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Abstract

Along with an increasing population, both globally and locally, demands on
agriculture increase. A sustainable increase in cereal yields is particularly
focused and in this context, precision agriculture is becoming increasingly
important. Precision agriculture encompasses the use of present
technology to tailor the treatment of agricultural crops to time- and site-
specific conditions. Within the field of precision agriculture, prognosis of
cereal yields and cereal quality is an important topic. Such prognoses can
produce yield maps, which can be used to identify problem areas and to
make plans for the next cropping season. If the prognosis can be carried
out early in the season and at a sufficiently large scale, it can also be of
interest for the agricultural authorities. This thesis presents improvements
in the computation of prediction models for yield and protein in spring
wheat (Triticum aestivum L.) by means of spectroscopy and multivariate
data analysis contained in four papers. Paper | was a comparative study of
three spectrometers in terms of the instruments ability to give good
prediction models of grain yield and grain protein concentration in spring
wheat. In the period 2007-2010, seven field experiments were carried out
with altogether 976 plots of spring wheat. Spectra from all plots were
measured five times during the cropping season at Zadoks (Z) stages Z31,
759, 765, 7287 og 790. All plots were harvested individually and cereal
samples were analyzed for yield and protein in the laboratory. Z65 was the
most favourable time to take measurements for prediction of yield and
protein. The Powered Partial Least Squares method (PPLS) was used to
compute regression models between spectroscopic data and cereal
analysis. This method turned out to have strong ability for variable
selection, and in paper Il, we chose to perform a comparative study on

PPLS against other recent and established variable selection methods. The



study showed that variable selection had no effect on larger calibration
sets (> approx. 150 samples), whereas for a smaller dataset, variable
selection can potentially improve the predictive ability. PPLS showed an
advantage over the other methods in this regard. The objective of paper Il
was to assess the robustness of yield and protein prediction over several
sites and years, in order to compute a practically useful model that gives
consistent predictions under real-life situations. However, approximately
10 % of the dataset suffered from severe lodging and these plots
completely destroyed the predictive ability of the models. Hence, a
classification model was computed on the spectra with Partial Least
Squares Discriminant Analysis (PLS-DA), which was able to classify a
spectral measurement in the classes “lodging” or “standing crop”. After
removal of the lodged plots, spectra were conveyed to further analyses.
There were large bias and skewness problems in the model when validated
over several years and a single model comprising all years was impossible
to compute. However, the PPLS models performed significantly better than
traditional methods based on vegetation indices. In paper IV, the yield
prediction models of paper Ill were augmented with meteorological data.
The data fusion was performed with Canonical Powered Partial Least
Squares (CPPLS) and 3 of 4 models gave significantly improved predictive
ability compared with the models based on spectroscopic data alone.
Hence, we have shown that fusion of spectroscopic and meteorological
data can be a feasible way of computing practically useable yield

prediction models.
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Sammendrag

Sammen med en voksende befolkning bade nasjonalt og globalt gker
kravene til landbruket, spesielt i form av barekraftig gkning av
kornavlinger. | denne sammenhengen kommer presisjonsjordbruk til a fa
gkt betydning i arene som kommer. Presisjonsjordbruk innebaerer at man
bruker den til enhver tid tilgjengelige teknologi til a gjare tids- og
stedstilpasset behandling av jordbruksvekster. Innenfor presisjonsjordbruk
er beregning av gode prognoser for kornavling og -kvalitet en viktig
oppgave. Avlingskskart utarbeides fra slike prognoser og kan brukes til a
kartlegge problemomrader samt planlegge neste ars vekstsesong. Hvis man
kan beregne avlingsprognosene tidlig nok og i stor nok skala vil det ogsa
kunne ha interesse som beslutningsstatteverktgy pa myndighetsniva. Denne
avhandlingen presenterer forbedringer innen beregning av avlingsprognoser
ved hjelp av spektrometri og multivariat dataanalyse gjennom fire artikler.
Artikkel | presenterer en sammenlikenede studie av tre spektrometere sin
evne til a gi gode avlings- og proteinmodeller i varhvete (Triticum
aestivum L.). | lgpet av perioden 2007-2010 ble det anlagt til sammen 7
feltforsgk med i alt 976 ruter. Spektra fra disse rutene ble malt fem ganger
i hver sesong pa Zadoks (Z) stadier Z31, 259, 765, Z87 og 790. Alle ruter
ble tresket og kornprgvene ble analysert for avling og protein i
laboratorium. Z65 viste seg som det mest gunstige tidspunktet for
innsamling av data for avling- og proteinprognoser. Powered Partial Least
Squares (PPLS) ble valgt til a beregne regresjonsmodeller mellom
spektroskopiske data og avling og protein. Denne metoden viste seg a ha
sterke egenskaper innen variabelseleksjon. Derfor valgte vi i artikkel Il a
utfare en sammenliknende studie mellom PPLS og nyere samt etablerte
variabelseleksjonsmetoder. Vi fant at variabelseleksjon ikke har noen
postiv effekt i store datasett (> ca. 150 praver), men i mindre datasett kan

variabelseleksjon gi en signifikant forbedring i prediksjonsevnen og PPLS
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viste seg som den sterkeste metoden i denne sammenhengen. Artikkel IlI
tok sikte pa a evaluere robustheten til avlings- og proteinmodellene over
flere ar for kunne gi en praktisk brukbar modell som gir gode prediksjoner
under virkelige forhold. Ca. 10 % av det originale datasettet hadde
imidlertid legde som gdela prediksjonsmodellene fullstendig. Derfor ble
det beregnet en klassifikasjonsmodell med Partial Least Squares
Discriminant Analysis (PLS-DA) som kan klassifisere en maling i klassene
«legde» eller «staende vekst» kun ut fra spektral informasjon.
Klassifikasjonsmodellen ble kjort som et innledende steg til avlings- og
proteinprediksjonen. Det viste seg imidlertid at det ogsa var store
nivaforskjeller mellom ar, og en enkelt modell som dekket alle fire
sesonger (2007-2010) viste seg umulig a beregne. Likevel ga PPLS-
modellene signifikant bedre prediksjonsevne enn tradisjonelle modeller
basert pa vegetasjonsindekser. | artikkel IV ble avlingsmodellene fra tredje
artikkel utvidet med meteorologiske data. For a kombinere de
spektroskopiske og meteorologiske data ble Canonical Powered Partial
Least Squares (CPPLS) valgt til & beregne modellene. Ved a beregne
modeller med vaerdata inkludert ble 3 av 4 avlingsmodeller signifikant
forbedret og skjevheter i modellene ble betydelig redusert. Vi har dermed
vist at kombinasjon av vaerdata og spektroskopiske data er en praktisk

brukbar metode for a beregne avlingsprognoser.
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1. Introduction

1.1 Precision agriculture in cereal production

Demands on cereal production increase steadily and are mainly driven by
increased focus on environmental impact as well as the increasing global
need for cereal products. In order to increase agricultural yields in a
sustainable way, precision agriculture is an important subject. One widely
used definition of precision agriculture is to use the most suitable
technology to adjust the treatment of soil and crops to within-field
variation. The goal of this optimization is to increase the efficiency of the
input factors and thereby achieve better product quality with less
variation, improved economic payoff and reduced negative environmental

impact.

A crucial prerequisite for the utilization of technology in the above
described fashion is the availability of Global Navigtion Satellite System
(GNSS). Without the development of small, light and affordable GNSS
receivers with high geometrical accuracy, precision agriculture would not

be a feasible crop production tool.

To gather data about soil and crop in order to estimate relevant
agricultural information, various instruments and instrument platforms

have been used to optimize the production of cereals.

The best known and probably most technologically advanced branch of
precision agriculture is the site-specific application of fertilizer (e.g.
Lukina et al. 2001; Berntsen et al. 2006; Korsaeth et al. 2006; Reyniers et
al. 2006; Zillmann et al. 2006; Jorgensen et al. 2007; Sripada et al. 2007).



There are several commercially available systems for site-specfic
application of fertilizer, most of which gather data from optical
instruments to estimate the crop fertilizer requirements. The scientific
basis for such use of optical instruments is the relation between
chlorophyll content in the leaves and the nitrogen requirement of the
plant. The chlorophyll content in the leaves can be estimated by
measurements of relevant wavelengths of the electromagnetic spectrum
(e.g. Gitelson et al. 1996).

Estimation of soil and crop properties is another important branch of
precision agriculture. Predictions of properties such as grain yield, quality,
diseases and weeds can be input for a Geographical Information System
(GIS) in order to assist planning of future cropping seasons, as well as
establishing crop management zones according to heterogeneities in crop
and soil. Several studies have reported successful predictions of various
soil and plant variables. Hand-held electromagnetic instruments have been
used for the estimation of crop and soil properties (e.g. Korsaeth 2005;
Pettersson et al. 2006). Hand-held, airborne and even space-borne optical
instruments have been used to estimate plant properties at different
scales such as yield estimation from consumer-grade (Red Green Blue)
RGB-camera (e.g. Reyniers et al. 2004; Jensen et al. 2007), yield and
protein estimation from multi- and hyperspectral cameras (e.g. Hansen et
al. 2002; Basnyat et al. 2005; Liu et al. 2006; Pettersson et al. 2006;
Reyniers et al. 2006; Jensen et al. 2007; Xue et al. 2007; Feng et al. 2008),
detection of plant stress (e.g. Karimi et al. 2005; Behrens et al. 2007;
Jorgensen et al. 2007; Mirik et al. 2007), detection of cereal diseases (e.g.
Huang et al. 2007), application of pesticide (e.g. Berge et al. 2007) as well
as future prediction and forecasting of yields and quality (e.g. Liu et al.
2006; de Wit et al. 2007).



1.2 Current methods for prediction of plant properties

The predominant technique for prediction of plant properties appears to
be the analysis of measured plant canopy reflectance by means of various
spectroscopic instruments, both imaging and non-imaging. Two main ways
of dealing with reflectance data have been developed in recent decades.
Some studies are based on model inversion, which aims to reproduce the
radiation field that created the reflectance data by solving the Radiative
Transfer Equation (RTE) og using Kubelka-Munk theory (e.g. Atzberger
2004; Houborg et al. 2007). The solution of the radiation equations is
rather complex for crop canopies and this approach is rarely considered for
real-time applications. The other main branch in reflectance data analysis
is the statistical-empirical approach that utilizes two datasets, one for
calibrating a prediction model and another independent dataset to
validate the model. The generalization of such models is dependent on
how much variation is represented in the calibration and validation
datasets. Hence, this approach needs large datasets in order to give

models that can be generalized.

Originally developed in the field of remote sensing based on satellite
images with a limited number of wavelengths, vegetation indices have
found use in the topic of plant property prediction. A Vegetation Index (VI)
is a simple algebraic operation performed on a few (usually one to three)
wavelengths and the goal of this operation is to compute a new variable
that contains more information on the variables to be predicted (the
response). The most famous and widely used vegetation index is the
Normalized Difference Vegetation Index (NDVI, Rouse et al. 1974). Through
the years, numerous vegetation indices have been developed in order to
predict various plant properties. Examples of widely used indices are
Difference Vegetation Index (DVI, Jordan 1969), Green Normalized
Difference Vegetation Index (GNDVI, Gitelson et al. 1996), Green Ratio

3



Vegetation Index (GRVI, Tucker 1979), Modified Soil Adjusted Vegetation
Index (MSAVI, Qi et al. 1994), Red Edge Inflection Point (REIP, Guyot et al.
1988) and Derived Chlorophyll Concentration a and b Index (D-chl-ab,
Gitelson et al. 1996). Several studies compute one relevant vegetation
index, which serves as the input variable in a univariate linear regression
(LR), in order to compute the final prediction model for the plant property
of interest (e.g. grain yield, Wang et al. 2004; Moriondo et al. 2007). An
even more common approach is the use of several vegetation indices as
input to a Multiple Linear Regression (MLR) model to predict the response
(e.g. Behrens et al. 2006; Babar et al. 2007; Pettersson et al. 2007; Xue et
al. 2007). Regressions based on a latent variable structure like Partial
Least Squares (PLS) are not so common, but examples do exist (e.g.
Pettersson et al. 2006; Jensen et al. 2007). Even rarer is the use of multi-
way PLS regression (N-PLS), but Hansen et al. have reported successful
predictions of grain yield and grain protein concentration using N-PLS on

multi-temporal reflectance data (Hansen et al. 2002).

