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VII 

AIMS OF THE STUDY 

The three smallest carbocyclic rings, cyclopropane, cyclobutane and cyclopentane, are 

recognized as substructures of many biologically active, synthetically challenging natural 

products. They are also important as intermediates in organic synthesis, and new methods of 

preparation of these cyclic compounds are still in demand.  

 
The unifying objective of this thesis was to use new methodology in order to improve old 

methods for the synthesis of 3-, 4- and 5-membered cyclic compounds. 

 
The thesis involves the following partial objectives: 

 
1. To use flow chemistry in a microreactor in order to prepare different gem-

dibromocyclopropanes by using a well-established method (dihalocyclopropanation 

under phase-transfer catalysis) in a new way (by using a microreactor).  

 
2. To subject allene-ene esters to microwave irradiation (a new methodology) in order 

to improve the Lewis acid catalysed intramolecular [2+2] cycloaddition of these 

compounds and obtain cyclobutane compounds. 

 
3. To investigate a ring expansion reaction of isopropylidenecyclobutanes to yield 

bicyclo[3.3.0]octanes.  

  



VIII 

ABSTRACT 

The main focus of this thesis was to use new methodology on already well-established 

methods of preparation of 3-membered, 4-membered and 5-membered carbocyclic 

compounds with the emphasis on improving them. 

 
Traditional batch dibromocyclopropanations by reaction of bromoform and alkenes under 

phase-transfer conditions usually require strong base (50% NaOH (aq)), vigorous stirring, 

and often long reaction times. When flow chemistry in a microreactor was used, the 

reactions were found to be smooth, rapid, and high-yielding under ambient conditions when 

40% (w/w) NaOH was used as the base. A key requirement for the success of this method 

was the use of the slug flow technique and an aqueous-to-organic flow ratio (AO ratio) of 4. 

A representative selection of alkenes, displaying a variety of structural features, was used as 

substrates. When unsaturated alcohols were used as substrates, the yields obtained were 

dependent on the structure of the alcohol. 

 
Methyl 2,3,8-nonatrienoate (12) undergoes a Lewis acid (EtAlCl2) catalysed [2+2] 

cycloaddition to give a mixture containing (Z)-methyl-2-bicyclo[3.2.0]hept-6-ylidene 

acetate (13a) and (E)-methyl-2-bicyclo[3.2.0]hept-6-ylidene acetate (13b) (2.5 : 1) in 83 % 

yield when microwave irradiation is applied at 130 °C for 30 seconds. In the literature 14 

days at 25°C was used. The cyclisation did not work for 3-methyl-3-buten-1-yl buta-2,3-

dienoate (68a) or 3-methyl-3- buten-1-yl 4-methylpenta-2,3-dienoate (68c) although several 

catalysts and different temperatures and reaction times were tried. 

 
When subjected to HBr/HOAc in polar solvents like acetic acid, 6-(1-methyl-

ethylidene)bicyclo[3.2.0]heptane (76a) did undergo a ring expansion reaction yielding 2-

bromo-3,3-dimethylbicyclo[3.3.0]octane (77a) and 3-bromo-2,2-dimethyl-

bicyclo[3.3.0]octane (78a). Several other isopropylidenecyclobutanes gave similar results 

with high stereoselectivity, but moderate regioselectivity. In less polar solvents like diethyl 

ether the ring expansion reaction was suppressed, and bromides resulting from addition of 

HBr to the isopropylidene double bond were obtained. 

  



IX 

SAMMENDRAG 

Hovedfokus i denne avhandlingen har vært å bruke ny metodologi på allerede veletablerte 

metoder for fremstilling av karbosykliske 3- og 4- og 5-ringsforbindelser med håp å 

forbedre dem. 

 
Tradisjonelle metoder for dibromsyklopropaneringer i vanlige reaksjonskolber ved reaksjon 

med bromoform og alkener under faseoverføringsbetingelse krever vanligvis sterk base 

(50% NaOH (aq)), svært kraftig røring og ofte lange reaksjonstider. Ved å benytte "flow"-

kjemi i en mikroreaktor, ble reaksjonene funnet å være enkle å utføre i tillegg til at de var 

raske og gav høyt utbytte under normale betingelser, men hvor det var nødvendig med en 

basestyrke på kun 40% (w/w) NaOH. Et nøkkelkrav for denne metodens suksess, var bruk 

av "slug flow"-teknikken og et vannfase-organiskfase-forhold (AO forhold) på 4. Et 

representativt utvalg av alkener med forskjellige strukturelementer ble brukt som substrater. 

Med umettede alkoholer som substrat, viste det seg at utbyttene var svært avhengige av 

strukturen til alkoholen. 

 
Ved å benytte mikrobølgestråling ved 130 °C i kun 30 sekunder, ga methyl-2,3,8-

nonatrienat (12) undergår en Lewis-syrekatalysert (EtAlCl2) [2+2] sykloaddisjon. 

Produktblandingen besto av en blanding av (Z)-metyl-2-bisyklo[3.2.0]hept-6-ylidene acetat 

(13a) og (E)-metyl-2- bisyklo[3.2.0]hept-6-ylidene acetat (13b) (2.5 : 1) i 83 % utbytte. 

Tidligere er det rapportert av andre at 14 dager ved 25°C var nødvendig for å få til 

tilsvarende resultat. Sykliseringen fungerte ikke for 3-metyl-3-buten-1-yl buta-2,3-dienat 

68a) eller  3-metyl-3- buten-1-yl 4-metylpenta-2,3-dienat (68c) selv om flere katalysatorer 

og forskjellige temperaturer og reaksjonstider ble forsøkt. 

 
Da 6-(1-metyl-etylidene)bicyclo[3.2.0]heptane (76a) ble behandlet med HBr/HOAc i polare 

løsningsmidler som eddiksyre, ble resultatet en ringekspansjonsreaksjon som gav 2-brom-

3,3-dimetylbisyklo[3.3.0]oktan (77a) og 3-brom-2,2-dimetyl-bisyklo[3.3.0]oktan (78a). 

Flere andre isopropylidenesyklobutaner undergikk den samme reaksjonen med høy 

stereoselektivitet, men moderat regioselektivitet. I mindre polare løsemidler som dietyleter, 

ble ringekspansjonsreaksjonen undertrykt. I stedet ble bromider som skyldes addisjon av 

HBr til isopropyliden-dobbeltbindingen dannet. 
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CHAPTER 1  -  INTRODUCTION 

1.1 Introduction to 3-, 4, and 5-Membered Carbocyclic Compounds 

The three smallest carbocyclic rings, cyclopropane, cyclobutane and cyclopentane, are 

recognized as substructures of many biologically active, synthetically challenging natural 

products belonging to several different product classes, like fatty acids, terpenes and 

alkaloids, and the number is still growing.1-8 Examples include e.g. the antifungal 

nucleoside FR-900848, a fermentation product from Streptoverticillium fervens,9-11 

containing an aglycon with five cyclopropyl groups, Pasteurestin A, an antibacterial 

fermentation product from the basidiomycetes Agrocybe cylindracea and A. aegeritta,12-13 

and (±)-1-desoxyhypnophilin, a biologically active terpene isolated from the East African 

mushroom Lentinus crinitus (L. ex Fr.) Fr.14  

 

 
Figure 1.1 Some natural products containing 3-, 4- and 5-membered rings. 

 

A number of active pharmaceutical ingredients also contain 3- to 5-membered carbocyclic 

rings, e.g. ciprofloxacin, a broad-spectrum antibiotic containing a cyclopropane ring, 

carboplatin, an anticancer drug containing a cyclobutane ring, and glycopyrronium bromide 

(Seebri ® Breezhaler®), a bronchodilator, containing a cyclopentane ring. 

 

 

Figure 1.2 Three drugs currently marketed in Norway. 
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In addition to being important structural elements in natural products as such,15 

cyclopropanes, cyclobutanes and cyclopentanes are also important substrates as versatile 

intermediates for the syntheses of both natural products and other interesting compounds.16-

19 New methods for synthesis of these compounds are still in demand.1,17 

 
Although the cyclopropyl group is stable enough to be found in natural products, 

cyclopropanes are more reactive than their acyclic counterparts and larger cycloalkanes.20 

Cyclopropanes often resemble alkenes in their behaviour,21 e.g.: 

1. They interact with electrophiles like bromine, whereas their acyclic counterparts and 

cyclobutanes and larger cycloalkanes generally do not.21 

2. They are generally more efficient than cyclobutanes and larger cycloalkanes in 

interacting with a proton or an adjacent cationic center where cyclopropanes acts 

like a base. Cyclobutanes and larger cycloalkanes are much less basic than 

cyclopropanes since they do not stabilize the positive charge equally well.21 

3. The C-C bonds in cyclopropanes are thermally more easily cleaved than C-C bonds 

in cyclobutanes are, which again are more easily cleaved than the C-C bonds in 

cyclopentanes and cyclohexanes are.21  

4. The methylene protons in cyclopropane usually have an increased acidity compared 

to their acyclic counter parts and larger cycloalkanes.21 

5. Cyclopropanes form metal complexes, undergo catalytic hydrogenation and 

cycloadditions.22 

6. The 13C-H coupling constant (1JC-H) of cyclopropane is found to be 161 Hz, 

resembling 1JC-H of ethene (157 Hz), and is much larger than 1JC-H of ethane (126 

Hz). In contrast, 1JC-H of cyclobutane (134 Hz) and of cyclopentane (128) resemble 
1JC-H of cyclohexane (124 Hz) more.23  

7. In cyclopropanes both the C-C and C-H bonds normally are shorter than those in 

other cycloalkanes like cyclohexane, while for cyclobutanes the opposite is true, 

usually having bonds that are longer.21 

 
In contrast to acyclic alkanes, cyclic alkanes experience varying degrees of ring strain. 

(Table 1.1)20  
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Table 1.1 Strain Energy of Some Cyclic Alkanes20 

Entry Alkene Strain Energy (kcal/mol) 

1 cyclopropane 27.5 

2 cyclobutane 26.5 

3 cyclopentane 6.2 

4 cyclohexanea 0.0 
 a Chair conformation 

 
The strain energies of the cycloalkanes of small and medium sizes (3-6 membered rings) 

may result from:20  

1) Angle strain: The deformation of bond path angles (interorbital angles) from the 

tetrahedral angle of 109.5°, which is normal for unstrained alkanes.  

2) 1,3 repulsion between cross-ring carbons. 

3) Torsional interactions arising when bonds are not ideally staggered. 

 
Cyclohexane in its chair conformation is regarded as strain free since its bond path angles 

are near identical to the tetrahedral angle, the bonds are almost perfectly staggered, and 

there is no 1,3 repulsion between cross-ring carbons (Table 1.1, Entry 4).21 

 
In cyclopentanes there usually are no angular strain, but strain due to eclipsing of methyl 

groups exist. (Table 1.1, Entry 3 for cyclopentane.) Cyclopentanes adopt conformations that 

alleviate this transannular strain.24 

 
Cyclopropanes and cyclobutanes (Table 1.1, Entries 1 and 2 for the parent hydrocarbons) in 

general have higher strain energy than larger cyclic alkanes (and acyclic alkanes). Since the 

cyclopropane ring contains only three atoms, it must be planar, and the C-C-C bond angles 

should be 60°, something that would lead to a severely strained molecule with rather weak 

bonds.20,25 

 
The Förster-Coulson-Moffitt model26-28 suggests that the C-C bonds in cyclopropanes are 

formed by orbitals relatively rich in p character, giving sp5 hybridized carbons, (bent bonds) 

in order to minimize the angle strain (Figure 1.3).21 Several other studies, both 
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experimental29-32 and theoretical,33-37 have confirmed that the interorbital angle (α) of 

cyclopropane is larger than its geometric angle (60°), and that the bonding regions of 

cyclopropane lies outside the triangle made by the three carbon atoms, although there have 

been some discussion about the magnitude of the interorbital angle in literature.29-37  

 
The increased reactivity and many of the unique properties of cyclopropanes, and to some 

extent cyclobutanes, can be explained in terms of these bent bonds that can act similarly to π 

bonds. 

 

 

Figure 1.3 Bent bonds in cyclopropane and eclipsed conformation of cyclopropane. 

 

As a consequence of the increased p character (decreased s character) of the C-C bonds in 

cyclopropane, the C-H bonds gets an increased s character, compared to what is found in 

acyclic alkanes, and resemble sp2 hybridised bonds. The HCH angle is increased compared 

to the tetrahedral angle. The high s character of C-H bonds in cyclopropanes generally leads 

to increased acidity of the methylene groups and makes the 13C-H coupling constant in 

cyclopropanes resemble that of alkenes.21 

 
Cyclopropanes generally have upfield shifts in NMR compared to other carbocycles: δH for 

cyclopropane is 0.12 ppm, considerably upfield from cyclohexane (δH = 1.44), while for 

cyclobutane the hydrogens are shifted downfield (δH = 1.96 ppm). δC for cyclopropane is -

2.9 ppm, for cyclohexane 27 ppm, and for cyclobutane 23 ppm. The upfield shifts are 

general features of cyclopropanes and can be used in structure determination.21 The upfield 

H

H

H

H

H

H
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shifts of cyclopropanes have been attributed to shielding arising from a ring current in 

cyclopropane that involves the six electrons in the three C-C bonds (σ-aromaticity) and is 

induced when cyclopropane is subjected to a perpendicular magnetic field.38,39 A similar 

explanation of the downfield shifts of cyclobutanes does not seem to exist.39 

 
In addition to the angle strain, cyclopropanes in general experience torsional strain20 since 

all the hydrogens are eclipsed (Figure 1.3.) 

 
Cyclobutane contains bonds that are bent to a lesser extent than for cyclopropane and 

therefore generally behaves more like an ordinary alkane compared to cyclopropane (Figure 

1.4).25 Cyclobutanes also experience torsional strain, but they can relieve some of the 

torsional strain caused by eclipsing CH2 groups by adopting a puckered conformation where 

the C-C-C bond angle is reduced from 90° (for cyclobutane itself from 90° to 88°).21 

 

 

 

Figure 1.4 The slightly bent bonds and puckered conformation of cyclobutane. 

 

In addition, cyclobutanes also experience 1,3 cross-ring repulsion between methylene 

groups. It is this cross-ring repulsion that causes the bonds in cyclobutanes to be longer than 

normal.21 

 
The strain energies of cyclopropane and cyclobutane are of similar value. The reasons for 

this is that while cyclopropane has a much larger angle strain and torsional strain than 

HH

H H

H

H

H
H
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cyclobutane, it lacks the 1,3 repulsion between the cross-ring carbons. In addition, the C-H 

bonds in cyclopropane are stronger than those of cyclobutane, in part compensating for the 

weaker C-C bonds.20 

 
The presence of 3- to 5- membered rings in natural products of biological significance, and 

the special characteristics of these rings have made them into targets for synthetic chemists, 

and several methods for their synthesis exist. 
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1.2 Synthesis of 3-Membered Carbocyclic Compounds 

The first preparation of a cyclopropane ring was described in 1882 when August Freund 

reported the synthesis of cyclopropane by treating 1,3-dibromopropane with sodium in an 

intramolecular Wurtz coupling.40 Since then a huge number of methods for preparing these 

interesting and useful compounds have been developed.2,17,41-44 Only a few of these methods 

will be briefly mentioned here, and readers are encouraged to consult the literature41-44 for 

details concerning these and other existing cyclopropanation methods. 

 

1.2.1 Some general methods for construction of the cyclopropyl carbon skeleton 

Some of the most frequently used general methods for construction of the cyclopropyl 

carbon skeleton are listed in Table 1.2 on page 13 and 14. A few typical experimental 

characteristics are included in the table. The new C-C bonds that are formed in these 

reactions are shown in red. 

 

1.2.1.1 Intramolecular Reductive 1,3-elimination of Two Heteroatoms 

As mentioned earlier, an intramolecular Wurtz reaction on 1,3-dibromopropane was used 

for the first preparation of cyclopropane.40 The reductive elimination of 1,3-dihalides41a is a 

general reaction and has been achieved by metal reduction with e.g. Zn, Mg or Na, or by 

employing organometallic reducing agents like t-BuLi or LiAlH4 (Table 1.2, Entry 1). The 

reaction runs smoothly with 1,3-diiodides and 1,3-dibromides,41a whereas sodium iodide has 

been used as a mediator to complement the relative low reactivity of the 1,3-

dichlorides.41a,42b Primary halides usually work well in this reaction, while the secondary 

and, and particularly tertiary halides are hampered by production of alkene sideproducts.42b 

Mixed 1,3-dihalides give lower yields than the corresponding dibromides.41a Other 

heteroatoms than halides may participate in the reaction, and while the 1,3-debromination is 

a non-stereospecific reaction, 1,3-deoxystannylation is a stereospecific method.41a,42b  
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1.2.1.2 The Simmons-Smith Cyclopropanation 

The stereochemical terms are according to those defined by Hellquist.44a For more details 

see Appendix 1. 

Since the zinc reagents are weakly electrophilic, the cyclopropanation using the Simmons-

Smith protocol45-46 (Table 1.2, Entry 2) is accelerated by electron-donating substituents at 

the double bond and retarded by electron-withdrawing groups.42c The Simmons-Smith 

reaction is usually stereospecific with regard to the transfer of methylene and free from side-

reactions. The zinc reagents tend to coordinate to oxygen or nitrogen functional groups that 

are appropriately positioned in the alkene substrate,42c,47-49 and such coordination may 

accelerate and direct the cyclopropanation, thus influencing the syn/anti product ratios 

(diastereofacial selectivity). The reaction occurs at the more accessible face of the double 

bond with respect to functional groups and coordinated zinc reagent. 

The Simmons-Smith cyclopropanation usually is less efficient for tetrasubstituted than for 

less substituted double bonds due to steric congestion.50 A number of chiral ligands have 

been used for asymmetric Simmons-Smith cyclopropanation.2 A major drawback of the 

Simmons-Smith reaction is the expense of diiodomethane, although in some cases 

dibromomethane can be used together with promotors.50 

 

1.2.1.3 Metal Catalysed Diazomethane Cyclopropanation 

Catalytic decomposition of diazomethane in the presence of an alkene41b,42c,44b (Table 1.2, 

Entry 3) is another way of constructing the cyclopropane skeleton. When Pd(OAc)2 is used 

as the catalyst, only mono- and disubstituted alkenes react.2 Since non-activated, internal 

double bonds does not react easily, a selective cyclopropanation may be obtained when 

different types of double bonds are present in a molecule.42c The reaction is generally 

stereospecific with respect to the addition of the methylene group.44b With cyclic alkenes, 

the Pd-carbene species approaches the less hindered face of the alkene. Acyclic alkenes 

show low diastereoselectivity (low diastereofacial selectivity) under these conditions.2 Other 

catalysts have also successfully been used, and asymmetric reactions have been 

accomplished by using optically active catalysts or different chiral auxiliaries (either in the 

alkene or in the diazocompound).44b Large scale syntheses using this protocol is 

inconvenient since diazomethane is poisonous and explosive.44b Alkyl- and dialkylcarbenes 
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are susceptible to rapid intramolecular insertion reactions and give acceptable yields of 

cyclopropanes only for intramolecular cyclopropanations.42c 

 

1.2.1.4 Metal Catalysed Diazo-carbonyl Cyclopropanation  

Many different transition metal complexes (e.g. copper salts or rhodium salts) catalyse the 

decomposition of diazocarbonyl compounds (like diazoacetate) into acyl- and 

alkoxycarbonyl carbenes2,42d (Table 1.2, Entry 4). The reaction of acyl- and 

alkoxycarbonyldiazomethanes with alkenes is in general stereospecific under catalytic 

conditions (i.e. retention of the cis-trans relationship of the double bond substituents in the 

cyclopropane product).42d Usually, the addition preferentially occurs to the less hindered 

side of the double bond, and the less sterically congested anti-isomer of the product 

predominates.42d Possible problems concerning diastereoselectivity (anti vs. syn) and 

enantioselectivity, may often be solved by varying the metal-ligand system and the steric 

bulk of substituents such as the ester group.2 

 

1.2.1.5 Cyclopropanation by Michael Induced Ring Closure (MIRC) Reaction 

Michael acceptors may be cyclopropanated by conjugate addition of a nucleophile, followed 

by intramolecular cyclization and elimination of a leaving group (LG).41c,42e-f The leaving 

group may be located in the Michael acceptor (Entry 5) or in the nucleophile (Entry 6).41c 

Stabilized ylides, e.g. sulfur ylides are frequently used as nucleophiles in the latter type of 

Michael Induced Ring Closure (MIRC) reaction.42f The reaction is base induced and 

generally racemic mixtures of cyclopropanes are obtained,41c although in some cases the 

reaction may be stereospecific.44c The stereoselectivity of the reaction is determined by the 

cyclization step on the intermediate Michael adduct, and the cis/trans ratio of the bond that 

is formed is dependent on the solvent polarity, the degree of anion-cation association and 

steric interactions, and under phase-transfer conditions, whether a catalyst is used or not.41c 
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1.2.1.6 Ring Contractions  

Cyclopropanes may also be prepared by ring contraction of larger rings, e.g. by nitrogen 

extrusion from 1-pyrazolines,42g-h or by ring contraction of cyclobutyl derivatives.42i Several 

other methods for achieving ring contractions can be found in the literature.41d-g 

 

1.2.1.6.1 Nitrogen Extrusion from 1-Pyrazolines 

The thermal, or photochemical, extrusion of N2 from 1-pyrazolines (Table 1.2, Entry 7) is a 

useful method for preparation of alkylsubstituted cyclopropanes,42g since preparation of 

these compounds from alkyl- and dialkylcarbenes is impractical due to rapid intramolecular 

insertion reactions (See chapter 1.2.1.3).42c 

The pyrazolines are usually prepared by a concerted, stereospecific 1,3-cycloaddition of a 

diazo compound to an alkene containing an activated double bond.42g-h,3744b  For certain 

pyrazolines acid catalysis is used.42g The photochemical decomposition generally gives 

better results than the thermal decomposition due to thermal side reactions. Direct 

photolysis usually gives cyclopropanes with retention of the relative stereochemistry of the 

starting pyrazolines, whereas triplet sensitized photolysis tends to give an extensive loss of 

stereochemistry, but better yields of cyclopropanes.42g 

 

1.2.1.6.2 Ring Contraction of Cyclobutyl Derivatives 

Cyclobutanes that are vicinally disubstituted by an electron-donating group and a leaving 

(or electron receiving) group, undergo facile ring contractions yielding cyclopropyl 

derivatives.51,52 (Table 1.2, Entry 8) Two examples of such reactions are: 42i Treatment of 2-

substituted cyclobutanols with base to give cyclopanecarbaldehydes or cyclopropyl ketones, 

and nucleophilic addition and subsequent ring contraction of -substituted cyclobutanones 

to give cyclopropanecarboxylic acids and their derivatives. Generally, this ring contraction 

is stereospecific and occurs with inversion of configuration at the carbon substituted with 

the leaving group. However, in some cases epimerization of this carbon prior to ring 

contraction result in a stereochemically more complex mixture of products. 
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1.2.1.7 Addition of Dihalocarbenes to Alkenes 

Another method of synthesis of 3-membered rings is by [1+2]cycloaddition of 

dihalocarbenes to alkenes to yield gem-dihalocyclopropanes.41h,53 (Table 1.2, Entry 9) The 

dihalocarbene is formed by elimination of hydrogen halide from the haloform using a strong 

base (Scheme 1.1). 

 

 

Scheme 1.1 α-elimination of hydrogen halide 

 

The cycloaddition of dihalocarbenes to alkenes is usually a stereospecific process that 

preserves the configuration of the alkenes in the products. Dihalocarbenes are electrophilic 

species that react readily with nucleophilic (electron-rich) alkenes. The more highly 

substituted the alkene is, the faster the reaction generally is:  

The reactivity of simple alkenes towards dihalocarbenes decreases in this order: 

tetrasubstituted > trisubstituted > unsymmetric-disubstituted > symmetric-disubstituted > 

monoalkyl-substituted,42j and generally:53 

- 1,1-disubstituted alkenes has a higher reaction rate than 1,2-disubstituted alkenes 

- Straigth chain (Z)-alkenes react faster than the corresponding (E)-isomers, and 

- Cyclic (E)-alkenes react at a higher rate than the corresponding Z-isomers. 

With electrophilic (electron-poor) alkenes, the reaction is much slower, and if the double 

bond is fairly unreactive, the dihalocarbene may participate in side reactions like insertion 

into C-H bonds. Dibromocarbene is more reactive (and less selective) than dichlorocarbene. 

 
Usually chloroform or bromoform are used, and only routes leading to dichloro- and 

dibromocyclopropanes are discussed here. For preparation of other dihalocyclopropanes, 

readers are referred to the literature.41h,44d,53 Two of the most important methods for 

C
X

H

X

X
C

X

X
X C

X
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X = halogen
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preparation of dichloro- and dibromocyclopropanes are the Doering-Hoffmann method54 

and the Makosza method55 (and modifications of these). 

 
In the Doering-Hoffmann protocol the α-elimination is achieved by the use of tBuOK. 

Addition of the resulting dihalocarbenes to alkenes (typically in a hydrocarbon solvent or in 

an excess of alkene) gives the dihalocyclopropanes in good yields, except for relatively 

unreactive alkenes. Replacing tBuOK with lithium triethylmetoxide gives good yields also 

for these alkenes. Strictly anhydrous conditions are required. 

 
When the Makosza protocol is used, however, the α-elimination is achieved by the use of a 

concentrated aqueous solution (50 % (w/w)) of NaOH (or KOH) under phase-transfer 

catalysis (PTC). Details of the Makosza reaction will be discussed in the next section 

(Section 1.2.2). 

 
Another method that has been used for preparation of dichloro- or dibromocarbenes is 

thermal decomposition of Seyferth's reagents,55 e.g. trihalomethyl(phenyl)mercury 

(PhHgCX3, X= Cl or Br).42j,53,56 The method is very efficient, giving good yields of gem-

dichlorocyclopropanes prepared from base-sensitive alkenes or alkenes of low reactivity, 

e.g. allyl halides, esters and nitriles. This method is however, hampered by the high cost and 

toxicity of the carbene precursors and toxicity of the waste produced. 

 
Several other methods42j, 53 have been used to prepare the dichlorocarbenes, e.g.: reaction of 

ethyl trichloroacetate with sodium methoxide,57, thermal decomposition of sodium 

trichloroacetate,58 treatment of CBr4/CCl4 with an iron/copper couple in acetonitrile,59 and 

oxidative addition of CCl4 to a low-valent titanium species generated from Ti(IV)chloride 

with metallic magnesium.60  

 

 

 

 

 



13 

T
ab

le
 1

.2
 S

om
e 

M
et

ho
ds

 fo
r P

re
pa

ra
tio

n 
of

 C
yc

lo
pr

op
an

e 
R

in
gs

a 

R
ef

. 

40
 

41
a 

42
b 2 42
c 

45
-5

0 
 2 41
b 

42
c 

44
b 2 42
d 

41
c 

42
e 

44
c 

41
c 

42
f 

44
c 

Pr
od

uc
t 

      

Ty
pi

ca
l R

ea
ge

nt
s/

C
at

al
ys

ts
 

- 
M

et
al

s N
a,

 Z
n,

 M
g 

or
 

- 
O

rg
an

om
et

al
lic

 re
ag

en
ts

, e
.g

. 
t- B

uL
i o

r 
- 

M
et

al
 h

yd
rid

e,
 e

.g
. L

iA
lH

4 

- 
e.

g.
 Z

n(
C

u)
/C

H
2I

2, 
Zn

(A
g)

/C
H

2I
2 o

r 
- 

Et
2Z

n/
C

H
2I

2 

Ex
ce

ss
 C

H
2N

2 
an

d 
Pd

(O
A

c)
2, 

co
pp

er
 

sa
lts

 o
r c

op
pe

r c
om

pl
ex

es
 

D
ia

zo
ca

rb
on

yl
 c

om
po

un
d 

an
d 

- 
Pd

(O
A

c)
2 o

r 
- 

rh
od

iu
m

 sa
lts

 e
.g

. R
h 2

(O
A

c)
4 

or
 

- 
co

pp
er

 sa
lts

 e
.g

. C
u(

TB
S)

2 

N
u:

- 

 
e.

g.
 st

ab
ili

ze
d 

yl
id

es
 

Su
bs

tra
te

 

 

 
el

ec
tro

n 
ric

h 
al

ke
ne

s 
fa

vo
ur

ed
 

Fo
r P

d(
O

A
c)

2:
  

m
on

o 
or

  
di

su
bs

tit
ut

ed
 a

lk
en

es
b  

M
on

o 
or

 d
is

ub
st

itu
te

d 
do

ub
le

 b
on

ds
   

N
am

e 
of

 R
ea

ct
io

n 

In
tra

m
ol

ec
ul

ar
 re

du
ct

iv
e 

1,
3-

el
im

in
at

io
n 

of
 

tw
o 

he
te

ro
at

om
s 

Si
m

m
on

s-
Sm

ith
 c

yc
lo

pr
op

an
at

io
n 

M
et

al
 c

at
al

ys
ed

 d
ia

zo
-m

et
ha

ne
 

cy
cl

op
ro

pa
na

tio
n 

M
et

al
 c

at
al

ys
ed

 d
ia

zo
-c

ar
bo

ny
l 

cy
cl

op
ro

pa
na

tio
n 

C
yc

lo
pr

op
an

at
io

n 
of

 γ
-s

ub
st

itu
te

d 
M

ic
ha

el
 

ac
ce

pt
or

s/
M

IR
C

c  

C
yc

lo
pr

op
an

at
io

n 
of

 M
ic

ha
el

 a
cc

ep
to

rs
 w

ith
 

ca
rb

on
 n

uc
le

op
hi

le
s c

on
ta

in
in

g 
a 

LG
 

En
try

 

1 2 3 4 5 6 

 

R
1 R
2

R
3

R
4

R
1 R
2

R
3

R
4

R
1 R
2

R
3

R
4

R
1

R
3

R
2 Z

O

Z2

R
4

R
1

EW
G

N
u

R
4

R
2

EW
G

R
1 R

5
EW

G

X
X

R
4

R
2

R
1

R
3



14 

T
ab

le
 1

.2
 c

on
tin

ue
d…

 

R
ef

. 

