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A B S T R A C T   

Missing person identification typically involves genetic matching of a person of interest against relatives of the 
missing person. In cases with few available relatives, exhumations or other substantial efforts may be necessary 
in order to secure adequate statistical power. We propose a simulation approach for solving prioritisation 
problems arising in such cases. Conditioning on the already typed individuals we estimate the power of each 
alternative, both to detect the true person, and to exclude false candidates. Graphical summaries of the simu-
lations are given in complementary power plots, facilitating interpretation and decision making. Through a series 
of examples originating from the well-known Missing grandchildren of Argentina we demonstrate that our method 
may untangle complex prioritisation problems and other power-related questions. In particular we offer novel 
insights in recent cases where only children of the potential match are available for testing. We also show that X- 
chromosomal markers may give high statistical power in missing person identification, but that this requires 
careful selection of relatives for genotyping. All simulations, power calculations and plots are done with the R 
package forrel.   

1. Introduction 

Missing person identification cases are an important subclass of 
kinship testing problems in forensic genetics. A typical scenario involves 
a single missing person (MP) for which no genetic data is available. 
Relatives of MP are typed with a battery of genetic markers, ready to be 
matched against any person of interest (POI). The evidence is usually 
measured by the likelihood ratio (LR) comparing the hypothesis that POI 
is MP to the hypothesis that POI is unrelated to the family [1]. 

In the context of missing person identification, the statistical power 
concerns the information content of the collected reference data. 
Loosely speaking, the power can be thought of as probability of reaching 
a reliable conclusion whenever a POI is genotyped and matched. If this is 
deemed too low, further data must be gathered, for instance by 
recruiting additional family members. A central point is that conclusions 
in both directions are of interest: The inclusion power (IP) is the proba-
bility that the likelihood ratio will exceed a prescribed threshold if POI 

really is MP [2,3], while the exclusion power (EP) is the probability that a 
random unrelated individual can be excluded on the grounds of genet-
ical inconsistencies with the family members [2,4]. A unified approach 
for power analysis in missing person cases, combining IP and EP, was 
introduced by Kling et al. [2], and has been adopted by subsequent 
authors [5]. 

Our primary aim is to provide a practical way to solve prioritisation 
problems in underpowered missing person cases. Above all we seek 
robust answers to the question: Which additional relatives should be gen-
otyped? Previous authors have scrutinised special cases of this problem, 
using genotype simulation to estimate the distribution of LR [6,3]. Our 
work differs from these studies in several ways, both in purpose and 
scope. Firstly, where previous works tend to focus only on inclusion, our 
context calls for a combination of IP and EP. Secondly, given the het-
erogeneous nature of missing person cases, our main goal is to provide a 
general method, rather than explicit results in selected cases. Finally, we 
advocate the use of conditional simulations rather than unconditional 
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gene dropping [2]. For instance, if the parents of MP have genotypes 
A/A and A/B for a certain marker, the conditional distribution for MP 
has 50% probability for each of A/A and A/B. In contrast, unconditional 
simulation proceeds by disregarding the known data and drawing 
random founder genotypes in each simulation. 

Unconditional simulations are useful to investigate generic cases 
without available data. For instance, the prospects of distinguishing full 
sibs from half sibs, with a specified marker set, can be resolved using 
unconditional simulations. In the present work, however, we address 
cases where some reference individuals are already genotyped. By 
conditioning on the already known data our conclusions become case- 
specific rather than averaged over pedigrees with similar structure. 

It is an inescapable fact that no single measure adequately captures 
all power aspects of missing person cases. As a practical response to this 
we introduce power plots providing graphical summaries of the simula-
tion results. We find these plots to be effective tools for comparing the 
strength of alternative options, for example when prioritising family 
members for additional genotyping. Importantly, the power plots are 
easily interpretable also for decision makers with limited understanding 
of the technical concepts involved in statistical power analysis. 

The famous set of missing person cases commonly referred to as the 
Missing grandchildren of Argentina serves as the main motivation behind 
this work. Several hundred children abducted during the military 
dictatorship 1976–1983 are still unaccounted for, and continuously 
searched for by the Banco National de Datos Geneticos (BNDG) in 
Buenos Aires. Kling et al. [2] concluded that approximately a third of the 
unsolved cases in BNDG were underpowered at the time of writing. 
Massive efforts are undertaken in order to improve the information 
content in these families, including large-scale exhumations of diseased 
relatives, and locating long-time emigrants. The examples we present 
are based on current unsolved cases provided by BNDG. For historical 
background about the missing grandchildren of Argentina and similar 
cases from other Latin American countries, we refer to [7–9]. Large-scale 
cases of the same kind from other parts of the world include those re-
ported in [5,10]. Also related to our work is the recent paper by Caridi 
et al. [11], using Bayesian methods to prioritise identifications among 
victims of the Argentinian military dictatorship. A recent phenomenon 
in the search for the Argentinian grandchildren is the emergence of 
missing great grandchildren. With an increasing rate, young people 
request testing at BNDG, believing that one of their parents is among the 
missing grandchildren. Apart from the ethical and legal aspects of this 
development, it also warrants a re-analysis of the entire reference 
database in terms of power. Intuitively, it is more difficult to match a 
great grandchild than a grandchild. But how large is this power reduc-
tion in terms of IP and EP? And how much power is gained if the alleged 
great grandchild is accompanied by siblings or other family members? 
Our methods can be used to answer both of these questions. An example 
is given in Section 3.3, where we analyse a case where four siblings 
wonder if their late mother was one of the missing grandchildren. 

