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Abstract 

The present study aimed to develop dominant height growth models, site index prediction 

models, individual tree height growth models, and height-diameter models using Norwegian 

national forest inventory (NFI) data. Data from other sources such as long-term experiment 

(LTE), stem analysis and meteorological stations were used as supplementary data. Data from 

Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.) and downy birch 

(Betula pubescens (Ehrh.)) were used. Since primarily designed for other objectives, NFI data 

have various weaknesses (measurement errors, small sample plot size, few height sample trees, 

and short time series) that were challenging modelling in the present study. Despite these 

challenges, various forest models were developed. The thesis contains four individual papers 

addressing the individual objectives as pointed out above. 

Paper I presents dominant height growth models that were developed using the generalized 

algebraic difference approach. Model parameters were estimated using nested regression 

techniques. NFI data models showed significant bias for young stands and higher site index 

classes when compared with LTE data. Therefore, NFI data and LTE data were pooled to 

develop combined data models. These models showed no significant bias for any ages and site 

index classes for both NFI and LTE data. The combined data models showed no significant bias 

when tested on independent stem analysis data and on region-specific model fitting data for 

Norway spruce and Scots pine.  

Paper II presents site index prediction models that were developed using the site index as a 

function of site and climate variables. Significant time trends in observed site indices were 

included in the site index prediction models. Among various models developed, a model 

including year of stand origin, temperature sum, understory vegetation type, soil depth, aspect, 

slope, and latitude described the largest proportion of the total variation in site indices for both 

Norway spruce and Scots pine. Analyses showed that site index increased after about 1940, 

which might be due to increased temperature and precipitation, and various other reasons.  

Paper III presents both spatially explicit and spatially non-explicit individual tree height growth 

models developed using a potential modifier function that reduces the potential height growth 

(Paper I) to the expected height growth of individual trees. Parameters in competition indices 

and parameters in the potential modifier models were estimated simultaneously from the data. 
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Under strong competition, height growth was substantially reduced for both Norway spruce and 

Scots pine. For Scots pine, height growth was also reduced under very low competition.  

Paper IV presents height-diameter models, which were developed incorporating stand variables 

that are independent of thinning as covariates and sample plot-level variations as random 

effects. For all three species, generalized mixed effects models predicted heights without 

substantial bias when the random effects were predicted using all measured heights of the 

focused species (species used to develop species-specific model) per sample plot.  

The present study successfully developed methods to fit models to the NFI data that were not 

collected for growth modelling proposes. The models substantially improved the current 

models, which have been applied in an individual tree based forest simulator-T. Therefore, all 

models presented in the thesis may be used in future Norwegian forest simulators.  
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1. Introduction 

Forest site productivity may be assessed in different ways, but commonly used methods are 

site index models (dominant height growth models) and site index prediction models (site 

index prediction from site variables). Such models are fundamental components of growth 

and yield models, and therefore need to be precise over the entire range of forest growth 

conditions. A challenge with the existing and most frequently applied Norwegian site index 

models (Tveite, 1977; Tveite and Braastad, 1981) and site index prediction models (Nilsen 

and Larsson, 1992) is that they do not properly represent the entire range of forest growth 

conditions in Norway. The site index models are lacking data from the western and northern 

parts of Norway, and are therefore likely to be biased for these regions (Blingsmo, 1985; 

Øyen and Nes, 1997; Tveite, 1994; Orlund, 2001). Site index models are also dominant 

height growth models, and may therefore be used to predict maximum possible (potential) 

height growth in individual tree based growth models (e.g. Pretzsch et al., 2002). However, 

the presently applied Norwegian site index models (Tveite, 1977; Tveite and Braastad, 1981) 

cannot be used for the purpose, because the potential height growth derived from them is 

inconsistent and unrealistic, i.e., height growth culminates at unrealistic ages. Also, the site 

index prediction models developed by Nilsen and Larsson (1992) are lacking data from large 

parts of the Norwegian forests. Another challenge is that significant age trends in the 

residuals of these models were observed, but age was not included in the models. Bøhler and 

Øyen (2011) tested the models for samples of Norway spruce and found biased site index 

predictions. 

A large part of the Norwegian productive forests is uneven-aged, a mixture of species, or of 

heterogeneous structure (NIJOS, 2000). For a description of the dynamics of such forests 

regarding radial (diameter or basal area) growth, individual tree diameter and basal area 

growth models have been developed (Andreassen and Tomter, 2003; Bollandsås et al., 2008; 

Bollandsås and Næsset, 2009). However, individual tree height growth models are still 

lacking for Norway to describe forest dynamics. 

Heights for individual trees on sample plots are often needed for estimation of volume, 

biomass and carbon. Because of high inventory costs, measuring heights for all trees is not 

possible, and therefore only a sample of trees is usually measured for heights. This means 

that the missing height measurements need to be predicted. This can be done, for example, 
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with height-diameter models. A requirement for such models is that they are able to predict 

height with an appropriate accuracy. By applying a mixed effects modelling approach, which 

takes the sample plot-level random variations into account, accuracy of the predictions can be 

improved. A weakness of the presently applied height-diameter models in Norway (Øyen and 

Andreassen, 2002; Bollandsås, 2007) is that sample plot-level random effects were not 

included when they were developed. Another weakness is that they did not include height of 

dominant tree as covariate, which represents the stand development stage over time (e.g. 

Adame et al., 2008; Crecente-Campo et al., 2010).  

Individual tree based forest simulators have been developed in various countries such as 

BWIN (Nagel, 1997) and SILVA in Germany (Pretzsch et al., 2002), MOSES (Hasenauer et 

al., 2006) and PROGNAUS (Monserud and Sterba, 1996; Sterba and Monserud, 1996) in 

Austria, HEUREKA in Sweden (Lämås and Eriksson 2003), and MOTTI in Finland 

(Hynynen et al., 2005) as decision-making tools for practical forest management planning. 

Together with several other models, these simulators comprise spatially explicit or spatially 

non-explicit individual tree height growth models. In Norway, the individual tree based forest 

simulator -T (Gobakken et al., 2008) has been developed. This simulator comprises of 

various models such as diameter and height growth models, mortality models, recruitment 

models, height-diameter models and volume functions. To predict heights, the simulator 

currently applies height-diameter models (Bollandsås, 2007) for old even-aged and uneven-

aged stands and dominant height growth models (Tveite, 1977; Tveite and Braastad, 1981) 

for young even-aged stands. These models may be replaced with more accurate mixed effects 

height-diameter models for prediction of heights. Alternatively, height growth predictions 

accuracy could also be improved by implementing individual tree height growth models in 

the simulator 

The present study used national forest inventory (NFI) data as main data source while data 

from other sources (long-term experimental plots, stem analysis, meteorological stations) 

were used as supplementary data. In recent years, NFIs have started to supply permanent 

sample plot data in various European countries including Norway. These data are useful for 

growth modellers because individual trees are repeatedly measured on the permanent sample 

plots. The repeatedly measured individual tree data allow deriving the increments that may be 

used to model growth at the individual tree-level. In addition, tree positions are in most 
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countries also recorded in the NFIs and this allows developing spatially explicit individual 

tree based growth models. The NFI data cover a wide range of tree sizes, ages, growth 

conditions, and management practices across the country. Since NFI data are not collected for 

growth modelling, they often contain measurement errors that are acceptable for the main 

purpose (large scale resource assessments), but are very large for growth modelling. In 

addition, NFI data still represent short time periods, which may cause challenges in growth 

modelling. Despite these challenges, NFI data have frequently been used to develop various 

forest models such as dominant height growth models (e.g. Huuskonen and Miina, 2007), 

individual tree radial growth models (e.g. Monserud and Sterba, 1996; Sterba and Monserud, 

1997; Adame et al., 2008; Condés and Sterba, 2008), individual tree height growth models 

(Hasenauer and Monserud, 1997; Condés and Sterba, 2008), individual tree mortality models 

(e.g. Monserud and Sterba, 1999), and height-diameter models (Mehtatalo, 2004, 2005; 

Nanos et al., 2004; Adame et al., 2008; Crecente-Campo et al., 2010). In Norway, stand basal 

area and volume growth models (Gizachew and Brunner, 2011), individual tree radial growth 

models (Andreassen and Tomter, 2003; Bollandsås and Næsset, 2009), individual tree 

mortality models (Eid and Tuhus, 2001; Bollandsås, 2007), and height-diameter models 

(Bollandsås, 2007) have been developed from NFI data. 

Norwegian forests are mainly dominated by Norway spruce (Picea abies (L.) Karst.) and 

Scots pine (Pinus sylvestris L.), both in area coverage and standing volume (Larsson and 

Hylen, 2007), and these two species were therefore in the focus of this thesis. The main 

objective of the thesis was to develop dominant height growth models, site index prediction 

models, individual tree height growth models and mixed effects height-diameter models 

using NFI data. All these models may be used in the present Norwegian individual tree based 

forest simulator - T (Gobakken et al., 2008) or in any other simulator that may be developed 

in the future.  

The thesis is divided into four different papers to cover the main objective, each of them 

corresponding to the following sub-objectives: 

1. To develop dominant height growth models for Norway spruce and Scots pine in Norway 

(Paper I) 
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2. To develop site index prediction models from site and climate variables for Norway spruce 

and Scots pine in Norway (Paper II) 

3. To develop individual tree based height growth models for Norway spruce and Scots pine 

in Norway (Paper III) 

4. To develop height-diameter models for Norway spruce, Scots pine, and Downy birch in 

Norway (Paper IV)  
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2. Background  

2.1. Site productivity 

The terms “site quality” and “site productivity” are often used interchangeably. The Society 

of American Foresters (1971) defined “site” as “an area considered in terms of its 

environment that determines the type and quality of plants the area can carry”. Site is 

collectively characterized as an interaction of the environmental factors that exist in a given 

area, whereas site quality refers to the productivity potential of a given site. Site productivity 

is therefore a quantitative measure of site quality. The definitions of the terms “site”, “site 

quality”, and “site productivity” and descriptions of methods of site productivity assessment 

have been elaborated by many authors (Carmean, 1975; Vanclay, 1994; Skovsgaard and 

Vanclay, 2008; Pokharel and Dech, 2011). 

Assessment of site productivity started 200 - 300 years ago with the introduction of scientific 

methods in forestry in Europe (Skovsgaard and Vanclay, 2008). Assessments of site 

productivity were carried out in Sweden and Finland in the early 1900s (Cajander, 1909; 

Jonsson, 1914; Cajander, 1921) and some years later in Norway (Landsskogtakseringen, 

1938; Eide and Langsæter, 1941). Further improvements in assessment of site productivity 

for major tree species were made with the development of a series of site index models in 

these countries, i.e.,  in Sweden (Fries, 1969; Hägglund, 1972, 1973, 1974; Johansson, 1996; 

Elfving and Kiviste, 1997), in Finland (Gustavsen, 1980; Vuokila and Väliaho, 1980; 

Gustavsen, 1996; Karlsson, 2000), and in Norway (Brantseg, 1969; Tveite, 1969, 1977, 1981; 

Tveite and Braastad, 1981).  

Different methods may be used to assess site productivity (Vanclay, 1992, 1994; Skovsgaard 

and Vanclay, 2008; Pokharel and Dech, 2011). A commonly applied method is based on 

dominant height (mean height of 100 largest trees per hectare) at given base age (site index). 

Dominant height of a stand reflects the productivity of a fully stocked even-aged stand 

because height growth is independent of stand density over a wide range of densities 

(Skovsgaard and Vanclay, 2008). Dominant height at a given base age (e.g. Monserud, 1984; 

Garciá and Batho, 2005; Martin-Benito et al., 2008; Nord-Larsen et al., 2009; Perin et al., 

2013) may therefore be used as a measure of site productivity.  
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Two approaches may be used to develop site index models, i.e., the traditional base-age 

specific approach (e.g. Payandeh, 1974) and the more recent base-age invariant approach 

(e.g. Elfving and Kiviste, 1997). The presently applied Norwegian site index models (Tveite, 

1977; Tveite and Braastad, 1981) are base-age specific models. Base-age specific models are 

developed from height data with a common base age. Development of such models may 

therefore require inter- or extrapolation to determine height at the base age if height is not 

measured at that age. Thus, stem analysis data are most suitable for base-age specific models. 

The base-age invariant approach, on the other hand, is applicable even if height data with no 

common base age is available. This avoids the need of inter- or extrapolation to determine 

height at base age if height is not measured at that age (Cieszewski, 2001; Nord-Larsen, 

2006a). Thus, base-age invariant models are most suitable for permanent sample data. 

Algebraic difference models are base-age invariant and formulated with the algebraic 

difference approach (ADA) (Bailey and Clutter, 1974). The ADA allows only one parameter 

of a base function to be site-specific, and the models derived with this approach may produce 

anamorphic curves or curves with a single asymptote (Cieszewski and Bailey, 2000; 

Cieszewski, 2001, 2002, 2003; Krumland and Eng, 2005). Cieszewski and Bailey (2000) 

developed base-age invariant site index models by using the generalized algebraic difference 

approach (GADA), which allows more than one parameter of a base function to be site-

specific. GADA models can generate polymorphic curves with multiple asymptotes 

(Cieszewski, 2001, 2003; Cieszewski et al., 2007). Both GADA and ADA models may be 

used to fit short time series of height-age data, even if no common base age is available in the 

series (e.g. García, 2005; De los Santos-Posadas et al., 2006; Tiwari and Singh, 2009). In 

recent years, GADA has become a standard approach for developing dominant height growth 

models (Diéguez-Aranda et al., 2005; Diéguez-Aranda et al., 2006; Cieszewski et al., 2007; 

Martin-Benito et al., 2008; Bravo-Oviedo et al., 2008; Nord-Larsen et al., 2009).  

Site index models may be applied for fully stocked even-aged stands with closed canopies 

that are dominated by one tree species for which site productivity should be assessed. 

However, site index models may fail if dominant trees are not present or not possible to 

identify (Dahms, 1963). Site index models cannot be applied to mixed and uneven-aged 

stands, or to stands stocked with another tree species. For unstocked sites where harvests or 

natural disturbances have taken place, site index models cannot be used. Furthermore, for 
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very young stands, a small error in measurement of dominant height or age may lead to 

substantial errors in estimated site indices (Kwiaton et al., 2011).  

Alternatively, site productivity may be assessed with site index prediction models developed 

from site variables describing location, topography, soil, understory vegetation or climate 

(e.g. Carmean 1975; Hägglund 1981; Pokharel and Dech, 2011). Many site variables can 

easily be measured in the field or extracted from maps or databases, and therefore site index 

prediction models can be developed from such variables (e.g. Hägglund and Lundmark, 

1977; Nilsen and Larsson, 1992; Seynave et al., 2005; Socha, 2008; Farrelly et al., 2011). 

Most of the previously developed site index prediction models are based on small data sets, 

however, and only a few studies have used extensive data from NFIs or other sources (e.g. 

Hägglund and Lundmark, 1977; Tegnhammer, 1992; Elfving, 1994; Schadauer, 1999; Chen 

et al., 2002; Seynave et al., 2005; Beaulieu et al., 2011). 

Site index for a given site may change over the year of stand origin. Such variations have 

been reported in Norway (Nilsen and Larsson, 1992; Bøhler and Øyen, 2011), in Sweden 

(Hägglund and Lundmark, 1977; Elfving, 1994; Elfving and Nyström, 1996a, b; Elfving and 

Tegnhammar, 1996; Elfving et al., 1996), in Finland (Tamminen, 1993; Mielikäinen and 

Timonen, 1996), and other European countries (Hassall et al., 1994; Spiecker et al., 1996; 

Schadauer, 1999; Kiviste, 1999; Socha, 2008; Bontemps et al., 2009). These studies showed 

higher site indices for younger stands than for older stands under similar site conditions. 

Significant trends (hereafter termed as site index trend) were found in observed site indices 

over the year of stand origin. Site index trends may be caused by several factors, but the role 

of individual factors has rarely been quantified (Tegnhammar, 1992). Factors that may cause 

site index trends are changes of growing conditions and improved forest management 

practices over time. Even if real changes in growing condition over time would not exist, site 

index trends can be found in forest inventory data. In forest inventory data, site indices are 

strongly correlated with stand age due to shorter rotations for stands on better sites and longer 

rotations for stands on poorer sites (Tegnhammar, 1992).  

Several site index prediction models have been developed by including stand age in order to 

correct for site index trends. Site index prediction models developed with Swedish NFI data 

also showed site index trends. Therefore, Tegnhammar (1992) developed a correction 



8

function for site index, which is based on stand age and varying with latitudes. Elfving and 

Nyström (1996b) found site index trends while applying this correction function to the 

independent data of Norway spruce in northern Sweden. Elfving (1994) also introduced stand 

age as independent variable in the Swedish site index prediction models (Hägglund and 

Lundmark, 1977). Similarly, a site index trend was found for Norway spruce in the Austrian 

NFI data and age was therefore included as an additional explanatory variable in the site 

index prediction models (Schadauer 1999). A significant interaction of the site index trend 

with the temperature sum in these models also indicated a regional variation in the site index 

trends. Schadauer (1999) suggests that site index trends are more likely caused by a real shift 

in growing conditions over time than by inappropriate time trends implicit in site index 

models. Albert and Schmidt (2010) also described strong trends in site indices after 1970 for 

Norway spruce and common beech in Germany.  

The presently applied Norwegian site index models for Norway spruce and Scots pine 

(Tveite, 1977; Tveite and Braastad, 1981) are based on data from experimental permanent 

sample plots located in eastern and middle Norway, while western and northern regions are 

not represented. The data used for these models also inadequately represent poorer sites and 

data were completely lacking from higher altitudes. Significant deviations of dominant height 

developments based on these models have been reported for western Norway (Blingsmo, 

1985; Øyen and Nes, 1997; Orlund, 2001) and northern Norway (Tveite, 1994).  

2.2. Forest growth models 

Modelling growth and yield has been an intrinsic part of forestry research for many years, but 

still remains an area of important and active research (e.g. Porte and Bartelink, 2002; 

Vanclay, 1994). Growth models are useful tools for forest managers for various purposes 

such as inventory updating, evaluation of silvicultural alternatives, harvest scheduling, and 

management planning in general (Garciá, 1994; Amaro et al., 2003). Based on the 

management objectives, access to the computational facilities and input data, growth models 

may operate either at stand level or at individual tree level. 
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2.2.1. Stand-level growth models  

Stand growth is commonly measured in terms of stand basal area growth, stand height growth 

or stand volume growth. Stand growth can be modelled as a function of stand variables such 

as site index, stand age, stand diameter (e.g. quadratic mean diameter), stand basal area, stand 

density index, and number of stems (e.g. Pienaar and Rheney, 1995; Huuskonen and Miina, 

2007; Gizachew and Brunner, 2011). Stand growth models do not describe growth dynamics 

of individual trees and are usually applicable only for even-aged and homogenous stands. 

Various stand-level growth models for Norway spruce and Scots pine have been developed as 

basis for decision-making tools for forest management planning in Norway. Most of these 

models are based on data from long-term experimental plots and on supplementary data from 

temporary sample plots administered by the Norwegian Forest and Landscape Institute 

(Andreassen et al., 2008). The models are either basal area growth models (Eide and 

Langsæter, 1941; Brantseg, 1969; Nilsen and Haveraaen, 1982; Andreassen et al., 2008), 

diameter growth models (Braathe, 1955; Braastad, 1974; Blingsmo, 1984; Andreassen and 

Øyen, 2002; Gobakken and Næsset, 2002), or volume growth models (Braastad, 1975; 

Blingsmo, 1988). Stand-level mortality and recruitment models have also been developed 

using NFI data (Eid and Øyen, 2003; Lexerød and Eid, 2005). Many of the above-mentioned 

models have been used in Norwegian stand-level simulators for forest management planning 

such as BESTPROG (Blingsmo and Veidahl, 1994), AVVIRK2000 (Eid and Hobbelstad, 

2000; Eid and Hobbelstad, 2005), and GAYA (Hoen and Eid, 1990).  

2.2.2. Individual tree based growth models 

As opposed to stand-level growth models, individual tree based growth models describe 

growth of individual trees in a stand. The growth of an individual tree, i.e., the subject tree 

(also called a focal tree or target tree), within a stand largely varies due to competition from 

other trees. Competition varies with competitor species, number, size, distance, and direction. 

Individual tree based growth models are usually developed to describe growth dynamics for 

structurally complex and heterogeneous stands (Wykoff, 1990; Pretzsch et al., 2002; Uzoh 

and Oliver, 2006; Bollandsås and Næsset, 2009). In these models, the potential growth of 

individual trees is reduced by competition indices, which may be either spatially explicit (also 

called distance dependent) (Bella, 1971; Biging and Dobbertin, 1992; Ledermann and Stage, 
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2001; Rivas et al., 2005) or spatially non-explicit (also called distance independent) (Wykoff, 

1990; Uzoh and Oliver, 2006; Bollandsås and Næsset, 2009). Only spatially explicit 

individual tree based growth models are sensitive to differences in the spatial arrangement of 

the trees.  

Most individual tree based growth models describe radial growth at breast height. Radial 

growth of a tree is more affected by competition than height growth. Consequently, few 

individual tree height growth models have been developed (Hasenauer and Monserud, 1997; 

Pretzsch et al., 2002; Fahlvik and Nyström, 2006; Nord-Larsen, 2006b; Uzoh and Oliver, 

2006; Ritchie and Hamann, 2008; Vaughn et al., 2010). Except for a few (e.g. Hasenauer and 

Monserud, 1997; Pretzsch et al., 2002), all these models are based on limited data regarding 

quantity and representativeness. In recent years, data from NFIs supply repeatedly measured 

heights of individual trees. A weakness of such data, however, is that large measurement 

errors are involved. Alternatively, stem analysis data free from these errors could be used for 

modelling. However, stem analysis data suffer from missing descriptions of the competitive 

situation over time and seldom represent larger areas. 

All existing individual tree based growth models in Norway are diameter growth models 

(Bollandsås, 2007; Bollandsås and Næsset, 2009) or basal area growth models (Andreassen 

and Tomter, 2003). Also mortality models for individual trees have been developed (Eid and 

Tuhus, 2001; Bollandsås, 2007). All these models are based on NFI data. Individual tree 

height growth models for Norway are lacking. The individual tree based forest simulator - T 

(Gobakken et al., 2008) developed for Norway comprises various modules (growth models, 

mortality models, recruitment models, height-diameter models, volume functions). The 

diameter growth models (Bollandsås, 2007) are driving the simulation processes. Dominant 

height growth models (Tveite, 1977; Tveite and Braastad, 1981) are used to predict height for 

individual trees in young stands, assuming all trees of a certain age and site index to attain the 

same height. For older stands, height-diameter models (Bollandsås, 2007) are used to predict 

heights. Since the presently applied height-diameter models (Bollandsås, 2007) lack sample 

plot-level random effects and dominant height as a covariate, the models are likely to be 

biased.  
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Many individual tree based forest simulators have been developed for forest management 

planning in other European countries. Examples of such simulators are BWIN (Nagel, 1997) 

and SILVA (Pretzsch et al., 2002) for Germany, MOSES (Hasenauer et al., 2006) and 

PROGNAUS (Monserud and Sterba, 1996; Sterba and Monserud, 1996) for Austria, 

HEUREKA (Lämås and Eriksson, 2003) for Sweden, and MOTTI (Hynynen et al., 2005) for 

Finland. SILVA and MOSES are spatially explicit and comprise many different models with 

different purposes (growth, crown expansion, mortality). PROGNAUS is a spatially non-

explicit simulator and comprises various models (growth models, mortality, dynamic crown 

ratio, harvesting). HEUREKA and MOTTI are spatially non-explicit simulators. HEUREKA 

comprises production modules (growth models, volume functions, mortality models, and 

recruitment models), a treatment module (silvicultural and harvest operations), and an 

optimization module. In HEUREKA, simulations are also possible for different climate 

scenarios.  

A number of challenges are still associated with all these simulators. In addition to growth, 

the simulators should be able to precisely simulate regeneration and recruitment, probabilities 

of survival or mortality, and wood quality (e.g. annual ring width, wood density, knot width), 

as well as growth and other processes under changing site and climate conditions. Climate 

sensitive forest models (e.g. Mäkelä et al., 2006; Albert and Schmidt, 2010; Schmidt, 2010; 

Schmidt et al., 2011) may be implemented in the simulators. Process-based growth models 

accurately predicting wood quality (e.g. Mäkelä and Mäkinen, 2003; Kantola et al., 2007) 

may also be used as growth modules in the simulators. Another challenge related to forest 

simulators is the availability of regional data for region-specific models and predictions. 

Getting appropriate individual tree information as required for different simulators may also 

be difficult. For such cases, missing input data may be generated with algorithms (e.g. 

STRUGEN developed by Pretzsch (1997)). 

Tree growth is determined by the availability of growth resources such as moisture, nutrients, 

light, and temperature. The radial growth of a tree is more affected by competition than 

height growth. The radial growth response to competition is nearly linear. Height growth of 

dominant trees, however, is often not affected by competition, although height growth of 

suppressed trees may be significantly reduced when competition increases above a certain 

level (Brunner and Nigh, 2000). Thus, height growth has an asymptotic response to 
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competition. In order to model individual tree growth, expected height growth of individual 

trees may be obtained through the potential growth reduction approach. Potential height 

growth is either estimated simultaneously with a modifier for competition (Courbaud et al., 

1993; Hasenauer and Monserud, 1997; Huang and Titus, 1999; Uzoh and Oliver, 2006; 

Vaughn et al., 2010) or it is estimated separately (Biging and Dobbertin, 1992, 1995; Pretzsch 

et al., 2002).  

Earlier individual tree based growth models assumed certain effects of distance (e.g. Pukkala 

1989) and size ratio (e.g. Hegyi 1974) in competition indices, but recent models estimate 

distance effects and size ratio effects from the data (Miina and Pukkala 2000; Canham et al. 

2004; Boyden et al. 2008; Bøhler et al., 2008; Richards et al., 2008; Peltoniemi and Makipaa 

2011; Pommerening et al. 2011; Sabatia and Burkhart 2012). For models describing 

individual tree height growth, the effects of distance and size ratio have rarely been estimated 

from the data.  

2.3. Height-diameter models 

Height measurements are needed for estimation of tree volume, site index, growth and yield, 

biomass, and carbon. Diameter is easily measured for all standing trees, but measuring height 

is more difficult, time consuming, and costly. Thus, height measurement for all trees on 

sample plots located across an extensive area is not practically feasible. Height-diameter 

models developed from sample plot data are commonly used to predict missing heights on the 

same sample plot (e.g. Nord-Larsen, 2006a; Gizachew and Brunner, 2011). However, this 

may not always be possible if there are few observations available per sample plot. Species-

specific height-diameter models are thus needed to predict missing heights. The height-

diameter relationship differs from one sample plot to another due to differences in site 

quality, age, and silvicultural treatments (Calama and Montero, 2004; Sharma and Parton, 

2007; Schmidt et al., 2011). The height-diameter relationship is therefore highly site- and 

stand density-specific, and is not constant over time (Curtis, 1967; Zeide and Curtis, 2002; 

Pretzsch, 2009). Thus, more accurate height-diameter models may be developed by 

integrating stand variables as covariates (Sharma and Zhang, 2004; Temesgen and Gadow, 

2004; Newton and Amponsah, 2007; Bollandsås, 2007; Lei et al., 2009). Height prediction 

accuracy of the models can further be improved through inclusion of sample plot-specific 
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random effects (Mehtatalo, 2004, 2005; Castedo-Dorado et al., 2006; Adame et al., 2008; 

Crecente-Campo et al., 2010; Schmidt et al., 2011).  

NFI data have frequently been used to develop height-diameter models such as in Spain (e.g. 

Nanos et al., 2004; Adame et al., 2008; Crecente-Campo et al., 2010), Finland (e.g. 

Mehtatalo, 2004, 2005), and Norway (Bollandsås, 2007). Except models by Bollandsås 

(2007), other models have included stand variables as covariates and plot-level or 

measurement occasion-level random effects. Height-diameter models have also been 

developed as dynamic models with a large amount of data in Germany (e.g. Albert and 

Schmidt, 2010; Schmidt, 2010) and in Estonia (Schmidt et al., 2011) to be used as growth 

models that are sensitive to climate change.  

The database from the Norwegian NFI contains height measurements for only few sample 

trees on each plot, while diameter at breast height (dbh) is available for all trees on the 

sample plot. Missing height measurements therefore need to be predicted. Mixed effects 

height-diameter models may be more appropriate than ordinary least square models to 

achieve this (e.g. Robinson and Wykoff, 2004; Sharma and Parton, 2007; Crecente-Campo et 

al., 2010). 

2.4. Data sources for developing growth models 

Forest growth models may be developed using data originating from different sources such as 

permanent NFI sample plots, long-term experiment (LTE) plots, and stem analysis. Many 

European countries have been carrying out NFI programs for several years. In some countries 

(e.g. Norway, Austria), the NFI supplies individual tree positions, which are necessary for 

spatially explicit individual tree growth models. As compared to data from LTE, NFI data 

often contain large measurement errors, short times series, few height sample trees, and the 

sample plot size is often small. In order to prepare NFI data for growth modelling, modellers 

need to develop new methods of data preparation or apply different types of models than for 

data from other sources.  

Dominant height growth models are often developed from stem analysis data (Martin-Benito 

et al., 2008). Dominant height growth models developed with NFI data are very rare 
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(Huuskonen and Miina, 2007). LTE data from permanent sample plots are also often used to 

develop dominant height growth models (e.g. Elving and Kiviste, 1997; Nord-Larsen 2006a, 

Nord-Larsen et al., 2009). The accuracy of the height growth data (relative to real height 

growth) varies, but is usually higher for stem analysis data than for permanent sample plot 

data (García, 2005). However, stem analysis data may be biased if changes in tree dominancy 

over time go undetected (Dahms, 1963; Zeide and Zakrzewski, 1993; Cherubini et al., 1998). 

When developing dominant height growth models, stand age may be replaced with climate 

variables such as solar radiation or temperature (e.g. Mason et al., 2011). This means that the 

models become climate sensitive. Data for individual tree based growth models usually 

originate from repeatedly measured individual trees on permanent sample plots. Stem 

analysis data are costly and this is the reason why few growth models are based on such data.
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3. The Norwegian National Forest Inventory  

All models presented in the thesis were developed using NFI data as per the objective. The 

Norwegian Forest and Landscape Institute conducts the NFI in Norway. The NFI is a 

permanent and rotating systematic sample plot inventory. The circular sample plots are 

located in a 3 × 3 km grid covering the whole country except above 70º N Latitude 

(Landsskogtakseringen, 2007). Circular sample plots with an area of 100 m2 were established 

during the period between 1986 and 1993, but trees with a dbh >20 cm were measured inside 

a circle of 250 m2. The sample plot size was extended to 250 m2 during the period between 

1994 and 1998. Since 1994 each sample plots has been inventoried every fifth year. Out of 

16000, approximately 66% sample plots are located in productive forests (minimum 

production of 1 m3 ha-1 yr-1) (Tomter, 2000). The NFI data represents all forest types, stand 

ages, management practices, and growth conditions of forests in Norway. The main purpose 

of the NFI is to estimate forest resources and document resource changes over time.  