42
g 

42
h 

44
b  42
i 

51
 

52
  

41
h 

42
j 

44
d 

53
 

55
 

56
 

a R
1 -R

6  =
 H

 o
r f

un
ct

io
na

l g
ro

up
s, 

X
 =

 h
et

er
oa

to
m

, Z
 =

 H
 o

r f
un

ct
io

na
l g

ro
up

  
b W

ith
 c

op
pe

r s
al

ts
 e

le
ct

ro
n 

ric
h 

al
ke

ne
s a

re
 fa

vo
ur

ed
. 

c M
IR

C
 =

 M
ic

ha
el

 In
du

ce
d 

R
in

g 
C

lo
su

re
, E

W
G

 =
 E

le
ct

ro
n-

w
ith

dr
aw

in
g 

gr
ou

p:
 -C

O
R

, -
C

O
O

R
, -

C
O

N
H

2, 
-C

N
, -

SO
2R

, -
N

O
2 e

tc
., 

 

LG
 =

 le
av

in
g 

gr
ou

p,
 N

u:
- =

 n
uc

le
op

hi
le

.  

 

Pr
od

uc
t 

    

Ty
pi

ca
l R

ea
ge

nt
s/

C
at

al
ys

ts
 

- 
 o

r 
- 

 (d
ire

ct
 o

r t
rip

le
 se

ns
iti

ze
d)

 

ba
se

 

N
u:

- 

:C
X

2 

Su
bs

tra
te

 

 

   

N
am

e 
of

 R
ea

ct
io

n 

N
itr

og
en

 e
xt

ru
si

on
 fr

om
 1

-p
yr

az
ol

in
es

 

R
in

g 
co

nt
ra

ct
io

n 
of

 c
yc

lo
bu

ta
no

l o
r 

cy
cl

ob
ut

an
on

e 
de

riv
at

iv
es

 

D
ih

al
oc

yc
lo

pr
op

an
at

io
n 

En
try

 

7 8 9 

R
4

R
2

R
3

R
1 R

5
R

6 O
R

N
u

X
H

R
1 R
2

R
3

R
4

X
X

N
N

R
1

R
2

R
4 R

5

R
6

R
3

O LG

R O X

R
1

R
3

R
4

R
2



15 

1.2.2 Addition of Dihalocarbenes to Alkenes by The Makosza Reaction and 

derivatives of this 

Until 1969 strictly anhydrous conditions were assumed necessary for the α-elimination of 

hydrogen halide from haloform to prevent rapid hydrolysis of dihalocarbene. In 1969, 

however, Makosza published a new and convenient way of synthesizing gem-

dichlorocyclopropanes that made them more easily available to chemists.61  

Makosza found that both the α-elimination of hydrogen chloride from chloroform and the 

addition of the resulting dichlorocarbene to alkenes, could be performed in a two-phase 

system using a concentrated aqueous solution of NaOH as the base, in the presence of a 

quaternary ammonium salt acting as a phase-transfer catalyst. Only a small amount of the 

generated dihalocarbene was hydrolysed in the reaction. (Scheme 1.2 )  

 

 

 

Scheme 1.2 The Makosza reaction. 

 

Dibromocarbene is more reactive than dichlorocarbene, and hydrolyses to a greater extent.43 

In 1973 Skattebøl et al.62 found that the poor yields of gem-dibromocyclopropanes 

previously obtained, could be improved if excess CHBr3 and long reaction times were used. 

Since then addition of small amounts of a lower alcohol (e.g. ethanol, ca. 0.4 mL per 0.1 

mol of alkene41h) has been reported to increase the yields of the dibromocyclopropanes as 

well.63   

Two different mechanisms were suggested for the catalytic processes: an extraction 

mechanism of inorganic anions for PTC reactions was proposed by Starks,64 while Makosza  

proposed an interfacial mechanism for the same reaction.65 

  

R1 R3

R4R2

R1 R3

R1, R2, R3, R4 = H or functional group
X = halogen

CHCl3/50 % NaOH aq

ClCl

R2 R4TEBA
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I) The Extraction Mechanism  

In this mechanism the lipophilic cation of the phase-transfer catalyst is considered to form a 

complex with hydroxide anion and transfer it to the organic phase. The CCl3
-
 anion or 

dichlorocarbene is suggested to be maintained in the organic phase away from water 

sufficiently long to react with the alkene. The mechanism can be summarized as follows 

(Figure 1.5): 

1. The phase-transfer catalyst cation, Q
+

, forms a complex with the OH
-
 anion. 

2. The Q
+

OH
-
 complex passes the boundary between the aqueous phase and the 

organic phase.  

3. Chloroform is deprotonated to give the lipophilic salt of the trichloromethyl anion 

and water. 

4. The trichloromethyl anion dissociates to give dichlorocarbene and the lipophilic 

ammonium salt, Q
+

Cl
-
org, that may go back to the aqueous phase. 

5. The dichlorocarbene adds irreversibly to the alkene, forming the 

dichlorocyclopropane. 

 

 

Figure 1.5 The Extraction Mechanism. Q
+

Cl
-
 denotes the quaternary ammonium salt. 
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II) The Interfacial Mechanism 

The phase boundary between the two immiscible phases, e.g. the organic phase and the 

aqueous phase, is considered an anisotropic region (with a concentration gradient) in which 

there is a diffusion of components from the organic phase, into the aqueous phase, and vice 

versa. In this interface region, components of the two phases can meet and react.66 The 

interface region comprises a very small volume, and the residence time of the reacting 

species there is short, thus only reactions with a very high rate constant can be observed.  

Since the details of this mechanism is not sufficiently known,66 an outline of the mechanism 

is presented in figure 1.6 (which is an adaptation of a figure in the literature66) and 

summarized in the following steps: 

1. In the interfacial region: 

Rapid deprotonation of chloroform (CHCl3,int) to give water and the sodium salt of 

the carbanion (CCl3
-
 Na

+
int), that is absorbed at the phase boundary and cannot 

migrate to the organic phase, nor to the aqueous phase. 

2. Ion exchange between CCl3
-
 Na

+
int and the lipophilic quaternary ammonium salt 

(Q
+

Cl
-
int, the phase-transfer catalyst) producing Na

+
Cl

-
int, and a lipophilic salt of the 

carbanion (CCl3
-
 Q

+
int) 

3. CCl3
-
 Q

+
int passes over to the organic phase.  

4. In the organic phase: 

CCl3
-
 Q

+
org dissociates reversibly to CCl2 and the quaternary ammonium salt. Since 

water and hydroxide ions are absent in the organic phase, the fast, reversible reaction 

is "kept ready for use" when the addition to the alkene is a slow process. 

5.  CCl2 add irreversibly to the alkene (rate determining step).The higher the 

nucleophilicity of the alkene, the higher the rate of the reaction. 

6. In the interfacial region: 

The trichloromethyl anions (CCl3
-
int) that are generated in the interfacial region also 

dissociate into dichlorocarbene and chloride ions. The dichlorocarbene produced 
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there immediately dissociates, shifting the equilibrium 6 to the right. Since the 

chloride ions produced have lower hydration energy than the hydroxide ions, they 

prefer to be located at the interface, and shift the equilibrium to the left, thus 

inhibiting the dissociation of the CCl3
-
int. 

 
 

 

Figure 1.6 The Interface Mechanism. Q
+

Cl
-
 denotes the quaternary ammonium salt. 

 

The mechanism is less thoroughly investigated for the addition of CBr2 than for the reaction 

of CCl2, but is likely to be very similar,53 although the mechanism of this dihalocarbene 

addition is still in debate.66-68  

The phase-transfer catalysed two-phase dichloro- and dibromo addition, have successfully 

been applied for many different alkenes, polyenes and allenes,42j and is especially attractive 

for the dihalocyclopropanation of tetrasubstituted alkenes.56 As seen in Chapter 1.2.1.7 the 
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dihalocarbenes are electrophilic, and the more highly substituted alkenes react more quickly. 

The order of reaction is the same as shown in Chapter 1.2.1.7. 

The phase-transfer catalyst facilitates mass transport across the interface between the two 

immiscible phases, and vigorous stirring is very important to ensure that this interface is as 

large as possible. Stirring-speed is an important parameter for the reaction rate, conversion 

and yield.62,69,70 An inert organic solvent is often used  in addition to the haloform. 

Quaternary ammonium salts like benzyltriethylammonium chloride (TEBA) and 

tetrabutylammonium bromide (TBAB) are commonly used as catalysts, but other catalysts 

e.g. tertiary amines, crown ethers are also in use.53 

 
While the traditional Makosza conditions are still in use, some successful adaptions to the 

procedure have been made. The use of solid potassium hydroxide (pellets or powder) 

instead of aqueous base, has been shown to increase reaction rates and the yields of 

dibromocyclopropanes,71 and the combination of solid sodium hydroxide, phase-transfer 

catalysis and sonication has in shortened the reaction time increased the yields even 

further.72 The Makosza method is a convenient method for the preparation of 

dibromocyclopropanes since strictly anhydrous conditions is not required, and the reagents 

used for this reaction is of low toxicity and cost compared to other methods for the 

preparation of cyclopropanes.55,56,65 

 

1.2.3 Flow Chemistry in a Microreactor 

Microreactor technology is a relatively new technology that over the last couple of decades 

has emerged as an attractive alternative to conventional batch chemistry,73-77 and in 2003 the 

capillary-microreactor was introduced as a new reactor concept.78 

 
Microreactors are usually defined as "miniaturized reaction systems fabricated by using, at 

least partially, methods of microtechnology and precision engineering." The internal 

structures of microreactors like fluid channels typically have characteristic dimensions 

ranging from the sub-micrometer to the sub-millimeter range.79 The internal volumes are 

often of several milliliters. While surface-to-volum ratios for batch reactions usually do not 

exceed 1 000 m2/m3 (laboratory vessels) and 100 m2/m3 (production vessels). Surface-to-

volume ratios of microchannels typically amount to 10 000 - 50 000 m2/m3. 
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In microreactors, where reactants are mixed in narrow channels, short diffusion lengths and 

a high surface-to-volume ratio result in rapid mass and heat transfer. This in turn improves 

control of reaction conditions and may contribute to increased rate and selectivity of 

reactions. The low reactor volumes are advantageous with respect to safety and allows for 

the use of minimal amounts of reagents under precisely controlled conditions to rapidly 

screen reaction conditions.74 

The conventional batch synthesis is a space limited process where the outcome of the 

reaction is determined by the size of the reaction vessel. However, in flow chemistry 

synthesis is a time limited process where reagents constantly are pumped into a flow reactor, 

mixed and allowed to react. The residence time is in the microreactor is the equivalent of 

reaction time in batch reactions and is defined by the combined volume of the microreactor 

and the flow rate. The products leave the reactors as a continuous stream, and scale of the 

synthesis is determined by the flow rate and operation time.74 Continuous flow processes 

allow rapid transfer from laboratory scale to industrial scale without the need for re-

optimisation of the process.75 

Microreactor technology has also been used successfully for two-phase reactions.78,80,81 

When two immiscible liquids are introduced into a micro- channel, they naturally separate 

into distinct phases with a large specific interface area, often in the form of alternating 

liquid slugs flowing through the microchannel.82 Internal circulation within these slugs 

results in an increased mass transfer compared to, e.g., parallel flow83,84 (Figure 1.7).  

 

Figure 1.7 Internal circulation in alternating slugs of two immiscible liquids in a 

microchannel. The internal flow is shown relative to the bulk velocity. 

Organic phase 

Channel wall 

Aqueous phase 

Flow direction 
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In the present work a microreactor consisting of a Y-mixer (PCTFE) connected to a 25-mL 

tube reactor (PTFE, 0.8 mm i.d.) was used (Figure 1.8). 

 

 

Figure 1.8 Modified Flow Chemistry Toolkit FRX200 from Syrris Ltd. 
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1.3 Synthesis of 4-Membered Carbocyclic Compounds 

Even though cyclobutanes were first described 120 years ago, it is only during the last four 

decades that cyclobutanes have found use as versatile intermediates in organic synthesis.1 

The inherent ring strain found in the 4-membered rings (See Chapter 1.1) facilitates 

selective bond breakage, making the cyclobutane derivatives important intermediates for 

further manipulations. Only a few of the methods that exist for preparation of these four-

membered carbocyclic rings will be briefly mentioned here, and for more details of these 

and other methods excellent reviews exist.85-87 

 

1.3.1 Some General Methods for Construction of the Cyclobutyl Carbon Skeleton 

Some of the most frequently used general methods for construction of the cyclobutyl carbon 

skeleton are listed in Table 1.3 on page 27. A few typical experimental characteristics are 

included in the table. The new C-C bonds that are formed in these reactions are shown in 

red. The principal strategies for formation of the cyclobutane ring system are [2+2] 

cycloadditions, cyclization of acyclic precursors, and ring expansion of cyclopropanes.85 

 

1.3.1.1 [2+2] Cycloadditions 

In these cycloadditions two C-C bonds and up to four new stereogenic centers are formed in 

a single step, making this method very useful.85 The thermal concerted version of this 

cyclization is normally forbidden by orbital symmetry considerations* and must proceed via 

intermediates (biradicals or zwitterions) that are sufficiently long lived to undergo 

stereochemical equilibration. Mixtures of regio- and stereoisomers often result when non-

activated alkenes are used, and usually this method cannot be used for preparation of 

configurationally defined cyclobutanes, and cycloadditions with ketenes (or ketene 

equivalents) are used instead. Methods for catalysed cycloadditions have also been 

developed.  

                                                 
 

* It has been considered that orthogonal transition states can overcome this obstacle. 
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Two examples of the thermal [2+2] cycloaddition, the catalysed cycloadditions and the 

ketene additions, are discussed further together with the [2+2] photochemical cycloaddition. 

 

1.3.1.1.1 Photochemical [2+2] cycloadditions  

The photochemically induced [2+2] cycloaddition is allowed by orbital symmetry. The 

method cannot be used for non-conjugated alkenes, and when conjugated alkenes or enones 

are used, the compounds often undergo intersystem crossing to the triplet state producing 

biradicals that can undergo stereochemical equilibration.85 Non-symmetrical alkenes with 

little stereoelectronic differentiation can in addition give regioisomeric mixtures. However, 

the intramolecular photochemical [2+2] cycloaddition reactions (Table 1.3, Entry 1) 

generally show much larger regio- and stereoselectivities since the mobility of the two 

reacting moieties is decreased. For the intramolecular alkene-enone photocyclisation the 

parameters that influence regioselectivities are the tether length between enone and alkene, 

and the substitution pattern of the reacting functional groups. Two regioisomers, the 

"parallel" cyclobutane 1 (1,2-disubstituted) and the "crossed" cyclobutane 2 (1,3-

disubstituted), may be formed. (Scheme 1.3). In general, tether lengths possessing two 

centers between alkene units give the "crossed" product, whereas those of three or more 

centers give the "parallel" product, but strain factors and substitution patterns also influence 

the regioselectivity. 

  

Scheme 1.3 Regioselectivity related to tether length. 
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Photochemical cycloadditions of allenes yield alkylidenecyclobutanes.85 Mixtures of regio- 

and stereoisomers are often obtained. Alkynes are also used in this cycloaddition reaction. 

 

1.3.1.1.2 Catalysed Cycloadditions 

Alkenes that are thermally unreactive to cycloaddition may undergo cycloaddition reactions 

when exposed to catalysts (metals, Lewis acids, Brønsted acids).85,86a (Table 1.3, Entry 2) 

The substrates are often converted to reactive intermediates like metalated alkenes, cations, 

or radical cations that can undergo cyclisation more efficiently. The mild conditions used 

permit the cycloaddition of alkene combinations that would not otherwise react. A number 

of these catalysts may cause decomposition of the cyclobutanes formed in the initial 

reaction, and such catalysed reactions are limited to allyl cations, strained alkenes and 

donor-acceptor substituted alkenes. Alkenes possessing a nucleophilic site for coordination 

to a metal or Lewis acid, may undergo stereochemical equilibration to give mixtures of 

products. Intramolecular reactions are generally more selective than the intermolecular ones. 

Zwitterionic intermediates have been proposed for some of these processes, and the 

selectivity is often dependent on the nature of the metal catalyst used. Highly stereoselective 

examples are known.88  

Takasu et al.89-91 found that silyl enol ethers undergo hard Lewis acid (e.g. EtAlCl2) 

catalysed [2+2] cycloaddition reactions with , -unsaturated esters to produce substituted 

cyclobutanes. Although the reactions are highly efficient and highly regio- and 

stereoselective, large amounts of the catalyst (ca. 20 mol%) is needed and the process is not 

applicable to substrates that contain Lewis acid sensitive functionality.  

Recently, it has been shown that trifluoromethanesulfonimide (Tf2NH) serves as a highly 

efficient catalyst for the [2+2] cycloaddition of silylenol ethers and , -unsaturated 

esters.92-93 The reaction is an alternative to the photochemical reaction for these compounds, 

producing highly substituted and structurally complex cyclobutanes using only 1.0 mol% of 

Tf2NH. The yields have been found to vary inversely with the catalyst concentration. The 

reaction is reversible, and the kinetic product possesses the trans-configuration, whereas the 

thermodynamic product has the cis-configuration. The Tf2NH acts as a precatalyst to 

produce the real catalyst TBDMSNTf2 through reaction with the tert-butyldimethylsilyl enol 

ethers. 
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1.3.1.1.3 Cycloadditions with Ketenes and Ketene Equivalents 

The cycloaddition of ketenes to alkenes is the most widely used method for the synthesis of 

cyclobutanes.85,86b The popularity of the method may be due to the fact that ketenes are 

available from different routes, and that the reactions are highly regio- and stereoselective 

(Table 1.3, Entry 3). 

 
The reactivities of ketenes differ widely depending on the substituents. The regio- and 

stereochemistry of the ketene addition can be predicted on the basis of orbital symmetry 

considerations, and during initial bond formation the ketene fragment acts as the 

electrophilic component, and electron-withdrawing substituents on the ketene enhance 

reactivity. Cycloadditions of electrophilic ketenes and nucleophilic alkenes are the most 

facile. Dichloroketene is sufficiently activated to react with non-activated alkenes (e.g. 

cyclohexene). Electron-deficient alkenes do not undergo cycloaddition to ketenes at all. 

However, ketene equivalents such as ketene acetals or ketene iminium salts may be used for 

these alkenes and also non-activated alkenes. A common side reaction for ketenes is 

dimerization, and in the original procedures the ketenes are usually generated in situ in the 

presence of a large excess of the alkene. An exception to this was the ketene iminium salts 

that do not dimerize like the ketenes do. Development of novel methodologies has 

overcome some of these obstacles.86,94 

 
The cyclobutanones formed in the ketene addition are formed regioselectively with the more 

nucleophilic carbon of the alkene bonded to the ketene carbonyl carbon.85 The 

stereochemistry of the alkene substituents is generally maintained in the product. The 

relative stereochemistry of the ketene substituents to the alkene substituents may be 

predicted on the basis of a concerted mechanism, and in the product formed from 

unsymmetrical ketenes with cycloalkanes the larger of the two substituents occupies the 

endo position in the bicycloalkane. 

 
In intramolecular ketene to alkene cycloadditions, the efficiency of the addition depends on 

the nature and rigidity of the tether length. When alkene and ketene moieties are held rigidly 

and in close proximity, good yields of cycloaddition products are obtained, and three carbon 

tethers give the best results. The intramolecular reaction proceeds with retention of alkene 
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configuration, whereas the regiochemistry depends on the substitution pattern of the alkene 

unit. 

 

1.3.1.2 1,4-Cyclisation of Acyclic Precursors 

The cyclisation of acyclic precursors is a general method for the synthesis of cyclobutanes 

as for the cyclopropanes (Section 1.2.1.1) Several strategies for this 1,4-cyclisation have 

been developed, e.g. dehalogenation of 1,4-dihalobutanes, 1,4-dehydrohalogenations or 

dehydrotosylations, intramolecular electrophilic or nucleophilic addition to alkenes or 

alkynes.85,86c The 1,4-cyclisation of acyclic precursors can take place by radical or ionic 

mechanisms and often proceed with stereochemical equilibration of the stereogenic termini. 

 
Intramolecular nucleophilic substitution of carbanions by the SN2 or the SN2' mechanism, 

using a carbanionic nucleophile, is an often used method. The carbanion is generated by 

deprotonation of acidic C-H functions (e.g. a-hydrogens to carbonyl or nitrile groups), or by 

metal halogen exchange processes (e.g. the Wurtz reaction). Substituents that will enhance 

the acidity of the C-H group and is easily removed from the product, is used. The carbanion 

attacks the electrophilic carbon center that is bonded to an efficient leaving group (e.g. 

halogen). 

 

1.3.1.3 Ring Expansions of Cyclopropylcarbinyl Precursors 

Cyclopropylmethyl systems that are substituted with an electrondonating substituent at C-1 

may undergo ring enlargement to give cyclobutane compounds (Table 1.3, Entry 4).85,86d 

The regioselectivity in substituted cyclopropane derivatives is determined by the migration 

of the more substituted carbon. A number of substrates can be used for these reactions, e.g. 

alkylidenecyclopropanes, vinylcyclopropanes, cyclopropylmethanol or any 

cyclopropylmethyl compound containing a leaving group and cyclopropyl carbonyl 

derivates. The transformation of alkylidenecyclopropanes  to cyclobutanes is generally 

carried out by oxidation (epoxidation or hydroxylation) of the alkene group followed by a 

thermal or cationic induced rearrangement. The oxidized intermediate is most often not 

isolated. The reagents used to induce the ring expansion depends on the nature of the 

electrondonating substituent at C-1.  
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1.3.2 Thermal [2+2] Cyclisations of Allenes 

Allenes are generally considerably more reactive than non-conjugated alkenes in 

undergoing cycloadditions with other isolated, non-activated double bonds since the strain 

associated with the central sp hybridised carbon in allenes can be relieved in the 

cycloaddition reaction.85 However, the regio- and stereoselectivities of the allene 

cycloadditions are low, largely due to the occurrence of diradical and zwitterion 

intermediates in these processes. Usually mixtures of isomeric cyclobutanes are obtained, 

and separation of the isomers is often difficult. An example of a successful thermal [2+2] 

allene-ene cycloaddition that was one of the intermediate steps in the synthesis of the 

pheromone component lineatin95,96 is shown in scheme 1.4.  

 

   

Scheme 1.4 Thermal [2+2] cycloaddition. 

 

It is also observed that donor-acceptor cyclisation between electrophilic allenes and 

nucleophilic alkenes, or vice versa, proceed more efficiently and with high 

regioselectivity.85 

 

1.3.2.1 Catalytic [2+2] cycloadditions of allene-enes 

As seen in Chapter 1.3.1.1.2 Lewis acid catalysis may allow reaction between alkenes that 

are thermally unreactive to cycloaddition. Hiroi et al. achieved an intramolecular [2+2] 

cycloaddition of inactivated allene and ene functionality by the assistance of Lewis acids.97 

The [2+2] cycloaddition reactions of 1,2,7-triene systems were found to be largely 

dependent upon the acidity of the Lewis acid used and the reaction temperature. The 1,2,7-

triene compound 5 having no other functional groups, underwent a [2+2] cycloaddition 

•
R

R

a: R= H

b: R = CH3

O
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quartz wool
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reaction when treated with a strong Lewis acid (EtAlCl2) at low temperature (at -78 C). 

Using higher temperatures (0 C), polymerisation was the major reaction path. The 1,7-

allene-ene 7 having a gem-diester group gave a [2+2] cycloaddition product when treated 

with weaker Lewis acids, e.g. TiCl4 (3.0-7.0 equivalents) at room temperature. On the other 

hand the more acidic Lewis acids, like EtAlCl2 (0 C) gave no reaction at all with this 

compound (Scheme 1.5). 

 

 

Scheme 1.5 

 

The first transition-metal-catalysed cycloaddition of allene-enes to alkylidene cyclobutanes 

was reported in 2007 when Luzung et al.98 published an intramolecular [2+2] cycloaddition 

of allene-enes 9 to give high yields of enantioenriched bicyclo[3.2.0]heptanes 10, using 

chiral bisarylphosphine-gold(I) complexes 11 as catalysts (Scheme 1.6). Other gold(I) 

ligands have been used in enantioselective [2+2] cycloadditions of allene-enes.99 Nickel 

complexes have also successfully been applied to allene reactions.85 
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Scheme 1.6 Luzung's synthesis.98 

 

Zhao et al. identified In(OTf)3 in MeNO2 as the best conditions in a highly efficient acid-

catalysed intramolecular [2+2] cycloaddition between the less activated distal allenic double 

bond and unactivated alkene moieties of ene-allenones.100 The reaction displays excellent 

chemo-, regio-, and diastereoselectivities under very mild conditions and enables the 

stereocontrolled construction of complex polycyclic compounds containing the 

methylenecyclobutane framework. 

 

1.3.2.2 Catalytic [2+2] cycloadditions of allenic esters to alkenes 

Snider et al.101,102 investigated the Lewis acid catalysed inter- and intramolecular [2+2] 

cycloaddition of conjugated allenic esters to alkenes. They found EtAlCl2 to be optimal for 

the Lewis acid catalysed reactions of unsaturated esters. An example is shown in Scheme 

1.7.  

  

Scheme 1.7 
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The results indicate that these cycloadditions occur at carbons 3 and 4 of the allene, and the 

stereo- and regioselectivities of these Lewis acid catalysed reactions are remarkably similar 

to thermal cycloaddition reaction of the corresponding ketenes, which can be looked upon 

as a heterocumulene (Scheme 1.8). The mechanistic models used to describe ketene 

cycloaddition reactions, are probably also applicable to allenic ester cycloaddition. 

 

  

Scheme 1.8 Comparison between the EtAlCl2 complex and ketene. 

 

An AlCl3 promoted regio- and stereoselective [2+2] cycloaddition of ethyl 2,3-butadienoate 

and alkenes have also appeared.103 The yields were low to excellent, depending on the 

alkene used. 

 
In 2015, Conner et al. introduced a new and highly enantioselective method for catalytic 

[2+2] cycloadditions between readily available allenoates and alkenes.104 Using the catalyst 

19 a wide variety of alkenes undergo cycloaddition with good yields and enantioselectivity, 

an example is shown in scheme 1.9 Unactivated alkenes may be used, which is in sharp 

contrast to the majority of reported catalytic enantioselective methods. Strained alkenes give 

higher yields than the non-strained alkenes. The catalyst is readily available in one step from 

commercially available starting materials. Limitations of the method are the use of 

trisubstituted alkenes or , -unsaturated alkenes where low selectivity has been obtained. 
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Scheme 1.9 

 

The intra-molecular allenic ester cycloadditions complement intramolecular ketene 

cycloadditions that often proceed in reasonable yields only when activated ketenes are used 

(See chapter 1.3.1.1.3). 

 

1.3.3 Microwave Assisted Organic Synthesis 

Microwave irradiation (MWI) has become a well established and frequently used source of 

thermal energy for many organic reactions.105 In 1986 Gedye106 and Giguere/Majetic107 

published pioneering work in this field, and since then the technique has become 

increasingly popular. More than 3500 articles in the field of Microwave Assisted Organic 

Synthesis (MAOS) have appeared.108  

 
The microwave heating technique has been shown to dramatically reduce reaction times 

(from days or hours to minutes or seconds) and side reactions, increase yields, and improve 

reproducibility of organic reactions.105 

 
Microwave irradiation is electromagnetic irradiation in the frequency range of 0.3 to 300 

GHz, corresponding to wavelengths of 1m to 1mm. Both domestic microwave ovens and 

microwave reactors that are dedicated to chemical synthesis, operate at a frequency of 2.45 

GHz. At this frequency the microwave photon has an energy of 0.0016 eV, which is too low 

to break chemical bonds.  

 
The traditional way of heating an organic reaction is by using conductive heating with an 

external heat source (oil-bath, heating mantle). Compared to microwave heating this method 
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is slow and inefficient since it depends on convection currents and the thermal 

conductivities of the materials that must be penetrated (Figure 1.9). This generally results in 

the temperature of the reaction vessel being higher than that of the reaction mixture (wall 

effect) and may lead to the formation of a temperature gradient within the mixture. The 

reaction mixture that is in contact with the vessel wall is heated first, and local overheating 

may result in decomposition of e.g. products or reactants. 

 

 

Figure 1.9 Classical conventional heating compared to microwave heating. 

 

Microwave irradiation, however, can produce very efficient, internal heating by the direct 

transfer of microwave energy to the molecules (solvents, reagents, catalysts etc.) in the 

reaction mixture. The temperature of the whole mixture is raised simultaneously, thus 

minimizing the wall effects. 

Microwave enhanced chemistry, however, is based on the heating of materials by 

"microwave dielectric heating" effects. Microwave dielectric heating is dependent on the 

ability of a specific material (solvent or reagent) to absorb microwave energy and convert it 

into heat. Irradiation of a reaction mixture is at microwave frequencies, causes substances 

with dipole moments to align in the applied electric field. When the applied field oscillated, 

the dipole field attempts to realign itself with the alternating electric field, thereby loosing 

energy in the form of heat, through molecular friction and dielectric loss. The ability of a 

Classical heating Microwave heating 

C
onvection 
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urrents 
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substance (e.g. a solvent) to convert electromagnetic energy to heat at a given frequency and 

temperature, is given by the loss factor, tan . 

 
tan  = ''/ ' 

 

where '' is the dielectric loss, which is an indication of the efficiency with which 

electromagnetic radiation is converted into heat, and ' is the dielectric constant which 

indicates the ability of the molecules to be polarized by the electric field. 

