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Abstract 

Dry tropical forests, such as the miombo woodlands, play an important role in the global 

carbon budget as well as in contributing towards the sustainable development of countries 

such as Malawi. To ensure sustainability of these forests, availability of models and methods 

for assisting forest managers in quantifying volume and biomass are indispensable. This 

thesis therefore sought to develop volume and biomass prediction models as well as to test 

the potential of applying unmanned aerial vehicles (UAVs) in biomass prediction and 

estimation in miombo woodlands. In Paper 1 and 2, we developed models for predicting tree 

sectional (twigs, merchantable stem and branches) volume and biomass, total tree volume as 

well as tree above-and belowground biomass. The performances and evaluations suggested 

that the models can be used over a wide range of geographical and ecological conditions in 

Malawi with an appropriate accuracy in predictions. Application of UAVs for biomass 

prediction and estimation were tested and the results are presented in Papers 3 and 4. In Paper 

3, we tested methods to derive digital terrain models (DTMs) while Paper 4 focused on the 

assessment of the efficiency of UAV-assisted inventories as well as the influence of sample 

plot sizes and number of sample plots on the precision of biomass estimates. The results, 

presented in Paper 3, show that among the tested DTMs, the model developed from 

unsupervised ground filtering based on a grid search approach performed best. Furthermore, 

the observed prediction errors for the biomass predictions are similar to results from previous 

studies using airborne laser scanning (ALS) data, thus showing the potential of applying this 

technology in miombo woodlands. Finally, Paper 4 demonstrated that UAV-assisted 

inventories produce more precise estimates compared to those based on purely field-based 

inventories. The results also indicated that large sample plot sizes and sample sizes favour 

UAV-assisted inventories and that UAV-assisted inventories are more efficient than purely 

field-based inventories. The developed models and the results from the tested methods 

presented in the thesis have taken us some steps forward that are expected to support and 

improve forest management decision-making in general as well as the implementation of a 

REDD+ MRV system covering the miombo woodlands of Malawi. 
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1.0 Introduction 

Dry tropical forests cover central and south America, Africa, India, south-east Asia and 

northern Australia (Miles et al. 2006). In southern Africa, dry forests are mainly dominated 

by miombo woodlands. These woodlands were estimated to cover an area of approximately 

2.7 million km2 (Frost 1996), but this area is most likely lower today due to deforestation and 

forest degradation. Miombo woodlands are presently spanning 11 countries in Africa, 

including Malawi (Chidumayo & Gumbo 2010; Ryan et al. 2011). The miombo ecoregion 

occurs in a climate with a dry season of three months or more and has mean annual 

precipitations and temperatures of 710 – 1365 mm and 18.0 – 23.1°C, respectively (Frost 

1996). Unlike other African savannas and woodlands, miombo woodlands are dominated by 

three key deciduous tree species belonging to the family Fabaceae, subfamily 

Caesalpinioideae in the genera Brachystegia, Julbernadia and Isoberlinia (Frost 1996; Ryan 

et al. 2011). A similar tree species composition is found in the miombo woodlands of Malawi 

(Mwase et al. 2007).  

 

Miombo woodlands are multi-species and multi-layered and are regenerated through 

coppicing as well as seed dispersal. Structurally, the canopy of miombo woodlands is 

dominated by trees that are umbrella-shaped whose heights usually range from 14 to 18 m. 

The sub-canopy is composed of a highly variable scattered layer of shrubs, suppressed 

saplings of canopy layer trees, grasses and sedges (Abbot et al. 1997; Frost 1996). Tree forms 

in these woodlands vary from small, multi-stemmed trees to tall single-stemmed trees with 

straight boles (Abbot et al. 1997). Fires occur frequently in miombo woodlands both in time 

and space (e.g. Tarimo et al. 2015). Fires are regarded essential to the structure and stability 

of miombo woodlands (Frost 1996), and the biomass may be reduced substantially if the fire 

frequency is high (Ryan & Williams 2011). Some tree species have a thick bark to protect 

them from fires (Frost 1996). 

 

In miombo woodlands, tree species richness and densities vary widely with location, i.e. 

ranging between 70 and 300 species, and up to 4100 stems ha-1 depending on rainfall and 

anthropogenic factors (Abbot et al. 1997; Dewees et al. 2011; Frost 1996; Furley et al. 2008; 

Giliba et al. 2011; Malimbwi et al. 2016; Williams et al. 2008). In Malawi, the number of tree 

species is estimated to exceed 130 with tree densities ranging from about 260 to 1640 stems 

ha-1 (Government of Malawi 2012).  
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Miombo woodlands provide a wide variety of food and ecosystem services to millions of 

people in the region including fruits, bush meat, edible insects, beeswax, honey, traditional 

medicines, biodiversity and watershed conservation (Abbot & Homewood 1999; Blackie et 

al. 2014; Chidumayo & Gumbo 2010; Kajembe et al. 2015; Luoga et al. 2005; Mwase et al. 

2007; Ryan et al. 2016). In Malawi, the woodlands constitute 92% of the country’s total 

forest area (Government of Malawi 2010; Government of Malawi 2012). The Malawi 

government recognizes the role the woodlands play towards achieving sustainable 

development for the country. However, increases in population growth has led to high 

demand for firewood, charcoal and timber products leading to deforestation, currently 

estimated at 1% per annum (Government of Malawi 2001; Government of Malawi 2010).  

 

Dry tropical forests, including miombo woodlands, are currently the least studied compared 

to wet tropical forests despite their significant contribution to the global carbon budget and to 

livelihoods of a lot of people (e.g. Dirzo et al. 2011). In recognition of the importance of 

forests, including the dry tropical forests, the global community, through the United Nations 

Framework Convention on Climate Change (UNFCCC), established the Reducing Emissions 

from Deforestation and Forest Degradation, plus forest conservation, sustainable 

management of forest and enhancement of carbon stocks (REDD+) mechanism (Barquín et 

al. 2014; Goetz et al. 2015; UNFCCC 2014). This mechanism has given a financial incentive 

to developing countries in their efforts to reduce deforestation and forest degradation through 

increased forest conservation and implementation of sustainable forest management. The 

payment scheme for REDD+ is based on reported national level carbon stock estimates to the 

UNFCCC (Goetz et al. 2015). To implement REDD+, each participating country is therefore 

expected to have a credible forest monitoring system that supports the functions of 

monitoring, reporting and verification (MRV) of forest carbon stocks at a national scale 

(Gizachew & Duguma 2016). The system is thus expected to establish a national baseline 

carbon stock estimate as well as changes of carbon stocks over time (Goetz et al. 2015). 

 

Currently, Malawi is in the preparatory phase of implementing REDD+. The first step in this 

phase has involved establishing legal and institutional frameworks. In 2012, the government 

released a draft version of the national climate change policy to support all climate change 

related programs in the country. In the same year, the government also launched the Malawi 

REDD+ program aiming for streamlining the process of operationalizing REDD+ 
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(Government of Malawi 2015). Through the program, the Forestry Institute of Malawi 

(FRIM) was mandated with the development of a national forest carbon MRV system.  

 

A fully functional national forest carbon MRV system for REDD+ implementation in Malawi 

shall require establishment of a data collection and management system comprising three 

pillars, namely: a) a remote sensing based land monitoring system for collecting and 

assessing activity data related to forest cover changes over time (Goetz et al. 2015; UNFCCC 

2014), b) conducting national forest inventories (NFIs) for quantifying carbon stock changes 

and c) a data analysis and reporting system for production of reports to the UNFCCC. Among 

these pillars, NFIs form a critical component since they are directly linked with carbon stock 

changes, which is a key component of the REDD+ payment system (Gizachew & Duguma 

2016; Goetz et al. 2015). NFIs rely on the utilisation of both reliable biomass/volume models 

and state of the art remote sensing techniques. Currently, reliable biomass and volume 

models are lacking and modern remote sensing techniques for volume or biomass prediction 

and estimation are yet to be tested for application in REDD+ in Malawi. So far, through 

funding from a number of multi-and bilateral donors, including Food and Agriculture 

Organization (FAO), United States Agency for International Development (USAID), Japan 

International Cooperation Agency (JICA) and World Bank, national land use and land cover 

maps have been developed for benchmarking land use and land use change in the forests of 

Malawi. However, a fully functional national forest carbon MRV system is yet to be 

established.  

 

Apart from the anticipated financial benefits from carbon credits, the Malawi government 

considers REDD+ as an opportunity for instituting sustainable forest management in the 

country. Currently, the management of miombo woodlands is suffering from lack of reliable 

models and methods that may support forest managers in decision-making. The existence of 

such models and methods is instrumental in the efforts to accomplish a sustainable 

management of these resources. 
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2.0 Objectives 

The main objective of this thesis was to develop models and methods for predicting and 

estimating volume and biomass of miombo woodlands in Malawi. The models and methods 

developed are based on both field and remotely sensed data and are expected to support forest 

management decision-making in general as well as the implementation of a REDD+ MRV 

system in the country. The following specific sub-objectives were addressed in four different 

papers;  

 

a) Develop general (multiple tree species from several sites) models for volume 

prediction in miombo woodlands (Paper 1); 

b) Develop general (multiple tree species from several sites) models for biomass 

prediction in miombo woodlands (Paper 2); 

c) Explore the possibility of using UAVs in biomass prediction in miombo woodlands 

(Paper 3); 

d) Assess the efficiency of UAV-assisted inventories as well as the influence of sample 

plot size and sample size on error estimates in biomass estimation in miombo 

woodlands (Paper 4). 
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3.0 Conceptual framework 

Forest volume and biomass estimates are basic information needed generally for forest 

management decision-making as well as when implementing a REDD+ MRV system. A 

conceptual framework for estimation of volume and above- and belowground biomass for 

forest areas is presented in Figure 1.  

 

When employing field-based methods for volume or biomass estimation, sample plot 

inventories are first conducted, and subsequently, individual tree volume or above- and 

belowground biomass models, if readily available, are applied. In cases where reliable 

individual tree models are lacking, they can be developed. The process of developing the 

models involves conducting sample plot inventories to guide the selection of representative 

trees for destructive sampling. The destructive sampled tree data are then used to develop 

individual tree volume or above-and belowground biomass models, which can finally be used 

for forest area volume or above-and belowground biomass estimation. 

 

In cases where remote sensing is the main method applied for estimating forest area volume 

or biomass, remotely sensed data can be collected using different sensors mounted on 

different platforms. Application of imagery captured from UAVs is an example of a method 

that has recently gained ground in forestry. In addition to the remote sensing based data 

(processed UAV images), sample plot inventory data are also needed. The processed UAV 

images, sample plot inventory data and individual tree aboveground biomass models 

(alternatively individual tree volume models) are then used to develop area-based models that 

can finally be used to estimate forest area aboveground biomass (or forest area volume). 
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4.0 Background 

4.1 Volume models 

Availability of volume models is regarded as a basic prerequisite for implementation of 

sustainable forest management. Volume models are important for establishing current 

growing stock of forests, timber valuation, selection of forest areas in harvest scheduling, 

growth and yield studies and as a basis for estimation of biomass and carbon stocks. 

Furthermore, the government of Malawi uses a licensing system that permits the issuance of 

permits to individuals for accessing timber in public forests. In this context, merchantable 

stem volume models are required. Merchantable stem volume models may also be useful in 

cases where compensation payments to tree/forest owners are required when trees are being 

cleared for infrastructure development, such as roads, railways and buildings. Branch volume 

models can be used as tools for assessing wood quantities related to brick burning as well as 

in the production of domestic fuelwood, charcoal and construction poles.  

 

A review by Henry et al. (2011) showed that many models for predicting tree volume in 

miombo woodlands have been developed previously. Most of these models were developed 

in miombo woodlands located in neighbouring countries like Tanzania (Chamshama et al. 

2004; Malimbwi et al. 1994; Mauya et al. 2014; Mwakalukwa et al. 2014), Zambia 

(Chidumayo 1988) and Mozambique (Mate 2014). Due to high biogeographical variability in 

the miombo ecoregion, there is a need for developing models that can be applied locally. The 

only existing tree volume models for miombo woodlands in Malawi were developed by 

Abbot et al. (1997). However, application of these models is limited due several reasons 

regarding the data used for model calibration: a) narrow geographical ranges of study sites, 

(b) relatively small ranges of diameter at breast height and (c) relatively few tree species.  

 

The main objective of Paper 1 was therefore to develop general total tree volume models, as 

well as general tree sectional models for branches and merchantable stems, applicable across 

the entire distribution of miombo woodlands in Malawi. 

 

4.2 Biomass models  

Estimation of biomass is the first step towards calculation of carbon stocks in forest 

ecosystems. Due to the natural capacity of trees to sequester carbon dioxide, miombo 

woodlands are considered an important element in global climate change mitigation programs 

such as REDD+. Establishment of credible national MRV systems for REDD+ 
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implementation requires estimation of biomass using either field or remote sensing-based 

methods. Both these methods rely on the availability of reliable biomass models. 

 

Biomass can be estimated using either direct or indirect methods. Direct methods involve

harvesting all trees in a known area and measuring the oven dry weight of the different 

components of the harvested trees such as the stem, leaves, roots and branches. Although this 

method determines biomass accurately for a particular area, it is time and resource 

consuming, strenuous, destructive, expensive and not feasible for large scale analysis 

(Vashum & Jayakumar 2012). On the other hand, indirect methods involve applying 

individual tree models for predicting biomass, or expansion factors and/or root to shoot ratios 

(Brown 2002). Application of individual tree models is now the most widely used method in 

forest biomass estimation.  

 

By 2011 there were approximately 370 models for predicting tree biomass in sub-Saharan 

Africa (Henry et al. 2011). The majority of these models were developed for tropical 

rainforests in western Africa. Among the reviewed models, and those developed after the 

review in south-eastern Africa, only a few were developed for miombo woodlands 

(Chamshama et al. 2004; Chidumayo 2014; Kuyah et al. 2016; Malimbwi et al. 1994; Mate et 

al. 2014; Mugasha et al. 2013; Mwakalukwa et al. 2014; Ryan et al. 2011). Among these, the 

models developed by Kuyah et al. (2016) are the only ones based on data from Malawi. 

However, these models are also limited for the same reasons limiting existing volume models 

(narrow geographical ranges, relatively small ranges of diameters and relatively few tree 

species). The models developed by Kuyah et al. (2016) were also developed using miombo 

trees from outside forests, hence limiting their applicability in the REDD+ mechanism which 

is currently targeting trees in forest reserves.  

 

Furthermore, most of the described models for miombo woodlands focused on aboveground 

biomass only. However, estimation of belowground biomass is also vital. Existing 

belowground biomass models for miombo woodlands in neighbouring countries were 

developed by Mugasha et al. (2013), Chidumayo (2014) and Ryan et al. (2011). For Malawi, 

however, no belowground biomass models exist.  

 

The main objective of Paper 2 was therefore to develop general above- and belowground 

biomass models applicable across the entire distribution of miombo woodlands in Malawi. 
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The models were also accompanied with information on their covariance structure to enable 

quantification of model-related uncertainties in biomass and carbon estimation. 

 

4.3 Application of UAVs in biomass prediction 

Remote sensing methods can be used to collect data for estimating forest volume or 

aboveground biomass. Prediction of these attributes using this approach involve conducting 

sample plot forest inventories based on a relatively small number of sample plots to 

determine field reference biomass. The field reference biomass is then regressed with metrics 

derived from remotely sensed data for the respective sample plots. The developed models are 

finally used to predict volume or biomass for the entire study area. For forestry applications, 

remotely sensed data is mainly sourced from three main systems, namely, airborne laser 

scanning, radio detection and ranging (e.g. synthetic aperture radar) and optical (e.g. satellite 

and aerial images) (Kumar et al. 2015). Currently, application of UAVs for predicting volume 

or aboveground biomass is slowly gaining ground due to UAVs ability to acquire high quality 

3D data on forests at relatively low costs (Dandois & Ellis 2013; Getzin et al. 2012; Puliti et 

al. 2015; Tang & Shao 2015). Furthermore, the availability of user-friendly image processing 

software has made the application of the technology attractive (Dandois & Ellis 2013; Puliti 

et al. 2015). Application of this technology to potential REDD+ projects in Malawi could be 

an attractive option since the sizes of approximately 50% of potential project areas are ideal 

for efficient application of UAVs in biomass prediction (see Puliti et al. 2015). However, the 

application of this newly developed technology for biomass prediction in the miombo 

woodlands of Malawi still needs to be tested.  

 

Successful prediction of forest attributes using remotely sensed data is dependent on the 

availability of a reliable digital terrain model for correct estimation of ground elevation for 

the study area. Images collected by UAVs may not be suitable for generating reliable digital 

terrain models since it is mainly concentrated in the top of the forest canopy. Reliable digital 

terrain models are usually generated from airborne laser scanning data. However, due to the 

high costs associated with acquiring such data, it is imperative for researchers utilizing UAVs 

in developing countries to strive to search for relatively accurate, but also cost efficient 

digital terrain model generating approaches. 

 

The main objective of Paper 3 was therefore to evaluate the application of photogrammetric 

point cloud data generated from UAV acquired images in aboveground biomass prediction 
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for miombo woodlands. Digital terrain models generated from the photogrammetric point 

cloud based on different methods and parameter settings were also compared. 

 

4.4 Influence of plot and sample size on UAV-assisted biomass estimates 

Data from field-based probability sample plot inventories are important for estimating forest 

biomass/volume during UAV-assisted inventories as they reportedly improve the estimates 

(Næsset et al. 2011). Determination of field plot size is an important design decision when 

planning field-based probability sample inventories. In estimation based on field-based 

probability sample data combined with auxiliary data from remote sensing i.e. design-based 

and model-assisted inferential framework, an appropriate geographical correspondence 

between plots on the ground and the remotely sensed data is paramount. An increased sample 

plot size can reduce the effects of errors arising from co-registration problems (Frazer et al. 

2011). Larger plots will also tend to reduce the plot boundary effects (McRoberts et al. 2014). 

 

Several authors have studied the effect of sample plot size on biomass estimates and other 

forest attributes in inventories assisted by remotely sensed data in tropical wet forests (Asner 

et al. 2009; Hansen et al. 2015; Keller et al. 2001; Mascaro et al. 2011; Mauya et al. 2015b; 

Saatchi et al. 2011), temperate forests (Frazer et al. 2011; Levick et al. 2016), boreal forests 

(Gobakken & Næsset 2008; Næsset et al. 2015) among others. Apart from sample plot size, 

sample size, i.e. the number of sample plots employed during an inventory, will also have a 

large effect on the efficiency of biomass estimates and the associated total inventory costs (Eid 

et al. 2004; Gobakken & Næsset 2008; Strunk et al. 2012). 

 

To the best of our knowledge, no studies on the influence of sample plot size and sample size 

on efficiency of biomass estimates (or other forest attributes) have been done in UAV-

assisted sample plot inventories, i.e. using design-based and model-assisted inferential 

framework in miombo woodlands. The main objective of Paper 4 was therefore to assess the 

efficiency of using a UAV-assisted estimation of biomass in a case study in miombo 

woodlands of Malawi based on different sample sizes and sample plot sizes.  
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5.0 Materials and methods 

5.1 Study sites 

Figure 2 presents the location of the study sites. The sample trees for the development of 

volume and biomass models in Papers 1 and 2 were selected from four forest reserves, 

namely Mtangatanga (northern Malawi), Kongwe (central Malawi), Mua-livulezi (central 

Malawi) and Tsamba (southern Malawi). The selection of sites was based on geographical 

location and climatic conditions to capture a wide range of factors influencing tree growth. 

Data for Papers 3 and 4 was collected from Muyobe community forest reserve in the northern 

Malawi.  

 

 

Figure 2. Map of Malawi showing the location of the study sites. 
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5.2 Data collection 

a) Sample plot inventory data 

Sample plot field inventory data was required for all the four papers. For Papers 1 and 2 the 

inventories were conducted on systematically distributed 0.04 ha circular plots. The 

inventories covered a total of 221 plots with 70, 30, 71 and 50 plots for Mtangatanga, 

Kongwe, Mua-livulezi and Tsamba, respectively. On each plot, all trees with diameters at 

breast height > 4 cm were identified and had their diameters at breast height measured. In 

addition, we sampled three trees within each plot (with the smallest, medium and largest 

diameters at breast height), and measured their total height using a Vertex hypsometer. In 

total, for all the study sites, we identified 139 tree species. The sample plot inventory data 

was then used for selection of sample trees that were destructively sampled. 

 

For Papers 3 and 4, the inventory was conducted on 107 systematically distributed probability 

sample plots which were circular (radius = 17.84 m, 0.1 ha each). On each plot, the following 

tree variables were recorded: Total horizontal distances from the plot centres to each tree 

(using a Haglöf vertex hypsometer), diameter at breast height (using a caliper or a diameter 

tape) and scientific name of all trees  5 cm. The total horizontal distances from the plot 

centres to each tree were calculated as the sum of the horizontal distance to the front of each 

tree and half of the tree’s diameter at breast height. These distances were subsequently used 

to subset the sample plot data into different sizes, i.e. 250, 500, 750 and 1000 m2, for further 

analysis.  

 

In order to assess the effect of sample size on precision of biomass estimates we considered 

three different systematic samples of different sizes, i.e., the full sample of 107 plots, one 

sample with half the size (54 plots) in which every second plot was excluded, and finally one 

sample of one third of the full size (36 plots) in which every third plot was retained. In total 

12 datasets (i.e. four sample plot sizes × three sets of sample sizes) were created and used for 

the analyses. 

 

Furthermore, total tree height of up to 10 randomly selected sample trees within each plot 

were measured using a Haglöf vertex hypsometer. Precise registration of the positions of 

centres for sample plots is very important in remote sensing-assisted forest inventories. In this 

study, positions of the plot centres were measured with a differential Global Navigation 

Satellite Systems (dGNSS) unit. The dGNSS unit is comprised of two Topcon legacy- E +40 
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dual frequency receivers. One of the receivers was used as a base station unit and the other as 

a rover field unit. The receivers observe pseudo-range and carrier phase of both the Global 

Positioning System (GPS) and the Global Navigation Satellite System (GLONASS). During 

the study, the baseline between the base station and rover units was approximately 25 km. 

The position of the base station was determined using Precise Point Positioning (PPP) with 

GPS and GLONASS data collected continuously for 24 hours as suggested by Kouba (2015) 

before commencement of the forest inventory. The rover field unit was placed at the centre of 

each sample plot on a 2.98 m rod for an average of 33±20 minutes using a one-second 

logging rate. The recorded plot centre coordinates were post-processed using the RTKLIB 

software (Takasu 2009) and the results revealed that the maximum deviations for northing, 

easting and height were 1.16 cm, 3.02 cm and 3.06 cm, respectively. 

 

b) Destructively sampled tree data 

For development of above- and belowground biomass models, as well as volume models in 

Papers 1 and 2, a total of 74 trees were selected based on the observed diameters at breast 

height and tree species frequency within the sites. We ensured that the trees were selected 

from all diameter at breast height classes observed in the sample plot inventories. In addition, 

we selected a total of eight trees with larger diameter at breast height than those observed in 

the sample plot inventories to reduce uncertainty when predicting biomass of very large trees. 

We also selected at least one tree among the eight most frequently observed species in each 

site. The remaining sample trees were selected randomly among all species. In total, 33 tree 

species were selected, comprising 10, 10, 12 and 10 different tree species in Mtangatanga, 

Kongwe, Mua-livulezi and Tsamba, respectively. Before felling the selected trees, we 

measured their diameters at breast height and total tree height, and also determined their 

species names. Out of the 74 trees, 41 trees were excavated for determination of belowground 

biomass. 

 

For determination of aboveground biomass, the aboveground portion of each of the 74 trees 

was separated into the following components: merchantable stem (from the stump at 30 cm 

above ground to the point where the first branches start), branches (all parts of the tree above 

the defined merchantable stem and up to a minimum diameter of 2.5 cm) and twigs (all 

branches with a diameter less than 2.5 cm). For small trees not considered suitable for timber 

production (diameter at breast height < 15 cm, in total 14 trees), merchantable stem 

volume/biomass were allocated to branches. To facilitate measurements, the stems and 

13



 
 

branches were crosscut into manageable logs of approximately 1–2 m in length. We 

measured the lengths and the mid-diameters over bark of each of the logs and then weighed 

their fresh weight using a mechanical hanging spring balance (0 – 200 kg). Twigs from each 

tree were separately bundled and weighed to determine their fresh weight.

For determination of belowground biomass, our strategy involved root sampling at two levels 

(Mugasha et al. 2013), namely main roots (roots branching directly from the root crown) and 

side roots (roots branching from the main roots). The first step in excavation involved 

clearing the topsoil around the tree base to expose the points at which the roots were 

branching. We then selected three main roots, i.e. the main roots with the largest, medium 

and smallest diameters and recorded their diameters at the points where they joined the root 

crown. The diameters of all main roots not excavated were recorded at the point where they 

joined the root crown. From each of the selected main roots, we selected up to three side 

roots, i.e. the side roots with the largest, medium and smallest diameters. For each of the 

selected side roots, we recorded the diameter where they joined the main root. For the 

remaining side roots, we also recorded the diameters at the branching point from the 

mainroot. The selected side and main roots were then fully excavated up to a minimum 

diameter of 1 cm and then weighed. 

 

In cases where the full roots could not be excavated due to obstacles such as rocks, the 

diameter of the last bit of the root was recorded and we treated the remaining unexcavated 

part as a side root. An effort was made to ensure that all the taproots were fully excavated up 

to a diameter of 1 cm. In total, 38 out of the 41 trees had taproots. Out of these 38 trees, we 

were not able to fully excavate the taproots of 16 trees. In such cases, the diameter at the 

breaking point of the unexcavated taproot was recorded and treated as a side root. On 

average, tap roots were dug down to 2.5 m depth. Lastly, we recorded the fresh weight of the 

root crown for each tree. For all sample trees, three small sub-samples, varying in weight 

between 0.1 and 1.0 kg, were taken from each main and side root, and one was taken from the 

root crown. We obtained the fresh weight of the sub-samples using an electronic balance and 

brought them to the laboratory for oven drying. 
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Photo 1. Miombo woodlands during dry season (a), weighing a log during destructive 

sampling (b), Sensefly eBee Unmanned Aerial Vehicle (c), preparing to fly the Sensefly eBee 

Unmanned Aerial Vehicle (d). 

 

 

c) Processed UAV images data 

The images used in Papers 3 and 4 were acquired using a SenseFly eBee fixed-wing UAV 

(Sensefly 2015). The UAV was made from flexible foam weighing 537 g without camera. 