Despite the numerous studies on plant property prediction based on

reflectance data, there are still areas that lack scientific coverage.

The development of new instruments with high spectral resolution and
wide spectral range gives a lot more data than did the early instruments.
In order to extract as much information as possible from these
instruments, the full spectrum should be used as input for prediction
model computation. However, in many cases where hyperspectral
reflectance data with possibly thousands of wavelengths are collected,
only a very few of them are actually used for extracting useful information
(e.g. Behrens et al. 2006; Babar et al. 2007; Prasad et al. 2007). This
approach is possibly suboptimal because relevant information in the

measured spectra may be overlooked.



A common way to validate computed prediction models is the use of two
nearby field experiments in the same year. Data from one experiment is
used to calibrate the model, whilst data from the other is used to validate
the model (Wang et al. 2004; Zhao et al. 2005; Xue et al. 2007; Yang et al.
2008). Several studies report very high prediction accuracy, but the
generalization of such models is doubtful because seasonal variability due

to weather conditions and other season-specific factors are omitted.

1.3 Objectives

The objectives of the project were:

1. Compare some available spectroscopic instruments in terms of how well

they perform in the task of plant property prediction.

2. Compute operational and practically useful prediction models for grain

yield and grain quality.
4. Assess the robustness of such models.

3. Compare modern multivariate regression methods against traditional

vegetation index-based methods.



2. Materials and methods

2.1 Field experiments

Three field trials (Photo 1) were established in the seasons 2007-2010, with
two experiments at Apelsvoll research center and one at a nearby farm
(Hoff). The experiments had 18-20 replicate blocks (limited by space in the
field) and had 144-160 wheat plots each of size 2 m by 8 m. Every replicate
block received randomized applications of six levels of nitrogen (N)
fertilizer, corresponding to 0, 100, 125, 150, 175 and 200 kg nitrogen ha™.

Photo 1. An aerial view of the field experiment site A at Apelsvoll in 2008.

Plant protection (herbicides, fungicides and insecticides) was carried out
according to current agricultural practice. All sites were not present in all

years and the datasets comprise seven site-years of data with altogether



976 individually harvested, measured and analysed plots.

2.2 Instruments

Three instruments were used for data collection. A CropScan hand-held
instrument with 13 wavelengths (485 nm - 1650 nm), a FieldSpec3
hyperspectral point spectrometer with 2150 wavelengths (350 nm -

2500 nm) and an airborne hyperspectral line scanner (imaging instrument)
with 160 wavelengths (400 nm - 1000 nm). The two handheld instruments
were operated in parallel (Photo 2) in such a way that the viewing

geometries of the two were practically identical.

Photo 2. Operation of the CropScan and FieldSpec3 in parallel.



The airborne instrument was operated at 1000 m altitude and had a

geometrical resolution of 20 cm x 20 cm pixels on the ground.

2.3 Measurements

Spectroscopic measurements were performed five times during the
cropping season, at Zadoks (Z) stages Z31, 259, 265, Z87 and Z90 according
to the Zadoks decimal code (Zadoks et al. 1974). Wheat plots were
harvested and a grain sample was taken from each. All grain samples were
analyzed gravimetrically for moisture and grain yield and with a FOSS
Infratek grain analyzer for protein-, gluten- and starch concentrations as
well as the Zeleny number (e.g. Jirsa et al. 2008). Soil samples were taken

from every replicate block at all three sites.

Aggregated meteorological data were collected from the national yield
prognosis programme (Korsaeth et al. 2009) for the weather station at
Apelsvoll. The variables are short-wave radiation, precipitation, air
temperature (2 m), wind speed and relative humidity. Potential
evapotranspiration was calculated in accordance with Riley and Berentsen
(2009). The daily weather data were then aggregated within four
phenological phases: 1) sowing and seed emergence (Z00 to Z09), 2) leaf
development and tillering (Z10 to Z29), 3) stem elongation and
inflorescence emergence (230 to Z49), and 4) anthesis and ripening up to
hard dough (250 to Z87).



2.3 Data analysis

Preprocessing of the spectroscopic data as performed by Multiplicative
Scattering Correction (MSC, Isaksson et al. 1988) and differentiation by the
Savtizky-Golay algorithm (Savitzky et al. 1964).

Pre-treatment of the meteorological data was performed with Principal
Component Analysis (PCA). Two score vectors were extracted and used as

derived meteorological variables.

For the computation of regression models between spectroscopic data and
the response variables, we chose to use a recent extension of Partial Least
Squares (PLS, Wold et al. 1983), known as Powered Partial Least Squares
(Indahl 2005). This extension of PLS contains the traditional PLS solution
within a continuum of infinitely many solutions. The algorithm can be
directed to focus on predictors in the dataset that are highly correlated
with the response or on predictors that have high variance. This is
achieved through a reparameterization of the optimization criterion of PLS
and the introduction of a method-specific parameter y, which is limited to
values in the interval [0,1]. The PPLS reduces to regular PLS by setting the
y to 0.5, whereas y=0 makes PPLS focus exclusively on predictors with high
variance. Setting y=1 will direct the PPLS models to focus exclusively on
predictors with high correlation with the response. The y parameter can be
set directly or it can be optimized over a user-specified range limited

within the interval [0,1].

For analysis of models with several data types, such as spectroscopic and
meteorological data, another recent extension of PLS, Canonical Partial
Least Squares (CPLS, Indahl et al. 2009) was used. This extension enables
the PLS algorithm to incorporate information from additional response

variables. By optimization of the canonical correlation (rather than the



covariance) between the responses and the scores, the PLS solution is
rotated to fit the main response in the best possible way while sacrificing
some explanatory power of the additional responses This stands in contrast
to the multi-response PLS (PLS2), which seeks to predict all responses
equally well. The authors of CPLS encourage the combination of CPLS and
PPLS into Canonical Powered Partial Least Squares (CPPLS). Since PPLS is
used for analysis of the other models in this project, CPPLS was a natural

choice of method.

For variable selection purposes in paper Il, Backwards Variable Selection
for Partial Least Squares (BVSPLS, Pierna et al. 2009) and Forward
Stepwise Selection (FSS) is used in addition to PLS and PPLS. In paper I,
Nearest Neighbour (NN, Fix et al. 1989) is used to select calibration
samples. In paper I, the DUPLEX sample selection algorithm (Snee 1977) is

used for the generation of representative calibration data sets.

Several model diagnostics were used to evaluate the results: Coefficient of
Determination/explained variance (R?), Root Mean Square Error of
Prediction (RMSEP), bias, skewness (third moment about the mean of the
residuals). Tests of RMSEP were performed with a Chi-square test in the
sense of Indahl (2005), and testing of differences in predictive ability were
performed by Cross-Validated Analysis of Variance (CVANOVA, Cederkvist
et al. 2005)

10



3. Main results and discussion

3.1 Comparison of instruments (paper |)

The objective of paper | was to compare three available spectroscopic
instruments in terms of how well they can predict properties of spring
wheat. Collected data were used to compute PPLS regression models
between all of the six analyzed constituents in the grain samples (grain
yield, concentrations of protein, moisture, gluten and starch as well as the

Zeleny number).

Models for all six constituents were computed on five occasions during the
cropping season (only the 2007 data were present at this time). All models
showed the same pattern regarding predictive ability as a function of time
(Fig. 1). The most favourable time to perform spectroscopic measurements
for prediction of wheat properties seemed to be 265, where the explained
variance peaked for most models. This is in agreement with other reported

studies (e.g. Basnyat et al. 2004; Vicente-Serrano et al. 2006).

The five constituent variables protein, starch, gluten, moisture and Zeleny
number were highly intercorrelated (R?>0.85). Grain yield was less
correlated with the other variables (R?<0.70). Of the five other highly
correlated variables, protein is the most attractive for practical prediction
purposes because grain protein concentration is a critical measure of
cereal quality that is used for allocating grain to different uses (Pettersson
et al. 2006; Pettersson et al. 2007). Hence, we selected grain yield and

grain protein concentration for further analysis.
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For the grain yield case, the predictive abilities were at a high level for all
instruments, with a peak R? of 0.96 for HySpex, 0.96 for CropScan and 0.97
for the FieldSpec3. The causal relationship between spectroscopic
measurements and grain yield is largely due to the connection between the
N content in the plant and the chlorophyll concentration in the leaves,
which can be estimated by measurements of the spectral signature of the
canopy (e.g. Jensen et al. 2007). Since all instruments had detectors in the
spectral range of the chlorophyll absorption bands, the correlations with

grain yield were almost independent of instrument.

For grain protein concentration, the differences between instruments were
larger. The airborne instrument HySpex gave a peak R* of only 0.64,
whereas CropScan and FieldSpec3 gave a peak R? of 0.88 and 0.94,
respectively. Differences between the instruments become very clear in
the protein models when inspecting the regression coefficients of each
model. The FieldSpec3 instrument gave a model with non-zero regression
coefficients in several parts of the spectrum. The region around 600 nm to
800 nm and 1200 nm to 1300 nm seemed to be especially important. None
of the other instruments had detectors in the 1200 nm to 1300 nm spectral
range, which mostly explains the large difference in prediction accuracy
between the instruments. The causal relationship between spectroscopic
data and protein is far more complex than that for grain yield. It is readily
seen from the regression coefficients of the protein model and has also

been suggested by other authors (e.g. Jensen et al. 2007).
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Figure 1. Relations between measurements and predictions of the
validation-set data obtained with prediction model based measurements,
conducted at five development stages of spring wheat by means of two
hand-held radiometers, CropScan (filled bars) and FieldSpec3 (open bars)
and an airborne hyperspectral scanner (stage Z65 only, grey bars). Bars
with the same letter (within same day/stage) indicate non-significant
differences in model fit (p=0.05).

For most constituents and measurement times, FieldSpec3 gave the best

predictions (Fig. 1) and was hence selected as the instrument of choice for
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further research. Prediction accuracy for both yield and protein were at
least similar or better than results reported in the literature (e.g. Raun et
al. 2001; Hansen et al. 2002; Basnyat et al. 2004; Liu et al. 2006;
Pettersson et al. 2006; Xavier et al. 2006; Xue et al. 2007).

During analysis of the FieldSpec3 data, an interesting feature of the PPLS
algorithm appeared. It seemed that by choosing a y value near to 1
(i.e.>0.99) and truncating the loading weights less than 2.2204*10™" (the
relative numeric precision of MATLAB) as suggested by Indahl (2005), the
predictor variable set could be reduced to very few wavelengths whilst still
retaining most of the prediction accuracy for all constituents. Hence,
models with as few predictors as possible were computed. The grain yield
model was thus reduced to 3 predictors with R?=0.95 and the grain protein
concentration model was reduced to 5 predictors with R?=0.90. Hence, the
model complexity was reduced from 975 predictors to 3 and 5 predictors
for grain yield and grain protein concentration, respectively. From this
result, the idea arose to carry out a comparative study on PPLS against
other methods for variable selection arose. This study was reported in

paper Il.

