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Simple Summary: The impact of the gut microbiota on endurance performance remains unresolved.
Here, we present an association between endurance performance and gut microbiota dysbiosis
in sled dogs. We present evidence that normobiosis-associated bacteria prevent the outgrowth of
dysbiosis-associated bacteria during the race.

Abstract: Although our understanding of the role of the gut microbiota in different diseases
is improving, our knowledge regarding how the gut microbiota affects functioning in healthy
individuals is still limited. Here, we hypothesize that the gut microbiota could be associated with sled
dog endurance-race performance. We investigated the gut microbiota in 166 fecal samples from 96
Alaskan Huskies, representing 16 teams participating in the 2016 Femund Race (400 km) in Norway,
relating the microbiota composition to performance and metadata derived from questionnaires.
For 16S rRNA gene sequencing-derived compositional data, we found a strong negative association
between Enterobacteriaceae (dysbiosis-associated) and Clostridium hiranonis (normobiosis-associated).
The teams with the best performances showed both the lowest levels of dysbiosis-associated bacteria
prior to the race and the lowest change (decrease) in these bacteria after the race. Taken together,
our results support the hypothesis that normobiosis-associated bacteria are involved in resilience
mechanisms, potentially preventing growth of Enterobacteriaceae during the race.
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1. Introduction

The gut microbiota can be considered an organ, providing essential functions to the host,
including short-chain fatty acid (SCFA) production, immune modulation, and protection against some
pathogens. The role of the intestinal microbiota in health and disease has been of increasing interest,
with associations being explored in both intestinal and extra-intestinal diseases [1]. In healthy humans
and dogs, the gut microbiota is in a stable normobiotic state [2] and is resilient towards changes.
However, following severe perturbations, such as extensive antibiotic treatment, the gut microbiota
may not return to normobiosis but, rather, remain dysbiotic [3]. Dysbiosis is characterized by loss of
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the normal functions of the microbiota [2,4]. In particular, increased oxygen tension has been related to
the dysbiotic state [5].

Dysbiosis in both dogs and humans has been associated with gut-related diseases, such as
inflammatory bowel disease (IBD) [2,4,6]. However, how the normobiotic microbiota is associated
with good health remains less clear. Good endurance performance could be used as a proxy for good
health; indeed, potential associations between endurance performance and composition of the gut
microbiota have been reported in humans [7–9] but not yet in dogs. Thus, long-distance racing in sled
dogs might represent a good model for investigating associations between gut microbiota signatures
and good health.

Endurance racing with dogs is a recreational sport of increasing popularity in North America and
various European countries, including Norway. Several long-distance sled dog races are held annually,
such as the 400 km Femund Race in Norway, and both professional and amateur teams participate.
These races exert an enormous physical load on the dogs [10], and their ability to perform under this
extreme pressure may be affected by their microbiomes; at the same time, the race itself may affect
the composition of the dogs’ microbiomes. Although information about the effects of long-distance
racing on microbiota composition in sled dogs is scarce, a study from Alaska reported a pronounced
alteration in the fecal microbiome after a 300-mile race, compared with that observed in Labradors
participating in field trials in a restricted location [11].

The aim of our study was to characterize the intestinal microbiota and level of dysbiosis in sled
dogs participating in the 400 km Femund Race by means of 16S rRNA gene sequencing and fecal
score measurements, with relation to performance and other factors, such as age, dietary information,
and team. The dysbiosis-associated bacteria were measured using a newly developed dysbiosis index
for dogs. The index is based on seven key bacterial taxa, with relation to both inflammation and bile
acid metabolism [6].

We present results showing an overall major reduction of dysbiosis-associated bacteria in
the participating dogs, with the team having the overall lowest degree of dysbiosis-associated
bacteria showing the best performance. These results indicate the importance of gut dysbiosis in
endurance performance.

2. Methods

2.1. Study Design

The Femund Race is arranged annually in Mid-Eastern Norway during February. Teams compete
in either the 400 km (8 dogs per team) or the 600 km (12 dogs per team) trail. The 400 km race lasts
about 2 days, with a total racing time of about 30 h and rest time of about 15 h. The race course for both
trails starts and ends in the town of Røros. The race area is dominated by forest and mountain plateaus,
with temperatures down to −40 ◦C (for more information, visit: http://www.thefemundrace.com/).