Data from the NFI database were selected according to criteria specified in the respective 

papers. In general, however, only data from undivided sample plots (not intercepted by roads, 

water bodies, and agricultural fields) located on productive forests were used. Diameters are 

measured for all trees with a dbh >5 cm, but height above stump (stump height is defined as 

1% of the total height) is measured for a subsample selected using relascope sampling (i.e., 

probability proportional to basal area). Height sample trees were selected based on an angle 

gauge factor of 6 m2 ha-1during earlier inventories, whereas a flexible factor was used during 

later inventories to guarantee a larger number of sample tree per plot. Using site index models 

(Tveite, 1977; Tveite and Braastad, 1981), site index for each NFI sample plot was estimated 

from height and age of one dominant tree outside the 250 m2 plot, but inside a 1000 m2 

concentric plot. Except for paper IV that used data from inventory period between 1986 and 

2011, NFI data in the period between 1986 and 2008 were used. Height measurements for 

one to six trees were available for most of the sample plots in the period between 1986 and 

2003 and ten or more trees after 2003. Given the low precision of height measurements made 

with hand-held instruments relative to a five-year’s height growth, large measurement errors 

can be expected for individual height increments.  
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4. Main results 

4.1. Dominant height growth models (paper I) 

Data used in this paper were obtained from the Norwegian NFI, long-term experiments 

(LTE), stem analysis, and from weather stations of the Norwegian Meteorological Institute. 

Dominant trees were selected based on the combined ranks of height and dbh from all sample 

trees. Between one and three trees per plot and measurement occasion were identified as 

dominant trees. Only Norway spruce or Scots pine dominated (>70% species-specific 

standing volume) sample plots were used for the analyses. Figure 1 shows the location of NFI 

sample plots selected.  About one third of the total NFI sample plots were used. The selected 

data represent all growing conditions and stand ages in the country, were based on three re-

measurements, and cover a period of 22 years (1986 - 2008). A number of the time series had 

negative increments due to large height measurement errors. The NFI inventory procedure 

was based on an age recorded from an increment core taken at breast height of one site index 

tree, and based on this a basal area-weighted mean age was estimated for the plots. Thus, 

ages might have large errors.  

The Norwegian Forest and Landscape Institute has established a series of permanent sample 

plots located in a number of sites across the country. These sample plots are part of long-term 

experiments, and they were often established for testing thinning methods and other 

treatments. The sample plots have been remeasured regularly, creating time series for 

dominant height data with a length of 10 - 80 years. Most of dominant height data originated 

from younger stands on better sites.  

Stem analysis data were collected from Telemark, Buskerud, Oppland, and Hedmark counties 

in southeastern Norway. By means of forest management plans, 31 stands with ages varying 

from 50 to 180 years covering all existing site index classes in the region were identified. 

Trees were then harvested, stem discs prepared, and height-age series constructed.  
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Figure 1. Location of NFI sample plots (green dots used represent sample plots in paper I; 

grey dots represent sample plots of productive forests not used in paper I). 

The generalized algebraic difference approach (Cieszewski and Bailey, 2000) was used to 

develop dominant height growth models. The models were derived from eight base functions 

of either fractional or exponential form. Since the site-specific parameters describing site 

index for individual sample plots were not known, nested regression techniques were applied 

(Cieszewski et al., 2000; Krumland and Eng, 2005). Correlated errors in the height growth 

time series were accounted for by incorporating an autoregressive error structure into the 

models. In order to avoid biased parameter estimates caused by errors in the independent age 

variable, a method described by Kangas (1998) was applied to the best model.  

The dominant height growth models were first developed with NFI data and then tested 

against LTE data. Combined data models were also developed with NFI data and LTE data 

pooled together, and then tested against independent stem analysis data. The models were 

evaluated using fit statistics, prediction statistics, and graphical analysis. 
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Despite short time series and large age errors, the NFI data models appropriately described 

dominant heights of the LTE data for most of the site index and age range covered by the NFI 

data. A significant bias was only detected for very young stands on better site index classes.  

However, this bias was substantially reduced when the combined data models were 

developed. Since the NFI data and LTE data supplemented each other well to cover the whole 

range of site indices and ages, the combined data models adequately described both NFI data 

and LTE data. The combined data models also adequately described the stem analysis data 

for all ages and site index classes. Furthermore, the combined data models adequately 

described the region-specific data from both NFI and LTE for all ages and site index classes. 

Height curves of the presently applied Norwegian dominant height growth models (Tveite, 

1977 and Tveite and Braastad, 1981) significantly deviate from those presented in this paper 

(Figure 2). The dominant height growth of Norway spruce derived from the models also only 

has a single culmination as opposed to Tveite’s model. Identical height growth occurs in the 

old site index model for Scots pine (Tveite and Braastad, 1981) for all site index classes after 

about 100 years of stand age, which is a consequence of extrapolation in this range and does 

not reflect dominant height growth. Dominant height growth models presented in the thesis 

can be used as potential height growth models to develop individual tree height growth 

models (paper III). 
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Figure 2. Presently applied Norwegian site index models (Tveite 1977; Tveite and Braastad, 
1981) (red) and new site index models (paper I) (black) for a site index class interval of 3m. 

4.2. Site index prediction models (paper II) 

To develop site index prediction models, data describing site and climate from the Norwegian 

NFI and the Norwegian Meteorological Institute, respectively, were used. Except for a few 

sample plots (27 for Norway spruce, 34 for Scots pine) that were excluded due to missing site 

variables, the same NFI sample plots as described for paper I were used (Figure 1). Site 

indices for the sample plots were first estimated by using the dominant height growth models 

developed in paper I. Subsequently they were used as observed site index (response variable) 

in the site index prediction models. Only variables that can be measured in the field or 

recorded easily from other sources at low cost were used as explanatory variables, i.e., 
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altitude, latitude, slope, aspect, soil depth, and understory vegetation type. Mean growing 

season temperature and precipitation sums were used to describe the long-term climate 

conditions. Since trends in observed site indices (Figure 3) could not be described by the site 

and climate variables alone, year of stand origin was used as an additional explanatory 

variable.  

 

 

 

 

 

Figure 3. Observed site index over the year of stand origin for Norway spruce and Scots pine. 
A segmented linear model describes the trend of observed site indices against year of stand 
origin data (basic model).  

For each species, ten different site index prediction models were developed. A basic model 

was developed using only year of stand origin as explanatory variable while other models 

used different combinations of explanatory variables to facilitate applications of the models 

to a range of situations with different access to explanatory variables. Since there were two 

distinct trend segments in the observed site indices over the year of stand origin (Figure 3), a 

segmented linear regression method was applied. The site index prediction models were 

evaluated using fit statistics and graphical analysis.  

Among the ten different site index prediction models, a model including year of stand origin, 

temperature sum, understory vegetation type, soil depth, aspect, slope, and latitude described 

the largest proportion of the total variation in site indices for both Norway spruce and Scots 

pine. However, the other models were only marginally inferior to this model. All models 

showed a strong nonlinear effect of the year of stand origin on the observed site indices, 

which also varied with temperature sum. For both species, site indices increased with 
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increasing year of stand origin, and the site index trend was significantly steeper for stands 

originating after about 1940 than for the stands originating before this year (Figure 3).  

4.3. Individual tree height growth models (paper III) 

Height increment data from trees sampled on Norwegian NFI sample plots were used to 

model individual tree height growth. The models applied the potential modifier concept (e.g. 

Pretzsch et al., 2002). The site index models describing the development of dominant height 

(paper I) were used to define potential height growth of individual trees. A large number of 

trees with negative height increments or large positive errors exist in the data, and 

consequently relative height growth (ratio of height growth of an individual tree to potential 

height growth) exceeded the theoretical range (0 - 1) for many trees. Figure 4 shows the 

location of all sample plots used in this paper.  

The potential modifier models describe relative height growth as a function of a competition 

index. Three spatially explicit indices and two spatially non-explicit indices were tested. All 

indices are based on dbh because tree height and crown data were available only for a few 

trees per sample plot. The distance effect of competitors was estimated from the data and 

therefore a search radius for competitors was not applied. A correction for the plot edge bias 

was done by applying the linear expansion method (Martin et al., 1977; Pretzsch, 2009). The 

estimated indices were scaled to the range between 0 and 1. Parameters of the potential 

modifier models and parameters of the competition indices were estimated simultaneously 

from the data rather than using assumed values as usually done in conventional spatially 

explicit indices (e.g. Hegyi, 1974; Pukkala, 1989). Correlated errors in the height growth time 

series were accounted for by incorporating an autoregressive error structure into the potential 

modifier models. The fitted models were evaluated using fit statistics and graphical analysis. 
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Figure 4. Location of NFI sample plots (green dots represent sample plots used in paper III, 
grey dots represent sample plots of productive forests not used in paper III). 

The results showed that the potential modifier models only described a small part of the total 

variation in relative height growth for both Norway spruce and Scots pine. Height 

measurement errors caused large residual variation of the models. All five indices resulted in 

similar fit statistics. The potential modifier models showed that the height growth of 

dominant trees was unaffected by competition. Under strong competition height growth of 

both species was gradually reduced (Figure 5). However, as compared to moderate levels of 

competition, none or very low levels of competition also reduced height growth of Scots pine. 

This may be due to higher sensitivity of shade-intolerant species to competition compared to 

shade-tolerant species (e.g. Norway spruce). The models showed significantly decreased 

competition with increasing distance from the competitor. However, competitors at larger 

distances influenced height growth for Scots pine as well. Spatially explicit indices resulted 

in only marginally improved fit statistics compared to the spatially non-explicit indices. This 

could be due to the small sample plot size that reduces the spatial explicitness as a large part 

of estimated indices comes from the off-plot trees through edge expansion. At the same time, 

the small sample plot size also makes spatially non-explicit competition indices more 
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spatially explicit by only using neighbors close to the subject trees. Both spatially explicit and 

spatially non-explicit models are therefore likely to be more precise for trees located towards 

the plot center than trees located towards to the plot edge. 

  

 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Potential modifier models for individual tree height growth of Norway spruce and 
Scots pine for five different competition indices (CI: 1 = modified version of view angle 
based competition index; 2 = modified version of Hegyi’s competition index; 3 = competition 
index based on negative exponential to describe distance function; 4 = basal area sum of 
larger trees; 5 = ratio between subject tree’s dbh and quadratic mean diameter). 

4.4. Height-diameter models (paper IV) 

Norway spruce, Scots pine and downy birch were considered. Repeatedly measured heights 

and diameters over a period of 25 years (1986 - 2011) were used. Sample plots with at least 

four height sample trees measured in at least two consecutive measurement occasions were 

selected for fitting height-diameter models. Data from the inventory period between 1986 and 

1993 were used for validation while data from the four inventories in the period between 

1994 and 2011 were used for model development. Figure 6 shows the location of sample 

plots selected for the modelling.  

In addition to dbh, various stand variables were tested as explanatory variables (also called 

covariates) to better describe height-diameter relationships. Based on the relationships 

between stand variables and estimated values of parameters of the base model fitted to the 

species-specific data for each sample plot and measurement occasion individually, 

appropriate stand variables were chosen. Scatter plots of each stand variable against 
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estimated values of parameters of the base model were used to identify significant effects. 

Height and dbh of the tallest tree per plot and measurement occasion showed strong effects 

and the base model was expanded by including these two variables. Mixed effects models 

were constructed by including sample plot-level variations as random effects. The final 

mixed effects models presented in this paper are: 1) a model without covariates (basic mixed 

effects model), and 2) a model with covariates (generalized mixed effects model).  

Using validation data, sample plot-level random effects were predicted from measured 

heights using the empirical best linear unbiased prediction (EBLUP) method (Pinheiro and 

Bates, 2000; Calama and Montero, 2004) and used to calibrate sample plot-specific height-

diameter models. In this calibration, various alternative numbers of height trees were used 

and resulting height prediction accuracies were compared. 

The results showed that the generalized height-diameter model described a larger part of the 

total variation in heights than the basic model. The height prediction accuracy increased with 

increasing number of height trees used in calibration of sample plot-specific height-diameter 

models. For all three species, the generalized mixed effects model with random effects 

predicted from all measured heights of the focused species (species used for species-specific 

model) provided the highest prediction accuracy across all diameter classes. For mixed 

species stands, where measured height of the focused species was not available for calibration 

of sample plot-specific models, the generalized ordinary least square height-diameter model 

showed smaller bias than its mixed effects version. 
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Figure 6. Location of NFI sample plots (green dots represent sample plots used in paper IV, 
grey dots represent sample plots of productive forests not used in paper IV). 
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5. Discussion 

The main data source of the thesis was NFI data. Since NFIs are designed for a different 

objective than growth modelling, some errors and inconsistencies in the NFI data are 

inevitable. In the same way as for the dominant height growth models developed in the 

present study (paper I), the dominant height growth model presented by Huuskonen and 

Miina (2007) for young even-aged stand of Scots pine in Finland was also based on NFI data. 

Sample plot-level random effects were included in this model by applying the mixed effects 

modelling approach. However, due to fewer replications per sample plot, application of 

mixed effects modelling was not possible in paper I. To directly compare predictions between 

different dominant height growth models at different stand development stages and for 

countries is difficult. The fit statistics of the Finnish model and the one presented in paper I, 

however, indicate that dominant height growth models developed from the NFI data in the 

countries were of the similar quality. 

In the individual tree height growth model developed from Spanish NFI data (Condés and 

Sterba, 2008), 0.5 m was added to the annual height increment to reduce the problems of 

negative or zero increments while transforming to the logarithmic scale. The individual tree 

height growth models developed with Austrian NFI data (Hasenauer and Monserud, 1997) 

showed that models fitted to height increment data predicted using height-diameter models 

have substantially improved fit statistics compared to models fitted to original inventory data. 

The fit statistics of models fitted to the original inventory data, however, were very similar to 

those in the models presented by Condés and Sterba (2008). Unlike in this study (paper III), 

which estimated potential height growth of individual trees separately, the individual tree 

height growth models for Spain and Austria were developed using a potential height growth 

of individual trees that was estimated simultaneously with the modifier function. As in the 

present study, measurement errors in the NFI data of Spain and Austria also caused large 

residual variations of the individual tree height growth models.  

As NFI data in other countries, Norwegian NFI data contain large errors in the measured 

heights and recorded ages, which are a major weakness for growth modelling. Short time 

series, few height sample trees (only in earlier inventories), and small sample plot sizes were 

also challenging in the present study. In spite of these weaknesses, it was possible to develop 

dominant height growth models, site index prediction models, individual tree height growth 
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models, and height-diameter models that seem to work reasonably well. The dominant height 

growth models (paper I), for example, were little affected by problems of height 

measurement errors, short-time series, large age errors, and small sample plot size as 

indicated by tests of NFI data models against LTE data.  

Height measurement errors and small sample plot size appeared to be more challenging for 

the individual tree height growth models (paper III) than the dominant height growth models 

(paper I). Combined errors from height measurement and errors from other sources (e.g. site 

index estimation, dominant height growth models, and periodic growth variation) resulted in 

weak relationships between relative height growth and the competition indices. The errors in 

the spatially explicit competition indices may be caused by the small sample plot size because 

some true competitors may be excluded from the index estimation since it is partly based on 

off-plot competitors estimated by the linear expansion method. The linear expansion method 

assumes similar stand conditions outside and inside the sample plot, but this may not hold. 

With larger sample plot size, on the other hand, some extra competitors may be included in 

the competition index estimation. In both cases, some errors might involve in the estimated 

competition indices, but error analysis involves a very complex process (e.g. Hynynen 

Ojansuu, 2003; Lappi, 2005). Errors in the estimated competition indices might bias the 

estimated parameters of the potential modifier models. In order to reduce biased parameter 

estimates due to errors in the independent variable (i.e., competition index), a method 

described by Kangas (1998) needs to be applied. However, the present study did not apply it 

because the error variance was unknown.  

As compared to radial growth, competition effects on height growth are low. However, 

effects of competition on height growth could be estimated from the data (paper III). 

Parameters in the potential modifier models and parameters in the competition indices were 

estimated simultaneously from the data. This means that effects of distance and size ratio in 

competition indices were estimated from data, rather than based on assumptions, as usually 

done in the conventional competition indices (Hegyi, 1974; Pukkala, 1989).  

NFI data have previously also frequently been used to develop height-diameter models (see 

Mehtatalo, 2004, 2005 in Finland, Nanos et al., 2004; Adame et al., 2008; Crecente-Campo et 

al., 2010 in Spain, and Bollandsås, 2007 in Norway). Except Norwegian models, other 
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models included either sample plot-level random effects only (Adame et al., 2008; Crecente-

Campo et al., 2010) or both sample plot-level random effects and measurement occasion-

level variations as random effects (Mehtatalo, 2004, 2005). All these mixed effects models 

and those presented in the present study precisely predicted heights when appropriate 

numbers of height trees were used to calibrate subject-specific (sample plot- or measurement 

occasion-specific) height-diameter models. Tests of the height-diameter models based on 

Spanish NFI data did not show substantial bias for research sample plot data (Adame et al., 

2008; Crecente-Campo et al., 2010). As for other NFI-based forest models, studies on height-

diameter models also reported that NFI data have caused some problems due to height 

measurement errors. To reduce residual variations of the models as much as possible, a 

considerable number of observations (extreme outliers) needed to be excluded because of 

such errors (e.g. Crecente-Campo et al., 2010). However, the present study did not exclude 

observations due to height measurement errors. 

Like in the present study, significant trends in observed site indices or increased growths 

have been reported in previous studies such as in Norway (Nilsen and Larsson, 1992; Bøhler 

and Øyen, 2011), Sweden (Elfving, 1994; Elfving and Nyström, 1996a, b; Elfving and 

Tegnhammar, 1996; Elfving et al., 1996), Finland (Tamminen, 1993; Mielikäinen and 

Timonen, 1996), and other European countries (Hassall et al., 1994; Spiecker et al., 1996; 

Schadauer, 1999; Kiviste, 1999; Bontemps et al., 2009). To reduce prediction bias due to 

such trends, site index prediction models have therefore frequently included stand age as an 

additional explanatory variable (Nilsen and Larsson, 1992; Tegnhammar, 1992; Elfving, 

1994; Elfving and Nyström, 1996a; Schadauer, 1999). The strong trend in site indices on 

similar sites is due to various factors like increased temperature and precipitation, elevated 

atmospheric CO2 concentration and nitrogen deposition, and improved forest management 

practices. It is, however, difficult to identify the specific factors and quantify their 

contribution to the trends. A number of changes in growing conditions and management 

practices during the last century have been discussed as main causes for site index trends or 

increased growth (e.g. Tegnhammar, 1992; Elfving and Tegnhammar, 1996; Spiecker et al., 

1996; Spiecker, 1999; Kahle et al., 2008a; Kahle et al., 2008b; Solberg et al., 2009). Site 

index trends may significantly vary from region to region (e.g. Schadauer, 1999) due to 

variations in temperature and precipitation or other factors affecting growth. These trends 

may be stronger in warmer region than colder regions. Studies on changes of site indices over 
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time are very important for forest management planning because they will allow for better 

predictions of future growth in a changing climate.  

All models developed in the present study may be used in a Norwegian individual tree based 

simulator in the future. The dominant height growth models (paper I) can be implemented as 

site index models, replacing the presently applied ones (Tveite, 1977; Tveite and Braastad, 

1981). Alternatively, site index prediction models (paper II) can be implemented. Site index 

prediction models that include corrections for site index trends may account for better 

predictions of future growth.  

Also the individual tree height growth models (paper III) may be implemented in a forest 

simulator. Spatially explicit individual tree height growth models are the best option for such 

a simulator because this will allow better simulations for heterogeneous and mixed species 

stands than if they were non-spatially explicit. To apply spatially explicit individual tree 

height growth models for practical management planning is a challenge, because the required 

input data is associated with high inventory costs. In the future, however, the tree data and 

positions required for such models may be available from airborne laser scanning (e.g. 

Hyyppa et al., 2012). The required data may also be generated based on empirical spatial 

distribution patterns (e.g. Pretzsch, 1997).  

The main aim of developing height-diameter models was to apply them in inventories where 

height data is missing for many trees on a sample plot. However, instead of using individual 

tree height growth models, it is also possible to use height-diameter models together with 

individual tree diameter growth models in a forest simulator in order to predict height 

development. Height-diameter models (Bollandsås, 2007) are presently applied in the 

Norwegian forest simulator - T. These height-diameter models, however, may now be 

replaced with the height-diameter models presented in the present study (paper IV). These 

models include sample plot-level variations as random effects and are therefore probably 

more suitable for this purpose than the previous ones. To implement height-diameter models 

in a forest simulator may also prevent problems that may come up with independent use of 

individual tree diameter growth and height growth models in a simulator. The parameters of 

diameter and height growth models are usually not estimated simultaneously and therefore 

model predictions may result in unreasonable height-diameter ratios for individual trees. (e.g. 
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Hasenauer et al., 1998). This incompatibility could be avoided if the height-diameter models 

presented are used together with individual tree diameter models in the simulator. However, 

none of the models was tested for such a possibility in the present study.  
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6. Conclusions 

Despite several challenges inherent to NFI data, dominant height growth models, site index 

prediction models, spatially explicit and spatially non-explicit individual tree height growth 

models, and mixed effects height-diameter models were developed in the present study. Most 

statistical tests of models presented showed adequate prediction accuracies, but also revealed 

that the challenges related to the NFI data had little effect on the dominant height growth 

models as compared to individual tree height growth models. However, it was possible to 

estimate the parameters of competition indices and the parameters of potential modifier 

models simultaneously. The significant trends in observed site indices were included in the 

developed site index prediction models. Height-diameter models were developed by 

including stand variables that are independent of thinning as covariates and sample plot-level 

variations as random effects. All models presented in the thesis will be used in Norwegian 

individual tree based simulator in the future.  
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a b s t r a c t

We developed dominant height growth models for Norway spruce (Picea abies (L.) Karst.) and Scots pine
(Pinus sylvestris L.) in Norway using national forest inventory (NFI) data. The data were collected for a dif-
ferent purpose which potentially causes problems for dominant height growth modelling due to short
time series and large age errors. We used the generalized algebraic difference approach and fitted 15 dif-
ferent models using nested regression techniques. Despite the potential problems of NFI data the models
fitted to these data were unbiased for most of the age and site index range covered by the NFI data when
tested against independent data from long-term experiments (LTE). Biased predictions for young stands
and better site indices that are better represented in the LTE data, led us to fit models to a combined data
set for unbiased predictions across the total data range. The models fitted to the combined data that were
unbiased with little residual variation when tested against an independent data set based on stem anal-
ysis of 73 sample trees from southeastern Norway. No indications of regional differences in dominant
height growth across Norway were detected. We tested whether the better growing conditions during
the short time series (22 years) of the NFI data had affected our dominant height growth models relative
to long-term growing conditions, but found only minor bias. The combination with LTE data that have
been collected during a longer period (91 years) reduced this potential bias. The dominant height growth
models presented here can be used as potential height growth models in individual tree-based forest
growth models or as site index models.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Dominant height of a stand reflects the productivity of a fully
stocked even-aged stand because it is independent of density over
a wide range of densities (Skovsgaard and Vanclay, 2008), and
therefore dominant height at a given reference age is used as a
measure of site productivity (Spurr, 1952; Monserud, 1984). Site
index models are also dominant height growth models and are
therefore used to predict maximum possible (potential) height
growth in individual tree based growth models (Pretzsch et al.,
2002; Reed et al., 2003; Hasenauer et al., 2006). Norwegian domi-
nant height growth models for Norway spruce and Scots pine (Tve-
ite, 1977; Tveite and Braastad, 1981) were intended to be used to
predict site index only and the derived potential height growth
shows unrealistic culmination of height growth. Dominant height
growth models for Norway spruce and Scots pine have also been
developed in Sweden (e.g. Fries, 1969; Hägglund, 1972, 1973,
1974; Johansson, 1996; Elfving and Kiviste, 1997) and Finland

(e.g. Gustavsen, 1980; Vuokila and Väliaho, 1980; Karlsson,
2000). Data sources were mostly stem analysis and permanent
sample plots. Except for a few examples (Elfving and Kiviste,
1997; Eriksson et al., 1997), previous fennoscandian dominant
height growth models have been developed with simple methods,
e.g. involving guide curves, resulting in base-age specific models,
which assume an error-free observation of height at the base age
and are limited to certain types of observations and predictions.

Today, dominant height growth models are mostly developed
using base-age invariant approaches (Anta and Dieguez-Aranda,
2005; Krumland and Eng, 2005; Nord-Larsen, 2006a; Cieszewski
et al., 2007), making use of time series that do not include the base
age, and making models independent of the choice of base age. The
algebraic difference approach was used earlier (Bailey and Clutter,
1974), but here only one parameter can be site-specific and such
models produce height curves that are either anamorphic or have
a single asymptote. The generalized algebraic difference approach
(GADA) (Cieszewski and Bailey, 2000) allows more than one
parameter to be site-specific, and models can therefore be poly-
morphic with multiple asymptotes (Cieszewski, 2001, 2002; Cies-
zewski et al., 2007). Short time series of dominant height with no
common base age can also be used with this approach (e.g. García,
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2005; De los Santos-Posadas et al., 2006; Nord-Larsen, 2006a; Ti-
wari and Singh, 2009). GADA has become a standard for dominant
height growth modelling (Diéguez-Aranda et al., 2006a; Nord-Lar-
sen, 2006a; Cieszewski et al., 2007; Bravo-Oviedo et al., 2008; Mar-
tin-Benito et al., 2008).

Dominant height growth models can be developed from differ-
ent data sources: stem analysis (Martin-Benito et al., 2008), re-
peated measurements on permanent sample plots established for
experimental purposes or in the context of national forest invento-
ries. Accuracy of the height growth data varies and is typically
higher for stem analysis data than for permanent sample plots
(García, 2005). A bias may occur with stem analysis data, however,
if changes in tree dominance over time go undetected (Dahms,
1963; Zeide and Zakrzewski, 1993; Cherubini et al., 1998). Experi-
mental plots tend to be established in well-managed stands on bet-
ter sites while permanent sample plots of national forest
inventories are usually representative for growth conditions for
large areas.

Records from permanent sample plots of national forest inven-
tories are increasingly used for growth modelling, such as basal
area growth models (Monserud and Sterba, 1996; Sterba and
Monserud, 1997; Andreassen and Tomter, 2003), diameter growth
models (Bollandsås and Næsset, 2009), basal area and height
growth models (Condés and Sterba, 2008), and height growth mod-
els (Hasenauer and Monserud, 1997). Huuskonen and Miina (2007)
developed dominant height growth models from national forest
inventory data for young and even-aged stands of Scots pine in Fin-
land. Designed for another purpose, national forest inventory data
might cause special problems for growth modelling (Seynave et al.,
2005). Short time series and poor age records are among the most
prominent problems. Short time series require special consider-
ation in dominant height growth modelling and raise a general
concern of howwell the data represent average growing conditions
with regard to climatic variation (Monserud and Sterba, 1996).
Stand age of experimental plots can be recorded precisely, whereas
stand age of permanent sample plots for national forest inventories
are often recorded with much lower precision. Uneven-aged stands
included in the sample cause special problems for age recording
and dominant height growth modelling. Insufficient representation
of the dominant trees due to the sampling approach for height
measurements and the small plot sizes (García, 1998; Magnussen,
1999) might also question the use of such data for dominant height
growth modelling.

The objective of our study was to develop dominant height
growth models for Norway spruce and Scots pine in Norway. The
models are intended to be used as to predict site index and poten-
tial height growth in individual tree based growth models. Data
from the national forest inventory were available for this study,
and we wanted to test the models against data from long-term
experiments and stem analysis data specifically collected for this
purpose. Given the lack of dominant height growth models devel-
oped from national forest inventory data, we wanted to test if it
was possible to use this data despite the different purpose of the
data collection. Short time series and poor age records are of spe-
cial concern for our Norwegian data and will be addressed
specifically.

2. Methods

2.1. Data

Following the objective of our study we initially used data from
the Norwegian national forest inventory for model calibration and
tested the models against two independent data sets, i.e. existing
data from long-term experiments and stem analysis data specifi-

cally collected for our project. After the first tests of the model
against data from the experiments we detected a bias for young
stands due to missing data in that age range. We therefore decided
to combine the two data sets for calibration of another set of mod-
els, leaving the stem analysis data as the only test data set for those
combined data models.

2.1.1. National forest inventory data
The Norwegian national forest inventory (NFI) has established

10,500 permanent sample plots in productive forests systemati-
cally located in a 3 � 3 km grid across most of Norway except Finn-
mark county (Tomter, 2000). The size of the circular plots was
100 m2 during the establishment phase (1986–1993) and was later
increased to 250 m2. Plots were remeasured every fifth year. We
excluded plots that had a stand border within the plot, plots with-
out age records, and plots with land use types other than forestry.
We excluded plots if less than 70% of the standing volume was nei-
ther Scots pine nor Norway spruce. For all the trees above 5 cm in
diameter at breast height (dbh) the coordinates and dbh are
known. For our purpose we used data for the period 1986–2008,
including up to three remeasurements of the height of the domi-
nant trees.

Height was measured on a sample of trees at each remeasure-
ment. The trees were selected based on a gauge angle factor of
6 m2 ha�1, resulting in only one height sample tree per plot for
about 30% of all plots, and between two and six height sample trees
for the remaining plots. Due to the angle gauge sampling approach,
dominant trees had a higher probability of being included in the
height samples than smaller trees. Height of the sample trees
was measured using hypsometers such as Suunto or Vertex and re-
corded to the nearest 0.1 m. Given the low precision of height mea-
surements with those hand-held instruments relative to a 5 year
height increment, large measurement errors can be expected.
According to Norwegian traditions, tree height has been recorded
as height difference between the tree top and an estimated stump
height. We therefore converted to total tree height by adding 0.3 m
to all recorded heights.

For a sample plot size of 250 m2, the largest two to three trees
by diameter can be expected to be among the 100 largest per ha
and therefore fulfill the criteria for dominant trees. We identified
those individual trees in our data using a combination of height
and dbh ranking. This reflects a typical field procedure where both
height and dbh are considered simultaneously to identify domi-
nant trees. The selection algorithm resulted most often in one to
two height sample trees per plot being selected as dominant trees.

We excluded plots with shelter trees to avoid suppressed height
growth. Shelter trees were identified on the basis of dbh distribu-
tions for each plot and measurement occasion. Top breakage was
identified in the field and those trees were removed from the data
set. Still many dominant trees that were selected due to their large
dbh had a low height relative to the dbh. A linear regression of
height–dbh ratio over dbh for all height sample trees per species
was used to identify such trees and exclude them.