The UAV was equipped with a Canon IXUS 127 HS Digital camera. The dimensions and 

weight of camera with battery and memory card were 93.2 × 57.0 × 20.0 mm and 135 g, 

respectively. The camera produces 16.1 megapixel images in the red, green and blue spectral 

bands. The UAV is also equipped with an inertial measurement unit as well as an on-board 

Global Navigation Satellite Systems (GNSS) to control the flight and to provide rough 

positioning (Sensefly 2015). Prior to taking images, positions of ground control points 

(GCPs) as well as landing and take-off points, e.g. on open areas with no trees within the 

forest and agricultural fields near the forest, were identified and measured. The GCPs were 
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made of a set of 1 × 1 m cross-shaped timber planks painted white and some black and white 

50 × 50 cm checkerboards. The position of the centre of each GCP was fixed using the same 

procedure as used when locating plot centres for the sample plot inventory described above. 

The data were collected for an average of 13±6 minutes for each GCP with a 1-second 

logging rate. The recorded coordinates for each GCP were post-processed similarly as the 

sample plots. The results revealed that maximum deviations for northing, easting and height 

were 2.24 cm, 4.50 cm and 4.46 cm, respectively. 

 

Acquisition of images was controlled from a laptop computer with a mission control software 

eMotion 2 version 2.4 (Sensefly 2015). All the flights were planned in the mission control 

software prior to flying. For navigation purposes, a georeferenced base map from Microsoft 

Bing maps covering the study area. For this study we applied percentage end and side image 

overlaps of 80 and 90% respectively, as well as a fixed flight height above the ground of 

325 m. In total 20 flights were carried out to cover the forest. 

5.3 Data analyses 

For development of volume models (Paper 1), volumes of individual logs were calculated by 

multiplying the basal area of the mid-section of each log by its length. Subsequently, the stem 

and branch volumes for each tree were determined by summing all individual log volumes for 

the respective sections. Total tree volumes were determined by summing the merchantable 

stem and branches volumes for individual trees. 

 

Development of biomass models (Paper 2) started by first drying all sub-samples from both 

above- and belowground portions of each tree in an oven at a temperature of 80°C until a 

constant weight was achieved (constant weight was observed in 2–3 days) and subsequently 

recording their dry weights. The sub-sample dry and fresh weights were then used to 

determine the tree- and section specific dry to fresh weight ratios (DF-ratios) which were then 

used to calculate the dry weight of each section as a product of tree- and section specific DF-

ratios and the fresh weights of the respective trees and tree sections. Subsequently, we 

computed the total aboveground dry weight each tree by summing the dry weights of the 

merchantable stem, branches and twigs.  

 

To determine the total belowground dry weights of the excavated parts of the trees we first 

converted all the fresh weights from the different sections to dry weight biomass by 
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multiplying the tree- and section specific DF-ratios and their respective fresh weights. We 

then developed a general (combining data from all sites) side root model by regressing the 

dry weight biomass of the fully excavated side roots and their diameters (cm). The side root 

model was used to predict the dry weight biomass of all the side roots that were not 

excavated for the main sample root. The total dry weight of all side roots for each main 

sample root was then determined by summing dry weights of the excavated side roots and 

predicted dry weights of unexcavated side roots. Finally the complete dry weight of the 

sample main root was determined by summing the total dry weights of all side roots and the 

excavated parts of the main root. A main root model was then developed and applied to 

predict the dry weights of main roots not excavated. To determine the dry weight of 

unexcavated parts of the taproots (16 trees), we applied the general side root model. Total 

belowground dry weight biomass for each tree was finally determined by adding the dry 

weights of all excavated and unexcavated main roots, dry weight of the taproot and the dry 

weight of the root crown.  

 

Using the respective datasets, general and site specific volume, aboveground and 

belowground models for total tree, merchantable stem and branch were developed utilizing 

diameter at breast height, total tree height and species-specific mean wood specific gravity as 

independent variables. The species-specific mean wood specific gravity values were 

extracted from the global wood density database (Chave et al. 2009; Zanne et al. 2009). Since 

the data demonstrated heteroscedasticity for volume, above-and belowground biomass, we 

applied generalized methods of moments (GMM) estimation method for volume models and 

weighted nonlinear regression for above- and belowground biomass models. The analysis 

was implemented using SAS Institute (2012) software. For all models, pseudo-R2, root mean 

square error and mean prediction error values were reported. However, model efficiency and 

performance were based on root mean square error values calculated using leave-one-out 

cross validation procedure. Previously developed models were also tested and compared with 

the models developed in the current study. 

 

Both Papers 3 and 4 required calculating aboveground biomass of each tree in respective 

sample plots. Before calculating aboveground biomass, total heights of trees whose height 

was not measured were predicted using a height-diameter model developed (Paper 3) using 

the measured heights of sample trees from all the sample plots. We then calculated 

aboveground biomass for each tree in the sample plots by using a model developed in Paper 

17



 
 

2, with diameter at breast height and total tree height as independent variables. Per hectare 

values for aboveground biomass of the respective plots were calculated by first summing up 

the individual tree aboveground biomass values within a given plot and scaling them to per 

hectare values.  

 

For both Papers 3 and 4, Agisoft Photoscan Professional version 1.1 (AgiSoft 2015) was used 

to generate a 3D dense point cloud from the acquired UAV images. To normalize the point 

clouds and subsequently extract metrics describing canopy height, canopy density and canopy 

spectral information in both Paper3 and 4, we developed, tested, and selected the best digital 

terrain models in Paper 3 using different approaches, and compared their performance to 

determine a suitable digital terrain model since the study area did not have an existing one. 

The tested approaches included a) supervised ground filtering based on visual classification, 

b) supervised ground filtering based on logistic regression, c) supervised ground filtering 

based on quantile regression and d) Shuttle Radar Topography Mission with quantile 

regression. In Paper 4, the metrics were extracted for each of the datasets for respective plot 

sizes (i.e. 250, 500, 750 and 1000 m2).  

 

To compare the performance of the different DTMs in Paper 3 as well as to estimate 

aboveground biomass for the study area in Paper 4 models relating reference aboveground 

biomass and the generated metrics were fitted on square root transformed dependent variables 

using multiple linear regression in R software (R Core Team 2016).

 

For both Papers 3 and 4, the developed models were evaluated using the squared Pearson 

correlation coefficient, root mean square error, relative root mean square error, mean 

prediction error and relative mean prediction error. Model selection was however based on 

the root mean square error values. 

 

To assess the efficiency of UAV-assisted as well as the effect of sample plot and sample sizes 

on error estimates in biomass estimation in Paper 4, field-based biomass estimates and 

corresponding variances were based on the simple random sampling estimator. On the other 

hand, a model-assisted regression estimator described by Särndal et al. (1992), and its 

corresponding variance estimator, were applied for UAV-assisted biomass estimation. The 

relative efficiency (RE) of UAV-assisted inventory was assessed by a ratio of the variance 
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estimates for the biomass based on purely field-based inventory data to that based on UAV-

assisted inventory data.  

 

Furthermore, to assess the cost efficiency of UAV-assisted over pure field-based inventories 

in Paper 4, during field work we randomly selected 16 sample plots and for each plot 

recorded three categories of time consumption, i.e. fixed time (time spent when recording 

sample plot attributes such as plot number, date, etc.), variable time (time spent on measuring 

trees) and walking time (time spent during walking from one plot to another). The average 

recorded time consumption was 7.5, 25.0 and 7.0 minutes for each of the aspects, 

respectively. We then set the relative cost of a sample plot inventory of 107 sample plots 

(1000 m2 each) in a 220 × 220 m grid to 100% based on the recorded information. We then 

used the cost information from the current inventory (4 persons working for 15 days with a 

daily salary of USD 25.13 each) to calculate the variable costs for each plot scaled according 

to plot size and walking distance.  

 

The costs for the UAV data acquisition were fixed for all sample plot sizes and sample sizes 

because the need for auxiliary remotely sensed information would be the same regardless of 

plot size and sample size. The cost was computed based on the experience from the current 

study. The cost included pre-flight preparations and the actual flying where a two-man crew 

was required. Each person worked five days with a salary similar to the field crew. Post-

processing of the acquired images required four days. 
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6.0 Main findings and discussion 

6.1 Volume and biomass models 

The developed volume, above- and belowground biomass models (Papers 1 and 2) offer 

options for forest inventory scenarios in which data on diameter at breast height only or both 

diameter at breast height and total tree height are available. For both volume and biomass, the 

root mean square error and mean prediction error values of the models with both diameter at 

breast height and total tree heights as independent variables were better than those of the 

models with diameter at breast height as the only independent variable. This result also 

conforms to previous studies (Abbot et al. 1997; Mauya et al. 2014; Mwakalukwa et al. 2014) 

for volume models and Mugasha et al. (2013) for aboveground biomass models. On the other 

hand, for belowground biomass, the only viable model had diameter at breast height as the 

only independent variable. The fit of this model is similar to that of the models developed by 

Mugasha et al. (2013), Chidumayo (2014) and Ryan et al. (2011). 

 

If diameters at breast height and total heights of all trees are measured in an inventory, the 

model including both variables should, of course, be applied. Otherwise, models with 

diameter at breast height alone are still reliable since much of the variation in volume and 

aboveground biomass was explained by diameter at breast height, while the addition of total 

tree height resulted in only small improvements. Since total tree height measurements are 

time consuming, they are usually estimated from height-diameter models developed from a 

few sample trees. If all tree forms in the forest are not represented among the sample trees, 

additional uncertainties in predictions are introduced. With appropriate sample trees and 

small measurement errors in tree heights, the accuracy of predictions will probably be 

improved by including total tree height as an independent variable, in spite of the uncertainty 

added by using a height-diameter model. For aboveground biomass models, inclusion of 

species-specific mean wood specific gravity values in place of total tree height did not 

improve the performance of the model. This could be attributed to the fact that the species-

specific mean wood specific gravity values were not obtained directly from the sampled trees, 

but from the global wood density database (Chave et al. 2009; Zanne et al. 2009).  

 

Tree component volume and aboveground biomass models, i.e. for twigs, branches and 

merchantable stem, may be useful when planning commercial extraction of timber or 

quantification of volume or aboveground biomass for domestic fuelwood or charcoal 

production. All tree component models with significant parameter estimates produced mean 
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prediction error values not significantly different from zero, an indication of appropriate 

model performance. 

 

When the selected volume and aboveground biomass models were tested on our dataset over 

different sites, none of the mean prediction error values were significantly different from 

zero, except for the volume model with both diameter at breast height and total tree height as 

independent variables in Tsamba, where volume was over-estimated. Furthermore, when 

previously developed models were tested on our dataset, the results showed that these models 

either over- or underestimated biomass (Table 1) or tree volume (Figure 3). These results 

demonstrate the importance of developing local models and also highlight the dangers of 

applying models beyond their geographical ranges because a change in geographical site in 

most cases also mean changes in ecological, climatic and edaphic conditions. 

 

Table 1. Performance of previously developed biomass models tested on our dataset. 

Component Model Independent 
variable(s) 

No. 
of 

trees 

Observed Predicted MPE 

(kg) (kg) (kg) (%) 

Above-
ground 

Mugasha et al. (2013) dbh 74 1239.7 1135.7 104.0     8.4 
Mugasha et al. (2013) dbh, ht 74 1239.7 1076.7 163.0 13.2 ** 
Ryan et al. (2011) dbh 74 1239.7 1068.8 170.9   13.8 * 
Chidumayo (2014) dbh 74 1239.7 1205.6   34.1     2.8 
Chave et al. (2014) dbh, , ht 74 1239.7   953.7 286.1   23.1 *** 

Below-
ground 

Mugasha et al. (2013) dbh 41   527.2   377.5 149.7  28.4 *** 
Mugasha et al. (2013) dbh, ht 41   527.2   364.8 162.4  30.8 *** 
Ryan et al. (2011) dbh 41   527.2   426.9 100.3  19.0 *** 
Chidumayo (2014) dbh 41   527.2   551.9 24.7    4.7 

* MPE is significantly different from zero at (p < 0.05); ** MPE is significantly different from zero at (p < 
0.01) and *** MPE is significantly different from zero at (p < 0.001), dbh = diameter at breast height, ht = 
total tree height,  = species-specific mean wood specific gravity. 
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Figure 3. Display of total tree volume over diameter at breast height (dbh) for models 

developed in this study and previously. For the models with total tree height included as an 

independent variable, a height–diameter model developed from our sample trees was applied. 

Vertical dotted lines are the maximum diameter at breast height of the modelling datasets 

used by Abbot et al. (1997) (a), Mauya et al. (2014) (b) and in this study (c), respectively. 

 

Recently, Kuyah et al. (2016) also developed aboveground biomass models for miombo 

woodlands in Malawi. These models were based on miombo trees outside forests collected 

from three sites in the central and southern region of Malawi. These models are thus suitable 

for biomass estimation for miombo trees in agroforestry systems during national forest 

inventories when biomass of trees outside forests is also considered (Schnell et al. 2014). 

Unlike the models developed in this study, application of models developed by Kuyah et al. 

(2016) for the REDD+ mechanism in Malawi is limited, since the potential project areas are 

forest reserves scattered across the country.  

 

6.2 Application of UAVs in biomass prediction 

Reliable biomass estimates from remotely sensed 3D data are heavily reliant on the 

availability of a good digital terrain model. In paper 3 we first tested different methods of 

generating digital terrain models. The comparisons of plot centre height predictions from 

different digital terrain models showed that predictions from the digital terrain model 
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generated using Shuttle Radar Topography Mission data are unreliable as compared to those 

derived from the other methods. This indicates that when digital terrain models based on 

Shuttle Radar Topography Mission data are used in biomass estimation, the estimates can 

hardly be trusted.  

 

Biomass predictions from the digital terrain models developed based on the tested approaches 

show that the digital terrain model developed using unsupervised ground filtering based on a 

grid search approach performed slightly better than others. This performance demonstrated 

that with some effort, it is possible to find good parameter settings in the AgiSoft Photoscan 

software (AgiSoft 2015). Furthermore, despite performing slightly less than the digital terrain 

model developed using unsupervised ground filtering based on a grid search approach, the 

digital terrain model based on supervised ground filtering using visual classification, was 

equally good. However, since unsupervised ground filtering is relatively easier to implement, 

future studies should consider application of this approach. On the other hand, the relatively 

poor performance of the digital terrain model developed from unsupervised ground filtering 

based on Shuttle Radar Topography Mission could be attributed to the inherent random errors 

in heights associated with shuttle radar topography mission data (Hofton et al. 2006; Karwel 

& Ewiak 2008; Rodríguez et al. 2006). 

 

The root mean square error value for the best model from our study is similar to that reported 

in a study conducted in miombo woodlands of Tanzania by Mauya et al. (2015a) when using 

ALS data. On the other hand, in a study by Puliti et al. (2015), where data acquired from 

UAV was applied in boreal forests, a smaller root mean square error value compared to our 

study was observed when estimating forest stand volume. This might be attributed to the 

differences in forest structures between miombo woodlands and boreal forests. It should also 

be noted that Puliti et al. (2015) utilized ALS data for digital terrain model determination, 

which are superior in describing forest ground surface compared to optical sensors such as 

those applied in the current study (Baltsavias 1999). It is worth noting that the observed root 

mean square error in Puliti et al. (2015) is comparable to that observed in a study by 

Gobakken et al. (2015) also conducted in boreal forests. However, Gobakken et al. (2015) 

used exclusively ALS data. This demonstrates the efficiency of UAV data in forest 

inventories. 
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The findings from our study have also demonstrated that data generated by the UAV system 

have potential of being successfully used in estimating forest biomass in dry tropical forests 

such as miombo woodlands. Similar studies in other dry tropical forests are however 

recommended to validate the results of the current study because of the wide range of 

variations in structure, weather and terrain conditions seen in these forests.  

 

6.3 Influence of plot and sample size on UAV-assisted biomass estimates 

The results from Paper 4 have demonstrated that incorporation of UAV derived 

photogrammetric data in a forest inventory can improve forest biomass estimates beyond 

what can be achieved by purely field-based sample plot inventories (see Table 2). The 

relatively smaller mean biomass standard error values for the UAV-based estimates indicate 

that inclusion of remotely sensed data from UAV-imagery can improve the precision of 

biomass estimates. Thus the application of UAV-assisted inventories for REDD+ 

implementation in Malawi could potentially result in improved biomass estimates compared 

to pure field-based inventories.  

 

Table 2. Relative efficiency (RE), estimated mean biomass and associated standard error 

(SE) estimates based on field-based and UAV-assisted estimation for different sample plot 

sizes and sample sizes. 
Plot size (m2) Sample size (n) Field-based  

(Mg ha-1) 
UAV-assisted 

(Mg ha-1) 
Relative efficiency  

field SE uav SE 
250 107 36.86 3.29 44.12 2.75 1.44 
250 54 36.23 4.58 43.63 3.79 1.47 
250 36 36.37 6.21 49.69 5.20 1.43 
500 107 37.38 2.96 42.49 2.22 1.77 
500 54 39.87 4.57 45.60 3.59 1.62 
500 36 34.21 4.68 42.42 3.52 1.76 
750 107 38.12 2.79 42.16 1.86 2.26 
750 54 39.50 4.13 43.39 3.07 1.81 
750 36 32.63 4.15 43.81 2.56 2.63 
1000 107 38.99 2.85 43.30 1.72 2.75 
1000 54 39.59 4.09 43.11 2.30 3.16 
1000 36 33.12 4.39 40.96 2.36 3.46 
field = Estimated mean biomass from ground-based sample, uav = Estimated mean biomass from UAV-assisted 

data, SE = Estimated standard error of mean biomass, RE = ratio of the variance estimates for the biomass based 
on purely field-based inventory data to that based on UAV-assisted inventory data. 
 
Furthermore, correct choice of sample plot sizes is critical to the precision and accuracy of 

biomass estimates in remote sensing based forest inventories (Frazer et al. 2011). This is 

demonstrated by the increase in the magnitude of relative efficiency values with increasing 

sample plot size and the decrease in RMSE values with increasing sample plot sizes. The 
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same trend was observed by Frazer et al. (2011) and Mauya et al. (2015b). The improvement 

of biomass estimates with increasing sample plot sizes shows that large sample plot sizes 

favour UAV-assisted inventories. This could be attributed to reduction in plot boundary 

effects as the sample plot sizes increases as suggested by Goetz and Dubayah (2011). Thus 

for small sample plots, canopies of trees with wide crowns such as those in miombo 

woodlands (Frost 1996) tend to be partially included and thus under predicting sample plot 

biomass. On the other hand, as the sample plot sizes increase, this effect tends to decrease 

substantially since these variations are averaged out at larger sample plot sizes (Saatchi et al. 

2011).  

 

The fact that the results in the current study indicate that larger plots and larger sample sizes 

favour UAV-assisted forest inventories does not imply that larger sample plots and sample 

sizes should always be applied during the UAV-assisted inventory because of the associated 

costs. The results on cost efficiency analysis indicate that there is a trade-off between costs 

and required precision. On one hand, acquiring UAV data and field reference data from many 

large plots is expensive but produces more precise results. On the other, acquiring the data 

from many small plots is less expensive but produces less precise results. Based on the 

observed trends, if a standard error estimate of less than approximately 3 Mg ha-1 was 

targeted during a forest inventory, then a UAV-assisted forest inventory should be applied to 

ensure cost efficient and precise estimates. This demonstrates the need for carrying out a cost 

analysis during UAV-assisted inventory in order to determine the optimal sample plot size 

and sample size to apply.  

 

Finally, it should be noted that careful planning is needed for application of UAV-assisted 

inventories under the REDD+ mechanism in Malawi to be accomplished. For example, if the 

inventory is intended for smaller forest reserves, wall-to-wall coverage using a UAV is 

possible. On the other hand, in cases where inventories are conducted in larger forest 

reserves, the UAV can be applied as a sampling tool because wall-to-wall operations maybe 

found economically and logistically infeasible. Furthermore, this study was conducted on a 

single site and thus represents a forest inventory scenario at specific location. Although this 

case study has provided evidence of great efficiency of UAV-assisted inventory, similar 

studies should be conducted in other reserves across the country in order to be able to 

generalize and provide guidance for future operational inventories. 
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7.0 Concluding remarks and future studies 

The main objective of the thesis was to develop models and methods for estimating volume 

and biomass of miombo woodlands in Malawi (Figure 1). The results from this thesis have 

taken us some steps forward that are expected to support and improve forest management 

decision-making in general as well as the implementation of a REDD+ MRV system in the 

country. Still, however, much work and research are needed. In the following, we point at 

main achievements as well as some weaknesses and corresponding suggestions on more 

research directly linked to the individual papers. We have also tried to go beyond the scope of 

the thesis, and have identified a few interesting and relevant topics for future studies that 

potentially could provide valuable inputs for further improvements in forest management 

decision-making and REDD+ MRV implementation in Malawi. 

 

The performances and the evaluations of the models developed in Papers 1 and 2 suggest that 

they can be used over a wide range of geographical and ecological conditions in Malawi with 

an appropriate accuracy in predictions. The appropriateness of the models, and the 

importance of using local models in biomass estimation, was also supported by the fact that 

their mean prediction errors were much lower than some previously developed models tested 

on our data. In addition to the models for facilitating carbon assessments, we have also 

developed section models that can be applied when quantifying fuelwood and for timber 

valuation in compensation payments.  

 

It should, however, be noted that the number of tree species included in the modelling 

datasets were relatively low when considering the total number of tree species found in 

miombo woodlands. Future studies should therefore aim at updating the current datasets 

(displayed in full in Papers 1 and 2) with additional species to improve the robustness of the 

models (e.g Chave et al. 2014).  

 

The leaves were excluded from the biomass modelling dataset because most of the trees had 

started to shed leaves when the destructive sampling was carried out. Future studies may 

therefore attempt to collect the data when all the trees have leaves on them. Furthermore, 

inclusion of wood specific gravity as an independent variable, in addition to diameter at 

breast height did not improve the biomass predictions probably because the wood specific 

gravity values were obtained from the global wood density database. According to Baker et 

al. (2004), inclusion of wood specific gravity values from sample trees in biomass modelling 
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is important as it helps in explaining variation in aspects of forest structure that vary 

significantly at regional scales (Baker et al. 2004; Chave et al. 2014; Ramananantoandro et al. 

2015). So future studies should aim at utilizing wood specific gravity values from the sample 

trees.  

 

The results from the biomass predictions based on a combination of remotely sensed data 

captured using UAV and field-based inventory data (Paper 3), show that the observed 

prediction errors are similar to those from previous studies using ALS data in miombo 

woodlands, thus showing the potential of applying this technology in miombo woodlands. 

Furthermore, the study highlighted that digital terrain models developed using unsupervised 

ground filtering based on a grid search approach can produce reliable results in miombo 

woodlands. Additional studies, however, are recommended to validate these results under 

other conditions using different flight settings, i.e. flying altitude and image overlaps, to 

search for the optimum settings. According to Bohlin et al. (2012), both flight altitude and 

degree of image overlaps influence the accuracy of the 3D data produced.  

 

The results presented in Paper 4 demonstrated that UAV-assisted inventories produced more 

precise biomass estimates compared to those utilizing exclusively field-based methods. 

Furthermore, larger plot and sample sizes favour UAV-assisted estimates. The results on cost 

analysis of UAV-assisted inventory has shown that if a standard error estimate of mean 

biomass of less than approximately 3 Mg ha-1 is targeted during a forest inventory, then a 

UAV-assisted forest inventory should be applied to ensure cost efficient and precise 

estimates. However, similar studies should be conducted in other forest reserves across the 

country in order to be able to generalize and provide guidance for future operational 

inventories.  

 

If we go beyond the scope of this thesis, an exercise where questions related to error 

propagations in biomass estimation are approached, would be very important, since the 

Intergovernmental panel on climate change (IPCC) requires biomass and carbon estimates 

reporting under the REDD+ mechanism to be accompanied by appropriate measures of 

uncertainty. Such uncertainties occur when applying the sampling design (sample plot size 

and shape, sample size), during tree measurements and when applying biomass models 

(Chave et al. 2004; Clark & Kellner 2012; Magnussen & Carillo 2015; McRoberts & 

Westfall 2016; Molto et al. 2013). All datasets described in this theses could be applied for 
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error propagation in volume or biomass estimation. This could be done by using different 

biomass models (with corresponding covariance matrices as displayed in Paper 2), 

exclusively field-based methods and in combination with UAVs.  

 

Another step would to be study methods and uncertainty related to determination of biomass 

changes over time. This is also important in the context of IPCC requirements on biomass 

and carbon reporting under the REDD+ mechanism. In particular, uncertainties related to 

different biomass change detection procedures (e.g. Magnussen et al. 2015; McRoberts et al. 

2015) would be important. A study directly relevant for the miombo woodlands of Malawi 

could be done for the same study area as used in Papers 3 and 4, where, after some years, the 

sample plot inventory in combination with the UAV acquisition is repeated for estimating 

biomass. 

 

A third step to ensure a sustained reduction in emissions from deforestation and forest 

degradation should be to conduct further research to understand the drivers of deforestation 

and forest degradation (Gizachew & Duguma 2016; Kissinger et al. 2012). Further studies on 

the establishment of sustainable forest management regimes capable of enhancing forest 

conservation and carbon stocks are also necessary (Edwards et al. 2010). In order to facilitate 

a better planning environment, a decision-making tool based on growth, mortality and 

recruitment models, like the one developed from miombo woodlands in Tanzania, is required 

(see Mugasha et al. 2016a; Mugasha et al. 2016b). 

