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A B S T R A C T

We model bioeconomic interrelations between a commercial fishery and an aquaculture industry by using a
dynamical systems theory approach. The biomass follows a logistic growth where the pollution emerging from
aquaculture is accounted for by means of a retardation term. We investigate the existence and stability of the
equilibrium states of this model as a function of the growth-retardation parameter and find that a necessary (but
not sufficient) condition for stability is low and moderate values of the emission-remediation ratio. Three in-
tervals of the growth-retardation parameter are identified in this regime of the emission-remediation ratio. The
regime of low and negligible influence of the pollution on the biomass evolution gives rise to the existence of an
asymptotically stable equilibrium state characterized by a finite biomass and a finite effort in the fishery. In the
same regime we identify two unstable equilibrium states of which the former one is characterized by no effort in
the fishery, whereas the latter one is characterized by no biomass and no effort. When the growth retardation
parameter exceeds a certain threshold, the fishery becomes unprofitable and the equilibrium state characterized
by no effort in the fishery becomes asymptotically stable. By a further increase in this parameter above a higher
threshold value, also the biomass is wiped out and the equilibrium state characterized by no biomass and no
effort becomes asymptotically stable.

1. Introduction

In recent years politicians and marine researchers have become in-
creasingly engaged in the socalled blue economy. In the blue economy one
considers all human activities taking place in coastal areas and the ocean.
This notion also includes business activities that could possibly harm the
biological life and cause externalities that may reduce other possible uses of
the oceans’ natural resources. A sustainable blue economy implies a focus
on the possible effects of increasing sea farming on the environment in
general, and in particular the effect this industry has on wild fish harvesting,
given that the fisheries are managed in a sustainable way. The notions of
blue economy and blue growth are defined and debated by
Kathijotes (2013), Silver et al. (2015), Smith-Godfrey (2016),
Spalding (2016) and Golden et al. (2017).

In the present paper we propose a conceptual dynamical model
consisting of a single species commercial fishery, an aquaculture in-
dustry, and bioeconomic interrelations between these industries. Both

the harvesting sector and the aquaculture production sector are sup-
posed to consist of many small production units, with the product prices
as given in the consumption markets. However, the total supply from
these industries determines the value of farmed and wild fish in the
market. Additionally, the aquaculture industry produces emissions that
may harm the reproduction ability and/or growth potential in wild fish
stock.

Aquaculture production may have significant negative effects on the
aquatic environment, as discusses by Dempster et al. (2009),
Lorenzen et al. (2012), Liu et al. (2014), Christensen (2017), Svåsand
et al. (2016) and Grefsrud et al. (2018). Aquaculture plants also leads to a
physical occupation of ocean areas that may negatively affect the pro-
ductivity in harvesting. See Hoagland et al. (2003), Mikkelsen (2007), and
Foley et al. (2012).1 The possible negative externalities from aquaculture
often result in governmental regulations, such as capacity constraints on the
volume of farmed fish, area restrictions, etc. (Hersoug, 2012; NFD, 2014).
The possible conflicting interests between commercial harvesting and
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aquaculture are described and analyzed by Hoagland et al. (2003),
Hannesson (2003), Mikkelsen (2007), Jiang (2010), Regnier and
Schubert (2016) and Bergland et al. (2018).

We consider activities in aquaculture that cause a release of nu-
trients, particles and fish waste, in addition to undesirable chemical
substances from medicine use or other inputs in aquaculture produc-
tion. The environment has some absorptive capacity regarding this
pollution. The degradation rate of the pollution depends on the pollu-
tant density. As long as the emission rate does not exceed nature’s own
absorptive capacity, wastes may not accumulate (Watson et al., 2016).
We assume that the flow of emissions from the fish farming affects the
ability of the marine environment to remediate the waste substances.
This mechanism was first described by Haavelmo (1971) and later on
discussed in Flaaten (2018). The description of this mechanism was
incorporated in a general marine pollution model by Bergland
et al. (2019). Furthermore, accumulated pollution from aquaculture
production may cause harm on the biological growth in the wild fish
stock. Several possible direct and indirect ecosystem mechanisms mo-
tivate this assumption. The releases from aquaculture may affect mi-
gration, spawning behavior and spawning quality of the wild fish spe-
cies. As reported in Svåsand et al. (2016), such impacts are uncertain
and evidence is limited, but these effects cannot be excluded. Diseases
and treatment of diseases in aquaculture may also cause ecosystem
disturbances. Undesirable substances from medicine may harm the
considered fish stock directly, or harm resources which the commercial
species feed on. Possible environmental impacts of chemical use in
aquaculture are summarized in Burridge et al. (2010). The importance
of this growth-retardation mechanism is characterized by great un-
certainty, see Svåsand et al. (2016) and Grefsrud et al. (2018) for more
details. The real world uncertainty regarding the strength of this me-
chanism is a reason to elaborate on the role of the biomass growth-
retardation impact in the model. Hence, we consider possible negative
ecological externality from aquaculture production on a commercial
fishery, and term this the biomass growth-retardation impact from
pollution.

Furthermore, we consider the market interrelations between these
industries. There are many studies modelling market interactions
through price mechanisms in fish product markets, see e.g. the models
proposed by Hannesson (1983), Anderson (1985), Hannesson (2003),
Regnier and Schubert (2016) and Steinshamn (2017). Following this
tradition, we assume that the markets for these two marine products are
inter-related in the demand. More farmed fish coming into the market
means that the consumers are less willing to pay for an extra unit of
farmed fish. Similarly, more harvested fish, leads to less willingness to
pay for an extra unit of wild fish. Additionally, when there is an in-
crease in the amount of wild fish into the market, the consumers are
willing to pay less for a farmed fish unit. Similarly, when the amount of
farmed fish increases, the willingness to pay for harvested fish de-
creases. Hence, the fish products are presumed to be substitutes in
demand. We omit interrelations in the input market, and assume con-
stant unit prices of effort.2

Based on this model, we examine biological and economic condi-
tions for the existence of equilibrium states and investigate the stability
properties of these states. Our main concern is the biomass growth-
weaken impact. We elaborate on how various strength of this negative
ecological externality influences the commercial fishery. In particular,
we study the consequences on the existence of equilibria and the sta-
bility of these equilibria in the model when the biomass growth-re-
tardation effect changes from being negligible to become significant.

The paper is organized in the following way: In Section 2 we de-
scribe the principles underlying our modeling framework. This frame-
work is expressed in terms of a 4D autonomous dynamical system. In

Section 3 this system is analyzed. We first transform the model to a
nondimensional form. Thereafter we summarize the properties of the
model with respect to existence and the stability of equilibrium points.
We also explore in detail some special cases of our model such as the
case with constant product prices and the case with separate price
formation. Section 4 contains concluding remarks, and an outlook
listing topics for future research. Appendix A–Appendix F contain the
detailed mathematical analysis of the model: In Appendix A we prove
that the dynamical system under consideration possesses the invariance
property. In Appendix B–Appendix E we show the detailed analysis of
the existence and stability of the equilibrium points. Appendix F con-
tains a summary of a necessary and sufficient condition for the location
of all the zeros of a quartic polynomial in the left half plane, i.e. the
Routh-Hurwitz criterion.

2. Model

We consider two industries interacting in the product markets: The
aquaculture industry (a) and the wild fishery (f). For the variables and
parameters introduced in the Section 2.1, the subscripts a and f refer to
these two marine industries. In addition to the market interdependency
there are possible externalities from the aquaculture activity influen-
cing the fishery.

