indices used were Normalized Difference Vegetation Index (NDVI), Modified 720 

Soil Adjusted Vegetation Index (MSAVI), Red Edge Inflection Point (REIP) and 721 

D-chl-ab.   722 
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Table 1. Measured soil properties at all three experiment sites 723 

Soil properties1 

 

Depth  

 

SITE A 
 

 

SITE B 
 

 

SITE C 

cm mean  CV2  mean  CV  mean  CV 

P-AL 0-25 7.1  20  7.4  30  6.1  25 

K-AL 0-25 7.8  14  11  26  6.5  215 

K-HNO3 0-25 41  76  35  15  44  13 

Mg-AL 0-25 6.8  19  20  25  10  17 

Ca-AL 0-25 121  27  761  27  228  15 

Na-AL 0-25 1.3  14  1.8  23  -3  - 

Total N 0-25 0.14  19  1.0  43  0.20  21 

Total C 0-25 1.8  17  15  44  -  - 

Ignition loss  0-25 5.1  29  28  43  4.5  31 

Ignition loss  25-60 5.1  35  27  104  -  - 

pH 0-25 5.7  3.9  6.4  3.8  6.4  3.1 

Gravel > 2 mm 0-25 72  38  5.3  28  8.6  38 

Gravel > 2 mm 25-60 81  38  6.2  63  -  - 

Sand 0.06 - 2 mm 0-25 58  4.5  45  12  51  10 

Sand 0.06 – 2 mm 25-60 56  8.9  43  34  -  - 

Silt 0.002 – 0.06 mm 0-25 30  5.0  36  9.4  34  8.2 

Silt 0.002 – 0.06 mm 25-60 30  6.0  42  31  -  - 

Clay < 0.002 mm 0-25 12  18  20  19  15  25 

Clay < 0.002 mm 25-60 14  32  15  33  -  - 

1Units: Gravel given in g kg-1 bulk soil, Total N, C, ignition-loss and soil texture fractions in g 100 g-1 724 

fine earth (< 2 mm), other nutrients in mg 100 g-1 fine earth 725 

2Coefficient of Variation, (%). 726 

3Not measured  727 
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 728 

Table 2. Descriptive statistics of the crop response variables for each year and site. 729 

The p-values were computed from a nested analysis of variance of the yield and 730 

protein data. Standard errors of reference method were 5.0 g m-2 for grain yield 731 

and 0.15 g DM 100 g-1 for grain protein concentration 732 

Variable Dataset  

(number of plots) 

min. mean max. stdv. 

Grain yield 2007A (160) 151 638 812 172 

 2008A (120) 99 531 771 185 

 2008B (120) 157 588 778 155 

 2009A (160) 74 402 590 121 

 2009B (132) 91 407 570 97 

 2010A (140) 113 513 681 146 

 2010C (144) 110 444 629 120 

p-values Site: < 0.001, Year: < 0.001 

Grain Protein  2007A (160) 10.0 12.8 16.7 1.5 

 2008A (120) 10.7 14.3 17.0 1.6 

 2008B (120) 9.9 14.7 19.9 1.9 

 2009A (160) 9.5 14.4 17.2 1.8 

 2009B (132) 9.9 14.0 17.6 1.6 

 2010A (140) 9.4 12.1 15.3 1.5 

 2010C (144) 9.4 12.9 15.9 1.8 

p-values Site: < 0.001, Year: < 0.001 

  733 
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Table 3. Vegetation indices used to predict grain yield and grain protein 734 

concentration. The letter R indicates reflectance value, scaled between 0 and 1, 735 

whilst the subscripts indicate the wavelength at which the reflectance values are 736 

taken 737 

Name Equation Reference 

NDVI ���� − ����
���� + ����

 

34 

MSAVI 1
2 �2(���� + 1) − 	(2 ���� + 1)
 − 8(���� − ����)� 

35 

REIP 
700 + 40

���� − ����
2 − ���

���� − ���
 

36 

d-chl-ab ���� − ���
2

����
 

37 

  738 
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Table 4. Confusion matrix for the PLS-DA classification model for all spectral 739 

measurements. Entries are the counts of correctly and incorrectly classified data 740 

points according to the actual lodging recordings. Total accuracy was 98.3 % 741 

 
Predicted class 

Total 
Standing crop Lodging 

Actual class 
Standing crop 891 34 892 

Lodging 1 68 69 

 Total 892 102 976 

  742 
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Table 5. Performance of PPLS prediction models for grain yield and grain protein 743 

concentration using spectral measurements from an increasing number of site years 744 