Other than recruiting additional family members, a common way to 
increase the power of kinship testing is to expand the set of genetic 
markers. Traditionally, forensic marker batteries are evaluated and 
compared using template cases like paternity cases with and without the 
mother genotyped [12]. At BNDG many families were originally typed 
with 15 autosomal markers, which is now recognised to be insufficient 
in many cases. The current standard uses 23 markers, but this may be 
increased to 33 markers in special cases. In Section 3.4 we illustrate the 
effect on IP and EP of such marker set expansions. 

Another interesting recent development is the increasing use of X- 
chromosomal markers in kinship testing [13]. This motivates our 
example in Section 3.5, in which we perform a prioritisation analysis 
using 12 markers on X. 

Whole-genome sequencing is becoming increasingly relevant in 
forensic genetics [14]. This development is likely to influence also the 
applications discussed in this paper, but in a statistical framework based 
on genomic identity-by-descent rather than likelihood ratios as we use 

here. However, simulation studies for power analysis remain relevant 
also in forensic genealogy, and tools like the R package ibdsim2 are 
available for this purpose (https://CRAN.R-project.org/package 
=ibdsim2). 

The field of forensic kinship testing includes several applications 
closely related to those addressed in this paper. The flexibility of our 
simulation approach makes it easily adaptable to power analysis in more 
general cases of family reunification [15], immigration cases [16] and 
disaster victim identification [17]. 

All simulations and power analyses presented in this paper were 
performed in R package forrel [18]. This package offers a variety of 
forensic pedigree analyses, and is available from the official CRAN re-
pository (https://CRAN.R-project.org/package=forrel). The package 
documentation includes tutorials for power analysis and further 
examples. 

2. Methods 

2.1. Definitions and notation 

Fig. 1 illustrates the general setup of a missing person case as studied 
in this paper. We proceed to give precise definitions of the key concepts. 

Throughout, a missing person case refers to a scenario where a given 
pedigree, called the reference pedigree, has a single missing person (MP). 
A subset of pedigree members are genotyped with a battery of forensic 
markers, but no genetic data is available from MP. The DNA profiles of 
the typed relatives constitute the reference data, denoted R . 

In general we assume all markers to be unlinked and in linkage 
equilibrium, and with known allele frequencies. A discussion of these 
assumptions is given in Section 4.1; in particular we argue that useful 
results can be obtained also without independence. Each marker may be 
assigned a mutation model, specified as a matrix M = (mij) where mij is 
the per-segregation probability of a mutation from allele i to allele j. We 
assume throughout that the reference data R is consistent, meaning that 
it has non-zero probability in the reference pedigree. Note that this 
definition allows mutations within R , if appropriately modelled. 
Complicating factors like dropout, dropin and genotyping errors are 
ignored. 

When a person of interest (POI) is to be matched against the refer-
ence, the procedure is to type POI with the same set of markers, and 
compute a likelihood ratio (LR) comparing the following hypotheses 
(see Fig. 1):  

• H1: POI is the missing person,  
• H2: POI is unrelated to the family.The formula for LR is 

LR =
P(data∣H1,Θ)

P(data∣H2,Θ)
, (1)  

where data refers to R together with the profile obtained from POI, and 
Θ contains marker properties and other fixed parameters. Note that 
consistency of R implies that the denominator in (1) is non-zero; thus LR 
is always well-defined. A successful reunion, sometimes called an in-
clusion, is declared if the LR exceeds some fixed (but ultimately ad hoc) 
threshold t. In our real-life examples we will use t = 10 000. Oppositely, 
we declare an exclusion of POI if LR = 0, i.e., if the genotypes of POI are 
inconsistent with the claimed relationship. 

2.2. Inclusion power 

Consider a missing person case with reference data R . We define the 
inclusion power IP(ℛ), or simply IP if R is understood from the context, 
to be the probability of declaring a positive match if POI is in fact the 
missing person: 

IP = IP(ℛ) = P(LR ≥ t∣H1,ℛ). (2) 
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Here t denotes the LR threshold, as discussed above. When needed, we 
include t in the notation as IPt. 

The probability IPt is intuitive and easy to interpret, especially when t 
is fixed. However, in more general settings it may be more appropriate to 
consider other aspects of the LR distribution. In particular we will use 
the expected value of LR, 

μLR = μLR(ℛ) = E(LR∣H1,ℛ), (3)  

or its logarithm, 

λLR = λLR(ℛ) = E(μLR) = E(log10LR∣H1,ℛ). (4)  

Note that our assumption that R is consistent guarantees that λLR is well- 
defined. We refer to [19,20] for a general discussion of the evaluation of 
evidence and specific comments on the merits of using a log scale for LR. 

In most real-life cases it is infeasible to obtain exact expressions for 
the distribution of LR, but efficient simulation strategies exist [2,21]. 
The basic idea is to simulate a large number of DNA profiles for POI 
under H1, conditional on R , and to calculate LR in each case by formula 
(1). As discussed in [2] conditional simulations are preferred over un-
conditional simulations, in which the reference data is simply discarded. 
Conditional simulations are computationally more expensive, but have 
the major advantage of enabling unbiased estimates for the specific case 
in hand, whereas unconditional simulations only allow “averaged” re-
sults for similar pedigrees. 