2.1. Industry production and externalities

Regarding the aquaculture industry, we assume that the production
volume, Y, is modelled as a monotonically increasing power function in
the effort allocated to aquaculture, Ea, i.e., as

= > < <Y rE r k, 0, 0 1.a
k (1)

Here r is an exogenous efficiency parameter. The industry may increase
its production by inserting more effort. The condition 0 < k< 1 means
a decreasing economy of scale in the sea farming industry, and is
common in aquaculture analysis. See Jiang (2010) and Regnier and
Schubert (2016). Furthermore, in order to simplify the discussion of the
model, we assume the specific scale elasticity value k is given as =k 1

2 .
Let Z denote the time dependent flow of pollution. This represents

the harmful residual emissions from the aquaculture production, i.e.
waste from feeding, medical treatment etc. The pollution from the
aquaculture production can be either a function of the production vo-
lume or its use of certain inputs. Here we will use the commonly as-
sumed simplification that this flow of pollution is proportional to the
production volume Y, i.e.,

=Z Y , 0. (2)

The positive proportionality constant ϱ is referred to as the emission
parameter. In addition to the waste flow, we consider accumulation of
waste over time as the main environmental problem. We study the
pollution problem as a renewable natural resource problem, and as-
sume that the environment has some absorptive capacity. We will de-
scribe this process in the following way: For low and moderate values of
the pollutant density S, the degradation rate of the pollution will in-
crease with S. When the pollutant exceeds a certain threshold, the
ability of the marine environment to carry out self cleaning will be
reduced. For high pollutant concentrations, it is negligible. This hy-
pothesis was originally proposed by Haavelmo (1971). In the present
work we model this self cleaning ability by means of a positive two
times continuously differentiable function g of S, termed the remediation
capacity. More details about the property of the remediation function
can be found in Bergland et al. (2019).

We thus end up with the aquaculture - pollution equation

= >dS
dt

Y g S( ), 0. (3)

for the pollutant density S when making use of (2). The positive
2 The consequences of effort market competition are analyzed in Bergland

et al. (2018).
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proportionality constant ρ is referred to as the remediation rate. Fur-
thermore, we specify the remediation capacity by

=
+

>g S d S
S d

d( ; ) , 0.2 2 (4)

This means that we assume that there is no remediation if there are no
pollutants present. The parameter d is the pollution density level
maximizing the remediation capacity.

We next consider the fish harvesting sector, where the fish supply
from harvesting is given by the Gordon-Schaefer production function
(Gordon, 1954; Schaefer, 1954)

= >H qXE q, 0.f (5)

Here H is the time-dependent supply of fish in the market (harvesting
rate), X is the time-dependent fish stock (biomass), Ef is the time-de-
pendent harvest effort and q is a constant harvest efficiency rate.

We combine the production function (5) with a logistic growth
model. A modified logistic growth equation for the wild fish specie can
be formulated as

=dX
dt

X S
K

X
K

H1 .
(6)

Here σ is the intrinsic logistic growth rate and K is the carrying capa-
city. The term S

K
in (6) represents a decrease in the growth of wild fish

due to the presence of the pollution from the aquaculture activity. We
assume that α ≥ 0. The constant α will be referred to as the growth-
retardation parameter.

Combining (1), (3), (5) and (6), we thus end up with the system

= +dX
dt

X X S
K

qXE1 ,f
(7)

=dS
dt

rE g S d( ; )a
1
2

(8)

for the biomass - pollution part of the model.

2.2. Market and industry profit

We assume that the demand side of the aquaculture market and the
wild fishery market are interrelated in the sense that wild fish and
farmed fish are substitutes in demand, see for instance Gravelle and
Rees (2004). The two products meets the same needs of consumers but
are not perfect substitutes. This means that an increase in the price on
aquaculture products leads to less demand for farmed fish and more
demand for wild fish. Analogously, a higher price on wild fish implies a
lower demand for wild fish and a higher demand for aquaculture pro-
ducts. These characteristics of the demand side can be described and
specified by the price functions

=
+ +

P Y H A B Y
Y B

D H
H D

( , ) ,a a a a
a

af a
a (9)

=
+ +

P H Y A B H
H B

D Y
Y D

( , ) .f f f f
f

fa f
f (10)

where Pa and Pf measures the prices on aquaculture products and wild
fish respectively. The chosen specification of the demand functions has
some characteristics:

> =A B D i j a f i j0, 0, 0, 0, 0, , , , .i i i i ij

We observe that the functions Pa and Pf saturate, and to ensure that the
functions Pi are positive for all market volumes (Y, H) we impose the
requirements

= >

= >

+

+

P Y H A B D G

P H Y A B D G

lim ( , ) 0,

lim ( , ) 0,

Y H
a a a a af a a

Y H
f f f f fa f f

,

, (11)

We notice that Pa and Pf are decreasing and convex function of the
fishery market volume Y and farmed market volume H. Moreover, the
positive constant Ai, ( =i a f, ) is interpreted as consumers maximum
willingness to pay. βi and βij are non-negative parameters with the
following interpretation: The coefficients βi, ( =i a f, ) describe a stan-
dard down sloped demand mechanism, while the presence of finite βij
where =i j a f, , with i ≠ j suggests that there could be some negative
cross-price impact between the wild fish and the farmed fish supply.
The positive constants Bi, and Di, ( =i a f, ) determine the strength of the
direct market volume impact and the cross-volume market impact re-
spectively. This means that as the quantity of farmed (harvested) fish
increases, the lower is the marginal willingness to pay for the wild
(farmed) fish when βfa > 0 (βaf > 0). The positive constants Gi

( =i a f, ) are interpreted as the saturation levels (minimum levels) of
product marked price for the aquaculture and fishery products, re-
spectively. The special case with = = 0i ij ( =i a f, ) is the case with
constant product prices, i.e., the situation with perfect elastic demand
in both product markets. The special case with > =0, 0i ij ( =i a f, )
is the case with separate price formation, i.e., the marginal willingness
to pay is only dependent of the market volume for each of the markets
isolated which means no cross-market interdependence between the
market for aquaculture products and fishery products.

We assume market equilibrium in both industries, i.e., that the
supply is equal to the demand, for all time t. Furthermore, we assume
an exogenous given price per unit of effort for each sector, wi ( =i a f, ),
and define the profit πa in the aquaculture industry and the profit in the
fish harvest industry πf by

= =P Y w E P H w E, .a a a a f f f f (12)

We must impose the profit condition in fisheries

>qKG wf f (13)

which expresses the fact that the income per unit effort in harvesting
has to exceed the cost per unit effort in the fishery. The left hand side of
the inequality expresses the income per unit effort, when the fish stock
is equal to the carrying capacity and market price realized at the sa-
turation level, Gf.

In addition, we notice that the condition (13) implies the inequality

>qK A D w( ) .f fa f f (14)

The inequalities in (13)–(14) are referred to as the profitability condi-
tions.

2.3. The open access regime

The open access regime consists of prescribing simplified dynamics
for the effort variables Ef and Ea. We do this by assuming free entry and
exit in proportion to profit for the fishery. Each of the fishing firms is
supposed to consider the product price as given in the market. The
expansions and the contractions of effort in the fishery sector correlate
with positive and negative profits, and these adjustments include fric-
tions and delays. We take these properties into account by suggesting
the instantaneous change of rate of Ef to be proportional with the time-
dependent sector profit πf, i.e.,

=
dE
dt

P qXE w E[ ].f
f f f f f (15)

Here λf is the ’speed of adjustment’ in the fishery3. By inserting the Pf -
function defined by (9) and the production functions given as (1) and

3 Smith (1969) states that the entry-speed coefficient is not necessarily equal
to the exit-speed parameter. In order to simplify the problem we will consider a
common entry-exit parameter λf. Similar types of enter-exit mechanisms con-
cerning effort are often used in fishery studies, e.g. Chakraborty et al. (2012),
Ghosh and Kar (2014) and Regnier and Schubert (2016).
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(5) into (15) we obtain

= +
+

+
+

dE
dt

E G B
qXE B

D
rE D

qX w1 1f
f f f f f

f f
fa f

a f

f
2 2

1
2 (16)

as the dynamical evolution equation for the effort variable Ef.
The goal of the firms in the aquaculture industry is to choose the

effort Ea which maximizes the profit πa. In line with the standard as-
sumption in perfect competitive models, the industries are supposed to
consist of many small firms where each of them is producing so small
quantities that their behavior (regarding each of the actual chosen
quantities) does not affect the market prices. This means that each firm
is a price taker. However, higher and lower quantities in the total
markets, consisting of all supplying firms, do affect the total supply, and
hence the market equilibrium prices. From (1) and (12) we find that the
profit maximizing condition reads

= =
E

P rE w1
2

0.a

a
a a a

1
2

(17)

We now prescribe the dynamical evolution of the effort Ea in such a way
that the instantaneous change of rate of Ea is proportional to E

a
a
i.e.