(sites A and B) as calibration data and spectral measurements in 2010 from the 745 

independent site C as validation data (validation strategy 1, see M&M section) 746 

Variable  Dataset/Diagnostic 1 2 3 4 5 6 

  Calibration set 2007A 2007A 

2008A 

2007A 

2008A 

2008B 

2007A 

2008A 

2008B 

2009A 

2007A 

2008A 

2008B 

2009A 

2009B 

2007A 

2008A 

2008B 

2009A 

2009B 

2010A 

  Validation set 2010C 2010C 2010C 2010C 2010C 2010C 

Grain yield  R2 0.834 0.808 0.834 0.825 0.854 0.891 

  RMSEP 133 189 112 123 117 108 

  Bias 97 130 64 86 72 71 

  SEP 91 137 91 88 93 82 

  Number of factors 2 2 3 4 4 4 

Grain rotein   R2 0.662 0.627 0.612 0.610 0.655 0.684 

  RMSEP 1.7 2.2 2.1 2.1 2.0 1.6 

  Bias 0.1 0.5 0.8 1.0 1.0 0.7 

  SEP 1.7 2.1 1.9 1.8 1.7 1.4 

  Number of factors 3 4 4 5 5 5 

  747 
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Table 6. Performance of PPLS prediction models for grain yield and grain protein 748 

concentration using spectral measurements from an increasing number of site years 749 

(sites A and B) as calibration data and a decreasing number of site years 750 

(sites A, B and C) as validation data (validation strategy 2, see M&M section) 751 

Variable Dataset/Diagnostic 1 2 3 4 5 6 

 Calibration set 2007A 2007A 

2008A 

2007A 

2008A 

2008B 

2007A 

2008A 

2008B 

2009A 

2007A 

2008A 

2008B 

2009A 

2009B 

2007A 

2008A 

2008B 

2009A 

2009B 

2010A 

 Validation set 2008A 

2008B 

2009A 

2009B 

2010A 

2010C 

2008B 

2009A 

2009B 

2010A 

2010C 

2009A 

2009B 

2010A 

2010C 

2009B 

2010A 

2010C 

2010A 

2010C 2010C 

Grain yield R2 0.576 0.513 0.647 0.601 0.783 0.891 

 RMSEP 195 161 169 126 176 108 

 Bias 160 115 132 102 82 71 

 SEP 112 113 107 75 156 82 

 Number of factors 2 2 4 5 5 4 

Grain protein  R2 0.167 0.198 0.194 0.243 0.264 0.684 

 RMSEP 2.1 4.0 2.9 2.2 1.8 1.6 

 Bias -0.5 2.7 1.0 -1.0 0.6 0.7 

 SEP 2.1 3.0 2.7 2.0 1.7 1.4 

 Number of factors 4 3 4 4 6 5 

 752 

  753 
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Table 7. Performance of PPLS prediction models for grain yield and grain protein 754 

concentration using spectral measurements from all available sites within each of the 755 

years 2007-2010 separately as validation data and all remaining site-years as calibration 756 

data in each case (validation strategy 3, see M&M section). 757 

Variable Dataset/Diagnostic 1 2 3 4 

 Calibration  2008A 

2008B 

2009A 

2009B 

2010A 

2010C 

2007A 

2009A 

2009B 

2010A 

2010C 

2007A 

2008A 

2008B 

2010A 

2010C 

2007A 

2008A 

2008B 

2009A 

2009B 

 

 Validation 2007A 2008A 

2008B 

2009A 

2009B 

2010A 

2010C 

Grain yield R2 0.941 0.850 0.760 0.783 

 RMSEP 156 76 218 176 

 Bias -89 -14 148 82 

 SEP 128 74 160 156 

 Number of factors 4 4 7 5 

Grain Protein  R2 0.669 0.158 0.268 0.264 

 RMSEP 1.5 3.5 3.0 1.8 

 Bias -0.9 1.2 1.7 0.6 

 SEP 1.2 3.2 2.5 1.7 

 Number of factors 4 4 5 6 

  758 
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Table 8. Performance of PPLS prediction models for grain yield and grain protein 759 

concentration using spectral measurements from each site separately as validation 760 

data and data from the other sites as calibration data (validation strategy 4, see 761 