3.2 variable selection (paper Il)

Three independent NIR datasets (fat/feed, fiber/maize and protein/maize)
collected in the laboratory at the Waloon Center for Agricultural Reseasch
(CRA-W) were used as testing grounds for PPLS as a variable selection
method. The datasets are described in Pierna et al. (2009). We chose to
test another recently suggested variable selection method, Backward
Variable Selection for Partial Least Squares (BVSPLS), proposed by Pierna

et al. (2009), in addition to PPLS. The reference methods were Forward
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Stepwise Selection (FSS) and full spectrum Partial Least Squares (PLS).
There are many examples of studies in variable selection (e.g. Chong et al.
2005; Anderssen et al. 2006; Andersen et al. 2010), but literature is scarce
regarding studies on the recent methods PPLS and BVSPLS.

The datasets were split into validation sets and calibration sets. Most of
the samples were put in the validation set, whilst 19 calibration sets of
different size were selected, ranging from 20 samples to 200 samples with
increments of 10 samples. Prediction models were made with all four

methods for all 19 calibration sets and for all three main NIR datasets.

The results showed that variable selection had no effect in situations with
calibration sets larger than 150 samples. All methods suffered from some
degradation of the predictive ability as the calibration set size decreased.
However, the variable selection methods, and especially PPLS, had less
degradation of the prediction accuracy than that found using full spectrum
PLS.

Three reasons for this behaviour were hypothesized:

1. Some predictor variables have only remote relevance to the response

variable.

2. The signal to noise ratio (5/N) in some predictor variables may be so low

that the elimination of these variables improves the model.

3. Some predictor variables may have a non-linear relationship to the
response. Thus, elimination of these variables may give more parsimonious

and linear prediction models and hence improve their prediction abilities.

Reference samples are often costly to obtain and a reduction of the
number of calibration samples can potentially lead to economic savings.

Variable selection techniques are one possible way of reducing the
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calibration sample requirement whilst maintaining the predictive ability of

the model.

In order to investigate the selection of predictors of each method, the
selection frequencies of every predictor were computed and compared.
Both FSS and BVSPLS had rather random selection patterns, whereas PPLS
gave a more consistent selection of variables (i.e. selecting the same
variable set for every size of calibration set, Fig. 2). Hence, the PPLS

models were by far the easiest models to interpret.
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Figure 2. The number of times each variable were selected in the 19 fat
prediction models plotted against the wavelength for Powered Partial
Least Square (PPLS), Forward Stepwise Selection (FSS) and Backwards
Variable Selection for PLS (BVSPLS). Mean spectrum (upper plot) is
computed from the validation set for comparison.
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3.3 Robustness of predictions of grain yield and grain
protein (paper ll)

Since the models computed in the instrument comparison in paper | were
based on only one season of data, the prediction errors in a future year are
completely unknown. In order to test the robustness of the prediction
models of grain yield and grain protein concentration, more data were
needed. Hence, several datasets were collected in the same fashion as in
paper | over the period 2007-2010 at three different sites, comprising 7
site-years of data with altogether 976 individually measured, harvested

and laboratory analyzed plots of spring wheat.

It was soon evident that some of the data points were impossible to fit in
any of the prediction models. The reason was quite severe lodging in about
10% of the data. Lodging changes the spectral signature of the wheat
plants considerably and the relation between spectroscopic measurements
and wheat properties is changed compared to measurements performed on
a standing crop. Lodging is often encountered in practice and a prediction
model must be able to handle such situations in order to be usable. Hence,
the spectroscopic datasets were classified with a PLS-DA model into the
classes “lodging” and “standing crop” based on the spectroscopic
measurements alone. The total accuracy of the PLS-DA model was 98.3 %,
so it was in practice possible to correctly classify a measurement as
“lodging” or “standing crop” before that measurement entered the
prediction model. Literature is scarce on studies that classify lodging in
cereals, but spectroscopic data have been used in numerous studies to
classify crop species with high accuracy (e.g. Congalton 1991; Thenkabail
et al. 2004; Yang et al. 2004).
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As in paper |, PPLS was used to compute regression models between
spectroscopic data (lodging measurements removed with the classification
model) and wheat sample properties. Since the objective of the study was
to assess the robustness of the models, several validation strategies were
chosen. Complete results from all the validation strategies are displayed in
paper lll. For evaluation of the practical usefulness of such prediction
models, the leave-year-out cross-validation strategy (Fig. 3) is probably
the most interesting. The explained variance for grain yield was high for all
models (R?=0.76 to R?=0.94), whereas the values for the grain protein
concentration model were lower, 0.18 in the worst case. It was hence
clear that validation of the grain protein concentration model was not
possible with these data. This stands in contrast to other studies reported
in the literature, which often show high levels of correlation for both grain
yield and grain protein concentration (e.g. Hansen et al. 2002; Wang et al.
2004; Zhao et al. 2005; Reyniers et al. 2006; Xue et al. 2007; Yang et al.
2008). Common to all these studies is the validation of model with data
from the same year as the calibration data. Hence, the variance
introduced by season-specific variables such as weather conditions and
interactions between weather conditions and soil properties, are not
accounted for. When such models were validated on a multi-season and
multi-site dataset as in paper lll, these problems become visible. Despite
the high amount of explained variance of the grain yield predictions, all
models except the 2008 validation suffered from severe bias and skewness.
This became clearer when values for RMSEP, bias and skewness were
inspected, since the R? value are practically independent of bias. The bias

and skewness problems raise the need for further investigations of the
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grain yield model.
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Figure 3. Measured grain yield plotted against grain yield predicted with
the spectroscopic PPLS models, using data from each of the years 2007-
2010 for validation (validation year denoted in each subplot), respectively.
Target lines (solid) have zero intercept and slope 1. Regression lines from
PPLS (dotted) and CPPLS (dashed) prediction models are displayed in each
subplot.

The grain protein concentration model gave very poor predictions except
for the computations based on one year only (Paper I). Since no external
data exist at the plot-level, the statistical precision of this model cannot
be improved. Hence, the grain protein concentration model was not

subjected to further analysis based on the current spectroscopic dataset.

The grain yield model was compared to traditional yield estimation

procedures based on four univariate linear regressions on four widely used
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vegetation indices (NDVI, MSAVI, REIP and D-clh-ab). These indices were

used to

predict the grain yield data, and all of them failed in this task.

Explained variances (R?) were between 0.13 to 0.55, and both NDVI and

REIP suffered from severe saturation at yield levels higher than 450 g m™

(Fig. 4).
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Figure 4. Measured grain yield (X-axis) plotted against predicted
grain yield (Y-axis). Predictions were based on univariate least
squares regressions between yield data and vegetation indices
derived from all spectral measurements. All target lines have slope
1 and zero intercept. The indices used were Normalized Difference
Vegetation Index (NDVI), Modified Soil Adjusted Vegetation Index
(MSAVI), Red Edge Inflection Point (REIP) and D-chl-ab.
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Despite the bias and skewness problems, the PPLS models clearly

outperformed the traditional univariate method.

3.4 Fusion of spectroscopic data and meteorological

data (paper 1V)

In order to further improve the yield prediction model of paper lll, the
spectroscopic dataset was augmented to encompass also aggregated
meteorological data. The weather data comprised 24 aggregated variables,
which were reduced to 2 derived variables by the computation of PCA
scores. These two derived variables were used as additional responses in a
CPPLS model. The CPPLS model (Fig. 5) were cross-validated in the same
way as the PPLS model in paper lll, and the predictions were improved
significantly for all years except 2008 according to the CVANOVA

computations.
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Figure 5. Measured grain yield plotted against grain yield predicted with
the fusion CPPLS models, using data from each of the years 2007-2010 for
validation (validation year denoted in each subplot), respectively. Target
lines (solid) have zero intercept and slope 1. Regression lines from PPLS
(dotted) and CPPLS (dashed) prediction models are displayed in each
subplot.

Despite the fact that the predictions were significantly improved by the
inclusion of additional data, there was still considerable skewness in the
2007 model (Fig. 5). Since weather variation is included in the CPPLS
model, the skewness must have other causes. One cause for this could
partly be that 2007 is the only year in which only experimental site was
present. All the other years had two sites represented. Further research is

needed to investigate this remaining skewness.
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3. Main conclusions and outlook

Of the three instruments used, FieldSpec3 generated the most useful data
for computation of prediction models for grain yield and grain protein

concentration.

The PPLS methodology had very good ability to select relevant predictors
and discard irrelevant predictors from spectroscopic data. This feature was
especially pronounced in smaller calibration sets where it outperformed
both FSS and full spectrum PLS. Moreover, PPLS gave the most easily
interpretable models. The ability to calibrate models on small datasets is
important because the need for costly reference sampling may be reduced.
Future research on this topic should be augmented to the use of other data

types rather than using spectroscopic data only.

Lodging can be classified into the two classes “lodging” and “standing
crop” by means of a two-class PLS-DA model based on spectroscopic data
alone. This is an important feature because measurements of crop lodging
are not possible to predict reliably with the PPLS or CPPLS models. Hence,
there is a need for automatic detection of measurements with lodging
before they enter the actual prediction model. The PLS-DA model fulfilled
this task, but further research on lodging classification requires a larger
dataset and a comparative study should be performed on several
classification methods such as k-Nearest Neighbour (KNN, Fix et al. 1989),
Soft Independent Modeling of Class Analogy (SIMCA, Wold 1976), and
Support Vector Machine (SVM, Cortes et al. 1995).

Multivariate grain yield prediction models clearly outperform the

traditional prediction methods.
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Fusion of spectroscopic data and aggregated meteorological variables by
means of CPPLS, increases the robustness of the grain yield prediction
models significantly, and is one step further towards such prediction
models becoming a useful tool for the agricultural community. However,
further research in this field is required and should focus on the inclusion
of more prediction data and looking for other possible methodologies to
perform the data fusion. A first step could be a comparative study on data
fusion methods using the same data as presented here. Comparisons of the
recent CPPLS could be performed against more established methods such
as Hierarchical Principal Component Analysis (HPCA), Consensus PCA
(CPCA), Hierarchical Partial Least Squares (HPLS) or Multiblock Partial
Least Squares (MBPLS). All of these methods are described by Westerhuis
et. al (1998).
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Three radiometric instruments were compared as tools for predicting crop yield and grain quality: a CropScan instrument with 13
photodiodes (485-1650nm), a 2150-channel FieldSpec3 instrument (350-2500nm) and a HySpex airborne hyperspectral line scanner
with 160 image wavelength layers (400-1000nm). The first two instruments are point spectroradiometers, while the HySpex is an imag-
ing instrument with a pixel size of 20x20cm on the ground when the instrument is used at an altitude of 1000m. A spring wheat field
experiment of 160 plots was measured five times during the 2007 growing season. At harvest, grain yield was measured on each plot
and analysed for moisture, protein, gluten, starch concentration and Zeleny sedimentation value. A recent statistical method, powered
partial least squares [PPLS), was used for modelling and variable selection. The predictive performance of the calibrated models was
very good, with coefficients of determination for the validation data lrzpred] reaching 0.97 and 0.94 for grain yield and grain protein con-
centration, respectively. The predictions [rzpred] of the other grain quality variables were in the range of 0.88-0.92. The airborne HySpex
did not perform as well as the other instruments, most likely due to its limited spectral range. FieldSpec3 was significantly better than
CropScanin most cases, probably as the former instrument has wider spectral range, a larger number of wavelengths and higher spec-
tral resolution than the latter. A PPLS variable selection was carried out, which reduced the analysed data set from 975 wavelengths
to 3-5 wavelengths. Although the number of retained variables was very low, the reduced models still had almost the same predictive
ability as the PPLS models based on the full data set. The obtained simplicity of the calibration models indicates that a very small and
lightweight instrument could be suitable for crop monitoring. Lightweight instruments are crucial for the utilisation of small unmanned
aerial vehicles (UAVs). UAV technology is evolving quickly and small, cost effective UAV platforms are already available on the market.
The concept of combining a UAV with a specifically designed instrument could provide an extremely versatile and cost effective system
for crop monitoring.
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Introduction

The analysis of spectral reflectance measurements, in general,
and near infrared spectral reflectance, in particular, has been
used in a variety of fields in the recent decades, for example,
in geology, chemistry, biology, agriculture and archaeology.
In agriculture, remote sensing has several applications that
are closely linked to the field of precision agriculture. The
most widespread applications are monitoring of crop nitrogen
status,' yield forecasting,“® quality prediction ®’ disease
detection® and monitoring plant stress.’