 

Finally, participation of local communities is critical for the sustainability of REDD+ in 

Malawi. Studies on assessing the feasibility of incorporating aspects of participatory MRV in 

the current preparatory phase of REDD+ implementation would therefore be important to 

check the interest of local communities surrounding the forest reserves (Danielsen et al. 2011; 

Hawthorne & Boissière 2014; Zahabu 2008).  
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The objective of this study was to develop general (multispecies) models for prediction of total tree, merchantable 
stem and branch volume including options with diameter at breast height (dbh) only, and with both dbh and total 
tree height (ht), as independent variables. The modelling data set was based on destructively sampled trees and 
comprised 74 trees from 33 tree species, collected from four forest reserves located in different ecological zones 
of Malawi. The dbh and ht ranges for the data set were 5.3–111.2 cm and 3.0–25.0 m, respectively. A number of 
alternative model forms were tested and the final model selection was based on root mean square error (RMSE) 
values calculated using a leave-one-out cross-validation procedure. The model performances and the evaluations 
of the finally selected models ( 2

to 1.3%) suggest that all models can be used over a wide range of geographical and ecological conditions in Malawi 
with an appropriate accuracy in predictions. The appropriateness of the developed models was also supported by 
the fact that the mean prediction errors of these models were much lower than the mean prediction errors (range 

Keywords: cross-validation, destructive sampling, general volume models

Introduction
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Miombo woodlands are dry tropical forests dominated by 
deciduous trees belonging to the genera Brachystegia, 
Julbernadia and Isoberlinia that occur in a climate with 
a dry season of three months or more (Chidumayo and 
Gumbo 2010). These woodlands cover an area of approx-
imately 2.7 million km2 that spans 10 countries in East 
and Central Africa, including Malawi (Abbot et al. 1997; 
Abdallah and Monela 2007; Ryan et al. 2011). Miombo 
woodlands provide a wide variety of products, including 
fruits, fish, bush meat, edible insects, beeswax, honey and 
traditional medicines, and services such as biodiversity and 
watershed conservation.  

In Malawi, miombo woodlands constitute 92.4% of the 
country’s total forest area (Government of Malawi 2010a). 
They are mainly located in forest and game reserves, 
which were exclusively established for water catchment, 
and soil and biodiversity conservation (Abbot et al. 1997; 
Government of Malawi 2012). Any sustainable manage-
ment approach for these woodlands requires the availa-
bility of proper methods, models and tools to assist forest 
managers. A basic prerequisite for this is the availability of 
appropriate allometric models for predicting tree volumes 
(Akindele and LeMay 2006; Guendehou et al. 2012; Mauya 
et al. 2014). Quantification of forest volume is, for example, 
important for establishing the growing stock of stands and 
forests, for timber valuation, for selection of forest areas 
in harvest scheduling, for growth and yield studies, and as 
a basis for estimation of biomass and carbon stocks (see 
Chidumayo 1988; Lowore et al. 1994; Chamshama et al. 

2004; Hofstad 2005; Adekunle 2007; Picard et al. 2012; 
Adekunle et al. 2013). 

Volume of individual trees is usually determined using 
models based on diameter at breast height (dbh) and total 
tree height (ht), and in some cases measures of tree form, 
as independent variables (see Clutter et al. 1983; Hofstad 
2005). Reviews by Henry et al. (2011, 2013) showed 
that several models for predicting tree volume in miombo 
woodlands have been developed previously. Based on 
these reviews and a literature search we have been able 
to identify tree volume models for miombo woodlands 
developed by Malimbwi et al. (1994), Chamshama et 
al. (2004), Mauya et al. (2014) and Mwakalukwa et al. 
(2014a) in Tanzania, by Mate (2014) in Mozambique and by 
Chidumayo (1988) in Zambia. The only existing tree volume 
models for miombo woodlands in Malawi were developed 
by Abbot et al. (1997).  

Many of the previously developed models are species-
specific (see Chidumayo 1988; Abbot et al. 1997; Mate 
2014; Mwakalukwa et al. 2014a). Recent studies from 
neighbouring countries have shown that the number of 
tree species in miombo woodlands may range from 80 to 
300 (Dewees et al. 2011; Giliba et al. 2011; Kalaba et al. 
2012; Mugasha et al. 2013; Mwakalukwa  et al. 2014a). For 
miombo woodlands in Malawi, Mwase et al. (2007) found 
48 tree species and shrubs representing 24 families based 
on a sample of 6.5 ha, whereas Missanjo et al. (2014) 
found 22 species on 0.5 ha. Given such high tree species 
numbers, the applicability of species-specific models is 
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limited in these woodlands, and general models (covering 
multiple species) are therefore the most useful alternative in 
most cases. Only a few general volume estimation models 
have been developed (Abbot et al. 1997; Mauya et al. 2014; 
Mwakalukwa et al. 2014a) and the applicability of these is 
limited by several factors in the data used for modelling: 
(1) narrow geographical ranges of study sites, (2) relatively 
small dbh ranges and (3) relatively few tree species. The 
modelling data of the general total tree volume model 
developed by Abbot et al. (1997) for Malawi were limited 
to nine timber tree species, a small dbh range (5–35 cm), 
and a relatively limited geographical range, i.e. the sites 
were located in the central and southern parts of Malawi, 
thus excluding the northern part, which accommodates 
approximately 25% of miombo woodlands located in forest 
reserves in the country (Government of Malawi 2010a). 

All identified studies on volume models for miombo 
woodlands, except Mate (2014), include total tree volume 
models. In addition, all of the studies developed stem volume 
models while branch volume models were developed by 
Malimbwi et al. (1994), Chamshama et al. (2004) and Mauya 
et al. (2014). The stem volume models are usually motivated 
by timber production and comprise the merchantable parts 
of stems. Large-scale commercial extraction of timber from 
miombo woodlands is no longer taking place in Malawi 
(Abbot et al. 1997; Luhanga 2009) but the Malawian govern-
ment uses a licensing system that permits the issuance of 
permits to individuals for  accessing timber (Government of 
Malawi 2010b). In this context general stem volume models 
would be useful. The same applies to cases where trees 
are being cleared for infrastructure development, such as 
roads, railways and buildings, and compensation payments 
to tree/forest owners are necessary. General branch volume 
models may be useful tools for assessing quantities related 
to brick burning, domestic fuelwood, production of charcoal 
and construction poles.

The main objective of this study was therefore to develop 
general total tree volume models, as well as general 
tree sectional models for branches and merchantable 
stems, which can be applicable across the entire distribu-
tion of miombo woodlands in Malawi. The models were 
based on data from different ecological zones covering all 
three regions in Malawi. The performance of the models 
developed in this study was also compared with previously 
developed models from Malawi and neighbouring countries.

Materials and methods

Site description
Given that tree growth is dependent on species, genetics, 
climate, soil and management (Chidumayo and Gumbo 
2010), the selection of study sites was based on geograph-
ical location, management regime and ecological zones. 
Among the four selected sites, Mtangatanga is located 
in Mzimba District in northern Malawi, Kongwe and 
Mua-livulezi are located in Dowa and Dedza districts, 
respectively, in central Malawi, and Tsamba is located in 
Neno District in southern Malawi (see Figure 1, Table 1). 

Data collection
Information on ranges in tree size and species distribution 

is important for the selection of sample trees to be used 
in modelling (Mugasha et al. 2013). We performed 
systematic sample plot inventories covering each site. 
Circular plots, with a radius of 11.28 m (400 m2), were 
chosen. For each plot, we measured dbh for all trees 
with dbh  5 cm and also determined their local and 
scientific names. We conducted inventories comprising a 
total of 215 sample plots with 70, 30, 64 and 50 plots for 
Mtangatanga, Kongwe, Mua-livulezi and Tsamba forest 
reserves, respectively.

For each study site, we divided the sample plot inventory 
into two phases. The first phase involved covering approxi-
mately half of the plots. This data set enabled the selection 
of initial sample trees for destructive sampling while the 
forest inventory was still ongoing. After the completion of 
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Figure 1: Map of Malawi showing the location of the study sites
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the second phase, we selected the remaining sample trees 
from the complete data set. The maximum dbh based on 
all sample plots in Mtangatanga, Kongwe, Mua-livulezi 
and Tsamba was 61, 73, 70 and 56 cm, respectively, and 
the number of species identified for the respective sites 
was 66, 45, 75 and 65. In total, for all of the study sites, 
139 different species were identified during the inventory. 
The most frequent species for the respective sites were 
Brachystegia spiciformis, Diplorhynchus condylocarpon and 
Uapaca kirkiana. 

A total of 74 standing live trees were sampled from the 
four sites based on the observed dbh and tree species 
frequency for each site (see Table 2). A deliberate effort 
was made to ensure that the trees were selected from 
the entire range of dbh classes observed in the sample 
plot inventories. We also selected eight trees with 
larger diameters than those observed in the sample plot 
inventories to improve predictions of volumes for very 
large trees. The eight most frequent tree species for each 
site were always represented according to quantities. 
The remaining trees were selected randomly within the 
study site among the remaining tree species. In total, 33 
tree species were selected, comprising 10, 10, 12 and 10 
different tree species in Mtangatanga, Kongwe, Mua-livulezi 
and Tsamba, respectively. 

Before felling the sampled trees, we measured their dbh 
(over bark) and ht and also determined their scientific and 
local names. To identify scientific and local names of tree 
species, we used an experienced botanist from the Forest 
Research Institute of Malawi and a local forest guard from 
each of the study sites. To measure dbh, a caliper or a 
diameter tape was used depending on tree sizes, and 

a Suunto hypsometer was used for all ht measurements. 
A statistical summary of the sample trees is given in Table 2 
and information on individual trees is given in the Appendix.

After felling, the trees were separated into two above-
ground sections, i.e. merchantable stem and branches. The 
merchantable stem section comprised the stem from 30 cm 
aboveground to the point where the first major branches 
started (see Abbot et al. 1997). The branches comprised 
all parts of the tree above the defined stem and up to a 
minimum diameter of 2.5 cm. All branches with a diameter 
less than 2.5 cm were considered as twigs and therefore 
not included in the volume. For small trees not considered 
as suitable for timber production (dbh  15 cm, in total 
14 trees), stem volumes were allocated to branches (see 
Mauya et al. 2014).

We crosscut the stems and branches into manage-
able pieces (logs), whose lengths ranged from 1 to 3.7 m, 
to facilitate volume measurements. We then measured 
the lengths and the mid-diameters over bark of each log. 
We calculated individual log volumes by multiplying the 
basal area of the mid-section of each log by its length. 
Subsequently, we determined the stem and branch volumes 
for each tree by summing all individual log volumes. We 
finally determined the total tree volumes by summing 
merchantable stem and branches volumes. A statistical 
summary of all volumes is given in Table 3 and total tree 
volumes over dbh and ht for each site are displayed in 
Figure 2.  

Model development and evaluation 
The volume of an individual standing tree may be 
established as:

Mtangatanga Kongwe Mua-livulezi Tsamba
Region Northern Central Central Southern
District Mzimba Dowa Dedza Neno
Location 
Area (ha) 8 443 1 813 12 147 3 240
Altitude (m) 1 500–1 700 1 000–1 500 400–900 700–1 500
Dominant soil type Humic ferrallitic Ferruginous Lithosols Ferrallitic
Management regime Co-management Government Co-management Government
Silvicultural classification Moist Brachystegia Moist Brachystegia Dry Brachystegia Moist Brachystegia
Mean minimum annual temp (°C) 6 6 13 8
Mean maximum  annual temp (°C) 29 29 32 28
Total annual rainfall range (mm) 960–1 050 960–1 050 840–960 1 200–1 600
Rain period December–April November–April November–April November–April
Dry months May–November May–October May–October May–October

Table 1: Description of the study sites. Data sources: rainfall and temperature data (1975–2005) from Ministry of Natural Resources, Energy 
and Mining, Department of Climate Change and Meteorological Services. Soil and silvicultural classification: Hardcastle (1978)

Site
dbh (cm) ht (m)

n Mean Minimum Maximum SD Mean Minimum Maximum SD
Mtangatanga 20 35.5 6.0 111.2 26.7 10.7 4.0 18.0 4.3
Kongwe 18 34.9 9.0 75.7 19.6 11.7 5.0 22.0 4.7
Mua-livulezi 18 32.8 5.3 81.7 23.0 11.6 3.0 22.0 5.8
Tsamba 18 30.2 8.4 75.0 17.5 12.6 6.5 25.0 5.1
All 74 33.4 5.3 111.2 21.8 11.6 3.0 25.0 4.9

Table 2: Statistical summary of sample trees. dbh  diameter at breast height, ht  total tree height
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V  f (dbh, ht, f)

where V  total tree volume, dbh  diameter at breast 
height, ht  total tree height, and f  measure of stem form 
(Clutter at al. 1983). Since measures of stem form are 
difficult and expensive to obtain from field measurements 
(van Laar and Akça 2007), volume is usually predicted 
from models either with dbh only or with both dbh and ht as 
independent variables. We decided to develop both types in 
order to facilitate application of the models also when height 
measurements are not available from the forest inventory.

Many linear and non-linear allometric model forms were 
first considered based on a review of models previously 
developed for miombo woodlands (Chidumayo 1988; 
Malimbwi et al. 1994; Abbot et al. 1997; Chamshama et 
al. 2004; Munishi et al. 2010). We finally selected some of 
the most frequently used model forms for fitting and further 
evaluations: 

V  a  b*(dbh)2

V  a  b*dbh  c*(dbh)2

V  a*(dbh)b 
V  a*(dbh2*ht)b

V  a*(dbh)b*(ht)c 
V  a  b*(dbh)2  c*ht

where V is total tree, branch or merchantable stem volume 
over bark (m3), dbh is the diameter at breast height (cm), 
ht is total tree height (m), and a, b and c are parameter 
estimates. 

Before fitting the models, we assessed scatter plots 
of volumes over dbh. As expected, the plots indicated 
non-linear patterns of the relationship between total volume 
and dbh (see Figure 2). Non-linear models were initially 
fitted with PROC MODEL of SAS 9.4 software (SAS 
Institute, Cary, NC, USA) using non-linear ordinary least-
squares estimation. Residual plots indicated that the data 
required transformation because they violated the assump-
tions of equal variance (homoscedasticity) and normality 
(Picard et al. 2012). The most common methods of data 
transformations in biological studies, e.g. log transformation 
and weighted regression, were therefore tested (Parresol 
1999; Picard et al. 2012; Mauya et al. 2014; Sileshi 2014). 
However, none of the methods produced satisfactory 
results. We therefore applied generalised methods of 
moments (GMM) estimation, a semi-parametric estimation 
method. According to SAS Institute (2012), GMM estimation 
can be used if the error variance relationship is unknown 
to improve the efficiency of the parameter estimation in 
the presence of the heteroscedastic errors. To achieve an 

optimal minimisation of the root mean square error (RMSE) 
of the fitted models, a wide range of initial instrumental 
values for the models were used. 

Model selection was based on the results from a leave-
one-out cross-validation procedure (James et al. 2013; 
Sileshi 2014). The leave-one-out cross-validation procedure 
involves splitting the data set of n observations into two 
parts, namely a training data set and validation data set. 
The validation data set comprises one single observation 
(x1, y1) and the training data set comprises the remaining 
{(x2, y2),…(xn, yn)} observations. The model is fitted on the 
n ŷ 
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Figure 2: Total tree volume (m3) distribution over diameter at 
breast height (DBH) and total tree height (ht) for Mtangatanga, 
Kongwe, Mua-livulezi and Tsamba forest reserves

Site
Total tree volume (m3) Branches volume (m3) Merchantable stem volume (m3)

n Mean Min. Max. SD n Mean Min. Max. SD n Mean Min. Max. SD
Mtangatanga 20 1.944 0.015 11.254 2.888 20 1.347 0.015 7.437 2.055 16 0.746 0.077 3.817 0.938
Kongwe 18 1.935 0.024 7.698 2.497 18 1.404 0.024 6.238 1.879 15 0.637 0.080 2.209 0.668
Mua-livulezi 18 1.955 0.009 10.442 2.948 18 1.190 0.009 6.571 1.846 14 0.983 0.077 3.871 1.222
Tsamba 18 1.340 0.025 9.027 2.313 18 0.706 0.025 4.581 1.233 15 0.761 0.153 4.446 1.163
Total 74 1.797 0.009 11.254 2.640 74 1.167 0.009 7.437 1.773 60 0.778 0.077 4.446 0.998

Table 3: Statistical summary of total tree, branches and merchantable stem volumes
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is made for the single observation in the validation data set, 
using its value x1. Since (x1, y1) was not used in the fitting 
process, square error (SE)  (y1 y)2 provides an estimate 
for the test error. This procedure is repeated n times and 
thus producing n test errors, SE1,…SEn. The leave-one-out- 
cross-validation estimate for the test error is the mean of 
these n test error estimates (MSE).

The cross-validation results were then used to calculate 
RMSE and mean prediction errors (MPE) for the models. 
RMSE and MPE were calculated as follows:  

RMSE MSE

RMSERMSE 0% 1 0
y

1

ˆ
MPE n i i

i

y y
n

MPEMPE (%) 100
y

where n is the number of sample trees, y1 is the observed 
volume of tree i, ŷi is the predicted volume of tree i, and 
y  is the mean observed volume. The RMSE gives an 
estimate of the predictive power of the model, and the 
RMSE (%) measures the proportion of the RMSE relative 
to the mean observed volume. The MPE measures the 
mean prediction error of the model (and possibly bias 
if significantly different from zero) and the MPE (%) 
measures the proportion of the MPE relative to the mean 
observed volume.

The final model selection was based on RMSE values. 
Models with insignificant parameter estimates, however, were 
not considered for selection, irrespective of RMSE values. 
For all models, we also displayed pseudo- 2 and MPE 
values. Student’s t-tests were done to determine whether the 
MPE values were significantly different from zero. 

We also tested a number of previously developed general 
total tree volume models for miombo woodlands on our data 
set (Table 4). Some of these models (Abbot et al. 1997; 
Mauya et al. 2014) were also examined by graphical plots 
that displayed the behaviour of each model over a wide 
range of diameters (also outside their respective model data 
ranges). For the model with ht as the independent variable 
(see Table 4; Mauya et al. 2014), we applied a height–
diameter model developed from our sample trees: 

ht 1.3  ). 

Results

Parameter estimates and fit statistics of different 
candidate general total tree, branches and merchant-
able stem volume models are presented in Table 5. The 
main criterion for selecting models was RMSE (lowest). 
However, the models with non-significant (p  0.05) 
parameter estimates were not considered for selection. 
Based on these criteria, model 1 was selected among the 
total tree volume models with dbh only as the independent 
variable, whereas model 4 was selected among those with 
both dbh and ht as independent variables. For branch 
volume, models 1 and 4 were selected. For the merchant-
able stem volume, model 1 was selected among those with 
dbh only, whereas model 5 was selected among those with 
both dbh and ht as independent variables.

The performance of the selected general total tree volume 
models was tested over the study sites (see Table 6). 
For the models with dbh only as an independent variable, 
no MPE values were significantly different from zero 
(p 0.05), whereas for the models with both dbh and ht as 
independent variables, a significant MPE value (p 0.05) 
was found for Tsamba. The mean standard deviations of the 
difference between observed and predicted values varied 
between sites from 18.7% to 47.7%.

We also fitted site-specific total tree models and selected, 
among these, based on RMSE and significance of 
parameter estimates (Table 7). For Mtangatanga, Kongwe, 
Mua-livulezi and Tsamba, we selected models 1, 1, 3 and 
3, respectively, among the models with dbh as the only 
independent variable. Among the models with both dbh 
and ht, we selected models 4, 5, 4 and 4, for Mtangatanga, 
Kongwe, Mua-livulezi, and Tsamba, respectively. 

Table 8 shows the results when testing the previously 
developed general total tree volume models on our 
data set. The model developed by Abbot et al. (1997) on 
average gave 23.6% higher total volume, whereas that 
of Mauya et al. (2014), with dbh only as the independent 
variable, on average gave 8.1% lower total volume than 
observed in our data set. None of these MPE values were 
significantly different from zero. All other tested models 
gave a significant over-estimation (p  0.05) of total volume. 
Figure 3 displays total volume over dbh for the models 
developed in this study and for some of the previously 
developed models.

Model Authors n Number of
sites

Number of 
species

dbh range
(cm)  Country

1 V  0.0168  0.000023*dbh3 Abbot et al. (1997a) 88 4 9 5.0–35.0 Malawi
2 V  0.00016*(dbh)2.46300 Mauya et al. (2014) 158 4 55 1.2–95.0 Tanzania
3 V  0.00011*(dbh)2.13300*(ht)0.57580 Mauya et al. (2014) 158 4 55 1.2–95.0 Tanzania
4 V  0.0001(dbh)2.032(ht)0.659 Malimbwi et al. (1994) 17 1 15 9.3–41.0 Tanzania
5 V  0.000048*(dbh)1.445*(ht)1.7026 Chamshama et al. (2004) 30 1 20 1.0–50.0 Tanzania
6 V  1.8067*ln(dbh)  1.1940*ln(ht) Mwakalukwa et al. (2014) 142 1 28 1.4–62.0 Tanzania
7 V  2.3351*ln(dbh) Mwakalukwa et al. (2014) 142 1 28 1.4–62.0 Tanzania

Table 4: Previously developed models tested on our data. V  total tree volume (m3), dbh  diameter at breast height (cm), ht  total tree 
height (m), and a, b and c are parameter estimates
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Discussion

The data set used for modelling, collected over four sites in 
different ecological zones spanning all of the three regions 
of Malawi, captured wide ranges of the natural variability in 
factors affecting tree growth, such as soil types, temperature 
and rainfall (see Table 1). The only previously developed 

volume prediction models for miombo woodlands in Malawi 
(Abbot et al. 1997) covered different ecological zones 
well, but lacked data from the northern part of Malawi. The 
representability and robustness of the developed models 
is also enhanced by using sample trees selected from an 
independent systematic sample plot inventory as well as 
inclusion of a number of large trees to secure appropriate 

Model Site n Observed
(m3)

Predicted
(m3)

MPE SD
(m3) (%) p-value   (m3)  (%)

General with Mtangatanga 20 1.944 2.226 0.1865 0.923 47.5
dbh only Kongwe 18 1.935 1.793   0.142    7.3 0.3711 0.655 33.9

Mua-livulezi 18 1.955 1.791  0.164    8.4 0.3488 0.720 36.8
Tsamba 18 1.340 1.332  0.008    0.6 0.9606 0.640 47.7
All 74 1.797 1.798 0.9969 0.756 42.1

General with Mtangatanga 20 1.944 2.006 0.6659 0.632 32.5
dbh and ht Kongwe 18 1.935 1.672  0.263  13.6 0.2260 0.887 45.9

Mua-livulezi 18 1.955 1.938  0.017    0.9 0.8442 0.366 18.7
Tsamba 18 1.340 1.527 0.0062 0.255 19.0
All 74 1.797 1.791  0.006    0.3 0.9340 0.600 33.4

* Significantly different from zero (p  0.05)

Table 6: Performance of the selected general total tree models over sites. MPE  mean prediction error

Model Site
Parameter estimate Pseudo-

2

RMSE MPE
a b c (m3) (%) (m3) (%) p-value

1. V  a  b*(dbh)2 Mtangatanga 0.088649 0.000957 0.96 0.749 38.5 0.6688
1. V  a  b*(dbh)2 Kongwe 0.001456 0.96 0.570 29.5 0.9357
3. V  a*(dbh)b Mua-livulezi 0.000073 2.697713 0.99 0.370 18.9 0.4999
3. V  a*(dbh)b Tsamba 0.000085 2.665223 0.99 0.454 33.9 0.038 2.8 0.7314
4. V  a*(dbh2*ht)b Mtangatanga 0.000501 0.816614 0.98 0.728 37.4 0.7191
5. V  a*(dbh)b *(ht)c Kongwe 0.000089* 2.371170 0.432938 0.96 0.918 47.4 0.023 1.2 0.9177
4. V  a*(dbh2*ht)b Mua-livulezi 0.000058 1.016152 0.99 0.565 28.9 0.4292
4. V  a*(dbh2*ht)b Tsamba 0.000056 1.010726 0.99 0.219 16.3 0.019 1.4 0.7257
* Non-significant parameter estimate at 0.05 significance level

Table 7: Site-specific total tree volume models. Selected models are highlighted in bold. RMSE  root mean square error, MPE  mean 
prediction error 

Volume section Model 
Parameter estimate Pseudo-

2
RMSE MPE

a b c  (m3)  (%) (m3) (%)  p-value
Total tree 1. V  a  b*(dbh)2 0.001206 0.92 0.937 52.2 0.8564

(n  74) 2. V  a  b*dbh  c*(dbh)2 0.034828* 0.000861 0.92 1.088 60.5 0.6626
3. V  a*(dbh)b 0.000487* 2.210493 0.90 1.302 72.5 0.7142
4. V  a*(dbh2*ht)b 0.000218 0.896561 0.95 0.697 38.8 0.9190
5. V  a*(dbh)b*(ht)c 0.000192 1.909726 0.774122 0.94 1.029 57.3 0.7095
6. V  a  b*(dbh)2 c*ht 0.001051 0.093967 0.93 0.884 49.2 0.7809

Branches 1. V  a  b*(dbh)2 0.000807 0.91 0.651 55.8 0.8451
(n  74) 2. V  a  b*dbh  c*(dbh)2 0.021418* 0.000594 0.91 0.774 66.3 0.6738

3. V  a*(dbh)b 0.000235* 2.283238 0.88 0.966 82.8 0.6944
4. V  a*(dbh2*ht)b 0.000152 0.887957 0.88 0.672 57.6 0.009 0.8 0.9051
5. V  a*(dbh)b*(ht)c 0.000148 2.137749 0.379827* 0.89 0.990 84.8 0.6904
6. V  a  b*(dbh)2  c*ht 0.000763 0.026683* 0.91 0.708 60.7 0.7879

Merchantable 1. V  a  b*(dbh)2 0.015339* 0.000396 0.75 0.553 71.1 0.8791
stem (n  60) 2. V  a  b*dbh  c*(dbh)2 0.023634 0.000180* 0.76 0.581 74.7 0.7212

3. V  a*(dbh)b 0.000361* 2.027542 0.75 0.582 74.8 0.8254
4. V  a*(dbh2*ht)b 0.000121* 0.853676 0.89 0.411 52.8 0.007 0.9 0.8896
5. V  a*(dbh)b*(ht)c 0.000057 1.437605 1.517811 0.93 0.295 37.9 0.010 1.3 0.7992
6. V  a  b*(dbh)2  c*ht 0.000271 0.095167 0.84 0.427 54.9 0.9929

* Non-significant parameter estimate at  0.05 significance level

Table 5: General total tree, branches and merchantable stem volume models. RMSE  root mean square error, MPE  mean prediction error. 
Selected models are highlighted in bold  
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predictions of volume for larger trees (see also Figure 3). 
For mature tropical forests this is of particular importance 
because large trees often account for very large parts of the 
biomass (Pinard and Putz 1996; Zahabu 2008).