2.3. Exclusion power 

Again, we consider a missing person case with reference data R . The 
exclusion power EP = EP(ℛ) is traditionally defined as the probability 
that if a random unrelated POI is typed, the result is inconsistent with 
the reference: 

EP = P(atleast1inconsistentmarker∣H2,ℛ) (5) 

Egeland et al. [4] gave a practical formula for EP in general kinship 
testing, which immediately applies to missing person cases. Briefly, for a 
single marker s, the exclusion power is seen to be a certain sum of 
pedigree likelihoods, 

EPs =
∑

g
I(g∣H1,ℛ)P(g∣H2,ℛ), (6)  

where g denotes a genotype of POI, and I(g ∣ H1) is the inconsistency in-
dicator with value 1 if g is inconsistent with R under H1, and 0 other-
wise. Extending to m independent markers gives the total exclusion 
power 

EP = 1 −
∏m

1
(1 − EPs). (7) 

While EP as defined above is simple and mathematically tractable, it 

is sometimes too limited for practical use. For example, with today’s 
numerous and highly polymorphic forensic markers, a single inconsis-
tent marker may not be considered enough to exclude POI (see also 
[22]). To overcome this we define a generalised version of EP as follows: 

EP(k) = P
(
atleast k inconsistentmarkers∣H2

)
(8)  

The computation of EP(k) for k > 1 is more complicated than (7), but can 
still be carried out exactly. See Appendix A.1 for details. 

Another problem with the original definition of EP, and indeed EP(k) 

for any fixed k, is that it is difficult to appreciate the difference between 
cases with exclusion probabilities close to either 0 or 1. For example, if 
two marker sets both have EP ≈ 1, it may be hard to justify preferring 
one over the other. As a better measure of power in such situations we 
propose to use the expected number of inconsistent markers, μE. As shown 
in the Appendix this is readily computed from the marker-wise exclusion 
probabilities, 

μE =
∑m

s=1
EPs. (9)  

It should be noted that this formula holds irrespective of linkage be-
tween the markers. 

2.4. Prioritisation problems 

A missing person case is underpowered if the reference data has low IP 
or EP. A common strategy to increase the power in such cases is to re-
cruit additional family members for genotyping. Since this may involve 
substantial efforts, e.g., exhumation of diseased relatives, the question of 
who should be prioritised is essential. 

The multifaceted nature of power in missing person cases often 
makes it difficult to formulate precisely what the prioritisation strategy 
seeks to optimise. In particular, the relative importance of inclusion and 
exclusion depends on the application, and may even vary from case to 
case. Furthermore, in large-scale cases as in Argentina, a balance needs 
to be striked between the expected number of false positives and false 
negatives (Marsico et al. to be submitted). For these reasons we do not 
offer a mathematical criterion for optimisation. Instead we propose a 
two-step simulation procedure which enables detailed comparison of the 
inclusion and exclusion power in the alternative scenarios. 

Procedure 1: Comparing genotyping alternatives in terms of power 
Input:  

• A missing person case, with baseline reference ℛ0 containing data 
from already typed individuals.  

• A list of subsets S1, …, Sn of candidates for additional typing.  
• Positive integers p and q, the number of simulations in each step. 

Fig. 1. The competing hypotheses in a typical missing person case. Hatched symbols show typed reference individuals. The sex of the missing person is often 
unknown. Abbreviations: MP = missing person; POI = person of interest. 
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Let IPi denote the expected IP after typing the Si individuals, for each 
i = 1, …, n, and similarly with EPi, λi

LR and μi
E. 

Output:  

• Estimates of IPi, EPi, λi
LR and μi

E for each i.  
• Sample values of IP, EP, λLR and μE corresponding to p realisations of 

genotypes for each Si.  
• Power plots suitable for comparing the alternatives and drawing 

conclusions. 

Procedure:  

(1) For each subset Si, do:  
(a) Simulate p profiles of the members of Si conditional on ℛ0.  
(b) For each j = 1, …, p, let ℛij denote the result of the jth 

simulation, and do:  
(i) Estimate IP(ℛij) and λLR(ℛij) as explained in Section 2.2, 

using q simulations of MP conditional on ℛ0 and Si.  
(ii) Compute EP(ℛij) and μE(ℛij) as explained in Section 2.3.  

(c) Estimate IPi, EPi, λi
LR and μi

E by averaging over j in the output 
from part (b).  

(2) Plot IPi against EPi, i = 1, …, n, and similarly λi
LR against μi

E. 

A major advantage of the two-step simulation approach described 
above, is that it not only estimates the expected value IPi for each i, but 
in fact the complete distribution of IP in each alternative (and similarly 
for exclusion). In particular, it should be noted that the estimates of 
IP(ℛij), j = 1,…, p obtained in part (1-b-i) are not expected to converge 
towards IPi when q → ∞. Rather, their differences reflect the natural 
genetic variation in the Si individuals. We often find it useful to visualise 
this variation by including the estimates of EP(ℛij) and IP(ℛij) in the 
first power plot, and similarly in the other. Examples of this can be seen 
in Figs. 2 and 3. 

In some cases it may be informative to supplement the above detailed 
power plots with the empirical marginal LR distributions for each Si. 
This is readily done by any good statistics software, using the totality of 
p × q values for LR generated in part (1-b-i) of the procedure. See 
Figs. 4D and 5B for examples. 

The notion of exclusion power EP in Procedure 1 may refer to EP(k) 

for any fixed k. In the example studies given in the next section we have 
used the traditional definition with k = 1 for simplicity. 

3. Results 

In this section we present a series of worked examples where we 
apply Procedure 1, or slight modifications of it, to solve different types of 
prioritisation problems in missing person cases. The examples are all 
based on actual unsolved cases from the BNDG database. For anonymity 
purposes we did not use the true baseline reference data; instead we 

simulated a set of DNA profiles for the typed individuals, closely 
matching the format and properties of the true data. In some cases we 
also modified the pedigree slightly to prevent identification, or to make 
it more interesting, for instance by introducing additional relatives of 
MP as candidates for further genotyping. 