= =dE
dt E

P rE w1
2

.a
a

a

a
a a a a

1
2

Here the positive proportionality constant λa determined by the ’speed
of adjustment’ measures the intensity of reaction for the aquaculture
industry. This means that we tacitly assume that the equilibrium state
of our modeling framework represents a scenario with profit max-
imization. By inserting the expression for Pa - function defined by (9)
and the production functions given as (1) and (5) into (17) we end up
with the rate equation

= +
+

+
+

dE
dt

G B
rE B

D
qXE D

rE w1 1 1
2

a
a a a a

a a
af a

f a
a a

2 2
1
2

1
2

(18)

for the effort variable Ea. Notice that the parameters (λa and λf) may be
different, since the ’speed of adjustment’ for each industry depends on
conditions which may vary, including regulatory policy in both sectors.

Our model is summarized in the 4D nonlinear autonomous dyna-
mical system (7), (8), (16) and (18). The variables and the parameters
in the model are listed in Table 1. The measurement units given in
Table 1 are T for time (e.g. year, month), M (e.g. ton, kg), E for effort
(e.g. employee, capital) and currency C (e.g. Euro, Yuan etc.)

3. Analysis of the model

3.1. Scaling and general properties of the model

We scale the model (7), (8), (16) and (18) by following the proce-
dure outlined, in Logan (1987). We proceed as follows: Introduce the
dimensionless quantities τ, ξ, η, θ and ψ defined by

= = =

= =

t X t K E
q

E t K
r

S t K

, ( ) ( ), ( ),

( ) ( ) , ( ) ( ),

f

a
2 2

(19)

and the dimensionless, positive parameters = …n, 1, 2, , 14n defined
and interpreted in Table 2.

We then end up with the 4D autonomous dynamical system

=d
d

( , , , ), (20)

Table 1
The aquaculture-fishery model. The fundamental units are T for time (e.g. year,
month), M for mass (e.g. tons, kg), E for effort (e.g. employee, capital) and C for
currency (e.g. Euro, Yuan etc.)

Variables/ Biological/ Measurement
parameters economical interpretation units (dimensions)

t Time T
Y Total aquaculture production volume MT 1

S The harmful substance density (stock of
pollutant)

M

Z The flow of pollution from aquaculture
production

MT 1

X Fish population density M
K Carrying capacity of the fish biomass M
H Production volume(harvest) in fishery MT 1

Ef Effort(capital and labour) input in fishery E
Ea Effort(capital and labour) input in aquaculture E
Pi Market value of product i ( =i a f, ) CM 1

σ Intrinsic growth rate for the biomass T 1

α Growth-retardation parameter 1
q Harvest efficiency rate E T1 1

r Aquaculture efficiency rate ME T1/2 1

ϱ Emission (pollution) parameter 1
ρ Remediation (natural absorptive ability) rate M T2 1

g(S; d) Remediation capacity M 1

d Remediation capacity parameter M
βi Direct market price-volume impact in sector i

( =i a f, )
CM T2

βi,j Cross market price-volume impacts
( =i j a f i j, , ), ( )

CM T2

Ai Maximum willingness to pay, product i
( =i a f, )

CM 1

Bi Direct price-saturation constant, product i
( =i a f, )

MT 1

Di Cross price-saturation constant, product i
( =i a f, )

MT 1

wi Exogenous cost per unit effort, sector i
( =i a f, )

CE T1 1

λf Speed of adjustment, fishery EC 1

λa Speed of adjustment, aquaculture industry E C2 1

Table 2
Definition and interpretation of the nondimensional parameters

= …n, 1, 2, ,14n in the model (24)–(27).

Parameter definition Interpretation

= qKG /f f1 Relative unit value of effort in fishery.

= q B /f f f2
2 2 Impact on fishery price from fishery volume.

= B K/f3 Fishery price saturation parameter for the fishery volume.

= q D /f fa f4
2 2 Impact on fishery price from aquaculture volume.

= D K/f5 Fishery price saturation parameter for the aquaculture
volume.

= w /f f6 Relative unit cost of effort in fishery.

= aGaK r
K7 4

4
The relative unit value of effort in aquaculture

= a aBa r
K8

2

4
4

Impact on aquaculture price from aquaculture volume.

= B K/a9 Aquaculture price saturation parameter for the
aquaculture volume.

= a af Da r
K10

2

4
4

Impact on aquaculture price from fishery volume.

= D K/a11 Aquaculture price saturation parameter for the fishery
volume.

= awa r
K12 2

2
Relative unit cost of effort in aquaculture.

= d K/13 Remediation capacity parameter.
= K/14 Relative emission rate.
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=d
d

( , , , ),
(21)

=d
d

( , , , ),
(22)

=d
d

( , , , )
(23)

with the functions , , and given as

=( , , , ) 1 , (24)

= +
+

+
+

( , , , ) ,1
2

3

4

5
6

(25)

= +
+

+
+

( , , , ) ,7
8

9

10

11

2
12

1

(26)

= R( , , , ) ( ; )14 13 (27)

where

=
+

R ( ; ) .13 2
13
2 (28)

The function R is referred to as the nondimensional remediation capacity.
Notice the relationship between this function and the remediation ca-
pacity:

= =g K K K g K R( ; ) ( ; , 1) ( ; ).1
13

1
13 (29)

Notice that the condition (13) translates into the constraint

>1 6 (30)

on the dimensionless parameters γ1 and γ6. The profitability condition
from the fishery (14) expressed in terms of the dimensionless quantities
is given as

+ = + = >qK
w

G B qK
w

A D( ) ( ) 1
f

f f f
f

f fa f
1

6

2

3 6 (31)

Moreover, we classify the dimensionless parameters into the following
four groups according to their roles in the model:

• Group 1: Parameter capturing the possible pollution biomass im-
pact (growth-retardation parameter): α.
• Group 2: Parameters in the fishery sector of the model: …, ,1 6.
• Group 3: Parameters in the aquaculture sector of the model:

…, ,7 12.
• Group 4: Parameters capturing the aquaculture production and the
related pollution and remediation: ϱ, γ13, γ14.

In accordance with this classification a schematic visualisation of
the interaction between the different components in the model
(20)–(29) is displayed in Fig. 1. We notice that the Group 1 parameter
i.e. the growth-retardation parameter α plays a key role in the model. It
captures the ecological interdependence between aquaculture and
fishery. Absence of this interaction ( = 0), means that only the market
interdependence is present.

Moreover, since the component functions , , and defined by
(24)–(27) are smooth functions on the set

= {( , , , ) ; 0}.4

the initial value problem of the system (20)–(23) is, in accordance with
Picards theorem, locally wellposed in Σ. In Appendix A we prove that
any orbit of this system starting in the subset Σinv of the phase space
defined by

= >{( , , , ) ; 0, 0, 0, 0}inv
4

remains in that subset.
In the subsequent sections we will investigate the existence and

linear stability of equilibrium states of the present model. The stability
issue is resolved in the standard way by means of the spectral properties
of the Jacobian 4 of the vector field F where

=F x x x x x( ) ( ( ), ( ), ( ), ( )) .T (32)

Here =x, ( , , , ). We will also present some numerical examples in
the subsequent sections. The purpose of these illustrations is to facil-
itate interpretations of general results and visualize the model me-
chanisms.

The fundamental parameters belonging to the fishery part of the
model are chosen such that the commercial fishery might be profitable.
These parameters are listed in Table 3. By inserting these values into
(19), we find that = 2,1 = 16 and consequently =/ 2,1 6 which is in
agreement with the condition (13). For the remaining parameters listed
in Table 1, it seems not possible to find estimates based on observations
or experiments.