Previous studies have revealed that tree species richness 
is high in miombo woodlands, with numbers ranging from 
80 to 300 (Dewees et al. 2011; Giliba et al. 2011; Kalaba et 
al. 2012; Mugasha et al. 2013; Mwakalukwa et al. 2014b). 
The total number of tree species identified during the forest 
inventories for our sites was 139 and the number included 
in the modelling data set was 33 (24% of the total). This 
proportion is, of course, relatively low when considering the 
presumably high tree species diversity among the species 
found in these woodlands. There is, however, no reason 
to believe that our tree selection procedures caused any 
biases in the models because we first emphasised the 
inclusion of the most abundant species and then selected 
randomly among the remaining ones (see Appendix). 
Such biases, however, are much more likely to appear in 
the general total tree volume model developed by Abbot et 
al. (1997) because only species defined as timber species 
were included in the modelling data set.

The developed models offer options for forest inventory 
scenarios in which data on dbh only or both dbh and ht 
are available. None of the selected general total tree 
models had MPE values significantly different from zero 
(see Table 5). Not surprisingly, the general performance 
criteria (RMSE and MPE) of the models with both dbh and 
ht as independent variables were better than those of the 
models with dbh only. Still much of the variation in volume 
was explained by dbh alone and the improvement was 
relatively small when including ht. This result also conforms 
to previous studies (Abbot et al. 1997; Mauya et al. 2014; 
Mwakalukwa et al. 2014a). 

If dbh and ht of all trees are measured in an inventory, 
the model including both these variables should, of 
course, be applied. Height measurements, however, are 
time consuming. Therefore height measurements in most 
cases are only done for sample trees, and subsequently 
height–diameter models are developed to predict heights 
that can be used as input for a volume model. When 
applying a height–diameter model, however, we include 
additional uncertainty related to the volume prediction 
that may reverse the improvements we get from applying 
a model with both dbh and ht as independent variables. 
It is therefore important that the prevalent tree forms are 
represented among the sample trees used to develop 
the height–diameter model. It is also important that we 

are conscious of the challenges in measuring height in 
closed-canopy forests, where differences in crown shapes, 
inaccurate sights of tree tops and steep terrain (Hunter et 
al. 2013; Larjavaara and Muller-Landau 2013) may lead to 
large height measurement errors. With appropriate sample 
trees and small measurement errors, the accuracy of the 
volume predictions will probably be improved by including 
ht as independent variable, in spite of the uncertainty added 
by using a height–diameter model.

When our selected general total tree volume models 
were tested on our data set over different sites, none of 
the MPE values were significantly different from zero, 
except for the model with both dbh and ht as independent 
variables in Tsamba, where volume was over-estimated 
(see Table 6). The MPE values, however, varied from 

obtain MPE values different from zero (significant or not) 
when we apply the general model on individual sites. The 
obvious conclusion is therefore to apply site-specific total 
tree models (Table 7) for local forest inventories taking 
place in the respective sites (Abbot et al. 1997; Mauya et 
al. 2014). The MPE values shown in Table 6 are also an 
indication of the kind of errors we can expect when we 

Model
Observed Predicted MPE SD

(m3) (m3) (m3) (%) p-value (m3) (%)
Abbot et al. (1997a) (dbh only) 1.797 2.221 0.1489 2.499 139.1
Mauya et al. (2014) (dbh only) 1.797 1.652 0.150 8.1 0.2054 0.981 54.6
Mwakalukwa et al. (2014b) (dbh only) 1.797 1.287  0.510* 28.4 0.0001 1.000 55.6
Mauya et al. (2014) (dbh and ht) 1.797 1.481 0.316* 17.6 0.0033 0.893 49.7
Malimbwi et al. (1994) (dbh and ht) 1.797 1.126 0.671* 37.4 0.0001 1.133 63.0
Chamshama et al. (2004) (dbh and ht) 1.797 0.919 0.879* 48.9 0.0001 1.397 77.7
Mwakalukwa et al. (2014b) (dbh and ht) 1.797 1.482 0.316* 17.6 0.0023 0.859 47.8
* Significantly different from zero (p  0.05)

Table 8: Previously developed total tree volume models tested on our data set. MPE  mean prediction error

General with dbh only
General with dbh and ht
Abbot et al. (1997) with dbh only
Mauya et al. (2014) with dbh only
Mauya et al. (2014) with dbh and ht
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Figure 3: Display of total tree volume over diameter at breast 
height (dbh) for models developed in this study and previously. For 
the models with ht included as an independent variable, a height–
diameter model developed from our sample trees was applied. 
Vertical dotted lines are the maximum dbh of the modelling data 
sets used by Abbot et al. (1997a), Mauya et al. (2014) and in this 
study (CS), respectively
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apply our general model across Malawi (e.g. in general 
forest inventories such as a National Forestry Inventory). 
For individual sites there might be quite large deviations 
from the ‘correct’ volume while summarised over many 
sites the deviation will be close to zero. 

As previously mentioned, tree section models for stems 
may be useful when planning commercial extraction of 
timber, whereas models for branches may be useful for 
quantification of volume for domestic fuelwood or produc-
tion of charcoal. All selected tree section models produced 
MPE values not significantly different from zero (Table 5) 
indicating an appropriate performance. Generally, the 
model fit statistics are a bit poorer when the section models 
are compared with the total tree volume models. Similar 
results have been observed previously (Dadzie 2013; 
Mauya et al. 2014) and can probably be attributed to very 
diverse branching patterns among the trees. The stem 
volume, for example, is defined as the volume up to where 
the first large branch protrudes the stem. This volume 
varies a lot between trees, and thus affects variations in 
both stems and branches volumes used for modelling.

The results when testing the previously developed 
models on our data set (Table 8) highlight the dangers of 
applying models beyond their geographical ranges because 
a change in geographical site in most cases also mean 
changes in ecological, climatic and edaphic conditions. All 
the site-specific (modelling data set collected from one site) 
total tree volume models developed in Tanzania (Malimbwi 
et al. 1994; Chamshama et al. 2004; Mwakalukwa et al. 
2014b) significantly under-estimated volume (MPE % 
values varied from 18% to 48%). For the general models 
(modelling data set collected from one site) developed in 
Tanzania (Mauya et al. 2014), the under-estimations were 
somewhat lower (MPE % varied from 8% to 18%), and 
they were only partly statistically significantly different from 
zero. One reason for getting higher MPE % values from 
site-specific models as compared with general models 
could be that the site-specific models are based on 
narrower data ranges (see Table 4), whereas the general 
models cover much larger data ranges, and are thus less 
vulnerable when applied outside this range.

Since the general total tree volume model (modelling 
data set collected from one site) by Abbot et al (1997) 
(Table 8) was developed based on selected timber 
species only, it was not surprising that total tree volume 
was over-estimated (although not statistically significant 
because of large variation between observations, 
i.e. standard deviation of 139%). This was confirmed by 
the significant drop in MPE % when this model was applied 
on our data set solely to the selected timber species. This 
also shows that the general models developed in this study 
perform much better than the general model developed by 
Abbot et al. (1997) if we aim for quantifying total volume 
of trees in general forest inventories over large areas. This 
does not mean, however, that the species-specific models 
developed by Abbot et al. (1997) should not be applied 
when relevant, i.e. when predicting volumes for the tree 
species present in the data used for the development of 
his models. These models were based on a very large data 
set, and as such they are very likely to produce accurate 
volumes for the respective tree species.

The number of sample trees in our data set was 74. 
This is relatively few trees as compared with those used 
for the general models developed by Mauya et al. (2014) 
(158 sample trees) and Abbot et al. (1997) (88 sample 
trees). Given that our data set covers wide ranges in 
ecological conditions and in tree size, we do not consider 
this to be a major problem. The fact, however, that our data 
set comprised 33 species out of 139 species observed in 
the inventories indicate that if more tree species were 
included it would probably reduce uncertainty when applying 
the models over large areas. The data set displayed in the 
Appendix therefore in future could be supplemented by 
more species and the models recalibrated.

Conclusions

We have developed general models for predicting total tree, 
merchantable stem and branches volume. The model perfor-
mances and the evaluations of the models suggest that 
they can be used over a wide range of geographical and 
ecological conditions in Malawi with an appropriate accuracy 
in predictions. The appropriateness of our models was also 
supported by the fact that the mean prediction errors of these 
models were much lower than the mean prediction errors of 
some previously developed models tested on our data. 
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Site Scientific name Local name dbh
(cm)

ht
(m)

Stem 
volume

(m3)

Branch 
volume

(m3)

Total tree 
volume

(m3)
Mtangatanga Brachystegia glaucescens Musani 6.0 4.4 0.015 0.015

Erica banguelensis Msankhanya 9.4 4.0 0.028 0.028
Erica banguelensis Msankhanya 13.0 6.0 0.056 0.056
Uapaca kirkiana Msuku 15.0 5.0 0.116 0.116
Julbernadia paniculata Mtondo 16.5 8.0 0.077 0.059 0.136
Isoberlinia angolensis Kabale 19.4 12.0 0.191 0.180 0.371
Brachystegia boehmii Mombo 20.2 8.0 0.184 0.134 0.318
Uapaca kirkiana Msuku 21.0 7.8 0.143 0.175 0.318
Brachystegia utilis Nzale 23.0 10.0 0.212 0.206 0.418
Brachystegia taxifolia Mchinji 23.6 10.0 0.158 0.218 0.376
Julbernadia paniculata Mtondo 27.3 10.0 0.214 0.441 0.655
Isoberlinia angolensis Kabale 28.6 11.0 0.218 0.541 0.759
Brachystegia spiciformis Chumbe 36.0 12.0 0.650 0.697 1.347
Brachystegia longifolia Sanga 36.0 10.8 0.673 0.852 1.525
Brachystegia glaucescens Musani 48.4 14.5 0.832 1.362 2.194
Brachystegia glaucescens Musani 50.0 16.0 1.138 1.879 3.017
Brachystegia spiciformis Chumbe 60.0 18.0 1.630 3.996 5.626
Brachystegia glaucescens Musani 68.0 10.5 0.645 3.424 4.069
Brachystegia glaucescens Musani 78.0 17.0 1.148 5.127 6.275
Brachystegia glaucescens Musani 111.2 18.0 3.817 7.437 11.254

Kongwe Julbernadia paniculata Mtondo 9.0 5.0 0.024 0.024
Uapaca kirkiana Msuku 10.2 5.0 0.034 0.034
Brachystegia spiciformis Chumbe 13.0 6.0 0.109 0.109
Brachystegia manga Mpapa/Bovo 17.3 10.0 0.080 0.112 0.192
Julbernadia paniculata Mtondo 21.0 11.0 0.152 0.166 0.318
Brachystegia utilis Nzale 24.5 9.0 0.225 0.294 0.519
Monotes africanus Mkalakate 27.2 10.0 0.145 0.399 0.544
Brachystegia spiciformis Chumbe 27.5 9.3 0.205 0.473 0.678
Brachystegia boehmii Mombo 30.8 14.0 0.266 0.446 0.712
Uapaca kirkiana Msuku 34.0 12.0 0.245 0.764 1.009
Parinari curatellifolia Muula 37.3 12.0 0.426 0.926 1.352
Brachystegia manga Mpapa/Bovo 38.1 17.0 0.754 1.575 2.329
Cussonia arborea Mbwabwa 38.4 7.0 0.153 0.633 0.786
Brachystegia spiciformis Chumbe 38.7 14.0 0.473 1.259 1.732
Brachystegia manga Mpapa/Bovo 52.0 22.0 1.035 2.461 3.496
Brachystegia manga Mpapa/Bovo 61.7 17.0 1.728 4.935 6.663
Brachystegia spiciformis Chumbe 71.2 18.0 2.209 4.417 6.626
Erythrina abyssinica Muwale 75.7 12.0 1.460 6.238 7.698

Mua-livulezi Markhamia obtusifolia Msewa 5.3 5.0 0.009 0.009
Combretum apiculatum Kakunguni 6.0 3.0 0.011 0.011
Bauhinia petersiana Mphandula 9.1 5.2 0.037 0.037
Bauhinia thoningii Msekese 13.0 5.0 0.088 0.088
Diplorhynchus condylocarpon Thombozi 16.2 10.4 0.077 0.058 0.135
Anonna senegalensis Mpoza 17.0 8.0 0.081 0.039 0.120
Markhamia obtusifolia Msewa 20.0 9.3 0.100 0.122 0.222
Pterocarpus rotundifolius M’balitsa 22.0 8.5 0.218 0.182 0.400
Albizzia versicolor Mtangatanga 23.2 10.4 0.150 0.195 0.345
Bauhinia petersiana Mphandula 27.4 7.9 0.157 0.333 0.490
Diplorhynchus condylocarpon Thombozi 31.8 13.0 0.351 0.381 0.732
Vachellia galpinni Mgundanjira 37.7 14.0 0.703 0.543 1.246
Pterocarpus rotundifolius M’balitsa 42.0 15.0 0.680 0.732 1.412
Brachystegia spiciformis Chumbe 47.1 15.5 1.018 1.795 2.813
Brachystegia bussei Mtwana 61.0 20.5 1.352 3.216 4.568
Pseudolachnostaylis maprouneifolia Msolo 61.0 15.6 1.674 3.853 5.527
Brachystegia spiciformis Chumbe 69.5 21.0 3.332 3.262 6.594
Brachystegia bussei Mtwana 81.7 22.0 3.871 6.571 10.442

Tsamba Uapaca kirkiana Msuku 8.4 6.5 0.025 0.025
Brachystegia floribunda Tsamba 9.5 9.0 0.037 0.037
Pseudolachnostaylis maprouneifolia Msolo 12.4 7.0 0.102 0.102
Brachystegia floribunda Tsamba 19.9 8.0 0.154 0.173 0.327
Parinari excelsa Mpembu 21.0 10.0 0.254 0.071 0.325

Appendix: Data set used for model development. dbh  diameter at breast height, ht  total tree height
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Site Scientific name  Local name dbh
(cm)

ht
(m)

Stem 
volume

(m3)

Branch 
volume

(m3)

Total tree 
volume

(m3)
Tsamba Julbernadia globiflora Kachumbe 21.0 10.0 0.199 0.114 0.313

Brachystegia spiciformis Chumbe 21.2 12.0 0.205 0.152 0.357
Uapaca sansibarica Msokolowe 22.2 10.0 0.180 0.220 0.400
Pericorpsis angolensis Muwanga 28.4 8.0 0.306 0.177 0.483
Uapaca kirkiana Msuku 30.3 11.0 0.326 0.674 1.001
Pterocarpus angolensis Mlombwa 31.3 17.0 0.370 0.603 0.973
Brachystegia utilis Nzale 32.0 14.0 0.307 0.528 0.835
Uapaca sansibarica Msokolowe 32.0 12.0 0.305 0.621 0.926
Brachystegia floribunda Tsamba 34.5 12.0 0.597 0.146 0.743
Julbernadia globiflora Kachumbe 37.5 18.0 0.734 0.732 1.466
Faurea speciosa Chisese 38.7 16.0 0.608 0.351 0.959
Julbernadia globiflora Mchenga 67.4 21.0 2.426 3.392 5.818
Brachystegia spiciformis Chumbe 75.0 25.0 4.446 4.581 9.027

Appendix (cont.)
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Abstract: In this study we present general (multiple tree species from several sites) above- and
belowground biomass models for trees in the miombo woodlands of Malawi. Such models are
currently lacking in the country. The modelling was based on 74 trees comprising 33 different
species with diameters at breast height (dbh) and total tree height (ht) ranging from 5.3 to 2 cm and
from 3.0 to 25.0 m, respectively. Trees were collected from four silvicultural zones covering a wide
range of conditions. We tested different models including dbh, ht and wood specific gravity (ρ) as
independent variables. We evaluated model performance using pseudo-R2, root mean square error
(RMSE), a covariance matrix for the parameter estimates, mean prediction error (MPE) and relative
mean prediction error (MPE%). Computation of MPE% was based on leave-one-out cross-validation.
Values of pseudo-R2 and MPE% ranged 0.82–0.97 and 0.9%–2.8%, respectively. Model performance
indicated that the models can be used over a wide range of geographical and ecological conditions
in Malawi.

Keywords: root to shoot ratio; root sampling; tropical dry forest; error estimation; carbon

1. Introduction

Miombo woodlands, classified as dry forests, are dominated by woody plants, primarily trees,
whose canopy cover more than 10% of the ground surface, occurring in a climate with a dry season of
three months or more [1]. The woodlands are dominated by deciduous trees of the genera Brachystegia,
Julbernadia and Isoberlinia, which cover an area of approximately 2.7 million km2 spanning ten countries
in eastern and central Africa including Malawi [1–5]. Miombo woodlands may be divided into dry and
wet miombo. Dry miombo occur in areas receiving less than 1000 mm of rainfall annually in Zimbabwe,
central Tanzania, and in the southern areas of Mozambique, Malawi and Zambia. Wet miombo occur
in areas receiving more than 1000 mm of annual rainfall in eastern Angola, northern Zambia, south
western Tanzania and central Malawi [1,6]. In Malawi, miombo woodlands constitute 92.4% of the
country’s total forested area, and are mainly located in forest and game reserves established for water
catchment as well as for soil and biodiversity conservation [2,7].

Miombo woodlands play a critical role in the livelihoods of Malawian communities because they
provide social, economic, and environmental benefits, such as firewood, timber, medicinal plants, food,
and catchment protection, among others [8]. Increased population growth, currently estimated at an
annual growth rate of 2.8% [9], has led to higher demand for firewood, charcoal, and timber. Thus, the
woodlands are being deforested at an annual rate of approximately 0.9%, which is among the highest
rates in Africa [10].

To sustain the provision of these services, there is an urgent need to implement sustainable
forest management measures including estimation of growing stock, productivity, forest biomass
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and yield [11,12]. Estimation of forest biomass is the first step towards calculation of carbon stocks.
Due to the natural capacity of trees to sequester carbon dioxide, miombo woodlands are considered
an important element in global climate change mitigation programs such as the reducing emissions
from deforestation and forest degradation mechanism (REDD+), which provides a framework where
developing countries may be financially rewarded for reducing carbon emissions.

The Malawi government recently established a baseline for forest biomass and carbon stock
estimates for targeted forest reserves in miombo woodlands of Malawi [7]. However, the estimates are
unreliable because of the nature of the allometric models that were used. For example, the aboveground
forest biomass estimates were based on a pan-tropical biomass model developed by Chave et al. [13].
This model was developed using data from trees in tropical America and Asia but did not include
Africa or the miombo woodlands. In addition, belowground forest biomass estimates were based on
an allometric model developed by Cairns et al. [14]. Unlike Chave et al. [13], this dataset included some
trees from Africa, i.e., Democratic Republic of the Congo, Ghana and the Ivory Coast. However, the
trees were from moist evergreen tropical forests, whose structure is different from miombo woodlands.

By 2011 there were approximately 370 allometric models for predicting tree biomass in
sub-Saharan Africa [15]. The majority of these models were developed for tropical rainforests in
western Africa. Among the models in south-eastern Africa, only a few were developed for miombo
woodlands. These models consisted of: (a) models developed for specific tree species based on a
dataset from one site (Mwakalukwa et al. [16]); (b) models developed for specific tree species based on
a dataset from several sites (Mate et al. [17]); (c) models developed for multiple tree species based on
a dataset from one site (Chidumayo [18], Chamshama et al. [19], Malimbwi et al. [20], Ryan et al. [4],
Mwakalukwa et al. [16]) and (d) models developed for multiple tree species based on a dataset from
several sites (Mugasha et al. [21]).

Miombo woodlands are characterized by high tree species diversity, and the reported number
of species from assessments at different spatial scales ranges from 80 to 300 [22–27]. Due to such
large number of tree species, the applicability of species-specific models is limited. Furthermore,
applicability of single-site models over different ecological zones is also limited due to their narrow
geographical range. A scenario with general models, combining multiple species collected over several
sites, would therefore be the best alternative, for example, in cases where national forest inventories
are to be carried out. No such models exist for miombo woodlands in Malawi.

Most of the previously mentioned studies focused on aboveground biomass. However, estimation
of belowground biomass in miombo woodlands is also vital. Belowground tree biomass, as a basis
for model development, can be determined using complete excavation of roots, soil core sampling
for fine and medium roots, and root sampling (complete excavation of a few sampled roots of a
tree). Estimating belowground tree biomass can be done by using the root to shoot ratio (RS-ratio),
i.e., the ratio between belowground and aboveground dry weights (see e.g., [28,29]), or through
allometric models. Belowground biomass models for miombo woodlands in neighbouring countries
were developed by Mugasha et al. [21], Chidumayo [18] and Ryan et al. [4].

The Inter-governmental Panel on Climate Change (IPCC) (see [30]) requires biomass and carbon
reporting under the REDD+ mechanism to be accompanied by appropriate measures of uncertainty.
Uncertainties are likely to occur in the following steps in biomass quantification: (i) when applying the
sampling design (number and size of plots); (ii) during tree measurements and (iii) when applying the
biomass model (e.g., [31,32]). The model-related uncertainty in this context stems from sources such as:
(a) model misspecifications; (b) uncertainties in values of independent variables; (c) residual variability
and (d) uncertainty in the model parameter estimates (see e.g., [33,34]). Among these, uncertainty in
model parameter estimates has a great influence [35]. However, very few studies report uncertainty in
the model parameter estimates, i.e., the covariance structure of the parameter estimates of developed
models, and this makes it impossible to analyse the totality of the uncertainty related to estimated
forest biomass (see [35]).
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The objective of this study is to develop general (multiple tree species from several sites)
above- and belowground biomass models applicable across the entire distribution of miombo
woodlands in Malawi. The models are also accompanied with information on their covariance
structure to enable quantification of model-related uncertainties in biomass and carbon estimation.
Furthermore, we provide basic statistics on RS-ratios and compare the performance of our models
with existing models from miombo woodlands.

2. Materials and Methods

2.1. Site Description

The sample trees for model development were selected from four forest reserves, namely
Mtangatanga, Kongwe, Mua-livulezi and Tsamba (Figure 1, Table 1). The selection of sites was based
on geographical location, management regime, silvicultural classification, and climatic conditions to
capture a wide range of factors influencing tree growth [1].

Figure 1. Map of Malawi showing the location of the study sites.

Table 1. Geographical location, management regime, silvicultural classification and climatic conditions
of study sites.

Mtangatanga Kongwe Mua-livulezi Tsamba

Region Northern Central Central Southern
District Mzimba Dowa Dedza Neno

Location 11˝561 S
33˝421 E

13˝351 S
33˝551 E

14˝211 S
34˝371 E

15˝211 S
34˝361 E

Area (ha) 8443 1813 12147 3240
Management regime Co-management Government Co-management Government
Altitude (m) 1500–1700 1000–1500 400–900 700–1500
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Table 1. Cont.

Mtangatanga Kongwe Mua-livulezi Tsamba

Dominant soil type Humic ferrallitic Ferruginous Lithosols Ferrallitic

Silvicultural classification Moist
Brachystegia

Moist
Brachystegia Dry Brachystegia Moist

Brachystegia
Mean minimum annual temp (˝C) 6 6 13 8
Mean maximum annual temp (˝C) 29 29 32 28
Total annual rainfall range (mm) 960–1050 960–1050 840–960 1200–1600
Rain period December–April November–April November–April November–April
Dry months May–November May–October May–October May–October

Data sources: Rainfall and temperature data (1975–2005) from Ministry of Natural Resources, Energy and
Mining, Department of Climate Change and Meteorological Services in Malawi. Soil and silvicultural
classification according to Hardcastle [36].

2.2. Selection of Sample Trees

We conducted systematic sample plot inventories covering each site to collect information on
ranges in tree size and species distribution to guide the selection of sample trees (e.g., [21]). We
used circular plots with radius 11.28 m (400 m2). On each plot, we identified all tree species and
measured their diameter at breast height (dbh) for all trees with dbh >4 cm. In addition, we sampled
three trees within each plot, (one with the smallest, one with a medium and one with the largest
dbh), and measured their total height (ht). The inventories covered a total of 221 plots with 70, 30,
71 and 50 plots for Mtangatanga, Kongwe, Mua-livulezi and Tsamba, respectively. The maximum
recorded dbh values based on all sample plots in Mtangatanga, Kongwe, Mua-livulezi and Tsamba
were 61 cm, 73 cm, 70 cm and 56 cm, respectively, while the number of species identified for the
respective sites were 66, 45, 77 and 65. In total, for all the study sites, we identified 139 species. The
most frequent species for Mtangatanga, Kongwe, Mua-livulezi and Tsamba were Uapaca kirkiana Müll.
Arg., Brachystegia spiciformis Benth., Diplorhynchus condylocarpon (Müll. Arg.) Pichon and Uapaca
kirkiana Müll. Arg, respectively.

A total of 74 trees were selected based on the observed dbh and tree species frequency within
the sites. We ensured that the trees were selected from all dbh classes observed in the sample plot
inventories. In addition, we selected a total of eight trees with larger dbh than those observed in
the sample plot inventories to reduce uncertainty when predicting biomass of very large trees. We
also selected at least one tree among the eight most frequent species observed in each site. The
remaining sample trees were selected randomly among all species. In total, 33 tree species were
selected, comprising 10, 10, 12 and 10 different tree species in Mtangatanga, Kongwe, Mua-livulezi
and Tsamba, respectively.

Before felling (at a stump height of 30 cm), we recorded scientific and local names, and measured
dbh, stump diameter (at 30 cm above ground) and ht (Tables 2 and A1). We used either a calliper
or a diameter tape, depending on tree sizes, to measure dbh and stump diameter, while a Suunto
hypsometer was used for all ht measurements. These trees have previously been used to develop
general volume models for miombo woodlands in Malawi [37].

Table 2. Mean, minimum, maximum and standard deviation (STD) of diameter at breast height (dbh)
and total tree height (ht) for sample trees at each site.

Site No. of Trees
dbh (cm) ht (m)

Mean Min. Max. STD Mean Min. Max. STD

Mtangatanga 20 35.5 6.0 111.2 26.7 10.7 4.0 18.0 4.3
Kongwe 18 34.9 9.0 75.7 19.6 11.7 5.0 22.0 4.7
Tsamba 18 30.2 8.4 75.0 17.5 12.6 6.5 25.0 5.1

Mua-livulezi 18 32.8 5.3 81.7 23.0 11.6 3.0 22.0 5.8
All 74 33.4 5.3 111.2 21.8 11.6 3.0 25.0 4.9
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2.3. Destructive Sampling

We separated each sample tree into the following aboveground components: merchantable stem
(from the stump at 30 cm above ground to the point where the first branches start), branches (all parts
of the tree above the defined merchantable stem and up to a minimum diameter of 2.5 cm) and twigs
(all branches with a diameter less than 2.5 cm). For small trees not considered suitable for timber
production (dbh < 15 cm, in total 14 trees), merchantable stem biomass were allocated to branches
(e.g., [37,38]). During the work on destructive sampling most of the trees had already started to shed
leaves. We therefore excluded leaves from twigs, and leaves were not included in the models.