Unless otherwise specified, all simulations are based on the set of 23 
autosomal markers currently employed as standard at BNDG, and a 
database of Argentinian allele frequencies. This marker set coincides 
with Set2 in Section 3.4. The database is available as part of the R 
package forrel. To avoid making the examples overly complex we 
have not included mutation models. Note however, that the imple-
mentation in forrel allows mutation modelling both in simulations 
and power computations. 

It is important to bear in mind the effect of conditional simulations in 
these examples. For example, in Fig. 3 it would be a mistake to assume 
that the power plots in panels B and C are representative for all reference 
pedigrees looking like that in panel A. In fact, the plots could change 
considerably if the genotypes of the reference individuals (hatched) 
were different. A clear demonstration of this can be seen in our first 
example, which we give in the next section. 

3.1. The importance of conditional simulation 

We start with an example demonstrating the importance of condi-
tional simulations in these studies. In the reference pedigree in Fig. 2A, 
the baseline reference include data from the grandmother (GM) and 
uncle (U). The power to detect the true MP obviously depends on the 
actual genotypes of GM and U. If they happen to carry unusually many 
rare alleles, the inclusion power will be greater than in the opposite case. 
The white-filled symbols in Fig. 2B and C illustrate this, by showing the 
power for two different reference data sets for GM and U, denoted ℛ0 

and ℛ′

0. These were picked as the two most diverging among 20 random 
simulations. As seen in Fig. 2B we have IP(ℛ0) ≈ 0.50 (white square) 
while IP(ℛ′

0) ≈ 0.20 (white circle). 
In order to show how these baseline differences carry over to pri-

oritisation problems, we simulated p = 10 profiles for U2 conditional on 
ℛ0, and the same for ℛ′

0. We then estimated the power parameters for 
each of these extended references as in point (1-b) of Procedure 1, with 
simulation parameter q = 1000. As can be seen in Fig. 2B and C, the 
resulting EP is adequate in either scenario, while IP is consistently above 
0.50 in the first case (squares) but below 0.50 in the second case (cir-
cles), with averages around 0.70 and 0.30, respectively. We conclude 
that the addition of U2 would improve the power to a decent level only 
in one of the two scenarios, namely ℛ0. 

3.2. A larger prioritisation problem 

Fig. 3A shows the same reference family as in the previous example, 
but extended to include further potential candidates for genotyping. As 
before, the baseline reference data only includes the grandmother and 

Fig. 2. Power analysis starting from two different reference data sets. (A) The reference pedigree, in which GM and U are typed, and U2 is a potential addition. (B, C) 
Power plots. The large open symbols show power estimates for two different baseline references, R 0 and R

′

0 (see main text). Each minor point corresponds to adding 
a profile for U2, simulated conditional on R 0 (squares) or R

′

0 (circles). Large filled symbols are averages of the minor points of the same shape. 
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uncle of MP, but we will now consider five possible additions on the 
paternal side, MP’s grandfather (GF), great grandparents (GGF, GGM), 
great aunt (GA) and the other uncle (U2). 

So who among these should be prioritised? Intuitively it is quite clear 
that the grandfather (GF) is the most informative, but other aspects of 
the situation are less obvious: 

Fig. 3. Simulation results for the prioritisation problem in Section 3.2. (A) The reference pedigree. Hatched individuals are already genotyped; red individuals are 
candidates for further typing. (B, C) Power plots comparing alternative additions. The open white symbols show baseline power. Coloured symbols represent averages 
over 20 simulated references. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article). 

Fig. 4. A power analysis involving missing great grandchildren. (A) The POI family. A female POI is believed to be one of the missing grandchildren. She herself is 
not available for testing, only her children (GG1–4) and husband (FA). (B–D) Three reference families for which power analysis is performed. In each case, the 
inclusion and exclusion power is compared when various subsets of the POI family is available for testing. Details about each case are given in the main text. 
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• Are the great grandparents (GGF, GGM) in combination as infor-
mative as the grandfather (GF) himself?  

• What is the relative importance of the great grandfather (GGF) and 
the great aunt (GA)?  

• How much is gained by including both GGF and GA, instead of just 
one of them?  

• How informative is the uncle U2 compared to the above alternatives? 

We also note that with the given baseline reference (hatched in-
dividuals), exclusion is impossible since both alleles of MP’s father can 
never be known with certainty. Increasing the exclusion power should 
therefore be a high priority. 

In order to answer the above questions, we followed Procedure 1 
with simulation parameters p = 20 and q = 1000. The results are sum-
marised in the power plots shown in Fig. 3B and C. For example, we see 
that the grandfather (GF) alone is substantially more informative than 
including both of his parents (GGF, GGM). In fact, the first power plot 
indicates that the addition of GF would single-handedly transform this 
reference family from being seriously underpowered (EP = 0, IP ≈ 0.4), 
to having good power (EP = 1, IP ≈ 0.87). Furthermore, we see that GGF 
and GA give very similar increase in inclusion power, but only GGF 
enables exclusion. Hence if we had to choose between these two, the 
great grandfather (GGF) would be the correct choice. Interestingly, we 
note that the combination of GGF and GA does not give much more 
power than GGF alone. Finally, the extra uncle (U2) comes out only 
slightly better than the great grandfather (GGF). 