 
In order to efficiently absorb the microwave energy and effect rapid heating of the reaction, 

the medium must have a high tan . Solvents are classified as having a high  (tan  > 0.5, e.g. 

ethylene glycol), medium (tan  0.1-0.5, e.g. water) or low (tan  < 0.1, e.g. 

dichloromethane). The overall dielectric properties of the reaction medium will in most 

cases allow sufficient microwave heating even if solvents with low tan  are used. In 

addition polar additives, such as doping with ionic liquids,109 may also be used to increase 

absorbance level of the medium. The microwave irradiation technique sometimes displays 

accelerations that cannot be achieved or duplicated by conventional heating, e.g. a high 

microwave absorbing solvent may be superheated to temperatures >100 C above its boiling 

point when heated by microwaves in a sealed vessel. 

 
In the beginning, the microwave assisted organic synthesis was performed in a sealed vessel 

in ordinary kitchen microwave ovens, without accurate temperature or pressure 

measurements and no safety controls. Nowadays advanced instruments that are dedicated 

specifically to organic synthesis is most often used. These modern microwave reactors 

usually has online monitoring of temperature and pressure and gives a much better control 

of reaction conditions, and this is one of the major reasons for the success of the technique. 
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1.4 Synthesis of 5-Membered Carbocyclic Compounds 

The synthesis of 5-membered carbocycles is not a trivial matter and until the 1960’s rather 

few general methods existed. However, the quest for reliable stereoselective methods was 

spurred by the increasing knowledge of the impact prostaglandins and prostacyclines have 

in human health. Both of these groups of compound contain the cyclopentane motif. This 

lead to a large interest in their synthesis. In 1969 Corey published several total syntheses of 

prostaglandins that are now considered classics in the development of the syntheses of five-

membered carbocycles.110,111 Several recent reviews summarize these and other methods.112-

115 Of other protocols that have grown popular the Pauson-Khand originally published in 

1971 should also be mentioned.116 This is a formal [2+2+1] reaction between an alkyne, an 

alkene and carbon monoxide to form cyclopentenones. The reaction has been done both 

inter- and intramolecularly and can to some extent be compared to the more classic Nazarov 

reaction117,118 (vide infra) since both give cyclopentenones. Many recent reviews 

summarising this reaction has also been published.119-121 However, in the enclosed thesis 

none of these will be specifically mentioned since they are rather different from the 

corresponding protocol that is described herein. Likewise will standard methods like 

intramolecular SN2 reactions and intramolecular Michael reactions that also may be used for 

preparation of the cyclopentanes not be encountered herein.  Readers are encouraged to 

consult the literature113-115 for details concerning these and other existing methods. But a 

few other methods used to prepare 5-membered rings will be briefly mentioned in the next 

sections. 

 

1.4.1 Some General Methods for Construction of the Cyclopentane Carbon Skeleton 

Some of the most frequently used general methods for construction of the cyclopentane 

carbon skeleton are listed in Table 1.4 on page 39. A few typical experimental 

characteristics typical experimental characteristics are included in the table. The new C-C 

bonds that are formed in these reactions are shown in red. 
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1.4.1.1 Preparation by Standard Carbonyl Chemistry 

Five-membered carbocyclic rings are often synthesized by standard carbonyl condensations 

from 1,4-dicarbonyl compounds, 1,5-dicarbonyl compounds and 1,6-dicarbonyl compounds, 

as their formation from acyclic precursors are kinetically and thermodynamically 

favoured.122 

For instance, the aldol condensation has been used to prepare cyclopent-2-enones from 1,4-

dicarbonyl compounds. (Table 1.4, Entry 1) Unless the substrates are chosen carefully, the 

regioselectivity of the cyclisation to form the ring may be an issue. 

 

1.4.1.2 Preparation by Electrocyclic Reactions  -  The Nazarov Reaction 

Electrocyclic reactions are defined as the formation of a new -bond across one of the ends 

of a conjugated -system or the breaking of such a bond.122 The Nazarov117 reaction is an 

example of such a reaction: an acid promoted, cationic four-electron electrocyclic, 

conrotatory cyclisation reaction in which a divinyl ketone 20 is transformed into a 2-

cyclopentanone 22 via a 3-oxy-pentadienylic cation 21.118 (Table 1.4, Entry 2). The 

thermodynamically favoured cyclopentenone is formed, however, the classical reaction 

protocol generally lacks control over the position of the endocyclic double bond (Scheme 

l.10).  

  

Scheme 1.10 Proposed mechanism for the protic acid induced Nazarov reaction. 

 
The presence of an electron-donating group (like an alkoxy or vinyl group) or a bridge-

headed proton on the endocyclic intermediate, facilitates the protic acid promoted 
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cyclisation. One 1 equivalent of a Brønsted or Lewis acid is required. MeSO3H was found to 

be a superior protic acid for the Nazarov reaction, and Lewis acids like BF3·Et2O, SnCl4, 

TiCl4 and AlCl3, TMSOTf, Cu(OTf)2 and more complicated ones have been used for this 

reaction. The regiochemistry of the reaction has been controlled by using the β-cation 

stabilizing effect and having an electrofuge of silicon,123-125 or by application of the β-cation 

destabilizing effect and the α-electron-donating effect of fluorine.126-127 

 

1.4.1.3 Ring Contraction 

1.4.1.3.1 The Favorskii Rearrangement  

In this rearrangement an -haloalkanone e.g. 23 is treated with a nuclophilic alkoxide  

RO
-
.128-130 The enolate 24 cyclises to give an unstable cyclopropane 25 that is immediately 

attacked by the alkoxide resulting in cleavage of the week C-C bond in the 3-membered 

ring. For cyclic compounds the result is a ring-contracted ester 27 (Table 1.4, Entry 3). 

 

Scheme 1.11 The Favorskii Rearrangement. 

 

1.4.1.3.2 Ramberg-Bäcklund 

The Ramberg-Bäcklund reaction is a method for transforming α-halosulfones into alkenes 

(Scheme 1.12).131,132 The first step may in fact be considered as a type of Favorskii reaction 

mentioned in the previous section. Abstraction of a proton from the non-halogenated -

carbon of the α-halosulfone 28 yields an episulfone 29 which extrudes SO2 to provide the 

product alkene 30. (Table 1.4, Entry 4). 

O

ClH

O

Cl

ORO
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O
RO

H OR

O
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Scheme 1.12 The Ramberg-Bäcklund reaction. 

 

1.4.1.4 Preparation by Ring expansions 

Ring expansion of Cyclobutylmethyl Carbocations are treated separately in Chapter 1.4.2. 

 

1.4.1.4.1 The Vinyl Cyclopropane to Cyclopentene Rearrangement 

When subjected to strong heating, vinyl cyclopropanes rearrange to cyclopentenes.122 In 

1959 Neureiter133 discovered that 1,1-dichloro-2-vinylcyclopropane (31) when heated above 

400 C rearranged thermally to dichlorocyclopentene (32) (Scheme 1.13 and Table 1.4, 

Entry 5). 

 

Scheme 1.13 Vinylcyclopropyl rearrangement 

A year later the rearrangement of vinylcylopropane to cyclopentene was also reported.134-136 

The mechanism of the reaction is still being debated, and both a diradical-mediated two-step 

mechanism and a fully concerted orbital symmetry controlled mechanism has been 

suggested.137 Both thermal, photochemical and transition metal catalysed versions of this 

reaction have been developed.137 Heteroatoms attached to the ring have been found to 

greatly accelerate the rate of the reaction, and when strong Lewis acids (e.g. Et2AlCl) are 

used as catalysts, the reactions may be performed at low temperatures (-78 C), and the 

substrate scope of the reaction was expanded. The reaction has been used with several 

different substituents on the vinylcyclopropanes, e.g. with thiophenyl or trimethylsiloxy 

substituents.137,138 

S Cl
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1.4.2 Ring Expansions of Cyclobutylmethyl Carbocations 

Some of the most used methods of synthesizing 5-membered rings are ring-expansion 

reactions, and the driving force in many of these methods are the relief of ring strain 

combined with the generation of a positive charge on the carbon atom adjacent to a 4-

membered ring (Scheme 1.14).115 The relief of ring strain associated with expansion from a 

cyclobutane ring to a cyclopentane ring is larger than for the expansion from a cyclopropane 

ring to a cyclobutane ring (or from a cyclopentane ring to a cyclohexane ring). 

 

Scheme 1.14 Ring expansion of cyclobutylmethyl carbocations. 

 

1.4.2.1 Ring Expansion of Cyclobutylmethyl carbocation through Activation of a 

C=C bond 

Alkenylcyclobutanes like 33 are interesting substrates for preparation of 5-membered rings 

as they are prone to attack by an electrophile, E+ under Markovnikov rules. An 

electrondeficiency is created, thereby triggering a ring expansion.115 (Scheme 1.15) The 

formation of the cyclobutylmethyl carbocation by activation of a C=C bond may be 

promoted by e.g. an acid, by halogen/selenium or by metals. 

 

Scheme 1.15 

Allenes and alkynes may also be activated toward ring-enlargement. 

 

An example of this type of ring expansion is the acid promoted ring expansion of different 

types of vinylcyclobutanes. Both protic acid and Lewis acid-catalysed rearrangements of -

vinylcyclobutanes by use of methanesulfonic acid or BF3  Et2O are known, and e.g. ring-
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R3 R3
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annelated bicyclo[3.1.0]hexanones, bicyclo[4.3.0]nonenones have been prepared in this 

way. The last step in the total synthesis of isocomene (39) involved an acid-catalysed 

cyclobutylmethyl to cyclopentyl carbocation rearrangement.139,140 

 

Scheme 1.16 Pirrung's synthesis of isocomene (39) 

 

1.4.2.2 Ring Expansion of Cyclobutylmethyl carbocation by Expulsion of a Leaving 

Group 

Another way of forming the cyclobutylmethyl carbocation is through the expulsion of a 

leaving group. Different kinds of leaving groups are used, e.g. halogens, nitrogen, activated 

hydroxy and alkoxy groups, sulfur or selenium groups.  

 
The semipinacol-type rearrangement of diazoalkanes. 

The diazomethane method is the most extensively used protocol for the ring expansion of 

cyclobutanones to cyclopentanones.115 (Scheme 1.17) The rearrangement of the 

intermediate zwitterion 41 is usually highly regioselective generally yielding only one 

product, especially when using -chloro- or , -dichlorocyclobutanones and substituted 

diazomethanes are used. Migration of the less substituted -carbon is favoured, but 

migration of -carbons bearing electronegative halogens is disfavoured. However, other 

factors like steric effects, ring strain, steric hindrance related to approach of the 

diazomethane may influence the regioselectivity. 

 

 

Scheme 1.17 Semipinacol type rearrangement of diazomethanes. 

36 Isocomene (39)
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CHAPTER 2  -  RESULTS AND DISCUSSION 

 

2.1 Relationship between Papers. 

As part of our continued interest in the synthesis of natural products, we are interested in 

developing new methods or make amendments to already well-established methods for the 

synthesis of different cyclic compounds. The unifying theme of this thesis is to use new 

methodology in order to improve old methods.  

 
Dibromocyclopropanes, the three-membered ring compounds that are the subjects of Papers 

I and II, are especially interesting since they are versatile intermediates for the synthesis of 

other interesting compounds, like natural products. In Paper I a flow chemistry method 

using a microreactor was developed, which can be used as an easy and rapid alternative to 

the already existing methods. In Paper II the scope and limitations of this flow chemistry 

method was investigated further when unsaturated alcohols were included as substrates. The 

dibromocyclopropanes are interesting as precursors for allenes, the subject of Paper III.  

 
In Paper III the microwave irradiation technique was used in a Lewis acid catalysed 

intramolecular [2+2] cycloaddition of allene-ene esters. A particularly interesting result was 

obtained for one of the substrates where the reaction time was reduced from 14 days to 30 

seconds. The results obtained here are, however, preliminary and work is on going to 

develop the methodology further to establish a fast method for the synthesis of 4-membered 

ring compounds, for instance isopropylidenecyclobutanes like the compounds used in Paper 

IV. 

 
Paper IV reports the results obtained when several isopropylidenecyclobutanes (4-

membered rings) were subjected to HBr/HOAc under different reaction conditions. In polar 

solvents the isopropylidenecyclobutanes were found to undergo a ring expansion reaction 

yielding cyclopentanes (5-membered rings).  
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2.2 Two-Phase Dibromo-Cyclopropanation of Alkenes by Use of Flow 

Chemistry in a Microreactor (Paper I and II) 

The aim of this part of the thesis was to prepare gem-dibromocyclopropanes by using a 

well-established method (dihalocyclopropanation under phase-transfer catalysis) in a new 

way (by using a microreactor). The following chapter describes the results obtained for 

several different alkenes. 

 
The use of gem-dibromocyclopropanes as versatile intermediates for the synthesis of other 

useful compounds like allenes141,142 cumulenes143 and furans,144 has rendered them 

important substrates in organic synthesis. Their usefulness in the synthesis of natural 

products is also acknowledged, and new methods for their profitable use has been developed 

in recent years.145 Our interest in the dibromocyclopropanes stems especially from the fact 

that they can be used in the synthesis of allenes,146-148 compounds that are used in paper 

(III). 

 

2.2.1 The Use of Flow Chemistry for Two-Phase Dibromocyclopropanation of 

Alkenes (Paper I) 

2.2.1.1 Strategic Considerations 

The conventional two-phase Makosza method61 (Chapter 1.2.2.) is still one of the most 

efficient methods for the preparation of dibromocyclopropanes,53,145,149 using a phase-

transfer catalyst to facilitate mass transport between the two phases, and vigorous stirring to 

make the interface between the two phases as large as possible.  

In microreactors (Chapter 1.2.3) the reactants are mixed in narrow channels, and rapid mass 

and heat transfer is obtained as a result of the high surface-to-volume ratio and short 

diffusion lengths. In slug-flow reactors (Chapter 1.2.3) internal circulation in alternating 

slugs result in an increased mass transfer compared to e.g. parallel flow reactors,83,84 and the 

slug-flow method seemed to be an interesting method to use for the two-phase 

dibromocyclopropanation of alkenes. To our knowledge this is the first time the two-phase 

dibromocyclopropanation of alkenes has been done using flow chemistry in a microreactor. 
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2.2.1.2  Results and Discussion 

2.2.1.2.1 Choice of System and Optimisation of Reaction Conditions 

For the initial experiments cyclohexene was chosen as the substrate, TEBA was used as the 

phase-transfer catalyst, bromoform was the dibromocarbene precursor and dichlorometane 

was used as the organic solvent. (Scheme 2.1) Cyclohexene was chosen as a convenient 

substrate since its reaction is well known, and the product is easily identified. 

Dibromocyclopropanes are more reactive than dichlorocyclopropanes, and since we also are 

interested in their use as allene precursors our focus was on the dibromo compounds.  

 

 

Scheme 2.1 Dibromocyclopropanation of cyclohexene. 

 

In preliminary studies, 50 % (w/w) NaOH was used as the base, since this base 

concentration is used in traditional two-phase systems. However, when using this viscous 

base solution, severe clogging of the flow reactor resulted. The problem was resolved by 

reducing the base concentration to 40 % (w/w). 

 
Initially, a ratio of cyclohexene-bromoform-TEBA of 1:1: 0.009 was mixed with 40 % 

(w/w) NaOH (aq) in a 1 mL glass microchip reactor. The aqueous to organic flow ratio (AO 

ratio) was 1. Low yields of the dibromocyclopropane adduct 43 (7-18 %) resulted, even 

though the reaction time was increased (up to 85 min), either by adding a tube reactor, or by 

lowering the flow rate (Table 2.1, Entry 1).  

 
Some improvement in the yields could be seen when the ratio of cyclohexene-bromoform-

TEBA was 1:1.5: 0.026. However increasing the concentration of TEBA to 4.2 mol% 

(relative to cyclohexene) only left the microreactor more prone to clogging (Table 2.1, Entry 

2), even when the solution was diluted by the addition of more CH2Cl2 and the glass 

CHBr3/Base (aq)/TEBA

EtOH, CH2Cl2
r.t.

43

Br

Br
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microchip reactor was replaced by a Y-mixer. (Table 2.1, Entry 3). Although ultrasonication 

has been shown to increase the yield both in phase-transfer dibromocyclopropanation 

reactions using Brinker's method72 and in reactions using flow chemistry,150 we did not 

observe an increase in the yield when our tube reactor was subjected to sonication, and best 

yields obtained were 31-34 %. 

 
A solution of 45 % (w/w) KOH in water is less viscous/concentrated than a 40 % (w/w) 

NaOH solution in water,151 and we decided to try this KOH solution as the base. TEBA was 

added to the water phase in a concentration (0.12 wt %, 0.014 mol% relative to the KOH 

solution) that was used with success in another phase-transfer reaction in the literature.80 

The yields obtained were discouragingly low (4-6 %), although reaction times from 6 to 50 

minutes were tried, by changing either the tube lengths or the flow rates (Table 2.1, Entry 

4).  

 
Jovanovic et al.80 found that increasing the AO ratio (from 1 to 4) in a PTC alkylation of 

phenylacetonitrile (using 45 % (w/w) KOH (aq) containing 0.12 wt % TEBA) increased the 

yield of the product. This can be attributed to the decreased organic slug size and increased 

average surface-to-volume ratio yielding an increased rate of catalyst transfer across the 

liquid-liquid interface area, and also increasing the internal circulation of the organic 

interslug.80 When we increased the AO ratio, an increase of the yield of 

dibromocyclopropane adduct 1 was obtained at an AO ratio of 4, but not at an AO ratio of 9. 

(Table 2.1, Entries 5-6) This is in accordance with the existence of an optimum flow ratio 

with a maximum productivity.80 The yields obtained were still quite low, and further 

optimization with this KOH solution was abandoned. 

 
When an AO ratio of 4 was used with 40 % (w/w) NaOH (aq), however, the yields were 

greatly increased (Table 2.1, Entry 7). The clogging problems previously experienced, was 

solved by removing the backpressure regulator since the same yields were obtained with the 

backpressure regulator as without. During this optimisation phase, teflon tube reactors of 

several different lengths were tried. The best yields were obtained with a 25 mL tube reactor 

used in combination with a teflon Y-mixer, and after a lengthy trial and error phase, the 

yields obtained had increased from 7 to 78%. Increasing the bromoform amount from 1.5 to 
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2 equivalents gave only a minor increase in yield (from 78 % to 85 %). A picture of our 

flow chemistry system is shown in Figure 1.8 in Chapter 1.2.3. 

 
Table 2.1 Dibromocyclopropanation of cyclohexene.a 

Entry [Alkene] 

(M) 

Baseb 

 

EtOH 

(Vol%) 

TEBAc 

(mol%) 

AO Ratiod Reaction time 

(min) 

Yield 

(%) 

1 2.2e NaOH 1.6 0.9 1 1-85 7-18 

2 2.8 NaOH 1.2 2.6-4.2 1 26-52 22-29 

3 1.4 NaOH 0.6 4.2 1 50-52 31-34f 

4 2.8 KOH 1.2 0.3 1 6-50 4-6 

5 2.8 KOH 1.2 1.1 4 40 22 

6 2.8 KOH 1.2 2.5 9 40 7 

7 2.8 KOH 1.2 1.1 4 40 11g 

8 1.4 NaOH 0.6 4.2 4 50 78 
 

aConditions used unless otherwise stated: room temperature, back pressure 1.5-3 bar, 1.5 eq CHBr3 
relative to cyclohexene. 

bBase concentrations: NaOH (aq): 40 % (w/w), KOH (aq): 45% (w/w) containing 0.12 wt. % TEBA. 
cRelative to cyclohexane 
dAqueous to organic flow ratio (AO ratio) 
e1 eq. CHBr3 relative to cyclohexene. 
fClogging occurred. 
gCHBr3 was used as solvent instead of dichloromethane. 
 

2.2.1.2.2 Scope and Limitations 

In order to test the scope and limitations of this method, a selection of alkenes containing a 

variety of structural features were tested with our optimized conditions:  

- an alkene concentration of 1.4 M  

- an alkene-bromoform-TEBA ratio of 1:1.5-2: 0.042 

- a total flow rate of 0.50 mL/min (aqueous + organic flow rate) 

- an AO ratio of 4  

using 40% (w/w) NaOH (aq) as the base.  

Representative yields are shown in Table 2.2. 
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Table 2.2 Dihalocyclopropanation of a selection of alkenes using the optimised conditions.a 

 

Entry Substrate Product Yield 

(%)b 

Lit. yield 

(%)c 

1   43 77-85 76152 

2 
  

44 78 8063 

3   
45 82 73153 

4   
46 47 - 

5   
47 92 - 

6   48 81 77154 

7   49 65 38155 

  
 

50 
9  

8   
51 57 58156 

9   
52 63 - 

aConditions unless otherwise stated: [alkene]=1.4 M, 1.5-2 eq. CHBr3 (relative to alkene), 

4.2 mol% TEBA (relative to alkene), 0.6 vol% ethanol (in CH2Cl2); room temperature, 25 

mL PTFE tube reactor; total flow rate: 0.50 mL/min; AO ratio: 4; reaction time: 50 min. 

bEstimated using 1H NMR spectra of the isolated reaction mixture.  
cLiterature yields are only given for Makosza conditions using TEBA. 

R2
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High yields were obtained, except when the monosubstituted alkene, 1-heptene, was used as 

the substrate (Table 2.2, Entry 4), a result that is in accord with known order of reacting the 

alkenes with dihalocarbenes (See Chapter 1.2.2). Even a gem-dichlorocyclopropane 52 was 

prepared in good yield. This indicates that the reaction may also be used with chloroform as 

the dihalocarbene precursor. The yields obtained were comparable to yields found in the 

literature when using the same phase-transfer catalyst in the Makosza protocol. 

 

2.2.1.3 Conclusions 

Good to excellent yields in less time than for batch chemistry were obtained when flow 

chemistry in a microreactor was used for the dibromocyclopropanation of alkenes under 

phase-transfer catalysis (PTC) using 40% (w/w) NaOH (aq) as the base. The yields obtained 

were comparable to the ones reported from ordinary batch reactions using the same phase-

transfer catalyst. 

Thus, the use of flow chemistry in a microreactor should be an interesting alternative for the 

Makosza reaction (compared to the traditional batch chemistry). 

 

2.2.2 Two-Phase Dibromocyclopropanation of Unsaturated Alcohols Using Flow 

Chemistry (Paper II) 

The following chapter describes the results obtained when using the method developed in 

paper I with unsaturated alcohols as substrates. Having successfully used flow chemistry in 

a microreactor to prepare different alkenes in high yields, we wanted to investigate the 

scope and limitation of the method even further by including unsaturated alcohols as 

substrates. 

 

2.2.2.1 Choice of Strategy 

With unsaturated alcohols, the dibromocyclopropanation reaction is known to be strongly 

dependent upon the structure of the alcohol and also the exact conditions used.53 The yields 

of the alcohols in the literature are varying from excellent to low. For two main reasons the 
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hydroxyl group is often protected as an acetal53,157 or an ether53,158 when used in this 

reaction: 

 

1. The hydroxy group (or alkoxy anion) has been known to compete with the double 

bond for the dihalocarbene to give an O-H insertion product 53. (Scheme 2.2)53 

2. The unsaturated alcohols are also known to form other side products that make the 

purification of the main product difficult.  

 

 

 

Scheme 2.2 Insertion of dibromocarbene at the O-H bond.  

 

We wanted to investigate the possibility of performing the dibromocyclopropanation in a 

microreactor without the use of protecting groups. 

 

2.2.2.2 Results and Discussion 

2.2.2.2.1 Choice of System and Substrates 

The same reaction conditions and system that was used in paper I (an alkene concentration 

of 1.4 M, a ratio of alkene-bromoform-TEBA of 1:1.5: 0.042-0.043, 40% (w/w) NaOH (aq), 

0.6 vol.% EtOH, AO ratio 4, total flow rate 0.50 mL/min) was tried. However, we found 

that the yields increased when 2-2.5 equivalents of bromoform was used (i.e. a ratio of 

alkene-bromoform-TEBA of 1:2-2.5: 0.042-0.043).  

 

Kleveland et al.159 observed an intriguing difference between the allylic alcohols, linalool 

(54) and geraniol (55) (Figure 2.1) when these alcohols were used in the conventional batch 

version of the Makosza reaction (with dichlorocarbene). When linalool (54) was used, an 

excellent yield of the dichlorocyclopropane monoadduct, 5-(2,2-dichloro-3,3-

PTC conditionsRO H RO C
Br

Br
H

R =  alkenyl group
53
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dimethylcyclopropyl)-3-methyl-1-penten-3-ol (56), (89%) was obtained in a rapid and 

regioselective reaction, whereas geraniol was less reactive and gave a low yield of a mixture 

containing at least six components that partially decomposed under the attempted 

separations. The difference in reactivity has been explained as a result of the primary allylic 

hydroxyl group competing for the dihalocarbene, and its retarding effect of the rate of 

addition of dihalocarbene.159 

 

 

Figure 2.1 The allylic alcohols linalool and geraniol, and the dichlorocarbene adduct 56. 

 

These two beautifully scented unsaturated alcohols seemed to be interesting substrates to 

test with our optimised flow chemistry conditions.  

 

2.2.2.2.2 Scope and Limitations 

Several other unsaturated alcohols were tested with our optimized conditions flow chemistry 

conditions. The results are shown in Table 2.3, and the reaction is shown for 3-methyl-2-

buten-1-ol in Scheme 2.3. 

 

Scheme 2.3 Dibromocyclopropanation of 3-methyl-2-buten-1-ol under PTC conditions. 

 

The reactions were generally rapid, and the yields obtained were comparable to yields 

reported in the literature for the conventional batch reaction. All products, except the ones 

that were obtained with geraniol, were easily identified by their spectral data. (Table 2.3, 

Entry 1) 

OH OH

Linalool (54) Geraniol (55)

OH
Cl

Cl

56

OH
CHBr3/40 % (w/w) NaOH (aq.)/TEBA

EtOH, CH2Cl2, r.t.

70-78 %
57
BrBr

OH
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When the tertiary dienol linalool was used as a substrate, regioselective addition to the 

trisubstituted double bond occurred, and the dibromocyclopropane 58 was obtained in 

excellent yield as a mixture of diastereomers (approximately 1:1). (Table 2.3, Entry 2). Due 

to overlap of signals in the 1H NMR spectrum, only an estimation of the diastereomeric 

ration could be done. Geraniol, however, yielded a mixture of several products, (Table 2.3, 

Entry 3) as was also observed by Kleveland et al.159 with dichlorocarbene. No attempts were 

made to separate the complex mixture of geraniol adducts. The difference in the outcome of 

the reaction of these two terpenoid allylic alcohols is probably that geraniol has two 

trisubstituted double bonds and a primary hydroxyl group that will easily compete in a 

reaction with a dibromocarbene, while linalool has two very differently substituted double 

bonds, and a sterically congested tertiary alcohol give little or no competition in the reaction 

with the same dibromocarbene.  

 

Interestingly, citronellol that only differ structurally from geraniol by the absence of the 

allylic double bond, yielded the dibromocyclopropane 60 as a mixture of diastereomers 

(approximately 1:1) in 57 % yield. (Table 2.3, Entry 4).  

 

The dibromocyclopropane 60 was easily identified from its 1H NMR spectrum by a 

characteristic doublet at δ 0.89 ppm corresponding to the methyl group at the metin carbon, 

the broad singlet at δ 1.75 ppm corresponding to the hydroxyl proton and from its 13C NMR 

spectrum by resonance at δ 60.9 ppm corresponding to the carbon bearing the OH-group. 

The other features of the spectra were in accord with the structure. The molecular ion was 

obtained in high resolution MS. 

 

From 3-methyl-3-buten-1-ol, the dibromocyclopropyl alcohol 61 was obtained in moderate 

yield (47%) after chromatography (Table 2.3, Entry 5) together with a small amount of the 

formate ester 62 (3%). The presence of the formate ester can be explained by insertion of 

dibromocarbene at the O-H bond and subsequent hydrolysis (Scheme 2.4). 
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Scheme 2.4 Insertion of dibromocarbene at the O-H bond and subsequent hydrolysis. 

 
The formate ester 63 was identified from its spectral data, particularly the singlet at δ 8.05 

ppm in 1H NMR (the formate ester proton), the resonance at δ 160.9 ppm in 13C NMR (the 

formate ester carbon) and the strong peak at 1725 cm-1 in IR (characteristic of a formate 

ester.). 

 

The secondary alcohol, 6-methyl-5-hepten-2-ol, gave a good yield of the dibromocarbene 

adduct 64 as a mixture of diastereomers (approximately 1:1) (Table 2.3, Entry 6). 

The tertiary alcohol, 2-methyl-3-buten-2-ol, has been reported to react sluggishly when 

subjected to dichlorocarbene under phase-transfer conditions,159 and when we used this 

alcohol as a substrate, only small amounts of the starting material could be isolated  (Table 

2.3, Entry 7). 