Stand age for the NFI is defined as the basal area weighted mean
breast height age. This means that in cases where the field crew
considered the stand to be uneven-aged, the recorded stand age
is lower than the age of the dominant trees. The recorded stand
age is, in other words, a rough estimate of the age of the dominant
trees, especially when considering the fact that large forest areas in
Norway are uneven-aged. Recorded height and age did often not
match with the recorded site index, indicating an age correction.
We found such inconsistencies for 19% and 12% of the plots, for
spruce and pine, respectively. We did not exclude these plots, be-
cause preliminary analysis indicated no significant bias of the
models fitted to the entire data as compared to models fitted to
data excluding such plots. Stand age was estimated from an
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increment core taken at breast height of one dominant tree outside
the permanent sample plot during recordings in inventory periods
6 (1986–1993) and 7 (1994–1999). In inventory period 8 (2000–
2004) stand age was known from previous inventories and there-
fore only sporadically controlled by counting age on increment
cores. In period 9 (2005–2009) no ages were recorded. We there-
fore considered stand ages given for period 7 and 8 to be consistent
and calculated a mean of the discounted ages for period 7 and 8.
The average of stand age for period 6 and mean stand age for peri-
ods 7 and 8 was used as stand age for our analyses. We converted
the recorded total age back to age at breast height by subtracting
the time to reach breast height given in the field instructions for
different site index classes (Skog og landskap, 2007).

Because tree height was measured during the growing season,
the increment period was not always a full year. To calculate the
number of increment periods for the given records, we assumed
that height growth occurs within the first 60 days of the growing
season for spruce (Kozlowski, 1962; Ekberg et al., 1994) and pine
(Kozlowski, 1962; Zhang et al., 1997; Kilpelainen et al., 2006).
The start of the growing season was estimated as the day when
the degree day sum exceeded 10 �C (Salminen and Jalkanen,
2007), using a degree day sum of daily temperatures above 5 �C.
The earliest start of height growth was set to April 19 and the latest
to July 1. Mean monthly temperatures for all sample plots were ob-
tained from a spatial interpolation of the records from 797 weather
stations (Skaugen and Tveito, 2004; Solberg et al., 2004). For the
29% of all trees that were measured during the growing season
we calculated the corrected proportion of time (number of days)
within the height growth period (Ts) assuming a sigmoid height
growth over time

Ts ¼ 1
1þ exp½10ð0:5� TÞ�

where T is the time within the height growth period relative to the
total length of the height growth period.

For Norway spruce, 1299 dominant trees on 859 plots were se-
lected as dominant trees, representing 34% of all sample plots with
height sample trees. For Scots pine, 1372 dominant trees on 913
plots were selected as dominant trees, representing 37% of all sam-
ple plots with height sample trees. Between one and four dominant
trees were identified on the plots, with the majority of the plots
represented by only one tree. The selected plots cover most of
the range of the distribution for those two species in Norway.

2.1.2. Long-term experiment data
The Norwegian Forest and Landscape Institute has series of per-

manent sample plots located on several hundred sites across the
country. The first plots were established in 1915 and the last mea-
surements used here were done in 2006. The sample plots are part
of long-term experiments (LTE) testing thinning methods and
other treatments or they have been established to monitor growth
for modelling purposes. The sample plots have been remeasured
regularly, creating time series of dominant height data with a
length of 10–80 years. Stand age varied between 0 and 180 years.
The distribution of sample plots across ages and site indices can
be seen in Fig. 2. After 1960 dominant height on those plots was
estimated based on height measurements of all trees representing
the 100 largest trees by diameter per ha. Before 1960 dominant
height on some plots was estimated using height–diameter rela-
tionships estimated from a number of sample trees (18% of the
dominant heights in the LTE data). For our analysis we used 1704
plots on 542 sites for Norway spruce, and 724 plots on 191 sites
for Scots pine.

For conversion of total age to breast height age, an average time
to breast height per site index was used (Skog og Landskap, 2007),

ignoring indications for a slightly longer time to breast height in
Western Norway (Øyen and Nes, 1997). For individual plots this
average time can be different from the real time to reach breast
height, causing height at breast height age zero to be different from
1.3 m. For time series on 47 plots in young stands (breast height
age <10 years) with large errors, we corrected breast height age
by estimating time to breast height based on a linear regression fit-
ted to the first four observations of the time series. In cases where
age of the LTE data was estimated from increment cores that
showed signs of growth suppression in the youth, ages were cor-
rected to ages of stands without growth suppression.

Dominant height series from LTE and NFI are different in nature.
Time series from the LTE are generally much longer than those
from the NFI data. While NFI data are representative of the growing
conditions and stand ages in Norway, LTE data have a bias towards
better sites and younger stands (Fig. 2). Data from younger stands
are missing in the NFI data because individual tree height is only
sampled for trees with dbh > 5 cm. The height series in the NFI data
are based on individual trees whereas those from LTE are based on
means of dominant trees. In both cases the sampling design is
unbalanced, i.e. one to three trees per plot and two to four remea-
surements per tree in the NFI data and 1–36 plots per site and 2–20
remeasurements per plot in the LTE data.

2.1.3. Stem analysis data
In order to test the dominant height growth models, we col-

lected 89 dominant trees from both species for stem analysis
(SA), allowing us to reconstruct their height growth. Sampling
was restricted to south-eastern Norway (counties Telemark, Bus-
kerud, Oppland, and Hedmark), a region containing most of the for-
est resources and supplying the majority of the annual cut. By
using forest management plan data we identified stands with an
age of around 100 years covering the existing site index range in
the given region. In total we sampled 89 trees in 31 stands. In each
stand we identified three dominant trees and sampled 20 stem
disks at regular intervals along the stem, recording the height of
the disks along the stem. The number of annual rings was counted
on each stem disk in the lab to determine the age at which this
height was reached, always assuming that the height was reached
half way through the growth period (Newberry, 1991). By compar-
ing the height series of the three trees per stand we could identify
periods of suppression for individual trees (Martin-Benito et al.,
2008) and excluded 16 trees and the later part of the time series
from 11 trees due to signs of suppressed height growth.

When comparing dominant height growth model predictions
with the SA height series, we found many trees that were growing
slower in the youth than predicted by the model, especially for
Norway spruce but also in a few cases for Scots pine. Suppressed
height growth in the youth can be a consequence of natural regen-
eration under shelter, which is much more likely to be represented
in our SA series due to their origin about 100 years ago as com-
pared to the model calibration data. As a consequence of suppres-
sion in the youth, the age of those trees is not comparable with that
of trees of the same height growing in even-aged stands after clear-
cutting. We corrected time series of suppressed trees if we found a
deviation from model prediction of more than 2 m using model 1
fitted to the combined data set. Declining trends in the youth in
the residual plots were used to identify periods of suppressed
growth and those periods were removed from the time series of
22 spruce and 9 pine trees. In order to correct the age for the
remaining part of those time series the dominant height growth
model with fixed global parameters and variable site index and
age correction term were fitted to the data. Most of the age correc-
tions were about 50% of the length of the suppression period. Be-
cause this correction of the time series is depending on the
dominant height growth model used for the correction, we applied
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age corrections using models 1, 2, 8, 12, 14 fitted to combined data
and found differences in the age correction between models of 0
and 4 years, and 9 years for one tree (age corrections varied from
0 to 58 years with a mean of 15 years). This indicates that the cor-
rection using those models identifies periods of suppression as pat-
terns inherent in the data almost independently of the individual
model.

A total of 36 Norway spruce trees and 37 Scots pine trees were
available for our tests. The distribution of SA data across ages and
site indices can be seen in Fig. 2. Representing individual dominant
trees the SA data are more similar to the NFI data than to the LTE
data. Due to their long time series, which are in some cases exceed-
ing the length of the LTE series, they are well suited for testing the
dominant height growth model.

2.2. Models

Models of dominant height growth describe the development of
height over age for a range of site qualities. As site index models
they are used to assess productivity of forest sites (Skovsgaard
and Vanclay, 2008). Time series of dominant height over age are
non-linear and often sigmoid. Modelling the effect of site quality
on asymptote and shape parameters of these models is a complex
task, which is further complicated by the fact that the site quality
of each individual time series is unknown. The latter is especially
true for the short time series of the NFI data. We therefore applied
the generalized algebraic difference approach (GADA) (Cieszewski
and Bailey, 2000), which allowed us to use short time series and is
able to fit polymorphic models with variable asymptotes. GADA
has frequently been used to model growth of dominant height
and other variables (Anta et al., 2006; Diéguez-Aranda et al.,
2006b; Nord-Larsen, 2006a; Cieszewski et al., 2007; Bravo-Oviedo
et al., 2008; Martin-Benito et al., 2008). GADA models have been
developed for a range of different base functions of fractional form,
e.g. Hossfeld, King-Prodan (Cieszewski et al., 2007) and exponen-
tial form, e.g. Chapman–Richards, Sloboda (Cieszewski and Strub,
2008). Dominant height growth for various species in Scandinavia
has been modeled mainly based on the Chapman–Richards and
Hossfeld functions (Hägglund, 1973, 1974; Johansson, 1996; Elf-
ving and Kiviste, 1997; Karlsson, 2000). Current dominant height
growth models for Norway spruce and Scots pine in Norway (Tve-
ite, 1977) are based on a fractional function (Strand, 1964). Due to
the short time series of our NFI data, we were not able to identify
the most suitable base function for our material by fitting models
to individual time series. We therefore tested GADA models that
have previously been used and derived GADA formulations of pre-
viously used growth functions, i.e. a total of 15 models (Table 1).
Any number of parameters in the base growth function can be
made site-specific by using an unobservable theoretical site vari-
able X. Solving the base equation for X with initial values and
replacing parameters in the original equation, gives the GADA
models of the form h1 = f (h0, t0, t1, b) (h0 and h1 are heights (in
m) at age t0 and t1 (in years), respectively, b is the parameter
vector).

2.3. Analysis

2.3.1. Parameter estimation
The model parameters were estimated with non-linear least-

square regression using PROC NLIN (SAS Institute Inc., 2008),
applying Marquardt’s method due to correlation among parameter
estimates. We used nested regression (Cieszewski et al., 2000;
Krumland and Eng, 2005) to simultaneously estimate global and
site-specific parameters. The site-specific parameters describing
the site index of individual plots are unknown, and depending on
the global parameters, and therefore need to be estimated

simultaneously. Parameters were simultaneously estimated with
the following iterative procedure: (1) estimation of global param-
eters, (2) estimation of the site-specific parameter (site index)
using the global parameter estimates in step 1, (3) estimation of
global parameters using the site-specific parameter values ob-
tained from step 2. Step 2 and 3 of this procedure were repeated
until the sum of squared errors changed less than 10�8.

To calibrate the GADA models, data were reorganized from time
series of dominant height into height differences for each observa-
tion period, where h0 is height at age t0 and h1 is height at age t1.
The h0 and t0 describe the site specific starting height and may
for example for an index age describe the site index. Because the
site index is unknownwe used for the first step of the iterative pro-
cedure the mean height of all measurements per tree and plot, for
NFI and LTE data respectively, as h0 and the mean age as t0. In sub-
sequent iterations, h0 was estimated as a local parameter. By esti-
mating GADA models with this data structure, the models are
base-age invariant (Cieszewski and Strub, 2007).

Both our calibration data sets have an unbalanced sampling de-
sign. For NFI plots, different numbers of dominant trees have been
identified and time series of their height growth are of different
length. To avoid bias in our models introduced by NFI plots or
LTE sites with many observations, we weighted our observations
in a way that the sum of weights for all growth periods per NFI plot
or LTE site was equal to one. Both calibration data sets represent a
sample of repeated measurements with unequal intervals, from a
number of trees per plot for NFI data or from a number of plots
per site for LTE data. Therefore, the observations are likely to be cor-
related with each other, thus model errors might not be indepen-
dent. Mixed models including random effects would be the
appropriatemethod for this data structure, but could not be applied
due to limited number of replicates in the NFI data. Autocorrelation
of the time series was accounted for by including a linear first order
autoregressive error structure (Greene, 2003) into the models,
where p1 is the parameter related to the autoregression term.

All models presented describe dominant height growth above
1.3 m (breast height). We therefore subtracted 1.3 m from all
height records, shifting the origin of all models to 1.3 m height at
breast height age of zero. When applying the models to predict
dominant height, 1.3 m has to be added to all predictions.

Measurement errors in independent variables are known to
cause biased parameter estimates in regression models (Goelz
and Burk, 1996; Kangas, 1998). This problem is most relevant for
the age data of the NFI that have been measured with a low preci-
sion. We therefore applied the simulation extrapolation method
(Kangas, 1998) to correct for the bias in parameter estimates from
the original data. The error variance of the age estimates in our
data is unknown, but we assumed that the error is normally dis-
tributed around the true age with a variance of 2 years. This vari-
ance results in maximum age errors of about ±6.5 years, which is
a reasonable assumption for the structure of the NFI data and the
corrections applied to the age estimates. In the simulation part
we added a random age errors to the observed ages that were nor-
mally distributed with a variance of once or twice the assumed age
error variance (2 years). Mean parameter estimates from 1000 rep-
lications per age error variance alternative were used together
with the parameter estimates from the observed data to investi-
gate the relationship between age error variance and parameter
values. This relationship was strongly linear for all parameters in
the final model and a linear regression was therefore used to
extrapolate to parameter estimates for the case of no age error.

2.3.2. Model evaluation
The models were evaluated using numerical fit and prediction

statistics, graphs of residuals and prediction errors, and evaluation
of their biological realism (Goelz and Burk, 1992), e.g. sigmoidal
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Table 1
Models fitted to dominant height time series.

Base model form Site-specific
parameters

Solution for theoretical variable X GADA model form

a1 ¼ b1 þ X
a2 ¼ b2=X

X0 ¼ 1
2 wþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ 4b2h0t

�b3
0

q� �
with w ¼ h0 � b1

Cieszewski (2002):

h1 ¼ b1 þ X0

1þ b2=X0t
�b3
1

ð1Þ

Hossfeld:
h ¼ a1

1þa2 t
�a3

a1 ¼ b1 þ X
a2 ¼ b2X

X0 ¼ h0�b1
1�b2h0 t

�b3
0

Cieszewski (2002):

h1 ¼ b1 þ X0

1þ b2X0t
�b3
1

ð2Þ

a2 ¼ X X0 ¼ tb30 b1=h0 � 1ð Þ McDill and Amateis (1992) in Anta et al. (2006):

h1 ¼ b1

1� 1� b1=h0ð Þ t0=t1ð Þb3
h i ð3Þ

Hossfeld:

h ¼ a1 t2

tþa2ð Þ2

a2 ¼ X X0 ¼ t0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b1=h0

p
� 1

� �
Cieszewski and Zasada (2002) in Cieszewski et al. (2007):

h1 ¼ b1t21
t1 þ t0 b1=h0 � 1ð Þð Þ2

ð4Þ

a1 ¼ b1 þ b2X
a2 ¼ X

X0 ¼ � 1
2h0

w�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 � 4h0t20 h0 � b1ð Þ

q� �
with w ¼ t0 2h0 � b2t0ð Þ h1 ¼ t21 b1 þ b2X0ð Þ

t1 þ X0ð Þ2
ð5Þ

Hossfeld:

h ¼ t2

a1þa2 tþa3 t2

a2 ¼ X X0 ¼ t0=h0 � b1=a0 � b3t0

h1 ¼ t21
b1 þ X0t1 þ b3t21

ð6Þ

a2 ¼ X
a3 ¼ b1 þ b2X

X0 ¼ t20 1�b1h0ð Þ�b1h0
h0 t0 1þb2 t0ð Þ

h1 ¼ t21
b1ð1þ t21Þ þ X0t1ð1þ b2t1Þ

ð7Þ

Korf:
h ¼ a1 exp �a2t�a3ð Þ

a1 ¼ exp Xð Þ
a2 ¼ b1 þ b2ð Þ=X X0 ¼ 1

2 t
�b3
0 wþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b2t

b3
0 þ �wð Þ2

q� �
with w ¼ b1 þ tb30 Lnh0

Anta et al. (2006):

h1 ¼ exp X0ð Þ exp � b1 þ b2

X0

� �
t�b3
1

� �
ð8Þ

a2 ¼ X X0 ¼ �Ln h0=b1ð Þtb30

h1 ¼ b1 exp Ln h0=b1ð Þ t0=t1ð Þb3
� �

ð9Þ
King-Prodan:

h ¼ ta1
a2þa3 t

a1

a2 ¼ b2 þ b3X
a3 ¼ X

X0 ¼ t
b1
0 =h0�b2

b3þt
b1
0

Krumland and Eng (2005):

h1 ¼ tb11
b2 þ b3X0 þ X0t

b1
1

ð10Þ

Chapman–Richards:
h ¼ a1 1� exp �a2tð Þ½ �a3

a1 ¼ X X0 ¼ h0= 1� exp �b1t0ð Þð Þb2 Krumland and Eng (2005):

h1 ¼ h0
1� exp �b1t1ð Þ
1� exp �b1t0ð Þ
� �b2

ð11Þ

a1 ¼ expðXÞ
a3 ¼ b2 þ b3

X

X0 ¼ 1
2 wþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 � 4b3/

q� �
with w ¼ Lnh0 � b2/
and / ¼ Ln 1� exp �b1t0ð Þ½ �

Krumland and Eng (2005):

h1 ¼ h0
1� exp �b1t1ð Þ
1� exp �b1t0ð Þ
� � b2þb3=X0ð Þ

ð12Þ

a2 ¼ X X0 ¼ �Ln 1� h0=b1ð Þ1=b3
h i

=t0

h1 ¼ b1 1� exp Ln 1� h0=b1ð Þ1=b3
h i

t1=t0
� �� �b3 ð13Þ
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shape or variable asymptotes. As fit statistics we used mean resid-
uals (MR), adjusted coefficient of determination (R2

adj:), root mean
squared error (RMSE), and the Akaike information criterion (AIC)
(Greene, 2003). For AIC, we used the least-square version (Burn-
ham and Anderson, 2002). Fit statistics describe the residual vari-
ation of the observed data around the model. Similar statistics
were used to describe the variation of independent data around
model predictions, and called prediction statistics, e.g. mean resid-
uals become mean prediction errors (MPE). Fit and prediction sta-
tistics have been calculated by including the same weights for each
observation that have been used for model fitting. Graphical anal-
ysis of residuals was used to detect trends in the residuals as an
indication of poor model fit. We evaluated residual graphs for indi-
vidual age classes, site index classes, and geographical regions in
order to assure that the models fitted well across the range of data.
To facilitate the detection of trends in the residuals, we calculated
mean residuals for age and site index classes.

To test how appropriate the short observation periods in the NFI
data are for long-term averages, we evaluated the effect of weather
on height growth for our data. Firstly, we compared weather data
for a 15-year-period where NFI data had been collected (1986–
2000) with 44-year averages (1957–2000). We used temperature
and precipitation sums during the growing period for those com-
parisons. The start of the growing period has been defined as de-
scribed above, the end of the season was set to the 1st and 10th
of August for spruce and pine, respectively, based on observations
for radial growth from Finland (Mäkinen et al., 2008; Henttonen
et al., 2009). Second, we calculated relative height growth of indi-
vidual trees as observed height growth relative to height growth
predicted with model 1 fitted to the NFI data. The correlation be-
tween relative height growth and growing season mean tempera-
ture and precipitation sums for the same period between two
height measurements was analyzed. Trends in the mean relative
height growth for individual plots would indicate an effect of the

Table 1 (continued)

Base model form Site-specific
parameters

Solution for theoretical variable X GADA model form

Sloboda:

h ¼ a1 exp �a2 exp a3
a4�1ð Þt a4�1ð Þ

� �h i a2 ¼ X X0 ¼ � Ln h0=b1ð Þ

exp
b2

b3�1ð Þt b3�1ð Þ
0

 ! Anta and Dieguez-Aranda (2005):

h1 ¼ b1 h0=b1ð Þ
exp

b2

b3�1ð Þt b3�1ð Þ
1

� b2

b3�1ð Þt b3�1ð Þ
0

 !
ð14Þ

Strand (1964):

h ¼ t
a1þa2 t

� �a3 a1 ¼ X
a2 ¼ b1 þ b2X

X0 ¼ t0 h�1=b3
0 � b1

� �
=1þ b2t0

h1 ¼ t1
X0 þ t1 b1 þ b2X0ð Þ
� �b3

ð15Þ

a1, a2, . . ., an are parameters in base models; b1, b2, . . ., bn are parameters in dynamic models; h0 and h1 are heights (in m) at age t0 and t1 (in years), respectively; X0 is the
solution of X for initial height and age.

Table 2
Parameter estimates and fit statistics of models fitted to NFI data.

Models Parameter estimates Fit statistics (NFI data) Prediction statistics (LTE data)

b1 b2 b3 p1 MR (m) RMSE (m) R2
adj:

AIC MPE (m) R2
adj:

Norway spruce 1 10.5152 7507.7107 0.9751 �0.1949 0.0002 0.6066 0.9824 �860 �0.0292 0.9949
2 112.9358 �2.9640 0.9831 �0.1952 0.0003 0.6065 0.9824 �860 �0.0282 0.9948
3 75.2604 0.9535 �0.1931 0.0002 0.6096 0.9822 �852 �0.0376 0.9937
4 43.1132 �0.1725 0.0058 0.6315 0.9809 �792 0.0349 0.9911
5 53.1844 �0.3893 �0.1792 0.0054 0.6252 0.9813 �809 0.0340 0.9930
6 0.5832 0.0156 �0.1923 0.0012 0.6097 0.9822 �852 �0.0272 0.9942
7 0.0097 0.0028 �0.1951 0.0005 0.6061 0.9824 �862 �0.0257 0.9949
8 0.0046 49.7100 0.2036 �0.1932 0.0002 0.6075 0.9823 �857 �0.0242 0.9948
9 651.7645 0.2004 �0.1930 0.0002 0.6101 0.9822 �851 �0.0310 0.9936

10 0.9831 �2.9640 334.7379 �0.1952 0.0003 0.6065 0.9824 �860 �0.0282 0.9948
11 0.0059 0.8545 �0.1920 �0.0006 0.6077 0.9823 �858 �0.0343 0.9941
12 0.0088 0.1693 2.9127 �0.1959 0.0000 0.6068 0.9824 �859 �0.0296 0.9944
13 47.2074 0.9080 �0.1929 0.0001 0.6095 0.9822 �853 �0.0396 0.9937
14 24370.6848 �0.1546 0.8858 �0.1936 0.0003 0.6076 0.9823 �857 �0.0228 0.9948
15 0.0080 0.0027 0.9751 �0.1952 0.0030 0.6079 0.9823 �856 �0.0100 0.9951

Scots pine 1 16.5350 2800.7197 1.0423 �0.2478 0.0004 0.4839 0.9836 �1329 �0.0178 0.9927
2 61.4465 �5.9731 1.0541 �0.2478 0.0004 0.4838 0.9836 �1329 �0.0141 0.9927
3 50.3382 0.9395 �0.2481 0.0003 0.4884 0.9833 �1313 �0.0350 0.9904
4 34.0159 �0.2303 0.0026 0.4982 0.9826 �1277 0.0429 0.9901
5 47.1462 �0.4627 �0.2378 0.0018 0.4874 0.9833 �1316 0.0535 0.9913
6 8.5040 0.0259 �0.2494 0.0007 0.4846 0.9835 �1327 0.0320 0.9926
7 0.0140 0.0033 �0.2479 0.0002 0.4839 0.9836 �1330 �0.0231 0.9922
8 0.0080 34.9688 0.3230 �0.2456 0.0005 0.4844 0.9836 �1327 0.0081 0.9926
9 154.4984 0.2795 �0.2485 0.0006 0.4886 0.9833 �1312 �0.0123 0.9910

10 1.0541 �5.9730 367.0199 �0.2478 0.0004 0.4838 0.9836 �1329 �0.0141 0.9927
11 0.0064 0.8077 �0.2396 �0.0004 0.4868 0.9834 �1319 �0.0451 0.9897
12 0.0100 �0.0663 3.4053 �0.2442 0.0000 0.4852 0.9835 �1324 �0.0295 0.9912
13 34.1900 0.8516 �0.2478 0.0002 0.4884 0.9833 �1312 �0.0440 0.9900
14 334.5074 �0.4507 0.8097 �0.2490 0.0008 0.4836 0.9836 �1330 0.0322 0.9923
15 0.0141 0.0033 0.9994 �0.2480 0.0001 0.4840 0.9836 �1328 �0.0234 0.9922
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weather variables on dominant height growth. We had to limit this
analysis to about one third of the plots because weather data were
only available up to 2000 and only longer time series could be used
to detect trends in relative height growth for individual plots.

Dominant height growth models are often only valid for limited
regions. We, therefore, tested how well our models represented
dominant height growth in four regions defined as north (county
Troms), middle (Sør-Trøndelag, Nord-Trøndelag, Nordland), south-

east (Østfold, Akershus, Oslo, Hedmark, Oppland, Buskerud,
Vestfold, Telemark, Aust-Agder, Vest-Agder) and southwest
(Rogaland, Hordaland, Sogn og Fjordane, Møre og Romsdal).

3. Results

Following our original objective, we first fitted the 15 different
models (Table 1) to the NFI data. Parameter estimates and fit
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statistics of NFI data, and prediction statistics of LTE data are sum-
marized in Table 2.

All 15 models showed good fit statistics with small differences
between models. Models 1, 2, 7, 10, and 12 for spruce and models
1, 2, 7, 8 10, 14, and 15 for pine had the best fit statistics. Models 2
and 10 are different mathematical formulations of identical models
as indicated by parameter estimates and fit statistics. We therefore
only present graphical results for model 2 in the following.

Prediction statistics of all models against LTE data (Table 2) are
indicating a good representation for the complete LTE data set.
For the NFI data the residual plots do not show any systematic bias,
except for the youngest age class, which are only represented by
very few data (Fig. 1). For the LTE data almost all models fitted
to NFI data show significant bias for younger age classes (below
25 years) and for higher site indices. The poor fit of the models
to younger age classes are caused by a few observations from very

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140 160 180 200 220

NFI, Pine

H
ei

gh
t (

m
)

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100 120 140 160 180 200

NFI, Spruce

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140 160 180 200 220

LTE, Pine

H
ei

gh
t (

m
)

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100 120 140 160 180 200

LTE, Spruce

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140 160 180 200 220

SA, Pine

H
ei

gh
t (

m
)

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100 120 140 160 180 200

SA, Spruce

0

20

40

60

80

Breast height age (years)

0 20 40 60 80 100 120 140 160 180 200 220

Pine

H
ei

gh
t 

gr
ow

th
 (

cm
/y

r)

0

20

40

60

80

100

Breast height age (years)

0 20 40 60 80 100 120 140 160 180 200

Spruce

Fig. 2. Model 1 fitted to combined data vs. observed height series of all three data sets for Norway spruce (left panels) and Scots pine (right panels). Model predictions are for
2 m site index intervals (height at 40 years breast height age) for the range 4–26 m for spruce and 2–20 m for pine. For the SA data broken lines indicate trees where age has
been corrected due to suppressed height growth in the youth.

R.P. Sharma et al. / Forest Ecology and Management 262 (2011) 2162–2175 2169



young stands in the NFI data (Fig. 2). Only 16 and 3 plots younger
than 15 years are present in the NFI data for spruce and pine,
respectively. In Fig. 2 it can also be seen that LTE data, while ade-
quately representing stands of all ages, are biased towards better
site indices. This might explain the bias of NFI models on better
sites that are only poorly represented in the data.

The two data sets complement each other to cover the whole
range of age and site index classes. We therefore fitted models to
the combined data in order to find models free of bias for individ-
ual age and site index classes. Model parameters and fit statistics
for all 15 models are summarized in Table 3. All 15 models showed
good fit statistics with small differences between models. For both
species, models 1, 2, and 10 had better fit statistics than all other
models. Also here, models 2 and 10 are different mathematical for-
mulations of the same models as indicated by parameters and fit
statistics. Model fit to individual age and site index classes can
be seen from residual plots in Fig. 3. Compared to the model fitted
to NFI data only (Fig. 1), less bias for younger age classes and better
site indices of the LTE data indicates that the models based on the
combined data set are better fitted to the total range of available
data.

The advantage of the NFI data is that they are a representative
sample of ages and site indices across the country, while LTE data
are biased towards younger stands and better sites. By combining
these data we wanted to avoid the biases of the model fitted to NFI
data alone, without introducing a new bias caused by the LTE data.
Residual plots for NFI data in Fig. 3 confirm that these models also
fit unbiased to NFI data. In addition we calculated fit statistics of
the models fitted to combined data separately for NFI and LTE data
(Table 3). For NFI data the R2

adj: of the best models is only slightly
lower for the combined data models than for the NFI data models

(Table 2). For LTE data R2
adj: is clearly higher for models fitted to the

combined data, compared to prediction statistics based on models
fitted to NFI data alone, indicating that models fitted to combined
data avoid the bias of models fitted to NFI data alone.

Models 1, 2, and 10 fitted to the combined data set are all sim-
ilar in their fit statistics and do not show any systematic bias in the
residual plots. Since model 1 has slightly better fit statistics for
both species (RMSE) than model 2 and 10, this model is recom-
mended for further use. Parameter estimates for this model have
been corrected for bias caused by errors in the age variable and
are presented in Table 4. The same model with biased parameter
estimates (Table 3), predicts heights at age 100 that are 0.19 and
0.56 m lower for pine and spruce, respectively, for the site index
with the largest bias. Model 1 for spruce and pine is presented in
Fig. 2 in comparison with calibration data (NFI and LTE) and test
data (SA).

When applying the model for predictions of dominant height
growth, it should be noted that model predictions are only for
heights above breast height and that 1.3 m has to be added in order
to predict dominant height. When fitting the models to height ser-
ies over breast height age rather than total age, we are accounting
for slow initial height growth in uneven-aged stands that are fre-
quent in our data and following Norwegian traditions (Tveite,
1977). As indicated in Fig. 2 we are also proposing to continue
using a breast height age of 40 years to derive site indices from
those models, but we would like to note that due to the base-age
invariant methods used here, any other base age could be selected.

Dominant height growth models are often only valid for limited
regions. Differences in dominant height growth of the same species
between regions have been reported also for Norway. We therefore
tested how well dominant height growth in four separate regions

Table 3
Parameter estimates and fit statistics of models fitted to combined data.