M&M section). 762 

Variable Dataset/Diagnostic 1 2 3 

 Calibration  2008B 

2009B 

2010C 

2007A 

2008A 

2009A 

2010A 

2010C 

2007A 

2008A 

2008B 

2009A 

2009B 

2010A 

 Validation 2007A 

2008A 

2009A 

2010A 

2008B 

2009B 

 

2010C 

 

Grain yield R2 0.802 0.526 0.891 

 RMSEP 153 207 108 

 Bias 102 156 71 

 SEP 114 136 82 

 Number of factors 2 4 4 

Protein R2 0.183 0.297 0.684 

 RMSEP 1.8 1.7 1.6 

 Bias -1.0 0.5 0.7 

 SEP 1.5 1.6 1.4 

 Number of factors 4 6 5 

 763 
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Abstract 15 

 16 

Fusion of NIR spectra and weather data by means of Canonical Powered Partial 17 

Least Squares (CPPLS) was used to correct yield prediction models of spring wheat 18 

grain yields. The data comprised seven unique site-years and 976 individual plots. 19 

In part I of the study, in which models based on NIR spectra alone were used, we 20 

achieved a high degree of explained yield variance (up to 94 %), but encountered 21 

large problems with bias and skewness in the computed regression models. We 22 

hypothesized that weather variation between seasons as the governing process 23 

behind this behaviour.  In the present part of the study (part II), the bias and 24 

skewness problems were significantly reduced by the inclusion of aggregated 25 

weather variables as additional predictors. Average bias and skewness of the final 26 

predictions amounted to X and Y, respectively, which corresponds to reductions of 27 

38 % and 23 %. The weather data used are available about 4 weeks prior to harvest, 28 

which implies that the approach would allow early yield prediction. In conclusion, 29 

this study shows the potential for improving NIR spectra based prediction models by 30 

including season-specific information, such as weather data, which is becoming 31 

more readily available through improvements in meteorological services.  32 



 
 

3 
 

1. Introduction 33 

 34 

 35 

Along with rising demands on agricultural production, both in terms of high yields 36 

as well as reduced environmental impact, the field of precision agriculture is 37 

becoming increasinglys important. Precision agriculture encompasses the use of 38 

available technology to tailor the crop treatment to the current crop situation at 39 

any site in a field (e.g. site-specific application of fertilizer based on real-time 40 

processing of reflectance measurements1). Similar technology may also be used for 41 

yield predictions. Accurate yield maps are useful for identifying potential 42 

agronomic problem areas2, which may be seen as low yielding zones, or for 43 

quantifying site-specific nutrient off-take, information which may be used for a 44 

balanced nutrient replacement in the following growing season3. Moreover, yield 45 

prognoses are high demanded at the agricultural authority level for market 46 

regulation purposes4.  47 

 48 

Various methods for yield prediction have been reported over the last decades, but 49 

the use of remotely sensed reflectance data seems to be the dominant technique. 50 

Several studies have been carried out with relatively simple analytical approaches, 51 

based on vegetation indices and linear regression (e.g. references5-7), but more 52 

advanced techniques, such as Partial Least Squares (PLS) and Multi-way Partial 53 

Least Squares (N-PLS), have also been reported (e.g. references8, 9).  54 

 55 
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When evaluating a model, a thorough validation procedure is essential in order to 56 

assess its robustness to changes in the environment, relative to that in which the 57 

model was calibrated. Nevertheless, a common approach used in model validation 58 

has been to calibrate the model with one year’s data from one site, and to validate 59 

it using data from a nearby experimental site in the same year, e.g. references9-11. 60 

Numerous studies have reported large variations in crop growth between years 61 

(e.g.12), and such seasonal variations have been shown to have a markedly negative 62 

effect on the predictive ability of reflectance-based yield prediction models13. 63 