 

2.2.2.3 Conclusion 

Flow chemistry in a microreactor has been used with success for the dibromocyclo-

propanation of several unsaturated alcohols under phase-transfer catalysis (PTC) using 40% 

(w/w) NaOH (aq) as the base. Depending of the structure of the alcohol, moderate to 

excellent yields in less time than for batch chemistry were obtained. The reactions were 

generally rapid, and the yields were comparable to yields reported in the literature for the 

conventional batch reaction. The best yields were obtained with the trisubstituted alkenes 

(Table 2.3, Entries 1-4, 6). This has been explained as resulting from the increased 

nucleophilicity of the trisubstituted double bonds compared to di- and monosubstituted 

double bonds when the substituents are electron donating.41h  

OH O

Br

Br
H

Br
Br

O H

Br
Br

O

PTC conditions H2O
3 %
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Table 2.3 Dibromocyclopropanation of a selection of unsaturated alcohols using 40% (w/w) 

NaOH (aq) at AO ratio: 4.a 

Entry Substrate Product Yield (%) Litt. yield (%)c 

1  

 

70-78 d (36160) 

2 
 

 

98d (93159) 

3  

 

- (-159) 

4  

 

57e (-) 

5  

 

 

47e 

 

3e 

(58161) 

 

(-) 

6  

 

77e (-) 

7  

 

- (2162) 

aConditions unless otherwise stated: [alkene] = 1.4 M, 4.2-4.3 mol% TEBA (relative to alkene), 0.6 
vol% ethanol (in CH2Cl2). Room temperature, 25 mL PTFE tube reactor. Total flow rate 0.50 
mL/min. Aqueous to Organic flow ratio (AO ratio): 4. Reaction time 50 min. bRelative to alkene.  
cLiterature yields are only given for Makosza conditions using TEBA. dEstimated using 1H NMR 
spectra of the isolated reaction mixture. eIsolated yield. 
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2.3 Synthetic Studies towards Cyclobutanes by Microwave Assisted 

Intramolecular [2+2]-Cycloaddition of Allene-ene Esters (Paper III) 

The aim of this part of the thesis was to subject allene-ene esters to microwave irradiation to 

improve the intramolecular [2+2] cycloaddition of these compounds and obtain cyclobutane 

compounds. The following chapter describes the preliminary results obtained. Part of this 

work is also based on the work published in a Master thesis.163 

 
We are interested in the cycloaddition products from the intramolecular [2+2] cycloaddition 

of allene-ene esters for two main reasons: 1) They can be used in ring expansion of 

isopropylidenecyclobutanes, the subject of paper IV (Chapter 2.4) to yield e.g. diquinanes, 

and 2) They are interesting as intermediates in natural product synthesis, e.g. of the insect 

pheromone component lineatin 66 (Scheme 2.5).95,96 

 

 

 

Scheme. 2.5 Retrosynthesis of the pheromone component lineatin (66). 

 

2.3.1 Choice of Strategy 

At the start of this project, only a few papers on the thermal Lewis acid catalysed [2+2] 

cycloaddition of allenoate esters and alkenes had been published (Chapter 1.3.2.2).101-103 

Although high yields of the [2+2] adducts were sometimes achieved, high temperatures 

and/or long reaction times were usually required.102 The use of microwave irradiation as a 

heat source in synthetic organic chemistry has been found to decrease the required reaction 

time, as well as reduce the amounts of side products, in several types of reactions. (Chapter 

1.3.3).105,108 
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Brummond et al.164 found an efficient route to bicyclomethylenecyclobutenes by using 

microwave irradiation of alkynyl allenes (Scheme 2.6), and the use of the microwave 

heating technique seemed interesting also for the Lewis acid catalysed [2+2] cycloaddition 

of allene-ene esters. 

 

Scheme 2.6 Brummond's microwave heated synthesis 

 

2.3.2 Results and Discussion 

2.3.2.1 Choice of System and Optimisation of Reaction Conditions 

The allene-ene ester 12 was chosen as the model molecule in a CH2Cl2 solution since it had 

already been tested in the thermal Lewis acid catalysed [2+2] cycloaddition by Snider and 

Ron,102 using this solvent. Although CH2Cl2 is a low microwave absorbing solvent105,108 the 

overall dielectric properties of the reaction medium (including polar reagents and catalysts) 

will in most cases allow sufficient heating by microwaves.105 

 
When Snider and Ron subjected this allene-ene ester to EtAlCl2 at 25 C, a reaction time of 

14 days were required to give a 95 % yield of a mixture containing (Z)-methyl-2-

bicyclo[3.2.0]hept-6-ylidene acetate (13a) and (E)-methyl-2-bicyclo[3.2.0]hept-6-ylidene 

acetate (13b) in a ratio of 2 : 1.102 

 
The extremely long reaction time of two weeks spurred us to see if this could be improved. 

Several Lewis acids, temperatures and reaction times were tested in the microwave 

irradiated optimization trials. The best result was obtained when microwave heating was 

applied to this reaction at 130 C for only 30 s, yielding  >96% conversion and a mixture of 

the esters 13a and 13b (2.5 : 1) (according to GLC) in 83% isolated yield. (Scheme 2.7 and 

Table 2.4, Entry 3) Although several attempts were made for chromatographic separation of 
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the esters 13a and 13b, none were successful. A selection of the parameters used for 

optimization and representative results are presented in Table 2.4.  

 

 

 
Scheme 2.7 Microwave assisted Lewis acid catalysed reaction of 12. 

 
Table 2.4: Parameters for optimization of the microwave assisted Lewis acid catalyzed  

[2+2]-cycloaddition of methyl 2,3,8-nonatrienoate (12). 

Entry 

 

Lewis acida 

 

Temperature 

[ C] 

Reaction time 

[s] 

Conversion/ 

(Isolated yield) 

[%] 

1 EtAlCl2 80 1200 poor 

2 EtAlCl2 100 10 83b  

3 EtAlCl2 130 30 96b  (83) 

4 EtAlCl2 140 10 96b  

5 AlCl3 130 10  50d 

6 AlCl3 140 30 96b 

7 FeCl3  100 600 Small amounts 

8 BF3 100 600 - 

9 - 120 1200 0c 
aCH2Cl2 was used as the solvent.  

bAccording to GLC analyses 

cAccording  to 1H NMR analyses 

dAccording to IR analyses 

•

MeO2C CO2Me

MeO2CEtAlCl2, CH2Cl2
MWI, 130C, 30 s

83 %

2.5  :   1

+

12 13a 13b
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EtAlCl2 was found to be a better catalyst for the reaction than AlCl3, since a temperature of 

140 C was required to get full conversion when AlCl3 was used (Table 2.4, compare Entry 

3 with entries 5 and 6). Such a high temperature may be difficult to obtain in the microwave 

oven when using the low microwave absorbing solvent CH2Cl2.
105 As a control experiment 

the reaction was attempted without any Lewis acid present. But even with extended MW 

heating no detectable conversion was observed. (Table 2.4, Entry 9). 

 

2.3.2.2 Scope and Limitations 

To explore the scope and limitations of this microwave irradiated reaction, we wanted to test 

it for alkenyl allenoic esters, and a strategy for the synthesis of these starting materials was 

devised (Scheme 2.7).] 

 

 

 
Scheme 2.7 Strategy for the synthesis of model molecules 68. 

 

The esters 69a and 69b were prepared in 30 % and 63 % yield, respectively, using a 

literature procedure.165,166  Hydrolysis (using LiOH H2O in a mixture of glyme and water 

(1: 1)), yielded the acid 70a in 78 % yield. With the ester 69b, however, a mixture of the 

allenic acid 70b and 3-propionic acid (20:80) was obtained. Approximately the same 

mixture of acids were obtained in the literature when the hydrolysis was done in ethanol.167 

Given the poor yields of the ester 69a and allenoic acid 70b, we decided to change strategy 

for the synthesis of our model compounds (Scheme 2.8), and since the allene ester 68b is 

prone to rearrangement to 3-pentynoic acid, we decided to use the ester 68c instead. 

68
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Scheme 2.8 Revised strategy for the preparation of allene esters 68. 

 

(3-methyl-3-buten-1-yl) 2-bromoacetate (71) was prepared by a general literature procedure 

for production of bromoacetates.168 Reaction with PPh3 and subsequent treatment by base 

afforded the phosphonium ylide 72 in good yield. Reaction of 72 with acyl chlorides 

provided the allene esters 68a and 68c in in 62 % and 14 % yield, respectively. The yields 

have not been optimized.  

 
To explore the scope of the reaction, the allene esters 68a and 68c were treated with several 

different Lewis acids (e.g. EtAlCl2, AlCl3, Tf2NH) using different concentrations of allene 

esters and amounts of Lewis acids during microwave irradiation. Temperatures ranging 

from 120 to 200 C and prolonged reaction times were attempted. The reactions are 

summarised in Table 2.5 and Table 2.6 below. In most cases the allene esters were 

unconverted, as seen by taking out aliquots and checking for the characteristic allene-stretch 

in the IR spectrum (at approximately 1950 cm-1). For an additional check the reaction 

mixture was worked up, and the NMR spectra were recorded, confirming that no 

cyclobutanes had been formed. 

 
Work to optimise the Lewis acid catalysed [2+2] cycloaddition is still on going in our 

group, and we are looking into the possibility to change solvents or dope the solution with 

an ionic liquid109 in order to increase the microwave absorbance level of the liquid. 

 

68

72

R1 Cl
R2

O

O

O

• O

OR2

R1

OH

+
+

a: R1= R2 = H

71

c: R1= R2 = CH3

Ph3P

O

O
Br

Br
Br

O

b: R1= H, R2 = CH3



60 

Table 2.5 Attempts on intramolecular Allene-ene cycloaddition of (3-Methyl-3-buten-1-yl) 

2,3-butadienoate (68a) using different Lewis acids 

Entry Allene  

 [M] 

Lewis acid 

 

Lewis acid 

[mol%]a 

Solvent Temperatureb 

[ C] 

Reaction time 

at each T  

[min] 

1 0.4 EtAlCl2
c 0.9 CH2Cl2 120 - 200 10 

2 0.6 EtAlCl2
d 9 CH2Cl2 100-130 0.5 

3 0.4 EtAlCl2
d 9 CH2Cl2 135-160 0.5 

4 0.6 Tf2NH 1.9 CH2Cl2 100-180 5 

5 0.6 Tf2NH 1.9 CH2Cl2 130-170 30 

6 0.42 Tf2NHe 0.1 

Toluene- 

CH2Cl2 

(1:4) 

100, 250 10 

7 neatf AlCl3 0.5 

Benzene 

or 

CH2Cl2 

100-180 30 

 

aRelated to alkene.  

bReactions were cooled down and sampled after the reaction time was over, then heated to 
the next temperature. 

c0.1 M in hexane.  

d1 M in hexane.  

e0.01 M Tf2NH in CH2Cl2. 

f0.160 g allene, no solvent. 
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Table 2.6 Attempts on intramolecular Allene-ene cycloaddition of allene (3-Methyl-3-

buten-1-yl) 4-methyl-2,3-pentadienoate (68c) using different Lewis acids   

Entry Allene 

conc. [M] 

Lewis acid 

 

Lewis acid 

[mol%]a 

Solvent Temperature 

[ C]b 

Reaction time at 

each T  

[min] 

1 0.5 EtAlCl2
c 4.8 CH2Cl2 

120 

140 

160 

180 

20 

2 0.4 Tf2NH 

 

2 grains 

 

CH2Cl2 
100 

120 
10 

 

aRelated to alkene.  

bReactions were cooled down and sampled after the reaction time was over, then heated to the next 
temperature. 

c0.1 M in hexane. 

 

2.3.3 Conclusions 

When methyl 2,3,8-nonatrienoate (12) is irradiated with microwaves at 130 °C for 30 

seconds a Lewis acid catalysed [2+2] cycloaddition takes place to give a mixture containing 

(Z)-methyl-2-bicyclo[3.2.0]hept-6-ylidene acetate (13a) and (E)-methyl-2-

bicyclo[3.2.0]hept-6-ylidene acetate (13b) (2.5 : 1) in 83 %. Several Lewis acids were tried, 

and EtAlCl2 was found to give best yield and conversion.  

 

The [2+2] cycloaddition reaction was unsuccessful for 3-methyl-3-buten-1-yl buta-2,3-

dienoate (68a) and 3-methyl-3-buten-1-yl 4-methylpenta-2,3-dienoate (68c), although 

several catalysts, temperatures and reaction times were attempted.  
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2.4 Syntheses of Bicyclo[3.3.0]octanes and Bicyclo[4.3.0]nonanes by Ring 

Expansion of Isopropylidenecyclobutanes (Paper IV) 

Many compounds of high synthetic and biological relevance contain the cyclopentane unit 

as a substructure, for instance the bicyclo[3.3.0]octane and bicyclo[4.3.0]nonane skeletons 

are structural moieties of many biologically active natural products, like e.g. capnellenes, 

hirsutanes, and pasteurestins.5-8,14,18-19 The structural variety of these compounds urge for a 

variety of methods for the synthesis of this motif.  

 

2.4.1 Choice of Strategy. 

This part of the thesis describes work that was inspired by a previous work in our group, 

namely the work towards a synthesis of the insect pheromone component lineatin. Here it 

was discovered that the epoxide of 73 gave an acid catalysed ring expansion.96  

 
Previous attempts to achieve this ring expansion of compound 73 using protic acids (e.g. 

HCl, p-toluenesulfonic acid or CF3COOH) or Lewis acids (e.g. BF3, AlCl3, HgSO4) were 

unsuccessful.169 However, it was found that treatment of the cyclobutylisopropylidene 

compound 73 with 45 % HBr in acetic acid a stereo- and regioselective reaction gave a near 

quantitative yield of the ring expanded product 74.169 

 

 

Scheme 2.9 Ring expansion reaction of 73. 

 

These results encouraged us to investigate the reaction further, since such a high yielding, 

regio- and stereoselective reaction would be very useful in the synthesis of natural products 

containing the bicyclo[3.3.0]octane moiety.  
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2.4.2 Results and Discussion  

2.4.2.1 Choice of Method and Preparation of Model Compounds 

The model compounds were prepared by the reaction sequence shown in Scheme 2.10. 

 

 

Scheme 2.10 Preparation of the isopropylidenecyclobutanes 76a-e. 

 

The dibromomethylenecyclobutanes 75a-e were prepared in excellent yields (81-87 %) by 

treatment of known ketones170-173 with PPh3 and CBr4 in acetonitrile using a modified 

literature procedure.174 Acetonitrile has been found to be the best solvent for the reaction of 

ketones with PPh3/CCl4 and was also the chosen solvent here.175 Dimethylation of the 

dibromomethylenecyclobutanes 75a-e with lithium dimethylcuprate174 yielded the 

isopropylidene cyclobutanes in good yield (50-67 %). In order to minimise loss of product, 

the solvent (diethyl ether) was distilled at ambient pressure when the products were low 

boiling. In this way the isopropylidenecyclobutanes 76a-e were prepared. (Figure 2.2). 

 

 

Figure 2.2 Model compounds for the ring expansion reaction. 
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2.4.2.2 Optimisation of Reaction Conditions - Scope and Limitations 

At first the reaction was carried out with 33 % HBr in acetic acid at room temperature using 

the same amount of HBr (~8 eq.) as in the literature.169 The reactions were finished in 0.5-

2h, and three products were observed: the ring expanded compounds 77 and 78, and 

variable amounts of the compound 79. The compound 79 resulted from addition of HBr 

across the double bond. (Scheme 2.11) Representative examples are depicted in Table 2.6. 

 

 

Scheme 2.11. Preparation of 77, 78 and 79. 

 

Table 2.6 Treatment of the isopropylidenecyclobutanes with excess 33 % HBr in acetic acid 

at room temperature 

Entry Substrate Ratio (%)a Ratio (%)a 

  77 78 77+78 79 

1 76a 64 36 - - 

2 76b small amounts small amounts - - 

3 76c small amounts small amounts - - 

4 76d 58 42 70 30 

5 76e 74 26 90 10 

 

aConversion 100%. Ratio based on NMR analysis (of the crude mixture). GLC analysis indicated the 

same ratio. 

bBased on GLC analysis. 

 

Br

Br

Br

77

HBr/HOAc

r.t., 0.5-2 h

78 7976
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The compounds 79 were observed to rearrange on the GLC, and for this reason it was not 

possible to give exact amounts of these compounds. The 1H NMR spectrum of the product 

mixture resulting when the alkene 76d was used as the substrate, indicated that the ratio of 

the ring expanded compounds (77d + 78d) to 79d was approximately 70:30 (Table 2.6, 

Entry 4). Prolonged reaction times did not change the ratio 77d : 78d. When substrate 76e 

was used, the ratio of the ring expanded compounds (77e+78e) to 79e was approximately 

90:10 (Table 2.6, Entry 5). The compound 79a was not seen in the NMR spectrum of the 

reaction mixture resulting from compound 76a  (Table 2.6, Entry 1). 

 
Generally a high stereoselectivity was achieved. According to both 1H NMR and GLC 

analyses mainly one stereoisomer was formed, and only a few per cent of the other isomer 

could be detected.  

 
The reaction was only moderately regioselectiv, and the best regioselectivity was obtained 

with compound 76e, assumed to be the most strained substrate. The least strained substrate 

76d yielded the lowest selectivity. However, for substrates 76b and 76c the reaction was 

unsuccessful, and only small amounts of the desired products were seen (GLC). This was 

probably due to addition of HBr to the endocyclic double bond. Separation and structure 

elucidation of the complex mixtures were not attempted. 

 
Only minor effects were obtained from changing the temperature of the reaction (table 2.7). 

Both the stereo- and regioselectivity of the reaction was the same as at room temperature 

when temperatures ranging from 0-5 C to 70 C degrees were tried. However, for substrate 

76d lowering the temperature slowed the ring expansion reaction down, and the major 

product was 79d (Table 2.7, Entry 6). For substrate 76c the reaction was still unsuccessful. 
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Table 2.7  Temperature effects 

Entry Substrate Temperature Ratio (%)a 

   77 78 79 

1 76a 50-60 °C 65 35 - 

2 76a 0-5 °C 66 34 trace 

amounts 
3 76c 50-60 °C - - - 

4 76c 0-5 °C small 

amountsb 

small 

amountsb 

small 

amountsb 
5 76d 50-60 °C 52 39 8c 

6 76d 0-5 °C 30 25 45c 

a Conversion 100 %. Ratio based on GLC data. b i. e. <15% 

c Rearranges to a certain extent on the GLC. 
   
Since the temperature effects was observed to be minimal for this reaction, we tried to 

change the polarity of the reaction medium using substrate 76a as a model substance. When 

the reaction was performed with the same amount of HBr (in acetic acid) as before (~8 eq.), 

no improvement in the regioselectivity was seen when solvents with polarities from hexane 

to CH2Cl2 were added in a ratio of HBr/HOAc : solvent of 1:3 (Table 2.8, entries 1 and 2). 

However, when diethyl ether was used as the solvent, the ring expansion reaction was 

suppressed completely yielding 79a as as the only product identified.  

 
Substrates 76b, 76c and 76d were also tried using ether as the solvent. The reactions were 

performed at room temperature except for Table 2.8, entry 6 (substrate 76c) that was 

performed in refluxing ether. Comparison of GLC chromatograms of the reactions of the 

bromide 76c at room temperature and at reflux, indicated that the temperature change only 

resulted in minor differences in the product ratio. All attempts on purification of 79a by 

flash chromatography and preparative GLC failed, and only the ring expanded products 77a 

and 78a were isolated. 

 
When the reaction in diethyl ether was performed using only 2-4 equivalents of HBr 

(HBr/HOAc : ether, ~1:20), the ring expansion reaction was suppressed for all substrates, 
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and the only product observed was 79 No attempts were made to purify 79b-d since the 

purification of 79a failed. The compound 79c was only identied from its 1H NMR spectrum 

since it could not be obtained pure (only as the major product). Slower addition of the 

HBr/HOAc solution only resulted in a slower addition, and in accordance with the 

literature,176 an excess of 2-3 eq. of HBr was needed to complete the reaction. The yields of 

the products 79a-d have not been optimised. 

 
 
Table 2.8 Solvent effects 

Entry Substrate Conditions 
Ratio (%)a Conversion  

77 78 79 (%)a 

1 76a Et2O, 1 h
b
 - - 100 100 

2 76a CH2Cl2, 1 h
b
 52 (58) 48 (42) - 100 

3 76a Hexane, 1 hb (40) (28) (32) 95 

4 76a Et2O, 4 h
c
 - - 100 94 

5 76b Et2O, 3 h
c
 - - 100 100 

6 76c Et2O, , 22 h
c,d,e

 - - major 94 

7 76d Et2O, 8 h
c,d

 - - 100 91 
a Ratio based on1H NMR data or GLC data (in parenthesis), conversion based on GLC 
data.   

b 
HBr/HOAc: solvent, ~1:3; 

c 
HBr/HOAc: solvent, ~1:20;   

d 
Slow addition of 

HBr in acetic acid;   
e 
Reaction performed at reflux 

 

At last an attempt to achieve ring expansion on 79b and 79c were made by treating them 

with acetic acid at elevated temperatures. The substrate 79b yielded the ring expanded 

compounds 77b and 78b in moderate regioselectivity (72 : 28, according to NMR). With the 

crude 79c a complex mixture containing only moderate amounts of 77c and 78c (in a ratio 

of 63 : 37, according to GLC) was obtained. Analytical samples of 77b, 78b and 77c could 

be obtained. 
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Scheme 2.12 depicts a possible mechanism of the ring expansion reaction where the 

intitially formed tertiary carbocation can rearrange through either pathway a or b yielding 

77 or 78, respectively. 

 
Scheme 2.12 Possible mechanism of the ring expansion reaction. 

 

However, this mechanism fails to explain the high stereoselectivity exhibited by the 

reaction. Sterical congestion alone cannot explain the high stereoselectivity, and possibly a 

cage type mechanism is at work. A higher regioselectivity was obtained when 

isopropylidenecyclobutane 73 was used as the substrate in the reaction.175 This may be 

explained by the fact that if substrate 73 were to undergo a ring expansion reaction by 

pathway b, a severely sterically congested bromide with adjacent gem-dimethyl substituted 

carbon atoms would result. The mechanism was, however, not studied in this work.  

 

2.4.2.3 Discussion of NMR spectra of 77, 78 and 79.  

The compounds 77, 78 and 79 could easily be identified from their respective 1H NMR 

spectra. In the 1H NMR spectra of 77 a characteristic doublet at δ 3-4 ppm was seen (CH-

Br). In the spectra of 78 the corresponding signal appeared as a doublet of doublet at δ 3.8-

4.5 ppm. The compounds 79 could be identified from the two methyl singlets at δ 1.6-1.7 

ppm consistent with a gem-dimethyl group situated on the same carbon atom as the bromine 
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atom. The other features of the spectra were confirmed the structures. Since only an impure 

sample could be obtained for  compound 78c, this compound was merely identified from the 
1H NMR spectrum of the impure sample by the singlets at δH 0.96 and 1.16 ppm (the gem-

dimethyl groups), a multiplet at δH1.69-1.77 ppm (alkene CH3 group), a doublet of doublet 

at δH 4.11 ppm (CHBr proton, J 5.4 and 5.9 Hz) and a multiplet at δH 5.25-5.35 ppm (alkene 

proton). 

 

Mainly one stereoisomer was obtained in this rearrangement, but due to the flexibility of the 

two fused 5-membered rings it was not possible to use coupling constants to confirm which 

stereoisomer was predominantly formed. However, thorough analysis of the NMR spectra 

of 77a made it possible to distinguish the two protons on C4. A fairly strong interaction 

between the endo H4 proton and the α-proton (H2) based on the ROESY spectra could be 

seen, tentatively showing the stereochemistry of the bromine substituted carbon atom (H2) 

as depicted in Figure 2.3. 

 
Figure 2.3 Stereochemistry of 77a. 

 

The stereochemistry of the bromides 79 was also difficult to establish, but the ROESY 

spectrum of 79b shows a strong coupling between the two bridgehead protons H1 and H5, 

and a weaker coupling between the bridgehead proton H5 and the α-proton (H6). Molecular 

models (ball-and-stick models) indicate that due to the rigidity of this bicyclic compound, 

the coupling between protons H5 and H1 and between protons H5 and H6 should be of 

similar strength if the α-proton (H6) and the bridgehead protons are syn. This indicates that 

79b has the stereochemistry depicted in Figure 2 with the (CH3)2CBr-group situated exo 

which is confirmed by the ROESY spectrum revealing correlations between the (CH3)2CBr-

group and both the bridgehead proton H5 and the exo H7 proton. 
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Figure 2.4 Stereochemistry of 79b. 

 

2.4.3 Conclusions 

When the isopropylidenecyclobutane, 6-(1-methylethylidene)-bicyclo[3.2.0]heptane (76a), 

are subjected to HBr/HOAc in polar solvents like acetic acid, a ring expansion reaction 

results yielding 2-bromo-3,3- dimethylbicyclo[3.3.0]octane (77a) and 3-bromo-2,2-

dimethylbicyclo[3.3.0]octane (78a) result. Several other isopropylidenecyclobutanes have 

been found to undergo the same reaction with high stereoselectivity and moderate 

regioselectivity. 

 
When less polar solvents like diethyl ether is used the ring expansion reaction is suppressed, 

and bromides resulting from addition of HBr to the isopropylidene double bond are 

obtained. 
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CHAPTER 3  -  SUMMARY AND FUTURE WORK 

In this thesis new methodology has been used in an effort to improve old and well-

established methods for synthesising 3- and 4-membered cyclic compounds. In addition, a 

ring expansion reaction of 4-membered rings to yield 5-membered rings has been studied. 

 
Flow chemistry in a microreactor has successfully been used for the 

dibromocyclopropanation of several different alkenes under phase-transfer conditions using 

40 % (w/w) NaOH (aq) as the base, TEBA as the phase-transfer catalyst, and bromoform as 

the dibromocarbene precursor. The phase-transfer catalyst facilitates mass-transport 

between the two immiscible liquid phases (organic phase and NaOH (aq)), and vigorous 

stirring is crucial to make this interface as large as possible. In microreactors the short 

diffusion lengths and high surface-to-volume ratios ensures rapid mass and heat transfer. 

With the use of the slug flow technique at an AO ratio of 4, good to excellent yields were 

obtained in less time than for ordinary batch chemistry when using the same catalyst. 

Unsaturated alcohols (without protection of the hydroxyl group) have also been included in 

the substrate scope of this flow chemistry method. The use of microreactor technology 

should be an interesting alternative for the Makosza conditions compared to the traditional 

batch chemistry. 

 
It would be interesting for future work to include more substrates, and also to develop a 

continuous flow method for these reactions. A functioning and reliable setup with 

continuous extraction could also be of interest since it would be both time- and space-

saving. 

 
The use of microwave irradiation as a heat source is known to decrease the required reaction 

time in many different types of reactions, and also reduce the amount of side products 

obtained.105 When the allene-ene ester, methyl 2,3,8-nonatrienoate (12) was subjected to 

EtAlCl2 under microwave irradiation at 130 C, a reaction time of only 30 seconds were 

required to give a 83 % yield of a mixture of (Z)-methyl-2-bicyclo[3.2.0]hept-6-ylidene 

acetate (13a) and (E)-methyl-2-bicyclo[3.2.0]hept-6-ylidene acetate (13b) (2.5 : 1). The 

reaction time reported in the literature was 14 days. Preliminary efforts to test the other two 
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allene-ene esters under the same conditions have been without success, and work to develop 

the methodology further is ongoing, e.g. by doping the reaction medium with an ionic 

liquid.109 The cycloaddition products from this intramolecular [2+2] cycloaddition of allene-

ene esters could perhaps be used as precursors for the insect pheromone component, 

lineatin95-96 as shown in the retrosynthesis in Scheme 3.1 It should also be possible to extend 

this to other cyclobutane containing natural products like grandisol,177 fragranol178 and 

others. 

 

Scheme 3.1 Retrosynthesis of lineatin, grandisol and fragranol. 

Finally, several isopropylidenecyclobutanes were found to undergo a ring expansion 

reaction from 4-membered to 5-membered rings. For instance,  6-(1-methylethylidene)-

bicyclo[3.2.0]heptane (76a) was found to undergo a ring expansion reaction yielding 2-

bromo-3,3-dimethylbicyclo[3.3.0]octane (77a) and 3-bromo-2,2-dimethylbicyclo-

[3.3.0]octane (78a). The reaction was highly stereoselective, but moderately regioselective. 

The highest regioselectivity was achieved for the most strained substrate tested. In less polar 

solvents like diethyl ether the ring expansion reaction was suppressed, and bromides 

resulting from addition of HBr to the isopropylidene double bond were obtained. The 

products from this ring expansion reaction are interesting as possible precursors for natural 

products like, (±)-1-desoxyhypnophilin,14 a project for future work.  
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Scheme 3.2. Retrosynthetic analysis of (±)-1-desoxyhypnophilin. 
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APPENDIX 1 
 
Some Stereochemical Definitions Regarding the Addition of Carbenes and 

Carbenoids to C-C Double Bonds as Summarized by Hellquist.44a 

(See also Figure A1):  

 

1) «The term stereoselectivity refers to the degree of selectivity for formation of 

cyclopropane products having endo versus exo or, alternatively syn versus anti 

stereochemistry of the substituents originating in the alkylidene group relative 

to substituents originating in the alkene substrate.»  

 

2) «The term stereospecificity refers to the stereochemistry of vicinal 

cyclopropane substituents originating as double-bond substituents in the 

starting alkene, i.e. a cyclopropane-forming reaction is stereospecific if the 

cis/trans relationship of the double-bond substituents is retained in the 

cyclopropane product.» 

 

3) «Diastereofacial selectivity refers to the face of the alkene to which addition 

occurs relative to other substituents in the alkene substrate.» 

 

4) «Entantioselectivity refers to the formation of a specific enantiomer of the 

cyclopropane product.» 