The study population consisted of dogs/teams participating in the 400 km Femund Race in 2016.
Mushers (n = 81) listed in the official Femund Race participant list were randomized in Microsoft Excel,
and the first 20 mushers in the randomized list were contacted during November–December 2015 and
all agreed to participate in our study. Four teams withdrew from the study before the race, leaving
16 mushers that were willing to participate, of which 14 responded to the questionnaire. Each team
consisted of 8 dogs, and the mushers were asked to choose six of them to be included in the study.
The dogs were classified by breed; gender; and age (<1 year, 1–3 years, and >3 years), and further
information regarding kennel size, housing, type of food, and amount of pre-race exercise was collected
through a questionnaire (Table S1). Mushers were also asked to give details about feeding routines.

2.2. Sample Collection and Storage

Fecal samples for microbiota analyses were collected from up to six dogs per team the day
before and immediately after finishing the race (not all dogs were available for sampling; see Results

http://www.thefemundrace.com/
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section). Collection was done by direct rectal swab using FecalSwabTM, a collection and transport
system containing a Cary–Blair medium (Copan Diagnostics Inc., Murrieta, CA, USA). Samples were
immediately frozen and stored at −20 ◦C and transported in a cool box with cooling elements within a
maximum of 8 h, before being stored at −80 ◦C until further processing at the Norwegian University of
Life Sciences (NMBU). The samples were not thawed before DNA extraction.

In addition, fecal samples (three from each included dog) were collected by their owner and
sent to NMBU both two weeks before and two weeks after the race. These samples were examined
for parasites using standard techniques: modified McMaster and immunomagnetic separation (IMS)
immunofluorescence assay test (IFAT) for the Giardia duodenalis and Cryptosporidium spp. [12]. The fecal
score was determined based on consistency using a modified version of the Purina Fecal Scoring
System from 1 to 4 (1 = liquid stool, 2 = soft nonformed stool, 3 = soft but formed stool, and 4 = firm
and formed stool).

Ethical Approval and Consent to Participate: This study was approved by the Ethical Committee
for Animals at the Norwegian University of Life Sciences (reference number 15/04947) according to
the International Association of Veterinary Editors Consensus “Author Guidelines on Animal Ethics
and Welfare for Editors”. Consent for Publication: All participating mushers were informed about the
study aims and methods and signed a “consent to participate” form, which informed them that we
intended to make the results publicly available, before being included in the study.

2.3. Microbiome Analysis

DNA was extracted from the rectal swabs directly after thawing using a mag midi kit (LGC
Genomics, UK) according to the manufacturer’s instructions in an automated KingFisher flex system
(Thermo Fisher Scientific, Waltham, MA, USA). To determine taxonomic composition, library
construction and sequencing of resulting amplicons of the V3–V4 region of the 16S rRNA were
done, as previously described [13]. The resulting amplicon reads were processed (demultiplexing,
merging, primer removal, quality filtering, dereplicating, operational taxonomic unit (OTU) clustering,
and filtering of chimeras) using a standard procedure associated with USEARCH 8.0 software [14]
in the QIIME environment [15], with Silva [16] as the reference database for taxonomic assignments.
Read counts for all OTUs in each sample were arranged into an OTU table and then rarefied to
10,000 sequences to obtain a uniform sequencing depth.

The level of dysbiosis-associated bacteria was determined by utilizing a recently developed
dysbiosis index for dogs based on 7 bacterial subgroups, including Faecalibacterium, Turicibacter,
Streptococcus, Escherichia coli, Blautia, Fusobacterium, and Clostridium hiranonis [6]. The sequencing-based
dysbiosis index was calculated based on summing the log10 number of reads for OTUs classified to
genera/species positively associated with dysbiosis, with subsequent subtraction of the log10 number
of reads belonging to OTUs classified to genera/species negatively associated with dysbiosis. E. coli
was represented by Enterobacteriaceae due to lack of resolution in the 16S rRNA gene. The average
dysbiosis index within teams was used to investigate correlations between dysbiosis and performance.

Raw reads from the 16S rRNA gene sequencing are available in the National Center
for Biotechnology Information (NCBI) sequence read archive (SRA) database with accession
number SRP148740.

2.4. Statistics

Statistical analyses were performed using Minitab software (Minitab Inc., State College, PA, USA).
Multivariate statistical analyses were done using PLS_Toolbox (Eigenvector Research, Inc.; Seattle,
WA, USA) in the MATLAB programming environment (MathWorks, Inc.; Natick, MA, USA).
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3. Results