To facilitate measurements, stems and branches were crosscut into manageable pieces of
approximately 1–2 m in length and then weighed for fresh weight using a mechanical hanging
spring balance (0–200 kg). Twigs from each tree were separately bundled and weighed for fresh weight.
Three small sub-samples, varying in weight between 0.1 and 1.0 kg, from each of the components
(merchantable stem, branches and twigs) were taken from each sample tree and weighed with an
electronic balance for fresh weight and finally brought to laboratory for drying. The sub-samples were
taken from the biggest, medium and smallest diameter parts of each tree component.

For determination of belowground biomass of the sample trees, our strategy involved root
sampling at two levels, namely main roots (roots branching directly from the root crown) and side
roots (roots branching from the main roots). The first step in excavation involved clearing the topsoil
around the tree base to expose the points at which the roots were branching. We then selected three
main roots, i.e., the main roots with the largest, medium and smallest diameters, and recorded their
diameters at the points where they joined the root crown. The diameters of all main roots not excavated
were recorded at the point where they were joined the root crown. From each of the selected main
roots, we selected up to three side roots, i.e., the side roots with the largest, medium and smallest
diameters. For each of the selected side roots, we recorded the diameter where they joined the main
root. For the remaining side roots, we also recorded the diameters at the branching point from the main
root. The selected side and main roots were then fully excavated up to the minimum diameter of 1 cm
and then weighed. In cases where the full roots could not be excavated due to obstacles such as rocks,
the diameter of the last bit of the root was recorded and we treated the remaining unexcavated part as
a side root. An effort was made to ensure that all the main, side and taproots were fully excavated
up to the last 1 cm. In total, 38 out of the 41 trees, had taproots. Out of the 38 trees, we were not able
to fully excavate the taproots for 16 trees. In such cases, the diameter at the breaking point of the
unexcavated taproot was recorded and treated as a side root. On average, trees were dug down to
2.5 m depth. Lastly, we recorded the fresh weight of the root crown for each tree.

For all sample trees, three small sub-samples, varying in weight between 0.1 and 1.0 kg, were
taken from each main and side root, and one was taken from the root crown. We obtained the fresh
weight of the sub-samples using an electronic balance and brought them to the laboratory for drying.

2.4. Laboratory Analyses and Determination of Biomass Dry Weight

All sub-samples, from both above- and belowground, for each tree were dried in an oven in
a laboratory at a temperature of 80 ˝C until a constant weight was achieved (constant weight was
observed in 2–3 days). We then recorded dry weights of the individual sub-samples. Subsequently,
we used the sub-sample dry and fresh weights to determine the tree- and section specific dry to fresh
weight ratios (DF-ratios) (see Table A2).

We then calculated the dry weight of each section as a product of tree- and section specific
DF-ratios and the fresh weights of the respective trees and tree sections. Subsequently, we computed
the total aboveground dry weight by summing the dry weights of the merchantable stem, branches
and twigs of each tree (Figure 2, Table A1).



Forests 2016, 7, 38 6 of 22

Figure 2. Total aboveground tree biomass (kg dry weight) distribution over dbh (cm) and ht (m) for
Mtangatanga, Kongwe, Mua-livulezi and Tsamba and forest reserves.

To determine the total belowground dry weights of the excavated parts of the trees we first
converted all the fresh weights from the different sections to dry weight biomass by multiplying the
tree- and section specific DF-ratios and their respective fresh weights. We then developed a general
(combining data from all sites) side root model by regressing the dry weight biomass of the fully
excavated side roots and their diameters (cm). We assumed the relationship between side root biomass
and root diameter (similarly for main roots, see below) to exhibit a power-law relationship described as:

B “ a ˆ db (1)

where B = dry weight biomass of a side root or main root (kg); d = diameter (cm) of a side or main root
at the point it is joining the main root or the root crown, respectively; a and b are parameter estimates.
The following side root model was developed:

B “ 0.198102 ˆ d1.656968, Pseudo ´ R2 “ 0.67, MPE% “ ´2.0 (2)

where

Pseudo ´ R2 “ 1 ´
ˆ

SSR
CSST

˙
(3)
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SSR is the sum of squared residuals and CSST is the corrected total sum of squares. The mean
prediction error (MPE), and the relative mean prediction error (MPE%) is calculated as

MPE “
ÿ

n
i“1

pyi ´ ŷiq
n

, MPE% “ MPE
y

ˆ 100 (4)

where yi is the observed biomass of tree i, ŷi is the predicted biomass of tree i and y is the mean observed
biomass. Both MPE and MPE% are based on leave-one-out-cross validation. The MPE% value for the
side root model was not significantly different from zero indicating appropriate model performance.

The side root model was used to predict the dry weight biomass of all the side roots that were not
excavated for the main sample root. The total dry weight of all side roots for each main sample root
was then determined by summing dry weights of the excavated side roots and predicted dry weights
of unexcavated side roots. Finally the complete dry weight of the sample main root was determined
by summing the total dry weights of all side roots and the excavated parts of the main root. The
following main root model was then developed and applied to predict the dry weights of main roots
not excavated;

B “ 0.063132 ˆ d2.174388, Pseudo ´ R2 “ 0.79, MPE% “ ´0.4 (5)

The MPE% value for the main root model was not significantly different from zero indicating
appropriate model performance. To determine the dry weight of unexcavated parts of the taproots
(16 trees), we applied the general side root model.

Total belowground dry weight biomass for each tree was finally determined by adding the dry
weights of all excavated and unexcavated main roots, dry weight of the taproot, and the dry weight of
the root crown (Figure 3, Table A1).

Figure 3. Cont.
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Figure 3. Total belowground tree biomass (kg dry weight) distribution over dbh (cm) and ht (m) for
Mtangatanga, Kongwe, Mua-livulezi and Tsamba and forest reserves.

2.5. Model Development and Evaluation

Before fitting the models, we assessed the basic diagnostic plots of biomass over dbh and ht. As
expected, the plots indicated non-linear patterns in the relationships between biomass and dbh and ht
(Figures 2 and 3). Since wood specific gravity (ρ) is considered as an important factor for explaining
variation in biomass (e.g., [39]), we included this variable in the models. We therefore tested the
following models:

Model 1 : B “ a ˆ dbhb (6)

Model 2 : B “ a ˆ dbhb ˆ htc (7)

Model 3 : B “ a ˆ dbhb ˆ ρc (8)

Model 4 : B “ a ˆ dbhb ˆ htc ˆ ρd (9)

where B is biomass (kg), dbh is diameter at breast height (cm), ht is total tree height (m) and ρ is
the species-specific mean wood specific gravity (g/cm3) extracted from the global wood density
database [40,41] and a, b, c and d are parameter estimates.

Since the data was collected from different study sites in different geographical regions and
silvicultural zones across Malawi, we anticipated that individual tree attributes would be different
depending on site. We therefore initially fitted mixed effects models, with site as a random effect, to the
side root, main root and total belowground and aboveground biomass datasets using PROC NLMIXED
of SAS 9.4 [42]. This procedure fits nonlinear mixed models, that is, models in which both fixed and
random effects enter nonlinearly. PROC NLMIXED fits nonlinear mixed models by maximizing an
approximation to the likelihood integrated over the random effects using the maximum likelihood
estimation method.

These mixed effects models were compared with weighted nonlinear regression models fitted
using PROC MODEL in SAS 9.4 [42]. This procedure fits models in which the relationships among the
variables comprise a system of one or more nonlinear equations using the full information maximum
likelihood (FIML) estimation method.

For each model derived from the two procedures, i.e., mixed effects and weighted regression, we
computed Akaike Information Criterion (AIC) values [43]. AIC measures the model goodness-of-fit
whilst correcting for model complexity. We used the AIC values to compare mixed effects models with
the weighted regression nonlinear models. The results showed that, in all cases, weighted regression
models produced lower AIC values relative to mixed effects models. We thus decided to develop our
final models based on weighted regression.

Model efficiency and performance were assessed based on results from a leave-one-out cross
validation procedure [44]. This splits the dataset of n observations into two parts, namely, a validation
dataset and a training dataset. The validation dataset comprises a single observation (x1, y1) and the
training dataset comprises the remaining {(x2, y2), . . . .., (xn, yn)} observations. The model is fitted
on the n-1 observations in the training dataset and a prediction ŷ is made for a single observation in
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the validation dataset, using its value x1. Since (x1, y1) was not used in the fitting process, the square
error (SE) = (y1´ŷ)2 provides an estimate of the test error. This procedure is repeated n times, thus
producing n test errors, SE1 . . . . . . .SEn. The leave-one-out-cross validation estimate for the test error
is the mean of these n test error estimates (MSE).

The cross validation results were then used to calculate the root mean square error (RMSE)
as follows;

RMSE “ ?
MSE (10)

RMSE p%q “ RMSE
y

ˆ 100 (11)

where y is the mean observed biomass and RMSE (%) is the relative Root Mean Square Error.
Model comparison was based on AIC values. Models with insignificant parameter estimates

were not considered irrespective of AIC values. For all the models, we presented pseudo-R2, RMSE,
RMSE (%), covariance matrix for the parameter estimates, and the MPE and MPE% values based on
leave-one-out cross validation. Student t-tests were conducted to determine whether the MPE values
were significantly different from zero.

In addition, we tested a number of previously developed biomass models (Table 3) on our data.
This included models developed for miombo woodlands in neighbouring countries, i.e., Ryan et al. [4]
in Mozambique, Mugasha et al. [21] in Tanzania and Chidumayo [18] in Zambia, and the pan-tropical
model developed by Chave et al. [39]. MPE values were computed, and student t-tests were applied to
determine whether the MPE values were significantly different from zero.

For a graphical display of the behaviour of models with ht as independent variable, i.e.,
Mugasha et al. [21] and Chave et al. [39] (see Table 3), we applied a height-diameter model developed
from our sample trees:

ht “ 1.3 ` exp3.787685 ´ 6.62809 ˆ dbh´0.45222 (12)

Furthermore, when applying Chave et al. [39], we extracted ρ values from the global wood density
database [40,41] and subsequently calculated a mean ρ value, which was then used for the graphical
display of this model.

Table 3. Number of sites, sample trees and dbh ranges (cm) of previously developed models tested on
our data.

Tree Section Author Model
No. of
Sites

No. of
Trees

dbh Range
(cm)

Species

Above-Ground

Mugasha et al. [21] B “ 0.1027 ˆ dbh2.4798 4 167 1.1–110 60

Mugasha et al. [21] B “ 0.0763 ˆ dbh2.2046 ˆ ht0.4918 4 167 1.1–110 60

Ryan et al. [4] a C “ ´3.629 ` 2.601 ˆ log pdbhq 1 29 5–73 6

Chidumayo [18] B “ ´2.5265 ` 2.5553 ˆ log pdbhq 1 113 2–39 19

Chave et al. [39] b B “ 0.0673 ˆ
´
ρ ˆ dbh2 ˆ ht

¯0.976
58 4004 5–180 Unclear

Below-Ground

Mugasha et al. [21] B “ 0.2113 ˆ dbh1.9838 4 80 3.3–95 60

Mugasha et al. [21] B “ 0.1766 ˆ dbh1.7844 ˆ ht0.3434 4 80 3.3–95 60

Ryan et al. [4] a C “ ´3.370 ` 2.262 ˆ log pdbhq 1 23 5–72 6

Chidumayo [18] B “ ´1.9439 ` 2.1712 ˆ log pdbhq 1 12 4–35 19

a Carbon converted to biomass as B “
ˆ

C
47

˙
ˆ 100; b ρ (g/cm3) is the species-specific mean wood specific

gravity (g/cm3) extracted from the global wood density database [40,41].
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3. Results

The mean RS-ratio of the 41 trees sampled both above- and belowground was 0.47 (Table 4). No
significant differences in RS-ratios were found between sites (p = 0.8684, F = 0.2400). The RS-ratio
decreased nonlinearly with increasing dbh (Figure 4).

Table 4. Mean, standard deviation (STD) and range of root to shoot ratios (RS-ratio) over sites.

Site No. of Trees Mean Min Max STD

Mtangatanga 12 0.49 0.32 1.15 0.25
Kongwe 10 0.44 0.22 0.91 0.22

Mua-livulezi 9 0.51 0.27 0.92 0.27
Tsamba 10 0.44 0.21 0.78 0.16

All 41 0.47 0.18 1.15 0.22

Figure 4. Root to shoot ratio (RS-ratio) vs. diameter at breast height (dbh). The dots represent
observations for individual trees and the line represents the fitted nonlinear model.

For aboveground biomass, all models, except Model 4, had significant parameter estimates and
appropriate performance criteria, i.e., none of the models had MPE% values significantly different from
zero (p > 0.05) (Table 5). Among these models, Model 2 with dbh and ht as independent variables had
the smallest AIC value. The pseudo-R2 values for all models ranged from 0.93 to 0.97. For belowground
biomass, Model 1 was the only one where all parameter estimates were significant. Covariance matrices
for all models with significant parameter estimates in Table 5 are shown in Table A3.

Among the models with significant parameter estimates for twigs, branches and merchantable
stem biomass (Table 6), Models 1, 2 and 2, respectively, provided the smallest AIC values. The
pseudo-R2 values for the twigs, branches and merchantable stem models with significant parameter
estimates were 0.82, 0.91–0.92 and 0.77–0.88, respectively.

We further evaluated the above- and belowground biomass models over sites and dbh classes
(Table 7). None of the tested models produced MPE values significantly different from zero (p > 0.05)
overall or for any site. However, a significant MPE was observed for dbh class 0–20 cm for Model
3. For the aboveground biomass models, MPE% values ranged from 0.4% to 15.1% while for the
belowground biomass model, the MPE% values ranged from 2.1% to 3.9%.

Finally, we tested previously developed models (Table 3) on our dataset (Table 8). The MPE%
when applying the aboveground biomass models developed by Mugasha et al. [21], Ryan et al. [4],
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Chidumayo [18] and Chave et al. [39] ranged from 2.8 to 30.8 (under prediction). The above- and
belowground biomass models developed by Chidumayo [18] generally produced the lowest MPE%
values, i.e., 2.8% and ´4.7%, respectively. Figures 5 and 6 display above- and belowground biomass
over dbh for some of the models developed in the current study and some from the previous studies.

Table 5. Model parameters and performance criteria of above- and belowground biomass models.

Component Model
No.

No. of
Trees

Model Pseudo-R2
RMSE MPE

AIC
(kg) (%) (kg) (%)

Aboveground

1 74 0.21691 ˆ dbh2.318391 0.93 751.2 60.6 ´22.2 ´1.8 981.89

2 74 0.103685 ˆ dbh1.921719 ˆ ht0.844561 0.97 426.6 34.4 ´19.8 ´1.6 954.27

3 74 0.290457 ˆ dbh2.283998 ˆ ρ0.443619 0.94 923.1 74.5 ´53.2 ´4.3 977.05

4 74 0.129899 ˆ dbh1.90203 ˆ ht0.828647 ˆ ρ0.296271NS 0.97 542.1 43.7 ´37.1 ´3.0 952.35

Belowground

1 41 0.284615 ˆ dbh1.992658 0.94 161.7 30.7 ´4.8 ´0.9 481.23

2 41 0.224132 ˆ dbh1.899061 ˆ ht0.222554NS 0.94 169.7 32.2 ´7.4 ´1.4 481.73

3 41 0.415451 ˆ dbh1.933905 ˆ ρ0.465663NS 0.94 175.4 33.3 ´5.0 ´1.0 481.74

4 41 0.350488 ˆ dbh1.732452 ˆ ht0.395127NS ˆ ρ0.836154NS 0.94 170.2 32.3 ´6.5 ´1.2 479.66
NS Parameter estimate not significant (p > 0.05). Note: biomass in kg, dbh in cm, ht in m, and ρ in g/cm3, Bold:
best model according to AIC (Akaike Information Criterion (AIC)).

Table 6. Model and performance criteria for twigs, branches and merchantable stem biomass models.

Component Model
No.

No. of
Trees

Model Pseudo-R2
RMSE MPE

AIC
(kg) (%) (kg) (%)

Twigs

1 72 0.07239 ˆ dbh1.858897 0.82 39.3 62.5 ´0.8 ´1.2 602.84

2 72 0.070224 ˆ dbh1.598204 ˆ ht0.384139NS 0.84 37.8 60.1 ´1.1 ´1.7 634.09

3 72 0.130116 ˆ dbh1.764995 ˆ ρ0.687581NS 0.83 44.3 70.4 ´1.4 ´2.2 616.35

4 72 0.109969NS ˆ dbh1.446488 ˆ ht0.549901 ˆ ρ0.951968 0.83 40.2 63.9 ´1.5 ´2.4 631.63

Branches

1 74 0.137316 ˆ dbh2.328104 0.91 659.8 80.9 ´25.4 ´3.1 973.58

2 74 0.051157 ˆ dbh2.161115 ˆ ht0.598879 0.92 565.2 69.3 ´22.6 ´2.8 933.50

3 74 0.123375 ˆ dbh2.379626 ˆ ρ0.30643NS 0.91 789.0 96.8 ´47.5 ´5.8 946.79

4 74 0.059792 ˆ dbh2.150762 ˆ ht0.582627 ˆ ρ0.20053NS 0.92 692.2 84.9 ´39.3 ´4.8 934.74

Merchantable 1 60 0.145576 ˆ dbh2.116265 0.77 299.9 66.9 ´1.2 ´0.3 773.89

Stem

2 60 0.030811 ˆ dbh1.572422 ˆ ht1.345696 0.88 249.9 55.8 5.3 1.2 737.16

3 60 0.221213 ˆ dbh2.059249 ˆ ρ0.544483 0.79 330.2 73.7 ´13.9 ´3.1 772.48

4 60 0.039194 ˆ dbh1.554911 ˆ ht1.329832 ˆ ρ0.36722NS 0.88 256.2 57.2 2.6 0.6 737.75
NS Parameter estimate not significant (p > 0.05). Note: biomass in kg, dbh in cm, ht in m, and ρ in g/cm3. Bold:
best model according to AIC.

Table 7. Mean prediction errors (MPE) of the models over study sites and dbh classes.

Component Model No. Variable
No. of
Trees

Observed Predicted MPE

(kg) (kg) (kg) (%)

Aboveground

1 Site Mtangatanga 20 1465.5 1606.2 ´140.8 ´9.6
Kongwe 18 1195.4 1200.6 ´5.2 ´0.4

Mua-livulezi 18 1316.7 1231.5 85.3 6.5
Tsamba 18 956.3 882.4 73.8 7.7

dbh class 0–20 21 79.7 93.4 ´13.6 ´17.1
(cm) 21–40 35 545.6 584.1 ´38.5 ´7.1

41–60 6 2225.4 1911.6 313.9 14.1
>60 12 4801.5 4826.0 ´24.5 ´0.5

All 74 1239.7 1240.3 ´0.6 ´0.1
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Table 7. Cont.

Component Model No. Variable
No. of
Trees

Observed Predicted MPE

(kg) (kg) (kg) (%)

Aboveground

2 Site Mtangatanga 20 1465.5 1424.1 41.4 2.8
Kongwe 18 1195.4 1146.8 48.6 4.1

Mua-livulezi 18 1316.7 1337.8 ´21.1 ´1.6
Tsamba 18 956.3 1032.2 ´75.9 ´7.9

dbh class 0–20 21 79.7 86.3 ´6.5 ´8.2
(cm) 21–40 35 545.6 578.5 ´32.9 ´6.0

41–60 6 2225.4 2111.9 112.5 5.1
>60 12 4801.5 4754.1 47.4 1.0

All 74 1239.7 1240.3 ´0.6 ´0.1

3 Site Mtangatanga 20 1465.5 1686.3 ´220.8 ´15.1
Kongwe 18 1195.4 1133.3 62.1 5.2

Mua-livulezi 18 1316.7 1205.4 111.4 8.5
Tsamba 18 956.3 889.3 67.0 7.0

dbh class 0–20 21 79.7 96.3 ´16.5 ´20.7 *
(cm) 21–40 35 545.6 585.6 ´40.0 ´7.3

41–60 6 2225.4 1936.4 289.1 13.0
>60 12 4801.5 4807.8 ´6.3 ´0.1

All 74 1239.7 1240.9 ´1.2 ´0.1

Belowground

1 Site Mtangatanga 12 795.9 777.0 18.9 2.4
Kongwe 10 386.3 401.4 ´15.1 ´3.9

Mua-livulezi 9 427.7 418.9 8.8 2.1
Tsamba 10 435.3 450.9 ´15.5 ´3.6

dbh class 0–20 12 42.1 46.1 ´4.0 ´9.5
(cm) 21–40 16 240.3 259.3 ´19.0 ´7.9

41–60 4 821.3 736.9 84.4 10.3
>60 9 1553.4 1551.9 1.5 0.1

All 41 527.2 527.2 ´0.0 ´0.0

* MPE is significantly different from zero (p < 0.05).

Table 8. Mean prediction error (MPE) of previously developed models.

Component Model
Independent
Variable(s)

No. of
Trees

Observed Predicted MPE

(kg) (kg) (kg) (%)

Aboveground

Mugasha et al. [21] dbh 74 1239.7 1135.7 104.0 8.4
Mugasha et al. [21] dbh, ht 74 1239.7 1076.7 163.0 13.2 **

Ryan et al. [4] dbh 74 1239.7 1068.8 170.9 13.8 *
Chidumayo [18] dbh 74 1239.7 1205.6 34.1 2.8
Chave et al. [39] dbh, ρ, ht 74 1239.7 953.7 286.1 23.1 ***

Belowground

Mugasha et al. [21] dbh 41 527.2 377.5 149.7 28.4 ***
Mugasha et al. [21] dbh, ht 41 527.2 364.8 162.4 30.8 ***

Ryan et al. [4] dbh 41 527.2 426.9 100.3 19.0 ***
Chidumayo [18] dbh 41 527.2 551.9 ´24.7 ´4.7

* MPE is significantly different from zero at (p < 0.05); ** MPE is significantly different from zero at (p < 0.01)
and *** MPE is significantly different from zero at (p < 0.001).
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Figure 5. Aboveground biomass (dry weight) over dbh based on the general models developed in
this study (with dbh and ht as independent variables), by Mugasha et al. [21] (with dbh and ht as
independent variables), by Ryan et al. [4] (with dbh as only independent variable), by Chidumayo [18]
(with dbh only as independent variable) and by Chave et al. [39] (with dbh, ρ, and ht as independent
variables). CHI, RY, MG and CS are the maximum dbh values for the data used in the models developed
by Chidumayo [18], Ryan et al. [4], Mugasha et al. [21] and current study, respectively.

Figure 6. Belowground biomass (dry weight) over dbh based on the general models developed in
this study, by Mugasha et al. [21], by Ryan et al. [4] and by Chidumayo [18]. All models had dbh
as the only independent variable. CHI, RY, MG and CS are the maximum dbh values for the data
used in the models developed by Chidumayo [18], Ryan et al. [4], Mugasha et al. [21] and current
study, respectively.

4. Discussion

Capturing a wide range of natural variability in factors influencing tree growth, such as soil types,
temperature, and rainfall, is important for developing robust biomass models [21,39]. The modelling
dataset for this study was collected from sites located in all the three regions of Malawi, i.e., north,
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central and south (Figure 1). Application of sound sampling procedures when selecting sample trees
is also critical in development of models as it may help in reducing the probability of biases. In this
study, we selected trees based on information from forest inventories for each site done prior to tree
selection. We also included a number of very large trees to avoid extrapolation beyond the data ranges
as much as possible. Our sample trees comprised 33 out of the 139 tree species identified during the
forest inventories for the four study sites. Compared to most previous studies our dataset included a
large number of tree species. The modelling dataset of Mugasha et al. [21] comprised 60 tree species,
while those of Chidumayo [18] and Ryan et al. [4] had 19 and 6 species, respectively. Although the
proportion of the number of tree species in our dataset is relatively low compared to total number of
tree species reported in miombo woodlands [22–27], the information from the prior forest inventories
ensured that the most common species were represented, in addition to species selected randomly
among the remaining less frequent species.

Leaves and fine roots were excluded from our biomass sampling. Leaves were excluded because
most of the trees had started to shed leaves when we carried out destructive sampling. This is a
common challenge for biomass studies in seasonally dry forests, as acknowledged by Chave et al. [39].
A recent study on miombo woodlands in Mozambique by Mate et al. [17] found that leaves comprised
only 3% of the total aboveground biomass during the peak leaf season. Such a number would probably
be a good estimate of how much aboveground biomass is missing in our data.

Root parts with diameter < 1 cm were also excluded from the biomass data, mainly to reduce
workload. Similar root parts (diameter < 2 cm) were also excluded in the Chidumayo [18] and
Ryan et al. [4] models. Chidumayo [18] analysed cumulative root biomass vs. diameter and found
that the trend levelled off considerably around a diameter of 2 cm. Thus, the underestimation of the
belowground biomass in our data is small, especially since we used a diameter threshold of 1 cm.

RS ratio is an important alternative for estimating belowground tree biomass in cases where
allometric models are not available (see [14,45]). The mean RS ratio observed here (0.47, Table 4)
is higher than the value reported by Mugasha et al. [21] and Ryan et al. [4] for miombo woodlands
(0.40 and 0.42 respectively). However, Chidumayo [18] reported a mean value of 0.54 which is
comparatively higher. Since the RS ratio decreases with increasing dbh (Figure 4), the mean value
depends on the size distribution of the trees. The high mean RS-ratio found by Chidumayo [18] is
likely to result from the relatively smaller tree sizes in his dataset (see Table 3) rather than a higher
proportion of root biomass in trees from miombo woodlands in Zambia. Mean RS ratios are frequently
used to estimate belowground biomass (e.g., [46]). However, by using a fixed mean RS ratio for
a relationship that most probably is non-linear (Figure 4), a bias will be introduced (see e.g., [47]).
Therefore, application of mean RS-ratios to estimate belowground should be done with caution.