Several types of instrument have been used for remote
sensing applications. The instrument platforms span from
hand-held via airborne to space-borne and the corresponding
viewing distances span from 10°m to 10°m. The spectral range
can be as small as 1 or just a few wavelengths,''" or it may
cover the whole range from ultraviolet radiation via visible light
and well into the infrared zone of the electromagnetic spec-
trum."? Detectors vary from single-channel cameras and radi-
ometers to hyperspectral cameras and spectroradiometers.

Different combinations of instrument platform, spectral
range, spectral resolution and spatial resolution have different
pros and cons, depending on the objective of the measurement.
It is not possible, however, to determine beforehand which
approach is optimum. Hence, there is a need for comparative
studies. Many studies have been aimed at comparing two or
more instruments,'®™* but due to the ongoing development
of new and improved instruments, new comparative studies
are needed.

Literature is scarce with respect to comparative studies that
involve several instruments with different spectral resolutions
and data spacings. Reyniers et al."* included such instruments,
but they did not discuss the reasons for the differences in
predictive performance between the airborne and the ground-
based systems tested.

In this study, three instruments were compared: two hand-
held spectroradiometer instruments measuring at a point
and one airborne imaging instrument. The two hand-held
instruments represent completely different approaches to
spectral reflectance measurement. The simplest instrument,
CropScan, is a proven instrument that has been used for crop
monitoring for many years,?'® while the newer FieldSpec3
is a continuous-range, scientific-grade spectroradiometer
with wide spectral range, dense data spacing and high spec-
tral resolution. The airborne instrument is a relatively new
imaging hyperspectral line-scanner with high spatial and
spectral resolution but with a more limited spectral range
than the two hand-held instruments.

The operational characteristics of each instrument type
are quite different. The point spectroradiometers can deliver
spectra with high spectral resolution and dense data spacing,
but at a quite slow pace and only in close proximity to the
sample. On the other hand, the airborne system may produce
spectra with almost the same spectral resolution and data
spacing but at a much higher temporal frequency and at a
greater distance from the sample.

The instruments were compared in terms of their ability
to predict grain yield and various grain quality variables of
spring wheat. The rationale for this was that yield and quality
prediction is an area where spectral reflectance is widely used.
Moreover, the oldest instrument used in the current study
(CropScan) was shown by Hansen et al.* to be particularly
suited for this purpose in spring wheat. The CropScan instru-
ment used in the present study was equipped with similar
photodiodes to those in the study by Hansen et al.*

An important part of spectral reflectance analysis is the
process of converting the acquired spectral data into models
suitable for predicting selected properties. In the present study,
we have, for three reasons, chosen to use variable selection
in order to achieve as simple models as possible. First, a
simple model with a low number of predictors can use input
data from an inexpensive, simple and lightweight instrument.
Second, it is easier to interpret a simple model than a model
using the full spectrum of a hyperspectral instrument. Last, by
removing unimportant predictor variables, the signal-to-noise
ratio [SNRJ in the data increases and the resulting model will
be potentially more robust. In this study, we use the inverse
variation coefficient as a measure of SNR.

On the other hand, retaining the full spectrum may be an
advantage for various model diagnostics and outlier detec-
tion methods. However, in the present study we have chosen
to emphasise the model [and hence instrument] simplicity. A
simple instrument may weigh less than a more complicated
one. Lightness of weight is a critical factor for the use of such
instruments in small unmanned aerial vehicles (UAVs). The
UAVs have great potential for acting as instrument carriers in
a multitude of small-scale remote sensing applications. This
potential has been increased further by the recent development
of programmable, autonomous flight controllers for use in heli-
copters.’ The specification of a small and affordable remote
sensing instrument and relevant prediction models will bring
UAV-based crop management closer to practical usefulness.

Many approaches have beentried in orderto select the most
important variables for various remote sensing applications.
The most common approaches are formation of traditional
vegetation indices,!7-20 inspection of correlation matrices,'?
analysis of variation (ANOVA)?" and various forms of stepwise
linear regression.'?"22 |n hyperspectral instruments, dense
data spacing leads to many highly correlated variables in the
collected spectra. Some of these variables may have weak
or even no correlation to the response variable. The use of
traditional statistical methods with such data can poten-
tially lead to problems.? There is also a risk that a data set
with large spectral range and possibly thousands of wave-
lengths will contain a lot of information that is not relevant
to the reference variable of interest. This fact suggests that
methods based on latent variable structures should be used,
such as members of the partial least squares (PLS) family
of regression methods.? The relatively new powered partial
least squares (PPLS) method seems especially promising



S.l. @vergaard et al., J. Near Infrared Spectrosc. 18, 247-261 (2010)

249 W

in this context, due to its strong ability to weight variables
that possess predictive ability with respect to the response
variables.?

For the current study, two main objectives were stated. The
first objective was to perform a comparative study of instru-
ments in order to address how well each instrument can
predict yield and quality variables. The second objective was
to perform a variable selection to ensure that prediction is
carried out with the simplest possible subset of the data.

Materials and methods

A comparison between two hand-held spectroradiometers
(CropScan and FieldSpec3) and an airborne hyperspectral
scanner (HySpex] was performed in 2007 in an ongoing field
trial with spring wheat (Triticum aestivum L., var. “Bjarne”] in
central SE Norway, at Bioforsk Apelsvoll arable crops division.

Field experiment

Apelsvoll (60° 42”7 N, 10° 51”7 E, 250m above sea level] has a
mean annual precipitation of 600 mm, a mean annual temper-
ature of 3.6°C and a mean growing season (May-September)
temperature of 12°C. The experimental area, which slopes
3-6% eastwards, is on an imperfectly drained brown earth
(Gleyed melanic brunisoil, Canada Soil Survey?®) with
predominantly loam and silty sand textures.

The field trial was established in 2006, on an area of
26 x160 m, which was divided into 20 replicate blocks (Figure
1). Six nitrogen level treatments were represented within
each block: Okg, 100kg, 125kg, 150kg, 175kg and 200 kg
nitrogen ha™ [designated NO, N100, N125, N150, N175 and
N200, respectively). The border plots on either side of the
randomised plots received 100kg nitrogenha™, thus giving
three plots with N100 per replicate block. Plant protection
(herbicides, fungicides and insecticides) was carried out
according to the current practice.

Randomized
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treatments
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Figure 1. Experiment layout and sampling locations. Overall experiment layout to the left and one example plot enlarged to the right.
Measurement areas for the respective instruments are shown with legends on the right-hand plot.
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Table 1. Instrument specifications.

Specification CropScan FieldSpec3 HySpex
Number of variables 13 2150 160
Spectral range (nm) 485-1650 350-2500 400-100
Spectral resolution (nm) 10-12 2.8-12 10
Data spacing (nm) 1-700 1.4-2.0 3.7
Imager No No Yes

Reflectance calibration method Continouous dual-optic

Spectralon panel Post processing software

Field of view (°) 28

25 17 (total image area)

Pixel size on the ground Diameter 0.4-0.6m

Diameter 0.4-0.6m 20x20cm throughout the whole

image area
Number of pixels 1 1 1600 across flight track
Operating altitude (m) ~1.8 ~1.8 1000

Instruments

For a summary of instrument specifications, see Table 1. All
spectral resolutions are manufacturer specifications given in
the sense of full width at half maximum (FWHM].

CropScan

The hand-held device CropScan (version MSR16R; CropScan
Inc., USA, www.cropscan.com) has the feature of dual optics
which measure simultaneously both incoming irradiance and
sample radiance (upwards and downwards pointing detectors)
in all 13 wavelengths.

FieldSpec3

FieldSpec3 [version 3; Analytical Spectral Devices Inc., USA,
www.asdi.com) is a hand-held device. It does not possess dual
optics and calibration was performed on a Spectralon panel
provided and calibrated by LabSphere (LabSphere Inc, USA,
www.labsphere.com).

HySpex

The airborne device used in this study is a hyperspectral line
scanner (HySpex VNIR-1600; Norsk Elektro Optikk AS, Norway,
www.neo.no). Data from this instrument is calibrated to
reflectance through extensive software processing, explained
in the next section.

Measurements

Canopy radiance spectra were measured with the two hand-
held radiometers, on all 160 plots, five times during the growth
season in 2007: 11 June, 3 July, 16 July, 21 August and 28
August. These dates coincided with growth stages 731, Z59,
765, 787 and 790, respectively, given by Zadoks et al.?® The two
hand-held spectroradiometers were mounted on the same
pole and operated in parallel. The measurements were taken
as near to simultaneously as possible. Two replicate measure-
ments were made on each sample plot and with each radi-
ometer. The pole must be kept in constant orientation with

respect to the horizon and the sun? in order to achieve the
most stable reflectance measurements. To achieve this, we
used a pole-mounted spirit level of the same type as used
in land surveying equipment and by visually aiming the pole
towards the instantaneous position of the sun.