 



 
 

Figure A1. Definition of some stereochemical terms related to carbene addition.44a  
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Conventional batch dibromocyclopropanations by reaction of bromoform and alkenes under phase-transfer conditions require
strong base (50% NaOH (aq)), vigorous stirring, and often long reaction times. Using flow chemistry in a microreactor, the
reactions were found to be smooth, rapid, and high-yielding under ambient conditions when 40% (w/w) NaOH was used as
the base. The reaction has been tested with a representative selection of alkenes, displaying a variety of structural features.

Keywords:: dibromocyclopropanation, CHBr3, Makosza reaction, phase-transfer catalysis, microreactor, flow chemistry

1. Introduction

gem-Dibromocyclopropanes are important substrates in
organic synthesis where they have been used as versatile inter-
mediates for the syntheses of other interesting compounds like
allenes [1, 2], cumulenes [3], cyclopentadienes [4, 5], cyclic
acetals [6, 7], and furans [8]. They have also been found useful
in the syntheses of many natural products, as emphasized in
several reviews [9–11]. New methods for their exploitation are
still under development [11].

The phase-transfer catalyzed two-phase dihalocyclopropana-
tion of alkenes, since its discovery by Makosza [12], has become
a well-established, widely used method in organic synthesis,
and is still one of the most effective methods for preparation of
gem-dibromocyclopropanes [9, 11, 13].

Traditionally, the Makosza conditions involve vigorous stirring of
a solution of the alkene substrate and haloform (CHX3, X=Cl, Br)
with a concentrated (50% (w/w)) solution of NaOH (aq) under
phase-transfer catalysis (PTC) conditions.

The phase-transfer catalyst facilitates mass transport across the
interface between the two immiscible liquid phases (organic phase
and NaOH (aq)), which is essential for the reaction, and vigorous
stirring is crucial to make this interface as large as possible.
Stirring-speed is an important parameter for the reaction rate,
conversion, and yield [14–16].

During the last decade or two, microreactor technology has
emerged as an attractive alternative to conventional batch chemistry
[17–21], and in 2003, the capillary-microreactor was introduced as a
new reactor concept [22].

In microreactors, where reactants are mixed in narrow channels,
short diffusion lengths and a high surface-to-volume ratio result in
rapid mass and heat transfer. This in turn improves control of
reaction conditions and may contribute to increased rate and
selectivity of reactions.

When two immiscible liquids are introduced into a micro-
channel, they naturally separate into distinct phases with a large
specific interface area, often in the form of alternating liquid
slugs flowing through the microchannel [23]. Internal circula-
tion within these slugs results in an increased mass transfer
compared to, e.g., parallel flow [24, 25] (Figure 1). Slug-flow
reactors have been used, e.g., for nitration of aromates [22],
arylation of arylbromides [26], and Wittig reactions [27], and,
thus, seemed to be an interesting method also for the two-phase
dibromocyclopropanation of alkenes.

2. Results and Discussion

Cyclohexene was used as a model substance in the initial
experiments, with benzyl triethylammonium chloride (TEBA)
as the phase-transfer catalyst and bromoform as the dibromo-
carbene precursor (Scheme 1).

The setup for our experiments is shown in Figure 2. In the
traditional two-phase system, a 50% (w/w) solution of NaOH is
used [10–12, 14]. During initial experiments using this viscous base
solution, clogging was a severe problem, and for this reason, we
used only 40% (w/w) NaOH (aq) as the base. Initially, equimolar
amounts of cyclohexene and bromoform and 0.9 mol% TEBA
(relative to cyclohexene) were mixed in a 1-mL glass microchip
reactor (reaction time: 1 min). The aqueous-to-organic volumetric
flow ratio (AO ratio) was 1. This resulted in very low yields of the
dibromocarbene adduct 1 (Table 1, Entry 1). Increasing the reaction
time (up to a maximum of 85 min), by adding a tube reactor and/or
lowering the flow rate, did not increase the yield to an acceptable
value (Table 1, Entries 2–4).

When the amounts of bromoform and phase-transfer catalyst
were increased to give a ratio of cyclohexene–bromoform–TEBA
of 1:1.5:0.026, some improvement in the yield could be seen
(Table 1, Entry 5). Increasing the concentration of TEBA to
4.2 mol% (relative to cyclohexene), only left the reaction more
prone to clogging, even when the solution was diluted to half its
original concentration and the microchip was changed to a Y-mixer
(Table 1, Entries 6–9). The best yields of dibromocyclopropane 1
obtained were 31–34%. These yields were obtained when the
microreactor chip (acting as a micromixer) or a Y-mixer was used
together with the 25 mL tube reactor. Exchanging the microreactor
chip for a Y-mixer did not significantly improve the yield, and
clogging also occurred.

Ultrasonication has been reported to increase the yield in a
phase-transfer catalyzed reaction between cyclohexene, bromo-
form, and solid NaOH [28]. Also, Ahmed-Omer et al. [29] found
that sonication increased the reaction rate of a hydrolysis reaction
in combination with segmented flow. In addition, ultrasound has
been used to prevent clogging in a microreactor [26]. However, we
did not observe an increase in yield when our tube reactor was
subjected to sonication (Table 1, Entry 6).

Since a solution of 45% (w/w) KOH in water is less viscous/
concentrated than a 40% (w/w) NaOH solution in water [30], we
decided to try to use this KOH solution as the base. The catalyst
(0.12 wt.% TEBA) was added to the water phase. The amount of
TEBA relative to the cyclohexene was only 0.3 mol% (and
0.014 mol% relative to the KOH solution) which is close to the
maximum amount (0.0157 mol% relative to the KOH solution)
that is soluble in the 45% (w/w) KOH (aq) according to literature
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[31]. Different tube reactor lengths and flow rates were tried,
giving reaction times from 6 to 50 min. Only low yields resulted
(Table 1, Entries 10–13).

Jovanovic et al. [31] successfully used a solution of 45% (w/w)
KOH (aq) containing 0.12 wt.% TEBA (aq) for the PTC alkylation
of phenylacetonitrile. They found that increasing the AO ratio
increased the yield of alkylation product. This can be attributed
to the decreased organic slug size and increased average surface-
to-volume ratio yielding an increased rate of catalyst transfer across
the liquid–liquid interface area, and also increasing the internal
circulation of the organic interslug [31].

When we increased the AO ratio to 4, using 45% (w/w) KOH
(aq) as the base, an increase in the yield of dibromocyclopropane
was observed (Table 1, entry 14), but at AO ratio of 9, the yield
decreased (Table 1, Entry 15). This is in accordance with the
existence of an optimum flow ratio with a maximum productivity
as described in the literature [31]. Using CHBr3 as the solvent
instead of CH2Cl2 (Table 1, Entry 16) resulted in lower yields.
With the rather poor yields, further optimization using the 45%
(w/w) KOH (aq) solution was abandoned.

However, when the base was changed to 40% (w/w) NaOH (aq)
with an AO ratio of 4, the yield was drastically improved (Table 2,
entry 1). Since the equipment still got clogged from time to time,
we tried the reaction without using a backpressure regulator. The
same yields were achieved without any clogging (Table 2, compare
entries 1 and 3, and entries 4 and 5). Utilizing these conditions on
several other alkenes, excellent yields were obtained. The only
exception was the monosubstituted alkene, 1-heptene, where mod-
erate yields were observed, even when the amount of bromoform
was increased from 1.5 equivalents to 2 equivalents relative to the
alkene (Table 2, Entries 8–9). This is in accord with the well-
known observations that the rate of reaction will increase with
increased alkene substitution [38, 39].

Using 1,3-cyclohexadiene as a substrate, a small amount of the
bisadduct 8 was observed (1H NMR). This is probably due to the
fact that a ratio of CHBr3 to alkene of 1.5 was used, but this has not
been investigated further.

To extend the scope of the reaction we did one experiment with
chloroform as the carbene precursor reacting this with 2,3-
dimethyl-2-butene. The yield is comparable to previously reported
ones (Table 2, Entry 14), clearly showing that also dichlorocyclo-
propanes are achievable by this method.

However, since the gem-dibromocyclopropanes are reported
to be generally more reactive than the corresponding gem-

dichlorocyclopropanes [9] and, thus, are more interesting as
intermediates in organic synthesis, we focused our attention
on the gem-dibromocompounds and did not elaborate further
along synthesizing the dichlorocompounds.

3. Conclusions

Flow chemistry in a microreactor was successfully used for
dibromocyclopropanation of alkenes under phase-transfer catalysis
(PTC) using 40% (w/w) NaOH (aq) as the base. Good to excellent
yields in less time than for batch chemistry were obtained. Yields
comparable to the ones reported from ordinary batch reactions
using the same phase-transfer catalyst were achieved.

Emulsion problems often reported to occur during workup [40]
was under the conditions reported herein, only an issue for 1,1-
dibromo-2-(chloromethyl)-2-methylcyclopropane (9).

Thus, the use of microreactor technology should be an interest-
ing alternative for the Makosza reaction (compared to the tradi-
tional batch chemistry).

4. Experimental

4.1. General. All chemicals were purchased from commercial
suppliers and used without further purification unless otherwise
stated. Benzyltriethylammonium chloride was purchased from
Sigma-Aldrich. Flash column chromatography was performed on
silicagel (Merck Kieselgel 60, (0.040–0.063 mm, 230–400 Mesh
ASTM)/Celite 545 coarse (calcined) or aluminum oxide (Fluka,
type 507C neutral, 100–125 mesh (pH 7.0 ± 0.5)). In order to
degas the dichloromethane, it was sonicated for 15 min prior to use
in the flow system. The routine NMR spectra were recorded using
CDCl3 as a solvent and TMS as a reference. 1H NMR spectra were
recorded at 300 or 400 MHz, and 13C NMR spectra were recorded
at 75 or 100 MHz. NMR resonances are given only when literature
spectra are not found or when our spectra have significantly better
resolution than previously reported spectra. The flow

Figure 1. Internal circulation in alternating slugs of two immiscible liquids in a microchannel. Internal flow is shown relative to the bulk velocity

Scheme 1. Dibromocyclopropanation of cyclohexene

Figure 2. Modified Flow Chemistry Toolkit FRX200 from Syrris Ltd.
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instrumentation apparatus used was the Flow Chemistry Toolkit
FRX200 from Syrris Ltd. fitted with 2 Frx200 pumps, a reagent
module containing one Syrris sample loop (PTFE, 5 mL, 0.5 mm
i.d.), one additional sample loop (either a 5 mL PTFE sample
loop (Syrris), 0.5 mm i.d., or a 1.0-mL sample loop (PTFE, 0.5 mm
i.d.) or a 0.52-mL sample loop (PTFE, 0.5 mm i.d.)). The micro-
reactor setup is shown in Figure 2. The following modules were
used, either separately or in combination: (1) a 1-mL 3-inlet glass
microchip Microreactor fitted with a Microreactor Header (0.6 mm
i.d., Syrris Ltd.), (2) a 25-mL tube reactor (PTFE, 0.8 mm i.d.), (3)
a 16-mL tube reactor (PTFE, 0.8 mm i.d., Syrris Ltd.), (4) a 8-mL
tube reactor (PTFE, 0.8 mm i.d.), and (5) a 3-mL tube reactor
(PTFE, 0.8 mm i.d.). When the glass microchip reactor was
omitted, the tube reactors were fitted with a Y-mixer (Tube
Reactor 3 input Adaptor (PCTFE) from Syrris Ltd.). The pressur-
ization module used was Syrris FRX Pressurization Module with a
backpressure regulator.

4.2. Representative Procedure
4.2.1. 7,7-DIBROMOBICYCLO[4.1.0]HEPTANE (1) [41].

The flow chemistry system described above was used with the
Y-mixer, the 25 mL tube reactor, a 1.0-mL sample loop containing
a solution of cyclohexene (1.44 mmol), CHBr3 (2.15 mmol),
4.2 mol% TEBA (relative to alkene) and 0.6 vol% ethanol (abso-
lute) in CH2Cl2, and a 5-mL sample loop (PTFE, Syrris Ltd.)
containing the 40% (w/w) NaOH (aq) solution (CAUTION: strong,
viscous base). The sample loop containing the 40% (w/w) NaOH
(aq) solution was filled very slowly and with great care, due to the
high viscosity of the strongly basic NaOH solution and danger of
spillage due to pressure buildup. No backpressure regulator was
used. The two solutions were simultaneously introduced into the
flow system at a total flow rate of 0.50 mL/min (flow rate NaOH:
0.40 mL/min, flow rate organic solution: 0.10 mL/min) at room
temperature, i.e., a residence time of 50 min and an AO flow ratio of
4. The mixture was fed into brine (50 mL), and the flow was
collected for 77 min at this flow rate and then for 4 min at 2 ×
1 mL/min (to flush the system). The pressure in the system was
1–4 bar. Pentane (100 mL) was added to the reaction mixture, and
the two layers were separated. The aqueous phase was extracted
with pentane (or hexane) (3 × 50 mL), and the combined organic
phases were washed with brine (2 × 50 mL), dried (MgSO4),
filtered, and concentrated in vacuo. The residue was purified by

filtering it through a plug made of 0.5 cm silica and 0.5 cm Celite
using pentane as the eluent. Concentration in vacuo yielded a
mixture (0.31 g) containing 7,7-dibromobicyclo[4.1.0]heptane (1)–
bromoform–pentane, 91:8:1, according to 1H NMR. Estimated
yield of 1 was 0.28 g, 77%. The spectral data were in accordance
with the literature [42, 43].

4.2.2. (2,2-Dibromo-1-methylcyclopropyl)benzene (2) [44].
Yield was 0.40 g of a mixture containing the dibromide 2–α-
methylstyrene–bromoform, 82:7:11, according to 1H NMR. Esti-
mated yield of the dibromide 2 was 0.32 g, 78%. The spectral data
were in accordance with the literature [45].

4.2.3. 1,1-Dibromo-2,2,3,3-tetramethylcyclopropane (3) [38].
Yield was 0.30 g, 82%, as a white solid that was pure according
to 1H and 13C NMR, and the spectral data were in accordance with
the literature [43], mp. 78–80 °C (lit. 79–80 °C [34]).

4.2.4. 1,1-Dibromo-2-pentylcyclopropane (4) [46]. Yield was
0.23 g of a mixture containing the dibromide 4–1-pentene–
bromoform, 79:1:20, according to 1H NMR. Estimated yield of
4 was 0.18 g, 47%. The spectral data were in accordance with
the literature [47]. 1H NMR (400 MHz, CDCl3): δH 0.89 (t, J
6.9 Hz, 3H), 1.17 (t, J 7.2 Hz, 1H), 1.25–1.37 (m, 4H), 1.37–1.65
(m, 5H), 1.71 (dd, J 9.9 and 7.1 Hz, 1H). 13C NMR (100 MHz,
CDCl3): δC 14.0, 22.6, 28.0, 28.5, 29.7, 31.4, 31.5, 32.6.

4.2.5. 7,7-Dibromo-1-methylbicyclo[4.1.0]heptane (5) [48].
Yield was 0.40 g of a mixture containing the dibromide 5–
bromoform–pentane, 89:10:1, according to 1H NMR. Estimated
yield of 5 was 0.36 g, 92%. The spectral data were in accordance
with the literature [49]. 1H NMR (400 MHz, CDCl3): δH 1.13–
1.28 (m, 2H), 1.28–1.48 (m, 2H), 1.40 (s, 3H), 1.43 (dd, J 9.0
and 2.2 Hz, 1H), 1.53–1.64 (m, 1H), 1.70–1.82 (m, 2H), 1.88–
2.02 (m, 1H).

4.2.6. 7,7-DIBROMO-2-OXABICYCLO[4.1.0]HEPTANE
(6) [50]. CAUTION: It has been reported that this compound
may decompose violently while distilled (vacuum distillation/90 °C)
[35, 50]. In the work-up procedure, ethyl acetate replaced pentane,
and the product mixture was purified by filtration through a plug
made of 1 cm aluminum oxide, using pentane as the eluent. Yield
was 0.32 g of a mixture containing the dibromide 6–bromoform,
94:6, according to 1H NMR. Estimated yield of 6 was 0.30 g, 81%.
The spectral data were in accordance with the literature [35].

Table 1. Dibromocyclopropanation of cyclohexenea

Entry [Alkene] (M) CHBr3
b (eq.) Basec Ethanol (vol%) TEBAb (mol%) Reactord AO ratioe Reaction time (min) Yield (%)f

1 2.2 1 NaOH 1.6 0.9 1 1 1 7
2 2.2 1 NaOH 1.6 0.9 1 1 2 10
3 2.2 1 NaOH 1.6 0.9 2 1 34 17
4 2.2 1 NaOH 1.6 0.9 2 1 85 18
5 2.8 1.5 NaOH 1.2 2.6 2 1 34 29
6 2.8 1.5 NaOH 1.2 4.2 3 1 26 22g,h

7 2.8 1.5 NaOH 1.2 4.2 3 1 52 25h

8 1.4 1.5 NaOH 0.6 4.2 3 1 52 31h

9 1.4 1.5 NaOH 0.6 4.2 6 1 50 34h

10 2.8 1.5 KOH 1.2 0.3 4 1 6 4
11 2.8 1.5 KOH 1.2 0.3 5 1 16 4
12 2.8 1.5 KOH 1.2 0.3 6 1 50 6
13 2.8 1.5 KOH 1.2 0.3 5 1 40 5
14 2.8 1.5 KOH 1.2 1.1 5 4 40 22
15 2.8 1.5 KOH 1.2 2.5 5 9 40 7
16 2.8 1.5 KOH 1.2 1.1 5 4 40 11i

aConditions used unless otherwise stated: room temperature, backpressure: 1.5–3 bar.
bRelative to cyclohexene.
cBase concentrations: NaOH: 40% (w/w), KOH: 45% (w/w) containing 0.12 wt.% TEBA.
dReactors 1: 1 mL glass microchip reactor, 2: a 16-mL PTFE tube reactor in addition to the 1mL glass microchip reactor, 3: 25mLPTFE tube reactor in addition to
the 1 mL glass microchip reactor, 4: 3 mL PTFE tube reactor, 5: 8 mL PTFE tube reactor, and 6: 25 mL PTFE tube reactor.

eAqueous to organic flow ratio (AO ratio).
f Estimated using 1H NMR spectra of the isolated reaction mixture.
g Sonication.
hClogging occurred.
iCHBr3 was used as solvent instead of dichloromethane.
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4.2.7. 7,7-Dibromobicyclo[4.1.0]hept-2-ene (7) [51] and 3,3,8,8-
Tetrabromotricyclo[5.1.0.02,4]octane (8) [52]. Yield was 0.26 g of
a mixture containing the dibromide 7–tetrabromide 8–bromoform in

Table 2. Dihalocyclopropanation of a selection of alkenes using 40% (w/w) NaOH (aq) at AO ratio: 4a

Entry Substrate Equivalents CHBr3
b Product Yield (%)c Lit. yield (%)d

1 1.5 1 78e 76 [32]

2 1.5 1 77e,f 76 [32]

3 1.5 1 77 76 [32]

4 2 1 82e 76 [32]

5 2 1 85 76 [32]

6 1.5 2 78 80 [33]

7 1.5 3 82 73 [34]

8 1.5 4 47 –

9 2 4 45 –

10 2 5 92 –

11 1.5 6 81 77 [35]

12 1.5 7 65 38 [36]

8 9

13 1.5 9 57 58 [37]

14 1.5 10 63 –

aConditions unless otherwise stated: [alkene]=1.4M, 4.2 mol% TEBA (relative to alkene), 0.6 vol% ethanol (in CH2Cl2); room temperature, 25 mL PTFE tube reactor;
total flow rate: 0.50 mL/min; AO ratio: 4; reaction time: 50 min.

bRelative to alkene.
c Estimated using 1H NMR spectra of the isolated reaction mixture.
d Literature yields are only given for Makosza conditions using TEBA.
eBack pressure regulator was used. Backpressure: 2–3 bar.
f Sonication was used at 20–25 °C.

a ratio of 83:14:3 according to 1H NMR. Estimated yield of 7 was
0.22 g, 65%, and of tetrabromide 8, 0.038 g, 9%. The spectral data
were in accordance with the literature [53].
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4.2.8. 1,1-Dibromo-2-(chloromethyl)-2-methylcyclopropane
(9) [54]. The solvents were carefully removed in vacuo at/or just
below room temperature. Yield was 0.34 g of a mixture containing
the dibromide 9–bromoform, 63:37, according to 1HNMR. Estimated
yield of 9was 0.21 g, 57%. The spectral data were in accordance with
the literature [37].

4.2.9. 1,1-Dichloro-2,2,3,3-tetramethylcyclopropane (10) [55].
Purification was done by careful removal of solvents by distillation
at ambient pressure to give a residue of white crystals of 10
(0.15 g, 63%), mp. 49–50 °C (lit. 49.8–50.5 °C [55]). The spectral
data were in accordance with the literature [56].
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ABSTRACT 

When dibromocyclopropanations by addition of dibromocarbene to alkenes under phase-

transfer conditions is done in conventional batch reactions, strong base (50 % NaOH (aq)), 

vigorous stirring and long reaction times are often required. Using flow chemistry in a 

microreactor, cyclopropanation of a selection of unsaturated alcohols have been tested under 

ambient conditions using 40% (w/w) NaOH as the base. The reactions were generally rapid, 

and the yields were comparable to yields reported in the literature for the conventional batch 

reaction. 

 

 

Keywords: Dibromocyclopropanation; CHBr3; Makosza reaction; Phase-transfer catalysis; 

Microreactor; Flow Chemistry; unsaturated alcohols. 
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1. Introduction 
 

gem-Dibromocyclopropanes in general are important substrates in organic synthesis and have 

been used as versatile intermediates for the syntheses of other interesting compounds like 

allenes,1,2 cumulenes,3 cyclopentadienes,4,5 cyclic acetals,6,7 furans,8 and also for the synthesis 

of natural products.9-11 

 

The phase-transfer catalysed two-phase dihalocyclopropanation of alkenes12 is a well-

established, widely used method in organic synthesis, and is still one of the most effective 

methods for preparation of gem-dihalocyclopropanes.9,11,13 

 

The traditional Makosza conditions involve vigorous stirring of a solution of the alkene 

substrate and haloform (CHX3, X = Cl, Br) with a concentrated (50% (w/w)) solution of 

NaOH (aq) under phase-transfer catalysis (PTC) conditions. The phase-transfer catalyst 

facilitates mass transport across the interface between the two immiscible liquid phases 

(organic phase and NaOH (aq)), which is essential for the reaction, and vigorous stirring is 

crucial to make this interface as large as possible. Stirring-speed is an important parameter for 

the reaction rate, conversion and yield.14-16   

 

When the Makosza conditions are used with unsaturated alcohols as substrates the outcome of 

the reaction depends strongly on the structure of the alcohol and the presise conditions used 

since the hydroxyl group/alkoxy anion may compete with the double bond for the 

dibromocarbene9 and the yields of dibromocyclopropyl alcohols are varying (from excellent 

to low). Since unsaturated alcohols also may form side products that make purification of the 

main product difficult, the hydroxyl group is often protected as an acetal9,17 or ether9,18 when 

used in this reaction.  

 

Recently we have shown19 that flow chemistry under slug flow conditions can be an 

interesting alternative to batch chemistry for the Makosza reaction, giving moderate to 

excellent yields of different dibromocyclopropanes in a short reaction time. This encouraged 
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us to react several unsaturated alcohols under the same conditions to get an indication of the 

obtainable yields when the hydroxy group is not protected.  

 

 

2. Results and Discussion 

 

The unsaturated alcohols selected for testing under Makosza conditions are shown in Table 1. 

Benzyltriethylammonium chloride (TEBA) was used as the phase-transfer catalyst, and 

bromoform was the dibromocarbene-precursor, as shown for 3-methyl-2-buten-1-ol in 

Scheme 1. 

 

 

Scheme 1. Dibromocyclopropanation of 3-methyl-2-buten-1-ol under PTC conditions. 

 

In the traditional two-phase system, a 50% (w/w) solution of NaOH is used.9-11,13 However, in 

earlier experiments we observed that when using this viscous base solution in a flow reactor, 

clogging was a severe problem. This problem, however, could be solved by reducing the base 

concentration to 40% (w/w)19 Using a ratio of alkene:bromoform:TEBA of 1:1.5:0.044 

together with the diluted base solution in an aqueous-to-organic flow ratio (AO ratio) of 4, 

good to excellent yields of dibromocyclopropanes could be obtained.  

 

Employing the same conditions to the 3-methyl-2-buten-1-ol gave a yield of 70 % of the 

corresponding dibromocyclopropane 1 (Table 1, Entry 1). By increasing the amount of 

bromoform from 1.5 to 2 equivalents, the yield could be increased to 74 %. Adding even 

more bromoform did not significantly increase the yield (from 74% to 78%) (Table 1, entries 

2-3). Thus a 1:2-2.5 ratio of alkene to bromoform was used for subsequent experiments. 

Several unsaturated alcohols where subjected to these conditions. 
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When Kleveland et al.20 used the allylic alcohols linalool and geraniol as substrates in the 

conventional batch version of the Makosza reaction (with dichlorocarbene), they observed a 

supprising difference in the outcome of the reaction for the two alcohols: Linalool gave rapid 

and regioselectiv reaction resulting in an excellent yield of the dichlorocyclopropane 

monoadduct, 5-(2,2-dichloro-3,3-dimethylcyclopropyl)-3-methyl-1-penten-3-ol, (89%), while  

geraniol was less reactive and gave a low yield of a mixture containing at least six 

components that partially decomposed under the attempted separations.  

  

                                                                                                                                                                               

When the tertiary dienol linalool was subjected to our flow chemistry conditions, 

regioselective addition to the trisubstituted double bond occured, and the 

dibromocyclopropane 2 was obtained as mixture of diastereomers (approximately 1:1) in 

excellent yield. (Table 1, Entry 4). Due to overlap of signals in the 1H NMR spectrum, only 

an estimation of the diastereomeric ration could be done. The primary dienol geraniol, 

however, yielded a mixture of several products, according  to 1H NMR and 13C NMR data, 

(Table 1, Entry 5) as was observed by Kleveland et al.20 with dichlorocarbene. No attempts 

were made to separate the complex mixture.  

 

Intrigued by this result, we subjected several other alcohols to this reaction. From citronellol, 

that only differ structurally from geraniol by the absence of the allylic double bond, the 

dibromocyclopropane 4 was obtained as a mixture of diastereomers (approximately 1:1) in 57 

% yield when 2.5 equivalents of bromoform (compared to alkene) were used (Table, Entry 6). 

With only two equivalents, the reaction did not go to completion. 

 

The dibromocyclopropane 4 was easily identified from its 1H NMR spectrum by a 

characteristic doublet at δ 0.89 ppm corresponding to the methyl group at the metin carbon, 

the broad singlet at δ 1.75 ppm corresponding to the hydroxyl proton and from its 13C NMR 

spectrum by resonance at δ 60.9 ppm corresponding to the carbon bearing the OH-group. The 
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other features of the spectra were in accord with the structure. The molecular ion was 

obtained in high resolution MS. 

 

 When 3-methyl-3-buten-1-ol was used as the substrate, the dibromocyclopropyl alcohol 5 

was obtained in moderate yield (47%) after chromatography (Table, Entry 7). In addition, a 

small amount of the formate ester 6 (3%) was isolated. The presence of the formate ester can 

be explained by insertion of dibromocarbene at the O-H bond and subsequent hydrolysis 

(Scheme 2). 

 

 

 

Scheme 2. Insertion of dibromocarbene at the O-H bond and subsequent hydrolysis. 

 

The formate ester was identified from its 1H NMR spectrum by a triplet at δ 4.36 ppm (J 7.0 

Hz) corresponding to the methyl protons on the carbon atom bearing the formate ester group, 

and a singlet at δ 8.05 ppm corresponding to the formate ester proton. In the 13C spectrum a 

characteristic resonance at δ 61.3 ppm corresponds to the methyl group bearing the fomate 

ester group, and the resonance at δ 160.9 ppm corresponds to the formate ester carbon. The 

other features of the spectra confirmed the structure. In IR a strong peak at 1725 cm-1 

characteristic of a formate ester was seen.  

The molecular ion could not be obtained in MS, and the [M-HCOOH] ion was used for 

confirmation of the structure by high resolution MS. 

 

The secondary alcohol, 6-methyl-5-hepten-2-ol, gave a good yield of the dibromocarbene 

adduct 7 as a mixture of diastereomers (approximately 1:1), which was identified from its 1H 

NMR spectrum by the doublet at δ 1.20 (J 6.2 Hz) corresponding to the methyl group on the 

carbon bearing the OH-group, the singlet at δ 1.58 corresponding to the OH-group, and by its 
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13C NMR spectrum by the resonances at δ 67.6 & δ 67.7 (CH) corresponding to the CH-OH 

carbon in the two diastereomers. The other features of the spectra also were in accord with the 

structure. The molecular ion could not be obtained in MS, which is not uncommon for 

alcohols, and the [M-H2O] ion was used for confirmation of the structure by high resolution 

MS. 