Among the aboveground biomass models with significant parameter estimates, Model 2 (with
dbh and ht as independent variables) had the smallest AIC value (Table 5). Models with both dbh
and ht as independent variables had a better fit than those with only dbh (e.g., [21,39]). Inclusion of ρ
as independent variable (Model 3), in place of ht (Model 2), did not improve aboveground biomass
prediction. This could be attributed to the fact that the ρ values were not obtained directly from
the sampled trees, but from the global wood density database [40,41]. The model with the smallest
AIC value (Model 2) is similar (pseudo-R2 = 0.97) to the models developed by Mugasha et al. [21]
(pseudo-R2 = 0.95), Chidumayo [18] (R2 = 0.98) and Ryan et al. [4] (adjusted-R2 = 0.93).

Although Model 2 is generally considered the best aboveground biomass model, it should be
noted that Models 1 and 3 can still be applied during forest inventories in cases where ht is lacking
or considered as inaccurate. Application of Model 2 requires measuring both dbh and ht during a
forest inventory. In such cases, ht for individual trees is usually predicted based on dbh-ht models
developed from sample trees collected from the study site because measuring ht in all trees is too time
consuming. However, measuring tree height is also prone to errors especially in closed-canopy forests,
due to differences in crown shapes and the difficulty of observing the top of the tree crown [48,49].



Forests 2016, 7, 38 15 of 22

Among the belowground biomass models, the only viable model, i.e., with significant parameter
estimates, was the one with dbh as an independent variable (Model 1). The fit of this model is
similar (pseudo-R2 = 0.94) to that of the models developed by Mugasha et al. [21] (pseudo-R2 = 0.92),
Chidumayo [18] (R2 = 0.95) and Ryan et al. [4] (adjusted-R2 = 0.94).

Proper implementation of the REDD+ mechanism in participating countries, including Malawi,
requires biomass estimates to be accompanied with an estimate of uncertainty (see [30]). Uncertainty
of biomass estimates is usually computed from error estimates of model parameters for the employed
biomass models [34]. In Table A3, we have therefore presented the covariance matrices of model
parameters for all the valid models in Table 5 to enable potential users to estimate uncertainty in
biomass and carbon quantities during national forest inventories and monitoring, reporting and
verification systems under the REDD+ mechanism (see [30,34]).

Tree component biomass models, i.e., models for twigs, branches and merchantable stem, may
be useful when planning commercial extraction of timber or quantification of biomass for domestic
fuelwood or charcoal production (see [37]). All tree component models with significant parameter
estimates produced MPE% values not significantly different from zero (see Table 6). This is an
indication of appropriate performance.

The evaluation of the developed above- and belowground models on our own data showed that
no models produced MPE% significantly different from zero for any site (Table 7), thus indicating that
the models can be applied over a wide range of conditions. The trend was the same over dbh classes
except for the smallest dbh class under Model 3. It should be noted that the magnitude of MPE% seen
over sites in Table 7 is the kind of error that should be expected across sites if we were to apply our
models across Malawi, e.g., in a national forest inventory.

The previously developed models from neighbouring countries resulted in large prediction errors
significantly different from zero when applied to our data (Table 8). Exceptions were observed
in the aboveground biomass models of Mugasha et al. [21] and the above- and belowground
models of Chidumayo [18]. For the recently developed pan tropical aboveground biomass model of
Chave et al. [39], the prediction error was also large (23.1% underestimation). The generally large
prediction errors when appliying the previously developed models are, of course, not surprising since
they are applied outside their respective data ranges. These results, however, also demonstrate the
importance of developing local models.

5. Conclusions

We developed general above- and belowground, stem, branch and twig biomass models for
the miombo woodlands of Malawi. Our models can be used over a wide range of geographical
and ecological conditions in Malawi. The generally large prediction errors seen when applying
previously developed models from neighbouring countries to our data demonstrated the importance
of developing local models.
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Abstract: Application of unmanned aerial vehicles (UAVs) in forest biomass estimation have shown 
great potential in reducing costs, time and improving the estimates. However, UAVs have never 
been tested in miombo woodlands. UAV-based biomass estimation rely on the availability of 
reliable digital terrain models (DTMs). The main objective of this study was to evaluate application 
of UAVs in biomass prediction and to compare impacts of DTMs generated based on different 
methods and parameter settings. Biomass was modelled using data acquired on 107 sample plots 
from a forest reserve in miombo woodlands of Malawi. The results indicated that there are no 
significant differences (p = 0.985) between tested DTMs except for that based on shuttle radar 
topography mission (SRTM). A model developed using unsupervised ground filtering based on a 
grid search approach, had the smallest root mean square error (RMSE) of 46.7% of a mean biomass 
value of 38.99 Mg ha-1. Amongst the independent variables, maximum canopy height (Hmax) was 
the most frequently selected. In addition, all models included spectral variables incorporating the 
three colour bands, red, green and blue. The study has demonstrated that UAV acquired image data 
can be used in biomass estimation in miombo woodlands using automatically generated DTMs. 
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1. Introduction 

The Reducing Emissions from Deforestation and Forest Degradation, plus forest conservation, 
sustainable management of forest, and enhancement of carbon stocks (REDD+) mechanism has given 
a financial incentive to developing countries for their efforts in reducing deforestation and forest 
degradation. According to requirements of the United Nations Framework Convention on Climate 
Change (UNFCCC), participating countries are supposed to report verified national level carbon 
estimates to benefit from the mechanism. Therefore, it is expected that each country implementing 
REDD+ should have a carbon monitoring system capable of collecting reliable data at designated time 
intervals using consistent methodologies. 

Many countries rely on data captured through national forest inventories (NFIs) to estimate 
country level biomass and carbon stock estimates. The first step in a NFI involves developing a 
national land cover map displaying different forest strata across the country. Next, sample plot 
inventories are conducted on permanent sample plots distributed across the country. Allometric 
models are then applied to estimate average biomass and carbon stocks for sample plots lying within 
a given stratum. National level carbon stock is then estimated by applying the average biomass and 
carbon density values across the map with the same forest strata [1]. However, many developing 
countries, including Malawi, do not have comprehensive NFIs. Malawi is currently in the 
preparatory phase of implementing the REDD+ mechanism and an NFI is one of the planned 
activities [2,3]. 

In Malawi, miombo woodlands constitute 92.4% of the country’s total forest area [4]. These 
woodlands are dominated by Brachystegia-Julbernardia-Isoberlinia species and they occur between 5° 
and 25° south of the equator in the upland plateau ecoregion of eastern and southern Africa within 
an altitude ranging from 600 – 4200 m. The region has a mean annual rainfall of between 800 – 1400 
mm [5]. In Malawi, a relatively small part of these woodlands are in large continuous blocks, instead 
they are scattered over the landscape in 112 forest reserves as “islands” in cultivated land. The 
government of Malawi is targeting these forest reserves as potential REDD+ project areas. These 
forest reserves have variable sizes ranging between 42 and 114780 ha [6] and approximately 50% of 
these reserves may be characterized as small- to medium-sized (i.e. up to 2240 ha). 

Ground-based forest inventories usually form a key component in NFIs. However, 
comprehensive ground-based inventories are associated with high labour and operational costs 
hence restrictive to most developing countries [7-9]. This has prompted researchers to search for 
alternative reliable and cost effective biomass estimation methodologies. A promising approach 
aimed at reducing labour and operational costs as well as improving the reliability of estimated 
biomass in NFIs involve combining data from ground-based forest inventories and remote sensing 
[8,10-13].  

For forestry applications, remotely sensed data is mainly sourced from three main systems, 
namely, airborne laser scanning (ALS), radio detection and ranging (RADAR)(e.g. synthetic aperture 
radar (SAR)) and optical images (e.g. satellite and aerial) [14,15]. Remote sensing has been widely 
applied in forestry for several decades in most countries although with various degrees of success 
due to differences in data types, forest canopy cover, geographical and environmental conditions and 
methods used [15,16]. For example, estimation of forest biomass based on data from optical systems 
is usually challenged by clouds, shadows, saturation problems in forests with high biomass density, 
intra-crown spectral variance, low spectral variability and its two-dimensional (2D) nature [16,17]. 
RADAR systems are capable of improving biomass estimations due their ability to capture high 
quality three-dimensional (3D) data in all weather and light conditions. However, biomass estimation 
using such data is also affected by saturation problems in complex mature forest stands and also have 
difficulty in distinguishing vegetation types [17]. Data from ALS systems have shown great potential 
for forest biomass estimations in different forest types including boreal [18], temperate [19-21] and 
tropical forests [22,23] due to ALS’s ability to overcome saturation problems associated with data 
collected from the other sensors when biomass density is ≥100Mg/ha [13,14,17,24]. However, wide 
application of ALS data for large-scale forest biomass estimation has been limited due to high data 
acquisition costs. 
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On the other hand, application of unmanned aerial vehicles (UAVs) enable acquisition of high 
quality 3D remote sensing data for estimating forest biomass on small- to medium-sized forests with 
relatively low costs [25-29]. Relatively little technical expertise is required for operating and acquiring 
images using UAVs, thus costs associated with hiring airborne image acquisition platforms are 
reduced. Furthermore, the availability of user-friendly structure from motion (SfM) and stereo-
matching software that uses a photogrammetric approach to obtain 3D data reduces the need for 
hiring image processing services [26,27,30]. 

Results from recent research on small- to medium-sized boreal forests have demonstrated the 
potential of using UAVs for estimating forest biomass [27,31]. Application of this technology for 
REDD+ implementation in Malawi could be an attractive option since a substantial proportion of the 
potential project areas are small- to medium-sized forest reserves scattered across the country. 
However, the application of a UAV system for biomass estimation in tropical forests such as miombo 
woodlands of Malawi first needs to be investigated because the forest structure in miombo 
woodlands is different from the boreal forests. Miombo woodlands are dry tropical forest woodlands 
dominated by relatively short trees with highly variable canopy structures [6,32,33]. Boreal forests 
may have relatively tall trees with an almost uniform size and shape, few species and a relatively 
simple canopy structure [34,35].  

Several previous studies, including Mauya, et al. [36], Gregoire, et al. [37], Yang and Prince [38] 
and Fuller, et al. [39], among others, have attempted to estimate forest attributes in miombo 
woodlands using a combination of remote sensing and ground-based inventory data. Amongst the 
previous studies, Mauya, et al. [36] and Gregoire, et al. [37] are the only studies that utilized 3D ALS 
data. To the best of our knowledge, there are currently no studies in which 3D remotely sensed data 
captured by UAVs have been applied for biomass estimation in dry tropical forests such as miombo 
woodlands. 

Successful estimation of forest characteristics from 3D remotely sensed data is conditioned on 
the ability of the sensor to capture data also from the ground. Thus, the accuracy and precision of the 
final estimates of forest characteristics are a function of the quality of the digital terrain model (DTM). 
ALS sensors are generally well suited to collect point clouds describing the ground for generating a 
DTM even in dense forest areas. The photogrammetric approach can yield very dense point clouds 
in forested environments, but these data are mostly located in the top of the canopy.  

When applying the photogrammetric approach, DTMs may be generated through a two stage 
process. The first stage involves separating ground from vegetation points (ground filtering). In the 
second stage, the data from the ground points are interpolated to estimate ground elevation at places 
where there are no data to get a continuous ground surface [40].  

Most studies utilizing the UAVs technology utilize DTMs derived from ALS data because they 
are regarded as being most accurate and reliable [27,41]. However, due to the high costs associated 
with acquiring ALS data, it is imperative for researchers utilizing UAVs in developing countries to 
search for alternative and cost efficient DTM generating approaches. Furthermore, several algorithms 
for DTM generation are available including Terrascan [42] and Fusion [43]. Most of these algorithms 
can be parameterized in different ways. Thus, the main objective of this study was to evaluate the 
application of photogrammetric point cloud data generated from UAV acquired images in biomass 
estimation (aboveground only) for the miombo woodlands. DTMs generated from the 
photogrammetric point cloud based on different methods and parameter settings were also 
compared. 
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2. Materials and Methods  

2.1. Study area 

The study was conducted in Muyobe community forest reserve (11° 35’ S, 33° 65’ E, 1169 – 1413 
m above sea level), located in Mpherembe traditional authority in Mzimba district in the northern 
region of Malawi (Figure 1). This forest reserve was established in 2000 to save it from rampant 
deforestation happening in and around the area due to tobacco farming. The forest reserve is now 
managed through a committee whose members are representatives from all villages surrounding the 
forest. The forest reserve is 486 ha, which is common for most small- to medium-sized forest reserves 
in Malawi. Ferrosols are the dominant soil type in the study area [44]. For the period 1975 – 2005, the 
mean annual rainfall was 889±146 mm and the mean annual daily minimum and maximum 
temperatures were 15±1.6° C and 26±0.6° C, respectively (the nearest weather station in Mzimba 
about 69 km south of the study area). The rainy season lasts from December to April. The study area 
comprises miombo woodlands with Julbernadia globiflora, Diplorhychus condylocarpon and Combretum 
zeyheri as dominant species.  

2.2. Data collection 

2.2.1. Sampling design and ground reference data collection 

Ground reference biomass was based on data from a forest inventory conducted on 107 
systematically distributed circular sample plots (radius = 17.84 m, 0.1 ha each) for 15 days from 25th 
April to 10th May, 2015. Precise registration of the positions of centres for sample plots is very 
important in remote sensing-assisted forest inventories. In this study, positions of the plot centres 
were measured with a differential Global Navigation Satellite Systems (dGNSS) unit. The dGNSS 
unit is comprised of two Topcon legacy- E +40 dual frequency receivers. One of the receivers was 
used as base station unit and the other as a rover field unit. The receivers observe pseudo-range and 
carrier phase of both the Global Positioning System (GPS) and the Global Navigation Satellite System 
(GLONASS). During the study, the baseline between the base station and the rover units was 
approximately 25 kilometres. The position of the base station was determined using Precise Point 
Positioning (PPP) with GPS and GLONASS data collected continuously for 24 hours as suggested by 
Kouba [45]. The rover field unit was placed was placed at the centre of each sample plot on a 2.98 m 
rod for an average of 33±20 minutes using a one-second logging rate. The recorded plot centre 
coordinates were post-processed using the RTKLIB software [46] and the results revealed that the 
maximum deviations for northing, easting and height were 1.16 cm, 3.02 cm and 3.06 cm, 
respectively. 
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Figure 1. Map of Malawi showing the location of the study site. 

On each plot, the following tree variables were recorded: diameter at breast height (dbh) (using 
a calliper or a diameter tape), and scientific name of all trees ≥ 5 cm. Furthermore, total tree height 
(ht) of up to 10 randomly selected sample trees within each plot were measured using a Vertex 
hypsometer.  

For each tree in respective sample plots, we calculated biomass by using a model developed by 
Kachamba, et al. [47] with dbh and ht as independent variables: 

 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 0.103685 × 𝑑𝑑𝑑𝑑ℎ1.921719 × ℎ𝑡𝑡0.844561 (1) 

 
Before calculating biomass, we predicted the ht of trees whose heights were not measured in the 

respective sample plots, using a height-diameter model developed from the sample trees from all 
sample plots:  

 

ℎ𝑡𝑡 = 1.3 + exp (3.75876 − 6.01583 × 𝑑𝑑𝑑𝑑ℎ−0.42991) (2) 

 
The performance criteria for the ht model were as follows: pseudo-R2 of 0.65, root mean square 

error (RMSE) of 1.9 m and a mean prediction error (MPE) of 0.1 m. The pseudo-R2, RMSE and MPE 
were calculated as follows:  

 

pseudo- R2 = 1 – ( 𝑆𝑆𝑆𝑆𝑆𝑆
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

) (3) 

 
where SSR is the sum of squared residuals and CSST is the corrected total sum of squares. 
 

RMSE = �∑ (𝑦𝑦𝑦𝑦−𝑦𝑦�𝑖𝑖 ) 2n
i=1

𝑛𝑛
 (4) 
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MPE = ∑ (𝑦𝑦𝑦𝑦−𝑦𝑦�𝑖𝑖 )
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (5) 

 
𝑦𝑦𝑖𝑖  is the ground reference biomass for plot i and  𝑦𝑦�𝑖𝑖  is the predicted biomass for plot i, 

respectively and n is the number of sample plots. 
Biomass (Mg ha-1), basal area (m2 ha-1) and number of stems (ha-1) of the respective sample plots 

were calculated by summing up the individual tree biomass and basal area values and the number 
of stems, within a given plot and scaling them to per hectare values by plot area. The mean height of 
trees for each plot was calculated as Lorey’s mean height, i.e. mean height weighted by basal area of 
individual trees. The ground reference values are presented in Table 1. 

Table 1. Ground reference values for the sample plots. 

Characteristic 
Ground reference values 

Range Mean Std1 Cv2 Stderr3 
Biomass (Mg ha-1) 0 – 125.59 38.99 29.49 75.62 2.85 
Basal area (m2 ha-1) 0 – 16.10 5.32 3.78 71.06 0.37 

Number of stems (ha-1) 0 – 830 337 178 53 17 
Lorey’s mean height (m) 3.76 – 14.58 8.81 2.41 27.31 0.23 

1 Std = Standard deviation, 2 Cv = Coefficient of variation, 3 Stderr = Standard error. 

2.2.2. UAV imagery collection 

The UAV images were acquired during four days from 23rd to 26th April 2015. At this time of the 
year, the rain season had just ended and trees still had leaves on them. Due to time constraints, the 
images had to be acquired over the entire day, i.e. morning, noon and evening. Therefore, differences 
in shadow effects were expected in the acquired images. The images were acquired using a SenseFly 
eBee fixed-wing UAV [48] equipped with a Canon IXUS127 HS Digital camera. The dimensions and 
weight of camera with battery and memory card were 93.2 x 57.0 x 20.0 mm and 135g, respectively. 
The camera produces 16.1 megapixel images in the red, green and blue spectral bands. The camera 
automatically set with a shutter speed of 1/2000 sec. The eBee is made from flexible foam and the 
weight is 537 g without camera. The eBee is also equipped with an inertial measurement unit as well 
as an on-board Global Navigation Satellite Systems GNSS to control the flight and to provide rough 
positioning [48]. 

Prior to taking images, positions of ground control points (GCPs) as well as landing and take-
off points, e.g. on open areas with no trees within the forest and agricultural fields near the forest, 
were identified and measured. The GCPs were made of a set of 1 × 1 m cross-shaped timber planks 
painted white and some black and white 50 × 50 cm checkerboards. The position of the centre of each 
GCP was measured using the same procedure as used when locating plot centres for the sample plot 
inventory described above. The data were collected for an average of 13±6 minutes for each GCP with 
a 1-second logging rate. The recorded coordinates for each GCP were post-processed similarly as the 
sample plots. The results from the RTKLIB software revealed that maximum deviations for northing, 
easting and height were 2.24 cm, 4.50 cm and 4.46 cm, respectively.  

Acquisition of images was controlled from a laptop computer with a mission control software 
called eMotion 2 version 2.4 [48]. All the flights were planned in the mission control software prior 
to flying. For navigation purposes, we used a georeferenced base map from Microsoft Bing maps 
covering the study area. For this study we applied percentage end and side image overlaps of 80% 
and 90% respectively, as well as a flight height above the ground of 325 m. Finally, images covering 
the entire forest were taken in all the designated strips. A summary of flight characteristics for each 
flight day is presented in Table 2.  
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Table 2. Summary of flight characteristics for each flight block of imagery collection. 

Date Number  
of flights 

Number  
of images 

Flight time 
(minutes) 

Wind speed 
(m sec-1) 

Cloud cover 
(%) 

23.04.2015 7 1241 518 6.0 – 9.5 10 – 80 
24.04.2015 6 1301 489 6.0 – 9.0 20 – 80 
25.04.2015 6 1118 502 5.0 – 8.5 10 – 100 
26.04.2015 1 273 22 3.0 – 4.0 50 

2.3. Image processing 

Agisoft Photoscan Professional version 1.1 [49] was used to generate a 3D point cloud from the 
acquired images. This software uses both SfM and stereo-matching algorithms for image alignment 
and multi-view stereo reconstruction. The process for generating a 3D point cloud involved: a) image 
alignment using the inbuilt SfM algorithms, b) mesh building, c) guided marker positioning and 
optimization of camera alignment (georeferencing of created scene) where the guided marker 
positioning involved importing coordinates for the GCPs and manually refining the estimated 
positions of the GCPs so as to improve camera orientation and position estimates (since the GNSS 
onboard the SenseFly eBee provide rough positioning) and d) building the dense point cloud. 
Parameter settings for the processes in (a) – (d) are displayed in Table 3. All parameters were chosen 
based on empirical experience in Puliti, et al. [27]. Finally, we added spectral information from the 
point cloud, i.e. red, green and blue image bands to the point cloud. According to Wallace, et al. [29], 
spectral information from a UAV point cloud can present additional useful information for 
estimating other non-structural properties of the canopy. 

Table 3. Processing steps with corresponding parameter settings in Agisoft Photoscan Professional 
software for generation of 3D point cloud from UAV imagery. 

Task Parameters 
a) Image alignment Accuracy: high 

 Pair selection: reference 
 Key points: 40000 
 Tie points: 1000 

b) Mesh building Surface type: height field 
 Source data: dense cloud 
 Face count: High 

c) Guided marker positioning Manual positioning of markers on the 14 GCPs 
for all the photos where a GCP was visible 

d) Building dense point cloud Quality: medium 
 Depth filtering: mild 

 

2.4. DTM generation methods 

2.4.1. Supervised ground filtering based on visual classification. 

The first step involved producing an orthophoto for the entire area to guide the visual 
identification of areas with and without vegetation. Points, within and around all the sample plots, 
were then visually assigned to either ground or non-ground classes depending on whether they fell 
on an area with or without vegetation. The ground-class points were then used to create DTM as a 
triangular irregular network (TIN) surface. This DTM was denoted as DTM 01 for further analysis. 
The DTM was finally used to calculate the height relative to the ground for all points by subtracting 
respective TIN values from each point. 
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2.4.2. Supervised ground filtering based on logistic regression 

In order to filter the respective point clouds, a supervised ground filtering approach with a 
standard binary logistic regression classifier was applied [50]. To train the model, visual classification 
was carried out on 132 circular areas of size 314 m2 (radius 10 m) located with a systematic offset of 
110 m in north and east from the sample plots. A total of 495457 points were classified with 
approximately 23% classed as ground points. The following logistic regression model was then fitted: 
 

𝑙𝑙𝑙𝑙 �
𝑃𝑃𝑗𝑗

1 − 𝑃𝑃𝑗𝑗
� = 𝛽𝛽0 +  𝛽𝛽1𝑅𝑅𝑗𝑗 + 𝛽𝛽2𝐺𝐺𝑗𝑗 + 𝛽𝛽3𝐵𝐵𝑗𝑗 + 𝜀𝜀𝑗𝑗 (6) 

 
where Pj is the probability of point j being a ground point. R, G and B are the red, green and blue 
spectral information in each point, β0, β1 and β2 are regression coefficients and εij is the random error 
component. 

All identified ground-class points were then used to generate a DTM and calculate the height 
relative to the ground for all points using the approach described in 2.4.1.This DTM was denoted as 
DTM 02 for further analysis. 

2.4.3. Supervised ground filtering based on quantile regression 

Quantile regression enable fitting of regression curves to other parts of the distribution of the 
response variable than the mean [51,52]. An assumption was made that the points representing the 
0.01 quantile of the z-values of each sample plot could be considered ground heights. The relationship 
between the z-values against the y and x values of each point (j) at the sample plot (i) was then 
modelled as follows: 

 

𝑧𝑧𝑖𝑖𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑦𝑦𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 (7) 

 
where β0, β1 and β2 are regression coefficients and εij is the random error component. The fitted 

values (𝑧̂𝑧ij) of the regression model were then used to calculate the height relative to the ground for 
all points in a given plot. This ground classification was denoted as DTM 03 for further analysis. 

2.4.4. Unsupervised ground filtering based on shuttle radar topography mission (SRTM). 

In remote areas of the earth as well as in developing countries, the best source of terrain heights 
are usually based on the SRTM [53]. In this study, the centre points in the SRTM pixels and the 
corresponding height value were used to create a TIN surface. The DTM was denoted as DTM 04 for 
further analysis. The DTM was finally used to calculate the height relative to the ground for all points 
in a given plot using the approach described in 2.4.1. 

2.4.5. Unsupervised ground filtering based on the progressive TIN algorithm 

A standard method for classifying ground points in point cloud data is based on the principles 
of the progressive TIN algorithm developed by Axelsson [54]. A variant of this algorithm is 
implemented in Agisoft Photoscan software [49]. The algorithm divides the point cloud into cells of 
a certain size. In this study, a cell size of 50 m was applied. In each cell, the lowest point is detected 
and is triangulated to produce a first approximate terrain model. Next, parameters describing the 
angle between a point and the DTM surface and the maximum distance between a point and the DTM 
surface are set. In this study a grid search approach was applied to test different values for maximum 
distance and angle parameters. Based on the preliminary tests, the following angle-distance 
parameter combinations were chosen for further testing: 3-1, 3-3, 3-6, 6-1, 6-3, 6-6, 9-1, 9-3 and 9-6. 
For each of these combinations, a DTM was generated as a TIN surface of the points classified as 
ground. For further analysis, the DTMs were denoted as DTM 05, DTM 06, … and DTM 13, 
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respectively. The DTMs were finally used to calculate the height relative to the ground for all points 
using the approach described in 2.4.1. 

2.6. Variable extraction 

For each of the generated DTMs, variables describing plot-level canopy height and canopy 
density were then extracted as described by Næsset [55]. Variables describing canopy height included 
maximum and mean values (Hmax, Hmean), standard deviation (Hsd), coefficient of variation (Hcv), 
kurtosis (Hkurt), skewness (Hskewness) and percentiles at 10% intervals (H10, H20,…, H90). A height 
threshold of 0.5 m was applied in order to separate trees from low vegetation. Furthermore, canopy 
density variables were derived by dividing the height between a 95% percentile height and the 0.5 m 
threshold into 10 equally tall vertical layers and calculating the proportion of points above each layer 
to the total number of points. These variables were denoted as follows: D0, D1,…, D9. In addition, 
spectral variables derived from the RGB (red-green-blue) spectral bands were included. The spectral 
variables were computed as the maximum (Smax), mean (Smean), standard deviation (Ssd), coefficient 
of variation (Scv), kurtosis (Skurt), skewness (Sskewness) and 9 percentiles (S10, S20, …,S90) for each of 
the three bands. For example, the Smax variable was denoted as follows: Smax.red, Smax.green and 
Smax.blue. The remaining spectral variables were also denoted similarly. In total, 64 variables 
describing canopy height, canopy density and canopy spectral properties were extracted. 