Models Parameter estimates Fit statistics

Combined data (NFI + LTE) Separate data

NFI LTE

b1 b2 b3 p1 MR(m) RMSE(m) R2
adj:

AIC MR(m) R2
adj:

MR(m) R2
adj:

Norway spruce 1 8.5507 6071.57 1.1160 �0.0517 0.0009 0.5492 0.9902 �1682 0.0028 0.9822 �0.0021 0.9957
2 103.9762 �2.7885 1.1077 �0.0567 0.0006 0.5502 0.9902 �1677 0.0024 0.9822 �0.0024 0.9957
3 64.2555 1.0636 �0.0047 0.0003 0.5655 0.9896 �1600 0.0045 0.9820 �0.0063 0.9948
4 46.1701 0.0707 0.0213 0.6195 0.9875 �1344 0.0074 0.9807 0.0434 0.9920
5 75.4352 �1.3279 �0.0021 0.0176 0.5892 0.9887 �1485 0.0050 0.9809 0.0379 0.9940
6 3.6104 0.0162 �0.0387 0.0049 0.5558 0.9900 �1649 0.0051 0.9820 0.0046 0.9954
7 0.0052 0.0048 �0.0273 �0.0056 0.5549 0.9900 �1654 0.0012 0.9824 �0.0163 0.9952
8 0.0276 40.0930 0.3007 �0.0416 0.0024 0.5530 0.9901 �1662 0.0023 0.9822 0.0024 0.9955
9 358.5910 0.2520 0.0048 0.0018 0.5688 0.9895 �1584 0.0040 0.9820 �0.0017 0.9946

10 1.1076 �2.7671 288.81 �0.0487 0.0006 0.5502 0.9902 �1677 0.0024 0.9822 �0.0023 0.9957
11 0.0118 0.9809 �0.0267 �0.0033 0.5591 0.9898 �1632 0.0007 0.9819 �0.0097 0.9953
12 0.0137 0.2637 2.8764 �0.0367 �0.0007 0.5546 0.9900 �1654 0.0018 0.9821 �0.0048 0.9955
13 44.5841 1.0155 �0.0052 �0.0004 0.5655 0.9896 �1600 0.0045 0.9820 �0.0081 0.9948
14 122921.4490 �0.1798 0.7940 �0.0394 0.0022 0.5538 0.9900 �1658 0.0022 0.9822 0.0022 0.9954
15 0.0052 0.0048 0.9982 �0.0273 �0.0056 0.5551 0.9900 �1651 0.0012 0.9823 �0.0164 0.9952

Scots pine 1 12.0763 3089.0547 1.1548 �0.1047 0.0005 0.4788 0.9871 �1629 0.0006 0.9835 �0.0002 0.9934
2 55.5556 �6.9771 1.1557 �0.1037 0.0005 0.4790 0.9871 �1629 0.0004 0.9835 0.0009 0.9934
3 38.6516 1.1033 �0.0757 �0.0002 0.4920 0.9863 �1570 0.0014 0.9832 �0.0081 0.9919
4 33.8200 �0.0301 0.0094 0.5083 0.9854 �1499 0.0025 0.9826 0.1195 0.9758
5 48.2447 �0.5785 �0.0630 0.0090 0.4911 0.9864 �1574 0.0011 0.9833 0.0470 0.9917
6 6.6752 0.0254 �0.0941 0.0036 0.4830 0.9868 �1611 0.0005 0.9835 0.0187 0.9927
7 0.0106 0.0050 �0.0867 �0.0044 0.4842 0.9868 �1606 �0.0002 0.9836 �0.0244 0.9924
8 0.0229 33.6920 0.3671 �0.0960 0.0020 0.4818 0.9869 �1615 �0.0001 0.9835 0.0121 0.9929
9 91.6744 0.3617 �0.0753 0.0017 0.4929 0.9863 �1566 0.0010 0.9832 0.0051 0.9916

10 1.1557 �6.9771 387.6167 �0.1037 0.0005 0.4790 0.9871 �1629 0.0004 0.9835 0.0009 0.9934
11 0.0120 0.9592 �0.0680 �0.0028 0.4897 0.9865 �1580 0.0001 0.9831 �0.0169 0.9924
12 0.0147 �0.3495 4.7058 �0.0844 �0.0014 0.4849 0.9867 �1601 0.0003 0.9833 �0.0097 0.9927
13 29.6082 1.0036 �0.0709 �0.0011 0.4934 0.9863 �1564 0.0018 0.9831 �0.0149 0.9917
14 2401.1132 �0.3160 0.7704 �0.0947 0.0025 0.4825 0.9869 �1612 �0.0001 0.9836 0.0145 0.9927
15 0.0106 0.0049 0.9989 �0.0866 �0.0045 0.4843 0.9868 �1604 �0.0003 0.9836 �0.0245 0.9924
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was predicted by model 1 fitted to the combined data set (Table 5).
Fit statistics in this table for individual regions are comparable
with those for the entire data set. We did not find any systematic
bias in residual plots for age and site index classes.

We tested model 1 fitted to the combined data against the inde-
pendent data set derived from stem analysis of individual domi-
nant trees (SA data). Prediction statistics for all trees
(MPE = �0.0269 m, R2

adj: = 0.9931, N = 36 for spruce;

MPE = 0.0007 m, R2
adj: = 0.9909, N = 37 for pine) and for trees with-

out corrected ages due to suppression in the youth
(MPE = �0.0561 m, R2

adj: = 0.9987, N = 14 for spruce;
MPE = 0.0078 m, R2

adj: = 0.9890, N = 28 for pine) indicated a good
fit of the model also to this data set. Prediction errors were for
the major part of the time series of all 73 trees within ±1 m (Fig. 4).

Due to the sampling approach of the NFI, we were not able to
use data representing exactly the 100 dominant trees per ha. For

-0.16

-0.12

-0.08

-0.04

0.00

0.04

0.08

0.12

0.16

0 5 10 15 20 25 30 35

NFI, Spruce

M
ea

n 
he

ig
ht

 r
es

id
ua

ls
 (

m
)

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100 120 140 160 180 200

NFI, Spruce

-0.16

-0.12

-0.08

-0.04

0.00

0.04

0.08

0.12

0.16

0 5 10 15 20 25 30 35

LTE, Spruce

M
ea

n 
he

ig
ht

 r
es

id
ua

ls
 (

m
)

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100 120 140 160 180 200

LTE, Spruce

-0.16

-0.12

-0.08

-0.04

0.00

0.04

0.08

0.12

0.16

0 5 10 15 20 25

NFI, Pine

M
ea

n 
he

ig
ht

 r
es

id
ua

ls
 (

m
)

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100 120 140 160 180 200 220

NFI, Pine

-0.16

-0.12

-0.08

-0.04

0.00

0.04

0.08

0.12

0.16

Site index (m)

0 5 10 15 20 25

LTE, Pine

M
ea

n 
he

ig
ht

 r
es

id
ua

ls
 (

m
)

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Breast height age (years)

0 20 40 60 80 100 120 140 160 180 200 220

LTE, Pine

model 1 2 7 8 12 14 15

Fig. 3. Residuals of NFI and LTE data against models fitted to combined data for Norway spruce (upper four panels) and Scots pine (lower four panels). The upper two panels
per species are for NFI data and the lower two for LTE data. Legend for models: 1 = bold solid line; 2 = broken line; 7 = broken widely spaced line; 8 = solid line with circles;
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57% of the plots only one dominant tree per plot was identified and
used. If this happens to be the largest tree on the plot, the height
growth of these plots might be larger than for the mean height
growth of the 100 dominant trees per ha, and models fitted to
those data might have a positive bias. We therefore looked specif-
ically at data from plots containing only one sample tree and their
effect on the model. Single tree sample plots covered the same
range of age and site index classes as the other plots (data not
shown). For model 1 fitted to the NFI data only, we examined resid-
ual graphs for plots with different numbers of dominant height
sample trees, but did not find any bias for the single tree plots rel-
ative to all other plots (data not shown). For plots containing more
than one dominant height sample tree, we were able to rank trees
according to their height, using only plots with complete time ser-
ies for all trees, and calculating a mean rank for all remeasure-
ments. We then compared residuals from the same model for the
trees of different height ranks with residuals for trees from single

tree plots, but did not find a significant bias for any of the height
ranks (data not shown).

To test how representative the short observation periods in the
NFI data are for long-term averages, we first compared weather
data for a 15-year-period where NFI data had been collected
(1986–2000) with 44-year averages (1957–2000). Growing season
temperature sums for the NFI period were on average 2.6%
(s.d. = 2.2) and 2.8% (s.d. = 2.0) higher than 44-year averages for
spruce and pine, respectively. Growing season precipitation sums
for the NFI period were on average 4.3% (s.d. = 5.7) and 3.5%
(s.d. = 5.4) higher than 44-year-averages for spruce and pine,
respectively. All differences were significantly different from zero
(t-test, p < 0.001). This indicates that the weather during the period
for which NFI data were available was on average only slightly
warmer and moister than long-term averages. Relative height
growth based on model 1 fitted to NFI data showed both increasing
and decreasing trends per plot when plotted against mean temper-
ature or precipitation sums for the growing period for spruce or
pine. For about 60% of the plots a positive effect of both weather
variables on relative height growth could be observed. On average
relative height growth increased by about 20% as a consequence of
the observed increase in temperature or precipitation between the
two observation periods within the period 1986–2000 for spruce
and pine. This result indicates that variation in temperature and
precipitation between 5-year-periods might explain variation in
dominant height growth. The observed variation of climate vari-
ables within the 15-year-period used for this analysis was about
three times the difference between averages for this period and
the 44-year average. The year 1997 is recorded as the warmest
average growing season within the 44-year-period, the period
1995–2000 is recorded with above average precipitation sums
for all years. Temperature and precipitation sums for the rest of
the 15-year-period were not substantially different compared with
the 44-year-period. By analyzing the correlation between weather
data and height growth including the extreme years in the 1990s,
we have been looking at weather variation that is clearly exceeding
the long-term variation, and therefore likely having a larger than
average influence on height growth.

4. Discussion

Fit statistics of the dominant height growth models developed
from NFI data alone and tests against independent LTE data sets
indicated that all models describe dominant height growth well
within certain ranges of the NFI data, but had biased predictions
for young stands and better sites that are insufficiently covered
by NFI data. We, therefore, combined the data sets and recommend

Table 4
Parameter estimates for model 1 after correction of bias due to age measurement
errors.

Species b1 b2 b3

Norway spruce 18.9206 5175.18 1.1576
Scots pine 12.8361 3263.99 1.1758

Table 5
Prediction statistics for regional data using model 1 fitted to combined data.

Species Data
source

Region Number of
plots

MPE
(m)

R2
adj:

Norway
spruce

NFI Southeast 592 0.0035 0.9829

Southwest 33 �0.0260 0.9719
Middle 234 0.0053 0.9772

LTE Southeast 910 0.0059 0.9957
Southwest 319 �0.0245 0.9939
Middle 443 0.0107 0.9967
North 32 �0.0048 0.9892

Scots pine NFI Southeast 698 0.0003 0.9828
Southwest 128 0.0014 0.9797
Middle 82 0.0026 0.9731
North 5 �0.0053 0.9607

LTE Southeast 544 �0.0150 0.9946
Southwest 64 0.0206 0.9828
Middle 30 0.0154 0.9864
North 86 0.0125 0.9881
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Fig. 4. Prediction errors of model 1 fitted to combined data against independent stem analysis data for Norway spruce (left) and Scots pine (right). Broken lines indicate trees
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the models fitted to these data for further use. They showed unbi-
ased predictions with little residual variation for the independent
SA data set. The 15 different functional forms fitted resulted in very
similar models, but based on the fit statistics we recommended
one of Hossfeld’s models (model 1) (Cieszewski, 2002) for future
use. The same functional form has also been used in other domi-
nant height growth models (Diéguez-Aranda et al., 2006a,b). By
using the GADA approach we could develop polymorphic models
with multiple asymptotes from this base equation (Cieszewski
et al., 2007).

The main advantage of the NFI data is that they are representa-
tive for most of the growing conditions and stand ages in the coun-
try, even though some ages and/or site index classes might be
underrepresented as indicated by the biased predictions against
LTE data. Still, NFI data cover a wider range of site indices and ages
than LTE data (Fig. 2). A significant co-variation between age and
site index is obvious in the NFI data (Fig. 2) and is caused by youn-
ger stands being established during the last 60 years when the
clearfelling system was introduced and replaced uneven-aged
stands, mostly on better sites. Based on our results when testing
the models against independent data, we do not expect that this
co-variation is leading to biased models.

In contrast to many other data sources for dominant height
growth models, we used time series from individual trees on the
NFI sample plots that were not specifically sampled to represent
dominant height. The data recorded for all trees on the plot al-
lowed us to identify dominant trees with measured heights, but
for 57% of the plots only one tree could be used. We could demon-
strate that the number of dominant trees selected or their height
rank did not lead to biases in the models. This can be explained
by the fact that variation in height growth of dominant trees is
not affected by competition (Brunner and Nigh, 2000) for a large
range of stand densities, as also indicated by the underlying
assumption for using dominant height growth models as indicators
of stand productivity (Skovsgaard and Vanclay, 2008). Effects of
stand density on dominant height growth have been reported fre-
quently (MacFarlane et al., 2000; Mäkinen and Isomäki, 2004;
Nord-Larsen, 2006b; Nord-Larsen and Johannsen, 2007; Martin-
Benito et al., 2008; Skovsgaard and Vanclay, 2008; Nilsson et al.,
2010), most pronounced for light demanding pine species at extre-
mely low or high density. We addressed that question during the
development of an individual tree height growth model from the
same data. We did not find any indication that the individual trees
we selected as dominant here had less than maximum height
growth due to intensive or missing competition. On a larger scale,
site index estimates from smaller plots are biased relative to esti-
mates from larger plots (García, 1998; Magnussen, 1999), which is
amongst others caused by spatial variation of growing conditions
within the one hectare which is defining dominant height. We
were unable to address this question with our data, but our models
will typically be applied for plot sizes similar to the ones in the
data. The large spatial variation of growing conditions in Norway
within any hectare of forest questions the area reference in the tra-
ditional definition of dominant height.

A limitation when using NFI data for growth modelling is the
poor precision in registering stand age. A large part of the total for-
est area in Norway consists of uneven-aged stands as indicated by
37% of the productive forest area being classified as two- or multi-
layered (NIJOS, 2000). Even though dominant trees in those stands
might have grown up without suppression and can therefore be
used for dominant height growth modelling, the recorded stand
ages reflect mean ages for those stands rather than the age of the
dominant trees. Age records in the NFI data are therefore uncertain,
and an unknown proportion of uneven-aged stands was included.
We considered several indications in the data to identify stands
with uncertain ages, but were unable to filter the data. For 15%

of the plots inconsistent age and site index records indicated age
corrections and thus uneven-aged stands, but we did not find
any significant bias for those data compared to the rest in prelimin-
ary analyses. We interpret the successful test of the NFI data mod-
els with uncertain ages against LTE and SA data as a confirmation
that the models are valid despite the large age errors involved.
Age errors are likely random and not systematic, despite system-
atic reduction of stand age from dominant age for an unknown
number of uneven-aged stands. Errors in predictor variables are
known to cause biased parameter estimates (Goelz and Burk,
1996; Kangas, 1998). By using a simulation and extrapolation ap-
proach we were able to correct for this bias, but would like to note
that the bias of the uncorrected parameter estimates was very
small. We would also like to note that even though concepts of
dominant height growth and site index are based on monospecific
stands, part of our data are from mixed species stands, because we
only excluded stands if less than 70% of the standing volume was
neither pine nor spruce.

Another limitation of the NFI data is the short time series, i.e.
only about 20 years. By applying the GADA approach we were able
to use the time series despite a missing common base age for all
time series. Another concern related to short time series is the
insufficient representation of average growing conditions due to
climatic variation (Monserud and Sterba, 1996). We found some
indication that variation in climate between 5-year periods in
our data might affect dominant height growth as also indicated
in previous reports (Martin-Benito et al., 2008). However, we want
to note that the climate in this period varied considerably and that
smaller effects on height growth can be expected in periods with
less variation in climate. We also showed that the period where
NFI data were collected was slightly warmer and moister than
the long-term averages. Due to global change it might be possible
that the period 1986–2008 is more representative of future climate
and growing conditions than long-term historical records. NFI
height growth data might be a representative sample for height
growth in the future, but due to the uncertainty about future cli-
mate we are unable to judge this. Models fitted to the combined
data overcome this potential limitation of NFI data, because LTE
data have been collected for the period 1915–2006 and are there-
fore less likely to be biased due to periods with more favorable
growing conditions. We therefore conclude that our height growth
models are likely unbiased with respect to effects of climate varia-
tion on height growth when applied for growth prediction into the
future.

NFI data were not originally sampled for this purpose and there-
fore have many problems for height growth modelling. Despite this
we were able to develop dominant height growth models based on
those data, which again also fitted reasonably well to the indepen-
dent data sets. We interpret this as a confirmation of our assump-
tion that none of the problems discussed above is leading to biased
models, and that, despite the rather large residual variation in the
NFI data caused by various errors, the models reliably describe the
height growth of dominant trees.

In order to reduce the bias of models fitted to NFI data alone, we
combined NFI and LTE data to develop dominant height growth
models. The two data sets supplement each other well to cover
the range of site indices and ages. However, combining time series
of the mean height of the 100 largest trees per ha (LTE) and time
series of individual dominant tree heights (NFI) is an unconven-
tional approach for dominant height growth modelling. We dis-
cussed earlier that dominant height growth is largely unaffected
by competition and that individual trees, whose dominant status
has been confirmed, therefore might be able to represent dominant
height growth unbiased. The large variation of the NFI height data
due to the sampling approach and other error sources did not allow
us to test this assumption. But we see the unbiased predictions of
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the NFI models for LTE data for most of the data range sufficiently
covered by the NFI data (Fig. 1) as a support for our assumption.

Models fitted to NFI data alone showed substantial bias for
young stands (breast height age 5–25 years) in the LTE data set
(Fig. 1) due to the lack of young stands in the NFI data. We were
able to reduce this bias by fitting models to the combined data
set (Fig. 3), but still some underprediction for these age classes in
the LTE data is left for Scots pine. Even though the bias is minor,
it might have large consequences if height growth of mixed young
stands is simulated and pine looses in competition with spruce due
to unrealistic dominant height growth models. No such bias was
observed in the test against SA data (Fig. 4) and we therefore con-
clude that the observed minor bias describes a specialty of the LTE
data set rather than a failure of the model.

The dominant height growth models presented (Fig. 2) show a
very early culmination of height growth with little variation in
the culmination age between site indices. For both species height
growth culminates between breast height ages of 9 and 5 years
for site indices 8 and 21 m respectively. This is also indicated by al-
most linear height time series in the LTE data for very young
stands. It should be noted however, that these time series are not
describing total height growth of individual trees, where we would
expect a clearer sigmoidal form. Firstly, height growth is only de-
scribed above 1.3 m, and secondly, mean dominant height rather
than individual tree height is described. Given the problems of
identifying dominant trees in very young and dense stands with
frequently shifting dominance of individual trees, it is likely that
in very young stands mean dominant height shows different
growth patterns than individual tree height. Also for the individual
trees in our SA data we found close to linear growth for the first
years above breast height (Fig. 2). Nevertheless, the conversion
from total age to breast height age is responsible for most of the
loss of the exponential height growth in young stands. When com-
paring our models with dominant height growth models for Scots
pine in Sweden and Norway (Hägglund, 1974; Tveite and Braastad,
1981; Elfving and Kiviste, 1997) we found similar ages for culmina-
tion of dominant height growth. Swedish dominant height growth
models for Norway spruce (Hägglund, 1972, 1973) showmaximum
height growth at breast height.

Dominant height growth models are often only valid for limited
regions. Norway is a large country with considerable differences in
growing conditions. Regional deviations from the current Norwe-
gian dominant height growth models (Tveite, 1977; Tveite and
Braastad, 1981) have been reported, especially for western Norway
(Blingsmo, 1985; Øyen and Nes, 1997; Orlund, 2001) but less so for
northern Norway (Tveite, 1994). We did not find any bias of our
models when applied to individual regions using the calibration
data (Table 5). The independent SA data were only sampled in
the southeastern part of the country and we were therefore unable
to test our model against independent data from the rest of the
country. Southeastern Norway contains most of the productive for-
ests and contributes the majority of the annual harvest and is
therefore the most important region for application of the model.
From the regional distribution of the sample plots in Table 5 it
can be seen that about 65% of all plots are within the southeastern
region for our calibration data, indicating the distribution of the
productive forest (NFI data) and the interest in forest management
(LTE data). Because we did not find any indication for a bias of the
models in the other regions, we recommend them for use in these
regions as well, despite limited calibration data and a lack of inde-
pendent test data.

Compared to existing Norwegian dominant height growth mod-
els for Norway spruce (Tveite, 1977) and Scots pine (Tveite and
Braastad, 1981) our models predict similar dominant height
growth for ages up to 60 years, but significant faster height growth
for older stands, especially for better sites. Similarities between the

old and newmodels are to be expected, because the data used to fit
the old models have also been included in our data set (LTE data).
Differences between the models are due to longer time series of the
LTE data, combination with the NFI data, and model fitting proce-
dures. The models that we fitted to the data can be used to predict
site index as well as dominant height growth, which was not the
case nor intended for the old dominant height growth models.
Compared to Swedish dominant height growth models for Norway
spruce (Hägglund, 1972, 1973) and Scots pine (Hägglund, 1974;
Elfving and Kiviste, 1997) our models predict similar height growth
for ages up to 60 years and increasing deviations with increasing
age, as also observed in the comparison between old and new Nor-
wegian models. Compared to the existing dominant height growth
models for the same species in Norway and Sweden, our models
predict a less asymptotic height growth for very old stands on good
sites, a range of the model that is not covered by data and where
the model will not be applied frequently.

Based on our results, we conclude that the Norwegian NFI data
can be used to develop dominant height growth models, despite
their short time series and large age errors. Biased predictions for
young stands and good sites that were not appropriately covered
by the NFI data made it necessary to include other data into the
calibration of the models. We, therefore, recommend the models
fitted to the combined data set for further use.
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Site index prediction from site and climate variables for Norway spruce
and Scots pine in Norway

RAM P. SHARMA, ANDREAS BRUNNER & TRON EID
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Abstract
Site index prediction models for Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) were developed
using Norwegian National Forest Inventory data. A number of multiple linear regression models with different
combinations of site and climate variables were developed in order to facilitate their application to a range of situations
where the accessibility of various explanatory data differs. The best models used year of stand origin, temperature sum,
vegetation type groups, soil depth, aspect, slope and latitude to predict site index. These models explained a large part of the
total variation (R2

adj: ¼ 0:86 and 0.72 for spruce and pine, respectively) and had little residual variation (RMSE�2.04 and
1.95 m for spruce and pine, respectively). Alternative models using only year of stand origin, temperature sum and
vegetation type groups, or soil depth in addition, had slightly lower but still useful predictive power. All the developed
models exhibited a strong non-linear effect of the year of stand origin on site indices, which varied when temperature sum
was included. The increase in site indices along with increasing year of stand origin was significantly faster after about 1940
for both species. Similar time trends were observed for mean temperature and precipitation sums for the periods of stand
growth, but only exhibited a faster increase after about 1960. Even though increased temperature and precipitation after
1990 seem to contribute to increased site indices, increased nitrogen availability and atmospheric CO2 levels may also be
important factors.

Keywords: Picea abies, Pinus sylvestris, site index prediction model, site index trends.

1. Introduction

Forest site productivity may be defined as the

potential of a site to produce timber or forest

biomass (Skovsgaard & Vanclay, 2008). Information

on site productivity is an important prerequisite for

forest management planning. Different approaches

can be used to assess site productivity (e.g. Carmean,

1975; Pokharel & Dech, 2011; Skovsgaard &

Vanclay, 2008; Vanclay, 1994). A frequently applied

approach is based on the strong correlation between

volume and height growth. Consequently, dominant

height for the given tree species at a specified

reference age (site index) serves as a proxy for site

productivity. However, this approach is restricted to

fully stocked, monospecific, even-aged stands (e.g.

Vanclay, 1994). The site index approach fails if

dominant trees are not present, if stands are mixed

species or uneven-aged, if the area is unstocked,

stocked with a different species than the one that

should be predicted, or stocked with young stands

where small errors in age or dominant height cause

large errors in site index predictions. An alternative

way to estimate site index is to predict it from site

variables describing location, topography, soil, un-

derstory vegetation or climate (Carmean, 1975;

Hägglund, 1981; Pokharel & Dech, 2011). We use

the term ‘‘site index prediction models’’ for this

frequently applied approach (e.g. Farrelly et al.,

2011; Hägglund & Lundmark, 1977; Klinka &

Carter, 1990; Nilsen & Larsson, 1992; Schadauer,

1999; Seynave et al., 2005). Most of the site

variables used in these types of models can be easily

measured in the field or extracted from existing maps

or databases.

Most previously developed site index prediction

models were calibrated based on limited data sets.

Only a few studies have used extensive data from

national forest inventories or other sources (Beaulieu

et al., 2011; Chen et al., 2002; Elfving, 1994;
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Hägglund & Lundmark, 1977; Schadauer, 1999;

Seynave et al., 2005; Tegnhammar, 1992). In

Norway, the national forest inventory (NFI) has

been recording tree and stand variables as well as site

variables related to location, topography, soil and

understory vegetation on permanent sample plots

systematically located across the country for the last

25 years. Temperature and precipitation records

from a network of weather stations managed by the

Norwegian Meteorological Institute have been geo-

graphically interpolated to estimate climate variables

for the NFI sample plots (Skaugen & Tveito, 2004;

Solberg et al., 2004). These data can be used for site

index prediction models and have the advantage of

being a representative sample for the total forest

area. Site index models for Norway spruce and Scots

pine in Norway have been developed using the same

data (Sharma et al., 2011).

Site indices for Norway spruce and Scots pine

have been reported to vary with year of stand origin

in Norway (Bøhler & Øyen, 2011; Nilsen & Larsson,

1992), Sweden (Elfving, 1994; Elfving & Nyström,

1996a; Elfving & Tegnhammar, 1996; Elfving et al.,

1996; Hägglund & Lundmark, 1977), Finland

(Mielikäinen & Timonen, 1996; Tamminen, 1993),

and other regions in Europe (Hassall et al., 1994;

Schadauer, 1999; Socha, 2008; Spiecker et al.,

1996). Under the same site conditions, site indices

for stands established later tend to be higher than for

stands established earlier. We use the term ‘‘site

index trend’’ for these trends in dominant height

growth. Trends in site indices can be caused by

changes in growing conditions or management

practice over time. The role of individual factors

contributing to the complex causes of site index

trends has only rarely been quantified (Tegnhammar,

1992). However, even without site index trends site

indices in inventory data are often correlated with

stand age, which is caused by shorter rotation

periods for stands on better sites as compared to

poorer sites (Tegnhammar, 1992). Site index pre-

diction models have frequently included age as a

variable in order to correct for the site index trend.

Tegnhammar (1992) found trends in site indices for

Sweden based on NFI data and proposed a correc-

tion function for site index that is age dependent and

varies with latitude. Elfving and Nyström (1996b)

applied this correction function on independent data

and found similar trends in site indices. Elfving

(1994) introduced age as a variable into Swedish site

index prediction models (Hägglund & Lundmark,

1977). Schadauer (1999) included age into site

index prediction models for Norway spruce in

Austria after he identified significant site index

trends in the NFI data. A significant interaction of

the site index trend with temperature sum in these

models indicated regional variation in site index

trends. By applying different site index models,

Schadauer (1999) could also demonstrate that the

observed site index trends are more likely caused by

a real shift in growing conditions over time than by

inappropriate time trends implicit in the site index

models. Applying a site index concept that is

different from the traditional ones applied in all

other studies, Albert and Schmidt (2010) described

strong trends in site indices after 1970.

For Norway, Nilsen and Larsson (1992) devel-

oped site index prediction models for Norway spruce

and Scots pine based on temporary sample plots and

NFI data from southeastern Norway using previous

site index models (Tveite, 1977). Significant age

trends in the residuals of the site index prediction

models were observed, but age was only included

into preliminary models for Norway spruce, leaving

the final models with a significant age bias.

Bøhler and Øyen (2011) tested these models for

samples of Norway spruce and found a large bias,

most likely due to a lack of site index trends in these

models.

The aim of our study was to develop site index

prediction models based on site and climate vari-

ables for the most important tree species in Norway,

Norway spruce (Picea abies (L.) Karst.) and Scots

pine (Pinus sylvestris L.). Using NFI data for these

models will make it possible to apply them across

Norway. We also tested for the existence of trends in

site indices recorded for NFI plots. Site index

prediction models that include site index trends

will allow for better predictions of future growth.

Trends in site indices derived from site index

prediction models might also be used to correct

site indices that are predicted from observed age and

dominant height.

2. Materials and methods

2.1. Data

The NFI database comprises information from

approximately 10,500 sample plots established

from 1986 and onwards in productive forests

(Tomter, 2000). The 250 m2 plots are systematically

distributed over the entire country (except in

Finnmark county where the plots were established

later) in a 3�3 km grid and are remeasured every

fifth year (Landsskogtakseringen, 2007). Data up to

2008 were used in our study. We only used plots

where heights for dominant Norway spruce or Scots

pine trees were recorded inside the 250 m2 plot,

applying the criteria described in Sharma et al.

(2011). These selection criteria significantly reduced

the number of plots, but based our analyses on
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more precise registrations of dominant height and

therefore site index as opposed to height measured

on individual site index trees recorded outside the

250 m2 plot for all plots. A total of 1711 NFI plots

(832 spruce dominated and 879 pine dominated)

were selected based on the following additional

criteria: forestry land use; no interception by roads,

water bodies or agricultural land; more than 70% of

the total standing volume is comprised of spruce or

pine; site and climate variables available; one of the

eight most frequent vegetation types. Frequency

distributions of site index, age, dominant height

and altitude for the sample plots used here are

presented in Figure 1. Frequency distributions for all

NFI sample plots in productive forests were very

similar, but some deviations indicate a slight bias in

our data selection. For stands on the lowest site

indices (B14 m for spruce, B11 m for pine) the data

used here has significantly lower proportions of

stands below 100 years and higher proportions of

stands above 100 years as compared to the total NFI

data-set. The sampled data also have a small over-

representation of stands from higher elevations

(above 350 m) for spruce and lower elevations

(below 400 m) for pine.

The site index, to be used as the dependent

variable, was calculated for each plot using the

following dominant height growth model (Sharma

et al., 2011):

h� 1:3 ¼ b1 þX0

1þ b2=X0 � t�b3
(1)

withX0 ¼ 0:5 � wþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2þ4 � b2 � h40�1:3ð Þ �40�b3

q� �

and w ¼ h40 � 1:3ð Þ � b1

where h is dominant height (m), t is breast height age

(years) and h40 is site index (m) at the reference age

of 40 years. The parameter estimates for spruce are:

b1�18.9206, b2�5175.18, b3�1.1576, and for

pine: b1�12.8361, b2�3263.99, b3�1.1758. The

dominant height at the last observation was used to

calculate site index for each plot. The observed site

index varied from 5 to 30 m for spruce, and from

3 to 23 m for pine (Table III).

A large number of variables describing the site are

available for the NFI sample plots. In order to

develop simple and easily applicable models, only

variables that could be measured in the field or

recorded relatively easily from other sources at low

costs were chosen. The latest registration of site

variables was used here, assuming constant values

for the same plot and that errors from previous

measurements have been corrected. Vegetation types
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Figure 1. Frequency distribution of national forest inventory sample plots used in this study for Norway spruce (solid lines) and Scots pine

(broken lines) over site index class, age class, dominant height class, and altitude class.
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were classified according to Larsson (2000), who

also ranks vegetation types according to availability

of water and nutrients, or productivity. We used only

plots with the eight most frequent vegetation types

that represent 95% of the conifer forest area in

Norway (Tomter, 2000). The final selection of site

variables were therefore continuous ones such as

altitude, latitude, aspect and slope (Table I), and

discrete ones such as soil depth and understory

vegetation type (Table II).

Mean monthly temperature and precipitation

recorded by the Norwegian Meteorological Institute

at 797 weather stations from 1957 to 2000 were used

to estimate those variables for each NFI plot through

spatial interpolation from the nearest weather sta-

tions (Skaugen & Tveito, 2004; Solberg et al., 2004).