 

 

However, when the tertiary alcohol, 2-methyl-3-buten-2-ol, was used as a substrate, only 

small amounts of the starting material could be isolated  (Table, Entry 9). This is in accord 

with in the literature reports where this alcohol has been reported to react sluggishly when 

subjected to dichlorocarbene under phase-transfer conditions.20
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Table 1. Dibromocyclopropanation of a selection of unsaturated alcohols using 40% (w/w) 

NaOH (aq) at AO ratio: 4.a 

 

Entry Substrate CHBr3  

(eq.)b 

Product 

(number) 

Yield 

(%) 

Litt. yield 

(%)c 

Ref 

1  1.5 
 (1) 

70d 36 21 

2  2 
 

(1) 74d 36 21 

3  2.5 
 

(1) 78d 36 21 

4  2 
 

(2) 98d 93 20 

5 2 
 

(3) - - 20 

6 2.5 
 

(4) 57e - - 

7  2 

 

 

(5) 

 

(6) 

47e 

 

3e 

58 

 

- 

22 

 

- 

8  2 
 

(7) 77e - - 

9  2 
 

(8) - 2 23 

aConditions unless otherwise stated: [alkene] = 1.4 M, 4.2-4.3 mol% TEBA (relative to 

alkene), 0.6 vol% ethanol (in CH2Cl2). Room temperature, 25 mL PTFE tube reactor. Total 

flow rate 0.50 mL/min. Aqueous to Organic flow ratio (AO ratio): 4. Reaction time 50 min. 
bRelative to alkene.  cLiterature yields are only given for Makosza conditions using TEBA. 
dEstimated using 1H NMR spectra of the isolated reaction mixture. eIsolated yield. 
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3. Conclusions 

 

Flow chemistry in a microreactor was successfully used for dibromocyclopropantion of 

several unsaturated alcohols under phase-transfer catalysis (PTC) using 40% (w/w) NaOH 

(aq) as the base. Moderate to excellent yields in less time than for batch chemistry were 

obtained, depending on the structure of the alcohol. The trisubstituted alkenes (Table, Entries 

1-6, 8) generally gave better yields than the disubstituted (Table, Entry 7) and 

monosubstituted alkenes (Table, Entry 9). This has been explained as resulting from the 

increased nucleophilicity of the trisubstituted double bonds compared to di- and 

monosubstituted double bonds when the substituents are electron donating.24 Yields 

comparable to the ones reported from ordinary batch-reactions were achieved. 

 

Thus, the use of microreactor technology should be an interesting alternative for the Makosza 

reaction (compared to the traditional batch chemistry). 

 

 
4. Experimental 

 

 4.1 General. All chemicals were purchased from commercial suppliers and used 

without further purification, unless otherwise stated. Benzyltriethylammonium chloride was 

purchased from Sigma-Aldrich. Flash column chromatography was performed on silicagel 

(Merck Kieselgel 60, (0.040-0.063 mm, 230-400 Mesh ASTM) or VWR Chemicals/BDH 

Prolabo Normasil 60 (40-63 m)/Celite 545 coarse (calcined). Analytical thin layer 

chromatography (TLC) was performed on Merck DC-Alufolien Kieselgel 60 F254. 

Compounds were stained with KMnO4 solution, followed by heating. MS was performed on 

an Autospec Ultima (Micromass Ltd. Manchester, England) equipped with an electron 

ionisation (EI) ion source producing 70 eV electrons. For HRMS the resolution was tuned to 

12 000. GC/MS was performed on the same instrument (tuned to a resolution of 2000) in 

combination with an Agilent 6890 Series gas chromatograph (Agilent Technology, 

Wilmington, DE, USA). In order to degas the dichloromethane, it was sonicated for 15 min 

prior to use in the flow system. The routine NMR spectra were recorded using CDCl3 as a 
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solvent and TMS as a reference. 1H NMR spectra were recorded at 400 MHz, and 13C NMR 

spectra were recorded at 100 MHz. Corresponding signals from pairs of diastereomers are 

separated by “&”. IR spectra were recorded on a ZnSe HATR cell (Horizontal Attenuated 

Total Reflectance). The flow instrumentation apparatus used was the Flow Chemisty Toolkit 

FRX200 from Syrris Ltd. fitted with 2 Frx200 pumps, a reagent module containing one Syrris 

sample loop (PTFE, 5 mL, 0.5 mm i.d.), a 1.0 mL sample loop (PTFE, 0.5 mm i.d.), a 25 mL 

tube reactor (PTFE, 0.8 mm i.d.), a Y-mixer (Tube Reactor 3 input Adaptor (PCTFE) from 

Syrris Ltd.). 

 

 

 4.2. Representative Procedure.  

 

(2,2-Dibromo-3,3-dimethylcyclopropyl)methanol (1)25  

A 1.0 mL sample loop containing a solution of 3-methyl-2-buten-1-ol (1.43 mmol), CHBr3 

(2.86 mmol), 4.2 mol% TEBA (relative to the alkene) and 0.6 vol% ethanol (absolute) in 

CH2Cl2, and a 5 mL sample loop (PTFE, Syrris Ltd.) containing 40% (w/w) NaOH (aq) 

solution, was used. CAUTION: Strong, viscous base. The sample loop containing the 40% 

(w/w) NaOH (aq) solution was filled very slowly and with great care, due to the high 

viscosity of the strongly basic NaOH solution and danger of spillage due to pressure build-up. 

The two solutions were simultaneously introduced into the flow system at a total flow rate of 

0.50 mL/min (flow rate NaOH (aq): 0.40 mL/min, flow rate organic solution: 0.10 mL/min) at 

room temperature, i.e. a residence time of 50 min and an AO flow ratio of 4. The mixture was 

fed into brine (50 mL) and the flow was collected for 77 min at this flow rate, and then for 4 

min at 2x1.5 mL/min (to flush the system). The pressure in the system was 1-4 bar. To the 

reaction mixture was added ethyl acetate (100 mL), and the two layers were separated. The 

aqueous phase was extracted with ethyl acetate (3x50 mL), and the combined organic phases 

were washed with brine (2x50 mL), dried (MgSO4), filtered and concentrated in vacuo. The 

residue was purified by filtering it through a plug made of 0.5 cm silica and 0.5 cm Celite 

using ethyl acetate as the eluent. Concentration in vacuo yielded a mixture (0.31g) containing 

(2,2-dibromo-3,3-dimethylcyclopropyl)methanol (1) :  3-methyl-2-buten-1-ol : bromoform; 

88:2:10 according to 1H NMR. Estimated yield of 1: 0.27g, 74%. The spectral data were in 

accordance with the literature.26 
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5-(2,2-Dibromo-3,3-dimethylcyclopropyl)-3-methyl-1-penten-3-ol (2).20  

Yield: 0.48g of a mixture containing the dibromide 2 : linalool: bromoform; 87:9:5, as a 

mixture of diastereomers (estimated diastereomeric ratio: 1:1), according to 1H NMR. 

Estimated yield of the dibromide 2, 0.42g, 89%. The spectral data were in accord with the 

literature.20 

 

5-(2,2-Dibromo-3,3-dimethylcyclopropyl)-3-methylpentan-1-ol (4). 2.5 equivalents of 

CHBr3 per equivalent of 3,7-dimethyl-6-octen-1-ol was used. The crude mixture was purified 

by column chromatography (silica, hexane : ethyl acetate; 80:20) yielding the dibromide 4 

(0.27 g, 57%) as a mixture of diastereomers (approximately 1:1), according to 1H and 13C 

NMR. IR (HATR) νmax: 3338 (br, s), 2954 (s), 2926 (s), 2870 (s), 1456 (s), 1375 (s), 1147 

(m), 1109 (m), 1060 (s, shoulder), 1006 (m), 963 (m), 756 (s), 740 (s) cm-1; 1H NMR (400 

MHz, CDCl3): δ 0.89 (d, J 6.5 Hz, 3H), 1.07-1.52 (m, 6H), 1.14 (s, 3H), 1.34 (s, 3H), 1.52-

1.65 (m, 2H), 1.75 (br s, 1H), 3.57-3.72 (m, 2H); 13C NMR (100 MHz, CDCl3): δ 19.2 & 19.3 

(CH3), 19.5 & 19.6 (CH3), 25.4 & 25.5 (CH2), 27.4 (CH3), 27.9 & 28.0 (C), 29.3 & 29.4 

(CH), 35.5 & 35.6 (CH2), 39.6 (CH2), 40.0 (CH), 48.3 & 48.4 (C), 60.9 (CH2). MS, m/z (%) = 

246 (M-HBr, 1)/248 (M-HBr, 1), 228 (10)/230 (10), 167 (40), 163 (34), 162 (33), 149 (28), 

107 (13), 109 (14), 93 (24), 95 (23), 83 (100), 81 (56), 69 (74) and 67 (49). HRMS: 

C11H20O79Br2 requires m/z = 325.9881. Found m/z = 325.9878. 

 

2-(2,2-Dibromo-1-methylcyclopropyl)-etan-1-ol (5)22 and 2-(2,2-Dibromo-1-

methylcyclopropyl)-etyl formate (6).  

The crude mixture was purified by column chromatography (silica, pentane: ethylacetate; 

85:15) yielding the dibromide 5 (0.17g, 47%) and 2-(2,2-dibromo-1-methylcyclopropyl)ethyl 

formate (6) (0.01g, 3%), both as oils. The spectral data for the dibromoalcohol 5 were in 

accordance with literature.22 

 

2-(2,2-Dibromo-1-methylcyclopropyl)-etyl formate (6). 

IR (HATR) νmax: 2963 (s), 2928 (s), 2873 (m), 1725 (s), 1454 (m), 1430 (m), 1383 (m), 1260 

(m), 1167 (s), 733 (s), 694 (s) cm-1; 1H NMR (400 MHz, CDCl3): δ 1.40 (s, 3H), 1.44 (d, J 7.5 

Hz, 1H), 1.51 (d, J 7.5 Hz, 1H), 1.92-2.13 (m, 2H), 4.36 (t, J 7.0 Hz, 2H), 8.05 (s, 1H); 13C 

NMR (100 MHz, CDCl3): δ 22.6 (CH3), 27.4 (C), 34.5 (CH2), 36.9 (CH2), 37.7 (C), 61.3 

(CH2), 160.9 (CH). MS, m/z (%) = 238 (M-HCOOH, 14)/240 (M-HCOOH, 28)/242 (M-
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HCOOH, 14), 211 (10)/213 (18)/215 (9), 159 (72)/161 (70), 131 (11)/133 (12), 119 (4)/121 

(3), 80 (100) and 79 (87). HRMS: C6H8
79Br2 requires m/z = 237.8993. Found m/z = 237.8994. 

 

4-(2,2-Dibromo-3,3-dimethylcyclopropyl)-butan-2-ol (7). 

The crude product was purified by column chromatography (silica, pentane: ethylacetate; 

80:20), yielding the dibromide 7 as a mixture of diastereomers (approximately 1:1) as an oil 

(0.33g, 77%). IR (HATR) νmax: 3343 (br, s), 2962 (s), 2926 (s), 2868 (s), 1456 (s), 1374 (s), 

1335 (m), 1308 (m), 1128 (s, shoulder), 1090 (s), 773 (s), 745 (s) cm-1; 1H NMR (400 MHz, 

CDCl3): δ 1.16 & 1.17 (s, 3H), 1.20 (d, J 6.2 Hz, 3H), 1.35 (s, 3H), 1.58 (s, 1H), 1.15-1.75 

(m, 5H), 3.75-3.87 (m, 1H); 13C NMR (100 MHz, CDCl3): δ 19.3 (CH3), 23.7 (CH3), 24.2 & 

24.4 (CH2), 27.42 & 27.43 (CH3), 28.0 & 28.1 (C), 37.6 & 37.8 (CH2), 39.7 & 39.9 (CH), 

48.0 & 48.3 (C), 67.6 & 67.7 (CH). MS, m/z (%) = 280 (M-H2O, 18)/282 (M-H2O, 34)/284 

(M-H2O, 16), 238 (3)/240 (5)/242 (2), 173 (37)/175 (35), 159 (4)/161 (4), 122 (40), 121 (83), 

107 (46), 94 (100), 79 (53) and 77 (40). HRMS: C9H14
79Br2 requires m/z = 279.9462. Found 

m/z = 279.9461. 
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Abstract 

When subjected to microwave irradiation at 130 °C for 30 seconds, methyl 2,3,8-

nonatrienoate undergoes a Lewis acid catalysed [2+2]cycloaddition to give a mixture 

containing (Z)-methyl-2-bicyclo[3.2.0]hept-6-ylidene acetate and (E)-methyl-2-

bicyclo[3.2.0]hept-6-ylidene acetate (2.5 : 1) in 83 % yield. EtAlCl2 was found to give the 

best yield and conversion. The reaction was unsuccessful for 3-methyl-3-buten-1-yl 4-

methylpenta-2,3-dienoate and 3-methyl-3-buten-1-yl buta-2,3-dienoate, even though several 

catalysts, temperatures and reaction times were attempted. 

 

 

 

Keywords: Microwave Assisted; [2+2] Cycloaddition; Allene Esters; Cyclobutanes 
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Introduction 

 

The cyclobutane ring is a known moiety of many naturally occurring, biologically significant 

compounds.1 Ring strain found in the 4-membered rings is substantial and facilitates selective 

bond breakage, making the cyclobutane derivatives important intermediates for further 

manipulations. 

 

Many methods exist for the syntheses of these carbocyclic rings. Dichloroketene and [2+2] 

photocycloaddition probably being the most pronounced.2 However, the allene-ene 

intramolecular reaction has also been found to be efficient as an alternative strategy.3-9 

 

The use of microwave irradiation as a heat source is known to decrease the required reaction 

time in different types of reactions and may also reduce the amount of side products in the 

reactions.10,11 

 

The main objective of this project was to study the microwave assisted [2 +2] cycloaddition 

reactions of allene-ene esters in the presence of Lewis acids. 

 

 

 

Results and Discussion 
 

The model substance, methyl 2,3,8-nonatrienoate (1), was synthesized from 6-heptenoic acid 

in two steps, via the acid chloride, according to a literature procedure12 (Scheme 1).  

 

When Snider and Ron12 subjected the allene ester (1) to the Lewis acid, EtAlCl2, an 

intramolecular [2+2]-cycloaddition reaction resulted. The reaction time was 14 days at 25 C, 

giving a 95% yield of a mixture containing (Z)-methyl-2-bicyclo[3.2.0]hept-6-ylidene acetate 

(2a) and (E)-methyl-2-bicyclo[3.2.0]hept-6-ylidene acetate (2b) in a ratio of 2 : 1.  

 

Inspired by Brummond and Chen's successful use of microwave irradiation of alkynyl allenes 

to afford intramolecular [2+2]-cycloadditions,13 we wanted to improve the intramolecular 

[2+2 ] allene-ene reaction by using microwave heating. 
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To find optimal conditions, several Lewis acids, temperatures and reaction times were tested. 

Parameters for optimization and representative results are presented in the Supplementary 

information. 

  

We found that when microwave heating was applied to this reaction at 130 C, only 30 s was 

needed for >95 % conversion, and a mixture of the esters 2a and 2b (2.5 : 1) (according to 

GLC) in 83 % isolated yield resulted. (Scheme 1). 

 

 
 

Scheme 1. Microwave assisted Lewis acid catalysed reaction of 1. 

 

Several attempts were made for chromatographic separation of the esters 2a and 2b, but none 

were successful. 

 

During the optimization of the microwave assisted [2+2] cycloaddition reaction, we found 

EtAlCl2 to be a better catalyst for the reaction than AlCl3. When AlCl3 was used as the 

catalyst, a temperature of 140 C was required to get full conversion. Such a high temperature 

can be difficult to obtain in the microwave oven when using CH2Cl2 as a solvent since it is a 

low microwave absorbing solvent.14 Careful handling is required during work-up when using 

EtAlCl2, since it reacts violently during the deactivation step. As a control experiment the 

reaction was attempted without any Lewis acid present. But even with extended MW heating 

no detectable conversion was observed. 

 

To explore the scope and limitations of this microwave irradiated reaction, we wanted to test 

it for alkenyl allenoic esters, and a strategy for the synthesis of these starting materials was 

devised (Scheme 2). 

 

•
MeO2C CO2Me

MeO2CEtAlCl2, CH2Cl2
MWI, 130C, 30 s

83 %

2.5  :   1

+

1 2a 2b
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Scheme 2. Strategy for the synthesis of model molecules 3. 

 

The esters 4a and 4b were prepared by acylation of ethyl(triphenylphosphoranylidene) 

acetate, using a literature procedure.15,16 Purification by flash column chromatography gave 4a 

and 4b in 30 % and 63 % yield, respectively. The esters were hydrolysed using LiOH H2O in 

a mixture of glyme and water (1: 1), yielding the acid 5a in 78 % yield. With the ester 4b, 

however, a mixture of the allenic acid 5b and 3-propionic acid (20:80) was obtained. 

 

A mixture of allenic acid 5b and 3-propionic acid (25:75) was also obtained when 4b was 

hydrolysed in ethanol.17 Given the poor yields of the ester 4a and allenoic acid 5b, we decided 

that a new strategy for the synthesis of our model compounds was needed (Scheme 3). Since 

the allene ester 3b is prone to rearrangement to 3-pentynoic acid, we decided to use the ester 

3c instead. 

 
 

Scheme 3. Revised strategy for the preparation of allene esters 3. 
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(3-methyl-3-buten-1-yl) 2-bromoacetate (6) was prepared by a general literature procedure for 

production of bromoacetates.18 Addition of PPh3 and subsequent treatment with base, afforded 

the phosphonium ylide 7 in good yield. Reaction of 7 with acyl chlorides provided the allene 

esters 3a and 3c in in 62 % and 14 % yield, respectively. The yields have not been optimized.  

 

The allene esters 3a and 3c were treated with several different Lewis acids (e.g. EtAlCl2, 

AlCl3, Tf2NH) using different concentrations of allene esters and amounts of Lewis acids 

during the microwave irradiation. Several different temperatures and reaction times were 

attempted. The reaction was monitored by taking out aliquots and checking the characteristic 

allene stretch in the infrared spectrum at approximately 1950 cm-1. However, no cycloaddition 

products were seen. For an additional check the reaction mixture was worked up and the 

NMR spectra were recorded, confirming that no cyclobutanes had been formed. In most cases 

the allene esters was unconverted. 

 

 

Conclusion 
Methyl 2,3,8-nonatrienoate (1) undergoes a Lewis acid catalysed [2+2]cycloaddition to give a 

mixture containing (Z)-methyl-2-bicyclo[3.2.0]hept-6-ylidene acetate (2a) and (E)-methyl-2-

bicyclo[3.2.0]hept-6-ylidene acetate (2b) (2.5 : 1) in 83 % yield when microwave irradiation 

is applied at 130 °C for 30 seconds. Several Lewis acids were tried, and EtAlCl2 was found to 

give best yield and conversion.  

 

The cyclisation did not work for 3-methyl-3-buten-1-yl buta-2,3-dienoate (3a) or 3-methyl-3-

buten-1-yl 4-methylpenta-2,3-dienoate (3b) and, even though several catalysts, temperatures 

and reaction times were attempted.  

 

 

Experimental 
 

General. IR was performed on a Perkin Elmer, Spectrum Bx, FT-IR system. using a diamond 

or ZnSe API-cell, or a ZnSe HATR cell (Horizontal Attenuated Total Reflectance). Only 

selected absorption bands in IR are reported. UV analyses were performed on a Biochrom, 

Libra S32 PC spectrophotometer. The routine NMR spectra were recorded at 25 C on a 



 6 

Varian Gemini 300 instrument and a Bruker AscendTM 400 instrument using CDCl3 as a 

solvent and TMS as a reference.  1H NMR spectra were recorded at 300 and 400 MHz and 13C 

NMR spectra were recorded at 75 and 100 MHz. MS spectra were recorded on an Autospec 

Ultima (Micromass Ltd. Manchester, England) using electronic ionisation (EI) at an ionisation 

potential of 70 eV, unless otherwise stated. For GC/MS an Agilent 6890 Series gas 

chromatograph (Agilent Technology, Wilmington, DE, USA) was used in combination with 

the MS instrument. Only selected peaks in MS are reported. Analytical GLC was carried out 

on a Shimadzu GC-14B gas chromatograph and using a Varian CP-Wax 52CB capillary 

column (30 m, i.d. 0.32 mm, film: 0.50 m). The temperature program used was 100 C for 

30 s, an increase of 4 C/min until 225 C and then 25 C/ min until 250 C. Analytical thin 

layer chromatography (TLC) was performed on Merck DC-Alufolien Kieselgel 60 F254. 

Compounds were visualized by UV light and/or stained with p-anisaldehyde solution or 

KMnO4 solution, followed by heating. For the microwave assisted reactions a Biotage 

Initiator microwave oven or a Biotage Initiator+ EU microwave oven were used. Flash 

column chromatography was performed using Versa flashTM with a Supelco Versa PakTM 

silica cartridge column (40 x 75 mm) or on silicagel (Merck Kieselgel 60, (0.040–0.063 mm, 

230–400 Mesh ASTM). All chemicals were purchased from commercial suppliers and used 

without further purification unless otherwise stated. When required, the solvents were dried 

(by standard procedures) and distilled and the reactions performed under an atmosphere of 

nitrogen. Anhydrous solvents purchased in sure seal bottles over molecular sieves were used 

without further drying. 

 

Methyl 2,3,8-nonatrienoate (1)12  

6-Heptenoic acid (4.73 g , 36.9 mmol) and oxalylic chloride (11.69 g, 92.2 mmol) was stirred 

for 12 h. Oxalylic chloride was removed by distillation, however, due to severe foaming 

during distillation of 6-heptenoyl chloride (Short-path distillation) the compound was 

dissolved in acetonitrile (50 mL) and used without further purification in a literature 

procedure10) Triethylamine (7.38 g, 72.9 mmol) in acetonitrile (50 mL) and 

(carbomethoksymethyl)triphenylphosphonium bromide (12.70 g, 36.5 mmol) in acetonitrile 

(150 mL) was used. The residue was filtered through a small column (silica, 25 % ethyl 

acetate in hexane), concentrated in vacuo and the residue was purified by flash column 
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chromatography (Versa Flash, silica, 10 % ethyl acetate in hexane) yielding the ester 1 (3.7 g, 

60 %). The spectra were in accordance with the literature.10 

 

Typical procedure for the microwave assisted [2+2]-cycloaddition reactions: 

(Z)-methyl-2-(bicyclo[3.2.0]heptan-6-ylidene) acetate (2a) and  (E)-methyl-2-

(bicyclo[3.2.0]heptan-6-ylidene) acetate (2b)  

The methyl ester 1 (0.190 g, 1.15 mmol) was dissolved in CH2Cl2 (predried with MgSO4, 2 

mL) in a microwave reactor vial (8 mL) in an atmosphere of nitrogen, and EtAlCl2 in hexane 

(1M, 1 mL) was added. CAUTION: EtAlCl2 is pyrophoric and reacts violently with water! 

The mixture was irradiated with microwaves at 130 °C for 30 s (fixed hold time: ON). The 

catalyst was deactivated by addition of saturated aq sodium dihydrogenphosphate-1-hydrate, 

and the organic phase was filtered through a small plug of silica/MgSO4 using CH2Cl2 as the 

eluent. Concentration in vacuo yielded a mixture (0.165 g, 83 %) containing the acetates 2a 

and 2b in a ratio of 2.5 : 1 (according to GLC analysis). Several attempts on separation of 2a 

and 2b by flash column chromatography were made, but they were all unsuccessful. The 

spectroscopical data for 2a og 2b was in accordance with literature,12 

 
General procedure for the preparation of the allene esters 3 and 4: 

The allene esters were prepared according to the procedure of Lang and Hansen,15,16 and 

purified by flash column chromatography. 

 
(3-Methyl-3-buten-1-yl) 2,3-butadienoate (3a) 

The allene ester 3a was prepared from (3-methyl-3-buten-1-yl) triphenylphosphoranyliden-

acetate (7) (39.7 g, 0.102 mol) in dry CH2Cl2 (380 mL), triethylamine (14.5 mL, 0.104 mol) in 

dry CH2Cl2 (150 mL), acetyl chloride (7.4 mL, 0.105 mol) in CH2Cl2 (150 mL). The crude 

products were purified by column chromatography (silica, pentane : ethyl acetate (80:20)) to 

give pure 3-methyl-3-buten-1-yl 2,3-butadienoate (3a) (9.7 g, 62 %) as a colourless oil. 

IR (HATR) (νmax, cm-1): 3033 (m), 2969 (s), 2914 (s), 1970 (s), 1942 (s), 1720 (s), 1651 (s), 

1452 (m) and 1425 (m). 1H NMR (400 MHz, CDCl3): δH 1.68 (3H, s), 2.89 (2H, t, J 6.9 Hz), 

4.18 (2H, t, J 6.9 Hz ), 4.67 (1H, s), 4.73 (1H, s), 5.13 (2H, d J 6.5 Hz) and 5.55 (1H, t J 6.6 

Hz). 13C NMR (100 MHz, CDCl3): δC 21.9, 36.1, 62.6, 78.5, 87.3, 111.8, 141.0, 164.7 and 

215.3. MS, m/z (%) = 152 (M+, 0.1), 137 (2), 107 (20), 97 (7), 91 (8), 85 (31), 69 (55), 68 

(100), 67 (99), 66 (26) and 53 (49). 
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(3-Methyl-3-buten-1-yl) 4-methyl-2,3-pentadienoate (3c) 

The allene ester 3c was prepared from (3-methyl-3-buten-1-yl) triphenylphosphoranyliden-

acetate (7) (51.1 g, 0.132 mol) in dry CH2Cl2 (450 mL), triethylamine (19 mL, 0.136 mol) in 

dry CH2Cl2 (180 mL), isobutyryl chloride (14 mL, 0.134 mol) in CH2Cl2 (180 mL). The crude 

products were purified by column chromatography (silica, pentane : ethyl acetate (80:20)) to 

give 3c (3.3 g, 14 %) as a colourless oil. 

IR (HATR) (νmax, cm-1): 3074 (m), 2970 (m), 2907 (m), 1970 (m), 1942 (m), 1718 (s), 1652 

(w), 1442 (m) and 1399 (m). 1H NMR (400 MHz, CDCl3): δH 1.71 (3H, s), 1.75 (3H, s), 1.75 

(3H, s), 2.31 (2H, t, J 6.8 Hz), 4.18 (2H, t, J 6.8 Hz ), 4.70 (1H, s), 4.75 (1H, s), 5.35-5.45 

(1H, m).. 13C NMR (100 MHz, CDCl3): δC 19.2 (2xCH3), 22.5, 36.7, 62.9, 85.9, 100.0, 112.1, 

141.8, 166.5 and 210.7. 

MS, m/z (%) = 180 (M+, 14), 165 (19), 150 (24), 137 (19), 135 (22), 119 (12), 113 (38), 112 

(26), 107 (13), 95 (86), 93 (35), 69 (57), 68 (93), 67 (96), 65 (25), 53 (31), 51 (29) and 41 

(100). 

 

Ethyl buta-2,3-dienoate (4a)19 

Flash column chromatography (Silica, pentane: EtOAc; 95 : 5) yielded the ester 4a (3.41 g, 30 

%) as an oil. The spectra confirmed the structure.20 
 

Ethyl penta-2,3-dienoate (4b)15  

Flash column chromatography (Silica, hexane) yielded the ester 4b (7.94 g, 63 %) as an oil. 

The spectra were in accordance with the literature.15,21 

 

General procedure for the preparation of the allene acids 5a and 5b: 

2.3-butadienoic acid (5a)22 

Ethyl 2,3-butadienoate (4a) (1.5 g, 12 mmol) was added to a solution of LiOH H2O (1.02 g, 

24 mmol) in water (24 mL) and glyme (24 mL) and stirred at room temperature for 3h. Water 

(30 mL) was added and the mixture was extracted with ether (50 mL). Hydrochloric acid (5-

10 %) was added to the aqueous phase until a pH of 3-4. The water phase was extracted with 

ether (3x), and the combined organic phases were dried (MgSO4), filtered and concentrated in 

vacuo. Residual glyme was removed by azotropic distillation with hexane, yielding the allene 

acid 5a (0.788 g, 78 %) as a white solid. The spectra were in accord with the literature.23 
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2,3-pentadienoic acid (5b)24 and 3-pentynoic acid25 

Ethyl 2,3-pentadienoate (4b) (0.755 g, 6 mmol), LiOH H2O (0.505 g, 12 mmol) in water (13 

mL) and glyme (13 mL). Crude yield: 0.52 g, 88 % of a mixture containing the allenic acid 5b 

and 3-pentynoic acid in a ratio of 20:80 (according to NMR) as a white solid. The spectra of 

3-pentynoic acid was in accordance with the literature.26 

 

2,3-pentadienoic acid (5b) 
1H NMR (400 MHz, CDCl3): The signals that could be distinguished were: δH 1.75 (1H, dd, J 

3.2 and 7.4 Hz), 5.48-5.55 (1H, m), 5.57-5.66 (1H, m). 13C NMR (100 MHz, CDCl3): δC 12.4, 

87.1, 90.6, 172.5, 214.4.  

 

(3-methyl-3-buten-1-yl) 2-bromoacetate  (6)27 

3-methyl-3-butenol (2.15 g, 25.0 mmol), dry triethyl amine (2.28 g, 22.5 mmol) and 4-

(dimethylamino)-pyridine (0.31 g, 2.51 mmol) were dissolved in benzene (30 mL).18 The 

solution was cooled in an ice-bath, and 2-bromoacetyl bromide (5.05 g, 25.0 mmol) in 

benzene (20 mL) was added dropwise. The mixture was refluxed for 0.5 h. The precipitated 

salt was removed by filtration, the mixture was concentrated in vacuo, and the residue was 

distilled to give bromoacetate 6 (3.48 g, 67%) as a colourless oil. Bp. 103-108 °C/15-20 torr.  
1H NMR (300 MHz, CDCl3): δH 1.72 (3H, m), 2.30-2.40 (2H, m), 3.79 (2H, s), 4.20-4.30 (2H, 

m), 4.71 (1H, br s), 4.78 (1H, br s). 13C NMR (75 MHz, CDCl3): δC 22.3, 25.8, 36.3, 64.3, 

112.6, 141.0, and 167.2. 