2.7. Model development and evaluation 

Multiple linear regression models relating reference biomass (as dependent variable) and the 
generated variables (as independent variables) were initially fit on untransformed variables. Since 
multicollinearity normally occurs between remotely sensed variables [56], we applied the best subset 
variable selection procedure using the leaps package [57] in R statistical software [58]. Selection of 
potential independent variables was restricted to a combination of up to five independent variables 
with minimum Bayesian information criterion (BIC) and variance inflation factors (VIF) values as 
selection criteria. This procedure was repeated for logarithmic and square root transformed 
dependent variable. An empirical ratio estimator for bias correction proposed by Snowdon [59] was 
employed when converting the logarithmic and square root predictions to an arithmetic scale. The 
proportional bias was estimated from the ratio of the mean of the observed values to the mean of the 
back-transformed predicted values. The estimates were finally corrected by multiplying them with 
the estimated ratio. 

Preliminary results indicated that models developed using both untransformed and 
logarithmically transformed dependent variable produced unsatisfactory results in comparison to 
those developed using square root transformed dependent variable. Thus, results from models 
developed using square root transformed dependent variable (equation 8) were considered for 
further analysis.  

 

�𝑦𝑦𝑗𝑗 =  𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑗𝑗𝑗𝑗 + ⋯+ 𝛽𝛽𝑘𝑘𝑥𝑥𝑗𝑗𝑗𝑗 + ε𝑗𝑗 (8) 

 
where yj is the ground reference biomass of the jth sample plot, xj1…,xjk are the k independent 

variables, β0,…, βk are the parameter estimates, n is the number of sample plots and j is the sample 
plot level residual, j = 1,……..,n; εj ~ N (0, σ𝜀𝜀 

2 ). 
For each model, reported values included relative root mean square error (RMSE%), relative 

mean prediction error (MPE%) and squared Pearson’s linear correlation coefficient (r2). RMSE% and 
MPE% were calculated as follows: 

 

RMSE% =
RMSE
𝑦𝑦�

 × 100 (9) 
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MPE% =
MPE
𝑦𝑦�

 × 100 (10) 

 
𝑦𝑦� is the mean ground reference biomass for all sample plots. 

Both RMSE% and MPE% values were calculated using the leave-one-out-cross-validation 
(LOOCV) procedure [60]. However, comparison of the models was based on RMSE% values. RMSE 
is a reliable measure for model performance as it accounts for both variance and bias of the predicted 
value [61]. 

The MPE% values for each model were tested to check if they were significantly different from 
zero using a two-sided student’s t-tests at 95% confidence level. Similar tests were also applied to test 
the significance of the differences in height deviations between GPS readings and the different DTMs. 
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3. Results 

3.1. Comparison of the DTM generation methods 

The initial results showed that there were statistically significant differences in height deviations 
from the GPS readings between the different DTMs (p < 0.001). However, when the values from SRTM 
(DTM 04) were excluded, the results indicated that there were no significant differences in height 
deviations from GPS readings (p = 0.997) amongst the remaining DTMs. Figure 2 displays the 
distribution of mean height differences of plot centre values for GPS and corresponding DTMs.  

 

 

Figure 2. Mean height differences (m) between measured GPS (true values) and predicted heights for 
the different DTM generation methods with standard errors. 01: DTM using supervised ground 
filtering based on visual classification; 02: DTM using supervised ground filtering based on logistic 
regression; 03: DTM using supervised ground filtering based on quantile regression; 04: DTM using 
unsupervised ground filtering based on shuttle radar topography mission (SRTM); 05-13: DTMs using 
unsupervised ground filtering based on a grid search approach for optimal parameter settings in 
Agisoft Photoscan Professional software (See section 2.4. for details). 

3.2. Regression analysis 

All the models produced appropriate model performance criteria, i.e. none of the models had 
MPE% values that were significantly different from zero (p > 0.05) (Table 4). The models produced 
RMSE values in the range of 46.7 – 81.7% of mean biomass of 38.99 Mg ha-1 from ground reference 
biomass data. The r2 values for all the models ranged from 0.12 to 0.67. Model 07, developed using 
unsupervised ground filtering based on a grid search approach, had the smallest RMSE% value 
amongst the models. Figure 3 displays the relationship between ground reference and predicted 
biomass for models 01 -13. There is a general trend of under predictions for sample plots with higher 
biomass amongst all the models. 
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Figure 3. Ground reference versus predicted biomass for different DTMs. 01 – 13. 01: DTM using supervised ground filtering based on visual classification; 02: DTM using supervised 
ground filtering based on logistic regression; 03: DTM using supervised ground filtering based on quantile regression; 04: DTM using unsupervised ground filtering based on shuttle 
radar topography mission (SRTM); 05-13: DTMs using unsupervised ground filtering based on a grid search approach for optimal parameter settings in Agisoft Photoscan Professional 
software (See section 2.4. for details).

 



  
 
Amongst the developed models, approximately 20%, i.e., 13 out of 64 of the candidate 

independent variables, were selected. In total nine of the variables belonged to canopy height while 
the remaining four belonged to canopy density. Amongst the selected canopy height variables, Hmax, 
was the most frequently selected variable amongst the models. 

In addition, all models (see Table 4) included variables incorporating spectral variables with the 
three colour bands, red, green and blue. Amongst the models, the red colour band is the most 
frequently selected.
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Table 4. Performance of models over different digital terrain models (DTMs) and ground classification approaches. 

 

1 01: DTM using supervised ground filtering based on visual classification; 02: DTM using supervised ground filtering based on logistic regression; 03: DTM using supervised ground 
filtering based on quantile regression; 04: DTM using unsupervised ground filtering based on shuttle radar topography mission (SRTM); 05-13: DTMs using unsupervised ground 
filtering based on a grid search approach for optimal parameter settings in Agisoft Photoscan Professional software (See section 2.4. for details). 

2 S50.red, S70.red and S90.green: spectral variables for the 50%, 70% and 90 percentile for the red, red and green colour bands, respectively; D0, D2, D5 and D9: canopy densities 
corresponding to the proportions of points above fraction number 0, 2, 5 and 9, respectively; Hmax, Hsd, Scv.red, Scv.green, Ssd.green, Ssd.blue: maximum canopy height, canopy height 
standard deviation, coefficient of variation for the spectral variables with red and green colour bands respectively; standard deviation for the spectral variables with green and blue 
colour bands, r2 = squared Pearson’s correlation coefficient, RMSE= Root mean square error, MPE = Mean prediction error. 

 

DTM1 Independent variables2 r2 Predicted Biomass 
Mg ha-1 

RMSE MPE p-value 
Mg ha-1 % Mg ha-1 % 

01 Hmax, D9, Ssd.blue 0.67 39.64 18.36 46.8 -0.41 -1.1 0.82 
02 Hmax, D2, Ssd.green 0.58 39.26 21.44 55.0 -0.27 -0.7 0.90 
03 Hmax, D5, Ssd.blue 0.65 39.21 18.73 48.0 -0.22 -0.6 0.91 
04 S50.red 0.12 38.95 31.87 81.7 0.04 0.1 0.99 
05 Hsd, D0, Ssd.blue 0.61 39.44 20.38 52.2 -0.45 -1.2 0.82 
06 Hmax, S70.red, S90.green 0.61 39.15 19.76 50.7 -0.16 -0.4 0.93 
07 Hmax, S70.red, S90.green 0.64 39.03 18.21 46.7 -0.03 -0.1 0.99 
08 Hmax, D0, Ssd.blue 0.59 38.60 22.73 58.3 0.39 1.0 0.86 
09 Hmax, D0, Scv.red 0.63 38.90 20.40 52.3 0.09 0.2 0.96 
10 Hmax, S70.red, S90.green 0.62 39.02 19.54 50.1 -0.03 -0.1 0.99 
11 Hmax, D0, Scv.green 0.62 39.03 20.36 52.2 -0.03 -0.1 0.99 
12 Hmax, D0, Scv.red 0.62 38.90 19.68 50.5 0.09 0.2 0.96 
13 Hmax, D0, S70.red, S90.green 0.63 39.69 20.19 51.8 -0.71 -1.8 0.72 
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4. Discussion 

Successful implementation of the REDD+ initiative is dependent on the availability of reliable 
biomass estimating methods. Application of UAVs in monitoring forest ecosystems and in biomass 
estimation is gaining increased attention [28,62,63]. This study aimed at evaluating the application of 
3D data generated from UAV acquired images in forest biomass estimation for the miombo 
woodlands. This could be of particular interest for Malawi since most of the forests in the country 
comprise of miombo woodlands scattered over the landscape as small- to medium sized reserves, a 
situation that suits the application of the UAV both when it comes to technical and costs associated 
with its execution. 

Reliable biomass estimates from remotely sensed 3D data are heavily reliant on the availability 
of a good DTM. This study first tested different methods of generating DTMs. The comparisons of 
plot centre height estimates from different DTMs showed that estimates from the DTM generated 
using SRTM data are unreliable as compared to the DTMs derived from the other methods (Figure 
2). This is indicating that when a DTM based on SRTM data is used in biomass estimation, the 
estimates can hardly be trusted. Despite the fact that there were no statistically significant differences 
amongst the DTMs developed from the different methods, i.e. excluding SRTM, the DTM model 
producing the smallest RMSE should always be applied when estimating biomass. 

Biomass estimates from the 13 different DTM generation approaches shown that the DTM 
developed from unsupervised ground filtering based on a grid search approach (model 07) 
performed slightly better compared with the other models (Table 4). This performance demonstrated 
that with some effort, it is possible to get a good combination of angle-distance parameter settings in 
the AgiSoft Photoscan software [49]. Furthermore, despite performing slightly less than model 07, 
model 01 developed from a DTM based on supervised ground filtering using visual classification, is 
equally good. However, the process for generating a DTM using supervised ground filtering based 
on visual classification is quite arduous. Therefore, since unsupervised ground filtering is easier to 
implement and performs equally (or even better) to visual classification, future studies should 
consider application of this approach. On the other hand, the relatively poor performance of the 
DTMs developed from unsupervised ground filtering based on shuttle radar topography mission 
(SRTM) could be attributed to the inherent random errors in heights associated with SRTM data [64-
66]. 

The findings from our study demonstrated that data generated by the UAV system have 
potential of being successfully used in estimating forest biomass in dry tropical forests such as 
miombo woodlands. The fact that no MPE values were significantly different from zero (Table 4) is 
indicating that the models can be appropriately used in biomass estimation. Similar studies for other 
dry tropical forest sites are, however, recommended to validate the results from the current study 
because of the wide range of forest conditions seen in dry tropical forests such as miombo woodlands. 

The observed RMSE% value for the best model from our study (46.7%) is similar to that reported 
in a study conducted in miombo woodlands of Tanzania (46.8%) by Mauya, et al. [36]. Direct 
comparison of these results should however be done with caution because ALS data was used in that 
study. In addition, there were differences in sample size, plot size and forest conditions for the 
respective studies. Further studies on the assessment of the effect of sample size, plot size, and forest 
conditions are therefore required to validate the results from the current study. 

On the other hand, in a study by Puliti, et al. [27] , where data acquired from UAV was applied 
in boreal forests, an RMSE% value of 14.95% was observed when estimating forest stand volume. 
This might be attributed to the differences in forest structures between miombo woodlands and 
boreal forests. It should also be noted that Puliti, et al. [27] utilized ALS data for DTM determination, 
which are superior in describing forest ground surface compared to optical sensors such as those 
applied in the current study [67]. It is worth noting that the observed RMSE% in Puliti, et al. [27] is 
comparable to that observed in a study by Gobakken, et al. [68] conducted in similar forest conditions. 
However, Gobakken, et al. [68] used exclusively ALS data. This demonstrates the efficiency of UAV 
data in forest inventories. 
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During image acquisition, wind speeds up to 9.5 m sec-1 were encountered. According to 
Dandois and Ellis [26], images captured when wind speeds are around or over 9.5 m sec-1 generally 
make some trees sway as well as affect the UAV motion. This results in incomplete image overlaps, 
thus affecting the quality of the generated point cloud and DTM, for some parts of a study area. We 
thus anticipated that this scenario would have some influence on the results. We also anticipated that 
the presence of shadow effects for some of the captured images could have had a profound effect on 
the results. This is the case because automatic detection of reliable image features in areas of shadow 
is reportedly difficult due to large brightness range between shadows and sunlit areas such as top of 
the canopy and the properties and settings of the camera resulting in insufficient image contrast in 
areas of shadow [17,29]. Furthermore, we also anticipated that the leaf-on nature of the forest during 
data collection may have led to inaccurate interpolation of ground points due to uncertain point 
locations and low point density in areas of high canopy cover [29]. It is worth noting that despite the 
fact the data for the current study were collected under varying wind speed, light and terrain 
conditions, the results are similar with results from using ALS data [36] 

The results from the current study demonstrate the ability of the UAV to capture reliable 
imagery under varying conditions in miombo woodlands. However, to fully comprehend the 
potential of utilising UAV systems in miombo woodlands, future studies should aim at acquiring the 
images at times of a day when shadow effects are minimized, e.g. at noon as well as when wind 
speeds are low. However, it is often costly to wait for optimal weather conditions in remote sites due 
to associated logistical costs. Thus, the current study, together with the study by Puliti, et al. [27] 
provide examples that it is still possible to obtain high accuracies under varying weather conditions. 
Acquiring images under leaf-off conditions might improve the ground classification, but might 
decrease the possibility to reconstruct trees in the point cloud and thus decrease biomass estimates. 
Likely, acquiring imagery under both leaf-off and leaf-on conditions might provide the best results. 
Further, it should also be noted that the study was conducted on a relatively small area and these 
results need to validated over different study sites with variable sizes. 

The importance of spectral information is highlighted by the selection of variables incorporating 
the red, green and blue colour bands in all the generated models. According to Wallace, et al. [29], 
spectral components of UAV point clouds tend to present additional useful information for 
estimating other non- structural properties of the canopy. 

During the study a fixed plot size was used. However, the size of the field plots has been 
identified as one of the sources of model uncertainty in remote sensing based biomass estimation 
[36,69-71]. Future studies should therefore aim at examining the effects of field plot size and even 
number of plots, on biomass estimates. Furthermore, during the study the images were acquired at a 
constant flight height of approximately 325 m above the ground. Future studies utilizing UAVs in 
Malawi could also aim at testing the effect of flight height on biomass estimates. Such a study would 
be possible because the directorate of civil aviation in Malawi does not currently impose any 
restrictions on flight height unlike in other countries where UAV flight heights are restricted by law 
[16,27,29,72]. 
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5. Conclusions  

Remote sensing data were captured using a SenseFly eBee fixed-wing UAV system on a small- 
to medium sized potential REDD+ project site in miombo woodlands. The prediction errors observed 
are similar to results from previous studies using ALS data in miombo woodlands. The DTM 
developed using unsupervised ground filtering based on a grid search approach, had the smallest 
RMSE value thus indicating that DTMs developed through this method can produce reliable results 
in miombo woodlands. Additional studies, however, are recommended to validate these results 
under other conditions using different flight settings, plot sizes and plot numbers.  
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Abstract 

Applications of unmanned aerial vehicle (UAV) to assist in forest inventories have provided 

promising results in biomass estimation for different forest types. Recent studies 

demonstrating use of different types of remotely sensed data to assist in biomass estimation 

have shown that accuracy and precision of estimates are influenced by the sample size as well 

as the size of field sample plots used to obtain reference values for biomass. The objective of 

this case study was to assess the influence of sample size and sample plot size on efficiency 

of UAV-assisted biomass estimates in the dry tropical miombo woodlands of Malawi. The 

results of a design-based field sample inventory assisted by three-dimensional point clouds 

obtained from aerial imagery acquired with a UAV showed that the root mean square errors 

as well as the standard error estimates of mean biomass decreased as sample sizes and sample 

plot sizes increased. Furthermore, relative efficiency values over different sample sizes and 

sample plot sizes were above 1.0 in a design-based and model-assisted inferential framework, 

indicating that UAV-assisted inventories were more efficient than purely field-based 

inventories. The results on relative costs for UAV-assisted and pure field-based sample plot 

inventories revealed that there is a trade-off between inventory costs and required precision. 

For example, in our study if a standard error of less than approximately 3 Mg ha-1 was 

targeted, then a UAV-assisted forest inventory should be applied to ensure more cost 

effective and precise estimates. Future studies should therefore focus on finding optimum 

plot and sample sizes for particular applications, like for example in projects under the 

Reducing Emissions from Deforestation and Forest Degradation, plus forest conservation, 

sustainable management of forest and enhancement of carbon stocks (REDD+) mechanism 

with different geographical scales.  

Key words: miombo woodlands, plot size, forest inventory, remote sensing, image matching 

 



1.0 Introduction 

Carbon emissions in tropical forests is currently estimated at 1 Pg C yr-1 (Houghton et al. 

2015). The mechanism for Reducing Emissions from Deforestation and Forest Degradation, 

plus forest conservation, sustainable management of forest and enhancement of carbon stocks 

(REDD+) is one of the key measures for reducing carbon emissions in tropical forests 

(Gizachew & Duguma 2016; Goetz et al. 2015; Houghton et al. 2015; UNFCCC 2014). As of 

2015, there were 33 countries in the tropics in preparatory phase of implementing REDD+ 

(Nhantumbo & Camargo 2015). The preparatory phase involve establishing administrative 

structures, determining reference levels for carbon stocks and development of credible 

monitoring, reporting and verification (MRV) systems, among others. Malawi, one of the 

African countries currently in the preparatory phase of the implementation of REDD+, is 

targeting 112 forest reserves scattered across the country as potential REDD+ project areas. 

These forest reserves have variable sizes ranging between 42 and 114780 ha (Government of 

Malawi 2010) and approximately 50% of these reserves may be characterized as small- to 

medium-sized (i.e., up to 2240 ha). Thus, in Malawi forest carbon estimates for REDD+ 

reporting should be based on forest inventory methods aiming at providing reliable biomass 

estimates at this geographical scale (forest reserve level) in a consistent and statistically 

rigorous manner (Næsset et al. 2011).  

Conventionally, credible estimation of biomass stocks in Malawi’s forest reserves would 

require field-based sample plot inventories in each of these forest reserves. The inventories 

are usually conducted using different probability sampling designs. Application of probability 

sampling when allocating sample plots enables the use of the design-based inferential 

framework to biomass estimation and inference (Kangas & Maltamo 2006; Næsset et al. 

2011). In the design-based inferential framework approach to sampling, values of a variable 

of interest of the population are viewed as fixed quantities and the selection probabilities 

introduced with the design are used in determining the expectations, variances, biases and 

other properties of estimators (Thompson 2012a). 

Field-based forest inventories with plots allocated as a probability sample are usually 

associated with high operational and logistical costs. Recent studies indicate that forest 

inventories involving combination of data from field-based probability samples and auxiliary 

information from remote sensing platforms, i.e. design-based and model-assisted inferential 

framework, are being preferred because they tend to reduce costs while improving precision 

of the estimates (Gobakken et al. 2012; McRoberts & Tomppo 2007; Su et al. 2016). These 



types of forest inventories have successfully been used for estimation of forest biomass in 

different forest types, including boreal (Margolis et al. 2015; Næsset et al. 2011), temperate 

(Lefsky et al. 2001; Su et al. 2016) and tropical (Mauya et al. 2015; Ota et al. 2015). 

In forestry, remotely sensed data are sourced from three main systems, namely, optical (e.g. 

satellite and aerial), radio detection and ranging (RADAR) (e.g. synthetic aperture radar 

(SAR)) and airborne laser scanning (ALS) (Lu et al. 2014). For biomass estimation in 

particular, data captured from satellite borne optical and RADAR systems usually have 

challenges with saturation in forests with high biomass density (Kumar et al. 2015). 

Furthermore, data based on optical systems are also challenged by clouds, shadows, intra-

crown spectral variance, low spectral variability and its two-dimensional (2D) nature 

(Dandois et al. 2015; Kumar et al. 2015). On the other hand, three-dimensional (3D) data 

from ALS systems seem to overcome the problems associated with optical and RADAR data 

(Kumar et al. 2015; Lu et al. 2014; Næsset et al. 2013; Vauhkonen et al. 2014). ALS data 

have shown great potential for forest biomass estimation in different forest types, including 

boreal (Næsset & Gobakken 2008), temperate (Gonzalez et al. 2010; Patenaude et al. 2004; 

Skowronski et al. 2014) and tropical forests (Drake et al. 2002; Mauya et al. 2015). However, 

due to high data acquisition costs, wide application of ALS data for large-scale forest 

biomass estimation has been limited. 

Aerial imagery from optical systems have a long history in forest inventory and monitoring 

(Campbell & Wynne 2011; Kangas & Maltamo 2006). During the last two decades 

improvements in aerial imaging, including digital photographs and computer processing 

capacity, have made it possible to automatically produce 3D data from overlapping aerial 

images. Such photogrammetric point clouds are similar to the ones derived from ALS data 

except that only the exterior of the canopy is reconstructed whereas ALS data provide 

information on both the interior structure and ground under the forest canopies. Forest 

biomass estimation using photogrammetric point clouds acquired from manned aerial images 

has been carried out in different forest types, e.g. boreal (Gobakken et al. 2015), temperate 

(Chen et al. 2012) and tropical (Ota et al. 2015). However, manned aerial images can also be 

difficult to acquire for many small and scattered forest reserves such as those in Malawi due 

to the high associated logistical costs.  

Unmanned aerial vehicles (UAVs) could be a cost-effective alternative to data acquisition 

over small and scattered forest reserves. UAVs are also capable of capturing very high-



resolution images from which 3D point clouds can be derived using photogrammetric 

principles (Paneque-Gálvez et al. 2014; Tang & Shao 2015). Recent research on application 

of UAVs over small-to-medium sized forests for biomass and volume estimation in dry 

tropical forests (Kachamba et al. 2016b), boreal forests (Puliti et al. 2015) and temperate 

forests (Getzin et al. 2012) have demonstrated their potential. Unlike manned aerial 

platforms, application of UAVs have proved to produce reliable forest biomass estimates at 

the small-to-medium forest scale with relatively small logistical costs and thus opens an 

opportunity for local adaption under the REDD+ mechanism (DeFries et al. 2007; Gibbs et al. 

2007; Kachamba et al. 2016b; Næsset et al. 2016; Puliti et al. 2015). It is therefore prudent 

for aspiring REDD+ implementation in developing countries, such as Malawi, to assess the 

application of UAVs in forest inventories. 

Determination of field plot size is an important design decision when planning field-based 

probability sample inventories. In estimation based on field-based probability sample data 

combined with auxiliary data from remote sensing, an appropriate geographical 

correspondence between plots on the ground and the remotely sensed data is paramount. An 

increased sample plot size can reduce the effects of errors arising from co-registration 

problems (Frazer et al. 2011). Larger plots will also tend to reduce the plot boundary effects 

(McRoberts et al. 2014). Several authors have studied the effects of sample plot sizes on 

biomass estimates and other forest attributes in inventories assisted by remotely sensed data 

in tropical wet forests (Asner et al. 2009; Hansen et al. 2015; Keller et al. 2001; Mascaro et 

al. 2011; Mauya et al. 2015; Saatchi et al. 2011), temperate forests (Frazer et al. 2011; Levick 

et al. 2016) and a boreal forest (Gobakken & Næsset 2008; Næsset et al. 2015), among 

others. 

Apart from sample plot size, sample size, i.e., the number of sample plots employed during 

an inventory, will also have a large effect on the efficiency of biomass estimates and the 

associated total inventory costs (Eid et al. 2004; Gobakken & Næsset 2008; Strunk et al. 

2012). To the best of our knowledge, no studies on the influence of sample plot sizes and 

sample sizes on efficiency of biomass estimates have been conducted in UAV-assisted 

sample inventories, i.e. using design-based and model assisted inferential framework, in 

miombo woodlands.  

 



The main objective of this case study was therefore to assess the efficiency of UAV-assisted 

biomass estimation in miombo woodlands of Malawi based on different sample sizes and 

sample plot sizes, which subsequently may inform design decisions for MRV of fragmented 

forest reserves in Malawi.  

2.0 Materials and methods 

This section describes the study area, sampling design, collection and processing of both field 

reference biomass and remotely sensed data, model development and evaluation and biomass 

estimation methods under the model-assisted inferential framework. We also describe 

biomass estimation using purely field-based data as well as the analysis for assessing the 

efficiency of both field-based and UAV-assisted estimates.  

2.1 Study area 

The study area, Muyobe community forest reserve, is located in Mpherembe traditional 

authority in Mzimba district in the northern region of Malawi (11° 35’S, 33° 65’E, 1169 – 

1413 m above sea level) (Figure 1). The forest reserve is 486 ha in size, which is common for 

most small- to medium-sized forests in Malawi. The dominant soil type in the area is 

Ferrosols (Hardcastle 1978). For the nearest weather station in Mzimba, located 69 km south 

of the study area, the mean annual rainfall was 889 ± 146 mm and the mean annual daily 

minimum and maximum temperatures were 15 ± 1.6°C and 26 ± 0.6°C, respectively, for the 

period 1975 to 2005. The forest is covered by miombo woodlands dominated by Julbernadia 

globiflora, Diplorhychus condylocarpon and Combretum zeyheri. For more details on the 

study area, see Kachamba et al. (2016b). 



 

Figure 1. Map of Malawi showing the location of the study site. 

2.2 Sampling design and field data collection 

Field reference biomass was based on a systematically distributed probability sample 

collected from the entire forest reserve. The sample size, i.e. the number of plots, was guided 

by the budget that could support approximately 100 sample plots. The systematic sample was 

distributed on a grid of 220 m by 220 m. The grid spacing was calculated as follows: 

 (1)

 

where A = size of the forest reserve (m2) and n = is the initial number of sample plots. The 

grid axes were oriented to the north–south and east–west directions with the starting point 

randomly selected. Based on the grid, 107 sample plots were located within the boundary of 

the forest reserve.  

Field reference biomass was based on data from a forest inventory conducted on the 107 

sample plots which were circular (radius = 17.84 m, 0.1 ha each) for 15 days from the 25th 

April to 10th May, 2015. Differential Global Navigation Satellite System (dGNSS) was used 



to ensure precise registration of the positions of centres for field plots. Two Topcon legacy- E 

+40 dual frequency receivers were used, one operating as a base station and the other as a 

rover field unit. These receivers observe pseudorange and carrier phase of global positioning 

system (GPS) and Global Navigation Satellite System (GLONASS). During the study, the 

baseline between the base station and rover units was approximately 25 km. The position of 

the base station was determined using Precise Point Positioning (PPP) with GPS and 

GLONASS data collected continuously for 24 hours as suggested by Kouba (2015) before the 

commencement of the forest inventory. The rover field unit was placed at the centre of each 

sample plot on a 2.98 m rod for an average of 33±20 minutes using a one-second logging 

rate. The recorded sample plot centre coordinates were post-processed using RTKLIB 

software (Takasu 2009) and the results revealed that the maximum deviations for northing, 

easting and height were 1.16 cm, 3.02 cm and 3.06 cm, respectively. 