In Table 4 we have listed the input parameters …, ,1 14 which will
be used in the subsequent sections, together with ϱ, i.e., the Group 2 -
Group 4 parameters. The Group 2 pair (γ1, γ2) and the Group 3 pair (γ7,
γ12) measure the initial profitability in the fishery industry and the
aquaculture industry, respectively. The values in both industries are
chosen in agreement with the profitability conditions in (13). Fur-
thermore, the Group 2 pair (γ2, γ4) and the Group 3 pair (γ8, γ10) de-
scribe how the market volume influences the market prices. γ2 and γ8
capture the direct volume effect in the fishing industry and the aqua-
culture industry, respectively. The parameters γ4 and γ10 describe the
cross-industry volume effect in the fishing industry and the aquaculture
industry, respectively. According to market theory, it is reasonable to
assume that the direct volume impact is more significant than the cross
industry impact, see for instance Gravelle and Rees (2004). The values
listed in Table 4 are selected in accordance with this assumption. The
growth-retardation parameter α is varied throughout the whole
manuscript, thus reflecting that our goal is to study the properties of the
fundamental model as function of the growth-retardation mechanism.

3.2. Special cases

To elaborate on the mechanisms present in our model, it is useful to
consider simplified versions of the model. In line with that we will first
focus on the model in the case with only aquaculture production pre-
sent i.e. when = 0 (Section 3.2.1) and the case with no effort in
the fishery i.e. when θ ≡ 0 (Section 3.2.2). In particular, we will in-
vestigate the existence and stability of equilibrium points within the
frameworks of these simplified models and pinpoint at the role of these
results within the full model. It turns out that we in the forthcoming
analysis of this equilibrium problem will extensively make use of the
condition =( , , , ) 0 expressed on the form

+
=R ( ; )13 2

13
2

14 (33)

Here we have made use of (27) and (28). We readily obtain

= ±±
1

2
414 14

2 2
13
2 2

(34)

from (33). Table 5 shows the number of positive solutions of this
equation as a function of the positive input parameter

14
.

We also notice that the nondimensional remediation capacity R
attains its maximal value =R (2 )max 13

1 for = 13. This means that
< 13 (corresponding to >R ( , ) 013 ), whereas >+ 13 (corre-

sponding to <R ( , ) 013 ). Here we tacitly assume that ψ ± is given by
(34) in the regime < <0 2

14
13
.
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3.2.1. The case with only aquaculture production ( = 0)
We first consider the case with isolated activity in the fish farming

industry. This means that we neglect the effects of the biomass and the
effort in the fishery, i.e., we assume that = 0. In this case the
dynamical evolution is governed by the 2D subsystem

= ±
d
d

f ( ; ^ ),2 (35)

=d
d

R ( ; )14 13 (36)

where the function f2 is defined as

+± +f ( ; ^ )
( )

( ^ )( ^ ).2
12

2
9 (37)

Here

= + ±
+ +

+± D^
2

1
2

2 ( )10

11 12 12
7 9 12

10
2

10 11 7 9 12

11
2

(38)

with D given by

= + +D ( ) 4 .7 9 12
2

8 12 (39)

We notice that < < +
^ 0 ^ . For the Group 3 parameters listed in

Table 4, we find that =^ 0.6712 and =+̂ 2.4212. According to
Table 5, we get equilibrium points in the first quadrant of the ψ, η-plane
of the subsystem (35)–(36) if

+̂ 2
.14

13 (40)

These equilibrium points are given by (ψ1, η1) where = +̂1 and
= ±1 with = 1. For the Group 3 and Group 4 parameters listed in

Table 4 we notice that the condition (40) is fulfilled.

For the 2D system (35)–(36), we recover the result of Bergland
et al. (2019): In accordance with Table 5 the actual subsystem possesses
up to two equilibrium states located in the first quadrant in the ψ, η -
plane. Let us assume that we are in the regime with at least one equi-
librium point. We first observe that we always have <±f ( ; ^ ) 02 1

4.
Thus stability of the equilibrium state of the 2D system relies on the
monotonicity property of the remediation function evaluated at the
solution of (33): For R′(ψ1; γ13) > 0, the equilibrium point is asymp-
totically stable, whereas for the negative slope condition R′(ψ1; γ13) < 0
we have instability of the corresponding equilibrium point.

The two equilibrium points are depicted on the phase portrait (Fig.
Fig. 2) marked A (asymptotically stable) and B (unstable) respectively.
Numerical run (Fig. 3) illustrates stabilization of the equilibrium point
A.

Let us then study the role of the aquaculture-pollution system
(35)–(36) as a part of the full system (20)–(29). We first notice that the
points ±Q1

( ) defined by

=±
+ ±Q (0, 0, ^ , )1

( ) (41)

is a boundary equilibrium point of the system (20)–(29). The Jacobian
of the vectorfield F defined by (32) evaluated at ±Q1

( ) assumes the lower
triangular form

=±

± ±

+ ±

±

Q
f

R

( )

( ) 0 0 0
0 0 0
0 0 (^ ; ^ ) 0
0 0 ( ; )

.4 1
( )

(1)

6

2

14 13 (42)

Here

±
±

1(1)

(43)

where we notice that <+
(1) (1). We have also made use of the estimate

for the partial derivative evaluated at the equilibrium point ±Q1
( ):

=
+

+ = <±
+ + ±Q f( ) ^ (^ ; ^ ) 0.1

( ) 8

1 9
12

2
2

This is consistent with the fact that <+ ±f (^ ; ^ ) 02 .
We conclude that +Q1

( ) will be unstable for all +
(1) since the

Fig. 1. The interaction scheme for the model (20)–(29).

Table 3
Example values of fundamental parameters for the fishery part of the model.
The measurement units are =M Ton, =C Euro, =E Vessels and =T Year .

Parameters Values Units

K 40000000 M
Gf 1000 CM 1

q 0.000002 E T1 1

λf/σ 0.000025 ETC 1

wf 40000 CE T1 1

4 Here and in the sequel we will make use of the notation f df
d2

2 and
R dR

d .
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negative slope condition <+R ( ; ) 013 is always fulfilled in this case.
As a consequence of Shoshitaishvilis theorem,5 this conclusion also
holds true in the case = + ,(1) when the corresponding equilibrium
point +Q1 is a non-hyperbolic equilibrium point. The equilibrium point
Q1

( ) is asymptotically stable within the framework of the system
(20)–(29) if > (1). In the complementary parameter regime it will be
unstable. In particular, one should notice that we will have instability of
Q1

( ) if >(1) i.e. even in the regime where the positive slope condi-
tion >R ( ; ) 013 is fulfilled. The transition case = (1) represents a
static codimension 1-bifurcation point. We observe that =rank { } 31
for = (1) where 1 is the Jacobian Q( )4 1

( ) evaluated at the bi-
furcation point, extended with the column vector =( )F (1) where F
is the vector field defined by (32), i.e.,

=
+ ±f

R

0 0 0 0 0
0 0 0 0
0 0 (^ ; ^ ) 0 0
0 0 ( ; ) 0

.1
6

2

14 13

Since 1 has not a maximal rank, we will get a static codimension - 1
bifurcation which is not a saddle node bifurcation for = (1). In the
next subsubsection it will be clear that the actual bifurcation in ac-
cordance with Logan (1987) turns out to be a transcritical bifurcation.

Notice that the stability results for (41) are sensible from the per-
spective of economics: The condition > (1) means a high pollution
effect from the aquaculture compared to the remediation capacity. In
this state the potential growth in the fish stock is harmed by the pol-
lution from aquaculture. Hence, the fish stock is negligible, and con-
sequently there should be no effort in the fishery activity.

This interpretation is supported by the numerical results for the full

Fig. 2. The phase portrait of the subsystem (35)–(36). Input parameters are given as Group 3-Group 4 in Table 4. The nullcline = +̂ and the nullcline
= R ( ; )14

13 together with the equilibrium points =A (2.4212, 0.3877) and =B (2.4212, 0.6449) of the subsystem (35)–(36) are displayed. The point =P (2.1, 0.45)
is the initial condition for the numerical simulations underlying Fig. 3.

Fig. 3. Numerical example illustrating the behavior of the subsystem (35)–(36). The nondimensional production variable η (red curve) and nondimensional accu-
mulated pollution ψ (blue curve) as function of the nondimensional time τ. Initial condition = =P ( , ) (2.1, 0.45) is marked in Fig. 2.