3.1. Overall Composition of the Microbiota

In total, samples from 96 dogs representing 16 teams were obtained for fecal microbiota analysis.
Some dogs were not available for sampling, either pre or post-race or both. Samples from 79 dogs
before the race and 87 dogs after the race were included in the microbiota analysis. All samples yielded
10,000 sequences or more. There were relatively large individual differences in the fecal microbiota
across the sled dogs, with a dominance of Clostridium and Fusobacteria species. There was also a
relatively low correlation in microbiota composition before and after the race when comparing the
data for the same dogs (Spearman rho of 0.62 ± 0.10 (mean ± std), n = 70 comparisons), which was
only marginally higher than for the comparison of different dogs (0.54 ± 11 (mean ± std), n = 71
comparisons). Despite large individual divergences, team-specific differences were observed, in
addition to differences before and after the race (Figure 1A). Beta diversity clustering was observed for
teams, in addition to clustering associated with samples taken before and after the race (Figure 1B).
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Figure 1. Phylum-level distribution (A) and Bray–Curtis diversity (B) of the microbiota. Upper panels
for A represent team distributions, while lower panels represent after and before the race. The 50%
confidence level is labelled for Bray–Curtis distribution. The beta-diversity plots were generated using
principal coordinates analysis (PCoA) ordination.

Data compression with the principal coordinates analysis (PCoA) showed similar loading patterns
for before, after, and changes from before to after the race (Figure 2). In all cases, the main pattern was
that Clostridium hiranonis showed a strong negative association with Enterobacteriaceae.
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3.2. Diversity Measures

ANOVAs confirmed the clustering structure in the data related to the teams, in addition to before
and after the race. The team effect was determined by 13 principal components (PCs), indicating
team-specific signatures of the fecal microbiota composition (effect 14.0, p < 0.0001). The effect of the
race (before and after) was determined by a single PC (effect 3.6, p < 0.0001), indicating similar effects
across all teams.

There were no systematic differences in species richness across teams, but there was a significant
(p = 0.001, t-test) decrease from 133.4 ± 32.2 to 113.2 ± 20 (mean ± std) in species richness from before
to after the race. The race did not, however, affect alpha diversity measures Simpsons 1-D or Shannon
H (results not shown).
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3.3. Level of Dysbiosis-Associated Bacteria

We found a significant effect of the teams (H = 35.64, p = 0.002; Kruskal Wallis) on the level of the
dysbiosis index and a decrease in the dysbiosis index from before the race to after the race (H = 17.3,
p < 0.0005; Kruskal Wallis). This was manifested by a considerable post-race increase in the bacteria
Fusobacterium, Clostridium hiranonis, and Blautia, all of which are associated with normobiosis (low
dysbiosis index, Figure 3). The trend for the dysbiosis-associated bacteria (high dysbiosis index),
however, was less clear, with a slight decrease in Enterobacteriaceae and an increase in Streptococcus after
the race (Figure 3).
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Figure 3. Bacterial taxa included in the dysbiosis index. The dysbiosis index was calculated as the sum
of the log10 copy number for bacteria positively associated with the dysbiosis index (marked in red),
while subtracting those negatively associated (marked in green). The association with dysbiosis has
previously been determined [6]. Abbreviations: after—after the race, before—before the race.

3.4. Metadata Associations

We investigated possible associations between the data obtained from the questionnaires and
stool consistency/parasite load (Tables S1 and S2) with the results from the analysis of the microbiota.
Pre-race dysbiosis showed a positive association with poorer performance (lower finishing rank)
and peak exercise (Figure 4A), while duration of peak exercise and percent dry feed (proportion of
dry pellets in feed, by weight) showed the strongest positive association with post-race dysbiosis
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(Figure 4B). Changes in dysbiosis (from before to after the race) showed the overall strongest negative
associations with poor performance and increasing age (Figure 4C).
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Figure 4. Prediction of dysbiosis based on metadata. Importance of predictors in the regression model
for dysbiosis before the race (A), after the race (B), and changes from before to after the race (C).
Predictors showing Spearman correlation p values <0.05 are colored green, p values <0.10 are yellow,
and p values >0.10 are blue. Predictors with p values >0.10 in all cases are not included in the model.

No associations were found between either bacterial richness or alpha diversity measures with
information obtained in the questionnaires, nor did we identify associations connected with fecal score
or Giardia load two weeks before and after the race or dry feed brand (results not shown).

4. Discussion

We found that the teams with lowest levels of dysbiosis before the race showed the best
performances. Furthermore, there was an overall decrease in dysbiosis from before to after the
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race, with the teams performing poorest showing the largest changes. The associations between gut
microbiota dysbiosis and performances are summarized in Figure 5.
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Figure 5. Schematic association between performances and dysbiosis. (A) The best performing teams
showed the lowest degree of dysbiosis initially (before the race) and the lowest changes after the race.
(B) The poorest performing teams showed the highest degree of dysbiosis initially (before the race) and
the largest changes after the race.

The main compositional structure was a negative association between C. hiranonis and
Enterobacteriaceae, both before and after the race. As C. hiranonis is connected with normobiosis
and Enterobacteriaceae with dysbiosis [6], the interactions between these bacteria could be important for
the conditions in the gut.