3.3. Great grandchildren 

The inspiration for this example is a recent case at BNDG, in which 
four siblings suspect that their late mother was one of the missing 
grandchildren (Fig. 4A). No data is available from the mother, denoted 
POI, but all the siblings are willing to donate DNA, and possibly also 
their father. Fig. 4B–D investigates the power to include/exclude POI 
through her relatives, in three different reference families. In each case 
we compared different subsets of POI’s family members: Either just a 
subset of the children (blue triangles), or a set of children accompanied 
by their father (red squares). We also included the “regular” power 
(shown by green circles), i.e., when matching directly against POI 

herself. 
The simulation procedure in this example deviated slightly from 

Procedure 1, since the genotyping alternatives here involve relatives of 
POI, rather than relatives of MP. In each of the three reference pedigrees 
(Fig. 4B–D), a baseline dataset ℛ0 was simulated, containing DNA pro-
files for the typed individuals (hatched pedigree symbols). Inclusion 
power estimation was set up by simulating q = 1000 sets of profiles for 
the spouse and children of POI, under the assumption that POI = MP and 
conditional on ℛ0. Using this data, 1000 values of log10 LR were ob-
tained for each subset of the POI relatives. Similarly, the exclusion 
power was estimated by simulating 1000 sets of profiles for the POI 
relatives under H2, and counting the number of mismatches. Note that 
exact exclusion powers are computationally out of reach in this example, 
for reasons outlined in Section 4.3. 

Results of the power analyses are shown in the power plots to the 
right of each pedigree in Fig. 4B–D. We proceed to comment on each 
case individually, before offering some general remarks. 

Fig. 4B. The reference data here only includes the two paternal 
grandparents of MP. As seen by the green point in the middle panel, this 
gives good regular exclusion power (EP ≈ 1) and decent inclusion power 
(IP just over 0.50). However, if we only have data from the children of 
POI, the power nearly vanishes (blue triangles). The key to securing 
reasonable power is to recruit their father, i.e., POI’s spouse (FA). With 
data from him and three or four children, much of the regular power is 
retained. This case also illustrates how the two power plots complement 
each other: The first plot nicely separates the blue triangles, while the 
second plot emphasises the difference between the two topmost points. 

Fig. 4C. In this reference family two uncles on each side of MP are 
genotyped. The regular power is good, with EP ≈ 0.80 and IP ≈ 0.90. 
However, if only GG1 is available, both EP and IP plummet to near 0. As 
expected, EP and IP increase somewhat when more siblings of GG1 are 
added, but even with four children the case is severely underpowered 
(EP ≈ 0.20, IP ≈ 0.50). As in the previous case, the inclusion of the 
children’s father (FA) boosts the power significantly. In particular, we 
see that FA together with three or more children almost recover the 
regular power. 

Fig. 4D. The final reference family differs from the two others, in that 
exclusion of POI is not possible. Hence the points in the power plot 
cluster on the EP = 0 axis. In such cases it is more informative to 

Fig. 5. Analysing the effect of expanding the 
marker set in a missing person case. The marker 
sets are described in the main text. (A) The 
reference pedigree. The hatched individuals are 
typed with the 15 markers in Set1. (B) LR dis-
tributions under H1. The bottom distribution 
corresponds to the baseline reference, while the 
blue and red distributions show the effect of 
expanding to Set2 or Set3, respectively. (C, D) 
Power plots. The open circles show baseline 
power. Each minor square/triangle represents a 
simulated reference data set augmenting the 
baseline. Filled symbols show average values. 
The 95% data ellipses in panel D are produced 
with default parameters of the function 
stat_ellipse() in the R package ggplot2 
[23].   
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compare the distributions of log10 LR, as shown in the rightmost plot. 
In addition to the case-specific remarks above, some general insights 

may be drawn from these analyses:  

• Matching against children of POI has generally much lower power 
than matching against POI directly. (Cases where parents of MP are 
typed are exceptions to this.) 

• Recruiting POI’s partner boosts the information content of the chil-
dren, and is crucial for increasing the power.  

• If enough close relatives of POI are included, the power may be 
almost as good as if POI were available. 

We emphasise that the analysis in this example, and the above 
conclusions, apply exclusively to autosomal markers. In actual casework 
involving great grandchildren, lineage markers (Y-chromosomal or 
mitochondrial, depending on POI’s sex) could be highly informative and 
should be considered in addition to the autosomal analysis. 

3.4. Expanding the marker set 

A common strategy for increasing the power in missing person cases 
is to re-type the reference individuals with more genetic markers. In this 
process it is valuable to estimate the expected power gain. One might 
also want to compare different available marker kits. 

To illustrate such an analysis, we used the reference pedigree in 
Fig. 5A in which three individuals (hatched) are typed at baseline with 
15 markers. As seen in Fig. 5C this gives poor power (IP ≈ 0.05, 
EP ≈ 0.50), and our task is to estimate the expected improvement by re- 
typing the three individuals with more markers. 

The original 15 markers, and two possible extension sets, are as 
follows:  

• Set1 (15 markers): CSF1PO, D2S1338, D3S1358, D5S818, D7S820, 
D8S1179, D13S317, D16S539, D18S51, D19S433, D21S11, FGA, 
TH01, TPOX, VWA.  

• Set2 (23 markers): Set1 + D1S1656, D2S441, D10S1248, D12S391, 
D22S1045, PENTA_D, PENTA_E, SE33.  

• Set3 (33 markers): Set2 + D2S1360, D3S1744, D4S2366, D5S2500, 
D6S474, D6S1043, D7S1517, D8S1132, D10S2325, D21S2055. 

Set1 used to be the standard kit at BNDG, but is now replaced with Set2. 
The larger Set3 is reserved for special cases. 