Temperature sum (TSUM, degree days above 58C)

and precipitation sum (PSUM, mm) were calculated

for the growing season as a mean of the 44-year

period (Figure 2, Table I). The start of the growing

season was defined as the day when the degree day

sum (sum of temperatures above 58C) exceeded

108C, using observed intraannual height growth as a

criterion (Salminen & Jalkanen, 2007). The earliest

start of the growing season was limited to April 19 and

the latest to July 1. Since only mean monthly

temperature data were available, the growing season

length was estimated on the basis of daily mean

temperatures interpolated from mean monthly tem-

peratures. The end of the growing season was defined

based on observations on intraannual diameter

growth from Finland (Henttonen et al., 2009;

Mäkinen et al., 2003; Schmitt et al., 2004). Diameter

growth terminated in August in these studies, when

mean daily temperatures were around 158C, but there

was no indication that the termination of diameter

Table I. Continuous site and climate variables.

Site variable Abbreviation, unit Description

Altitude ALT, m Elevation above mean sea level

Latitude LAT, 0N Latitude of the plot centre

Aspect ASP, radian Orientation of slope, measured in clockwise direction from magnetic North

Slope SLP, % Rise in altitude with respect to horizontal distance

Temperature sum TSUM, degree days (d.d.) Mean growing season temperature sum for period 1957�2000
Precipitation sum PSUM, mm Mean growing season precipitation sum for period 1957�2000

Table II. Discrete site variables, their statistics, grouping, and dummy variable coding.

Number of

observations Variable level group Dummy variable

Spruce Pine

Site variable Type Spruce Pine Spruce Pine SD1 SD2 SD3 SD1 SD2 SD3

Soil depth 1�depthB25cm 36 226 0 0 0 0 0 0

2�depth 25�50cm 173 232 1 0 0 1 0 0

3�depth 51�100cm 215 116 0 1 0 0 1 0

4�depth �100cm 408 305 0 0 1 0 0 1

VT1 VT2 VT1 VT2 VT3

Vegetation type

(order

according to

increasing

productivity)

1�Lavskog (Cladonio-Pinetum

boreale)

1 102 Type 1,2,3 Type 1 0 0 0 0 0

2�Blokkebærskog

(Barbilophozio-Pinetum)

4 178 Type 4 Type 2 1 0 1 0 0

3�Bærlyngskog

(Vaccinio- Pinetum)

107 411 Type 5,6,7,8 Type 3 0 1 0 1 0

4�Blåbærskog

(Eu-Pceetum myrtillitosum)

369 160 Type 4,5,6,7,8 0 0 1

5�Småbregneskog

(Eu-Pceetum dryopteridestosum)

219 11

6�Storbregneskog

(Eu-Pceetum arthyrietosum)

17 1

7�Lågurtskog

(Melico-Piceetum typicum)

71 12

8�Høgstaudeskog

(Melico-Piceetum aconitetosum)

44 4
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growth was triggered by temperature signals. In order

to describe the large regional variation in termination

of tree growth across Norway, we used the day when

the daily mean temperature dropped below 158C
as a criterion for the end of the growing season.

Statistics of all continuous site and climate variables

are presented in Table III.

2.2. Analyses

A significant trend of site indices over year of stand

origin was observed for spruce and pine (Figure 3).

We used year of stand origin rather than age for this

analysis, because in contrast to previous studies, our

data were collected over a 23-year period and there-

fore stands with the same age at the recording might

have different years of stand origin, not allowing us

to use stand age as a proxy for stand origin year.

Preliminary site index prediction models without

stand origin year as a variable could not remove this

trend in the residuals with any combination of site

and climate variables. Stand origin year was there-

fore included as a variable into all models. The

observed site index trend (Figure 3) was not linear,

but the increase in site indices with increasing stand

origin year was faster for the last 60 years. The site

index prediction models will be applied mostly in the

extrapolation range, for stands established after

1990. Because the change in the site index trend is

only estimated based on few observations from the

stands established recently, we avoided the use of

non-linear models that might in the extrapolation

range predict further changes in the trend for which

no indication is given in the data. A segmented linear

model has the advantage of linear extrapolation and

was therefore applied to describe the site index

trend. Residual plots of the segmented linear models

did not indicate additional non-linearity, which

would have implied the use of non-linear models.

The breakpoint of the segmented linear model, that

is, the year when the site index trend changes, was

estimated from the data. The segmented linear

model is defined as

SI ¼ c0 þ c1STORGþ c2STORG2þ e (2)

where SI is site index; c0, c1, c2 are parameters to be

estimated, and o is the residual error. STORG is the

calendar year of stand origin, STORG2 is an

additional time variable for the second segment

and calculated as the difference between STORG

and the breakpoint year for stands originated after
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Figure 2. Growing season temperature sum (TSUM, d.d.) for all

national forest inventory plots in productive forests (TSUM

classes are 51100, 1100 � 1300, 1300 � 1500, �1500; TSUM

in the legend are observed means of those classes).

Table III. Statistics for continuous variables (832 Norway spruce sample plots; 879 Scots pine sample plots).

Species Statistic SI (m) ALT (m) LAT (8N) ASP (radian) SLP (%) TSUM (d.d.) PSUM (mm)

Norway spruce Minimum 4.8 5.0 58.1 0.0 0.0 845.3 135.9

Maximum 29.8 1005.0 68.7 6.3 99.0 1877.0 926.7

Mean 13.7 389.4 61.4 3.0 22.8 1360.1 341.9

Standard deviation 5.4 234.6 2.0 1.8 16.6 227.2 88.4

Scots Pine Minimum 3.2 10.0 58.0 0.0 1.0 941.9 119.4

Maximum 23.2 950.0 69.4 6.3 105.0 1879.3 878.8

Mean 10.3 341.1 60.7 3.1 20.3 1436.7 368.5

Standard deviation 3.7 207.9 1.9 1.7 16.5 210.7 131.0

SI, dominant height at breast height age 40; Other abbreviations as in Table I.
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the breakpoint year and set to zero for all other

stands. In order to estimate the breakpoint year from

the data, models were estimated with all possible

breakpoint years between 1920 and 1960, and the

model with the lowest root mean squared error was

selected. Preliminary analyses also showed signifi-

cant interaction between site index trend variables

and TSUM, LAT or ALT, indicating a regional

variation of site index trends. These interaction

terms were therefore included into the initial set of

variables before variable selection for individual

models.

Scatter plots of site index against all potential

independent variables, and scatter plots of the

independent variables among themselves did not

show significant non-linear relationships. Multiple

linear models were therefore used to estimate site

index from site and climate variables. For the

discrete variables, dummy variables were used in

the models (Table II). Discrete variable levels having

similar characteristics and few observations

were grouped into a single level to avoid over-

parameterisation. Significant interactions of two

site variables were only found in a few cases. The

interaction of slope (SLP) and aspect (ASP) is one

example. This interaction has previously been quan-

tified with trigonometric expressions (Stage, 1976;

Wykoff, 1990). The interaction term SLP�
sin(ASP) describes that stands on east facing slopes

are growing better than on west facing slopes, and

that this effect increases with increasing slope. The

interaction term SLP�cos(ASP) describes a similar

pattern, favouring north facing slopes versus south

facing slopes.

Site and climate variables can be grouped into

categories describing location (altitude, latitude),

topography (aspect, slope), soil properties (soil

depth), understory vegetation (vegetation type) and

climate (temperature sum, precipitation sum).

These variables can be obtained either directly

through field measurements or indirectly from

digital maps, for example, location, topography and

climate. Even though digital maps will be increas-

ingly available in the future, most of the variables will
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Figure 3. Observed site index over stand origin year for Norway spruce and Scots pine. Parameters of regression models are given in Tables

V and VI (model 1).
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still have to be estimated in the field and site index

estimation models purely based on field data will still

be needed. For similar reasons models with fewer

variables are more easily applied. Based on these

considerations we prepared for a number of different

site index prediction models containing different

combinations of site and climate variables. The site

index trend and its regional variation were included

in all models, but also as separate models. Alter-

native models were prepared using different site and

climate variables to explain the regional variation in

site index trends. The complete list of models aimed

at was therefore:

1) Uniform site index trend only, no site and

climate variables.

2) Region specific site index trend only, no

additional site and climate variables.

3) Understory vegetation.

4) Understory vegetation and soil.

5) Climate.

6) Climate and understory vegetation.

7) Climate, understory vegetation and soil.

8) Location, topography and climate.

9) All site and climate variables (location, topo-

graphy, soil, understory vegetation and cli-

mate).

10) All site variables, no climate variables (loca-

tion, topography, soil and understory vegeta-

tion; regional variation of site index trend

described without climate variables).

The parameters of the models were estimated with

PROC REG (SAS Institute Inc., 2008) by applying

backward elimination to select the significant vari-

ables (a�0.05). Some independent variables in-

cluded may be significantly correlated with each

other, and therefore the estimated parameters will be

biased (Montgomery et al., 2001). The variance

inflation factor (VIF) was therefore applied, and a

VIF value of less than 10 was used as a threshold to

avoid multicolinearity among independent variables

(Montgomery et al., 2001; O’Brien, 2007). Partial

R2 was used to remove the correlated variables that

explained least variation of the dependent variable

when VIF was above the threshold. Residuals were

examined graphically in relation to all available

variables.

To explore possible causes for trends in site indices

(Figure 3), we analyzed time trends in climate data.

Long-term series of mean monthly temperature and

monthly precipitation sums were used to describe

the climate during the entire period when stands

developed. This set of long-term climate data from

meteorological stations is different from the data

described earlier where climate data were interpo-

lated for all NFI plots for the period 1957�2000
only. Series for the years 1900�2009 were available

from four stations for temperature and 55 stations

for precipitation (eklima.met.no, downloaded 9

September 2011). In order to confirm that time

trends in temperature observed by these four stations

reflect a general time trend, data from another 10

stations covering the period 1930�2009 were com-

pared. Stations used for all analyses cover southern

Norway, where most of the productive forest is

located. Annual mean temperature and precipitation

sum were calculated for each station and year and

normalised using the mean of the entire 110-year

series per station. Whole year data rather than

growing season data were used, because they im-

plicitly include effects of growing season length and

soil water availability. Normalised trends were tested

for similarity between stations graphically before a

mean trend for all stations was calculated. From

these mean trends that are reflecting the variation in

temperature and precipitation across the region,

mean relative temperature and precipitation were

calculated for periods ranging from 2009 back to

stand origin years between 1900 and 1989. Segmen-

ted linear regressions were fitted to these time series

using the same methods as described above for site

index data.

3. Results

All continuous site and climate variables were

significantly correlated with site index (Table IV)

except for aspect where a linear relationship was not

expected. For spruce and pine, the strongest correla-

tions were found for the year of stand origin and

temperature sum. Spruce site index was negatively

correlated with altitude and latitude and positively

correlated with year of stand origin, temperature and

precipitation sum. Pine site index was also negatively

correlated with altitude and latitude and positively

correlated with year of stand origin and temperature

sum, but, as opposed to spruce, negatively correlated

with precipitation sum. When considering correla-

tions between different variables, temperature sum

showed strong negative correlations with altitude

and latitude for both species. The correlation

between these variables is also visible in Figure 2

where temperature sums are higher in the south and

at lower altitudes.

Model 1, describing the uniform site index trend

(Figure 3, Tables V and VI), explained 66% and

53% of the site index variation for spruce and pine,

respectively. Site index increased more with increas-

ing stand origin year in the second period of stand

origin, after the breakpoint in the segmented linear

regression, than in the first (Figure 3). For model 2,
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describing region specific site index trends by using

temperature sums, R2
adj: was even higher. An inter-

action of stand origin year and temperature sum was

significant for both periods of stand origin. The

parameter estimate for STORG�TSUM is very

small, indicating that the site index trend is only

changing very little with increasing temperature sum

for the first period of stand origin (Figure 4). The

Table IV. Pearson’s correlation coefficients between continuous variables and observed site index.

Species Variable SI ALT LAT ASP SLP TSUM PSUM

Norway spruce ALT �0.49

LAT �0.30 �0.20

ASP � � �
SLP �0.08 � 0.14 �0.06

TSUM 0.64 �0.76 �0.45 � �0.16

PSUM 0.20 �0.38 0.09 � 0.19 0.19

STORG 0.80 �0.39 �0.10 � �0.15 0.42 0.18

Scots pine ALT �0.21

LAT �0.17 0.10

ASP � � 0.10

SLP �0.15 �0.07 � �
TSUM 0.34 �0.81 �0.57 � �
PSUM �0.13 �0.43 �0.25 � 0.28 0.28

STORG 0.66 �0.16 0.07 � �0.13 0.11 �

Non-significant correlation (p�0.05) is symbolised with�or �, depending on the sign of the correlation.

All abbreviations as in Table I.

Table V. Parameter estimates and fit statistics for Norway spruce.

Model

Variable 1 2 3 4 8 9 10

Intercept �133.65240 �96.57398 �77.87344 �76.29319 �83.97164 �59.94881 �80.34282

Location

LAT �0.24019 �0.35694

Topography

SLP 0.02429 0.03245 0.02022

ASP �0.00236

SLP�sin (ASP) �0.01162

SLP�cos (ASP) �0.00805

Soil

SD1 0.85849 1.06598 1.02772

SD2 1.68124 1.95140 1.78465

SD3 2.14027 2.63731 2.58080

Understory vegetation

VT1 1.76652 1.57874 1.56397 1.57260

VT2 3.70176 3.39037 3.47510 3.53569

Trend

STORG 0.07593 0.05091 0.04021 0.03841 0.05237 0.04185 0.07599

STORG2 0.10015 0.11236

STORG�TSUM 0.00000426 0.00000405 0.00000424 0.00000377 0.00000361

STORG2�TSUM 0.00007779 0.00007198 0.00007880 0.00007185 0.00007770

STORG�ALT �0.00000338

STORG�LAT �0.00046852

Breakpoint year 1931 1937 1933 1937 1933 1937 1937

Fit statistic

R2
adj: 0.6580 0.7743 0.8263 0.8373 0.7845 0.8576 0.8539

RMSE 3.16 2.57 2.25 2.18 2.51 2.04 2.06

R2
adj: , adjusted coefficient of determination; RMSE, root mean squared error (m); other abbreviations are the same as in Tables I and II.

Dummy variable levels are defined in Table II. Models 5, 6 and 7 are not presented here, because they are similar to models 2, 3 and 4,

respectively.
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parameter estimate for STORG2�TSUM is signifi-

cantly larger, indicating that the site index trend is

substantially larger in warmer than in colder regions

in the second period of stand origin. The breakpoint

years between the two different periods of stand

origin differed between models, but within a limited

range. The estimated breakpoint years were in most

cases a few years earlier for pine than for spruce.

In model 3 only vegetation types were used in

addition to site index trends to predict site index.

The R2
adj: and RMSE of those models (Tables V and

VI) indicate that these few variables explain a large

part of the variation in site indices. However, the

inclusion of temperature sum in the site index trend

interactions does also explain regional variation in

site indices. The parameter estimates confirm the

ranking of vegetation types according to increasing

productivity for spruce (Table II). For pine, vegeta-

tion type 2 (Blokkebærskog) has a lower site index

than vegetation type 1 (Lavskog). Parameter esti-

mates for vegetation type groups are indicating large

differences in sites indices among them for both

species.

Model 4 uses soil depth in addition to variables in

model 3 to predict site index. The improvement in

R2
adj: and RMSE is larger for pine than for spruce

(Tables Vand VI). Parameter estimates for soil depth

are similar for both species and indicate significantly

higher site indices for stands on deeper soils. Site

index predictions from this model are given in Figure

4, showing the effects of varying a few important

independent variables. In this figure it should be

noted that the interaction terms between site index

trends and TSUM are not only causing varying trends

of site index for different values of TSUM, but TSUM

is a major variable in predicting the general level of

site indices. Even though TSUM is not represented as

an individual variable in themodels, it explains a large

part of the variation in site indices.

Models 5, 6 and 7 are similar to models 2, 3 and 4,

respectively, with the addition of climate variables.

Only for pine, an additional climate variable, PSUM,

Table VI. Parameter estimates and fit statistics for Scots pine.

Model

Variable 1 2 3 4 8 9 10

Intercept �47.590 �40.10336 �32.01432 �32.68569 �28.73058 �15.52333 4.02461*

Location

ALT �0.00296

LAT �0.18005 �0.26061 �0.57751

Topography

SLP 0.01262

SLP�sin (ASP) 0.00768

SLP�cos (ASP) �0.02090 �0.01663 �0.01691

Soil

SD1 0.70537 0.87601 0.81941

SD2 1.72277 1.91351 1.75905

SD3 2.56274 2.88112 2.68337

Understory vegetation

VT1 �1.21844 �0.65945 �0.50898 �0.64305

VT2 0.46793 0.69075 0.65361 0.67191

VT3 1.08818 1.24962 1.33244 1.32105

Trend

STORG 0.02988 0.02284 0.01850 0.01666 0.02320 0.01646 0.02074

STORG2 0.15848 0.16048

STORG�TSUM 0.00000215 0.0000022 0.0000032 0.00000171 0.00000260

STORG2�TSUM 0.00009460 0.0000907 0.0000925 0.00008921 0.00008397

STORG2�ALT�LAT �0.00000155

Breakpoint year 1932 1928 1927 1932 1925 1927 1928

Fit statistic

R2
adj: 0.5281 0.6030 0.6445 0.7061 0.6168 0.7240 0.6961

RMSE 2.56 2.34 2.22 2.02 2.30256 1.95 2.05

*Not significantly different from zero.

R2
adj:, adjusted coefficient of determination; RMSE, root mean squared error (m); other abbreviations are the same as in Tables I and II.

Dummy variable levels are defined in Table II. Models 5, 6 and 7 are not presented here, because they are similar to models 2, 3 and 4,

respectively.

Site index prediction from site and climate variables 627



entered the models, but with a negative parameter

estimate for this variable in all three models. A

negative correlation between PSUM and site index

was also found for this species (Table IV). However,

older stands are overrepresented in regions with high

PSUM in the data. Site index trends rather than

negative effects of increasing precipitation on growth

are therefore responsible for the observed correla-

tion. Models 5, 6 and 7 are therefore not presented

here for pine and PSUM was excluded in models 8

and 9 for this species as well.

In model 8, location and topography are used to

predict site index instead of vegetation type and soil

variables. For both species, the improvement in R2
adj:

and RMSE compared to model 2 was much smaller

than for model 3 (Tables V and VI). With increasing

latitude site index decreases for both species. This

effect of latitude was significant in addition to the

effect of TSUM that shows a strong latitudinal

gradient (Figure 2, Table IV). With increasing slope

site index of spruce increased (Table V), reaching

about one meter difference in site index between

slopes of 0 and 41%. In contrast to this relationship,

slope was negatively correlated with site index for

both species (Table IV), because stands on steeper

hillsides were on average older than other stands.

Due to the trend in site indices, stands on steeper

hillsides therefore had on average lower site indices.

For Scots pine, effects of slope were described by the

interaction variables between aspect and slope. The

interaction SLP�sin(ASP), describing better site

index on east facing slopes, got a positive parameter

estimate. The interaction SLP�cos(ASP), describ-

ing better site index on north facing slopes, got a

larger but negative parameter estimate in model 8. In

combination, these two variables and their para-

meters predict that Scots pine site index is higher on

south facing slopes slightly oriented towards east

(160 degrees) than on slopes facing the opposite

direction, and this effect increases with increasing
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slope (reaching about one meter difference in site

index between slopes of 0 and 24%).

For model 9, all available site and climate variables

could be chosen. The variables selected describing

location, soil, vegetation and site index trend were

identical in these models with those in models 2, 3, 4

and 8 for both species and parameter estimates were

similar. The combination of variables describing

topography was different in model 9 than in model

8 for both species. For pine, the model predicts

higher site index on south facing slopes, which

increase with increasing slope (reaching about one

meter difference in site index between slopes of 0

and 30%). For spruce, site index is highest for slopes

oriented towards southwest (235 degrees) and this

effect increases with increasing slope (reaching about

one meter difference in site index between slopes of

0 and 27%). The R2
adj: and RMSE of model 9

indicate for both species that a large part of the

variation in site indices can be explained with the

given combinations of site and climate variables.

However, the improvement is only minor as com-

pared to model 4.

Residuals for model 9 are shown in Figure 5 to

illustrate the residual variation of the observed site

indices. Even though the residuals of model 9 for all

observations do only show small trends for the

lowest site indices, larger trends and bias have been

observed when observations from different regions

were analysed separately. For spruce, models 3, 4

and 9 underestimated the average site index in

Western Norway (from Rogaland to Møre og Roms-

dal) by 2.5, 2.7 and 2.0 m, respectively (all

significantly different from 0 at pB0.05, t-test).

Model 9, which includes slope as a variable, shows

a smaller bias for this region, which is characterised

by steep hillsides. For Mid-Norway (from Sør-

Trøndelag to Nordland), average site index was

overestimated by about 1.1 m for spruce using

models 3 and 4, and for pine by 1.3 and 0.9 m

using models 3 and 4, respectively (all significantly

different from 0 at pB0.05, t-test). For the same
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region, model 9 was free of bias for both species. In

model 9, a strong effect of latitude is included, which

reduces site index when moving from 60 to 64

degrees north by the same order of magnitude as in

the observed bias for Mid-Norway. For pine stands

and old spruce stands (established before the break-

point year) in Mid-Norway, models 3, 4 and 9

underpredicted lower site indices and overpredicted

higher site indices, with a maximum bias of less than

1 m (significantly different from 0 at pB0.05, t-test,

for models 3 and 4 only). This might indicate that

the variable mostly responsible for the differentiation

of site index, temperature sum, has different effects

in Mid-Norway than in other regions. Most observa-

tions are from Southeastern Norway, where tem-

perature sum varies greatly (Figure 2) and describes

steep elevational gradients. The range of tempera-

ture sums and the elevational gradient are much

smaller in Mid-Norway.

In model 10, the regional variation in site index

trends should be explained without using climate

variables. Altitude, latitude and their interaction

with site index trend variables were used to explain

the regional variation in site index and trends for

both species. For spruce, model 10 had almost the

same fit statistics as model 9 (Table V). For pine, fit

statistics of model 10 indicated only a slightly larger

residual variation (Table VI). Different combinations

of the variables altitude, latitude and their interac-

tions with site index trend variables were selected in

model 10 for spruce than for pine. For both species,

these variable combinations describe that site index

decreases with increasing altitude and latitude. For

pine, a faster increasing site index trend for stands

established after the breakpoint year on sites at lower

altitudes (interaction STORG2�ALT�LAT) is pre-

dicted with model 10. This interaction is similar to

the interaction described in other models by the

temperature sum variable (Figure 4). For spruce,

altitude and latitude could not describe the regional

variation in site index trends for stands established

after the breakpoint year. This interaction could be

described in model 9 using temperature sums, but

interaction variables using altitude or latitude were

only significant with higher probabilities of error

(a�0.05�0.10) in preliminary alternatives to mod-

els 2 and 10. Spruce stands established after the

breakpoint year were mostly from lower altitudes

and latitudes. However, in combination there were

still enough stands established after the breakpoint

year on sites with lower temperature sums to explain

the interaction with a single variable, temperature

sum. But using two variables, altitude and latitude,

too few observations remained to model this inter-

action. For pine, the stands established after the

breakpoint year had a distribution across altitudes

and latitudes that was more similar to the ones

established before the breakpoint year.

To explore possible causes for trends in site indices

(Figures 3 and 4), time trends in a second set of

long-term climate data for selected weather stations

were analyzed. A similar time trend was observed for

all weather stations across southern Norway for the

period 1900 to 2009, both for mean annual tem-

peratures and precipitation sums. From this com-

mon trend, mean temperatures and precipitation

sums for the periods of stand development ranging

back from 2009 to stand origin years between 1900

and 1989 were calculated (Figure 6). The trend in

these climate variables could be described with a

segmented linear regression that is similar to trends

in site indices (Figure 3). However, the breakpoint
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for the trends in climate variables is about 30 years

later than the breakpoint for site indices.

4. Discussion

A strong trend of site indices was observed in our

data (Figures 3 and 4) and was therefore included in

the site index prediction models (Tables V and VI).

Trends in site indices have been reported frequently

(e.g. Elfving et al., 1996; Nilsen & Larsson, 1992;

Schadauer, 1999). In a Europe wide study, Kahle et

al. (2008b) demonstrated increased height growth of

young Norway spruce and Scots pine stands between

1960 and 2000. This study compared stands of the

same age but different year of germination and is

therefore independent of site index models. Site

index prediction models have therefore frequently

included age as a variable in order to correct

for the trend (Elfving, 1994; Elfving & Nyström,

1996a; Nilsen & Larsson, 1992; Schadauer, 1999;

Tegnhammar, 1992). Unlike most others, we ob-

served an abrupt change in the relationship between

site index and stand establishment year around

1930, which we modelled using a segmented linear

model. For forest stands established after the 1930s

the increase in site index was stronger than for stands

established before. Covering about 50 years for

stands established between 1940 and 1990, our

data might have enabled us to detect a change in

the site index trend that was not detected in earlier

reports from Fennoscandia due to shorter time

series. The data selected for this study include fewer

stands on the lowest site indices (B14 m for spruce,

B11 m for pine) below an age of 100 years as

compared to the total NFI data set. Model predic-

tions for this range of ages and site indices are

therefore more uncertain than for all other situa-

tions. Nevertheless, due to the variation of site index

trends with temperature sum in all models, an

uncertain site index trend for stands on poorer sites

may not bias trends for stands on better sites.

For spruce, site index for stands established after

1983 tends to be underpredicted by the site index

trend model (Figure 3). Similar patterns were seen

in the residuals for model 9. These young stands

grew up during the 20-year period with much higher

than average temperatures (Figure 6). The linear site

index trend applied to the stands established after

the breakpoint does therefore only poorly predict the

trend for these stands. For pine, no stands estab-

lished after 1983 were in the data. Due to the limited

amount of data indicating non-linear trends, we did

not apply other trend models. However, site index

trends should be updated as soon as more data are

available that describe current growth conditions.

In our data, trends of site indices differed between

regions and temperature sum could be used to

describe the regional variation. But only after the

1930s was the regional variation in site index trends

large enough to indicate significantly larger trends in

warmer regions than in colder regions (Figure 4). A

significant interaction of the site index trend with

temperature sum was also found in site index

prediction models for spruce in Austria (Schadauer,

1999).

Following Tegnhammar (1992), site indices in

inventory data can be positively correlated with

stand age or year of stand origin, if rotation periods

are shorter for stands on better sites. The relation-

ship in Figure 3 can partly be caused by stands on

better sites being harvested at lower ages than stands

on poorer sites. However, if a correlation between

site index and harvest age was the only factor

responsible for the observed relationship, no trend

should be observed below the minimum final harvest

ages (applied on the best sites) under the assumption

that final harvest has not been favouring stands of

certain site indices within this range of ages. The last

assumption is unlikely to be fulfilled in our Norwe-

gian data. Introduction of the clearfelling system

after 1950 might have favoured harvesting of better

sites in the beginning, gradually moving to lower

quality sites later in this 50-year period. In the very

beginning of this era, predominantly low density

stands on poorer sites were clearfelled based on

concepts to increase stocking, but this only hap-

pened on small areas for a limited period. Given this

history of harvesting, one would expect to see a

declining trend of site indices. On the contrary, we

observe a sharply increasing trend in site indices

within the last 50 years (Figure 3). This might be a

clear indication that changes in growing conditions

and management practices rather than differences in

harvesting practices are responsible for the observed

trends in site indices in this period. To a larger

degree, trends in site indices before the breakpoint

years might be explained by different rotation times

for stands of different site quality.

Similar trends in site indices (Figures 3 and 4) and

climate variables (Figure 6) indicate that the warmer

and moister climate during the last 20 years may

have contributed to the trends in site indices.

However, the different breakpoint years between

the time trends also indicate that climate variables

alone might not explain the observed trends in site

indices. Climate data interpolated to the location of

the sample plots were not available for the entire

growth period of the stands and it was therefore only

possible to use a mean time trend in temperature and

precipitation for southern Norway to evaluate the

contribution of climate trends to the site index

Site index prediction from site and climate variables 631



trends. Previously published trends in site indices in

Fennoscandia (e.g. Elfving, 1994; Nilsen & Larsson

1992) did not include the last 20 years with an

exceptionally warm and moist climate, which might

explain the contrast between the non-linear trends

observed in this study and the linear trends in

previous reports.

A number of changes in growing conditions and

management practices during the last century have

been discussed as causes for observed trends in site

indices (Elfving & Tegnhammar, 1996; Kahle et al.,

2008a; Solberg et al., 2009; Spiecker et al., 1996;

Spiecker, 1999; Tegnhammar, 1992). Our results do

not allow identifying individual causes for the

observed site index trends, but some causes are

more likely than others based on the magnitude of

the changes that have been observed in Norway.

Nitrogen input has been identified as a main factor

behind observed growth trends (Kahle et al., 2008a)

and is very likely to affect forest productivity in the

nitrogen limited boreal forest ecosystems in Norway

(Solberg et al., 2004, 2009). Nitrogen deposition in

Norway is characterised by a steep spatial gradient

with considerable input along the southern coast and

very little input further north (Solberg et al., 2004).

Even though the nitrogen deposition in Norway has

been rather constant for the last 30 years, nitrogen

accumulates in forest ecosystems leading to increas-

ing effects on growth over time. Climate change has

been documented to increase forest productivity as a

consequence of increased temperatures and precipi-

tation, longer growth periods and increased atmo-

spheric CO2 levels (Andreassen et al., 2006; Bergh

et al., 2003; Cannell, 1999; Zheng et al., 2002a,

2002b). The observed similarity of time trends for

site indices and climate variables in our data make it

likely that increased temperature and precipitation

during the last two decades have caused increased

site indices. Recovery from previous exploitation can

lead to increased forest productivity. Even though

forests in Norway had been exploited heavily until

the beginning of the twentieth century (Fritzbøger &

Søndergaard, 1995; Tveite, 1964), the low popula-

tion density might indicate that depletion of nutrient

pools due to litter raking and husbandry was limited

to a few locations.

The breakpoints in observed trends of site indices

coincide with the introduction of the clearfelling

system in Norway after 1945 (Vennesland et al.,

2006). The clearfelling system leads to a number of

differences in stand treatment as opposed to the

previously practised selective cutting. Some of those

treatments might improve forest productivity and

result in higher site indices. Stands established on

clearcuts are typically denser and grow faster while

young. Site preparation is often combined with

clearfelling in boreal forests but very little used in

Norway, where it is mostly used for natural regen-

eration of pine. Clearcutting has led to a significant

increase in planted spruce stands (Rognstad &

Steinset, 2008), while pine is predominantly regen-

erated naturally using the seed tree method. A

selection of suitable microsites for planted seedling

might also lead to increased growth because forests

in Norway are characterised by large variation on

this scale. For Scots pine in Sweden, Elfving and

Nyström (1996a) observed higher site indices for

stands planted after 1940, most likely caused by

differences in stand establishment and early thin-

ning. Planting of pine has never been a common

practice in Norway. Genetic improvement might

have contributed to increased growth of spruce after

the introduction of Central European provenances in

Norway in the 1950s and 1960s. Spruce seedlings

from first generation seed orchards have only been

used in Norway during the last few years. Previously

seeds have been collected from selected plus trees in

forest stands, leading to a limited but unknown effect

on stand growth. Ditching was used mainly in the

1950s and 1960s at a rate of about 10,000 ha per

year (Rognstad & Steinset, 2008) and has improved

forest productivity of these stands. Only about

4000 ha per year have been fertilised between 1960

and 1990 in Norway (Rognstad & Steinset, 2008)

and this treatment is therefore unlikely to be a major

cause of the observed site index trends. Afforestation

of spruce during the 1960s and 1970s along the west

coast, where spruce was not present before and

where site indices for spruce are often higher than in

the rest of the Norway, has little effect on observed

site index trends, because only a few observations

from this region are included. Sites of intermediate

productivity, where spruce and pine coexist in mixed

stands, have frequently been regenerated with pine.