5 See Chapter 6 in Arnold (1988).
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system: For the input parameters in Group 2 - Group 4 in Table 4 the
equilibrium points of the type Q1 are given as

= =+Q Q(0, 0, 2.4212, 0.6449), (0, 0, 2.4212, 0.3877).1
( )

1
( )

Moreover, simple computation shows that = 2.5796(1) in this case.
+Q1

( ) is unstable whereas Q1
( ) is stable (unstable) if α > 2.5796

(0 ≤ α < 2.5796).
We then run the full model (20)–(29) with initial condition in the

vicinity of the two equilibrium points +Q1
( ) and Q1

( ) with > (1). The
outcome of these computations is summarized in Fig. 4. We clearly see
that the temporal evolution settles down on a state which is identified
as Q ,1

( ) thus confirming the predictions obtained from the theoretical
analysis. Fig. 4 illustrates the outcome of a situation with strong
growth-retardation influences. Here the initial biomass and fishery ef-
fort are not sustainable. The accumulated pollution level inhibits stock
growth and thereby makes the fishery unprofitable. The temporal
evolution of the biomass and effort settles down on the stable equili-
briumQ1

( ). This development involves a relatively rapid decrease in the
nondimensional effort (θ) and nondimensional biomass (ξ). Both the
fishery effort and the fish stock are wiped out within finite time.

3.2.2. The case with no effort in the fishery (θ ≡ 0)
Let us consider the case with finite biomass present but with no

harvest activity in the fishing industry. This means that θ ≡ 0. The
dynamical system (20)–(29) restricted to the hyperplane = 0 sim-
plifies to the 3D system

=d
d

(1 ), (44)

= ±
d
d

f ( ; ^ ),2 (45)

=d
d

R ( ; )14 13 (46)

in this case.
Here f2 is defined by (37). We observe that this system possesses

equilibrium points of the type (1 , , )2 2 2 where = +̂2 is given
by means of (38)–(39), whereas = ±2 is given by (34) with = 2.
We notice that =2 1 and =2 1 where ψ1 and η1 are defined in
Section 3.2.1. Here we tacitly assume that we are in the parameter
regime for which the roots (34) are real. Moreover, we assume that

< ±0 (1) in order to ensure that the coordinates of the actual

equilibrium point are positive.
In order to assess the stability of the equilibrium points of the

system (44)–(46), we proceed in the standard way by computing the
Jacobian matrix of the vector field defining this system. Doing this we
obtain

=
± ± ± ±

+ ±

±

f
R

( ) 0 ( )
0 ( ; ^ ) 0
0 ( ; )

3

(1) (1)

2

14 13 (47)

from which it follows that only the equilibrium point +(1 , ^ , ) is
asymptotically stable within the framework of (44)–(46).

We then notice that the subsystem (45)–(46) is identical with the
system (35)–(36). This means that the dynamical evolution as pre-
scribed by means of (44)–(46) can be studied by viewing (45)–(46) as
an input to the modified logistic Eq. (44). The solution of the equation
(44) with =(0) 0 can easily be found by elementary techniques. We
readily find that

=
+

f

f s ds
( , )

exp[ ( , )]

exp[ ( , )] 1

0

0
0 (48)

where

f s ds( , ) ( ) .
0 (49)

We then investigate the level curves for the biomass function = ( , )
given by (48)–(49) on the interval [0, )(1) . The outcome of this study is
summarized in the plot depicted in Fig. 5. Here we have used the Group
3 - Group 4 in Table 4 and the initial condition =P (2.1, 0.45) for the
purpose of constructing the input function ψ in the modified logistic
Eq. (44). Notice that this means that graph of the input function ψ is the
same as the graph displayed in Fig. 3. The result depicted in Fig. 5
demonstrates the role of the growth-weakening mechanism in the
model. In the case of no fishery effort (and no harvest volume), an in-
crease in the growth-retardation parameter α, means a decrease in the
biomass density as a function of time.

Finally we consider the stability of the equilibrium points ±Q2
( ) de-

fined as

=±
± ± + ±Q ( ( ), 0, ^ , )2

( ) (50)

within the framework of the full system (20)–(29). The Jacobian for

Fig. 4. Numerical example illustrating the behavior of the full system the
system (20)–(29). The nondimensional biomass variable ξ (green), the non-
dimensional effort variable θ (turquoise), the nondimensional effort variable
η (red) and the nondimensional accumulated pollution ψ (blue curve) as
function of the nondimensional time τ. Input parameters are given as Group 2
- Group 4 in Table 4 and = 2.7. The initial condition is

=( , , , ) (0.5, 0.5, 2.1, 0.45). Notice that the η - and ψ - coordinate of the
initial condition are the same as for the simulations underlying Fig. 3.

H. Bergland, et al. Ecological Complexity 43 (2020) 100853

8



these equilibrium points reads

=±

± ± ± ± ± ±
±

+ ±

±

± ±

+

Q
Q

f

R

( )

( ) ( ) 0 ( )
0 ( ) 0 0

0 ( ; ^ ) 0

0 0 ( ; )

.

4 2
( )

(1) (1) (1)

2

( )
^ 2

14 13

8
(1)

11
2 2

(51)

Here ±Q( )2
( ) is given as

= + +
+

±
± ±

+
Q( ) ( )( ^ ) .2

( ) (1)
1

2

3

4

5
6

The α-value for which =±Q( ) 02
( ) is given by

=
+ +± ±

++

1 .(2) (1) 6

1 ^
2
3

4

5 (52)

We notice that the profitability condition (31) implies that <+ +
(2) (1)

and <(2) (1). Moreover, since <+ ,(1) (1) we have <+
(2) (2). For

= ± ,(2) the corresponding equilibrium point ±Q2
( ) is a non-hyperbolic

equilibrium point. In accordance with Hartman-Grobmans theorem6

the negative slope condition <+R ( ; ) 013 implies that +Q2
( ) is unstable

for all < +0 (1) with +
(2). Shoshitaishvilis theorem7 implies that

this also holds true in the non-hyperbolic case = +
(2). The stability

property of Q2
( ) depends sensitively on the value of the growth-re-

tardation parameter α. The equilibrium point Q2
( ) will be asymptoti-

cally stable provided < <(2) (1). In the complementary regime it
will be unstable. For = ,(2) we have =rank { } 32 . where 2 is the
Jacobian Q( )4 2

( ) evaluated at the bifurcation point, extended with the
column vector =( )F (2) where F is the vector field defined by (32),
i.e.,

=
+ ±f

R

0
0 0 0 0 0

0 (^ ; ^ ) 0 0

0 0 ( ; ) 0

.2

(2) (2) (2) (2) (2)
2

)
2

14 13

8
(2)

2

11
2

2
2

where

1 .(2) (2)

This means that we have a static codimension - 1 bifurcation for Q2
( )

when = (2). As 2 has not maximal rank, we conclude that this bi-
furcation is not of the saddle-node type. The analysis carried out in
Appendix C shows that Q2

( ) will be subject to a transcritical bifurcation
for = .(2)

For = ± ,(1) we notice that the equilibrium point ±Q2
( ) merges to-

gether with ±Q1
( ). For = ,(1) the stability analysis of Q1

( ) worked out
in the previous subsubsection shows that the static codimension - 1
bifurcation detected for = (1) is a transcritical bifurcation. See e.g.
Logan (1987) for more details.

For the input parameters in Group 2 - Group 4 in Table 4 and
= 2(1) the boundary equilibrium point Q2

( ) for which the positive
slope condition >R ( , ) 013 is fulfilled is given as

=Q (0.2246, 0, 2.4212, 0.3877).2
( )

Moreover, simple computation shows that = 1.7402(2) in this case. For
the numerical runs leading to Fig. 6, we observe that < <(2) (1).
Moreover, we observe that the solution settles down on the equilibrium
point Q2

( ) in a damped oscillatory manner. The findings summarized in
Fig. 6 are thus consistent with the theoretical predictions deduced from
the present stability analysis. The bioeconomic explanation is similar to
the interpretation obtained from Fig. 4. The case in Fig. 6 describes a
situation with weaker growth-retardation compared to Fig. 4. The in-
itial coordinates of the biomass, the fishery effort and the accumulated
pollution level are the same in both cases. In both cases the fishery
effort becomes unprofitable in the long run. However, from the initial
conditions, shown in Fig. 6, the fishery will be profitable causing a short
run increased effort, which leads to a reduction in the biomass density.
This together with the following market price fall makes the fishery
unprofitable. The biomass and effort variables oscillate and relaxate
towards the stable equilibrium Q ,2

( ) where the fishery effort is wiped

Fig. 5. The level curves for the nondimensional biomass =( , ) ^ on the interval [0, )(1) . The function ξ(τ, α) is given by (48)–(49). The labels attached to the level
curves are the level curve constants ^. For the purpose of constructing the input function ψ in the modified logistic Eq. (44), the input parameters are Group 3 - Group
4 in Table 4 and the initial condition =P (2.1, 0.45) for the subsystem (35)–(36).