The FieldSpec3 was calibrated after measuring each
replicate block in the field experiment, so that the time
between each calibration did not exceed five minutes. The
measuring optic of the instruments were kept constant at
1.8 m above the ground, which corresponds to a spot diameter
of approximately 0.4-0.6m for the two hand-held spectro-
radiometers (Figure 1). At Z31, the spot diameter was close
to 0.6m, while at harvest (Z90) the diameter had shrunk to
0.4m, due to higher plant canopy. Hyperspectral image data
were recorded on 16 July (Z65), at the same time as the spec-
troradiometer measurements. During data collection, the
instrument was mounted in a Piper PA31-350 Chieftain aero-
plane flown at 1000 m altitude. The HySpex instrument was
co-mounted with an airborne laser scanner (Leica ALS50-11;
Leica Geosystems AG, Switzerland, www.leica-geosystems.
com), which provided data to create a digital surface model
(DSM) with accuracy <30cm of the HySpex data recording
area. The instantaneous position and attitude (i.e. the spatial
orientation with respect to an Earth-fixed global coordinate
system) of the aircraft was provided by a real time kinematic
(RTK) global positioning system (GPS) receiver (NovAtel
OEM4; NovAtel Inc., Canada, www.novatel.com] feeding
an inertial measurement unit (IMU] (Honeywell Micro IRS
IMU; Honeywell Inc., USA, www.honeywell.com] with posi-
tion data. Together, the GPS and IMU provide dynamic posi-
tion accuracy of Tcm+1ppm (i.e. 1cm absolute accuracy
plus 1 ppm of the distance between the aeroplane and the
GPS reference station) and attitude accuracy at 0.1 degree
level. Operation and set-up of the aeroplane, instrument and
positioning equipment was performed by TerraTec (TerraTec
AS, Norway, www.terratec.no). A combined orthorectification
and georeferencing software, parametric geocoding and
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orthorectification for airborne optical scanner data (PARGE),
was used to correct the images obtained by the instrument
(PARGE; Remote Sensing Applications, Switzerland, www.
rese.ch]. The DSM, position and attitude data were used as
input to PARGE for orthorectification and georeferencing of
the HySpex images. Further, atmospheric correction was
performed using the ATCOR-4 software (ATCOR-4; Remote
Sensing Applications, Switzerland, www.rese.ch]. The same
software also allowed for reflectance processing of the radi-
ance images. This processing is based on a MODTRAN-
derived (MODerate resolution atmospheric TRANsmission),28
database of typical solar geometries and flight altitudes,
where the solution is interpolated for the actual data
recording geometry, 2 thus excluding the need for a cali-
bration panel on the ground. An image excerpt of nine pixels
from the central area of each plot was extracted and aver-
aged. The nine pixels were chosen in order to reduce image
edge-effects on the plot borders. Averaging was performed to
account for within-plot spectral variation. At maturity (Z90), a
plot harvester was used to harvest 6.5x1.5m plots between
the sprayer tramlines (Figure 1). The grain samples were
analysed gravimetrically for dry matter (DM] and moisture.
Zeleny sedimentation value and concentrations of protein,
starch and gluten were analysed by near-infrared transmis-
sion (Infratec 1241 Grain Analyzer; FOSS Tecator, Denmark,
www.foss.dk]. All reference variables were measured on a
dry weight basis. The Infratec calibration model had serial
number WH182126. This model is based on artificial neural
network (ANNJ calibrations performed by the instrument
manufacturer. For an overview of the reference variables
measured see Table 2.

Data treatment

All data analyses were carried out using the software package
MATLAB (version R2007b; MathWorks Inc., USA, www.math-
works.com). Data from the FieldSpec3 and Hyspex were
treated with the standard multiplicative scattering correction
(MSC) algorithm 332 Differentiation and data smoothing were
carried out with the Savitzky-Golay algorithm® (differentia-
tion order 1, polynomial order 2, window width 15). The more
discrete nature of the CropScan data did not allow for these
pre-treatments. All spectral data sets were mean centred.
After preprocessing, a good multivariate calibration could

be obtained by a smaller number of latent variables than
without MSC and differentiation (FieldSpec3 and HySpex
data). Additionally, multivariate calibrations were performed
using undifferentiated data from the FieldSpec3 and HySpex.
The regression coefficients resulting from these calibrations
allowed for a better visual comparison between instruments
in terms of important wavelengths (i.e. peaks in regression
coefficients). In the present study, the word peak is used for
a sharp, local minimum/maximum in regression coefficients.
Moreover, the regression coefficients were used as approxi-
mations for “integrated values” of the set of coefficients origi-
nating from the differentiated data, thus allowing easier inter-
pretation of peaks in absorption/reflection.

For HySpex, all the spectra had a considerable amount of
noise in the upper part of the range, above 850nm, and were
discarded from further analysis. Preliminary tests revealed
that all the FieldSpec3 data from the spectral region above
1325nm also contained much noise (SNR <~2]. All prediction
models improved when data from the highest spectral range
was removed. Consequently, the range above 1325nm was
omitted.

Calibration sample selection

All data sets (160 samples) were divided equally between
a calibration set and a validation set. In order to make the
two data sets as equal as possible, nearest neighbour (NN)
clustering, based on the ideas of Fix and Hodges,* was used.
Using the algorithm, 80 pairs (clusters) were created for each
dataset (containing 160 samples). The distance calculations
were performed on score values from a principal compo-
nent transformation of the original data matrix to reduce the
computational load of the algorithm. One sample from each
pair (cluster] was then selected for the calibration set, whereas
the remaining samples were used in the validation set.

Model building and selection

To create models relating the reflectance data (X) to the refer-
ence variables (y), the PPLS algorithm® was used. PPLS is a
generalisation of the traditional PLS1 algorithm.?* The algo-
rithm is relatively new, but has proven to be a useful tool for
extracting relevant information from NIR spectra, thus making
it suitable for our application. The selection of the numbers
of PPLS components was performed as a conservative

Table 2. Descriptive statistics of the measured reference variables, comprising minimum, maximum and mean values, standard error (SE)

and assumed reference standard error (SEgg).

Variable Minimum Mean Maximum SE SErer
Grain yield (gm™2) 1571 638 812 172 5.0
Moisture (g 100g™") 14.3 18.6 24.4 2.62 0.13
Protein (g100g™) 10.0 12.8 16.7 1.53 0.15
Starch (g100g7") 63.9 65.9 68.3 1.06 1.0
Gluten (g 10097} 19.4 30.9 40.2 5.28 1.5
Zeleny (-] 28.5 42.6 65.0 1.3 5.0
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chi-squared test. One major difference between PPLS and PLS
is the introduction of the control parameter ~, which has the
ability to direct the focus of the PPLS algorithm. A ~ value of
0.5 degenerates PPLS to the PLS solution, whereas choosing
values close to unity, the algorithm focuses almost exclusively
on the predictors with strong predictive ability. Values below
0.5 make the algorithm focus on predictors with high variance.
When using the PPLS algorithm for modelling, the ~ param-
eter was optimised with golden section search and parabolic
interpolation. To determine the significance of differences
between prediction errors, chi-squared testing was performed
in accordance with Indahl.?® The PPLS algorithm was also
used for variable selection.

Creating simple multiple least squares
regression models: an alternative approach

In the sequence described above, a complex method relating
reflectance data to reference variables is described. By using
multivariate methods on the entire spectra, the method
aims to explore all information contained in the spectral
measurement.

As an alternative to the complex method above, we wanted
to test whether it would be possible to achieve similar results
by simply performing a variable selection [i.e. pinpointing
the three to five wavelengths which contain most of the
information in the data) and applying MLR on the retained
variables. Variable selections based on PPLS models
between FieldSpec3 data and the reference variables were
carried out. All PPLS models from Z65 were run with n=1,
which corresponds to variable selection based on correla-
tion only. For easier interpretability of the selected variables,
all models in this section were run on the undifferentiated
spectral data. The wavelengths that had loading weights
smaller than the relative floating point accuracy in Matlab
li.e. 107'%) were discarded from the computation, as proposed
by Indahl.Z The remaining variables were used as input to
an MLR modelling procedure. As with previous models, the
regression coefficients were calculated with a calibration
set (50% of the samples) and validated with a validation set
(the other 50% of the samples). The r? coefficient for each
model was computed and reported along with the selected

wavelengths of each model. All regression coefficients were
tested at 95% significance level.

Results

The measured reference variables were intercorrelated (Table
3), particularly protein concentration, starch concentration,
gluten concentration and Zeleny sedimentation value. The
starch concentration component was highly negatively corre-
lated with all the other variables. The weakest correlation
was found between grain yield and the Zeleny sedimentation
value. The experimental error, expressed as the coefficient of
variation (CV) for the N100 plots of each replicate block, was
low (CV < 8.5%].

Shortly after heading of the spring wheat (Z65), radiometric
measurements were performed with all the three instruments.
Strongest relations between validation set predictions and
reference measurements were found when using data obtained
with the hand-held instruments (Figure 2, Table 4). The method
based on airborne data acquisition yielded overall the poorest
results, except for the prediction of grain yield and moisture,
which did not differ between instruments (Tables 4 and 5).

The reference variables were generally predicted best when
using the models developed using the data from the FieldSpec3
(Figure 2 and Table 5), and the predictions were significantly
better at Z65 for protein, starch and gluten concentration and
for Zeleny sedimentation value (Figure 2 and Table 5). The
CropScan models gave significantly superior predictions of the
same variables relative to the HySpex models (Figure 2 and
Table 5). The model performances did not differ significantly
between any of the three instruments for grain yield and mois-
ture at Z65 (Figure 2 and Table 5).

The models derived from FieldSpec3 and HySpex data gave
high ~ values (Table 4). The models fitted to the CropScan data
differed, giving~ values equal or close to 0.50. The regression
models derived from the 13-wavelength CropScan instru-
ment gained very little predictive ability when using more
than two PPLS components, unlike the models derived from
the hyperspectral instruments (FieldSpec3 and HySpex). The
latter could, in some cases, benefit from up to four and three

Table 3. Correlation matrix (r values) for all combinations of the reference variables.

Variable Protein Starch Gluten Zeleny Moisture Grain yield
(gg™) (gg™ (gg™ (-) (gg™ (gm2)
Protein (g100g7") 1 — — — — —
Starch [g100g7) -0.98 1 — — — -
Gluten (g100g7™) 0.99 -0.98 1 — — —
Zeleny (-] 0.97 -0.94 0.95 1 — —
Moisture (g 100g7) 0.86 -0.85 0.87 0.83 1 —
Grainyield (gm?) 0.7 -0.75 0.78 0.60 0.70 1

Entries in the table show correlation coefficients for the corresponding row and column labels. All P values for testing the hypothesis of no correlation were

less than 107%.
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Figure 2. Relations (r?) between measurements and predictions of the data for the validation set, with prediction models based on
measurements conducted at five development stages of spring wheat by means of two hand-held radiometers, CropScan [filled bars)
and FieldSpec3 (open bars) and an airborne hyperspectral scanner (stage Z65 only, grey bars). Bars with same letter (within the same

day/stage) indicate non-significant differences in model fit (P=0.05).

PPLS components, respectively (Table 4). The growth develop-
ment stage affected the results. Best overall model perform-
ance was obtained when the radiometric measurements
were performed at Z65, regardless of the instrument used
(Figure 2). This coincided in time with the only data acquisition
performed with the airborne instrument. The models tended
to improve their prediction ability with development stage of
the wheat, from the first measurements at Z31 and up to the
peak at Z65 (both hand-held instruments). From Z65 onwards,
the predictions were poorer, except for moisture, which was
best predicted with data measured at Z87. Grain yield was
best predicted of all the reference variables (Table 4). The yield
measurements (and the corresponding predictions) appeared

to have two different clusters (Figure 3, left plots). The data
points in the low-yielding data all represented plots which
were not fertilised. The predictions of the grain quality data
were overall poorer than the corresponding predictions of
grain yield (Table 4). Removing the NO-treatment from the Z65
FieldSpec3-models reduced the r? to 0.73 for grain yield, 0.67
for moisture, 0.90 for protein concentration, 0.87 for starch
concentration, 0.90 for gluten concentration and 0.89 for
Zeleny sedimentation value.

The regression coefficients of the FieldSpec3 and the
HySpex grain yield models appeared to have a comparable
pattern (Figure 3). Both instruments gave large peaks in the
regression coefficients (undifferentiated data) above and
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Table 4. Relations between measurements and estimates based on sensor readings performed at Z65, and related model diagnostics for
each of the three radiometric instruments.