Literature is scarce on studies that have attended to correct for seasonal variations 64 

in such models. 65 

 66 

In part I of the current study13, we developed yield prediction models based on 67 

remotely sensed reflectance data covering four seasons and three sites (seven site-68 

years). We found quite severe bias and skewness in our prediction models, and we 69 

speculated whether variations in weather conditions between the measurement 70 

seasons (2007 to 2010) could explain these observations. To test our hypothesis, we 71 

decided to conduct a second study (part II, reported here) of the study, using 72 

available weather variables as additional predictors.  73 

 74 

Fusion of diverging data types, such as NIR spectra and weather data, can be 75 

achieved in a number of ways, for example by means of Hierarchical Principal 76 

Component Analysis (HPCA), Consensus PCA (CPCA), Hierarchical Partial Least 77 

Squares (HPLS) or Multiblock Partial Least Squares (MBPLS)14. In this study, we 78 

chose to use a recent extension of the Powered Partial Least Squares (PPLS)15, 79 
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called the Canonical Powered Partial Least Squares (CPPLS)16, since we had already 80 

successfully used PPLS in Part I of this study13 and in two previous, related 81 

studies17, 18. 82 

The main objective of this study was to test whether data fusion of season-specific 83 

weather variables and remotely sensed reflectance data may reduce bias and 84 

skewness in yield prediction models, and thus improve this robustness of such 85 

models.  86 
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2. Materials and methods 87 

 88 

In this study we used the same yield and NIR data as obtained in Part I13. A brief 89 

description follows of the experimental setup, instruments and measurements. 90 

 91 

2.1 Experimental sites 92 

 93 

Experiments with spring wheat (Triticum aestivum L., var. ‘Bjarne’) were 94 

performed at three different sites during the period 2007-2010 (altogether seven 95 

site-years). The sites were located at the Bioforsk Arable Crops Division at Apelvoll 96 

farm in SE Norway (site A and C) and at a nearby farm (site B). 97 

Sites A and B had 20 replicate blocks, whereas site C had 18 replicate blocks, each 98 

consisting of 8 plots with size 2 x 8 m. Six nitrogen (N) level treatments were 99 

applied within each block: 0, 100, 125, 150, 175 and 200 kg nitrogen ha-1. The 100 

border plots on either side of the randomized plots received 100 kg N ha-1, thus 101 

giving three N100 plots per replicate block. Including the border plots, Site A and B 102 

comprised 160 plots each and site C 144 plots. 103 

 104 

2.2 Instrumentation 105 

 106 

All spectral reflectance measurements were taken with a FieldSpec3 107 

spectroradiometer (version 3, Analytical Spectral Devices Inc., USA, 108 
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www.asdi.com). The instrument was operated on a pole 1 m above the crop canopy 109 

when measuring (reflectance mode).  110 

 111 

2.3 Measurements 112 

 113 

One reflectance spectrum was collected from each plot 5 times during each season 114 

at Zadoks (Z) growth stages19 Z31, Z59, Z65, Z87 and Z90. As in part I of the study, 115 

only reflectance data from Z65 were used for further analysis because earlier 116 

studies have showed this to be the most favourable time to measure reflectance 117 

for yield prediction purposes17.  118 

At maturity, the plots were harvested with a combine harvester, and yields were 119 

determined gravimetrically.To find suitable weather variables, we utilized an 120 

existing system for yield prognoses. In Norway, the cereal yield level (crop specific) 121 

in each municipality is estimated each year per August 1 as part of the national 122 

cereal yield prognoses4. The system is based on meteorological observations from a 123 

network of weather stations, including the station at Apelsvoll (close to all sites 124 

involved in this study). Hence, daily values of global sun radiation, precipitation, 125 

air temperature (2 m), wind speed and relative humidity were taken from the 126 

Apelsvoll weather station. Potential evapotranspiration was calculated in 127 

accordance with Riley and Berentsen20. The daily weather data was then 128 

aggregated within four phenological phases: 1) sowing and seed emergence (Z00 to 129 

Z09), 2) leaf development and tillering (Z10 to Z29), 3) stem elongation and 130 

inflorescence emergence (Z30 to Z49), and 4) anthesis and ripening to hard dough 131 
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(Z50 to Z87). An overview of these 24 variables (six weather variables times four 132 

phenological phases) is given in Table 1. 133 

 134 

2.4 Data preprocessing 135 

 136 

Spectral data were subjected to the same preprocessing as in Part I13 of this study. 137 

In brief, raw data were corrected for splice point discontinuity with ViewSpec Pro 138 

(version 3.9, Analytical Spectral Devices Inc., USA, www.asdi.com). Multiplicative 139 

Scattering Correction (MSC)21 as well as computation of first derivatives with the 140 