Endurance racing is associated with damage to gut tissue due to oxygen depletion, with transient
increases in gut leakage [7] and oxygen tension [17]. These conditions would normally favor growth
of dysbiosis-associated bacteria, such as Enterobacteriaceae and lactic acid bacteria [11,18]. For the
Femund Race, however, we observed a relative increase in the lactic acid bacterium Streptococcus
after the race, while Enterobacteriaceae showed a slight decrease. A potential explanation for the
lack of Enterobacteriaceae outgrowth could be that this genus of bacteria is negatively associated with
C. hiranonis, which also showed a large increase after the race. Mechanistically, a negative association
could be explained by C. hiranonis 7α-dehydroxylating activity [19]. This activity converts the primary
bile acid, chenodeoxycholic acid, into the antimicrobial compound, lithocholic acid [20]. Elevated
production of lithocholic acid during endurance racing [21] could also explain the observed reduced
species richness from before to after the race.

Increased damage and oxygen leakage in the guts of the dogs participating in teams performing
less well may lead to a greater growth potential of dysbiosis-associated bacteria. In order to prevent
dysbiosis, we hypothesize that the dysbiosis-associated bacteria must be suppressed by a concordant
increase in normobiosis-associated bacteria. This provides a potential explanation for the apparently
contradictory results, with the teams performing less well showing the greatest decrease in dysbiosis
after the race.

Gut leakage may also occur under circumstances of overtraining and poor performance [22].
Under conditions of chronic gut leakage, the gut microbiota may reach a tipping point with a new state
of equilibrium in which the dysbiosis-associated bacteria predominate [3]. This could result in a more
chronic dysbiotic state of the gut microbiota [23], potentially explaining why the poorer performing
teams showed a higher degree of dysbiosis than the best performing teams prior to the start of the race.

Older age and poor performance were confounded with respect to association with dysbiosis.
Results from previous studies, based on plate counts, have shown that there is an increase in
streptococci in older dogs (>11 years) [24], and, at very high ages (~17 years), there is an increase
in Enterobacteriaceae [25], both of which are associated with dysbiosis. Interestingly, we observed an
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increase in Streptococcus, but not Enterobacteriaceae, after the Femund Race. This may indicate that the
post-race conditions in the gut may resemble that of increased age. At very high ages, however, the
increase in Enterobacteriaceae may indicate dysfunction in resilient mechanisms, thereby resembling
dogs with inflammatory bowel disease with increased Enterobacteriaceae and depleted C. hiranonis [2].

Ideally, all teams participating in the race would have been included in the study, but with limited
resources available, we were obliged to select only a few of the teams. Unfortunately, four teams
withdrew from the study at a timepoint when it was not possible to include additional teams. The small
sample size limits the interpretative value of our results, and further investigation on this topic is
warranted. Although we recorded stool consistency prior to and after the race, we lack information
during the race. However, sled dogs participating in long-distance racing are known to have a high
prevalence of diarrhea [26]. It should also be noted that many other confounding factors, such as heart
function, team equipment, and the skills of the mushers, are associated with race performance and
could have affected our results. In particular, diet could be a contributing factor for performance and
team-specific clustering of the microbiota. More detailed information on some aspects, such as the
concentration of energy, nutrients, and antioxidants in the diet, should have been obtained in order to
address the effects of feed properly. Feed certainly also interacts with the gut microbiota, so, without
detailed knowledge about feeding regimes, we cannot rule out that our results reflect the effects of
feed [27]. However, since we do not have detailed information about the types of feed, it is difficult
to compare our study with other studies focusing on feed effects [28]. Therefore, the relatively few
parameters investigated in our study is a clear weakness. More considerations should be included in
future studies, including more animals, recording the occurrence of diarrhea during the race, and more
details about the feeding regimes.

Finally, our study was based on rectal swabs; ideally, more representative samples should have
been obtained to reflect the gut microbiota. It is also possible that the storage of the samples directly
after collection (freezing at −20 ◦C) before transport in a cold box and then freezing at -80°C was
not optimal for preservation of DNA, but this was the same for all samples collected at the race.
Although rectal swabs have been shown to give reliable results in studies of the intestinal microbiota
in humans [29], direct comparison of the results from our study with those of other studies may be
difficult due to the major influence of extraction method on composition and diversity [30,31].

5. Conclusions

This study provides insights on the effects of extreme endurance exercise on the intestinal
microbiota of dogs. We propose that normobiosis-associated bacteria could be a part of resilience
mechanisms that are important for maintaining normobiosis during endurance racing.
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