6 See e.g. Guckenheimer and Holmes (1983) or Perko (2013).
7 See Chapter 6 in Arnold (1988).
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out within finite time, whereas the biomass, in this state with no harvest
activity and more moderate growth-retardation from pollution, survives
and stabilizes on a finite value ( = 0.2246).

According to the discussion of possible stability of (50), the eco-
nomic interpretation relates to the profitability of the fishery compared
to the damage on the growth of the fish stock caused by the aquaculture
production. From (52) we notice that (2) depends on parameters de-
scribing the profitability and the market responses in the fishery. More
specifically, it means that a low potential marked value (represented by
γ1) or high costs (represented by γ6) together with a considerable pol-
lution effect from aquaculture on the fishery growth, could lead to a
scenario where the fishery effort in the long run becomes unprofitable,
and consequently it will be reduced to no activity.

3.2.3. Special cases regarding market interactions
Let us continue to elaborate on the market mechanisms present in

the modelling framework by considering (i) the case with constant
product prices, and ii) the case with separate price formation.

(i) The case with constant product prices.
The case with constant product prices is based on the assumption

that the marginal willingness to pay is independent of the market vo-
lume, i.e., the situation with perfect elastic demand for both product
markets. This parameter regime captures the situation when both the
fishery and the aquaculture industry have a marginal impact on the
total market for relevant products. By this assumption it follows that

= 0i and = 0,ij ( =i j a f, , ) (i≠ j). In the dimensionless setting these
assumptions correspond to letting = = = = 02 4 8 10 .

In this case the dynamical system (20)–(29) simplifies to

=d
d

(1 ), (53)

=d
d

( ),1 6 (54)

=d
d

( ),2
12

7

12 (55)

=d
d

R ( ; ).14 13 (56)

For = 0, the 2D subsystem (53)–(54) becomes the standard Gordon -
Schaefer model. That model has been extensively studied in many
works. See e.g. Bergland et al. (2018, 2019) and the references therein.

The simplified model (53)–(56) possesses boundary equilibrium
points of the type ±Q1

( ) and ±Q2
( ) with the same type of stability prop-

erties as detailed in the previous subsubsections. We readily find that

=

= <

±
±

±
±

±
± ±

Q

Q

(0, 0, , ),

( ( ), 0, , ), 0 .

1
( ) 7

12

2
( )

1
( ) 7

12

(1)

Here

= ± =± ± ±2
4 , 1/ .12

7
14 14

2 2
13
2

7
2

12
2 (1)

(57)

In accordance with Table 5 we tacitly assume that we are in the para-
meter regime

2
,12 14

7 13

so that we are guaranteed that ψ ± are real. By proceeding in the same
way as in the previous subsubsections we find that +Q1

( ) and +Q2
( ) are

unstable. Moreover, Q1
( ) is asymptotically stable for > (1) and un-

stable for the complementary regime <0 (1). Finally, but not least,
Q2

( ) is asymptotically stable for < <(2) (1) and unstable for
<0 (2). Here

=± ± (1 ).(2) (1) 6

1 (58)

Since < 1,6
1

we observe that <(2) (1). For the input parameters used

in Table 4, we find that = 4(1) and = 2,(2) which confirms this fact.
The system (53)–(56) possesses interior equilibrium points denoted

by ±Q ,e
( ) i.e.,

=Q ( , , , )e e e e e (59)

where

= < = = >

= ±±

1, 1 , 1,

1
2

4 .

e e e e e

e
e

e

6

1

7

12

14 14
2 2

13
2 2

Here we tacitly assume that e 2
14

13
so that ψ ± is real and that

< ±
(2) in order to ensure that θe is positive. A simple analysis reveals

that this equilibrium point with =e (corresponding to the positive

Fig. 6. Numerical example illustrating the behavior of the full system the
system (20)–(29). The nondimensional biomass variable ξ (green), the non-
dimensional effort variable θ (turquoise), the nondimensional effort variable
η (red) and the nondimensional accumulated pollution ψ (blue curve) as
function of the nondimensional time τ. Input parameters are given as Group 2
- Group 4 in Table 4 and = 2. The initial condition is

=( , , , ) (0.5, 0.5, 2.1, 0.45). Notice that the initial η - and ψ - coordinate
are the same as for the simulations underlying Fig. 3.
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slope condition >R ( ; ) 013 ) is asymptotically stable, whereas it is
unstable for = +e (corresponding to the negative slope condition

<R ( ; ) 013 ).
Bearing the outcome of the equilibrium and stability analysis in

mind, we study the initial value problem for the system (53)–(56) in the
following way: We first solve the initial value problem of the 2D -
subsystem (55)–(56). The initial condition for this system is close to the
asymptotically stable equilibrium point ( , )e of this subsystem. The
graphs of the solution to this system are displayed in Fig. 7a. We then
solve the initial value problem of (53)–(54) with the ψ - component of
the solution of (55)–(56) as an input function. In Fig. 7b the graphs of
the solution to this system are depicted for different values of the
growth-retardation parameter α. The input parameters used in the
computations underlying these plots are given as in Table 4, except that
we let = = = = 02 4 8 10 .

The case with constant prices in both product markets isolates the
ecological interdependence between the aquaculture and the fishery.
This is demonstrated in Fig. 7b. This means that we assume no market
interaction between the industries and perfect elastic demand in both

markets. A notable feature here is standard fishery adjustments under
an open access regime and a constant fish price where the nondimen-
sional biomass and effort variables oscillate. The biomass variable re-
laxates towards a level determined by the cost-potential price ratio and
the efficiency constant, i.e., =X w qA/ ,f f whereas the fishery effort
settles down on = =E w qKA(1 / ) (1 / )f q e q f f e6 1 . We
notice that since the cost-potential price ratio (wf/Af) is fixed in this
case, the growth-retardation mechanism has no long run impacts on the
fish stock, as long as the strength of the mechanism is below the critical
value. However, the temporal evolution is altered. Furthermore, we
notice how an increase in the growth-retardation parameter causes a
reduced long run harvest volume and thereby lower the fishery effort.
From the initial conditions, shown in Fig. 7b, the fishery will be prof-
itable causing a short run increased effort, which in turn leads to a
reduced biomass density. A reduced fish stock makes the fishery un-
profitable causing a reduction in the effort. The reduced harvest leads
to biomass growth, which again leads to an increase in the effort. The
biomass and effort variables oscillate and relaxate towards the stable

Fig. 7. Numerical example illustrating the behavior of the system (53)–(56) as a function of the growth-retardation parameter α. Input data in the computations are
given in Table 4, except that we let = = = = 02 4 8 10 . The solution of subsystem (55)–(56) with initial condition = =P ( , ) (2.1, 0.45) is depicted in Fig. 7a.
Fig. 7b shows the temporal development of ξ and θ for = 0 (red), = 0.6 (blue), = 1.2 (green) and = 1.8 (turquoise) with ψ presented in Fig. 7a as an input
function and =( , ) (0.8, 0.6) as initial condition.

Fig. 8. Summary of the properties of the existence and stability of equilibrium states for the system (53)–(56), as function of the growth-retardation parameter α.
Here ±

1
( ) and ±

1
( ) are given by (57) and (58), respectively. Horizontal blue line: Stable equilibrium states. Horizontal dotted line: Unstable equilibrium states.

Horizontal red line: Non-existence of equilibrium states. Vertical blue lines at = 2
( ) and = 1

( ) correspond to Qe
( ) merging together with Q2

( ) andQ2
( ) merging

together with Q ,1
( ) respectively, through transcritical bifurcation. Vertical dotted blue lines at = +

2
( ) and = +

1
( ) correspond to +Qe

( ) merging together with +Q2
( )

and +Q2
( ) merging together with +Q ,1

( ) respectively. Notice that the existence and stability theory for the equilibrium states in this case is qualitatively the same as in
the general case (20)–(29).
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equilibrium state. An increase in the growth-retardation parameter, will
result in a stabilization on a lower level of fishery effort.