Savitzky-Golay algorithm22 (differentiation order: 1, polynomial order: 2, 141 

window width: 15) were performed with MATLAB (version 2007b, MathWorks Inc., 142 

USA, www.mathworks.com). Only the part of the data that was considered free of 143 

lodging was included in the current study. 144 

 145 

Some of the weather variables had partly quite severe multicollinearity, which led 146 

to numerical problems in the subsequent analyses. To eliminate this problem, we 147 

performed a Principal Component Analysis (PCA) of the weather data (Fig. 1). The 148 

resulting score values of the first two components, representing 83 % of the overall 149 

variation in the 24 initial variables, were used in the subsequent analyses. 150 

Extraction of more than two PCA components from the weather data did not 151 

further improve the cross-validated Root Mean Square Error (RMSECV) of the PCA 152 

model. Computation of the PCA scores was performed with the R function 153 
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“prcomp”23 with mean centring and normalization by division with the standard 154 

deviation of each variable. 155 

 156 

2.5 Data analysis 157 

 158 

All statistical models and graphics were performed with R23 and the pls-package24.  159 

Recently, two important extensions of the PLS methodology have been proposed. 160 

The first extension is Powered Partial Least Squares (PPLS)15, which enables the PLS 161 

to focus on predictors with high variance or predictors with high correlation with 162 

the response through the choice of a method-specific parameter γ. The second 163 

extension is Canonical Partial Least Squares (CPLS)16, which lets the PLS work with 164 

additional response variables and uses optimization of canonical correlation to 165 

reduce systematic effects in the main model response. This represents an 166 

interesting new way of achieving data fusion and the approach seems suitable for 167 

our application. The authors of CPLS and PPLS encourage the merging of the two 168 

methodologies and since we previously have shown that PPLS worked well on our 169 

data13, 17, the use of Canonical Powered Partial Least Squares (CPPLS) was 170 

considered a natural choice in our data fusion task. Hence, all models presented in 171 

this study were computed with CPPLS with the γ parameter optimized over the 172 

closed interval [0.5,0.95] as in our previous yield prediction studies13, 17. Since the 173 

objective of the study was to quantify and reduce the impact of seasonal variation 174 

on the yield predictions, we selected a leave-year-out validation strategy. This 175 

procedure is similar to validation strategy 3 used in Part I of the current study. 176 

Models were assessed by means of the diagnostic measures the Coefficient of 177 
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Determination (R2), Root Mean Error of Prediction (RMSEP), bias, skewness (third 178 

moment about the mean of the residuals) and Standard Error of Performance(SEP). 179 

A test of the prediction ability between models from NIR only and the CPPLS 180 

models were performed as a paired Student’s  t-test on the absolute values of the 181 

model residuals, following the ideas of Cederkvist et al.25.  182 

 183 

In Part I, we concluded that all the protein prediction models were unusable for 184 

predictions due to very low explained variance. In the current study (Part II), we 185 

aim at correcting seasonal, systematic variations of the predictions in Part I, and 186 

not at improving the explained variance. Hence, the protein models of Part I were 187 

not included here. 188 

  189 
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3. Results 190 

 191 

Measured grain yields were in the range of 73.5 g m-2 to 811.8 g m-2.  192 

 193 

Grain yield predicted with the weather-corrected CPPLS models differed 194 

significantly from the grain yield predictions of the uncorrected, initial, PPLS 195 

models, except when validated on the 2008 data, which is seen from the p-values 196 

of the paired t-test on the absolute values of the residuals (Table 2).  197 

 198 

All the selected model diagnostic measures (RMSEP, SEP, bias and skewness) were 199 

decreased by the corrections, except for the bias in 2008, which was initially very 200 

low (Table 2). The average reduction in bias was 38 %, whereas the reduction in 201 

skewness was 23 %. The reductions in bias and skewness were reflected in the 202 

regression lines for PPLS and CPPLS models (Fig. 2 and Fig. 3). Skewness was, 203 

however, still considerable for the 2007 predictions (Table 2, Fig. 2, upper left 204 

plot). 205 

Averaged over years, the RMSEP of the CPPLS models was reduced from 157 to 85 206 

kg ha-1.  207 

 208 

The amount of explained variance was overall high, ranging from 76 % to 94 % 209 

(Table 2).  210 
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4. Discussion 211 