Sensor and variable r.c2 rored” RMSEC* RMSEP* ~e #comp'
CropScan

Grain yield (gm™?) 0.96 0.98 30.2 25.0 0.50 2
Moisture (g 100g7) 0.68 0.68 1.46 1.43 0.50 2
Protein (g100g™") 0.88 0.82 0.50 0.64 0.50 2
Starch (g100g7) 0.87 0.83 0.37 0.43 0.50 2
Gluten (g 100g~") 0.89 0.84 1.64 2.06 0.50 2
Zeleny (-) 0.85 0.79 4.26 5.15 0.54 2
FieldSpec3

Grain yield (gm™?) 0.97 0.96 31.8 32.9 0.95 1
Moisture (g 100g7) 0.7 0.74 1.42 1.30 0.88 3
Protein (g100g7) 0.94 0.92 0.39 0.40 0.95 3
Starch (g100g7™) 0.92 0.91 0.30 0.29 0.89 4
Gluten (g100g7") 0.94 0.92 1.32 1.36 0.91 3
Zeleny (-) 0.90 0.88 3.69 3.70 0.93 3
HySpex

Grain yield (gm™?) 0.96 0.95 33.6 35.6 0.50 3
Moisture (g 100g™") 0.57 0.60 1.59 1.73 0.95 2
Protein(g100g™) 0.63 0.7 0.89 0.82 0.95 1
Starch (g100g7™) 0.67 0.74 0.60 0.54 0.95 1
Gluten (g 100g7") 0.69 0.75 2.87 2.61 0.95 1
Zeleny [-) 0.51 0.63 7.75 6.97 0.95 1

2Coefficient of determination from the calibration set
®Coefficient of determination from the prediction set
“Root mean square error of calibration

9Root mean square error of prediction

“Optimised ~y parameter from the PPLS algorithm
'Final number of PPLS components.

below 530 nm and around 740 nm. With the CropScan grain  (undifferentiated data), however, also had peaks at 800-900 nm,
yield model, the largest peaks were at 1650nm, 660nm and  980nm and 1070 nm.

560 nm. In contrast, both the FieldSpec3 and the HySpex All the protein models had a very pronounced peak at 740 nm,
models had a local minimum at 660nm. The FieldSpec3 model  along with two much smaller peaks, at 660nm and 690nm

Table 5. Test values of the chi-squared test for differences between instrument performances using data obtained at Z65.

Variable Fs/cs® FS/HS® HS/CS®
Grain yield (g m2) 0.948 (NS) 0.948 (NS) 0.899 (NS)
Moisture (ww™) 0.971 (NS) 0.891 [NS) 0.915 (NS)
Protein (ww™) 0.771 0.434 0.564
Starch (ww™) 0.803 0.498 0.620
Gluten (ww™) 0.801 0.459 0.572
Zeleny (-) 0.865 0.476 0.550

°FieldSpec vs. CropScan.

PFieldSpec vs. HySpex

“HySpex vs. CropScan

NS, Non-significant differences with a critical test value of 0.869 (P=0.05)
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Figure 3. Validation-set measurements of grain yield (g m=) at harvest versus predictions based on radiometric measurements
performed at 265 (left-hand plots), and regression coefficients of the selected prediction models (right-hand plots, solid lines). The
pre-treatment included differentiation (first derivatives) of the FieldSpec3 and HySpex data, but not of the CropScan data. Regression
coefficients (normalised values) of models based on undifferentiated data are indicated for FieldSpec3 and Hyspex (broken lines).

(Figure 4, undifferentiated data). The FieldSpec3 had unique
peaks at 715nm, 990nm and 1100 nm. The HySpex model,
however, had two distinct peaks at 490nm and 630nm. The
490 nm peak corresponded with a peak in the CropScan model,
but the peak at 630nm was unique for the HySpex model.

The relatively simple MLR models, using predictors (wave-
lengths) selected by a PPLS variable selection procedure,
resulted in validation set predictions which were almost as
good as those given by the full PPLS-models (Tables 4 and 6).
There was no significant difference in model performance for
any of the reference variables. For grainyield and moisture, the
PPLS procedure selected three wavelengths, while the models
for protein, starch, gluten and Zeleny sedimentation value
consisted of five wavelengths (Table 6). All models, except
protein and gluten, differed in terms of selected wavelengths.

Discussion

In this study, two hand-held spectroradiometers and one
airborne hyperspectral scanner were compared in terms of

their usefulness for predicting selected properties of spring
wheat grain. A recent multivariate method (PPLS) was tested
in the analyses and compared with the traditional PLS1
method. The PPLS method was first used to create models
using the full data set (i.e. all measured wavelengths). As a
simpler alternative, the PPLS algorithm was used to select the
three to five wavelengths containing most of the information in
each dataset, followed by MLR, in order to test their combined
prediction ability.

General points

The model performances changed during plant develop-
ment (Figure 2). Since all the reference variables were meas-
ured at harvest time, one could assume that the predictive
performance of the models should increase with decreasing
time to harvest. This was not the case here, as the most
favourable time for spectral measurements appeared to be
after heading but before the yellow ripening stage. This is
in agreement with Hansen et al.* who predicted yield and
protein content of spring wheat under Danish conditions. For
winter wheat grown in China, the most favourable growth
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Figure 4. Validation-set measurements of grain protein concentration (g 100g~") at harvest versus predictions based on radiometric

measurements performed at Z65 (left plots), and regression coefficients (r?) of the selected prediction models (right plots, solid lines).
The pre-treatment included differentiation (first derivatives) of the FieldSpec3 and HySpex data, but not of the CropScan data. Regres-
sion coefficients (normalised values) of models based on undifferentiated data are indicated for FieldSpec3 and Hyspex (broken lines).

stage for predicting grain protein content has been reported
to be at mid-filling.’

During the growth season, spectral signatures of the
wheat plants change considerably, reflecting the change in
colour and structure as the plants go through the various
development stages. The results of this study and others*’
show that for predictions of grain quality properties, spec-
tral measurements should be performed when the wheat
plants are in their generative stage. It appears, however, that
information obtained long before grain filling is completed
may be relevant for the final quality features such as grain
protein concentration.

The accumulation and transfer of plant nitrogen into the
grain is the key feature for determining the final grain protein
content® and high plant nitrogen status during grain filling
is thus an indicator of high final grain protein content. High
correlations between plant nitrogen status and leaf chlorophyll
concentration have been reported?®®* and the regression
coefficients of the protein models showed some peaks which
were in the chlorophyll absorption bands (Figure 4). Towards
maturity of the wheat plants, there was a continuous reduction

in leaf chlorophyll concentration observed as “greenness”.
Our data indicate that the spectral signature of the maturing
canopy contained less information related to the grain cereal
quality than that of more indirect indicators such as plant N
status during grain filling.

The observed peaks in the regression coefficients of all
the models (Figures 3 and 4) may be explained by chlo-
rophyll absorbance (peaks at 490nm, 630nm, 660nm and
690nm), whereas peaks in the area 710-740nm are most
likely due to the rapid rise of plant spectral reflectance
above 700 nm, namely the red-edge phenomenon.®’ The
FieldSpec3 models showed additional peaks in areas of
the spectrum where water is known to absorb radiation
(for example, the peaks at 980-990 nm], and were other
chemical bonds may have affected the measurements
(for example, the peaks at 800-900nm, C-H stretch and/
or amines; at 1100 nm, C-H stretch; and at 1070 nm, N-H
stretch]. The relationships between the spectral measure-
ments and the reference variables are quite indirect. Hence,
further interpretation of the spectral peaks was difficult
and, therefore, omitted.
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There were strong correlations between several reference
variables (Table 3). In particular, the protein concentration,
starch concentration, gluten concentration and Zeleny sedi-
mentation value were strongly intercorrelated (Ir]>0.94). The
correlations were reflected in the regression coefficients of
the models [i.e. they were quite similar). This means that
successful prediction of one of the correlated variables most
likely involves successful prediction of all the four quality vari-
ables. Hence, the question arises of what is really being meas-
ured. Does the method react to central characteristic bonds
of the chemical structure of the grain protein components or
do we detect some other features which happen to be highly
correlated with grain protein? The spectral region of interest
for predicting protein in single wheat kernels is usually
850-1050 nm %8 The five FieldSpec3 wavelengths selected for
protein were 388nm, 533nm, 673nm, 740nm and 1019nm
(Table 6). Hence, only the latter wavelength was within the
range of typical protein-related absorption bands. The other
selected wavelengths may be related mostly to chlorophyll
and moisture absorption. Although the quality variables were
highly intercorrelated, the wavelengths selected for grain yield,
moisture, protein, starch and Zeleny sedimentation value
diverged, indicating several different indirect causal relation-
ships between spectral reflectance measurements and the
reference variables.

Instrument comparison

The FieldSpec3 performed better than the CropScan in most
cases [Figure 2) and the two hand-held instruments were
superior to the airborne instrument for all the reference vari-
ables, except grain yield and moisture (Table 5). This may be
explained by differences between instruments in their spectral
range, spectral resolution, data spacing, recording altitude,
data acquisition time span and calibration procedures.

Both the hand-held instruments measured radiation well
into the shortwave infrared range of the electromagnetic
spectrum. When inspecting the regression coefficients of the
prediction models, we noticed several peaks for the hand-held
instruments in the spectral area beyond 850nm (Figures 3
and 4). This implies that this spectral area contained informa-
tion relevant for predicting the quality variables, information
unavailable from the HySpex models.

Theinstrumentscompared divergednotonlyinspectralrange,
but also in spectral resolution and data spacing. Inspection
of the FieldSpec3 regression coefficients of the Z65 models
(Figures 3 and 4, right hand plots]) revealed several sharp
peaks, indicating that there were some very local phenomena
in the underlying spectral measurements. The presence of
such local phenomena favours instruments with high spectral
resolution and dense data spacing, such as FieldSpec3. The
superiority of the FieldSpec3 relative to the CropScan (Figure
2) may be partly due to the large data spacing in the CropScan
spectra between 950nm and 1650 nm.

The recording altitudes of the instruments varied greatly.
Higher recording altitude exposes the instrument data to
more atmospheric influence. These effects were corrected
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for in the ATCOR-4 atmospheric correction procedure of the
HySpex data. The reflectance spectra of the HySpex data
showed more noise than the corresponding spectra of the
hand-held instruments (data not shown). One possible reason
for the noise in the HySpex data could originate from the
correction procedure, since violation of the model assump-
tions made in the ATCOR-4 software may cause erroneous
reflectance spectra.®® During HySpex data recording, a 2x 2
m panel with known spectral reflectance was placed on the
ground next to the field experiment. A regression equation
was fitted between the raw HySpex data of the reference
panel and the known reflectance spectrum of the reference
panel. The resulting regression equation was then applied to
the remainder of the raw HySpex data to achieve locally cali-
brated reflectance data. The resulting reflectance spectra
showed the same behaviour as the reflectance values from
ATCOR-4 [R?>0.96). Thus, we can assume that the noise
in the data did not originate from the ATCOR-4 correction
procedure.

The data acquisition time of the HySpex lasted only a few
seconds, whereas the hand-held spectroradiometer data
was collected over a time span of approximately 2h. The sun
lighting conditions inevitably varied during this period, but
frequent calibrations of the spectroradiometers should mini-
mise that effect. The calibration procedures differed, however,
between the instruments. The CropScan had a dual optic
system which constantly corrected for changing solar irra-
diance and was thus assumed to be the instrument which
adapted best to changing conditions. The FieldSpec3 was
calibrated on a Spectralon panel and relied completely on
frequent calibrations in order to provide good data. During
data collection with the FieldSpec3 instruments, consecutive
calibration readings were taken on the Spectralon panel and, if
more than 5% spectral drift was observed, the previous meas-
urement cycle was repeated. In this study, the measurement
times were carefully selected with respect to stable weather
conditions and as little cloud as possible and the observed
spectral drift of the FieldSpec3 was generally low. The HySpex
was calibrated using the ATCOR-4%730 procedure. The favour-
able weather conditions at the time of measurement (Z65)
combined with the short data acquisition time of the HySpex
instrument, give reason to believe that the difference in cali-
bration method was not an important reason for poorer results
of the HySpex instrument.