The simulation strategy for this example broadly followed Procedure 
1, except that the simulated individuals stayed the same in all steps, 
while the marker sets varied. To get started, we simulated a baseline 
reference ℛ0 using the markers in Set1. Then, for each of Set2 and Set3 
we simulated p = 20 references extending ℛ0. Only the additional 
markers were simulated; no conditional simulations were needed in this 
step. For each of the resulting 40 data sets, IP and λLR were estimated 
through q = 1000 conditional simulations of POI under H1, and EP and 
μE were computed exactly. 

The results are displayed in Fig. 5B–D. As evident e.g. from the data 
ellipses in panel D, there is a large spread in power among the extended 
reference data sets. Nevertheless, it is clear that extending to Set3 has a 
high probability of producing a good-powered reference. Settling for 
Set2 will sometimes yield decent power, but usually not: most realisa-
tions (minor blue symbols) have IP < 0.50. As in previous examples, we 
emphasise that these conclusions are specific to the starting pointℛ0 and 
cannot be expected to hold in other cases with the same pedigree. 

3.5. Power analysis of X-chromosomal markers 

For our final example, we perform a power analysis using the 
Investigator Argus X-12 kit (Qiagen, Hilden, Germany) containing 12 X- 
chromosomal STR markers. This kit is commonly used in forensics, and 
an Argentinian frequency database has recently been published [24]. It 

is known that both linkage and linkage disequilibrium exist between 
some of these markers, but we argue that this will not influence the 
broad conclusions of our analysis. We acknowledge that dependencies 
between markers may affect some statistics, including IP and EP, but the 
estimates of μLR and μE remain unbiased. 

As our example we use the pedigree shown in Fig. 6. The great po-
tential in using X-chromosomal markers is clearly illustrated by the 
paternal grandmother (GM). The X-chromosomal relationship between 
her and her granddaughter (MP) is identical to an autosomal mother- 
daughter relationship, thus she single-handedly gives very good 
power. Note also that for this particular relationship, marker linkage 
does not affect LR calculations, since the father of MP is hemizygous. 

For this example, we started with an empty baseline reference, i.e., 
we did not condition on any already typed family members. In all other 
respects we followed Procedure 1, with parameters p = 20 and q = 1000. 

Fig. 6 shows that no exclusion power and poor inclusion power is 
expected if only the grandfather (GF) and one aunt (A1) of MP is typed. 
All the other alternatives considered enable exclusion, and give some 
increase in the expected inclusion power. However, only the paternal 
grandmother (GM) of MP improves power sufficiently: with her we can 
expect decisive power to recognise the true MP, and on average 6 
inconsistent markers in an unrelated POI. 

4. Discussion 

We have proposed an approach to solving prioritisation problems in 
missing person cases, by comparing the alternatives in terms of their 
expected power to detect the true missing person, and to exclude un-
related individuals. Our primary aim was to answer specific questions of 
the kind “Which additional relatives should be genotyped?”, but as 
illustrated by our examples, the method applies more generally to other 
similar problems. In particular, we have given a first detailed power 
analysis of a case involving “missing great grandchildren”, a scenario of 
increasing relevance for the work at BNDG in Argentina. Although more 
work is needed on this subject, some general patterns already emerge 
from our results presented in Fig. 4. As expected by intuition the sta-
tistical power to identify (or exclude) a great grandchild is substantially 
lower than for a grandchild. But if several siblings join in, reasonable 
power may be achieved, especially if accompanied by a parent, i.e., the 
spouse of the missing grandchild. 

We have also exemplified the usefulness of X-chromosomal markers 
in missing person identification. Particularly in cases with sparse 
reference data we recommend to always run both autosomal and X- 
chromosomal prioritisation analysis, also in cases where the missing 
person has unknown sex. For example, suppose that in a given missing 
person case a choice must be made of which grandparent to exhume. If 
there is a decent chance that the missing person is female, it is clear from 
Fig. 6 that the paternal grandmother a priori should be given strong 
priority. Depending on the available data, she will on average increase 
both IP and EP significantly using X-chromosomal markers, in addition 
to her autosomal contribution. 

In the next sections we discuss some technical aspects of our 
methods. 

4.1. Assumptions 

In most applied areas it is typical that the models used in power 
calculations are simpler than those used when data has been collected. 
Sometimes good approximations suffice in the initial phase when power 
assessments are done. Moreover, if one can show that the simpler model 
gives unbiased estimates this may be sufficient for making decisions, 
even if the model is inaccurate in other respects. Our analysis of X- 
chromosomal markers in Section 3.5 gives a good example of this: the 
estimates of λLR are unbiased in spite of linkage between the markers. 

A strong assumption in most forensic genetic analysis, is that allele 
frequencies are sufficiently accurate. Toscanini et al. [25] report 
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evidence for population structure and difference in allele frequencies 
and concludes that “caution should be taken when using a common 
pooled database with general forensic purposes in Argentina”. Obvi-
ously, this recommendation is not unique to Argentina. Generally, one is 
well advised to do calculations with several databases and check if 
conclusions remain unchanged. We prefer this pragmatic approach to 
the so-called θ or FST correction [26,27]. 

Very rare alleles are particularly challenging, especially when a 
previously unknown allele is observed in a case. Most forensic calcula-
tions require a frequency to be set, giving rise to various ad-hoc rules 
[28]. Importantly, a single marker may give a very large LR if a rare 
allele is involved. In the context of power analysis we again recommend 
pragmatic safe-guarding against unreliable conclusions: If the reference 
data contains very rare alleles, calculations should be repeated with 
different reasonable allele frequencies. 