 212 

 213 

All the PPLS prediction models for grain yield used in Part I of this study13 were 214 

improved by using season–specific weather data for correcting the NIR based 215 

models, as this reduced both RMSEP, SEP, bias and skewness. Least progress (none 216 

for bias) was observed when using the 2008 data for validation, most likely due to 217 

the high performance of the initial model, which gave little room for 218 

improvements.  219 

 220 

In spite of a distinct improvement in all other model diagnostics, skewness was still 221 

considerable in the 2007-validation, even with the CPPLS model (Fig. 3). We 222 

speculate that this could be explained, at least partly, by the size of the validation 223 

dataset. In 2007, only about half the number of validation samples was available 224 

compared with that of the other years, since only one experimental site was 225 

present in 2007.  226 

 227 

Overall, our the prediction results were better than those found in previous 228 

studies, e.g.26, 27. The present study demonstrates a feasible approach to meet the 229 

challenges often encountered under practical conditions, where models are applied 230 

for situations not reflected in their calibrations, such as future cropping seasons. 231 

 232 



 
 

13 
 

Considering the need for models which cope with such real life situations, there 233 

are surprisingly many studies which do not explain how their models tackle 234 

variations between years. In the literature on wheat grain yield prediction, a 235 

common validation approach is to run two nearby field experiments, using one for 236 

calibration and the other for validation of the prediction model, e.g.5, 8, 28-31. Such 237 

a validation regime does not take into account variations between years, thus 238 

leaving the model’s prediction ability of a future cropping season unknown.  239 

 240 

A study which did account for year to year variation was that of Lukina et al.32, 241 

who estimated winter wheat yield from spectral reflectance measurements during 242 

three years (1998, 1999 and 2000). As in our study, there were differences in 243 

measured yield pattern between years. When they calibrated a model to each year 244 

separately, there were some quite large shifts in model variables and predicting 245 

accuracy, pointing towards a need for some season-specific correction. In order to 246 

perform such a correction, Lukina et al.32 included cumulative growing degree days 247 

(GDD) from planting until radiometric measurement as an extra variable. This did 248 

not, however, lead to any significant improvement in the wheat yield predictions. 249 

 250 

Another study which tried to use GDD for model correction was that of Raun et 251 

al.33. They constructed a model for predicting winter wheat yields by combining 252 

radiometric measurements, performed at two different growth stages, with GDD 253 

cumulating between the two dates of measurement. When using the model with 254 

data from six locations across a 2-yr period, they reported a high degree of 255 

explained yield variance (83 %), but RMSE appeared to be large (as visually judged 256 
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from their plots). The real, predictive model performance was, however, difficult 257 

to evaluate, as only model calibrations were presented by Raun et al.33. 258 

 259 

How well a model fits a calibration data set does not reveal any information on 260 

how good the model performance will be for other data, i.e. for real predictions. In 261 

our study, we validated the model performances for one year strictly on data which 262 

were collected during other years. Such a validation belongs, however, to the 263 

exceptions, as many studies have been published without any validation procedure 264 

(e.g. Prasad et al.26) or with a cross-validation only (e.g. Pettersson and 265 

Eckersten34). As a result, it is not possible to evaluate the practical usefulness of 266 

such models, even when they are calibrated on data covering several years. 267 

 268 

Literature covering yield predictions based on radiometric measurements appears 269 

to be dominated by studies relying on vegetation indices (i.e. a simple algebraic 270 

operation on one or two wavelengths), e.g. 26, 27, 32-36. Historically, this approach 271 

was developed basically as a result of the very limited number of spectral bands 272 

available in the early days of remote sensing. An underlying assumption is that a 273 

vegetation index is more robust to spectral variation in time and space than are the 274 

raw reflectance data. In the first part of this study13, we showed that our PPLS 275 

models clearly outperformed models based on some common vegetation indices, 276 

even before we introduced the corrections presented here. Considering the present 277 

availability of instruments which cover a large number of spectral bands, we 278 

question the persisting use of such index-based approaches. 279 
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 280 

Weather data used in this study are available at stage Z87, after the measurements 281 

time of the NIR spectra, but early enough to make yield predictions well ahead of 282 

harvest. The availability of interpolated, and thus site-specific, weather data is 283 

increasing through the appearance of several internet-based services for the 284 

distribution of meteorological data. These new services contribute greatly towards 285 

the practicality of using aggregated weather variables along with spectral 286 

measurements.   287 
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5. Conclusion 288 