Even though this species conversion can cause

increasing trends in site indices for both species, it

has not been applied systematically enough to

explain the observed trends. The moose population

has increased significantly after 1970 and as a

consequence has delayed height growth of young

pine stands possibly causing decreasing trends of site

indices.

The changes in management practices observed in

Norway during the last century are more likely to

affect the growth of Norway spruce than that of

Scots pine. The fact that we observed similar trends

in site indices for both species might indicate that

they, to a larger extent, are caused by changes in

growing conditions, for example, nitrogen input,

increased temperature and precipitation. The faster

site index trends in regions with higher temperature

sums might have been caused by larger nitrogen
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deposition rather than by effects of increased tem-

perature, because temperature sum and nitrogen

deposition are highly correlated across Norway.

The site and climate variables that were best able

to predict site index, that is, temperature sum,

altitude, latitude, vegetation type or soil depth

(Tables II�IV), often vary greatly across the country

and describe regional differences rather than differ-

ences in growing conditions at local scales. Other

variables with much less variation or coarse classifi-

cations, were only selected occasionally (aspect,

slope). Temperature sum was the only climate

variable included in the site index prediction models.

Even though temperature sum was represented as an

interaction term with year of stand origin in the

models, it explained significant parts of the variation

in site indices (Figure 4) and was the individual

variable that explained most of the variation (Table

IV). In model 8, latitude enters the model in

addition to temperature sum, that also has a strong

latitudinal gradient, because temperature sum also

has a strong altitudinal gradient (Table II) and

therefore not only describes the effect of latitude.

This is also indicated by similar fit statistics for

models 9 and 10 (Tables V and VI), where tempera-

ture sum is replaced by latitude and altitude to

describe the regional variation in site indices and site

index trends.

Along with temperature sum, vegetation type

improved the predictive power of the site index

prediction models significantly (model 3 in Tables

V and VI). Vegetation type also explained much of

the variation in earlier site index prediction models

from Fennoscandia (Hägglund & Lundmark, 1977;

Nilsen & Larsson, 1992; Tamminen, 1993) and the

common use of vegetation types for site classification

in the boreal forests of this region indicates the

importance of this variable. Nevertheless, vegetation

type cannot be used to predict site index in a number

of situations, for example, in dense stands, after

clearcuts, or after forest fires. In the site index

prediction models, significant effects were only

found for a small number of groups of vegetation

types. This facilitates the use of this variable, but also

indicates that vegetation type alone is a rather poor

predictor of site index.

Including soil depth into site index prediction

models in addition to temperature sum and vegeta-

tion type improved their predictions significantly

(model 4 in Tables V and VI). Soil depth improved

the models for pine more than those for spruce. Pine

forests grow on average on shallower soils than

spruce forests (Table II) and therefore differences

in soil depth might describe the observed restrictions

to growth, whereas additional soil depth above a

certain minimum soil depth might not be as strongly

correlated to height growth. Soil depth, even though

conceptually easy to record, is expensive to sample

due to the manual labour involved and the large

spatial variation within stands in Norway. If soil

depth therefore is estimated rather than measured,

site index estimates might not become more precise

than without soil depth information.

We found significantly higher site indices on

steeper slopes. For site indices estimated from

dominant height, differences in competition between

individual trees depending on the slope might

explain increased height growth on steeper slopes

(Bachmann, 1997), but this does not necessarily

indicate increased productivity. The effect of slope

on site index was small in our models and in the

same order of magnitude than for previous site index

prediction models (Nilsen & Larsson, 1992). Aspect

has affected site index in our data, but only on

steeper slopes as indicated by the significant inter-

actions between aspect and slope. On steeper slopes,

site indices were higher on south-facing slopes than

on north-facing slopes, indicating effects of in-

creased temperature and growth period length.

Aspect can also affect site index in cases where

sheltering from strong winds can increase growth

(Farrelly et al., 2011), but the differences of site

index by aspect observed in our data do not indicate

such an effect.

Site index prediction models are difficult to

compare with previously published models because

different site and climate variables were used, the

total variation of site indices varies, the variation of

site and climate variables in the study area varies,

different species react differently to site variables, the

size of the sample varies, and different factors act in

different regions. However, some site and climate

variables are frequently selected for those models,

indicating that they are able to predict site indices.

Focussing on site index models for conifers in

Europe, we found that the most important variables

in our models were also selected in other models.

Climate variables (Albert & Schmidt, 2010; Ercanli

et al., 2008; Farrelly et al., 2011; Fontes et al.,

2003; Romanya & Vallejo, 2004; Schadauer, 1999;

Seynave et al., 2005; Tamminen, 1993), vegetation

type (Hägglund & Lundmark, 1977; Farrelly et al.,

2011; Nilsen & Larsson, 1992; Schadauer, 1999;

Seynave et al., 2005; Tamminen, 1993), soil depth

(Ercanli et al., 2008; Farrelly et al., 2011; Fontes

et al., 2003; Hägglund & Lundmark, 1977; Nilsen &

Larsson, 1992; Romanya & Vallejo, 2004; Seynave

et al., 2005; Tamminen, 1993) and aspect and slope

(Ercanli et al., 2008; Farrelly et al., 2011; Fontes et al.,

2003; Nilsen & Larsson, 1992; Schadauer, 1999;

Socha, 2008; Tamminen, 1993) have frequently

been included in site index prediction models.
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The size of the region for site index prediction

models can have consequences for the site and

climate variables that are selected in these models.

Factors that are only acting in subregions might not

explain the variation of site indices across the entire

region, making it necessary to introduce submodels

for the subregions (e.g. Chen et al., 2002; Farrelly

et al., 2011; Romanya & Vallejo, 2004). We found

some indications for the need for subregional models

in our data, but were unable to fit separate models

due to the limited data from those regions. For

spruce in western Norway, models 3, 4 and 9 have

biased site index predictions and should therefore

not be applied in this region. For Mid-Norway,

predictions of model 3 and 4 were biased for both

species. Model 9, which is using latitude in addition

to temperature sum to describe regional variation of

site indices, did not show this bias and we therefore

recommend using model 9 for Mid-Norway rather

than models 3 and 4. Different effects of tempera-

ture sum have been observed in Mid-Norway than

for other regions. For spruce, the observed bias in

Mid-Norway does not restrict model application,

because site indices are only predicted for younger or

not yet established stands. For pine, a small bias was

also observed for younger stands, with some un-

certainty due to very few observations. Applying the

models for pine in Mid-Norway will therefore not

result in significantly biased predictions.

For practical use in forest management planning,

we are recommending models 3, 4 and 9 for both

species. These three models have similar fit statistics

and the choice of model will depend on the

accessible site and climate variables. Model 9 clearly

has the best predictive performance, because it

includes all available site and climate variables.

Model 4 has only slightly poorer fit statistics but

needs fewer and more easily accessible site and

climate variables. Model 3 will be the best choice

where soil depth data are too expensive to collect.

When applying the models it is important to use

temperature sums for the same period that have been

used to calibrate the models provided in Figure 2 or

in more detail upon request from the authors.

Temperature sums used here are 44-year averages

and describe the regional variation in climate rather

than dynamical changes in climate. The models will

mostly be used to predict site index of young or not

yet established stands. Therefore only the models

after the breakpoint year or their extrapolation

will be used. The higher correlation coefficients

(Table IV) and R2
adj: (Tables V and VI) for spruce

than for pine are caused by a larger variation in site

indices for spruce than for pine (Figure 3), but both

species have similar RMSEs, indicating that the

models predict site index for both species with a

similar precision.

The observed trends in our site index prediction

models can also be used to correct site index for old

stands observed from dominant height and age to

site index for younger or future stands. For this

correction we recommend to use the parameters

related to the year of stand origin in model 9,

STORG, STORG� TSUM, STORG2� TSUM

and breakpoint year. Bøhler and Øyen (2011)

supplied similar site index correction functions for

a subregion in Norway based on a limited data-set.

Elfving (1994) supplied models that can be used to

correct site index of spruce and pine in Sweden and

found site index trends of a similar order of

magnitude as observed in our data.

In conclusion, we would like to emphasise that the

non-linear trend in site indices of Norway spruce

and Scots pine in Norway is most likely caused by

dynamic changes in growing conditions, and that

increased temperature, precipitation, nitrogen avail-

ability and atmospheric CO2 level are major

contributions to the improved growing conditions.

The site index prediction models presented here are

able to predict site index with a few easily accessible

site and climate variables. Temperature sum, vegeta-

tion type groups and soil depth explained most of the

variation in site indices, when used in combination

with regionalised site index trend models.
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Laitinen, K., Niinistö, S. et al. (2003). Modelling the

short-term effects of climate change on the productivity of

selected tree species in Nordic countries. Forest Ecology and

Management, 183(1�3), 327�340.
Bøhler, F. & Øyen, B.-H. (2011). Estimation of site index in old,

semi-natural stands of Norway spruce at high altitude.

Forskning fra Skog og Landskap 1(11), 17. (In Norwegian

with English summary)

Cannell, M. G. R. (1999). Relative importance of increasing

atmospheric CO2, N deposition and temperature in promot-

ing European forest growth. In T. Karjalainen, H. Spiecker

& O. Laroussinie (Eds.), Causes and consequences of accelerat-

ing tree growth in Europe. European Forest Institute proceedings,

27, 25�41.
Carmean, W. H. (1975). Forest site quality evaluation in the

United States. Advanced Agronomy, 27, 209�269.
Chen, H. Y. H., Krestov, P. V. & Klinka, K. (2002). Trembling

aspen site index in relation to environmental measures of site

quality at two spatial scales. Canadian Journal of Forest

Research, 32(1), 112�119.
Elfving, B. (1994). Analser av bonitering med ståndortsfaktorer,
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Abstract 

We developed individual tree height growth models for Norway spruce (Picea abies (L.) 

Karst.) and Scots pine (Pinus sylvestris L.) in Norway based on national forest inventory 

data. Potential height growth is based on existing dominant height growth models and 

reduced due to competition by functions developed in this study. Three spatially explicit and 

two spatially non-explicit competition indices were tested. Distance effects and diameter ratio 

effects were estimated from the data simultaneously with parameters of the potential modifier 

functions. Large height measurement errors in the national forest inventory data caused large 

residual variation of the models. However, the effects of competition on height growth were 

significant and plausible. The potential modifier functions show that height growth of 

dominant trees is largely unaffected by competition. Only at higher levels of competition, 

height growth is reduced as a consequence of competition. However, Scots pine also reduced 

height growth at very low levels of competition. Distance effects in the spatially explicit 

competition indices indicated that the closest neighbours are most important for height 

growth. However, for Scots pine also competitors at larger distance affected height growth. 

The five competition indices tested in this study explained similar proportions of the variation 

in relative height growth. The small plot size of the national forest inventory in Norway (250 

m2) introduces large edge effects into spatially explicit indices and limits the spatially non-

explicit indices to the nearest neighbours, making both types of indices more similar than in 

theory. Given that unbiased predictions can only be expected for the same plot size, we 

recommend a spatially explicit index, which describes the distance function with a negative 

exponential, for use in growth simulators. 

Keywords: Individual tree height growth model; national forest inventory data; Norway 

spruce; Scots pine; Norway
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1. Introduction 

Individual tree-based forest growth models are frequently used to simulate structurally 

complex and mixed species stands (e.g., Pretzsch 2009; Vanclay 1994). They can also be 

used to extrapolate to a certain degree from empirical to novel stand treatments. In contrast to 

stand level growth models, they supply additional information about individual tree 

dimensions. In these models, competition indices are used to modify potential growth of 

individual trees. Spatially explicit competition indices (also called distance-dependent) use 

information about the position of competitors relative to the subject tree (also called target 

tree or focal tree). Spatially non-explicit competition indices (also called distance-

independent) do not use information about the spatial arrangement of trees and therefore only 

use some metric about the rank of the subject tree within the list of trees on the plot to 

estimate competition. The large within-stand variation in stand density in many of the 

managed boreal forest stands in Fennoscandia makes it necessary to include a rather detailed 

description of stand structure into growth models (Pukkala 1990). Spatially explicit 

individual-based growth models are therefore a preferred choice. For Norway, individual-

based models have been supplied for diameter growth (Bollandsås and Næsset 2009) and 

mortality (Eid and Tuhus 2001), and a first version of a simulator is available (Gobakken et 

al. 2008). All models are based on data from the national forest inventory. However, 

individual-based height growth models are still lacking. 

 

Individual tree diameter or basal area increment models are often the starting point for 

individual-based growth models. Individual tree height increment data are much rarer, 

explaining the comparatively low number of such models (Huang and Titus 1999; Uzoh and 

Oliver 2006; Pretzsch et al. 2002; Mitchell 1975; Vaughn et al. 2010; Courbaud et al. 1993; 

Hasenauer and Monserud 1997; Biging and Dobbertin 1995, 1992; Hann and Ritchie 1988; 

Ritchie and Hann 1986; Nord-Larsen 2006). National forest inventory data can supply a 

representative sample of individual tree height growth data. However, only few models (e.g., 

Hasenauer and Monserud 1997) are based on national forest inventory data, which are often 

characterised by large measurement errors of periodical height growth measured from the 

ground. Stem analysis data avoid the problems of measurement errors, but suffer from 

missing descriptions of the competitive situation at the time of height growth and the missing 

representation for larger forest regions. Height growth of individual trees has an asymptotic 

response to competition. Height growth of dominant trees is often not affected by 

competition. Only above a certain amount of competition height growth is reduced as 
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competition increases (Brunner and Nigh 2000). Diameter or basal area growth is much more 

affected by competition, resulting in responses that are much more linear than for height 

growth. Potential growth of individual trees is often estimated simultaneously with a modifier 

for competition (e.g., Uzoh and Oliver 2006; Vaughn et al. 2010; Huang and Titus 1999; 

Courbaud et al. 1993; Hasenauer and Monserud 1997) rather than estimated separately (e.g., 

Pretzsch et al. 2002). 

 

Competition indices in forest growth models have become more flexible during the last 

decades. Whereas early competition indices assumed certain effects of distance (e.g., Pukkala 

1989) and size ratios (e.g., Hegyi 1974), more recent growth models included more 

parameters into the competition index and estimate these effects from the data (Miina and 

Pukkala 2002; Pommerening et al. 2011; Sabatia and Burkhart 2012; Boyden et al. 2008; 

Miina and Pukkala 2000; Richards et al. 2008; Bøhler et al. 2008; Canham et al. 2004; 

Peltoniemi and Makipaa 2011). Ledermann and Stage (2001) described the distance effect of 

individual competitors for a number of different spatially explicit competition indices, which 

were all based on assumptions by the modeller. Comparing distance effects that have been 

estimated from the data (e.g., Pommerening et al. 2011; Sabatia and Burkhart 2012; Boyden 

et al. 2008) will allow us to analyze how they vary by species, age, site type and other 

growing conditions. 

 

Competition between trees in a forest varies depending on a range of factors (Nord-Larsen et 

al. 2006; Pretzsch and Biber 2010). However, it is uncertain whether competition indices 

represent all of this variation. Species-specific effects of competitors and responses of subject 

trees are often built into growth models. Competition increases as stand density increases 

(Nord-Larsen et al. 2006). Competition often decreases as stands develop, trees get older or 

increase in size. Stand structure, especially as a consequence of thinning types, can change 

structural variability and thereby affect competition (Nord-Larsen et al. 2006). With 

increasing site quality, the relationship between above-ground and below-ground competition 

changes, giving much more weight to above-ground competition on good sites (Pretzsch and 

Biber 2010). Weather can also affect the relationship between competition for above-ground 

and below-ground resources and thereby change competition (Wichmann 2001). Variation in 

initial tree sizes, caused by genetic variation or microsite differences, causes differences in 

stand structure and thereby affects competition (Boyden et al. 2008; Sabatia and Burkhart 

2012). Microsite conditions and genes vary at the individual tree level. Competition indices 
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assume uniformity in both, resulting in either lack of explanatory power, or covariation with 

these factors, making competition indices vulnerable when applied to other populations and 

sites. 

 

National forest inventory data are increasingly used for growth modelling purposes (e.g., 

Sharma et al. 2012; Sharma et al. 2011; Monserud and Sterba 1996; Condes and Sterba 2008; 

Seynave et al. 2005). The sampling of these data is designed to represent the forest of the 

region. However, data collection is often not designed primarily for growth modelling. Large 

measurement errors and other sampling details therefore often cause substantial trouble to 

growth modellers (e.g., Sharma et al. 2011). 

 

The objective of this study was to develop individual tree height growth models for Norway 

spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) in Norway based on 

national forest inventory data. Norway spruce and Sots pine are the two commercially most 

interesting species in Norway. Spatially explicit and spatially non-explicit competition 

indices where tested in potential modifier functions. Distance and diameter ratio effects of the 

competition indices where estimated from the data rather than assumed in the choice or 

construction of competition indices. We wanted to test if it is possible to extract the complex 

competitive interactions from data that are characterized by large measurement errors. 
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2. Materials and methods 

2.1. Data 

The Norwegian national forest inventory 

The Norwegian national forest inventory collects information on approximately 10,500 

sample plots established from 1986 and onwards in productive forests (Tomter 2000). The 

circular 250 m2-plots are systematically distributed over the entire country (except in 

Finnmark county where the plots were established later) in a 3 x 3 km grid and were 

remeasured every fifth year after 1993. Data up to 2008 were used in our study. Sample plots 

were only selected if they were registered as forestry land use and without stand border 

within the plot. Position and diameter at breast height (dbh) were registered for all trees with 

a dbh > 5 cm. Height was measured on a sample of trees at each remeasurement. The trees 

were selected based on a gauge angle factor of 6 m2 ha-1. On average 2 - 3 trees per plot were 

sampled for height (Table 1). Due to the angle gauge sampling approach, larger trees had a 

higher probability of being included in the samples than smaller trees. Height of the sample 

trees was measured using hypsometers such as Suunto or Vertex and recorded to the nearest 

0.1 m. Given the low precision of height measurements with these hand-held instruments 

relative to a five-year height growth, large measurement errors can be expected. Tree height 

was recorded according to a Norwegian definition as height above stump and, therefore, 0.3 

m were added to the recorded heights to convert to total tree height. 

Height growth 

Height increments were calculated as differences in measured individual tree heights between 

successive inventories and divided by the length of the growth period. Because tree height 

was measured during the growing season, the increment period was not always a full year. To 

calculate the number of increment periods for the given records, we used the methods 

described in Sharma et al. (2011), which is based on weather records for individual years. 

Missing weather data were supplemented using methods described in Gizachew and Brunner 

(2011). For some plots, individual remeasurements were taken at periods much shorter than 

five years. Given the low precision of the height measurements, uncertainties in the 

estimation of the increment period length, and the weather effects on height growth of 

individual years, periodical height increment for shorter periods varies much more than for 

longer periods. Therefore only height increment periods of at least 3 years were used. 

For trees with registered broken tops, only height increments up to this event were used.  
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Tree diameter and position 

All competition indices in this study use dbh to describe the competition from neighbouring 

trees. Tree height and crown data were only available for a small sample of trees in each plot. 

All living trees registered at the beginning of the increment period were considered as 

competitors. Spatially explicit competition indices use tree positions in addition to dbh. 

Therefore, only records where positions were registered for all trees on the plots were used. 

The latest recorded position per tree was used, assuming that errors in earlier recordings were 

corrected during remeasurements. Tree positions were used to calculate the distance between 

subject trees and their competitors. If a competitor was registered at the same position as the 

subject tree, the distance was set to 0.001 m. Between 1986 and 1993, position and dbh for all 

trees with a dbh > 5 cm was only recorded on the central 100 m2-plot and for all trees with 

dbh > 20 cm on the 250 m2-plot. In order to use height increment data from the first period, it 

was therefore necessary to estimate the dbh at the beginning of the increment period based on 

the dbh recorded at the end of the increment period for trees with dbh between 5 and 20 cm 

located on the 150 m2-annulus of the plot. An individual tree based dbh growth model that 

was calibrated using the same national forest inventory data (Bollandsås and Næsset 2009) 

was used for this purpose. Only trees with an estimated dbh > 5 cm were included as 

competitors in accordance with the registration method. Dbh was estimated with the same 

method in a few cases where trees significantly larger than the 5-cm dbh registration 

threshold were registered at the end of an increment period, but not registered at the 

beginning of the increment period. 

Site index 

Site index models (Sharma et al. 2011) are used to define the potential height growth. Site 

indices recorded in the data were for earlier site index models and could therefore not be 

used. Identification of dominant trees among the height sample trees (Sharma et al. 2011) for 

estimation of site index would have restricted the data unduly, excluding height growth data 

from a large number of suppressed trees. Therefore, the dominant height estimated by 

inventory field crews (based on height sample trees inside the 250 m2-plot and additional 

dominant heights measured on a 1000 m2-plot surrounding the 250 m2-plot) were used 

together with recorded stand ages to estimate site index. However, we observed that the crew-

recorded dominant tree height was systematically deviating from that of height sample trees 

identified on the 250 m2-plot in an earlier study (Sharma et al. 2011). On better sites, crew-
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recorded dominant stand height was lower and on poorer sites higher than heights of 

dominant trees inside the 250 m2-plot with a consistent trend over site index. We therefore 

used dominant heights from the 250 m2-plot for the plots used in Sharma et al. (2011) for site 

index estimation. For the remaining plots (56%), the crew-recorded dominant tree height was 

used for site index estimation. Site index estimates for the latter plots were corrected for 

systematic differences between site index estimates using linear regressions between the two 

site indices calibrated from plots where both site index estimates were available.  

 

Stand ages were recorded with large errors (Sharma et al. 2011), which affects the precision 

of all site index estimates. The use of recorded stand ages followed the procedures described 

in (Sharma et al. 2011). In order to prepare site indices for both spruce and pine on each plot, 

recorded site indices for spruce, pine, and birch had to be converted to site indices of another 

species. Site index conversion functions only exist for earlier site index models in Norway 

(Braastad 1983). We applied these conversion functions, but used the mean of the two given 

regressions in order to correct for errors-in-variables (Goelz and Burk 1996; Nigh 1995). The 

site indices (Tveite 1977, 1981) for species conversion were estimated using dominant height 

estimated by inventory field crews or dominant height estimated from the site index models 

(Sharma et al. 2011) for the given age for plots where dominant trees were identified inside 

the plot. After site index for missing species had been estimated with the conversion function, 

site index was transformed to the new model (Sharma et al. 2011) using dominant heights 

predicted by the old model (Tveite 1977, 1981) for the observed ages. Height data from birch 

trees were only used in a few cases where no data for spruce and pine were available. 

Data selection 

The height growth data used in this study were measured with large errors (Figure 1). Based 

on the time series of height development for individual trees it would be possible to eliminate 

the most extreme registration errors. We initially chose not to correct height records or 

exclude height growth data in order to avoid bias in the models. Nevertheless, height growth 

of two trees was excluded because height differences were larger than 10 m for a 5-year 

growth period. In preliminary analyses, interactions between competition indices and site 

index or competition index and tree height explained the variation in relative height growth. 

However, this interaction was caused by covariation of measurement errors with height and 

site index. Measurement errors are larger for trees with slow growth, i.e. trees with larger 
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heights on lower site indices. Many large negative height increments are responsible for the 

fact that mean relative height increments are much lower in certain groups of height and site 

index even though the competitive status is on average not different in these groups compared 

to the rest of the data. In order to avoid biased models we therefore excluded data from height 

and site index ranges that had large measurement errors. Data were grouped in 5-m height 

classes within 3-m site index classes and mean relative height growth calculated for each 

group. Data from groups with mean relative height growth of less than 0.6 for both spruce 

and pine, and larger than 1.4 for pine were excluded (191 height increments for spruce trees 

with heights above 20 m in site index class 8 m or heights above 25 m in site index class 11 

m; 256 height increments for pine trees with heights above 17.5 m for site index class 5 m, 

heights above 20 m for site index class 8 m, or heights above 25 m in site index classes 14 to 

20 m). The effects of excluding data above certain heights for given site index classes can be 

seen in Figure 1. 

2.2. Model 

The height growth model follows the potential modifier concept. Potential height growth is 

derived from dominant height development models and modified using competition indices 

for each individual tree. Site index models that describe the development of dominant height 

for Norway spruce and Scots pine (Sharma et al. 2011) are used to define potential height 

growth of individual trees: 

 

3
02

01

1
3.1 btXb

Xbh          [1] 

with 3403.145.0 402
2

0
bhbX   

and 140 3.1 bh     

 

where h is dominant height (m) at breast height age t (years) and h40 is site index (m) at breast 

height age of 40 years. The parameter estimates for spruce are: b1 = 18.9206, b2 = 5175.18, b3 

= 1.1576, and for pine: b1 = 12.8361, b2 = 3263.99, b3 = 1.1758. The dominant height 

development model needs to be applied independently of age to derive potential height 

increment. Therefore, for any given tree height, the increment in dominant height for the 

following period is derived by adding the period length to the age corresponding to the 

dominant height that is equal to the observed tree height. For the model calibration data, the 
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period length for the estimation of potential height growth was equal to the period length of 

observed height increment. Relative height growth (ihrel) is the dependent variable in the 

height growth models, and defined as the ratio of observed height growth and potential height 

growth. The potential modifier function describes ihrel as a function of a competition index 

(CI). We selected the following model, because it is flexible enough to describe the reduction 

of relative height growth for trees growing under strong competition as well as for trees 

growing under extremely low competition, e.g., Scots pine seed trees:  

 
cc

rel CICIbaih 11exp  [2]

where a, b, and c are parameters and  is the residual error.  

 

Competition indices 

To calculate a competition index, the contribution of individual competitors is described for 

selected competitors and summed per subject tree. In the case of spatially explicit 

competition indices a correction for edge effects is needed. For further use in growth models, 

competition indices have to be scaled. We tested three spatially explicit competition indices 

and two spatially non-explicit competition indices in the potential modifier functions (Table 

2). All five competition indices use dbh as the only variable to describe the competitors and 

subject trees. Tree height and crown dimension might better describe competition between 

trees, but were not available in our data and will not be available in most model applications. 

Distance between competitors and subject trees are used in spatially explicit indices as the 

only additional variable. 

 

The three spatially explicit competition indices describe how the competitive effect of each 

competitor decreases with decreasing dbh and increasing distance. CI1 is a modified version 

of the view angle based competition indices (Pukkala 1989; Lin 1974; Pukkala and Kolström 

1987). By adding one parameter to the distance term, the shape of the decline in competitive 

effect with increasing distance will be estimated from the data rather than assumed. By 

adding one parameter to the dbh of the competitor, the competitive effect of trees of different 

sizes is not assumed to be linearly correlated with dbh, but differences between trees of 

different dbh in their competitive effect are estimated from the data. CI2 is based on the 

competition index by (Hegyi 1974) which has been frequently used in forest growth models. 
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CI3 is based on competition indices that use the negative exponential to describe the distance 

function (Martin and Ek 1984; Pommerening et al. 2011). Similarly to CI1, parameters were 

introduced for CI2 and CI3 to estimate the distance function and the dbh effect from the data. 

The same formulation of CI2 was applied by Sabatia and Burkhart (2012) who also addressed 

the problems of correlations between competition index parameters and other parameters in 

the growth model. 

 

The spatially non-explicit competition index CI4 is the basal area sum of larger trees (Wykoff 

et al. 1982) without any modification. CI5 is the ratio between the subject tree’s dbh and the 

quadratic mean diameter (Bollandsås and Næsset 2009; Huang and Titus 1999) without any 

modification. 

 

For the identification of competing trees to be included in the spatially explicit competition 

indices, we used the maximum distance of recorded competitors, i.e., 17.84 m which is two 

times the plot radius. The small plot size and the fact that distance effects were estimated 

from the data did not allow applying flexible search radii. 

 

For the spatially explicit competition indices, competitors located outside the plot boundary 

are of concern. The number of registered competitors is systematically lower for trees closer 

to plot boundaries than for trees in the plot centre, leading to biased estimates of competition. 

To correct for the plot edge bias, the linear expansion method (Martin et al. 1977; Pretzsch 

2009; Haefner et al. 1991) is often applied. For the circular plots, we calculated the linear 

expansion factor for each competitor c relative to a given subject tree s, if the distance of the 

subject tree from the plot center (dists, m) plus the distance between subject tree and 

competitor (distsc, m) exceeded the plot radius (r = 8.92 m), as 

scs

sc

distdist
scsar rdistdist

2
cos2

360
222

[3]

This expansion factor is using distsc as the radius of a circle around the subject tree and 

calculates the portion of the perimeter inside the sample plot, which is equivalent to the 

probability of a competitor with the given distance to be inside the plot. The factor needed to 

expand this perimeter portion to a full circle is given as sc and was applied to each 
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competitor’s contribution to the competition index (Table 2). For potential competitors with a 

distance larger than distsc + r, but still at distances assumed to influence the subject tree (here 

defined with a maximum distance of 2·r), no competitors inside the plot are available to 

apply the linear expansion method. We therefore followed the proposal of Martin et al. 

(1977) and simulated competitors to correct for edge effects from unobserved areas. All trees 

on the plot were sorted into ten 5-cm dbh classes. The mean dbh for each dbh-class was used 

to simulate competitors in 1-m concentric zones at a distance equal to the midpoint of the 

zone. The sum of the frequency- and area-weighted simulated competition index 

contributions ( s) was added to the unscaled competition index (Table 2). 

 

With increasing distance of subject trees from the plot centre, information about the 

competitors becomes increasingly less accurate because an increasing portion of the 

competitors is located outside the plot. This effect also applies to the spatially non-explicit 

competition indices that use all trees on the plot and are therefore more accurate descriptions 

of the neighbourhood for subject trees in the centre of the plot than for subject trees at the 

edge. Consequently, the error of the estimated competition indices increases with increasing 

distance from the plot centre. This covariation is of special concern for the data used here due 

to the sampling approach. The angle gauge method results in the minimum dbh of height 

sample trees to increase from 5 cm up to 1.02 m distance from the plot centre to 43.7 cm at 

the plot edge. As a consequence of these two covariations with distance, the error of the 

competition index estimates increases with increasing dbh. 

 

The unscaled values of all five competition indices were transformed to the range 0 to 1 using 

the transformation function introduced by Pommerening et al. (2011) with specific 

modifications for each competition index (Table 2). This transformation results in a common 

scale for all competition indices and introduces variation in competitive effects with subject 

tree dbh for CI1, CI3, and CI4. For CI2, this effect is already included in the unscaled 

competition index. Competition indices are transformed by relating them to the competitive 

effect of a competitor with the same size of the subject tree in CI1 and CI3. For CI2, CI4 and 

CI5, the competitive effect of the subject tree cannot be described with the same formulation 

and therefore alternative formulations were introduced. For CI5, the transformation equation 

was further modified to reflect the variation of the effect of competition with tree size. 