4.2. Multiple POIs 

Throughout this work we have considered a single POI coming for-
ward. However, the approach may be modified to accommodate several 
simultaneous POIs, say POI1, …, POIr, where we face the hypotheses 

H1,i : POIi = MP, i = 1,…, r,

and H2: all POIs are unrelated to the family. Recall that in our setting, 
unlike e.g., in cases of disaster victim identifications, the POIs are not yet 
genotyped. Hence their LR distributions are identical, and updates of 
priors or prior odds to the posterior versions only reflect simulation 
uncertainty. However, the definition of inclusion power (2) may be 
extended to 

IP∗ = P(maxi{LRi∣H1,i} ≥ t∣ℛ).

In this case it would be appropriate to increase the threshold t in order to 
maintain the same confidence as for a single POI. 

4.3. Computational challenges 

Markers with many alleles pose a challenge to the exact computation 
of EP, because of the large number of genotypes we have to sum over in 
Eq. (6). In standard missing person cases the problem is manageable 
since only one person is involved: With L alleles, the number of geno-
types is then n(L) = (L + 1)L/2, which is well within the computational 
limit for any realistic L. For example, the marker SE33 may have as many 
as L = 70 alleles, giving n(L) = 2485. However, with two individuals the 
number of genotype combinations rises to n(L)2 = 6, 175, 225 which is 
already on the brink of infeasibility. 

There are several ways to overcome this computational challenge. In 
certain simple cases, exact formulas may be obtained. In more complex 

cases, we propose simulations, carried out in a manner similar to our 
estimation of IP. This was the approach taken in our example with great 
grandchildren in Section 3.3, which required EP calculations involving 
as many as five individuals. 

4.4. Inconsistencies in the reference data 

Mendelian inconsistencies are inevitable in case work. Fig. 6 in [2] 
shows an example where the mother is 7/9.3 and the son 8/8. In this 
case it is most likely that a mutation occurred, probably the allele 7 was 
transferred as 8. In cases with inconsistencies for several markers, the 
explanation may not be mutation but rather a misspecified relationship. 
For instance, misattributed parentages occur, and are often handled by 
modifying the pedigree without disclosing the information to the family. 

If mutations are deemed to have occurred in the reference data, some 
practical choices need to be made on how they should be handled. Many 
of mutation models used in case work dictates all transitions to be 
possible, with the disadvantage that exclusion becomes trivially 
impossible. The one-step mutation model, or other models that assign 
zero probabilities to some transitions [29], can give positive exclusion 
probability. Our practical suggestion is to apply such a model for those 
markers where the reference data is inconsistent (i.e., a mutation has 
clearly happened) and disable mutations for the remaining markers. 

5. Conclusion 

In this paper we have described a strategy for planning additional 
genotyping in underpowered missing person cases. Furthermore, we 
have illustrated the method through a series of examples of both prac-
tical and theoretical interest, based on true cases of missing grand-
children in Argentina. The simulation algorithm and functions for 
creating power plots are implemented in the R package forrel [18], 
which is freely available from the official CRAN repository, https://C 
RAN.R-project.org/package=forrel. 
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Fig. 6. Power analysis with X-linked markers. (A) Reference pedigree, with no individuals typed from the outset, but six members (red) are candidates for testing 
with 12 X-chromosomal markers. (B, C) Power plots showing mean estimates for each alternative. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article). 
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Appendix A. Computational details 

A.1 Exclusion power 

In this appendix we produce an exact formula for EP(k), the probability of at least k inconsistent markers. We also give formulas for the mean and 
variance of the total number of inconsistent markers. 

Let m be the number of markers, and for each s = 1, …, m, let Is be the inconsistency indicator with value 1 if marker s is inconsistent with hy-
pothesis H1, and 0 otherwise. The exclusion power of marker s is then EPs = E(Is). Furthermore the total number of inconsistencies, denoted NE, 
satisfies 

NE =
∑m

s=1
Is. (10)  

If the markers are independent, NE is a sum of independent Bernoulli variables, implying that it has a Poisson-binomial distribution with point 
probabilities 

P(NE = x) =
∑

A

∏

i∈A
EPi

∏

j∈A

(1 − EPj), (11)  

where in the outer sum A runs over all subsets of M := {1,…,m} of size x, and A denotes the complement of A in M . As a result, we find that the kth 
order exclusion power can be computed as 

EP(k) = 1 −
∑k− 1

x=0
P(NE = x) = 1 −

∑

A

∏

i∈A
EPi

∏

j∈A

(1 − EPj), (12)  

where A now runs over all subsets of M of cardinality strictly less than k. (Note that (7) is recovered by setting k = 1, so that A is the empty set and A =

M ). 
The expected number of inconsistent markers is readily computed from (10). Irrespective of linkage between the markers, we find 

μE = E(NE) =
∑m

s=1
E(Is) =

∑m

s=1
EPs. (13)  

Finally, if the markers are independent (i.e., unlinked), the variance of NE is given by 

Var (NE) =
∑m

s=1
EPs(1 − EPs). (14)  
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[2] D. Kling, T. Egeland, M.H. Piñero, M.D. Vigeland, Evaluating the statistical power 
of DNA-based identification, exemplified by ‘The missing grandchildren of 
Argentina’, Forensic Sci. Int.: Genet. 31 (2017) 57–66, https://doi.org/10.1016/j. 
fsigen.2017.08.006. 