Another reason for weaker model performance in the last
part of the growing season may be poorer weather condi-
tions. The two last dates for spectroradiometer measure-
ments (Z87 and Z90) had slightly less favourable weather and
lighting conditions [i.e. increasing cloud cover during meas-
urement] than the first three dates. Variable cloud cover
may have caused an increase in the measurement noise,
particularly for the FieldSpec3, which was not equipped
with the dual optic calibration feature as the CropScan was.
Chang et al.*’ reported that the CropScan instrument was
less prone to the effects of variable cloud cover than the
FieldSpec instrument. The FieldSpec3 models performed

better, however, than the CropScan models during the last
two measurements, which indicates that the weather and
lighting conditions were not of great importance for the
results.

The data acquisition times with the hand-held instruments
were in the range of 2h for a field experiment of 160 plots.
Evidently, these kinds of instrument are not suitable for
large-scale remote sensing applications due to their slow
operation. At the other extreme, HySpex measured the whole
field experiment in a matter of seconds. If it is acceptable
to sacrifice some predictive performance for the advantage
of high productivity, HySpex would be the obvious choice for
large-scale remote sensing of spring wheat properties.

The main difference regarding productivity between the
two hand-held instruments is the calibration procedure.
CropScan has no need for recalibration during a measure-
ment run and is also less sensitive to rapidly changing light
conditions than FieldSpec3, due to the dual optic calibration
feature.®” From an operational and productivity point of view,
CropScan would be the most desirable hand-held instrument.
On the other hand, FieldSpec3 provides a spectrum with high
spectral resolution and with a very broad spectral range. If
the objective is to conduct a variable selection for isolation of
important wavelengths (predictors) in an unknown prediction
task beforehand, FieldSpec3 is superior by far to CropScan.
The outstanding performance of the FieldSpec3 comes at
the cost of more cumbersome handling, operation and cali-
bration than the less sophisticated, but more user-friendly,
CropScan.

Method comparison

For the Z65 models, the PPLS algorithm was superior to
the PLS1 algorithm in all but six cases (indicated by ~ = 0.50,
Table 4). For five of these exceptions, CropScan data were
used. The 13 wavelengths measured by the CropScan instru-
ment were selected on the basis of the results obtained by
Hansen et al.* who used CropScan for predictions of grain
yield and grain protein in wheat. Thus, it came as no surprise
that the selected CropScan setup was also well suited for
the prediction tasks in the present study. Inspection of the
regression coefficients (Figures 3 and 4, right plots) showed
that all the CropScan wavelengths contributed to the models
(large coefficients). This was, however, not the case for the
FieldSpec3 and the HySpex instruments, for which several
channels did not contribute to the models (coefficients near
zero). The spectral data in the areas not contributing to
the model would have a certain amount of variance and,
thus, contribute to the y-X covariance computed in the PLS1
algorithm.?% Having such data in the models is known to
cause problems with the PLS1 algorithm in cases where
there is high variance in predictors that simultaneously
have little correlation with the reference variables.? The
PPLS algorithm reduces this problem by weighting variance
and correlation differently, which may explain the observed
superiority of this method for model building based on dense
datasets (i.e. many wavelengths).
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Predictions based on variable selection and
multiple least squares regression

After the PPLS variable selection, the grain yield and moisture
could be predicted with only three wavelengths in the lower
NIR region. The selected sets of wavelengths differed, however.
Protein concentration, starch concentration, gluten concen-
tration and Zeleny sedimentation value could be predicted
with five wavelengths in the visible/NIR region. Although some
wavelengths of the models predicting the quality variables were
the same, one to three out of the five selected wavelengths
were unique for each quality variable, except for the protein
and gluten models, which were similar (Table ). This implies
that three of the four strongly correlated variables can still, to
some extent, be separated. All computed r? values from the
final MLR models had the same level as the r? values from the
full PPLS models, although the MLR models were computed
without using the first derivatives. Thus, the PPLS algorithm
seemed to have very strong properties for variable selection.
Several of the wavelengths selected were similar, or close, to
an existing CropScan wavelength, confirming that many of the
wavelengths in the CropScan were selected quite well for crop
monitoring purposes, although there is apparently room for
improvement. In contrast, several of the PPLS-selected wave-
lengths were outside the effective spectral range of theHySpex
(400-850 nm). Thus, extending the effective spectral range
of this instrument to approximately 1240nm would probably
improve its performance considerably.

All models presented in this study performed very well
compared to numerous other studies aimed at predicting grain
yield and grain protein.“*%4% Considering the models from
765, only two models had predicted r* below 0.8. All the other
models had r? considerably above 0.8 and five models achieved
r? well above 0.9. However, predictions at almost the same
level have been presented,“* but these were the only studies
that utilised PLS and PLS-like methods. Numerous studies
utilise vegetation indices such as the normalised difference
vegetation index (NDVI)."” The predictions based on vegeta-
tion indices hardly ever reach the same level of accuracy as
predictions made with the PLS family of methods. A commonly
used argument for using vegetation indices is that they are
more robust. 20404144 Since this study aims to be an instrument
comparison, the robustness of the models was not tested in this
study. However, independent validation datasets are currently
being collected and model robustness will be addressed in a
future study. Preliminary results from the ongoing work indi-
cate that the models presented here are robust.

Conclusion

The most favourable time to predict wheat grain yield and
grain quality was after heading but before yellow ripening. The
results imply that monitoring and forecasting of wheat yield
and quality by means of spectral reflectance can be carried
out relatively early in the season and with high prediction
accuracy.

The FieldSpec3 was the instrument with the best overall
performance. Radiometric data comprising a wide spectral
range, a large number of wavelengths and a high spectral
resolution have an advantage over simpler datasets as a basis
for building predictive models. Instruments providing such
data are, however, often expensive and cumbersome to handle,
but they represent a good starting point for identifying key
variables.

Good predictions can be achieved with a very low number
of variables. Thus, screening of a dense radiometric dataset
with the PPLS method appears to be a promising tool for
developing simple and robust prediction models. This concept
should be investigated further in other research areas.
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Abstract:

Variable selection provides useful information about the most important predictors in the
dataset, information which is not always available in the beginning of an analysis. Two
recent variable selection methods, Backward Variable Selection for Partial Least Squares
(BVSPLS) and Powered Partial Least Squares (PPLS), were compared against each other and
against benchmark methods in terms of their ability to produce accurate prediction models
in NIR spectroscopy data. These two variable selection methods were compared to the
benchmarks Forward Stepwise Selection (FSS) and full spectrum Partial Least Squares
(PLS). All four regression methods were studied using three different NIR datasets. PPLS
and BVSPLS gave good prediction results in all three datasets even with a very limited
number of calibration samples available (<40). All methods gave similar prediction results
when the number of calibration samples was higher (>150). PPLS gave the best predictive
performance of all methods and also gave the selections of variables that were most easily
assigned to specific chemical bonds. Hence, the PPLS models were more easily
interpretable than the other models. This study quantifies differences between the two
recent variable selection methods as well as the differences between recent methods and

established benchmark methods.
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1. Introduction

Regression is probably the most widely studied and applied statistical analysis method in
the chemometric literature. The aim is to develop models which can be used to predict
properties of interest based on measurements of the chemical system, such as
spectroscopic data. Multivariate calibration techniques such as Multiple Linear Regression
(MLR), Principal Component Regression (PCR) and f Partial Least Squares regression (PLS)’
can then be used to compute a mathematical model. It correlates the multivariate
measurement (spectrum) to the concentration of the analyte of interest, and such a model

can be used to predict the concentrations of new samples.

When the number of measured predictor variables is large and it is not known beforehand
which specific predictors are most influential on the responses, selection of variables could
be feasible. Variable selection tries to identify a subset of variables that still possess the
sufficient features to build a robust regression model. Moreover, due to a number of
practical and statistical reasons (e.g. to avoid collinearity, reduce computational load), a
large set of variables should be reduced to a smaller, more manageable set. The main goal
of any variable selection technique is to obtain a small subset of variables that gives a
model with the prediction and generalization abilities better or at least equivalent to a
model based on the original set of variables. Variable selection in regression is a difficult
part of model building because the number of subsets to be considered grows
exponentially with the number of candidate variables. The advantages of variable
selection are the exclusion of irrelevant and redundant variables leading to better signal to
noise ratio, better data visualization and model interpretability, reduction of measurement
requirements as well as increased prediction accuracy and precision. Subsequently, these

properties could induce the development of cheaper instruments, cheaper analysis as well
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as faster prediction models. Moreover, an increase in the model robustness can be
achieved by the application of a variable selection technique. One possible drawback of
doing variable selection is that certain outlier detection methods may be more difficult to
undertake. Numerous methods have been developed for variable selection such as varieties
of subset selection methods® *, stepwise regression, jack-knife or bootstrapping
algorithms*”, evolutionary algorithms® genetic algorithms®'* and thresholding algorithms".
Recently, a Backward Variable Selection method for PLS regression (BVSPLS) has been
proposed'. Another relatively recent method is the Powered Partial Least Squares', which
is a generalization of the traditional Non-linear Iterative Partial Least Squares (NIPALS)
algorithm. PPLS can also be used for variable selection purposes. The development of new
variable selection methods is constantly evolving, and the need for comparative studies is
raised. There are several studies aimed at comparing various methods'®, but due to the

ongoing development of new methods, comparative studies will always be needed.

The objective of this paper is to compare between BVSPLS and PPLS and to some
established benchmark methods. The most established, simplest and most pragmatic
method for variable selection is Forward Stepwise Selection of Variables (FSS). There are
several examples in the literature where varieties of FSS have been used as a reference
methods? . Moreover, the FSS algorithm is implemented in a multitude of data analysis
software and is hence widely used. For this reasons, FSS is a natural choice of benchmark
method for this comparative study. Moreover, the traditional PLS solution without any
variable selection should also be included as a benchmark method in order to address the
question whether variable selection itself has a positive effect for the predictive ability of
the models. In order to validate the feasibility of the methods, we chose to compute

prediction models based on small datasets.
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2. Materials and methods

2.1 Datasets, preprocessing and sample selection

Three large datasets used in Fernandez Pierna et al.™

were also used in this study:
fat/feed (Feed) , fiber/maize (Maize |) and protein/maize (Maize Il). All datasets had
spectral range from 100 nm to 2498 nm, with every second wavelength removed, thus
containing 700 variables each. See Fernandez Pierna et al.’ for more details. There were
some duplicate samples in the datasets and in order to achieve a proper validation,
duplicate response variable values and their corresponding spectra were removed from the
datasets. Hence, the number of samples in each dataset (N) was reduced to 2721 for
fat/feed, 2488 for Maize | and 1349 for Maize Il. All datasets were preprocessed with the
Standard Normal Variate procedure SNV, . Splitting of the data into calibration and
validation sets was done with the DUPLEX algorithm '. This algorithm splits a dataset (i.e.
the spectra) into two parts by means of a Euclidean distance measure. The algorithm goal
is to create two datasets with homogeneous statistical properties for calibration and
validation purposes. A subset of 200 samples from each dataset were selected with DUPLEX
and reserved for calibration purposes. The remaining samples were allocated as validation
set. Since we chose to work with smaller calibration sets, the 200 selected samples were
further decimated to 20 samples in 19 steps with the DUPLEX algorithm. The first step
selected 190 samples out of the original 200 samples and the second step selected 180
samples. For each successive step, the number of selected samples was decreased by 10.

Thus, 19 calibration sets (200,190,...,20 samples) and one validation set (all samples except

the 200 calibration samples) were calculated from each main dataset.