In Fig. 8 we have presented an overview of the properties of the
equilibrium states of the system (53)–(56) as a function of the growth-
retardation parameter α.

(ii) The case with separate price formation.
Next, let us consider the case with separate price formation. This

means that we assume that the marginal willingness to pay only de-
pends on the market volume for each of the markets isolated. This
parameter regime captures the situation when the harvest volume and
the aquaculture production volume do not influence the price of the
farmed fish and the price of the harvested fish, respectively. This means
that we assume non-existence of cross-market volume mechanisms and
that the two different products are independent in demand. By this
assumption it follows that βi > 0 and = 0,ij ( =i j a f, , ) (i ≠ j). In the
dimensionless setting this assumption corresponds to = = 04 10 . A
detailed analysis of the properties of the dynamical system (20)–(29)
for this case is presented in Appendix B. Here we only recapitulate the
main results. It turns out that the existence and stability theory for the
equilibrium states in this case is qualitatively the same as in subcase i)
in the present subsubsection, with the existence of boundary equili-
brium points of the type ±Q1

( ) and ±Q2
( ) as well as an interior equilibrium

point ±Qe
( ). Moreover, two critical growth-retardation parameters ±

(2)

and ±
(1) with < <± ±0 (2) (1) are detected, hence dividing the α-range

into three subintervals. Thus, the existence regimes and the corre-
sponding stability results for the equilibrium points ±Q1

( ), ±Q2
( ) and ±Qe

( )

as functions of the growth-retardation parameter α exhibit qualitatively
the same properties as in case i) in the present subsection. The results
are also in this case conveniently summarized in Fig. 8.

We finally illustrate the behavior of the dynamical system (20)–(29)
for the case = = 04 10 when where the initial condition is chosen in
the vicinity of its asymptotically stable equilibrium point. The graphs of
the solution to this system are displayed in Fig. 9a and b. The input
parameters used in these computations underlying these plots are given
as in Table 4, except that we let = = 04 10 . We notice that the result
presented in Fig. 9b is similar to the findings summarized in Fig. 7b.
The only differences consist of the inclusion of the direct market vo-
lume impact, with no cross-industry impact present. In Fig. 9b we no-
tice the same type of oscillatory development as in Fig. 7b. However,

since the harvest volume influences prices and thereby makes a lower
catch volume more valuable in the market, the equilibrium biomass
density becomes lower and the effort higher compared to what one
obtains in the constant price case. Also in this case we conclude that an
increased growth-retardation parameter causes a reduction in the long
run fishery effort.

3.3. Existence and stability of interior equilibrium points

3.3.1. Existence of interior equilibrium points
Here we summarize the existence results for equilibrium points

where all the coordinates are strictly positive. Such points are hereafter
referred to as interior equilibrium points. A detailed account of the de-
rivation of these results can be found in Appendix C.

We use here the notation (59) for the interior equilibrium points.
According to Appendix C the coordinates ξe, θe and ψe can be expressed
in terms of the coordinate ηe:

= = = ±V U V( ), ( ) ( ), ( )e e e e e e e
1 (60)

Here U and V are the rational functions

= +

+
U ( )

( ^ )( ^ )
( )( )

.e
e e

e e
11

=
+ +

+ + + + + +
V

U
U U

( )
( ( ) )( )

( ( ) )( ) ( ) ( ( ) )
,e

e e

e e e e

6 3 5

1 3 5 2 5 4 3

in ηe whereas ψ ± are the functions

±± ( ) 1
2

4 .e
e

e14 14
2 2

13
2 2

(61)

In order to ensure the positivity of the coordinates ξe and θe it is ne-
cessary to impose the condition ηe ∈ J where

= + +J ( , ^ ). (62)

Here η ± is given by

= ±± D1
2 12

7 9 12

Fig. 9. Numerical example illustrating the behavior of the system (20)–(29) for the case = = 04 10 as a function of the growth-retardation parameter α. Input data in
the computations are given in Table 4, except that we let = = 04 10 . (2.1861,0.2944) is the asymptotically stable equilibrium state of the 2D subsystem (20)–(24),
whereas (2.1861,0.8492) is a saddle point. The solution of subsystem (25)–(26) with initial condition =( , ) (2.1, 0.45) close to the asymptotically stable equili-
brium point is depicted in Fig. 9a. Fig. 9b shows the temporal development of ξ and θ for = 0 (red), = 0.6 (blue), = 1.2 (green) and = 1.8 (turquoise)
(corresponding to the points K, L, M and N, respectively, in Fig. B.13). The function ψ presented by the graph in Fig. 9a acts as an input function. =( , ) (0.8, 0.6) is
the initial condition for (ξ, θ).
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with the discriminant D given as (39). ±̂ is given by(38), respectively.
Finally, but not least, the parameters ϱ, γ13 and γ14 must satisfy the
condition (40) in order to guarantee the positivity of the coordinate ψe.

In the procedure for determination of the interior equilibrium points
we conveniently distinguish between the cases = 0 and α > 0.

1. The case = 0
The interior stationary points Qe are determined by the non-negative
solutions of the equation

= J( ) 1, .e e (63)

where φ is defined as

= +V U V( ) ( ) ( ) ( )e e e e
1 (64)

The maximal number of solutions to the Eq. (63) in the interval J
defined by (62) for which φ′(ηe) ≠ 0 is 7. The change of the number
of equilibrium points occurs when the nontransversal intersection
conditioned by =( ) 1,e =( ) 0e takes place. This typically
happens when one of the parameters in the function φ passes
through a critical, bifurcation value.
The procedure for determining the interior equilibrium points Qe

proceeds as follows: We first find all ηe satisfying the Eq. (63). We
compute the coordinates ξe, θe and ψe by means of (60). We notice
here that each ηe gives rise to two interior equilibrium points
through the expression (61).
Our main result regarding existence of interior equilibrium points
can thus be summarized in the following theorem:

Theorem 1. In the case = 0, the system (20)–(29) has at least two
interior equilibrium points. The generic situation consists of an even number
of interior equilibrium points. The maximal number of such equilibrium
points is 14.
For the input parameters given by Group 2 - Group 4 in Table 4, we find
that the numerical solution of (63) is given by = 2.3769e . Now, by
following the procedure outlined above, we readily find that the
interior equilibrium points denoted by Qe

( ) and +Qe
( ) are given as

= =

= =+

Q

Q

( , , , ) (0.3626, 0.6374, 2.3769, 0.3629),

( , , , ) (0.3626, 0.6374, 2.3769, 0.6889)

e e e e

e e e e

( )

( )

when the input parameters are
2. The case α > 0

In this case, interior stationary points Qe are determined by non-
negative solutions ηe of the equation

=± ( ; ) 1.e (65)

where the functions ± + +: [ , ^ ] are defined by

+± ±( ; ) ( ) ( ).e e e (66)

Here the function φ is defined by means of (64). The main result on
the interior stationary points Qe in the case α > 0 can be summar-
ized as follows:

Theorem 2. Assume < < +0 (2) where +
(2) is given by

=±
+

± +

1 (^ )
(^ )

.(2)

(67)

and that +̂ defined by (38)-(39) satisfies the condition (40). Then the
system (20)–(29) has at least two equilibrium points of the type Qe in the
interior of Σinv. If <+ ,(2) (2) the system (20)–(29) has at least one
equilibrium solution.
Based on Theorem 2 we easily arrive at the following uniqueness
result:

Corollary 1. Assume < < +0 (2) where +
(2) is given by (67) and that +̂

defined by (38)-(39) satisfies the condition (40). Moreover, assume that the

functions ± + +: ( , ^ ) are monotonically decreasing functions. Then the
system (20)-(29) has two equilibrium points, denoted by +Qe

( ) and Qe
( ) in

the interior of Σinv. If <+ ,(2) (2) the system (20)-(29) has one and only
equilibrium point Qe

( ). For , no interior equilibrium points exist.
For the input parameters listed in Table 4, we find by using the formula
(67) that the bounds on α are given as

= =+1.7402, 1.0460.(2) (2) (68)

consistent with the results in Section 3.2.2. Moreover, by following
the computational procedure outlined above we find that the co-
ordinates for the interior equilibrium points ±Qe

( ) emerging from the
unique solution of =± ( ; ) 1e on the interval + +( , ^ ] are given by

=

=+

Q

Q

(0.3435, 0.2813, 2.4004, 0.3752),

(0.3272, 0.0258, 2.4192, 0.6470)

e

e

( )

( ) (69)

for this choice of input parameters and = 1.