Introducing QMD as a variable into the transformation equation causes varying effects of CI5 

depending on the mean tree size in the stand. Parameters p and q, which describe this effect, 
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were estimated from the data, in the same way as for the other four competition indices. The 

minimum value of all scaled competition indices was set to 0.001 to avoid invalid 

mathematical operations when using a competition index of 0 in the potential modifier 

function. Statistics for all five competition indices are compiled in Table 3. 

 

Due to the small size of the sampling plots, even spatially non-explicit competition indices 

describe the closest competitors. The small plot size is also responsible for the fact that 

spatially explicit competition indices are only precise for trees close to the plot centre, but 

estimated with random errors due to edge bias corrections.  

2.3. Parameter estimation  

The model parameters were estimated with non-linear least-squares regression using the 

NLIN procedure in SAS, applying Marquardt’s method due to correlation among parameter 

estimates. All model parameters were estimated simultaneously, i.e., three parameters of the 

potential modifier function (Eq. 2) and up to two parameters of the competition index (Table 

2). Due to trees sampled on the same plot and repeated height measurements on the same 

trees, model errors are not be independent. Mixed models including random effects on the 

plot and tree level would be the appropriate method for this data structure. However, random 

effects could not be estimated due to the small number of height sample trees per plot (Table 

1), which was below the number of parameters in the models for about 90% of the plots. 

Autocorrelated errors in the height growth time series were accounted for by including a 

linear first order autoregressive error structure with an autocorrelation parameter  into the 

potential modifier function (Eq. 2) (cf. Wang et al. 2011). Models were evaluated using fit 

statistics (root mean squared error, RMSE, and adjusted coefficient of determination, R2
adj.) 

and graphical analysis of trends in residuals when plotted against tree height, site index, CI, 

and subject tree dbh. A significance level of p = 0.05 was used unless otherwise stated. 
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3. Results 

Potential modifier functions for height growth of Norway spruce and Scots pine were fitted to 

the data using five different competition indices (Table 3, Figure 2). The models explained 

only about 4 and 7% of the total variation, for spruce and pine respectively, irrespective of 

the competition index used in the models. RMSE exceeded the theoretical range of the 

response variable (0 to 1) for spruce (RMSE = 1.04) and pine (RMSE = 1.62) for all models. 

However, the observed relative height growth had a much larger variation than the theoretical 

range (Figure 1, Table 1). Large measurement errors of periodical height growth measured 

with hand-held instruments from the ground might be responsible for the large residual 

variation as indicated by the large amount of negative height increments (Figure 1). Larger 

variation of relative height increment for pine as compared to spruce (Figure 1, Table 3) 

might be caused by lower absolute height growth of pine (Table 1), but measurement errors 

of the same order of magnitude. Also the lack of response of height growth to competition 

across a wide range of competitive situations (Figure 2) might explain the large residual 

variation. 

 

Despite the large residual variation, the models describe effects of competition on height 

growth in the data. For Norway spruce, height growth is mostly unaffected by competition at 

low levels of competition (Figure 2). Only for trees growing under very strong competition 

height growth is reduced to a larger degree. For Scots pine, also trees growing under no or 

very little competition reduced their height growth compared to trees growing under 

moderate levels of competition. For Scots pine, trees with little competition can be 

dominating trees in open stands or seed trees. However, no seed trees were included in our 

data. CI4 for the largest tree on the plot differs from the other CIs and therefore the model for 

CI4 differs from the other models for pine. While CI4 = 0 for the largest tree on a plot, 

irrespective if smaller competitors are present, all other CIs assign 0 only to trees that are the 

only tree on the plot and CI > 0 for the largest tree on the plot that has smaller competitors. 

Consequently, the reduction in height growth at CI4 = 0 is less than for other CIs because all 

the largest trees are given that value for CI4 whereas the largest trees are more evenly 

distributed over larger values for the other CIs. 

 

All five competition indices explained a similar proportion of the variation in relative height 

growth, as indicated by similar fit statistics (Table 3). Ranking of the five models according 
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to fit statistics differs between species, but differences between models are often too small to 

allow firm conclusions. Spatially explicit competition indices (CI1 – CI3) performed on 

average slightly better than spatially non-explicit competition indices (CI4 and CI5), but also 

this difference in fit statistics is small. The small plot size makes CI1 – CI3 less spatially 

explicit by estimating considerable portions of the competition for edge trees using edge 

expansion. At the same time the small plot size is responsible for making CI4 and CI5 more 

spatially explicit by only using neighbors close to the subject tree. In total, the small plot size 

might explain the small difference in fit statistics between spatially explicit and spatially non-

explicit competition indices.  

 

Scaling of the competition indices (Table 2) resulted in similar means and ranges for all 

competition indices (Table 3). For CI4 and CI5, scaling functions were designed to result in 

distributions of the scaled competition index similar to CI1 – CI3. Earlier versions of the 

scaling equations for CI4 and CI5 resulted in models with significantly higher residual 

variation (not shown). The poorer fit statistics of CI2 for Norway spruce as compared to CI1 

and CI3 (Table 3) might be caused by a scaling, leading to differences in the range of 

competition indices (Figure 2, Table 3). 

 

The functions describing the decrease of competition with increasing distance from the 

competitor were estimated from the data in this study. Figure 3 shows examples of the 

distance functions for a range of competitor sizes for all three spatially explicit competition 

indices. For spruce, competition from trees of the same size or smaller decreases rapidly with 

distance and approaches zero at about 3 m distance. Only for competitors significantly larger 

than the subject tree, competition also from trees at larger distances contributes to the total 

competition. It is also interesting to note how little competition is contributed from trees 

growing further away than one sample plot radius (8.92 m). For pine, the effect of individual 

competitors declines much less than for spruce, especially for competitors which are of the 

same size or larger. This indicates a competitive effect that reaches further, but also a 

stronger effect of the competitor’s size on the competition as compared to the effects 

observed for spruce. The distance functions (Figure 3) are similar for all three spatially 

explicit competition indices, both regarding the decline over distance, but also regarding the 

effect of competitor tree size. However, using CI2 a slightly different distance effect was 

found. The distance effect can only be fully evaluated if it is combined with the potential 

modifier function. Figure 5 shows the effect of one competitor at different distances from the 
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subject tree for the models using CI3. In the combined model, the reduction in height growth 

is stronger for spruce than for pine. However, the model also indicates a larger reduction in 

height growth due to competitors at larger distances in pine as compared to spruce, as also 

indicated in Figure 3. 

 

For CI1 – CI3 and CI5, the effect of a given competitor varies, depending on the size of the 

subject trees (Table 2, Figures 3 and 4). These effects have been estimated from the data and 

show in all models larger competitive effects on smaller trees than on larger trees. However, 

due to different mathematical formulation and parameterization of the models, the effects 

differ between models. Effects of dbh-ratios between subject tree and competitors are 

described by the same formulations and parameters as the distance function for CI1 – CI3 

(Table 2). For spruce, CI2 predicts a larger competitive effect on smaller subject trees than 

CI1 and CI3 (Figure 3). For CI4, the competitive effect does not vary by subject tree size. 

This might partly explain why the models for CI4 have lower fit statistics than other models 

(Table 3). 

 

A significant negative first-order autocorrelation was included in all models (Table 3). This 

negative correlation between residuals of successive observations in a time series of periodic 

height increment indicates oscillation around the height development predicted by site index 

models, which might be caused by weather conditions or measurement errors. Higher 

negative autocorrelation for pine than for spruce might be caused by larger relative 

measurement errors, i.e., same absolute height measurement error, but larger error relative to 

smaller heights in pine than in spruce. 
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4. Discussion 

The individual tree height growth models for Norway spruce and Scots pine presented here 

have a large residual variation. The main factor contributing to the large residual variation are 

the measurement errors in the data. Tree heights have been measured on the national forest 

inventory plots with hand-held instruments from the ground at intervals of five years. The 

error of this measurement procedure is large relative to the height increment during that 

period, resulting in a large number of unreasonable height increments in the data (Table 1, 

Figure 1). Despite these large measurement errors in the response variable, it was possible to 

detect significant effects of competition on individual tree height growth in the data. We 

therefore conclude that the national forest inventory data, which were not originally designed 

for height growth modeling, can also be used for this purpose. All other sources of the 

residual variation, e.g., periodic variation in height increment, random variation between 

plots and trees, site index estimation errors, or errors of the dominant height growth model, 

are producing residual variation that are at least one order of magnitude smaller than the 

errors caused by the measurement procedure. Hasenauer and Monserud (1997) reported 

measurement errors in height increment data from national forest inventory data causing 

residual variation in a height growth model in the same order of magnitude as in our models. 

However, their model estimated height increment directly using tree size, site descriptions 

and competition indices, and therefore the model still explained larger parts of the total 

variation than the potential modifier functions presented here (cf. Nord-Larsen 2006). Large 

measurement errors can result in biased models if the measurement errors are correlated to 

independent variables in the model. We found some indication for this kind of correlation in 

our data due to slower height growth of trees with larger heights on poorer sites and therefore 

excluded groups of data where large measurement errors biased the response of height 

growth to competition. However, we did not find any further indication for correlations 

between measurement errors and independent variables, based on the analyses of residuals vs. 

independent variables (not shown). Zobel (2011) evaluated the effect of data selection, fitting 

methods, autocorrelation, and hierarchical model structure on models fitted to regional 

inventory data and found negligible effects, as long as simple and robust models were used. 

Their basal area yield models for aspen forest types were most problematic in the 

extrapolation range, or at the edges that were not covered by many data.  

As a consequence of the angle gauge approach used to sample height increment data, smaller 

trees have a higher probability to be selected close to the plot center. Due to the small plot 
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size, both spatially explicit and non-explicit competition indices are more precise for subject 

trees located in the plot center than for trees closer to the plot edge. The description of the 

competition is therefore more accurate for smaller trees than for larger trees. Larger trees are 

also sampled at larger distances from the plot center and therefore edge expansion contributes 

a larger proportion of the competition index for some of the larger trees. Trees of small 

diameter might grow in young stands or as suppressed trees in older stands. In both cases 

they likely experience high competition and therefore a more precise description of the 

competition for smaller than for larger trees is desirable. However, we were unable to 

evaluate the effect of this sampling approach on the models, because no data for larger plots 

were available, which are necessary to analyze the errors induced by the small plot size. 

 

The shape of the potential modifier functions agrees with previous reports that describe 

height growth as being less affected by low levels of competition and only significantly 

reduced at higher levels of competition (Brunner and Nigh 2000; Mitchell 1975; Huang and 

Titus 1999; Vaughn et al. 2010; Courbaud et al. 1993; Nord-Larsen 2006). In contrast to 

height growth, diameter growth is more affected by competition also for dominating trees, 

and therefore the response of diameter growth to competition is more linear than the 

asymptotic response of height growth (Brunner and Nigh 2000; Pretzsch et al. 2002; Nord-

Larsen 2006). 

 

However, Scots pine also reduced height growth at very low levels of competition in the data 

presented here. Dominant height growth of Scots pine and other shade-intolerant species has 

been reported to be reduced in very dense or very open stands (e.g., Mäkinen and Isomäki 

2004; MacFarlane et al. 2000; Nilsson et al. 2010; Martin-Benito et al. 2008; Anton-

Fernandez et al. 2011). Reduced height growth of Scots pine at low competition must 

therefore be considered when dominant height growth models are used to estimate site index. 

Models for pine have better fit statistics than models for spruce (Table 3), indicating a larger 

sensitivity of this shade-intolerant species to competition than for shade-tolerant spruce. 

Based on the difference in shade tolerance between the two species, one would expect 

reduction in height growth at lower levels of competition in pine than in spruce. This 

difference between the species cannot be seen by comparing the modifier functions (Figure 

2). The different species-specific parameters of the competition indices (Table 3) do not 

allow such a direct comparison. However, the comparison of the distance functions (Figure 3) 

clearly indicates that the level of competition from each competitor is much higher for pine 

17



 

trees of the same size and at the same distance as compared to spruce trees. As a 

consequence, CI1 to CI3 get higher values for pine trees than for spruce trees (Table 3) and 

consequently the reduction of height growth due to competition occurs at higher CIs for pine 

(0.9 – 1.0) than for spruce (0.2 – 1.0) (Figure 2). The reduction in height growth is therefore 

similar for both species at comparable levels of competition in the models presented here. 

However, when evaluating the combined effect of distance function and potential modifier 

function (Figure 5) spruce appears to reduce height growth more, whereas pine is more 

sensitive to competition from trees at larger distances. The models do not account for the 

species of the competitor. However, most of the data are from pure stands (Table 1) and 

therefore the same CI for a spruce tree might indicate heavier competition from the 

neighboring spruce trees as compared to competition from neighboring pine trees for a pine 

subject tree. One other individual tree height growth model for Norway spruce and Scots pine 

also indicates similar reductions in height growth due to competition for both species 

(Pretzsch et al. 2002). However, also in this model species-specific effects built into the 

competition indices prevent a full evaluation of differences between species in potential 

modifier functions. 

 

In our model approach the height growth potential is set by the dominant height growth 

model (Sharma et al. 2011). An alternative approach is to estimate the potential height growth 

simultaneously with competition effects. However, the potential height growth in our model 

was estimated using the same data source. Due to the insensitivity of height growth of 

dominating trees to competition, the assumption is valid that the dominant trees selected for 

the potential height growth model in Sharma et al. (2011) are showing potential height 

growth.  

 

The three spatially explicit competition indices used in this study explained similar 

proportions of the variation in relative height growth than the two spatially non-explicit 

competition indices (Table 3). The plot size in this study is small (250 m2) compared to plot 

sizes often used for research plots in forests (  1000 m2). The plot radius of 8.92 m is well 

below the tree height of most of the competitors in the data, and therefore some competition 

from large trees outside the plot is likely, also for a tree located close to the centre of the plot. 

For spatially explicit and spatially non-explicit competition indices, the small plot size causes 

less accurate estimates of competition for most trees due to large edge effects compared to 

larger plots. However, for spatially non-explicit competition indices, the small plot size 
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results in a more accurate description of competition for most trees in the plot center 

compared to larger plots. Therefore the small plot size might explain the small differences in 

fit statistics between both types of competition indices in this study. Stage and Ledermann 

(2008) introduced the term “semi-distance-dependent” for competition indices that are not 

considering tree positions but have a large degree of spatially explicit representation of 

competition due to the small plot size they are applied to or due to the sampling design (cf. 

Ledermann 2010). Similar predictive properties of spatially explicit vs. spatially non-explicit 

competition indices might be restricted to the small plot sizes or the homogeneous stand 

structures used in these studies (Contreras et al. 2011; Filipescu and Comeau 2007; Mailly et 

al. 2003; Rivas et al. 2005; Biging and Dobbertin 1995, 1992). For larger plots, 

heterogeneous stand structures, or mixed species stands, spatially explicit competition indices 

offer a more precise description of the neighborhood for each subject tree and are therefore 

more likely to outperform non-explicit competition indices. 

 

Our results also emphasize the effect of plot size on estimates of competition. Application of 

growth models to data from plot sizes significantly different than those of the calibration data 

will give biased predictions (Stage and Ledermann 2008; Stage and Wykoff 1998; Lappi 

2005; Ledermann and Eckmüllner 2004; Hynynen and Ojansuu 2003; Pukkala et al. 2011). 

The spatially non-explicit competition indices in our models can therefore not be applied to 

plot sizes larger than 250 m2. The initial advantage of spatially non-explicit indices, not to 

rely on expensive registrations of tree positions, might therefore be lost if the sample plot size 

is too small. 

 

All five competition indices tested in this study resulted in similar fit statistics for the 

potential modifier function of the two species (Table 3). This might indicate that all models 

can be used in growth simulators. Spatially explicit competition indices performed slightly 

better than spatially non-explicit, but in the absence of tree positions also the latter might be 

useful, if the plot size is comparable to the plot size of the calibration data. CI3 had the best 

fit statistics for spruce and the second best for pine. We therefore recommend CI3 for use in 

individual-based forest growth simulators in Norway. This spatially explicit competition 

index will allow simulating heterogeneous structures and mixed species stands better than the 

spatially non-explicit indices. Tree positions required to initiate model simulations might in 

the future also be available from airborne laser scanning (Hyyppä et al. 2012) or generated 

based on empirical spatial distribution patterns (Pretzsch 1997). 
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Following the example of previous studies (e.g., Pommerening et al. 2011; Sabatia and 

Burkhart 2012; Canham et al. 2004; Richards et al. 2008) we estimated the effects of distance 

and diameter ratios from the data simultaneously with other model parameters. Parameters p 

and q for CI1 to CI3 were significantly different from 1 in all cases (Table 3), indicating the 

need for a more flexible description of these effects compared to their original versions. No 

search radius for competitors was applied in this study, because the distance effect was 

estimated from the data and because of the small plot size. Sabatia and Burkhart (2012) 

discuss the correlation between parameters describing the distance effect and parameters 

defining the search radius. Estimating both parameters simultaneously is therefore a complex 

task and earlier studies (Miina and Pukkala 2000; Canham et al. 2004; Richards et al. 2008) 

did not address this correlation problem. All three studies used different methods for the 

numerical optimization of both groups of parameters and it is therefore hard to judge, how the 

correlation between parameters affected their results. Sabatia and Burkhart (2012) got 

inconclusive results based on simultaneous estimation of both types of parameters and 

therefore only optimized the search radius, but not the distance function parameters. We 

chose the other option and only estimated distance function parameters without search radius, 

following the example of Pommerening et al. (2011). Only the maximum search radius 

(17.84 m) is given by the plot size. 

 

The interpretation of the distance effects in our models (Figure 3 and 5) has to consider the 

small plot size. Up to one plot radius (8.92 m) most data are from real competitors, with a 

decreasing proportion as subject trees are located closer to the plot edge, due to edge 

expansion. Between one and two plot radii, most data are from simulated competitors, and 

beyond two plot radii no data on competitors were available. The short range of severe 

competition might therefore be a consequence of the small plot size. However, Pommerening 

et al. (2011) estimated distance functions, which are almost identical to the functions in this 

study, for Norway spruce and a competition index equivalent to CI3 using data from a larger 

plot in Austria. Also for other species a short range of competitive effects was estimated with 

flexible competition indices (Boyden et al. 2008; Miina and Pukkala 2000; Pukkala and 

Kolström 1987; Miina and Pukkala 2002; Richards et al. 2008; Canham et al. 2004; Sabatia 

and Burkhart 2012). Even though all previous attempts to quantify distance effects from the 

data were for diameter increment models, it is unlikely that height increment responds 

significantly different. The short range of the competitive effects indicates that the closest 
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neighbors are the most serious competitors and therefore have the largest effect on the growth 

of the subject trees. The construction of many competition indices assumes a short range of 

competitive effects (Ledermann and Stage 2001; Stage and Ledermann 2008), often justified 

by the competition being mostly for above-ground resources. Comparing distance functions 

between studies will ultimately lead to more knowledge about how they vary with species, 

age, site, and growing conditions. 

 

Distance functions for pine indicate a substantially larger range of competitive effects for 

subject trees of this species (Figure 3 and 5). This might be caused by a lower shade tolerance 

of Scots pine as compared to Norway spruce. Pine stands are also on average more open 

(Table 1) resulting in a larger distance to the nearest neighbors. Miina and Pukkala (2000) 

report much smaller differences in distance functions between Norway spruce and Scots pine 

for their CI3, which is comparable to our CI2. However, their diameter increment model 

explicitly considers the species of the competitor and therefore the combined distance effect 

on growth cannot be compared with our models. 

 

The competitive effect varies with the diameter ratio between subject tree and competitor in 

four of the five competition indices in this study (Figure 3 and 4). Lower fit statistics for CI4 

(Table 3), which did not consider the variation of competition with subject tree size, might 

indicate the need to consider diameter ratio effects in competition indices. Diameter ratio 

effects estimated from the data in this study are similar to the effects reported earlier for 

diameter growth models (Pommerening et al. 2011; Richards et al. 2008; Miina and Pukkala 

2000). However, the mathematical formulations used to describe diameter ratio effects in our 

models tightly link the diameter ratio effect to the distance effect. We were therefore unable 

to optimize one effect independently of the other effect, a task left for future research. 

Diameter ratio effects introduce more focus on above-ground competitors compared to 

competition indices that are considering above- and below-ground competition by counting 

all competitors irrespective of their size. 

 

Competition has been shown to vary with stand density, tree size, site quality, climate, and 

stand structure. Pretzsch and Biber (2010) reported significant variation of potential modifier 

functions for diameter increment models by site index and interpreted these results as 

decreasing importance of competition for light on less productive sites due to increasing 

competition for below-ground resources. In our study, we did not observe bias for any site 
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index class, when residuals of the models were plotted over competition indices (results not 

shown). Different response of growth to competition for diameter growth vs. height growth 

might explain the difference between the two studies. However, also the construction of the 

competition indices varied between the studies. Whereas Pretzsch and Biber (2010) selected 

only competitors that reduced light availability of the crown by using inverted cones, all our 

CIs except for CI4 quantified the contribution from all competitors and thereby also 

described competition for below-ground resources. CI4 (BAL) only describes competition 

from trees larger than the subject tree. In order to also include competition for below-ground 

resources, BAL is frequently combined with total stand basal area in growth models (e.g., 

Nord-Larsen 2006). We did not follow this approach, which might be another reason for the 

poor predictive power of CI4 compared to the other CIs which included competition from 

competing trees of all sizes. 

 

The effect on the subject tree varies by tree species of the competitor (e.g., Pretzsch et al. 

2002; Canham et al. 2004; Richards et al. 2008; Miina and Pukkala 2000; Liu and Burkhart 

1994; von Oheimb et al. 2011; Zhao et al. 2006). We did not test this with our data, because 

the large residual variation in our data due to measurement errors made it difficult to include 

additional variables. We also expect this species effect to be stronger for diameter growth 

than for height growth. 

 

Competition changes over time due to growth of competitors, but also due to mortality or 

removal of competitors. The sudden change in competition induced by tree removals in 

connection with delayed growth responses to the improved growing conditions calls to treat 

this effect separately from other changes in the competition index. Growth models therefore 

frequently include the change in competition index (e.g., Pretzsch et al. 2002) or crown 

length (e.g., Ledermann 2010; Mailly et al. 2003) as additional variables. Diameter increment 

data from the Norwegian national forest inventory (Gizachew and Brunner 2011) indicated 

that delayed responses to thinning are blurred due to the length of the growth period (5 years) 

being similar to the typical response time and due the unknown time of the thinnings within 

the 5-year period. Based on this source of noise in our data and an assumption that height 

growth is generally less affected by competition than diameter growth and therefore also less 

affected by sudden changes in competition, we chose not to include a variable describing a 

lagged height growth response to thinning into our models. 
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Competition can be modified by the slope of the stand (Bachmann 1998). A substantial part 

of the forest area in Norway is located on slopes of varying steepness. Preliminary versions of 

our models (not shown) had negligible effects of slope corrections and we therefore excluded 

this variable in the final model. We did not consider directional effects of competitors either, 

in order to keep the competition indices in our models as simple as possible. However, such 

effects have been documented for the species that we analyzed and included in other 

competition indices (Miina and Pukkala 2002; Pretzsch et al. 2002; Pukkala 1989). Future 

work should also test if the additive effect of competitors should be replaced by 

multiplicative effects (Miina and Pukkala 2002). 

 

The competition indices used as independent variables in the potential modifier models are 

estimated with errors and a basic assumption of regression analysis is therefore violated, 

which might cause biased parameter estimates. A number of methods have been proposed to 

correct for errors in variables (e.g., Kangas 1998). However, the magnitude of the errors in 

our competition indices are mostly caused by edge expansions and therefore unknown. In 

addition, the errors in the competition indices might be correlated to the distance from the 

plot centre and due to the sampling approach also correlated to the size of the subject tree. 

We were therefore unable to apply previously applied correction methods (Kangas 1998; 

Sharma et al. 2011). 

 

The models presented in this study describe the relationship between periodical height growth 

and competition indices. The competition index only describes the situation at the start of the 

growth period. However, for the five-year periods that most of the data represent, the 

competition index might only change slightly due to diameter growth of subject tree and 

competitors. For longer increment periods, the non-linearity of the height growth and the 

changes in competition indices during this period can lead to biased models (Cao 2000; Nord-

Larsen 2006). However, less than 12% of the data have increment periods longer than 7 years 

(Table 1). The linear interpolation within this short period will only cause small bias during 

growth predictions. Even though our data cover a period of 22 years, periodical height growth 

might be affected by variation and trends in weather conditions. The warm climate during 

this period might not represent long-term historic climates. However, it might be 

representative of future climate to which model predictions are applied. 
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5. Conclusions 

Even though the national forest inventory data in Norway are sampled for a different purpose 

and contain rather larger height measurement errors, it was possible to develop height 

increment models for individual trees in our study using this data source. Simultaneous 

estimation of parameters of the competition indices together with parameters of the potential 

modifier function allowed us to estimate effects of competitor’s distance from the subject tree 

and diameter ratios between competitor and subject tree on height growth from the data. 

These flexible competition indices are more likely to describe the competition realistically by 

avoiding the assumption that earlier versions of the same competition indices have built into 

growth models. In this study the three spatially explicit competition indices performed only 

slightly better than the spatially non-explicit versions. The small plot size used for data 

collection made spatially explicit competition indices less accurate and spatially non-explicit 

competition indices much more spatially explicit than for the larger plot sizes typically in use 

for growth modeling. The models describe a substantial reduction in height growth only at 

high levels of competition for Norway spruce and Scots pine. For Scots pine, height growth 

was also reduced at low levels of competition, a process also observed for other shade-

intolerant species. 
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Figure 1. Height growth relative to potential height growth over height for Norway spruce 

and Sots pine. 
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Figure 2. Potential modifier functions for individual tree height growth of Norway spruce and 

Scots pine for five different competition indices (Table 2). 
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Figure 3. Effect of the distance of individual competitors on their contribution to the spatially 

explicit competition indices CI1, CI2, and CI3, (Table 2 and 3). Each line is for a given 

diameter ratio between subject tree and competitor, ds = dbh of subject tree in cm, dc = dbh 

of competitor in cm.  
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Figure 4. Effect of the diameter of subject tree (ds = dbh of subject tree in cm) relative to 

quadratic mean dbh of all trees (dq = ds / QMD) on the competition index CI5. For both 

species the effect is given for four different ds.  
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Figure 5. Effect of the distance of one competitor on the relative height growth in the models 

using CI3. Each line is for a given diameter ratio between subject tree and competitor, ds = 

dbh of subject tree in cm, dc = dbh of competitor in cm.  
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Abstract  

We developed nonlinear mixed effects height-diameter models for three major tree species: 

Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.), and downy birch 

(Betula pubescens (Ehrh.)) in Norway. We used data from four Norwegian National Forest 

Inventory (NFI) cycles (7th - 10th NFI cycle) as model fitting data and data from the 6th NFI 

cycle as validation data. Among several bi-parametric functions tested as base functions in a 

preliminary analysis, the Näslund function showed the smallest residual variations, and 

therefore it was generalized by incorporating stand variables as covariates that act as 

modifiers of the original parameters of the Näslund function. Sample plot-level random 

effects were also included in order to account for inter-plot variations within the populations. 

Unlike a basic mixed effects model, a generalized mixed model described larger parts of 

variations in the height-diameter relationships and predicted heights without significant bias 

for validation data from the sample plots, where all measured heights of the focused species 

(species used for species-specific model) were used to predict random effects. For all species, 

when measured heights of other than focused species were used to predict random effects, a 

significant height prediction bias occurred. This bias could be reduced for certain diameter 

ranges by applying generalized ordinary least square model. We thus recommend using 

generalized mixed effects models to estimate the missing heights on NFI sample plots and 

other sample plots, where measured tree heights of the focused species are available for 

prediction of random effects. When measured heights are not available, generalized ordinary 

least square model can be used.  

Key words: Height-diameter models; nonlinear mixed effects model; Näslund function 

prediction error; EBLUP  
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1. Introduction 

Tree diameters and heights are fundamental measurements in forest inventories and are used 

as input parameters of models or decision support systems in forest management planning. 

Diameter and height measurements are used to estimate tree volume, site index, growth and 

yield, succession and carbon budget models. Diameter is easily measured for all standing 

trees, but measuring height may be difficult, time consuming and hence expensive. Therefore, 

height-diameter models are commonly used to estimate the heights of trees for which only 

diameters are measured.  

The height-diameter relationship differs from one stand to another due to differences in site 

quality, stand age and silvicultural treatments, and even within the same stand due to 

differing competitive situation among the trees (e.g. Vanclay, 1994; Calama & Montero, 

2004; Sharma & Parton, 2007; Trincado et al., 2007; Schmidt et al., 2011). The height-

diameter relationship is thus highly site- and stands density-specific and varies over time 

even within the same stand (Curtis, 1967; Zeide & Curtis, 2002; Pretzsch, 2009). Errors of 

height predictions can be significantly reduced by incorporating stand and site variables into 

height-diameter models (e.g. Sharma & Zhang, 2004; Temesgen and Gadow, 2004; Castedo-

Dorado et al., 2006; Lei et al., 2009) which enables the establishment of stand- or time-

specific height-diameter relationships. Furthermore, inclusion of both stand variables as 

covariates and possible sources of subject-specific variation (e.g. plot-level variation) as 

random effects into the model better describes the variation in the height-diameter 

relationship on stand level than a model with no random effects included (Mehtatalo, 2004, 

2005; Adame et al., 2008; Meng et al., 2008; Crecente-Campo et al., 2010; Schmidt et al., 

2011).  

In recent years, national forest inventory (NFI) data are becoming useful for forest modellers 

to develop various models as decision support tools in forest management planning. The 

height and diameter data from NFI cover a wide range of tree sizes and ages, site conditions, 

and silvicultural treatments. Even though NFI data is primarily acquired for other objectives, 

they have been frequently used for modelling individual tree growth such as basal area 

growth (e.g. Monserud & Sterba, 1996; Sterba & Monserud, 1997), height growth (Condés & 

Sterba, 2008; Hasenauer & Monserud, 1997; Huuskonen & Miina, 2007), and height-

diameter relationships (Mehtatalo, 2004, 2005; Nanos et al., 2004; Adame et al., 2008; 

Crecente-Campo et al., 2010). Also in Norway, various individual tree based forest models 
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have been developed, such as basal area growth models (Andreassen & Tomter, 2003), 

diameter growth models (Bollandsås & Næsset, 2009), height growth models (Sharma et al., 

2011; Sharma & Brunner (in review)), mortality models (Eid & Tahus, 2001; Bollandsås, 

2007) and height-diameter models (Bollandsås, 2007). 

Existing height-diameter models for Norway (Øyen & Andreassen, 2002; Bollandsås, 2007) 

did not take sample plot-level random effects into account when they were developed. The 

models presented by Bollandsås (2007) lack dominant trees height as covariate that 

represents stand development stage over time. In stead, these models used basal area as 

covariate which is not independent of thinning. In the Norwegian NFI, a tariff method is 

used, where mean height-diameter curves (Fitje and Vestjordet, 1977; Vestjordet, 1968) are 

adjusted to individual sample plots using measured heights. Height prediction errors of this 

method are unknown and changes in the number of sampled heights between inventories can 

affect predictions. A main concern is also that this method is not flexible enough to modify 

the shape of the mean height-diameter curves for individual sample plots.  