 

(3-methyl-3-buten-1-yl) triphenylphosphoranylidenacetate (7) 

(3-methyl-3-buten-1-yl) 2-bromoacetate (6) (1.04 g, 5 mmol) was dissolved in ether (5 mL), 

and PPh3 (1.31 g, 5 mmol) was slowly added.11 Ether (4 mL) was used to rinse the transfer 

vessel. Vigorous stirring was maintained for 24 h, and then the solution was allowed to stand 

for additional 12 hours. The white precipitate was collected by filtration, washed with diethyl 

ether and dried in vacuo to afford the phosphonium salt as a fine, white powder (crude yield 

2.02 g) that was used without further purification.  

The crude phosphonium salt was dissolved in CH2Cl2 (25 mL) and the solution was shaken 

gently with aq. KOH (1N, 25 mL) in a separatory funnel for 5 min. The layers were separated, 

and the aqueous phase was extracted with CH2Cl2 (3 x 5 mL). The combined organic phases 

were dried (MgSO4), filtered, concentrated, and dried in vacuo to give the phosphonium ylide 

7 (crude yield 1.48 g) as an oil. 
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1H NMR (300 MHz, CDCl3): δH 1.63 (3H, s), 2.10 (2H, t, J 7.0 Hz), 2.40-2.80 (1H, br s), 4.01 

(2H, t, J 7.0 Hz), 4.57 (1H, br s), 4.62 (1H, br s) and 7.30-8.00 (15H, m). 13C NMR (75 MHz, 

CDCl3): δC 22.5, 29.4/31.0, 37.3, 60.6, 111.3, 128.3/128.5, 128.6/128.7, 131.8/131.9, 

132.9/133.0, 142.7 and 171.1/171.2. 
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Table 1. Parameters for optimization of the microwave assisted Lewis acid catalyzed  

[2+2]-cycloaddition of methyl 2,3,8-nonatrienoate (1) 

Lewis acida Temperature 

[ C] 

Reaction time 

[s] 

Conversion/ 

(Isolated yield) [%] 

EtAlCl2 80 1200 poor 

EtAlCl2 100 10 83b  

EtAlCl2 120 10 92b   

EtAlCl2 130 30 96b  (83) 

EtAlCl2 140 10 96b  

AlCl3 130 10  50d 

AlCl3 140 10 90b 

AlCl3 140 600 complete (47) 

AlCl3 140 30 96b  

FeCl3  100 600 Small amounts 

BF3 100 600 - 

- 120 1200 0c 

aCH2Cl2 was used as the solvent.  
bAccording to GLC analyses 
cAccording  to 1H NMR analyses 
dAccording to IR analyses 
  

•
MeO2C CO2Me

MeO2CEtAlCl2, CH2Cl2
MWI, 130C, 30 s

83 %

2.5  :   1

+

1 2a 2b



 S3 
Table 2. Attempts on intramolecular Allene-ene cycloaddition of (3-Methyl-3-buten-

1-yl) 2,3-butadienoate (3a) using different Lewis acids 

 
Entry Allene  

 [M] 

Lewis acid 

 

Lewis 

Acid 

[mol%]a 

Solvent Temperatureb 

[ C] 

Reaction time at 

each T [min] 

1 0.4 EtAlCl2
c 0.9 CH2Cl2 

120, 140, 

160, 180 

200 

10 

2 0.6 EtAlCl2
d 9 CH2Cl2 

100, 110, 

115, 120, 

125, 130 

0.5 

3 0.4 EtAlCl2
d 9 CH2Cl2 

135, 140, 

145, 150, 160 
0.5 

4 0.6 Tf2NH 1.9 CH2Cl2 

100, 110, 

120, 130, 

140, 150, 

160, 170, 180 

5 

5 0.6 Tf2NH 1.9 CH2Cl2 130, 150, 170 30 

6 0.42 Tf2NHe 0.1 

Toluene- 

CH2Cl2 

(1:4) 

100, 250 10 

2 neatf AlCl3 0.5 

Benzene 

or 

CH2Cl2 

100 

140 

180 

30 

aRelated to alkene.  
bReactions were cooled down and sampled after the reaction time was over, then 
heated to the next temperature. 
c0.1 M in hexane.  
d1 M in hexane.  
e0.01 M Tf2NH in CH2Cl2. 
f0.160 g allene, no solvent.  

3a

• O

O
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Table 3. Attempts on intramolecular Allene-ene cycloaddition of allene (3-Methyl-3-

buten-1-yl) 4-methyl-2,3-pentadienoate (3c) using different Lewis acids   

 
 

Entry Allene 

conc. 

[M] 

Lewis acid 

 

Lewis 

Acid 

[mol%]a 

Solvent Temperature 

[ C]b 

Reaction time at 

each T [min] 

1 0.5 EtAlCl2
c 4.8 CH2Cl2 

120 

140 

160 

180 

20 

2 0.4 Tf2NH 2 grains CH2Cl2 

100 

120 

 

10 

aRelated to alkene.  
bReactions were cooled down and sampled after the reaction time was over, then 
heated to the next temperature. 
c0.1 M in hexane. 
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• O

O
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Abstract 
When subjected to HBr/HOAc in polar solvents like acetic acid, 6-(1-methylethylidene)-
bicyclo[3.2.0]heptanes undergo a ring expansion reaction yielding 2-bromo-3,3-
dimethylbicyclo[3.3.0]octane and 3-bromo-2,2-dimethylbicyclo[3.3.0]octane. Several other 
isopropylidenecyclobutanes have been found to undergo the same reaction with high 
stereoselectivity and moderate regioselectivity. In less polar solvents like diethyl ether the ring 
expansion reaction is suppressed, and bromides resulting from addition of HBr to the 
isopropylidene double bond are obtained.  
 
Keywords: Ring expansion reaction, HBr, acetic acid, isopropylidenecyclobutanes, 
bicyclo[3.3.0]octanes  

 
 
 
Introduction  
 
The bicyclo[3.3.0]octane and bicyclo[4.3.0]nonane skeletons are recognized as substructures of 
many biologically active, synthetically challenging compounds like capnellanes, hirsutanes and 
pasteurestins.1-7 Several other examples of ring expansions of four-membered carbocycles to 
give useful five-membered rings can be found in the literature.8-12 Despite several existing 
methods, the structural variety of these compounds still calls for new practical procedures to be 
developed.13 While working on a synthesis of the insect pheromone component lineatin, we 
found that the epoxide of 1 gave an acid catalysed ring expansion.14 Later we found that using 
HBr in acetic acid gave a near quantitative yield of the ring expanded product 2.15 The reaction 
was found to be both stereo- and regioselective as seen from both spectroscopic data and X-ray 
crystallography. 
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Scheme 1. Ring expansion reaction of 1. 
 

Inspired by these results, we decided to investigate the reaction further. Such a regio- and 
stereoselective, high yielding reaction would be very useful in the syntheses of natural products, 
e.g. (±)-1-desoxyhypnophilin a biologically active linear triquinane isolated from the East 
African mushroom Lentinus crinitus (L. ex Fr.) Fr.1 

 

 
 
Scheme 2. Retrosynthetic analysis of (±)-1-desoxyhypnophilin. 
 

In the present paper we would like to report a study in which several isopropylidene-
cyclobutane derivatives were tested for the ring expansion reaction. 
 
Results and Discussion  
 
The dibromomethylenecyclobutanes were prepared in excellent yields (81-87 %) by treatment of 
known ketones17-20 with PPh3 and CBr4 in acetonitrile using a modified literature procedure.21 
Acetonitrile was used since it has been found to be the best solvent for the reaction of ketones 
with PPh3/CCl4.

22 The dibromomethylenecyclobutanes were then methylated twice with lithium 
dimethylcuprate.21 With low boiling products, the solvent was distilled at ambient pressure in 
order to minimise loss of product. The yields of the isopropylidenecyclobutanes were fairly good 
(50-67 %). In this way the isopropylidenecyclobutanes 4a-e were prepared. (Scheme 3 and Table 
1). 
 

 

Scheme 3. Preparation of the isopropylidenecyclobutanes 4a-e. 
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Table 1. Starting materials 

Substrate Dibromomethylenecyclobutane 
(isolated yield) 

Isopropylidenecyclobutane 
(isolated yield) 

 
3a (87%) 4a (60%) 

 
3b (81%) 4b (60%) 

 
3c (87%) 4c (67%) 

 
3d (85%) 4d (50%) 

 
3e (85%) 4e (62%) 

 
Previous attempts in our group to achieve ring expansion of compound 1 using protic acids 

like HCl, p-toluenesulfonic acid or CF3COOH, and Lewis acids like BF3, AlCl3, HgSO4, 
Hg(OAc)2 or AgNO3 were unsuccessful.15 However, using 45 % HBr in acetic acid a near 
quantitative yield of a product corresponding to compound 5 was achieved. When the reaction 
was carried out with 33 % HBr in acetic acid at room temperature using the same amount of HBr 
(~8 eq.), a mixture of products were obtained. 

 

 
 
Scheme 4. Preparation of 5, 6 and 7. 
 

The reactions were finished in 0.5-2 h and three products were observed. Two of these were 
ring expanded compounds 5 and 6. In addition variable amounts of 7 resulting from addition of 
HBr across the double bond, were also seen (Scheme 4). It was observed that 7 rearranged on the 
GLC, and for this reason it was not possible to give exact amounts of these compounds. The 1H 
NMR spectrum of the product mixture resulting when the alkene 4d was used as the substrate, 
indicated that the ratio of the ring expanded compounds (5d + 6d) to 7d was approximately 
70:30, and that the ratio of 5d to 6d was 58:42 (1H NMR). Prolonged reaction times did not 
change the ratio 5d:6d. When substrate 4e was used, the ratio of the ring expanded compounds 
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(5e+6e) to 7e was approximately 90:10. The gem-dimethyl singlets are easily detectable in the 
1H NMR spectra of the product 7. So when none of these resonances were seen in the spectrum 
of the reaction mixture using 4a as substrate, this was clearly indicating that none or only small 
amounts of 7a could have been formed. 

Attempts to isolate 5a and 6a by column chromatography failed since no separation was 
achieved, and separation of 5 and 6 by chromatography was not attempted. Instead analytical 
samples of 5 and 6 were isolated using preparative GLC.  

Generally a high stereoselectivity was achieved. According to both 1H NMR and GLC  
analyses mainly one stereoisomer was formed, and only a few per cent of the other isomer could 
be detected. Representative examples are depicted in Table 2.  
 
Table 2. Treatment of the isopropylidenecyclobutanes with excess 33 % HBr in acetic acid 
 at room temperature 

Substrate Method 
Ratio (%)a 

5 6 

4a GLC 65 35 

4a NMR 64 36 

4b GLC small amounts small amounts

4c GLC small amounts small amounts

4d GLC 56 44 

4d NMR 58 42 

4e GLC 79 21 

4e NMR 74 26 

a 
Conversion 100 %. Ratio based on GLC analyses (at full reaction 

time) and 1H NMR data (of the crude mixture). 

 

The compounds 5, 6 and 7 are easily identified from their respective 1H NMR spectra. The 
1H NMR spectra of 5 exhibited a characteristic doublet at  3-4 ppm due to the CH-Br signal. In 
the spectra of 6 the corresponding signal appeared as a doublet of doublet at  3.8-4.5 ppm. The 
compounds 7 could be identified from the two methyl singlets at  1.6-1.7 ppm consistent with a 
gem-dimethyl group situated on the same carbon atom as the bromine atom. The other features of 
the spectra were also in accord with the structures. 

The rearrangement gave mainly one stereoisomer, but due to the flexibility of the two fused  
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5-membered rings it was not possible to use coupling constants to confirm which stereoisomer 
was predominantly formed. However, thorough analysis of the NMR spectra of 5a made it 
possible to distinguish the two protons on C4. A fairly strong interaction between the endo H4 
proton and the -proton (H2) based on the ROESY spectra could be seen, tentatively showing 
the stereochemistry of the bromine substituted carbon atom (H2) as depicted in Figure 1. 
 

 
Figure 1 
 

The regioselectivity, however, was only moderate and best for the isopropylidene-
cyclobutane 4e, assumed to be the most strained substrate. The least strained substrate 4d yielded 
the lowest selectivity. With the substrates 4a and 4e only minor amounts (<10 %, GLC) of side 
products were observed. With the substrate 4d up to 18% side products were present (GLC), but 
some of them may result from decomposition of 7d in the injector. The substrates 4b and 4c, 
however, gave mixtures of several unidentified products where the ring expanded products 5 and 
6, according to GLC analyses, constituted only small amounts. This was probably due to addition 
of HBr to the endocyclic double bond. Small amounts of two unidentified compounds could be 
isolated by preparative GLC from the complex mixture resulting from substrate 4b. The 1H 
NMR spectra indicated that no double bonds were present in these compounds, and no attempts 
were made to further elucidate the structures. The reaction mixture resulting from substrate 4c 
was so complex that separation was not attempted. 

Changing the temperature of the reaction resulted in only minor effects. (Table 3) Both the 
stereo- and regioselectivity of the reaction was the same as at room temperature. Temperatures 
ranging from 0-5 °C to 70 °C were tried. For substrate 4d (entry 7), however, lowering the 
temperature to 0-5 °C slowed the ring expansion reaction down, and the major product was 7d 
(GLC) where the ring expansion had not taken place. The amounts of side products formed were 
approximately the same as at room temperature. Unfortunately, lowering the temperature did not 
affect the outcome of the reaction for the substrate 4c (entry 5), and a complex mixture 
containing only minor amounts of 5c and 6c resulted. Elevation of the temperature (entry 4) gave 
no trace of 5c and 6c. 
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Table 3. Temperature effects 

Entry Substrate Temperature 
Ratio (%)a 

5 6 7 

1 4a 70 °C 65 35 - 

2 4a 50-60 °C 65 35 - 

3 4a 0-5 °C 66 34 
trace 

amounts 

4 4c 50-60 °C - - - 

5 4c 0-5 °C 
small 

amountsb 
small 

amountsb 
small 

amountsb 

6 4d 50-60 °C 52 39 8c 

7 4d 0-5 °C 30 25 45c 

a Conversion 100 %. Ratio based on GLC data. b i. e. <15% 
c Rearranges to a certain extent on the GLC. 

 
Since the temperature effects were minimal, changing the polarity of the reaction medium 

was tried. Representative results are presented in Table 4. 
At first the reaction was performed using the same amount of HBr (in acetic acid) as before 

(~8 eq.). Using substrate 4a as a model, solvents with polarities ranging from hexane to CH2Cl2 
were added in a ratio of HBr/HOAc : solvent, ~1:3 (eg. entries 1 and 2 ). The regioselectivity did 
not improve. Moreover, using diethyl ether as the solvent, the ring expansion reaction was 
suppressed completely yielding 7a as the only product identified. Only minor amounts of side 
products (<10%) were observed. The reactions were performed at room temperature except for 
entry 6 (substrate 4c) that was performed in refluxing ether. Comparison of GLC chromatograms 
of the reactions of the bromide 4c at room temperature and at reflux, indicated that the 
temperature change only resulted in minor differences in the product ratio. Purification of 7a by 
preparative GLC or flash chromatography failed, and only the ring expanded products 5a and 6a 
were isolated. Even at direct injection on the MS, rearrangement of 7a was observed. The 
compound 7b gave a spectrum that was tentatively associated with the structure depicted for this 
compound, but for 7c and 7d no attempts to measure MS spectra were made since they all 
rearranged as easily as 7a. 
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Table 4. Solvent effects 

Entry Substrate Conditions 
Ratio (%)a Conversion  

5 6 7 (%)a 

1 4a Et2O, 1 h
b
 - - ∼100 ∼100 

2 4a CH2Cl2, 1 h
b
 52 (58) 48 (42) - 100 

3 4a Hexane, 1 hb (40) (28) (32) 95 

4 4a Et2O, 4 h
c
 - - ∼100 94 

5 4b Et2O, 3 h
c
 - - ∼100 100 

6 4c Et2O, Δ, 22 h
c,d,e

 - - major 94 

7 4d Et2O, 8 h
c,d

 - - ∼100 91 

a Ratio based on1H NMR data or GLC data (in parenthesis), conversion based on GLC data.   
b 
HBr/HOAc: solvent, ~1:3; 

c 
HBr/HOAc: solvent, ~1:20;   

d 
Slow addition of HBr in acetic acid;   

e 
Reaction performed at reflux 

 
When the reaction was performed in diethyl ether using an excess of only 2-4 eq. of HBr 

(HBr/HOAc:ether, ~1:20) (entries 4 to 7) no change in the outcome of the reaction was observed; 
the ring expansion reaction was suppressed for all the substrates, and only 7 were obtained. No 
attempts were made to purify 7b-d since the purification of 7a failed. The compound 7c was not 
isolated, but merely identified from the 1H NMR spectrum of the crude product by resonances at 
 ~1.6-1.7 ppm corresponding to the gem-dimethyl group situated on the bromine substituted 

carbon atom, a singlet at  1.85 ppm corresponding to the vinylic methyl group and a multiplet at 
5.27-5.37 ppm (alkene proton). Signals due to formation of the rearranged bromides 5c and 6c 
could not be seen in the spectrum. The yields of the products 7a-7d have not been optimized.  

Slower addition of the HBr/HOAc solution resulted only in a slower reaction, and in 
accordance with literature,23 an excess of 2-3 eq. of HBr was necessary to complete the reaction. 

The stereochemistry of the bromides 7 was difficult to establish, but the ROESY spectrum 
of 7b shows a strong coupling between the two bridgehead protons H1 and H5, and a weaker 
coupling between the bridgehead proton H5 and the -proton (H6). Molecular models (ball-and-
stick models) indicate that due to the rigidity of this bicyclic compound, the coupling between 
protons H5 and H1 and between protons H5 and H6 should be of similar strength if the -proton 
(H6) and the bridgehead protons are syn. This indicates that 7b has the stereochemistry depicted 
in Figure 2 with the (CH3)2CBr-group situated exo. This is confirmed by the ROESY spectrum 
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revealing correlations between the (CH3)2CBr-group and both the bridgehead proton H5 and the 
exo H7 proton. 

 

 
Figure 2 
 

Finally, attempts to achieve ring expansion on 7b and 7c were made treating them with 
acetic acid at elevated temperatures. The substrate 7b yielded the ring expanded compounds 5b 
and 6b in moderate regioselectivity. The substrate 7c gave a complex mixture containing 
moderate amounts of 5c and 6c (Table 5 and Scheme 5). 

 

 
Scheme 5. Ring expansion of 7 in HOAc. 
 

Table 5. Ring expansion of HBr adducts 

Substrate Reaction time (h) 
Ratio (%) 

Method 
Conversion 

 

5 6 (%) 

7b 1.5 
71 29 GLC 96a 

72 28 NMR 90b 

7c 8 63 37 GLC 89a 

a Conversion based on GLC data.   b Conversion based on 1H NMR data. 

 
The reaction gave an impure mixture, and the 1H NMR spectrum of this was too complex to 

indicate the conversion of 7c or the ratio of 5c and 6c formed. On the other hand, the crude 
mixture obtained from 7b gave consisting results, when analysed by GLC and NMR, both with 
respect to conversion of the starting material and the ratio of 5b to 6b. This information is 
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indicative of both the conversion of 7c and the ratio of 5c and 6c, although the bromide 7c has 
been found to rearrange on the GLC. 

Preparative GLC yielded analytical samples of 5b, 6b and 5c. For 6c an impure sample was 
obtained, and 6c was merely identified from the 1H NMR spectrum of this sample by the singlets 
at  0.96 and 1.16 ppm (the gem-dimethyl groups), a multiplet at  1.69-1.77 ppm (alkene CH3 
group), a doublet of doublet at  4.11 ppm (CHBr proton, J 5.4 and 5.9 Hz) and a multiplet at 
 5.25-5.35 ppm (alkene proton). 

A possible mechanism of the ring expansion reaction is depicted in Scheme 6. 
 

 
 
Scheme 6. Possible mechanism of the ring expansion reaction. 
 

The initially formed tertiary carbocation can rearrange through either pathway a or b 
yielding 5 or 6, respectively. This mechanism fails to explain the high stereoselectivity exhibited 
by the reaction, however. Sterical congestion alone cannot explain the high stereoselectivity, and 
possibly a cage type mechanism is at work. 

When the reaction was performed with the isopropylidenecyclobutane 1, a higher 
regioselectivity was reported.15 This may be due to the fact that if substrate 1 were to undergo a 
ring expansion reaction by pathway b, a severely sterically congested bromide with adjacent 
gem-dimethyl substituted carbon atoms would result. However, the mechanism of the reaction 
was not studied.  
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Experimental Section  
 
General. Melting points were measured on an Electrothermal 9100 apparatus. IR was performed 
on a Perkin Elmer Paragon 500 FT-IR spectrophotometer or a Magna-IR 550 Nicolet FT-IR 
spectrophotometer. Only selected absorption bands in IR are reported. The routine NMR spectra 
were recorded on a Varian Gemini 200 instrument or Bruker DPX 200, DPX 300 or DRX 500 
instruments using CDCl3 as a solvent and TMS as a reference. 1H NMR spectra were recorded at 
200, 300 and 500 MHz, and 13C NMR spectra were recorded at 50, 75 and 125 MHz. MS spectra 
were recorded on a JEOL DX-303 mass spectrometer, and HRMS spectra were recorded on a 
Fisons VG ProSpec Q mass spectrometer using electronic ionisation (EI) at an ionisation 
potential of 70 eV unless otherwise stated. Only selected peaks in MS are reported. Analytical 
GLC was carried out on a Varian 3400 gas chromatograph and a Chrompack CP9001 gas 
chromatograph using Chrompack WCOT fused silica capillary columns (25 m, i.d. 0.32 mm, CP-
sil-8 CB 1.20 μm), and preparative GLC was carried out on a Varian 3300 and a Varian 3400 gas 
chromatograph using a 10% SP-2100 packed column (2.5 m, i.d. 4 mm). Analytical thin layer 
chromatography (TLC) was performed on Merck DC-Alufolien Kieselgel 60 F254. Compounds 
were visualized by UV light and/or stained with p-anisaldehyde solutions followed by heating. 
Flash column chromatography was performed on silicagel (Merck Kieselgel 60, (0,040-0,063 
mm, 230-400 Mesh ASTM). All chemicals were purchased from commercial suppliers and used 
without further purification unless otherwise stated. When required, the solvents were dried (by 
standard procedures) and distilled and the reactions performed under an atmosphere of nitrogen. 
Anhydrous solvents purchased in sure seal bottles over molecular sieves were used without 
further drying. 
Bicyclo[3.2.0]heptan-6-one,17 bicyclo[3.2.0]hept-2-en-6-one,18 bicyclo[4.2.0]octan-7-one20 and 
2,2a,7,7a-tetrahydro-1H-cyclobuta[a]inden-1-one18 were prepared from the corresponding 
dichloroketene adducts according to literature.24,25 4-Methylbicyclo[3.2.0]hept-3-en-6-one19 was 
prepared from 3-hydroxy-3-methyl-6-heptenoic acid according to literature procedures.26 

 
Typical procedure for the preparation of the (dibromomethylene)bicyclic compounds21,22 

6-(Dibromomethylene)bicyclo[3.2.0]heptane (3a). A mixture of triphenylphosphine (24.13 g, 
92.0 mmol) and bicyclo[3.2.0]heptan-6-one17,24 (1.983 g, 18.0 mmol) in acetonitrile (140 mL) 
was cooled to 0 °C, and CBr4 (15.22 g, 45.9 mmol) was added in one portion. The mixture was 
stirred at room temperature under nitrogen for 4 h. Solid material was removed by vacuum 
filtration, and the solvent was removed in vacuo. The residue was dissolved in a minimal 
quantity of dichloromethane and added dropwise to hexane (dichloromethane:hexane 1:5). 
Precipitated solid was filtered and washed with hexane. Solvents were removed in vacuo, and the 
procedure was repeated twice. Purification of the residue by chromatography (silica, hexane) 
yielded the pure dibromomethylenecyclobutane 3a (4.16 g, 87%) as a colourless oil. IR (film) 
( max, cm-1): 2952 (s, shoulder), 2858 (m), 1660 (w), 1444 (w), 1413 (w), 840 (m) and 799 (s). 1H 
NMR (200 MHz, CDCl3): H 1.30-1.88 (5H, m), 1.88-2.10 (2H, m), 2.53-2.73 (2H, m) and 3.10-
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3.24 (1H, m). 13C NMR (50 MHz, CDCl3): C 24.6 (CH2), 29.9 (CH2), 31.7 (CH), 32.5 (CH2), 
36.7 (CH2), 49.4 (CH), 79.1 (C) and 148.6 (C). MS, m/z (%) = 264 (M+, 10)/266 (M+, 22)/268 
(M+, 9), 236 (13)/238 (22)/240 (12), 185 (30)/187 (29), 157 (17)/159 (16), 106 (82), 105 (100), 
79 (39), 77 (40), 51 (43) and 39 (53). HRMS: C8H10

79Br81Br requires m/z = 265.9129. Found m/z 
= 265.9132. 
6-(Dibromomethylene)bicyclo[3.2.0]hept-2-ene (3b). Triphenylphosphine (10.25 g, 39.1 
mmol), bicyclo[3.2.0]hept-2-en-6-one18,24 (0.830 g, 7.68 mmol), CBr4 (6.495 g, 19.6 mmol), 
acetonitrile (30 mL). The dibromomethylenecyclobutane 3b (1.64 g, 81%) was obtained as a 
colourless oil. IR (CDCl3) ( max, cm-1): 3056 (m), 2948 (s, shoulder), 2852 (m), 1747 (m, br), 
1713 (m, br), 1665 (m, br), 1607 (m, br), 848 (s) and 802 (s). 1H NMR (200 MHz, CDCl3): H 
2.24 (1H, dt, J 16.5 and 3.4 Hz), 2.43-2.62 (1H, m), 2.66-2.84 (2H, m), 3.14-3.30 (1H, m), 3.32-
3.46 (1H, m) and 5.70-5.80 (2H, m). 13C NMR (50 MHz, CDCl3): C 36.4 (CH2), 39.3 (CH), 39.8 
(CH2), 46.2 (CH), 80.9 (C), 131.7 (CH), 132.2 (CH) and 149.8 (C). MS, m/z (%) = 262 (M+, 
31)/264 (M+, 58)/266 (M+, 29), 247 (16)/249 (29)/251 (15), 183 (92)/185 (92), 104 (97), 103 
(100), 77 (56), 66 (98) and 51 (60). HRMS: C8H8

79Br81Br requires m/z = 263.8972. Found m/z = 
263.8979. 
7-(Dibromomethylene)-2-methylbicyclo[3.2.0]hept-2-ene (3c). Triphenylphosphine (24.13 g, 
92.0 mmol), 4-methylbicyclo[3.2.0]hept-3-en-6-one19,26 (2.199 g, 18.0 mmol), CBr4 (15.22 g, 
45.9 mmol), acetonitrile (140 mL). The dibromomethylenecyclobutane 3c (4.33 g, 87%) was 
obtained as a colourless oil. IR (film) ( max, cm-1): 3037 (w), 2967 (s), 2908 (s), 2847 (m), 1660 
(w, br), 1442 (m), 1413 (m), 1117 (m), 840 (m) and 788 (s). 1H NMR (200 MHz, CDCl3): H 
1.79-1.87 (3H, m), 2.09-2.37 (2H, m), 2.44-2.63 (1H, m), 2.63-2.87 (2H, m), 3.59-3.73 (1H, m) 
and 5.33-5.42 (1H, m). 13C NMR (50 MHz, CDCl3): C 17.1 (CH3), 31.0 (CH), 39.6 (CH2), 39.9 
(CH2), 60.5 (CH), 78.0 (C), 125.8 (CH), 138.7 (C) and 148.8 (C). MS, m/z (%) = 276 (M+, 
23)/278 (M+, 44)/280 (M+, 22), 261 (16)/263 (30)/265 (14), 248 (8)/250 (15)/252 (8), 197 
(31)/199 (30), 118 (100), 117 (90), 80 (35) and 79 (33). HRMS: C9H10

79Br81Br requires m/z = 
277.9129. Found m/z = 277.9127. 
7-(Dibromomethylene)bicyclo[4.2.0]octane (3d). Triphenylphosphine (24.13 g, 92.0 mmol), 
bicyclo[4.2.0]octan-7-one20,25 (2.235 g, 18.0 mmol), CBr4 (15.22 g, 45.9 mmol), acetonitrile (150 
mL). The dibromomethylenecyclobutane 3d (4.27 g, 85%) was obtained as a colourless oil. IR 
(film) ( max, cm-1): 2933 (s), 2855 (m), 1665 (w), 1449 (m, shoulder) and 802 (m, shoulder). 1H 
NMR (200 MHz, CDCl3): H 1.13-1.60 (5H, m), 1.60-1.90 (3H, m), 2.15-2.45 (2H, m), 2.45-2.68 
(1H, m) and 2.75-3.00 (1H, m). 13C NMR (50 MHz, CDCl3): C 21.6 (CH2), 21.8 (CH2), 24.1 
(CH2), 26.6 (CH), 26.9 (CH2), 37.9 (CH2), 43.4 (CH), 77.3 (C) and 148.8 (C). MS, m/z (%) = 
278 (M+, 49)/280 (M+, 100)/282 (M+, 50), 250 (12)/252 (23)/254 (12), 236 (8)/238 (16)/240 (8), 
224 (9),/226 (17)/228 (8), 199 (19)/201 (23), 119 (32), 91 (20) and 67 (22). HRMS: 
C9H12

79Br81Br requires m/z = 279.9285. Found m/z = 279.9288. 
1-(Dibromomethylene)-2,2a,7,7a-tetrahydro-1H-cyclobuta[a]indene (3e). Triphenylphos-
phine (8.973 g, 34.2 mmol), 2,2a,7,7a-tetrahydro-1H-cyclobuta[a]inden-1-one18,24 (1.063 g, 6.72 
mmol), CBr4 (5.683 g, 17.1 mmol), acetonitrile (56 mL). The dibromomethylenecyclobutane 3e 
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(1.79 g, 85%) was obtained as a white solid, mp. 105-108 °C. IR (CCl4) ( max, cm-1): 3073 (w), 
3024 (w), 2929 (m), 2852 (w), 1661 (w), 1480 (w), 837 (w) and 798 (s). 1H NMR (200 MHz, 
CDCl3): H 2.42 (1H, dt, J 16.7 and 3.4 Hz), 3.05 (1H, dd, J 16.7 and 8.4 Hz), 3.18 (1H, dd, J 
17.2 and 9.1 Hz), 3.36-3.52 (1H, m), 3.56-3.72 (1H, m), 3.74-3.88 (1H, m) and 7.16-7.32 (4H, 
m). 13C NMR (50 MHz, CDCl3): C 36.2 (CH2), 39.3 (CH), 41.3 (CH2), 47.5 (CH), 81.4 (C), 
124.3 (CH), 124.6 (CH), 126.5 (CH), 126.6 (CH), 142.8 (C), 144.4 (C) and 147.9 (C). MS, m/z 
(%) = 312 (M+, 8)/ 314 (M+, 14)/316 (M+, 8), 233 (8)/235 (8), 154 (16), 153 (25), 152 (14), 117 
(11), 116 (100) and 115 (29). HRMS: C12H10

79Br2 requires m/z = 311.9149. Found m/z = 
311.9143. 
 