2.2 Software
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All analyses were performed using MATLAB (version R2007b, MathWorks Inc., USA,
www.mathworks.com) with PLS Toolbox (version 4.2, Eigenvector Research Inc., USA,
www.eigenvector.com). The BVSPLS and DUPLEX algorithms were implemented in MATLAB
code by the authors. The PPLS algorithm was implemented in MATLAB by the authors based

on the original code from Ulf Indahl.

2.3 Variable selection methods

2.3.1 Forward Stepwise selection (FSS)

The FSS algorithm is a simple and widely used procedure for variable selection. Three
different basic varieties of stepwise regression are commonly used: forward selection,
backward elimination and stepwise method. Forward selection sequentially introduces new
predictors into the model one at a time while the backward loop eliminates predictors one
at a time from the current variable set. The stepwise method is a hybrid between forward
selection and backward elimination. It starts as forward selection, but for each selection
step it runs an elimination step to compute the need for deleting predictors. The algorithm
uses a Fisher F-statistic in order to decide when variables should be removed or included.
To construct the final prediction model, we used a PLS algorithm on the retained
variables. We chose to set the inclusion and removal values such that the FSS algorithm
selected 40-80 variables. The p-values for inclusion and removal were both set to 0.11 in
order to let the FSS select approximately 40-80 variables in the used datasets. Selecting
that many variables will almost certainly introduce some multicollinearity between the
variables, but the PLS algorithm will handle this more robustly than for instance the least

squares method in the MLR algorithm.
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2.3.2 Backwards Variable Selection for PLS (BVSPLS)

The BVSPLS is a recently proposed method and is a backward elimination method. Unlike
the other algorithms in this study, the BVSPLS needs three datasets. In addition to the
usual calibration and validation set, a dedicated dataset (the stop-set) for decision on
which variables to retain is needed. The first algorithm step is to compute a PLS model
based on the full calibration dataset with all variables included. Consequently, one
variable is removed each time the algorithm loop executes. For each loop execution, the
RMSEP (Root Mean Square Error of Prediction) of the stop-set, is computed. When all
variables have been discarded, a plot of the RMSEP from the stop-set against the number
of variables can be presented. The algorithm then chooses the number of variables
corresponding to the minimum RMSEP. This subset of variables is then retained for the
final model which is a traditional PLS algorithm. For further details, see Fernandez Pierna
et al. . In order to provide a stop to BVSPLS, we chose to let 10% of the calibration
samples form the stop-set. Hence, for a 100 samples calibration set, 10 of the samples

(selected with DUPLEX) were put in the stop-set.

2.3.3 Powered Partial Lest Squares (PPLS)

The PPLS is a generalization of the traditional NIPALS algorithm. Rather than optimizing
the covariance between the predictors and the response, the PPLS splits the covariance
expression in the weight vector optimization criterion into a variance part and a
correlation part. The user can then choose the weighting between the variance component

and correlation component through an additional control parameter, gamma (y). The
algorithm can be used both for modelling and variable selection through the choice of y. A

y value of 0.5 makes the PPLS solution equivalent to the traditional PLS solution, whereas
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values close to 0 or 1 makes the algorithm select variables based on predictor variance and
correlation with the response, respectively. It is also possible to let the algorithm optimize
the y value within a predefined numerical range using an optimization procedure that
maximises the correlation between PPLS scores and the response. In this study, we chose

to let the PPLS work with y values optimized from the interval [0.99,1]. The algorithm

hence focuses almost exclusively on the variables with strong corrrelation to the response
and also possibly strong predictive ability. As suggested by Indahl™, the variables that had
loading weights less than the relative numerical resolution of MATLAB (2.2204x10™"") were

l15

discarded. See Indahl™ for further details.

2.4 Selection of optimal number of PLS/PPLS factors

All methods tested in this study have the feature of latent variables. Hence, model
complexity has to be selected by the user. To make the resulting models more
comparable, we chose to perform the selection of latent variables just once for each
combination of method and dataset. For each dataset, the model complexity was
determined on the basis of the complete calibration set of 200 samples and the number of
factors was held constant throughout the whole range of calibration sets. Selection of the
number of PLS/PPLS components was carried out as a conservative chi-square test. The
main idea is to consider the minimum mean square error of cross-validation (MSECV) as a
realization of the true model error variance, o4°. Using the chi-square power function, an
acceptance region for MSECV can be computed. The model with the fewest number of
components that also have an MSECV inside the acceptance region is then selected as the
final model. See Indahl ™° for further mathematical details. However, several numbers of
factors for each model were computed and compared, but the differences between models

were only modestly affected by the choice of number of factors.
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2.5 Validation procedure

Each of the 19 calibration sets was used to construct a prediction model, which was used
to predict the validation set, which was the same for all 19 models and for all four
regression methods. We chose to use a dedicated validation set instead of cross-validation
for comparison of the predictive ability of each model because several studies have
pointed out that cross-validation can lead to severe over-fitting and over-optimistic
estimated of the models diagnostic measures® ' ?°. The test procedure was performed in

the following way:

1. The number of PLS factors was determined by computing a model with the full
calibration set of 200 samples. The same number of factors was used for every
variable selection method.

2. Each variable selection algorithm was executed once on the 19 smaller calibration
sets (200,190,...,20 samples), and predictions for the validation set were computed
each time.

3. Based on these validation set predictions, coefficient of determination (R?) between
measured and predicted constituents for each method were computed and
reported.

4. Step 2 to 3 was repeated for each main dataset (fat/feed, Maize | and Maize Il).

Hence, R* for 20 to 200 calibration samples were obtained in a comparable way with 10

samples increments.
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3. Results

Figures 2-3 show the coefficient of determination between measured and predicted
constituents from the validation-set predictions as a function of the number of calibration
samples for the Feed, Maize | and Maize Il samples, respectively. For all datasets, variable
selection gave little or no prediction error improvement over the PLS algorithm for
calibration sets larger than approximately 60 samples (Feed, Fig. 1), 120 samples (Maize I,
Fig, 2) and 160 samples (Maize Il, Fig. 3). For calibration datasets smaller than this, all
variable selection techniques gave better predictive performance compred to full spectrum
PLS. Especially for low sample numbers, the BVSPLS and PPLS gave better performance
than both PLS and FSS.

In the Feed dataset (Fig. 1), all models were stable at a high R* above 50 samples
calibration sets. From 50 to 20 calibration samples, BVSPLS and PLS started to show a
decrease in performance. Especially the PPLS had an advantage over the other methods for
calibration sets smaller than 50 samples.

For the Maize | case (Fig. 2), the situation was similar in the sense that all solutions were
stable at a relatively high level of explained variance for calibration sets larger than 120
samples. Here, the PPLS gave the best predictions for all datasets smaller than 120
samples with the BVSPLS slightly lower prediction ability. FSS had performance between
PLS and PPLS/BVSPLS for calibration sets smaller than 120 samples.

In the last dataset, the Maize Il (Fig. 3), all methods performed poorer than in the first two
datasets. Full spectrum PLS gave the lowest prediction ability for datasets smaller than

170 samples. For datasets larger than 170 samples, there were just small differences
between the methods. For smaller datasets than 170 samples, the PPLS gave slightly better

performance than FSS and BVSPLS.
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For all datasets, the PPLS and BVSPLS selected more variables for inclusion in the

prediction models than the FSS did (Fig. 4-6).

All variable selection methods differed markedly with regard to frequency of the selected
variables. The PPLS and FSS selected some variables in the spectrum more often than other
variables and especially PPLS gave a quite clear and structured image of which variables
that contributes positively to the prediction models. BVSPLS, however, selected variables

more evenly spread throughout the spectrum (Fig. 7-9).

To illustrate the improvement of variables selection (Fig. 10), an example for 60
calibration samples of the Feed dataset is illustrated (Fig. 1). We chose the PPLS and the
PLS models for this case and plotted the predicted fat content data against the measured

fat content from each method.
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4. Discussion

Two recent methods, BVSPLS and PPLS, were compared against each other and against FSS
and PLS methods. Even after extensive literature reviews, we could not find comparative

studies on variable selection methods similar to BVSPLS and PPLS.

All variable selection techniques gave improvements over PLS in some cases and the
improvements were more pronounced at smaller calibration sets. The numbers of PLS
factors were determined using the full 200 samples calibration sets and the numbers of
components found were held constant for all other calibration sets. The actual humbers of
components were determined with a conservative Chi-square-test. We tried, however,
several other model dimensionalities, but the general results and improvements in
prediction ability were only slightly affected by this.

To explain the differences in predictive ability, we have pointed out three reasons. 1.
Some predictor variables have only remote relevance to the response variable. 2. The
signal to noise ratio (S/N) in some predictor variables may be so low that the elimination
of those variables improves the model. 3. Some predictor variables may have a nonlinear
relationship to the response. Thus, elimination of these variables may give more
parsimonious and linear prediction models and hence improve the prediction abilities. All,
or a subset of these reasons could explain the prediction error improvements that we have
presented, but further research is needed to exploit the details in the mechanisms behind

this phenomena.

FSS and especially PPLS selected very interpretable sets of variables (Fig. 7-9). For the
Feed dataset, the PPLS and FSS emphasized strongly the C-H stretch bands in the 1700 nm
range (Fig. 7). This tendency also held in the Maize | dataset where the PPLS and FSS

selected many variables in the O-H stretch band at 1450 nm and the C=0 stretch band from

12
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2000 nm to 2200 nm (Fig 8). An even stronger interpretability was found in the Maize Il
dataset where the FSS and PPLS focused very strongly on the N-H stretch bands in the 1800
nm, 2000 nm and 2400 nm regions (Fig. 9). For the BVSPLS, the picture was more difficult
to interpret because the algorithm selected variables almost evenly spread out in the
measured spectrum (Fig. 7-9) but still with better prediction results than those obtained

with PLS and similar as those of PPLS.
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5. Conclusion

In this paper, several validation procedures were conducted on the recent variable
selection methods BVSPLS and PPLS and compare these to the bechmarks FSS and ful
spectrum PLS. The comparisons were carried out on three different NIR spectroscopic
datasets predicting fat in compound feed (Feed), fiber in maize(Maize |) and protein in
maize (Maize Il). We have drawn three conclusions from this study.

1. Variable selection gave a positive effect on the prediction ability of small calibration
sets. Since calibration samples are often costly to collect, this may be important finding in
order to make the best regression models out of few calibration samples.

2 The results clearly showed a consistent and well-structured selection of variables. FSS
and BVSPLS gave not so consistent variable selections as PPLS.

3. Both PPLS and BVSPLS showed very high ability to compute good prediction models on
small datasets, clearly better than more established regression methods. This shows that
variable selection techniques are evolving and requires continued comparisons with

existing algorithms.
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Table 1. Overview of the datasets (calibration and validation set together)

Product  Constituent Range' STD' No. of Srer
[wW/w - %] [w/w - %] validation
samples
Feed Fat 0.660 - 33.9 5.07 2521 0.20
Maize | Fiber 24.3 - 67.3 6.82 2288 0.60
Maize Il Protein 4.02 - 13.7 1.60 1149 0.20

'Standard deviation for calibration and validation set together
2Standard error of reference method
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Figure 1. Coefficient of determination (R?) between measured and predicted constituents
from the validation-set predictions of the Feed dataset as a function of the number of
calibration samples for the fat content in feed mixture. The regression models used was
full spectrum Partial Least Squares (PLS), Partial Powered Least Squares (PPLS), Forward
Stepwise Selection (FSS) and Backwards Variable Selection for PLS (BVSPLS). The number of

PLS factors was 7 for all models.
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