The following information was recorded on each sample plot: diameter at breast height (dbh) 

(using a caliper or a diameter tape), scientific name and total horizontal distances to sample 

plot centres of all trees with dbh 5 cm. The total horizontal distance from a plot centre to 

each tree was calculated as the sum of the horizontal distance to the front of each tree and 

half of the tree’s dbh. These distances were subsequently used to subset the sample plot data 

into different sizes of 250, 500, 750 and 1000 m2, respectively, for further analysis. 

Furthermore, total tree heights (ht) of up to 10 randomly selected sample trees within each 

plot were also measured. Horizontal distances to sample plot centres and ht measurements 

were made using a Haglöf vertex hypsometer.  

In order to assess the effect of sample size on precision of biomass estimates we considered 

three different systematic samples of different sizes, i.e., the full sample of 107 plots, one 

sample with half the size (54 plots) in which every second plot was excluded and finally one 

sample of one third of the full size (36 plots) in which every third plot was retained. In total 

12 datasets (i.e. four sample plot sizes × three sets of sample sizes) were created and used for 

the analyses. 

Prior to calculating field reference biomass for each sample plot, we used a height-diameter 

model developed by Kachamba et al. (2016b) to predict the ht of trees whose ht was not 

measured. Aboveground biomass for the individual trees in each sample plot was then 

calculated using a model developed by Kachamba et al. (2016a) with dbh and ht as 

independent variables. Field reference biomass for the sample plots was subsequently 



calculated by summing up the individual tree aboveground biomass values within a given 

distance defined by the radius of the four sample plot sizes. These values were then scaled to 

per hectare values for the different sample plot sizes. These scaled values were denoted AGB 

and used as reference values and treated as if they were free from errors, although such plot-

wise field values will be subject to both measurement errors and allometric errors. Table 1 

shows statistical summary of AGB for the 12 different datasets. 

Table 1. Statistical summary of aboveground biomass (AGB) on sample plots based on 

different sample plot sizes and sample sizes. 
Plot size (m2) Statistic AGB (Mg ha-1) 

(n = 107) (n = 54) (n = 36) 

250 Range 0 – 150.77 0 – 136.48 0 – 150.77 
 Mean 36.86 36.23 36.37 
 Std 34.07 33.68 37.27 
 Cv (%) 92.43 92.95 102.45 
 Stderr 3.29 4.58 6.21 
500 Range 0 – 132.53 0 – 132.53 0 – 105.67 
 Mean 37.38 39.87 34.21 
 Std 30.61 33.57 28.06 
 Cv (%) 81.89 84.19 82.00 
 Stderr 2.96 4.57 4.68 
750 Range 0 – 127.53 0.18 – 106.80 0 – 88.67 
 Mean 38.12 39.50 32.63 
 Std 28.91 30.35 24.91 
 Cv (%) 75.82 76.83 76.35 
 Stderr 2.79 4.13 4.15 
1000 Range 0 – 125.59 0.14 – 103.79 0 – 86.72 
 Mean 38.99 39.59 33.12 
 Std 29.49 30.08 26.33 
 Cv (%) 75.62 75.96 79.49 
 Stderr 2.85 4.09 4.39 

Std = Standard deviation, Cv = Coefficient of variation, Stderr = Standard error and n = number of sample plots.  

  



2.3 Remote sensing data collection and processing  

2.3.1 UAV imagery collection  

Image acquisition took place from 23rd to 26th April 2015. At this time of the year, the rain 

season had just ended and the trees still had leaves on them. A SenseFly eBee fixed-wing 

UAV (Sensefly 2015) was used. The UAV was made from flexible foam weighing 537 g 

without camera. The UAV was equipped with a Canon IXUS127 HS digital RGB (red-green-

blue) camera. The dimensions and weight of camera with battery and memory card were 

93.2 × 57.0 × 20.0 mm and 135 g, respectively. The camera produces 16.1 megapixel images 

in the red, green and blue spectral bands. The UAV is also equipped with an inertial 

measurement unit as well as an on-board Global Navigation Satellite Systems (GNSS) to 

control the flight and to provide rough positioning (Sensefly 2015). 

Prior to taking images, positions of ground control points (GCPs) were identified and 

measured. The GCPs markers were made of a set of 1 × 1 m cross-shaped timber planks 

painted white and some black and white 50 × 50 cm checkerboards. The position of the 

centre of each GCP was fixed using the same procedure used in locating sample plot centres 

for the sample plot inventory described above. The data were collected for an average of 

13±6 minutes for each GCP with a 1-second logging rate. The recorded coordinates for each 

GCP were post-processed similarly as the sample plots. The results revealed that maximum 

deviations for northing, easting and height were 2.24, 4.50 and 4.46 cm respectively. 

Acquisition of images was controlled from a laptop computer with mission control software 

eMotion 2 version 2.4 (Sensefly 2015). All the flights were planned in the mission control 

software prior to flying. For navigation purposes we used a georeferenced base map from 

Microsoft Bing maps covering the study area. For this study, we applied percentage end and 

side image overlaps of 80 and 90%, respectively, as well as a fixed flight height above the 

ground of 325 m. In total 20 flights were carried out to cover the forest. A summary of flight 

characteristics for each flight day is presented in Table 2. The procedure described here was 

also applied in Kachamba et al. (2016b). 

  



Table 2. Summary of flight characteristics for each flight block of imagery collection. 

Date Number 
of flights 

Number 
of images 

Flight time 
(minutes) 

Wind speed 
(m sec-1) 

Cloud cover 
( % ) 

23.04.2015 7 1241 518 6.0 – 9.5 10 – 80 
24.04.2015 6 1301 489 6.0 – 9.0 20 – 80 
25.04.2015 6 1118 502 5.0 – 8.5 10 – 100 
26.04.2015 1 273 22 3.0 – 4.0 50 

 

2.3.2 Image processing 

Agisoft Photoscan Professional version 1.1 (AgiSoft 2015) was used to generate a 3D point 

cloud from the acquired images. This software uses both structure for motion (SfM) and 

stereo-matching algorithms for image alignment and multi-view stereo reconstruction. 

Generation of the point cloud involved the process displayed in Table 3. Finally, we added 

spectral information from the point cloud, i.e., red, green and blue image bands to the point 

cloud. According to Wallace et al. (2016), spectral information from a UAV point cloud can 

present additional useful information for estimating other non-structural properties of the 

canopy. 

 

Table 3. Processing steps with corresponding parameter settings in Agisoft Photoscan 

Professional software for generation of 3D point clouds from UAV imagery. 

Task Parameters 
a) Image alignment Accuracy: high 
 Pair selection: reference 
 Key points: 40000 
 Tie points: 1000 
b) Mesh building Surface type: height field 
 Source data: dense cloud 
 Face count: high 
c) Guided marker positioning Manual positioning of markers on the 14 GCPs for 

all the photos where a GCP was visible 
d) Building dense point cloud Quality: medium 
 Depth filtering: mild 

 

2.3.3 Point cloud normalization 

The study by Kachamba et al. (2016b), conducted in the same study area, revealed that a 

digital terrain model (DTM) developed from unsupervised ground filtering of the 

photogrammetric point cloud performed well. The ground filtering was conducted using a 

version of the progressive triangular irregular network (TIN) algorithm (Axelsson 1999) 

implemented in Agisoft Photoscan software (AgiSoft 2015). The algorithm divides the point 



cloud into cells of a certain size. In this study, a cell size of 50 m was applied. In each cell, 

the lowest point is detected and is triangulated to produce a first approximate terrain model. 

Next, a new point is added to the ground class, providing that it satisfies two conditions: it 

lies within a certain distance from the TIN and that the angle between the TIN and the line to 

connect this new point with a point from a ground class is less than a certain angle. This step 

is repeated while there still are points to be checked. The ground filtering was based on the 

angle-distance parameter combinations of 3° and 6 m, respectively, as recommended by 

Kachamba et al. (2016b). In this study, we applied this DTM to calculate the height relative 

to the ground for all points by subtracting respective TIN values from each point. 

2.3.4 Variable extraction 

Variables describing canopy height were derived from the normalized point cloud and they 

included maximum and mean values (Hmax, Hmean), standard deviation (Hsd), coefficients 

of variation (Hcv), kurtosis (Hkurt), skewness (Hskewness) and percentiles at 10% intervals 

(H10, H20, …, H90). A height threshold of 0.5 m was applied in order to separate tree points 

from low vegetation and ground. Apart from the variables describing canopy height, variables 

describing canopy density were derived by dividing the height between a 95th percentile of 

height and the 0.5 m threshold into 10 equally tall vertical layers and calculating the 

proportion of points above each layer to the total number of points. These variables were 

denoted as follows: D0, D1, …, D9. In addition, spectral variables derived from the RGB 

spectral bands were included. The spectral variables were computed as the maximum (Smax), 

mean (Smean), standard deviation (Ssd), coefficient of variation (Scv), kurtosis (Skurt), 

skewness (Sskewness) and nine percentiles (S10, S20, …, S90) for each of the three bands. 

For example, the Smax variable was denoted as follows: Smax.red, Smax.green and 

Smax.blue. The remaining spectral variables were also denoted similarly. In total, 64 

variables describing canopy height, canopy density and canopy spectral properties were 

extracted. Some of the extracted height and density variables had missing values for some 

sample plots for one or several of the plot sizes. In such cases we replaced the missing values 

with zero in the datasets.  

2.4 Model development and evaluation 

Kachamba et al. (2016b) found that square root-transformed dependent variables performed 

better than untransformed and logarithmically transformed variables when modelling AGB 

with variables derived from the UAV imagery. We therefore fit multiple linear regression 

models relating square root-transformed AGB (as dependent variable) and the calculated 



variables (as independent variables) for each of the 12 samples constituting different 

combinations of sample plot sizes and sample sizes. Since multicollinearity normally occurs 

between remotely sensed variables (Meng et al. 2016), we applied the best subset variable 

selection procedure using the leaps package (Lumley 2009) in R statistical software (R Core 

Team 2016). The selection of potential independent variables was restricted to a combination 

of up to four variables (i.e., based on preliminary tests) with minimum Bayesian information 

criterion (BIC) and variance inflation factor (VIF) values as selection criteria. An empirical 

ratio estimator for bias correction proposed by Snowdon (1991) was employed when 

converting predictions to arithmetic scale since square root transformation introduce a bias 

during back-transformation. The empirical ratio estimator was estimated from the ratio of the 

mean of the observed values to the mean of the back-transformed predicted values. The 

estimates were finally corrected by multiplying them with the estimated ratio. 

For each model, reported values included root mean square error (RMSE), relative root mean 

square error (RMSE%), mean prediction error (MPE), relative mean prediction error 

(MPE%) and squared Pearson’s correlation coefficient (r2). However, comparison of the 

models was based on RMSE values. RMSE is a reliable measure for model performance as it 

accounts for both variance and bias of the predicted value (Gregoire & Valentine 2007). 

RMSE, MPE, RMSE% and MPE% were calculated as follows: 

RMSE =  (2) 

 

          MPE =  (3) 

 

         (4) 

 

        (5) 

 

where  is the AGB field value for plot i and  is the predicted AGB for sample plot i, 

respectively, n is the number of plots and  is mean AGB for all plots. 



Both RMSE and MPE values were calculated using leave-one-out cross validation. The MPE 

value of each model was tested to check for statistical significance using a two-sided 

student’s t-tests with =0.05.  

2.5 Biomass estimation methods 

2.5.1. Field-based sample estimation 

We applied a simple random sampling estimator to estimate AGB and standard errors of 

AGB estimates based on the sample plots (Gregoire & Valentine 2007). Application of 

systematic sampling design brings positive bias on the estimates (Thompson 2012b). 

However, according to Gregoire and Valentine (2007), this bias is negligible and unknown as 

it is a property of the estimator and not a particular sample (Gregoire & Valentine 2007). 

Since the focus of the analysis in the current study was on the assessment of the influence of 

sample plot sizes and sample sizes on the precision of the estimates, we assumed that the 

calculated variance estimates based on the simple random sampling design were adequate for 

the task at hand. We thus estimated mean AGB per hectare for the study area as follows: 

 =   (6)

 

where is AGB for plot i and n is the total number of sample plots. 

The variance for the estimator in (6) was estimated as follows: 

 =  (7)

 

where  is the variance estimator for estimated mean AGB. 

2.5.2 UAV-assisted estimation 

First, the study area was tessellated into grid cells using regular grids with sizes equivalent to 

respective sample plot sizes, i.e., 250 m2, 500 m2, 750 m2 and 1000 m2 for the purpose of 

estimating AGB for the entire area. For each grid cell, variables were derived from the image 

data as described from the sample plots above. For each of the plot sizes and sample sizes, 

the previously fitted regression model (Section 2.6) was applied to predict AGB values for 

each grid cell. Then mean AGB for the study area was estimated based on the model-assisted 

regression estimator described in Särndal et al. (1992) (Page 231) as follows: 



 =  +  (8)

 

where i is predicted AGB for the ith grid cell, N is the total number of grid cells for the study 

area and  =  -  is the model prediction residual for plot i. 

The variance for the model-assisted regression estimator was estimated as follows (Särndal et 

al. 1992) (Page 234): 

( ) =  (9)

 

where  is the model prediction residual for plot i and  =  is the mean residual for all 

plots. 

2.5.3 Efficiency of UAV-assisted estimations 

The relative efficiency (RE) of UAV-assisted over the field-based inventories was calculated 

as follows: 

RE =  (10)

 

where RE is the relative efficiency of UAV-assisted over field-based inventories,  is 

the variance of the field-based biomass estimate (eq. 7) and ( ) is the variance of the 

UAV-assisted biomass estimate (eq. 9).  

An RE value greater than 1.0 indicates higher efficiency of UAV-assisted estimates than 

field-based estimates for a given plot size (see Cochran 1977). For each of these datasets, 

biomass estimates, standard error of the estimate (SE) and RE values were calculated for both 

field-based and UAV-assisted inventories for all the 12 datasets. The SE values were 

calculated as the square root of the variance of the biomass estimates based on field-based 

and UAV-assisted inventories, respectively. 

2.6 Cost efficiency analysis 

During field work, we randomly selected 16 sample plots and for each plot recorded three 

categories of time consumption, i.e. fixed time (time spent when recording sample plot 

attributes such as plot number, date, etc.), variable time (time spent on measuring trees) and 

walking time (time spent during walking from one plot to another). The average recorded 



time consumption was 7.5, 25.0 and 7.0 minutes for each of the categories, respectively. We 

then set the relative cost of a sample plot inventory of 107 sample plots (1000 m2 each) in a 

220 m by 220 m grid to 100% based on the recorded information. We then used the cost 

information from the current inventory (4 persons working for 15 days with a daily salary of 

USD 25.13 each) to calculate the variable costs for each plot scaled according to plot size and 

walking distance.  

The costs of UAV data acquisition were fixed for all sample plot sizes and sample sizes 

because the need for auxiliary remotely sensed information would be the same regardless of 

plot size and sample size. The cost was computed based on the experience from the current 

study. The costs included pre-flight preparations and the actual flying where a two-man crew 

was required. Each person worked five days with a salary similar to the field crew. Post-

processing of the acquired images required four days. 

  



3.0 Results 

3.1 Model performance based on different sample plot sizes and sample sizes 

For assessment of the effect of sample plot sizes and sample sizes on model performance, we 

fit regression models using the data from the different sample plot sizes and sample sizes 

based on a leave-one-out- cross validation procedure. None of the models had MPE values 

that were significantly different from zero (p > 0.05) (Table 4). The models produced 

RMSE% values (on arithmetic scale) in the range of 46.6 – 142.5% of the mean AGB from 

the respective sample plot sizes and sample sizes. The model for sample plot size 1000 m2 

with a sample size of 107 produced the smallest RMSE% value amongst the models. On the 

other hand, the model based on a sample plot size of 250 m2 with a sample size of 36 

produced the highest RMSE% value. The RMSE% values decreased as the sample plot sizes 

increased for the respective sample sizes. Furthermore, for a given sample plot size, RMSE% 

values increases as the number of sample plots decreases (see Table 4). However, the pattern 

for MPE% values with increase in sample plot size and sample size is irregular (see Table 4). 

The r2 values for the final models ranged from 0.31 to 0.71. The model for sample plot size 

1000 m2 with a sample size of 36 produced the highest r2 value amongst all the 12 developed 

models. On the other hand, the model based on a sample plot size of 250 m2 with a sample 

size of 107 produced the smallest r2 value (see Table 4). Figure 2 displays the relationship 

between field reference and predicted AGB for the different plot sizes (n = 107). The results 

indicate a pattern of under prediction of AGB for higher AGB values for all plot sizes. 

The models contained a minimum of one and a maximum of four independent variables. All 

the models contained variables describing canopy height. Further, all models, except two, 

contained variables incorporating red, green and blue spectral bands and variables describing 

canopy density were only incorporated in the model for sample plots of 750 m2, with sample 

size 36. 
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3.2 Assessment of the efficiency of UAV-assisted AGB estimation 

The standard error (SE) values for field-based AGB estimates were larger compared to those 

of UAV-assisted for all sample plot sizes and sample sizes (Table 5). For the respective 

sample plot sizes, SE values for both field-based and UAV-assisted AGB estimates generally 

increased as the sample sizes decreased. The RE values showed an increasing trend with 

increasing sample plot sizes. However, the pattern of the RE values was irregular as the 

sample sizes increased for the respective plot sizes (Figure 4).  

Table 5. Estimated mean AGB and associated standard error (SE) estimates based on field-

based and UAV-assisted estimation for different sample plot sizes and sample sizes. 

Plot size  Sample size  Field-based (Mg ha-1) UAV-assisted (Mg ha-1) 
(m2) (n) field SE uav SE 
250 107 36.86 3.29 44.12 2.75 
250 54 36.23 4.58 43.63 3.79 
250 36 36.37 6.21 49.69 5.20 
500 107 37.38 2.96 42.49 2.22 
500 54 39.87 4.57 45.60 3.59 
500 36 34.21 4.68 42.42 3.52 
750 107 38.12 2.79 42.16 1.86 
750 54 39.50 4.13 43.39 3.07 
750 36 32.63 4.15 43.81 2.56 
1000 107 38.99 2.85 43.30 1.72 
1000 54 39.59 4.09 43.11 2.30 
1000 36 33.12 4.39 40.96 2.36 
field = Estimated mean AGB from field-based sample, uav = Estimated mean AGB from UAV-assisted 

estimation, SE = Estimated standard error of mean AGB. 

  



 

Figure 4. Relative efficiency of UAV-assisted inventory for different sample plot sizes and 

sample sizes. 

3.3 Cost efficiency analysis 

The smallest SE was obtained using 1000 m2 sample plot size and sample size of 107 in a 

UAV-assisted inventory. However, relative cost of this inventory was the highest amongst the 

tested sample plot sizes. Furthermore, for a sample plot size of 1000 m2 the reductions in SE 

were 0.71 Mg ha-1 for UAV-assisted and 1.54 Mg ha-1 for pure field-based inventory when 

increasing the number of sample plots from 36 to 107 (see Table 5). However, the relative 

increase in costs were approximately 57% and 54% for UAV-assisted and pure field-based 

inventory, respectively (see Fig 5).  

 



 

Figure 5. Standard error (SE) estimates and relative costs (RC) for field-based inventories 

(red) and UAV-assisted inventories (green) with different sample plot sizes (point size) and 

sample sizes (text label). Linear regression lines of the form SE = b0+b1*RC are added for 

the field-based and UAV-assisted inventory, respectively, to indicate the trends in the results. 

  



4.0 Discussion 

Integration of efficient forest inventory techniques in biomass estimation is a key to the 

successful implementation of the REDD+ mechanism. This study aimed at estimating the 

efficiency of a UAV-assisted inventory for estimation of biomass based on different sample 

plot sizes and sample sizes in a forest reserve in miombo woodlands of Malawi which is 

typical for the size and properties of such reserves in the country. Thus, the results may be of 

general interest and relevance beyond the scope of this case study. The study has 

demonstrated that incorporating UAV-derived photogrammetric data in a forest inventory can 

improve biomass estimates beyond what can be achieved by purely field-based sample 

inventories. The relatively small SE values for the UAV-based estimates indicate that 

inclusion of remotely sensed data from UAV imagery can improve the precision of the 

biomass estimates. Thus, the application of UAV-assisted inventories for REDD+ 

implementation in Malawi could potentially result in improved biomass estimates compared 

to pure field-based inventories.  

Just like in any remote sensing assisted forest inventory, the precision of biomass estimates 

based on a UAV-assisted inventory is highly influenced by the choice of sample plot sizes 

and sample sizes (Frazer et al. 2011). This is demonstrated by several aspects in the results. 

First, the trends in the RE values show that the magnitude of the efficiency of UAV-assisted 

inventories is influenced by the sample plot size employed. For instance, the average RE 

values for the 250, 500, 750 and 1000 m2 sample plot sizes were 1.45, 1.72, 2.23 and 3.12, 

respectively, indicating an increase in the magnitude of the efficiency of UAV-assisted 

inventory with increasing sample plot sizes.  

It should however be noted that when reducing the sample sizes, i.e., from 107 to 36, for the 

different sample plot sizes, the trends for the RE values were irregular. This could be 

attributed to small sample sizes, e.g. selecting the 36 plots in a different way might give 

different results. Furthermore, changes in the mean biomass estimates for the respective 

datasets due to the systematic exclusion/inclusion of plots with high biomass values when 

selecting plots. This demonstrates the impact the application of systematic sampling design 

can have on estimated biomass in forests with irregular biomass distribution such as miombo 

woodlands where forest canopy cover is highly variable.  

As in our study, systematic designs are often applied in forest inventories because they are 

more efficient. However, when the sampling intensity is small for any sampling design, the 



risk of not capturing the whole range of the variable of interest increases. Subsequently, 

poorer predictive models are developed thus leading to extrapolation when predicting forest 

attributes in forests with attributes that are not represented in the field data. In order to 

develop a good predictive model, more efficient sampling designs should be adopted by 

spreading the sample in the space of the variables derived from the remotely sensed data 

(Grafström et al. 2014; Hawbaker et al. 2009). This issue should therefore be taken into 

account when planning future UAV forest inventories. 

The influence of sample plot and sample sizes was further demonstrated by the trends in 

RMSE values. The results have shown that the RMSE values decreased by approximately 

39%, 46% and 63% between the smallest (250 m2) to the largest (1000 m2) sample plot sizes 

for sample sizes 107, 54 and 36 respectively. The same trend was observed by Frazer et al. 

(2011) and Mauya et al. (2015) (see Table 6). The magnitude of the decrease in RMSE values 

reported are quite varied due to differences in the range of sample plot sizes and sample sizes.  

Table 6. Effect of sample plot sizes and sample size on the root mean square errors (RMSE) 

of biomass estimates for different studies. 

Authors n Sample plot size 
 (m2) 

RMSE 
 (Mg ha-1) 

Change 
 (%) 

Remotely 
sensed data 

Frazer et al. (2011) 60 314 – 1964 157.60 – 97.80 37.94 ALS 

Mauya et al. (2015) 30 200 – 3000 262.47 – 93.73 64.29 ALS 
Current study 107 250 – 1000 29.61 – 18.18 38.60 UAV 

 

The improvement of biomass estimates with increasing sample plot sizes shows that large 

sample plot sizes favour UAV-assisted inventories. This could be attributed to reduction in 

plot boundary effects as the sample plot sizes increases as suggested by Goetz and Dubayah 

(2011). Thus, for small sample plots canopies of trees with wide crowns such as those in 

miombo woodlands (Frost 1996) tend to be partially included and thus under predicting 

sample plot biomass. On the other hand, as the sample plot sizes increase, this effect tends to 

decrease substantially since these variations are averaged out at larger sample plot sizes 

(Saatchi et al. 2011).  

The fact that the results in the current study indicate that larger plots and larger sample sizes 

favour UAV-assisted forest inventories does not imply that larger plots and larger sample 

sizes should always be applied during the UAV-assisted inventory because of the associated 

costs. The results of the cost efficiency analysis presented in Figure 5 indicate that there is a 



trade-off between costs and required precision. On one hand, acquiring UAV data and field 

reference data from many large plots is expensive but produces more precise results. On the 

other, acquiring the data from many small plots is less expensive but produces less precise 

results. Based on the trends observed in Figure 5, in this study if SE less than approximately 

3 Mg ha-1 was targeted during a forest inventory, then a UAV-assisted forest inventory 

should be applied to ensure cost efficient and precise estimates. This demonstrates the need 

for carrying out a cost analysis during UAV-assisted inventory in order to determine the 

optimal sample plot size and sample size to apply. 

Finally, it should be noted that careful planning is needed for application of UAV-assisted 

inventories under the REDD+ mechanism in Malawi to be accomplished. For example, if the 

inventory is intended for smaller forest reserves, wall-to-wall coverage using a UAV is 

possible. On the other hand, in cases where inventories are conducted in larger forest 

reserves, the UAV can be applied as a sampling tool because wall-to-wall operations may be 

found economically and logistically infeasible. Furthermore, this study was conducted on a 

single site and thus represents a forest inventory scenario at specific location. Although this 

case study has provided evidence of great efficiency of UAV-assisted inventory, similar 

studies should be conducted in other reserves across the country in order to be able to 

generalize and provide guidance for future operational inventories. 

  



5.0 Conclusions 

Successful incorporation of UAV-based remote sensing technologies for biomass estimation 

in REDD+ projects in Malawi requires studying the influence of key factors, such as sample 

plot size and sample size, which affect the precision of the estimates. The study has 

demonstrated that UAV-assisted inventories tend to produce more precise estimates 

compared to those utilising exclusively field-based methods. Furthermore, larger sample plot 

sizes and sample sizes tend to favour UAV-assisted inventories. We therefore recommend 

that UAV-assisted inventories be incorporated in the implementation of REDD+ in Malawi to 

improve biomass estimates. However, more studies are needed to check the influence of 

sample plot sizes and sample sizes for different study sites where also costs are considered. 
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