Typical procedure for the preparation of the isopropylidene bicyclic compounds using a 
modified literature procedure21  
6-(1-Methylethylidene)bicyclo[3.2.0]heptane (4a). An etheral solution of lithium 
dimethylcuprate was prepared at 0 °C by suspending CuI (15.36 g, 80.7 mmol) in dry diethyl 
ether (80 mL) and adding a 1.5 M solution of MeLi in diethyl ether until the mixture was 
colourless. To this solution 3a (2.178 g, 8.19 mmol) in dry diethyl ether (96 mL) was added, and 
the mixture was stirred at room temperature overnight. Then methyl iodide (24 mL) was added 
dropwise under cooling (ice/water), and stirring was continued at room temperature for 1 h. 
Saturated aq ammonium chloride was carefully added, and the aqueous phase was extracted with 
ether (3x). The combined etheral extracts were washed with brine and dried (Na2SO4). For 
solids: The solvents were removed in vacuo, and the crude material was purified by 
chromatography (silica, hexane). For liquids: The solvent was removed by careful distillation at 
ambient pressure and finally by flushing with N2 while cooled (ice-water). The residue was 
distilled bulb-to-bulb at 0.7 mmHg and an oil bath temperature of 40 °C slowly rising to 70 °C, 
yielding the isopropylidenecyclobutane 4a (0.665 g, 60%) as a colourless oil. IR (film) ( max, cm-

1): 2948 (s), 2922 (s), 2851 (m), 1446 (m, shoulder) and 1369 (m). 1H NMR (200 MHz, CDCl3): 

H 1.44 (3H, s), 1.51 (3H, s), 1.20-1.80 (6H, m), 1.85-2.08 (1H, m), 2.52-2.74 (2H, m) and 3.13-
3.30 (1H, m). 13C NMR (50 MHz, CDCl3): C 18.7 (CH3), 19.0 (CH3), 25.2 (CH2), 32.5 (CH2), 
33.5 (CH, CH2), 33.6 (CH2), 46.0 (CH), 122.4 (C) and 133.4 (C). MS, m/z (%) = 136 (M+, 70), 
121 (100), 107 (57), 94 (43), 93 (88), 79 (52), 67 (70) and 41 (36). HRMS: C10H16 requires m/z = 
136.1252. Found m/z = 136.1247. 
6-(1-Methylethylidene)bicyclo[3.2.0]hept-2-ene (4b). CuI (10.77 g, 56.6 mmol) in dry diethyl 
ether (70 mL), 1.6 M methyllithium in diethyl ether and 3b (1.510 g, 5.72 mmol) in dry diethyl 
ether (70 mL). MeI (17 mL). The isopropylidenecyclobutene 4b (0.457 g, 60%) was obtained as 
a colourless oil. IR (film) ( max, cm-1): 3047 (m), 2967 (m), 2918 (s), 2849 (m), 1609 (w), 1444 
(m) and 1369 (m). 1H NMR (300 MHz, CDCl3): H 1.45 (3H, s), 1.55 (3H, s), 2.20-2.34 (1H, m), 
2.36-2.65 (2H, m), 2.70-2.91 (1H, m), 3.12-3.32 (1H, m), 3.35-3.55 (1H, m) and 5.68-5.87 (2H, 
m). 13C NMR (50 MHz, CDCl3): C 19.0 (CH3), 19.3 (CH3), 36.4 (CH2), 38.9 (CH2), 41.2 (CH), 
43.0 (CH), 124.9 (C), 130.6 (CH), 133.4 (CH) and 135.0 (C). MS, m/z (%) = 134 (M+, 58), 119 
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(62), 105 (20), 92 (56), 91 (99), 79 (21), 78 (30), 77 (20), 68 (23), 67 (41), 66 (100), 41 (31) and 
39 (34). HRMS: C10H14 requires m/z = 134.1096. Found m/z = 134.1089. 
2-Methyl-7-(1-methylethylidene)bicyclo[3.2.0]hept-2-ene (4c). CuI (15.36 g, 80.7 mmol) in 
dry diethyl ether (80 mL), 1.6 M methyllithium in diethyl ether and 3c (2.268 g, 8.16 mmol) in 
dry diethyl ether (96 mL). MeI (24 mL). The isopropylidenecyclobutene 4c (0.814 g, 67%) was 
obtained as a colourless oil. IR (film) ( max, cm-1): 3034 (w), 2963 (s), 2909 (s), 2848 (s), 1648 
(w), 1445 (m) and 1373 (m). 1H NMR (200 MHz, CDCl3): H 1.47 (3H, s), 1.62 (3H, s), 1.73 
(3H, br s), 2.02-2.36 (2H, m), 2.43-2.65 (1H, m), 2.65-2.86 (2H, m), 3.60-3.73 (1H, m) and 5.25-
5.34 (1H, m). 13C NMR (50 MHz, CDCl3): C 16.4 (CH3), 18.9 (CH3), 19.4 (CH3), 32.6 (CH), 
36.2 (CH2), 39.9 (CH2), 57.3 (CH), 121.0 (C), 123.8 (CH), 134.6 (C) and 141.0 (C). MS, m/z (%) 
= 148 (M+, 93), 133 (100), 106 (52), 105 (100), 92 (59), 91 (66), 80 (53), 79 (49) and 41 (40). 
HRMS: C11H16 requires m/z = 148.1252. Found m/z = 148.1254. 
7-(1-Methylethylidene)bicyclo[4.2.0]octane (4d).27 CuI (15.36 g, 80.7 mmol) in dry diethyl 
ether (80 mL), 1.6 M methyl lithium in diethyl ether and 3d (2.285 g, 8.16 mmol) in dry diethyl 
ether (96 mL). MeI (24 mL).The isopropylidenecyclobutane 4d (0.610 g, 50%) was obtained as a 
colourless oil, and the spectral data were in accordance with the literature.27 
1-(1-Methylethylidene)-2,2a,7,7a-tetrahydro-1H-cyclobuta[a]indene (4e). CuI (10.48 g, 55.0 
mmol) in dry diethyl ether (60 mL), 1.6 M methyl lithium in diethyl ether, 3e (1.749 g, 5.57 
mmol) in dry diethyl ether (60 mL) and MeI (17 mL). The isopropylidenecyclobutane 4e (0.633 
g, 62%) was obtained as a white solid, mp. 42-45 °C. IR (CCl4) ( max, cm-1): 3070 (w), 3022 (w), 
2924 (s, br), 2851 (m), 1479 (m), 1450 (m) and 1371 (w). 1H NMR (200 MHz, CDCl3): H 1.41 
(3H, br s), 1.60 (3H, br s), 2.32-2.50 (1H, m), 2.95-3.27 (3H, m), 3.57-3.82 (2H, m) and 7.07-
7.26 (4H, m). 13C (50 MHz, CDCl3): C 19.1 (CH3), 19.3 (CH3), 37.7 (CH2), 38.5 (CH2), 41.2 
(CH), 44.1 (CH), 124.2 (CH), 124.5 (CH), 125.1 (C), 125.9 (CH), 126.1 (CH), 133.4 (C), 143.6 
(C) and 146.6 (C). MS, m/z (%) = 184 (M+, 40), 141 (27), 128 (16), 117 (12), 116 (100), 115 
(45), 73 (11) and 41 (18). HRMS: C14H16 requires m/z = 184.1252. Found m/z = 184.1252. 
 
Typical methods for the preparation of the bromobicyclo[3.3.0]octanes, the bromobicyclo-
[4.3.0]nonanes, and the HBr adducts (7) 
Method A: 2-Bromo-3,3-dimethylbicyclo[3.3.0]octane (5a) and 3-bromo-2,2-dimethyl-
bicyclo[3.3.0]octane (6a) 
A solution of 4a (0.191 g, 1.40 mmol) in 33% HBr in acetic acid (1.83 mL, 10.4 mmol) was 
stirred at room temperature for 1 h. Diethyl ether (25 mL) and water (10 mL) was added. The 
organic layer was separated, and the water phase was extracted with diethyl ether (3 × 5 mL). 
The combined etheral phases were washed with water (10 mL), saturated aq NaHCO3 (10 mL), 
brine (10 mL) and dried (MgSO4). Evaporation of the solvent gave a mixture (Crude yield: 0.277 
g, 91%) consisting of 5a (64%) and 6a (36%) according to NMR and GLC. Analytical samples 
of 5a and 6a were obtained by preparative GLC.  
2-Bromo-3,3-dimethylbicyclo[3.3.0]octane (5a). IR (ATR) ( max, cm-1): 2949 (s, shoulder), 
2864 (s), 1458 (m), 1445 (m), 1385 (m), 1368 (m), 802 (m) and 752 (m). 1H NMR (500 MHz, 
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CDCl3): H 0.90-1.00 (1H, m), 0.98 (6H s, 2 × CH3), 1.28-1.37 (1H, m), 1.39-1.63 (5H, m), 1.87 
(1H, dd, J 12.7 and 8.9 Hz), 2.49-2.60 (1H, m), 2.67-2.76 (1H, m) and 3.40 (1H, d, J 9.5 Hz). 13C 
NMR (125 MHz, CDCl3): C 22.7 (CH3), 24.4 (CH2), 26.2 (CH3), 30.6 (CH2), 33.0 (CH2), 39.5 
(CH), 44.1 (C), 44.8 (CH2), 52.3 (CH) and 69.3 (CH). MS, m/z (%) = 216 (M+, 5)/218 (M+, 4), 
138 (14), 137 (100), 121 (7), 95 (35), 81 (71), 79 (15), 69 (50), 67 (22), 55 (17) and 41 (23). 
HRMS: C10H17

79Br requires m/z = 216.0514. Found m/z = 216.0504. 
3-Bromo-2,2-dimethylbicyclo[3.3.0]octane (6a). 1H NMR (200 MHz, CDCl3): H 0.97 (3H, s), 
0.98 (3H, s), 0.85-1.42 (3H, m), 1.46-1.72 (2H, m), 1.75-2.34 (4H, m), 2.37-2.60 (1H, m) and 
3.94 (1H, dd, J 11.2 and 7.2 Hz). 13C NMR (50 MHz, CDCl3): C 23.1 (CH3), 26.2 (CH3), 28.0 
(CH2), 30.1 (CH2), 35.7 (CH2), 39.2 (CH), 42.6 (CH2), 44.6 (C), 52.5 (CH) and 61.0 (CH). MS, 
m/z (%) = 216 (M+, 3)/218 (M+, 3), 148 (5)/150 (5), 138 (16), 137 (100), 121 (9), 110 (100), 95 
(59), 81 (75), 69 (94) and 67 (68). HRMS: C10H17

79Br requires m/z = 216.0514. Found m/z = 
216.0512. 
Method B: 6-Bromo-7,7-dimethylbicyclo[3.3.0]oct-2-ene (5b) and 7-bromo-6,6-dimethyl-
bicyclo[3.3.0]oct-2-ene (6b). A solution of 7b (0.127 g, 0.590 mmol) in acetic acid (0.13 mL, 
2.26 mmol) was stirred for 1.5 h at 70 °C and worked up as in method A yielding a mixture 
(crude yield: 0.096 g, 76%) that contained 5b (65%), 6b (25%) and 7b (10%) (1H NMR). 
Analytical samples of 5b and 6b were obtained by preparative GLC. 
6-Bromo-7,7-dimethylbicyclo[3.3.0]oct-2-ene (5b). IR (ATR) ( max, cm-1): 3050 (m), 2956 (s), 
2923 (s), 2853 (m), 1460 (m, shoulder), 1384 (m), 1368 (m), 810 (m) and 724 (s). 1H NMR (200 
MHz, CDCl3): H 1.00 (3H, s), 1.02 (3H, s), 1.14 (1H, dd, J 12.7 and 8.2 Hz), 1.96 (1H, dd, J 
12.7 and 9.3 Hz), 2.15-2.35 (1H, m), 2.45-2.70 (1H, m), 2.85-3.05 (1H, m), 3.05-3.25 (1H, m), 
3.48 (1H, d, J 10.1 Hz) and 5.48-5.64 (2H, m). 13C NMR (50 MHz, CDCl3): C 23.7 (CH3), 27.0 
(CH3), 37.2 (CH2), 43.8 (CH2), 44.2 (C), 47.2 (CH), 49.7 (CH), 70.1 (CH), 127.1 (CH) and 133.7 
(CH). MS, m/z (%) = 214 (M+, 33)/216 (M+, 32), 199 (11)/201 (10), 173 (43)/175 (41), 135 (67), 
119 (24), 107 (42), 93 (55), 91 (34), 79 (100) and 77 (38). HRMS: C10H15

79Br requires m/z = 
214.0357. Found m/z = 214.0361. 
7-Bromo-6,6-dimethylbicyclo[3.3.0]oct-2-ene (6b). IR (ATR) ( max, cm-1): 2956 (m), 2922 (s), 
2852 (s), 1464 (m), 1456 (m), 804 (m) and 724 (m). 1H NMR (200 MHz, CDCl3): H 0.75-1.10 
(1H, m), 1.00 (3H, s), 1.04 (3H, s), 1.87-2.65 (4H, m), 3.10-3.30 (1H, m), 3.90 (1H, dd, J 10.1 
and 7.0 Hz) and 5.47-5.67 (2H, m). 13C NMR (50 MHz, CDCl3): C 23.3 (CH3), 26.4 (CH3), 35.0 
(CH2), 41.0 (CH2), 45.3 (C), 47.3 (CH), 49.4 (CH), 61.5 (CH), 129.7 (CH) and 132.6 (CH). MS, 
m/z (%) = 214 (M+, 7)/216 (M+, 7), 135 (32), 119 (12), 107 (15), 93 (28), 91 (18), 79 (23), 77 
(18), 69 (72), 66 (100) and 41 (33). HRMS: C10H15

79Br requires m/z = 214.0357. Found m/z = 
214.0347. 
8-Bromo-2,7,7-trimethylbicyclo[3.3.0]oct-2-ene (5c) and 7-bromo-2,8,8-trimethylbicyclo-
[3.3.0]oct-2-ene (6c). Preparation according to Method B: 0.261 g of a crude mixture containing 
mainly the bromide 7c was added acetic acid (0.30 mL, 5.21 mmol) and stirred at 50 °C for 2.5 
h. Since GLC analysis indicated that 37% of 7c still remained, more acetic acid (0.30 mL, 5.21 
mmol) was added. The mixture was stirred for another 3.5 h at 50 °C and for 2 h at 60 °C and 
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worked up as in Method A. An impure mixture (0.183 g) containing moderate amounts of 5c and 
6c was obtained. An analytical sample of 5c was obtained by preparative GLC. Attempts to 
isolate other components in the mixture failed. 
8-Bromo-2,7,7-trimethylbicyclo[3.3.0]oct-2-ene (5c). IR (ATR) ( max, cm-1): 3036 (w), 2957 
(s), 2931 (s), 2894 (m), 2850 (s), 1455 (m), 1443 (m), 1384 (m), 1369 (m), 798 (m), 794 (m) and 
752 (m). 1H NMR (200 MHz, CDCl3): H 1.00 (3H, s), 1.02 (3H, s), 0.90-1.20 (1H, m), 1.81 (3H, 
br s), 1.94 (1H, dd, J 12.4 and 8.4 Hz), 1.65-2.10 (1H, m), 2.38-2.60 (1H, m), 2.70-2.94 (1H, m), 
3.11-3.30 (1H, m), 3.53 (1H, d, J 7.9 Hz) and 5.11-5.21 (1H, m). 13C NMR (50 MHz, CDCl3): C 
15.7 (CH3), 23.8 (CH3), 26.4 (CH3), 38.5 (CH2), 39.1 (CH), 44.6 (C), 46.6 (CH2), 62.6 (CH), 
67.5 (CH), 123.7 (CH) and 140.3 (C). MS, m/z (%) = 228 (M+, 16)/230 (M+, 18), 149 (7), 148 
(15), 133 (23), 93 (100), 91 (41), 79 (43), 77 (37), 41 (47) and 39 (24). HRMS: C11H17

79Br 
requires m/z = 228.0514. Found m/z = 228.0514. 
7-Bromo-8,8-dimethylbicyclo[4.3.0]nonane (5d), 8-bromo-7,7-dimethylbicyclo[4.3.0]nonane 
(6d) and 7-(1-bromo-1-methylethyl)bicyclo[4.2.0]octane (7d). Preparation according to 
Method A. Isopropylidenecyclobutane 4d (0.210 g, 1.40 mmol) and 33% HBr in acetic acid 
(1.83 mL, 10.4 mmol) was stirred at room temperature for 2 h. Work-up as in Method A yielded 
an impure mixture (0.316 g) containing (5d+6d) to 7d in a ratio of 70 : 30. (1H NMR). The ratio 
of 5d to 6d was 58:42. (1H NMR). Analytical samples of 5d and 6d were obtained by preparative 
GLC. The bromide 7d was identified by GLC analysis and comparison with a 1H NMR spectrum 
of a sample of 7d prepared by using ether as the solvent (vide infra). 
7-Bromo-8,8-dimethylbicyclo[4.3.0]nonane (5d). IR (ATR) ( max, cm-1): 2951 (s), 2925 (s), 
2856 (s), 1459 (m), 1448 (m), 1387 (w), 1366 (m), 802 (m), 795 (m) and 734 (m). 1H NMR (200 
MHz, CDCl3): H 1.03 (3H, s), 1.09 (3H, s), 0.85-2.10 (11H, m), 2.11-2.35 (1H, m) and 3.97 
(1H, d, J 11.7 Hz). 13C NMR (50 MHz, CDCl3): C 20.7 (CH2), 24.7 (CH2), 24.8 (CH2), 28.2 
(CH3), 29.3 (CH3), 30.5 (CH2), 35.3 (CH), 40.6 (C), 45.2 (CH), 45.4 (CH2) and 67.1 (CH). MS, 
m/z (%) = 230 (M+, 12)/232 (M+, 13), 151 (100), 135 (23), 109 (13), 95 (73), 81 (30), 69 (49), 67 
(25) and 41 (32). HRMS: C11H19

79Br requires m/z = 230.0670. Found m/z = 230.0671. 
8-Bromo-7,7-dimethylbicyclo[4.3.0]nonane (6d). IR (ATR) ( max, cm-1): 2975 (s), 2930 (s), 
2852 (s), 1463 (m), 1455 (m), 1387 (m), 1366 (m), 809 (m) and 655 (m). 1H NMR (200 MHz, 
CDCl3): H 0.94 (3H, s), 1.07 (3H, s), 0.70-1.35 (3H, m), 1.35-1.75 (6H, m), 2.00-2.35 (2H, m), 
2.40-2.70 (1H, m) and 4.23 (1H, dd, J 9.4 and 7.6 Hz). 13C NMR (50 MHz, CDCl3): C 21.4 
(CH2), 22.5 (CH3), 25.0 (CH2), 25.5 (CH2), 27.2 (CH3), 27.9 (CH2), 34.6 (CH), 39.3 (CH2), 46.7 
(C), 47.1 (CH) and 62.5 (CH). MS, m/z (%) = 230 (M+, 1)/232 (M+, 1), 151 (34), 135 (11), 124 
(20), 109 (17), 95 (50), 81 (23), 69 (100), 67 (48), 55 (29) and 41 (73). HRMS: C11H19

79Br 
requires m/z = 230.0670. Found m/z = 230.0667. 
1-Bromo-2,2-dimethyl-1,2,3,3a,8,8a-hexahydrocyclopenta[a]indene (5e) and 2-bromo-1,1-
dimethyl-1,2,3,3a,8,8a-hexahydrocyclopenta[a]indene (6e) and 1-(1-bromo-1-methylethyl)-
2,2a,7,7a-tetrahydro-1H-cyclobuta[a]indene (7e). Preparation according to Method A. 
Isopropylidenecyclobutane 4e (0.217 g, 1.18 mmol) in 33% HBr in acetic acid (1.53 mL, 8.72 
mmol) was stirred at room temperature for 1 h and worked up as in Method A yielding a mixture 
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(crude yield: 0.292 g, 94%) consisting of 5e + 6e (90%) and 7e (10%) (1H NMR). The ratio of 5e 
to 6e was 74:26 (1H NMR). Analytical samples of 5e and 6e were obtained by preparative GLC.  
1-Bromo-2,2-dimethyl-1,2,3,3a,8,8a-hexahydrocyclopenta[a]indene (5e). IR (ATR) ( max, 
cm-1): 3072 (w), 3022 (m), 2958 (s, br), 2928 (s, shoulder), 2868 (m), 2851 (m), 1482 (s), 1459 
(s), 1447 (m), 1386 (m), 1372 (m), 807 (s) and 751 (s). 1H NMR (200 MHz, CDCl3): H 1.03 
(3H, s), 1.13 (3H, s), 1.48 (1H, dd, J 12.9 and 7.2 Hz), 2.36 (1H, dd, J 12.8 and 9.9 Hz), 2.81-
3.05 (1H, m), 3.05-3.35 (2H, m), 3.57 (1H, d, J 10.1 Hz), 3.73 (1H, q, J 7.3 Hz) and 7.07-7.27 
(4H, m). 13C NMR (50 MHz, CDCl3): C 24.0 (CH3), 26.9 (CH3), 36.2 (CH2), 44.7 (C), 45.1 
(CH2), 46.4 (CH), 50.7 (CH), 68.9 (CH), 124.1 (CH), 124.8 (CH), 126.3 (CH), 126.5 (CH), 
140.8 (C) and 146.8 (C). MS, m/z (%) = 264 (M+, 31)/266 (M+, 30), 185 (32), 169 (11), 155 (21), 
141 (30)/143 (30), 129 (100), 128 (93), 116 (36), 115 (76), 91 (19), 69 (31) and 41 (43). HRMS: 
C14H17

79Br requires m/z = 264.0514. Found m/z = 264.0519. 
2-Bromo-1,1-dimethyl-1,2,3,3a,8,8a-hexahydrocyclopenta[a]indene (6e). IR (ATR) ( max, 
cm-1): 3070 (w), 3021 (w), 2964 (s), 2934 (s), 2870 (m), 2852 (w), 1482 (m), 1459 (m), 1385 
(m), 1368 (m), 835 (w) and 750 (s). 1H NMR (200 MHz, CDCl3): H 0.99 (3H, s), 1.13 (3H, s), 
2.18-2.36 (1H, m), 2.48-2.70 (1H, m), 2.72-2.90 (2H, m), 2.90-3.10 (1H, m), 3.70-3.86 (1H, m), 
3.97 (1H, dd, J 9.4 and 7.0 Hz) and 7.10-7.19 (4H, m). 13C NMR (50 MHz, CDCl3): C 23.0 
(CH3), 26.5 (CH3), 34.6 (CH2), 43.2 (CH2), 45.7 (C), 47.3 (CH), 50.7 (CH), 61.9 (CH), 123.69 
(CH), 123.73 (CH), 126.1 (CH), 126.2 (CH), 142.4 (C) and 145.9 (C). MS, m/z (%) = 264 (M+, 
11)/266 (M+, 13), 185 (14), 141 (16)/143 (18), 129 (29), 128 (31), 116 (82), 115 (80), 69 (100) 
and 41 (37). HRMS: C14H17

79Br requires m/z = 264.0514. Found m/z = 264.0525. 
6-(1-Bromo-1-methylethyl)bicyclo[3.2.0]heptane (7a). Typical procedure: To a solution of 
isopropylidenecyclobutane 4a (0.051 g, 0.374 mmol) in diethyl ether (3 mL) was added 33% 
HBr in acetic acid (0.20 mL, 1.14 mmol), and the mixture was stirred at room temperature for 4 
h. The mixture was worked up as in Method A above yielding crude bromide 7a (0.040 g, 49%). 
1H NMR (200 MHz, CDCl3): H 1.36-1.60 (5H, m), 1.65 (3H, s), 1.67 (3H, s), 1.63-1.94 (3H, m), 
1.95-2.13 (1H, m) and 2.42-2.68 (2H, m). 13C NMR (50 MHz, CDCl3): C 25.8 (CH2), 28.4 
(CH2), 31.3 (CH3), 31.4 (CH3), 33.3 (CH2), 33.4 (CH), 33.6 (CH2), 42.5 (CH), 51.7 (CH) and 
73.2 (C).  
6-(1-bromo-1-methylethyl)bicyclo[3.2.0]hept-2-ene (7b). Typical procedure: To a solution of 
4b (0.185 g, 1.38 mmol) in diethyl ether (8 mL) was added 33% HBr in acetic acid (0.27 mL, 
1.54 mmol), and the mixture was heated at reflux overnight. Since 19% of 4b was left according 
to GLC, more 33% HBr in acetic acid (0.03 mL, 0.171 mmol) was added, and the mixture was 
refluxed for 7 h. Then the mixture was worked up as in Method A, yielding crude 7b (0.224 g, 
76%). 1H NMR (300 MHz, CDCl3): H 1.62 (3H, s), 1.66 (3H, s), 1.70-1.88 (1H, m), 1.97-2.28 
(3H, m), 2.45-2.62 (1H, m), 2.82 (1H, q, J 7.1 Hz), 2.95-3.10 (1H, m) and 5.65-5.83 (2H, m). 13C 
NMR (75 MHz, CDCl3): C 30.2 (CH2), 31.2 (CH3), 31.4 (CH3), 40.01 (CH), 40.05 (CH2), 40.4 
(CH), 54.0 (CH), 72.2 (C), 130.5 (CH) and 134.2 (CH). MS, m/z (%) = 214 (M+, 41)/ 216 (M+, 
37), 175 (16), 135 (69), 134 (28), 119 (24), 107 (24), 105 (24), 93 (33), 79 (38), 77 (26), 69 (42) 
and 66 (100). 
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7-(1-Bromo-1-methylethyl)-2-methylbicyclo[3.2.0]hept-2-ene (7c). To a solution of 
isopropylidenecyclobutane 4c (0.210 g, 1.42 mmol) in diethyl ether (7 mL) was added 33% HBr 
in acetic acid (0.29 mL, 1.65 mmol), and the mixture was heated at reflux for 12h. GLC 
indicated that 37% of 4c still remained, and more 33% HBr in acetic acid (0.06 mL, 0.342 mmol) 
was added. The mixture was stirred for another 5.5 h at reflux. There was still 17% of 4c left, 
and more 33% HBr in acetic acid (0.06 mL, 0.342 mmol) was added. The mixture was stirred for 
another 4 h at reflux (still 6% of 4c left) and worked up as in Method A yielding a crude mixture 
(0.278 g) containing mainly 7c (NMR). The crude product was used without further purification. 
7-(1-Bromo-1-methylethyl)bicyclo[4.2.0]octane (7d). To a solution of 
isopropylidenecyclobutane 4d (0.030 g, 0.200 mmol) in diethyl ether (2 mL) was added 33% 
HBr in acetic acid (0.07 mL, 0.399 mmol), and the mixture was stirred for 1h at room 
temperature. As there was still 58% of 4d left, more 33% HBr in acetic acid (0.04 mL, 0.228 
mmol) was added, and the mixture was stirred for another 5 h. Still 9% of 4d remained, and 
more 33% HBr in acetic acid (0.04 mL, 0.228 mmol) was added. The mixture was stirred for 1h 
(8% of 4d left) when more 33% HBr in acetic acid (0.01 mL, 0.057 mmol) was added, and 
finally the mixture was stirred for another 1h. In total 4.6 equivalents of HBr were added (0.160 
mL, 0.912 mmol), and the total reaction time was 8 h. Work-up as in Method A above yielded 
the bromide 7d (crude yield: 0.028 g, 61%). 1H NMR (200 MHz, CDCl3): H 0.74-2.12 (11H, 
m), 1.67 (3H, s), 1.68 (3H, s), 2.22-2.40 (1H, m) and 2.40-2.58 (1H, m). 13C NMR (50 MHz, 
CDCl3): C 22.1(CH2), 23.6 (CH2), 26.8 (CH2), 27.4 (CH), 29.8 (CH2), 30.0 (CH2), 31.8 (CH3), 
32.2 (CH3), 36.2 (CH), 49.3 (CH) and 73.0 (C). 
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