This study aims at developing species-specific height-diameter models for three major tree 

species using longitudinal data from the Norwegian NFI. These species are Norway spruce 

(Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.), and downy birch (Betula pubescens 

(Ehrh.)). Different stand variables and sample-plot level random effects have been integrated 

in the models in order to improve height prediction accuracy. The proposed models are 

primarily meant for predicting heights of trees with a measured diameter at breast height 

(DBH) on the Norwegian NFI sample plots. However, they may also be used to predict tree 

height from DBH measurements for other sample plots in Norway. The models are expected 

to overcome the disadvantages of the existing tariff method and provide more accuracy than 

other existing alternatives (Øyen & Andreassen, 2002; Bollandsås, 2007).  
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2. Materials and methods 

2.1. The Norwegian National Forest Inventory  

The Norwegian National Forest Inventory is a permanent and rotating sample plot inventory. 

The sample plots are located at the intersections of a 3 × 3 km grid in areas below the 

coniferous forest border. Circular plots with an area of 100 m2 were established between 

1986 and 1993. The sample plot size was increased to 250 m2 in the second period (1994 - 

1998) and plots were re-measured every five year. The NFI data contain approximately 

10,500 sample plots in the productive forest (minimum production of 1 m3 ha-1 yr-1) (Tomter, 

2000). Since 2005, also mountain forests and the northern part of the country are sampled 

with a lower intensity (sample plots on a 3 × 9 and 9 × 9 km grid, respectively). While DBH 

and tree species are recorded for all trees with a DBH >5 cm, tree height is only measured for 

a subsample selected using a relascope sampling approach based on angle gauge factor of 6 

m2 ha-1. The numbers of height sample trees per plot in earlier inventories (1986 - 2003) were 

smaller than that in later inventories (2004 - 2011). Details of NFI design and methods of 

data acquisition are found in inventory handbooks (e.g. Landsskogtakseringen, 2007). 

2.2. Height-diameter data 

Single-tree height measurements of up to 25 years (1986 - 2011) were used in the study. Only 

data from undivided sample plots (one forest type, not intercepted by road, water body, 

agriculture field and so on) were used. The height of the sample trees in the NFI is measured 

using hypsometers such as Suunto or Vertex and recorded to the nearest 0.1 m. According to 

NFI field instruction, tree height is defined from the stump height to top. All living trees as 

defined in Landsskogtakseringen (2007) with measured pairs of height and DBH were used. 

For trees with broken tops, only height and DBH measurements up to this event were used. 

Due to the relascope sampling approach, larger trees had a higher probability of being 

included in the sample than smaller ones. More than one height tree was not available for a 

large number of sample plots in earlier NFI cycles (i.e., about 30% plots in1986 - 2004). 

Since 2004, the number of height sample trees was increased to at least 10 per plot in order to 

improve the estimation of volume increments from the inventories. During the 6th NFI cycle 

(1986 - 1993) all trees with DBH > 5 cm were measured within an inner circle of 100 m2 but 

only trees with DBH > 20 cm were measured outside this circle, but within a concentric circle 

of 250 m2. Most of the measured heights were thus from 100 m2 and only a few were 

measured for height outside the inner circle. We used data from this NFI cycle to validate the 
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height-diameter models developed with data from 7th - 10th NFI cycles (1994 - 2011). Sample 

plots with at least four height sample trees that were measured during at least two consecutive 

measurement occasions were used for model fitting. The height-diameter data used for model 

fitting and validation are shown in Figure 1. Since the main objective of this study was to 

develop height-diameter models that will be used for estimating missing heights on NFI 

sample plots, data from the 6th NFI cycle allow evaluating model precision for the intended 

use. The validation data covers most of ranges of height and DBH of the model fitting data. 

In both data sets, there are few observations available for above 35 cm DBH of downy birch 

and above 50 cm DBH of both Norway spruce and Scots pine. 

2.3. Stand variables 

Various stand variables that were available in the NFI data were tested as covariates in our 

height-diameter models. Dominant tree height defined as the average height of the 100 

thickest trees per hectare is not available for most of the sample plots and measurement 

occasions in the Norwegian NFI data (Sharma et al., 2011). Therefore, we used the measured 

height of the tallest tree per plot and measurement occasion as a proxy of dominant height 

(hdom) and its DBH (ddom) were used as covariates. Dominant height and dominant diameter 

have often been used as covariates in height-diameter models (e.g. Crecente-Campo et al., 

2010; Castedo-Dorado et al., 2005; 2006; Lei et al., 2009), but only a few studies (e.g. 

Sharma and Parton, 2007) have used a proxy for dominant height. In addition, we also 

calculated basal area (BA), number of stems (N) and quadratic mean diameter (qmd) using all 

living trees regardless of tree species at each measurement. These stand variables also 

describe the competitive situation of all trees in the stand, and have therefore frequently been 

used in height-diameter models (e.g. Calama & Montero, 2004; Sharma & Zhang, 2004; 

Newton & Amponsah, 2007; Adame et al., 2008; Schmidt et al., 2011). Additionally, we 

calculated the difference in DBH (dbhrange) between the thickest and the thinnest tree using 

all living trees regardless of tree species at each measurement occasion on each sample plot. 

Similarly, the difference between the tallest and the shortest tree heights (htrange) was 

calculated using all living trees regardless of tree species at each measurement occasion on 

each sample plot. Summary statistics of modelling data are presented in Table I.  

Both pure and mixed species sample plots are properly represented in both model fitting data 

and validation data. If at least one tree of another species was present on the plot, sample 
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plots were defined as mixed species plots. Mixed species sample plots may consist of various 

species, but mostly from three species: Norway spruce, Scots pine, and downy birch. Other 

species are Sitka spruce, Silver fir, contorta pine, larch, yew, silver birch, and some other 

broad-leaved species. Sample plots were assigned to a dominating species >70% standing 

volume is from the mixed species plots. In the model fitting data of Norway spruce, 780 plots 

were dominated by Norway spruce, 79 plots by Scots pine, and 46 plots by downy birch. Of 

the mixed species sample plot in the model fitting data of Scots pine, 523 plots were 

dominated by Scots pine, 32 plots by Norway spruce, and 10 plots by downy birch. Of the 

mixed species sample plot in the model fitting data of downy birch, 379 plots were dominated 

by downy birch, 112 plots by Norway spruce, and 118 plots by Scots pine. These statistics 

show that most of the model fitting data that came from mixed species stands are still 

dominated by focused species. However, for the model validation data, larger numbers of the 

mixed species plots were dominated by other than the focused species. Of the mixed species 

sample plot in the model validation data of Norway spruce, 469 plots were dominated by 

Norway spruce, 336 plots by Scots pine, and 158 plots by downy birch. Of the mixed species 

sample plot in the model validation data of Scots pine, 464 plots were dominated by Scots 

pine, 224 plots by Norway spruce, and 106 plots by downy birch. Of the mixed species 

sample plot in the model validation data of downy birch, 132 plots were dominated by downy 

birch, 406 plots by Norway spruce, and 269 plots by Scots pine.  

2.4. Selection of the base model  

The height-diameter curve increases faster for small DBH than for larger DBH (Lappi, 1997; 

Pretzsch, 2009; Schmidt et al., 2011). We considered this shape while selecting mathematical 

functions to model height-diameter relationships. For a preliminary investigation, we used a 

number of bi-parametric functions to fit to our height-diameter data and evaluated on the 

basis of fit statistics and residual variations. Only bi-parametric functions were tested to fit 

height-diameter data separately for each sample plot and measurement occasion in order to 

get parameter estimates for all cases. Among all models tested in our preliminary analyses, 

Näslund’s function (Näslund, 1936) with one parameter fixed (i.e., b3 = 3) was selected for 

further analyses. This function was also used in many earlier studies (e.g. Kangas & 

Maltamo, 2002; Nord-Larsen, 2006; Schmidt et al., 2011) to describe height-diameter data. 

This function is flexible enough to describe the height-diameter relationships. The base 

function in is given by 

6



jkt
jkt

jkt
jkt DBHbb

DBH
h

3

21

3.1         (1) 

where hjkt and DBHjkt are height and diameter measured in measurement occasion t (t = 

1,…,nk) on the tree k (k = 1,…., mj) for sample plot j (j = 1,…, m), respectively, b1 and b2 are 

parameters, and jkt is a residual. A value of 1.3 was added to avoid the prediction of zero 

height when DBH approaches zero.  

2.5. Selection of stand variables  

Species-specific data were used for fitting models. Since the base model (Eq. 1) only 

described a small part of variation in the height-diameter relationships for each species, we 

included stand variables as covariates in the model to describe larger parts of the variation. 

For this, first, the base model (Eq. 1) was fitted to the species-specific data for each sample 

plot and measurement occasion individually using the ordinary least square method. The 

parameter estimates of b1 and b2 were then plotted against each stand variable. Secondly, 

stand variables were selected on the basis of their relationships with parameters b1 and b2 

(Mehtatalo, 2004, 2005; Adame et al., 2008). Different combinations of stand variables and 

their transformations (square, logarithm, root, inverse) and interaction terms were also tested 

to improve the model fits. We identified those stand variables, which had significant 

relationships to parameters b1 or b2 of the base model (Eq. 1). We then generalized the base 

model redefining its parameters as a function of stand variables. Only five stand variables 

(hdom, ddom, N, qmd, and dbhrange) were significantly correlated to the parameters of the 

base model. We also tested a complex model that included all five variables as covariates, but 

our preliminary results did not show higher prediction accuracy than that of the model 

including only hdom and ddom. These two variables are more likely to be independent of 

thinning or any other cuttings than other stand variables, and have therefore frequently been 

used to model height-diameter relationships (e.g. Castedo-Dorado et al., 2005, 2006; 

Crecente-Campo et al., 2010).  

2.6. Mixed-effect models 

Our data have a hierarchical structure (measurement occasions within sample plot). The 

assumption of independent residuals does not hold and estimated parameters may be 

marginally biased or standard errors get inflated (Pinheiro & Bates, 2000; Fang & Bailey, 
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2001; Fox et al., 2001). We therefore, applied a mixed effects modelling approach to 

incorporate plot-level variations into the regression model. We also tried estimating models 

including both plot-level and measurement occasion-level random effects, but later random 

effects could not be estimated from our data. A single-level nonlinear mixed effects model in 

matrix form (Pinheiro and Bates, 2000, p. 307) is given by 

jjjj xfy ),( ,  j jRN ,0         (2) 

with jjjj uBbA ,  ju DN ,0  

where yj is a response for repeated height measurements on plot j, xj is a predictor for 

repeated DBH measurements on plot j, b is a (p × 1) vector of fixed parameters with design 

matrix Aj (where p is number of fixed parameters), uj is a (q × 1) vector of the plot-level 

random parameters (uj1 and uj2) and is assumed to have multivariate normal distribution with 

zero means and a variance-covariance matrix D (where q is number of mixed effects 

parameters). A vector uj, is assumed to be independent of residual vector j, and Bj is random 

effect design matrix for plot j. The vector of residuals jkt is defined by j N(0,Rj), where  Rj 

is a within-plot variance-covariance matrix of dimension nj × nj, that is given by  

2/12/12
jjjj GGR           (3) 

where 2 is a residual variance common to all sample plots, diagonal matrix Gj of dimension 

nj × nj whose elements describe residual variance heterogeneity, and matrix j of dimension nj 

× nj was reduced to the identity matrix, because there was no autocorrelations among the 

observations on sample plot j. 

Within-plot residual heteroskedasticity was taken into account by modelling variance as a 

function of the predicted height [i.e. 9.02 ˆ)var( jktj h ]. Thus, Gj in Eq. 3 is a diagonal matrix 

of nj × nj dimension, which contains 9.02 ˆ
jkth as diagonal elements (where hjkt is height of tree k 

on sample plot j measured in time t). We constructed the mixed effects models incorporating 

plot-level random effects as below. 

jkt
jktjj

jkt
jkt DBHubub

DBH
h

3

2211 )(
3.1 ;  j jRN ,0 ;  ju DN ,0   (4)  
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Hereafter, a mixed effects model with DBH only (Eq. 4) will be termed as basic mixed effects 

model and a model with DBH and other covariates (Eq. 5) termed as a generalized mixed 

effects model. If a random parameter vector uj is assumed zero in Eq. 4 - 5, models become 

the population average models. These models result in a larger prediction bias than ordinary 

least square (OLS) model (e.g. De-Miguel et al., 2012; Meng et al., 2009) as random parts or 

estimated variance-covariance components of mixed effects models are disregarded while 

predicting tree heights. Realizing this, we also fitted OLS models and presented in the paper.  

2.7. Parameter estimation and model evaluation 

The mixed effects models were estimated with maximum likelihood in SAS macro 

NLINMIX (SAS Institute Inc., 2008) using expansion- around-zero method (Littell et al., 

2006). Other model versions were estimated using PROC MODEL (SAS Institute Inc., 2008) 

with the ordinary least square method. The Akaike’s information criterion (AIC) (Akaike, 

1972) and Schwarz’s Bayesian information criterion (BIC) were used to compare the models. 

The estimated models were also evaluated for their residual variations using root mean 

squared error (RMSE) and adjusted coefficient of determination (R2
adj). Residuals graphs for 

the estimated models were thoroughly examined. Since our main interest of using the mixed 

effects modelling approach was for sample plot-level predictions, we evaluated height 

predications for the validation data using the following statistical measures (Huang et al., 

2009) k on sample plot j-level:  

j

n

k
jkjkj nhhe

j

1

ˆ           (6) 

100(%)
j

j

h
e

bias           (7) 

where jkh  and jkĥ are the observed and predicted heights for tree k on sample plot j, nj is 

number of observations for sample plot j, je is a mean prediction error for sample plot j, and 
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jh is the observed mean height for sample plot j. Prediction errors of the models and 

simulated height curves overlaid on the observed data for each sample plot were also 

examined.  

2.8. Prediction of random effects  

For application of the mixed effects model, prior information of the response variable (i.e., 

tree height) in Eq. 4 - 5 is needed. Measured heights of one or more trees per plot can be used 

to predict random effects parameters for plot j and adjust the population average model to the 

plot-specific conditions. The random effects parameters are predicted using the empirical best 

linear unbiased prediction (EBLUP) method (Vonesh & Chinchilli, 1997; Pinheiro & Bates, 

2000). A vector of random effects parameters in Eq.8 was predicted using PROC IML in 

SAS (SAS Institute Inc., 2008). 

jj
T
jj

T
j RDZZDZu 1 (8) 

 
where u is a vector of random effects parameters, containing plot-level random parameters 

for plot j and within plot variance-covariance matrix 2

2

2

21

21

1

uj

ujuj

ujuj

ujD where 2
uj and 

21ujuj are plot-level variance and covariance components of random effects (uj1 and uj2). The 

elements of Zj matrix are the partial derivatives of the nonlinear function (Eq. 4 - 5) with 

respect to its fixed parameters (e.g. Pinheiro & Bates, 2000, p. 311; Calama & Montero, 

2004), and it is defined by
b

ubDBHf
z jjkt

jkt

,, , where b is a fixed parameter vector, and uj 

is random parameter vector. In our case, zjkt was defined for tree k at measurement time t on 

the jth plot as  

 

4
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The matrix Zj has the dimension qnjm

k j ×
1

(i.e., number of its columns equal to the number 

of rows of the matrix D), where mj is number of trees for a plot j. The matrix Rj is a variance-

covariance matrix obtained from Eq. 3. The error vector j was obtained using the fixed part 

of the mixed effects models (Eq. 4 - 5).

We evaluated prediction errors of the mixed effects models only for the validation data using 

height measurement from differing numbers of trees that were selected either systematically 

or randomly to predict random effects by applying the EBLUP method (Eq. 8). The 

alternative methods to select height trees evaluated in our analyses were: randomly selected 

one to five height trees (alternative 1 to 5); one median height tree (alternative 6); one median 

height tree from each of two height classes (one class below the mean height and another 

above the mean height) (alternative 7); and all height trees (alternative 8). These all 

evaluations were made using data from only pure species sample plots. The best alternative 

identified was then subsequently used for further evaluations. We also tested whether 

measured heights of other than the focused species (species used for species-specific model) 

could be used to localize the models of the focused species. For this, we applied the Norway 

spruce model for prediction of random effects with measured heights of Scots pine (492 

plots), downy birch (462 plots), or other species (184 plots) and heights of Norway spruce 

were predicted. We also applied the Scots pine model for prediction of random effects with 

measured heights of Norway spruce (394 plots), downy birch (224 plots), or other species (95 

plots) and heights of Scots pine were predicted. Similarly, we applied the downy birch model 

for prediction of random effects with measured heights of Norway spruce (412 plots), Scots 

pine (269 plots), or other species (121 plots) and heights of downy birch was predicted.  

 

11



3. Results 

The parameter estimates and fit statistics of basic mixed effects model (Eq. 4) and 

generalized mixed effects model (Eq. 5) are presented in Table II and III, respectively. Fit 

statistics of their OLS versions are also listed there. All estimates of the fixed effects 

parameters and variance-covariance components of mixed effects models are significant (p< 

0.0001). For all three species, both mixed effects models and their OLS versions described 

height-diameter relationships well. However, both basic mixed effects model and its OLS 

version showed poorer fit statistics than a generalized mixed effects model and its OLS 

version. The hdom showed the biggest reduction of AIC for all three species as it was 

strongly correlated to parameter b2. Also ddom significantly contributed to the model 

improvements for all species. Inclusion of residual heteroskedasticity reduced AIC by 1% - 

3% (Table II - III). This reduction varied with models and tree species. Also, values of the 

fixed parameters of each model changed significantly through integration of random effects 

in into the models. Through mixed modelling, reduction of unexplained variances (i.e. mean 

square residual or 2) relative to OLS models varied with tree species and models, ranging 

from 44% to 85% (i.e. largest reduction with a basic mixed effects model for Scots pine and 

smallest reduction with a generalized mixed effects model for Scots pine). This indicated that 

mixed effects models were able to describe much larger part of variations in height-diameter 

relationships than their OLS versions. For each species, variances of uj1 of the basic mixed 

effects model and generalized mixed effects model are closely comparable. However, 

variance of uj2 of the basic mixed effects model is about three times larger than that for a 

generalized mixed effects model. This indicated that covariates used in the generalized mixed 

effects model significantly reduced the effects of sample plot variations.   

For all species, generalized mixed effects model showed smaller residual variations than 

basic mixed effects model (Table II - III). Using the validation data, we evaluated height 

prediction errors of generalized mixed effects models with various alternatives of tree 

selection methods for prediction of random effects (Figure 2). For all species, height 

prediction accuracy of the models increased with increasing number of height trees used to 

predict random effects. Height prediction accuracy of alternative 8 was higher as compared to 

all other alternatives. Hereafter, alternative 8 was chosen for evaluations of models. For all 

species, height prediction bias of a generalized mixed effects model occurred within ± 5% 

range for > 95% sample plots (out of 1588 spruce plots or 1709 pine plots or 924 birch plots). 

However, a basic mixed effects model showed significantly larger bias in the predicted 
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heights for a number of sample plots (Figure 3). As compared to the generalized mixed 

effects model, the basic mixed effects models also have a tendency to larger over-prediction. 

 

For the validation data, a generalized mixed effects model did not show substantial bias for 

pure stands, where all measured heights of the focused species were used to predict random 

effects (Figure 4, left panels). In general, this model with random effects predicted from the 

focused species did not show substantial biases for mixed species stands also (Figure 4, right 

panels). However, for small DBH ranges (< 15 cm) of Norway spruce and Scots pine and 

across all DBH ranges of downy birch, there is very small bias. For mixed stands, height 

prediction bias of a generalized mixed effects model occurred within ± 5% range for Norway 

spruce on 94% sample plots (out of 990 plots), for Scots pine on 96% sample plots (out of 

794 plots) and for downy birch on 85% sample plots (out of 807 plots). For both pure and 

mixed stands, as indicated by height of the boxes of the prediction errors in both panels of 

this figure, most of the prediction errors of the focused species are falling within a range of ± 

2 m. However, larger errors occurred for some samples plots, where two or more layers of 

height sample trees exist, and where their height ranges were large. When measured heights 

of other than focused species were used to predict random effects, height predictions for 

focused species were substantially biased for most of DBH ranges (Figure 5). As compared to 

generalized mixed effects model, its OLS version only showed a little improvement in height 

prediction accuracy (Figure 6) for the same sample plots as used in Figure 5. As expected, for 

both pure and mixed stands, where measured height of the focused species was used for 

prediction of random effects, a generalized mixed effects model showed significantly higher 

prediction accuracy than its OLS version (data not shown).      

The height-diameter relationship varies with hdom and ddom, and this variation is also 

affected by sample plot-level effects even for the same hdom and ddom. To illustrate this, we 

selected few sample plots in the validation data, where similar hdom and ddom existed, and 

used all measured heights of Norway spruce to predict random effects. We then generated 

height curves using the generalized mixed effects model (Figure 7) for the observed data 

range on the plot. Variation of height-diameter relationships with random effects for observed 

hdom and ddom shows the generalized mixed effects model’s flexibility.  
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4. Discussion 

The height-diameter data used in this study have large variation (Figure 1, Table 1), and 

cover most of the growth conditions and silvicultural treatments across Norway. Even though 

Näslund’s function has been reported to work well for even-aged and single-layered stands 

(cited in Pretzsch, 2009, p. 187), it has also been shown to work adequately for multi-layered 

forests after the base function (Eq. 1) was generalized through inclusion of stand variables 

and random effects (e.g. Kangas & Maltamo, 2002; Schmidt et al., 2011). A large value of 

estimated variance of random parameter uj1 (Table II - III) indicates that the parameter b1 of 

mixed models (Eq. 4 - 5) highly varies across the sample plots. This justifies the use of plot-

level mixed effects models.  

Mixed effects height-diameter models can best predict the missing heights on the sample 

plots (Robinson & Wykoff, 2004), but large errors still remain to be accounted for. The main 

cause of large prediction errors is due to outlier observations. The prediction accuracy of the 

mixed effects model for each individual tree depends highly on the vertical heterogeneity of 

stands and numbers of height trees to be selected for prediction of random effects. Measured 

heights of any number of trees can be used to predict random effects by EBLUP method. But 

height prediction accuracy of the model largely depends on the representativeness of the 

chosen trees. The higher the number of trees used to predict random effect parameters, the 

higher is the height prediction accuracy. In our data, only one measured height is available 

for about one-third of the total sample plots inventoried in first three NFI cycles. If the 

vertical structure of the stand is homogenous, one measured height tree may work well (e.g. 

Trincado et al., 2007), otherwise height predictions may be biased. Except for Norway 

spruce, one or two median-sized trees (alternative 6 or 7) can also work well (Figure 2). For 

smallest height prediction bias, alternative 8 is obviously the best choice. Median-sized 

height trees are also reported to have significantly reduced the prediction bias in other studies 

as well (e.g. Crecente-Campo et al., 2010).  

For mixed stands, where measured heights of the focused species are not available, either 

generalized OLS model or generalized mixed effects model with random effects predicted 

from the measured heights of other than the focused species need to be used. However, none 

of the models would be precise for all species (Figure 5 - 6). In general, a generalized OLS 

model outperforms its mixed effects version for all three stand conditions assumed. Using 

generalized OLS model is more logical than generalized mixed effects model for the stands, 
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where measured height of the focused species is not available for prediction of random 

effects. The prediction errors for a different species than modelled one may be large, and 

therefore causes biased estimation of random effects in EBLUP (Eq. 8). Large height 

prediction bias for mixed species sample plots is due to layering among the tree species. 

Also, OLS models for both pure and mixed stands did not account for sample plot-level 

effects that are large in the data (Figure 7). Not only for pure stands, but also for mixed 

species stands, where measured height of the focused species is available for prediction of 

random effects, a generalized mixed effects model can be more accurate than generalized 

OLS model for height prediction. Therefore, wherever possible, only the focused species 

should be used to localize height-diameter models. For the conditions, when model users are 

not able to predict random effects or measured heights are not available for random effects 

prediction, application of the OLS model is more appropriate than population average model 

or only fixed parts of the mixed effects model (e.g. De-Miguel et al., 2012; Meng et al., 

2009). However, access to computational facilities will make the application of mixed effetcs 

model much easier. For other species (except Norway spruce, Scots pine and downy birch) no 

test was perfomed for whether models were adeqaute for their height predcitons.  

The height-diameter relationship varies with development stages over time in a stand. This is 

due to stand density effects (Curtis, 1967; Zeide & Curtis, 2002). To reduce height prediction 

errors, one or more stand variables (e.g. N, BA, qmd, hdom, and ddom) need be used to 

generalize the height-diameter models (Sharma & Zhang, 2004; Temesgen & Gadow, 2004; 

Castedo-Dorado  et al., 2006; Lei et al., 2009). However, some stand variables are affected by 

thinning. Since thinning in Norway is mostly from below, using hdom and ddom as covariates 

is much more appropriate than other stand variables. Generally, height of dominant trees 

represents stand development stage, and has therefore frequently been used as covariate in 

height-diameter models (e.g. Calama & Montero, 2004; Castedo-Dorado et al., 2006; Sharma 

& Parton, 2007; Adame et al., 2008; Crecente-Campo et al., 2010; Paulo et al., 2011).  

To conclude, a generalized mixed effects model predicted heights without substantial bias for 

all three species (Norway spruce, Scots pine and downy birch) not only for pure stands, but 

also for mixed stands, where measured heights of focused species are available for prediction 

of random effects. This model can be applied to estimate missing heights for NFI sample 

plots or other sample plots, where measured heights are available. Even though bias for 

certain DBH ranges is substantial, a generalized OLS model may be applicable for mixed 
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stands, where measured heights of the focused species are not available for the application of 

mixed effects model.  
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Table II.  Parameter estimates, variance and covariance components, and fit statistics of a 

basic mixed effects model and its OLS version (Eq. 4).  

 
OLS = ordinary least square, other abbreviations are defined in the text. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 
Components 
 

Parameter estimates and fit statistics 

Norway spruce Scots pine Downy birch 
OLS 
model 

Mixed 
model 

OLS 
model 

Mixed 
model 

OLS 
model 

Mixed 
model 

Fixed        
b1 2.2131 1.877 2.2845 1.5007 1.649 1.1962 
b2 0.3046 0.3276 0.3318 0.3747 0.373 0.4171 
       
Variance  
& covariance 

      

2
uj1  0.286  0.4334  0.2481 

uj1uj2  -0.00858  -0.00729  -0.01575 
2
uj2  0.000942  0.001891  0.002974 

2 0.7245 0.1905 1.2293 0.1784 0.6242 0.1568 
       
Fit statistics        
RMSE 3.1155 1.4197 3.7536 2.2286 2.2575 1.556 
R2adj 0.7023 0.9382 0.4704 0.8133 0.5131 0.7686 
AIC 118472.5 93414.8 95221.1 67273 59705.4 45283.7 
BIC 118496.8 93447 95244.5 67303.6 59728.1 45313.5 

 
Reduction of AIC due to inclusion 
of heteroskedasticity (%) 2 1.5 1.5 1.2 1.6 1.6 
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Table III. Parameter estimates, variance and covariance components, and fit statistics of a 

generalized mixed effects model (Eq. 5) and its OLS version  

 
OLS = ordinary least square, other abbreviations are defined in the text. 

  

 
 
Components 
 

Parameter estimates and fit statistics 

Norway spruce Scots pine Downy birch 
OLS 
model 

Mixed 
model 

OLS 
model 

Mixed 
model 

OLS 
model 

Mixed 
model 

Fixed        
b1 1.6351 1.6974 1.3239 1.3872 1.1684 1.1444 
a1 1.0347 0.8523 1.2882 1.0265 1.0556 0.8154 
a2 -0.9592 -0.7339 -1.0580 -0.794 -0.9761 -0.6248 
a3 0.0148 0.007824 0.01442 0.005987 0.02121 0.00928 
       
Variance & covariance       

2
uj1  0.2858  0.4169  0.2129 

uj1uj2  -0.00849  -0.01249  -0.01169 
2
uj2  0.000317  0.000471  0.00107 

2 0.2924 0.1518 0.2919 0.1624 0.2976 0.1481 
       
Fit statistics        
RMSE 1.8348 1.1799 1.76066 1.1505 1.5529 0.9533 
R2adj 0.8967 0.9573 0.8835 0.9502 0.7695 0.9132 
AIC 96185.9 85751.8 68755 62268.9 49125.3 42948.8 
BIC 96226.4 85794.8 68794 62309.8 49163.1 42988.5 

 
Reduction of AIC due to inclusion 
of heteroskedasticity (%) 0.9 2 1.5 2.3 3 3 
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Figure 1. Height-diameter data: model fitting data (grey dots) and validation data (black 

dots).  

  

26



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Prediction statistics of a generalized mixed effects model (Eq. 5) for various 

methods to select sample trees when predicting random effects using validation data (treespec 

=1: Norway spruce, 10: Scots pine, 30: downy birch).  
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Figure 3. Bias of a basic mixed effetcs model (Eq. 4) and generalized mixed effetcs model 

(Eq. 5) for validation data, where random effetcs were estimated using all measured heights 

of the focused species on pure species sample plots in the validation data.  
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Figure 4. Height prediction errors of a generalized mixed effects model (Eq. 5) for pure 

stands (left panels) and mixed stands (right panels) in the validation data. All measured 

heights of the focused species were used for prediction of random effects. The number of 

sample plots used here is given in Table 1. The length of the box represents the interquartile 

range (IQR), length of the whisker represents class minimum and maximum values in IQR, 

and small boxes represent observations lying beyond 1.5 times IQR.  
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Figure 5. Height prediction errors of a generalized mixed effects model (Eq. 5) for mixed 

stands of the validation data, where other than the focused species were used for prediction of 

random effects. Height prediction errors of Norway spruce with random effects estimated 

from Scots pine, downy birch and other species, respectively (first row). Height prediction 

errors of Scots pine with random effects estimated from Norway spruce, downy birch and 

other species, respectively (second row). Height prediction errors of downy birch with 

random effects estimated from Norway spruce, Scots pine and other species, respectively 

(third row). Definitions of box-plots and whiskers are the same as in Figure 4. 
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Figure 6. Height prediction errors of a generalized OLS model for mixed species plots of the 

validation data, where focused species are not available and various species composition exist 

[Norway spruce - Scots pine, Norway spruce - downy birch, and Norway spruce - other 

species, respectively (first row); Scots pine - Norway spruce, Scots pine - downy birch, and 

Scots pine -other species, respectively (second row), downy birch -Norway spruce, downy 

birch- Scots pine, and downy birch - other species, respectively (third row)]. The sample 

plots used in each case are the same as in Figure 5. Definitions of box-plots and whiskers are 

the same as in Figure 4. 
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Figure 7. Predicted height-diameter curves of a generalized mixed effects model (Eq. 5) for 

Norway spruce for the sample plots, where similar hdom and ddom existed, and observed 

hdom and ddom and predicted random effects for such plots were used to generate the curves 

(hdom classes represent hdom < 12.5, 12.5 - 17.5, 17.5 - 22.5, 22.5 - 27.5, and > 27.7, 

respectively)  
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