 289 

The combination of NIR reflectance data and aggregated weather data may 290 

substantially reduce the bias and skewness problems in yield prediction models. 291 

Reduction of these problems is one step further in the direction of being able to 292 

compute reliable prediction models of grain yield based on remotely sensed data, 293 

thus bringing the technique closer to practical use.  294 
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Table 1. Overview of the weather variables. 416 

Variable 

number 

Variable (phase1) Phenological 
phase1 

Unit Mean Range 

1 Temperature 1 °C 8.5 7.6 – 10.3 

2  Precipitation 1 mm 12.2 0.0 – 18.7 

3 Radiation 1 W·m-2 170.0 148.9 – 183.6 

4 Windspeed 1 m·s-1 1.1 0.8 – 1.3 

5 Humidity (P3) 1 % 59.4 54.0 – 70.0 

6 Evapotranspiration  1 mm 20.2 17.9 – 22.1 

7 Temperature 2 °C 11.9 9.3 –– 13.0 

8  Precipitation 2 mm 27.4 15.6 – 40.2 

9 Radiation 2 W·m-2 305.5 281.7 -358.3 

10 Windspeed 2 m·s-1 0.9 0.7 – 1.3 

11 Humidity (P3) 2 % 58.7 54.8 – 62.4 

12 Evapotranspiration  2 mm 36.4 32.7 – 46.2 

13 Temperature 3 °C 14.4 14.1 – 14.9 

14  Precipitation 3 mm 68.2 39.9 – 97.8 

15 Radiation 3 W·m-2 637.1 567.8 – 671.9 

16 Windspeed 3 m·s-1 0.7 0.5 – 0.8 

17 Humidity (P3) 3 % 60.7 57.8 – 64.2 

18 Evapotranspiration  3 mm 820 70.6 – 86.3 

19 Temperature 4 °C 15.5 14.6 – 16.5 

20 Precipitation 4 mm 113.7 62.2 – 154.3 

21 Radiation 4 W·m-2 385.3 321.4 – 456.8 

22 Windspeed 4 m·s-1 0.7 0.6 – 0.8 

23  Humidity 4 % 73.7 67.0 – 78.9 

24 Evapotranspiration 4 mm 57.4 52.1 – 66.4 

1According to the definition in section 2.3.  417 
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Table 2. Model diagnostics for the leave-year-out cross-validation: Root Mean 418 

Square Error of Prediction (RMSEP), bias, Standard Error of Performance (SEP), 419 

skewness1, P-values for the test of differences in prediction ability in the 420 

spectroscopic-only (PPLS) and the fusion models (CPPLS), explained variance (R2) 421 

and the number of CPPLS factors in each model. 422 

Diagnostic 

measure 
2007 

 
2008 

 
2009 

 
2010 

 PPLS CPPLS  PPLS CPPLS  PPLS CPPLS  PPLS CPPLS 

RMSEP 156 85  76 70  218 80  176 103 

Bias -89 -42  -14 -14  148 42  82 61 

SEP 128 74  74 69  160 68  156 83 

Skewness 1.98 1.87  0.59 0.54  0.38 0.23  0.30 0.18 

P-value <0.01  0.09  <0.01  <0.01 

R2 0.94  0.85  0.76  0.78 

Number of 

factors 
4  4  7  5 

1Third moment about the mean of the resiudals.  423 



 
 

23 
 

 424 

Figure 1. Principal Component Analysis (PCA) loadings for the 24 weather variables 425 

on the first (abscissa) and second (ordinate) PCA component. The data point labels 426 

correspond with the numbering in Table 1.  427 
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428 
Figure 2. Measured grain yield plotted against grain yield predicted with the 429 

spectroscopic PPLS models, using data from each of the years 2007-2010 for 430 

validation (validation year denoted in each subplot), respectively. Target lines 431 

(solid) have zero intercept and slope 1. Regression lines from PPLS (dotted) and 432 

CPPLS (dashed) prediction models are displayed in each subplot. 433 
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 435 

Figure 3. Measured grain yield plotted against grain yield predicted with the fusion 436 

CPPLS models, using data from each of the years 2007-2010 for validation 437 

(validation year denoted in each subplot), respectively. Target lines (solid) have 438 

zero intercept and slope 1. Regression lines from PPLS (dotted) and CPPLS (dashed) 439 

prediction models are displayed in each subplot. 440 
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