[3] N. Pinto, R. Simões, A. Amorim, E. Conde-Sousa, Optimizing the information 
increase through the addition of relatives and genetic markers in identification and 
kinship cases, Forensic Sci. Int.: Genet. 40 (2019) 210–218, https://doi.org/ 
10.1016/j.fsigen.2019.02.019. 

[4] T. Egeland, N. Pinto, M.D. Vigeland, A general approach to power calculation for 
relationship testing, Forensic Sci. Int.: Genet. 9 (2014) 186–190, https://doi.org/ 
10.1016/j.fsigen.2013.05.001. 

[5] K. Yu, W.K. Fung, Evaluation of parentage testing accuracy of child trafficking 
cases: combining the exclusion probability and likelihood ratio approaches, 
Forensic Sci. Int.: Genet. 34 (2018) 81–87, https://doi.org/10.1016/j. 
fsigen.2018.02.002. 

[6] J. Ge, B. Budowle, R. Chakraborty, Choosing relatives for DNA identification of 
missing persons, J. Forensic Sci. 56 (2011) S23–S28, https://doi.org/10.1111/ 
j.1556-4029.2010.01631.x. 

[7] A.M. Di Lonardo, P. Darlu, M. Baur, C. Orrego, M.-C. King, Human genetics and 
human rights. Identifying the families of kidnapped children, Am. J. Forensic Med. 
Pathol. 5 (4) (1984) 339–347, https://doi.org/10.1097/00000433-198412000- 
00011. 

[8] V.B. Penchaszadeh, Use of DNA identification in human rights work to reunite 
families in Latin America, eLS (2001) 1–8, https://doi.org/10.1002/ 
9780470015902.a0027009. 

[9] S.A. Vishnopolska, A.G. Turjanski, M.H. Piñero, B. Groisman, R. Liascovich, 
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E. Raimondi, Testing for genetic structure in different urban Argentinian 
populations, Forensic Sci. Int. 165 (1) (2007) 35–40, https://doi.org/10.1016/j. 
forsciint.2006.02.042. 

[26] D.J. Balding, R.A. Nichols, DNA profile match probability calculation: how to allow 
for population stratification, relatedness, database selection and single bands, 
Forensic Sci. Int. 64 (2–3) (1994) 125–140, https://doi.org/10.1016/0379-0738 
(94)90222-4. 

[27] J. Buckleton, J. Curran, J. Goudet, D. Taylor, A. Thiery, B.S. Weir, Population- 
specific FST values for forensic STR markers: a worldwide survey, Forensic Sci. Int.: 
Genet. 23 (2016) 91–100, https://doi.org/10.1016/j.fsigen.2016.03.004. 

[28] B. Martin, B. Ingo, J.M. Butler, R. Fimmers, P. Gill, L. Gusmão, N. Morling, 
C. Phillips, M. Prinz, P.M. Schneider, W. Parson, Recommendations of the DNA 
Commission of the International Society for Forensic Genetics (ISFG) on quality 
control of autosomal Short Tandem Repeat allele frequency databasing (STRidER), 
Forensic Sci. Int.: Genet. 24 (2016) 97–102, https://doi.org/10.1016/j. 
fsigen.2016.06.008. 

[29] C.H. Brenner, Multiple mutations, covert mutations and false exclusions in 
paternity casework, International Congress Series, vol. 1261 (2004) 112–114, 
https://doi.org/10.1016/S0531-5131(03)01843-0. 

M.D. Vigeland et al.                                                                                                                                                                                                                            

https://doi.org/10.1016/j.fsigen.2015.11.004
https://doi.org/10.1016/j.fsigss.2019.10.175
https://doi.org/10.1016/j.fsigss.2019.10.175
http://refhub.elsevier.com/S1872-4973(20)30148-4/sbref0095
https://doi.org/10.1007/s00414-016-1416-2
https://doi.org/10.1007/s00414-016-1416-2
https://doi.org/10.1016/j.fsigen.2014.09.018
https://doi.org/10.1016/j.fsigen.2014.09.018
https://doi.org/10.1016/j.fsigss.2007.10.096
http://refhub.elsevier.com/S1872-4973(20)30148-4/sbref0115
http://refhub.elsevier.com/S1872-4973(20)30148-4/sbref0115
https://doi.org/10.1016/j.fsigen.2019.04.005
https://doi.org/10.1016/j.fsigen.2019.04.005
https://doi.org/10.1016/j.forsciint.2006.02.042
https://doi.org/10.1016/j.forsciint.2006.02.042
https://doi.org/10.1016/0379-0738(94)90222-4
https://doi.org/10.1016/0379-0738(94)90222-4
https://doi.org/10.1016/j.fsigen.2016.03.004
https://doi.org/10.1016/j.fsigen.2016.06.008
https://doi.org/10.1016/j.fsigen.2016.06.008
https://doi.org/10.1016/S0531-5131(03)01843-0

	Prioritising family members for genotyping in missing person cases: A general approach combining the statistical power of e ...
	1 Introduction
	2 Methods
	2.1 Definitions and notation
	2.2 Inclusion power
	2.3 Exclusion power
	2.4 Prioritisation problems
	Procedure 1: Comparing genotyping alternatives in terms of power


	3 Results
	3.1 The importance of conditional simulation
	3.2 A larger prioritisation problem
	3.3 Great grandchildren
	3.4 Expanding the marker set
	3.5 Power analysis of X-chromosomal markers

	4 Discussion
	4.1 Assumptions
	4.2 Multiple POIs
	4.3 Computational challenges
	4.4 Inconsistencies in the reference data

	5 Conclusion
	Author contributions
	Conflict of interest
	Appendix A Computational details
	A.1 Exclusion power

	References