A detailed account of the derivation of the results in the present
subsection is given in Appendix C.

3.3.2. Stability of interior equilibrium points
The boundary equilibrium point of the type Q2

( ) introduced in
Section 3.2.2 is given as

=Q (0.6123, 0, 2.4212, 0.3877)2
( ) (70)

for the input parameters listed in Table 4 and with = 1. Since < (2)

in this case, this equilibrium point is in accordance with the theory
developed in Section 3.2.2 unstable.

In order to assess the stability of the equilibrium pointQe
( ) given by

(69) we proceed by computing the Jacobian matrix of the vector field F
defined by (32) evaluated at this equilibrium point and thereafter de-
termine the eigenvalues of this matrix. This numerical computation
gives complex eigenvalues =i, 1, 2, 3, 4i with negative real parts, i.e.,

= + = =
=

i i0.1990 0.4953 , 0.1990 0.4953 , 0.1767,
1.7875,

1 2 3 4 thus

showing thatQe
( ) is an asymptotically stable focus. This result is indeed

consistent with the small amplitude damped oscillatory behavior about
the equilibrium state Qe

( ) summarized in Fig. 10 and in Fig. 11. In
Fig. 10 the initial condition is selected in the vicinity of Q ,e

( ) whereas
for Fig. 11 the initial condition is chosen close to the boundary equi-
librium point Q2

( ) given as (70). The latter figure shows that Q2
( ) given

by means of (70) acts as expected as an repellor in this parameter re-
gime.

The initial value in the fishery effort underlying the computation
leading to Fig. 10 is different from the initial value for the computation
producing Fig. 11. Fig. 10 describes a situation where this effort is
higher than the equilibrium value, while it is just above zero in Fig. 11.
This difference leads to different temporal developments in the state
variables. In Fig. 10 we observe that the wild fish stock is decreasing in
the transient phase as a result of relatively high effort in the harvest
activity. For the case demonstrated in Fig. 10 where the effort is rela-
tively low the biomass will increase in the transient phase. The outcome
of this makes the fishery more profitable, which causes an increase in
the harvesting effort. In both cases we notice the damped oscillatory
behavior about the equilibrium state.

We next assess the stability of the interior equilibrium points ±Qe
( ) as

a function of the growth-retardation parameter α by fixating the para-
meters = …i, 1, 2, , 14i and ϱ. The description of this assessment pro-
cedure is outlined in Appendix D. We arrive at the following conclusion:
For the input parameters in Table 4 we conclude that the equilibrium
point Qe

( ) given by (69) is asymptotically stable for all [0, ),(2)

whereas the equilibrium point +Qe
( ) is unstable for all +[0, )(2) . In-

terestingly, we observe that the positive slope condition R′(ψe, γ13) > 0
for the remediation function is fulfilled for Q ,e

( ) whereas for +Qe
( ) we
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have R′(ψe, γ13) < 0 for the input parameters listed in Table 4.
We observe that = +̂e is a solution of the system (C.13)–(C.14)

when = ±
(2). In this limiting case =U ( ) 0e from which it follows that

= 0e . This means that the equilibrium points ±Qe
( ) merge together with

the boundary equilibrium points ±Q2
( ). For > ± ,(2) we have non-ex-

istence of the corresponding interior equilibrium points ±Qe
( ). Cf.

Corollary 1. Shoshitaishvilis theorem8 implies that +Qe
( ) is unstable for

= +
(2). Regarding the relationship between the interior equilibrium

point Qe
( ) and the boundary equilibrium point Q2

( ) the following pic-
ture thus emerges: The point Qe

( ) is asymptotically stable for
<0 (2) whereasQ2

( ) is unstable in the same parameter regime. For
= ,2

( ) Qe
( ) merges together with Q ,2

( ) and vanishes for > (2).Q2
( )

is asymptotically stable when < <(2) (1). The previous stability
analysis of Q2

( ) together with the results in this subsection is signalling
that a transcritical bifurcation takes place when = (2). We conclude
that the analysis of the existence regimes and the corresponding sta-
bility results for the equilibrium points ±Q1

( ), ±Q2
( ) and ±Qe

( ) produces

qualitatively the same results as for the special cases investigated in
Section 3.2.3. Fig. 8 gives a summary of these results.

Interestingly, the value of (2) given by (68) is less than the nu-
merical values of (2) computed for the two special cases explored in
Section 3.2.3. From the viewpoint of bioeconomics this makes sense:
For these special cases we have no cross-market impacts. Both market
prices are either constant or only influenced by the own industry vo-
lume supplied to the consumers. The consequence of this simplification
is that an increased aquaculture production will not reduce the profit-
ability in the fishery sector through the price mechanism. Therefore we
expect a higher value of the critical growth retardation parameter (2)

in these special cases as compared to the general case.

3.3.3. Low aquaculture production effect on the biomass growth
(0 < α ≪ 1)

We want to study the model (7), (8), (16) and (18) in the limit
+0 . This means that we assume the effect on biomass growth from

aquaculture production to be weak (or negligible). Hence, this case
isolates the product market interactions between the two industries.
Mathematically speaking, we notice that the right hand side of the 3D

Fig. 10. Numerical example illustrating the behavior of the full system the
system (20)–(29). The nondimensional biomass variable ξ (green), the non-
dimensional effort variable θ (turquoise), the nondimensional effort variable
η (red) and the nondimensional accumulated pollution ψ (blue curve) as
function of the nondimensional time τ. Input parameters are given in Table 4
and = 1. The initial condition is =( , , , ) (0.5, 0.5, 2.1, 0.45), which is
close to Qe

( ). The η - and ψ-coordinate of the initial condition should be fixed
as in Fig. 3. The insets demonstrate the damped oscillatory nature of the
stability.

Fig. 11. Numerical example illustrating the behavior of the full system the
system (20)–(29). The nondimensional biomass variable ξ (green), the non-
dimensional effort variable θ (turquoise), the nondimensional effort variable
η (red) and the nondimensional accumulated pollution ψ (blue curve) as
function of the nondimensional time τ. Input parameters are given in Table 4
and = 1. The initial condition is =( , , , ) (0.5, 0.01, 2.1, 0.45), which is
close to the unstable boundary equilibrium point Q2

( ) given by (70). The
insets demonstrate the damped oscillatory nature of the stability.

8 See Chapter 6 in Arnold (1988).
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autonomous subsystem (20)–(22) does not depend on ψ when = 0.
Hence, we can analyze this subsystem independently of the pollution
Eq. (23) and view the component η as an input function in the latter
equation.

In Fig. 12 we demonstrate the effect of weak aquaculture production
effect on the biomass growth (0 < α ≪ 1) numerically. The input
parameters are given in Table 4. The initial condition is in the vicinity
of the boundary equilibrium point Qe

( ). This figure confirms numeri-
cally the asymptotic stability of the interior equilibrium point as well as
the predictions of Vasil’eva et al. (1995) with respect to regularly
perturbed dynamical systems. See Appendix E for more details.

Fig. 12 describes the case with all biological and economic me-
chanisms present in our model. In the special case without negative
growth impact ( = 0) we observe the wellknown oscillatory temporal
development. The presence of low and moderate growth-retardation
causes a reduced fishery effort and fishery biomass. Unlike the special
cases in Figs. 7 and 9, the cross-price effects are present in Fig. 12. As a
consequence of this mechanism we notice that increased negative bio-
logical externalities will stimulate aquaculture production and accu-
mulated pollution from this industry. This is caused by the cross-price

market interaction, where a reduced wild fish volume induces a higher
market value for the aquaculture products, and thereby making the
aquaculture industry more profitable.

4. Concluding remarks and outlook

As 70% of the Earth’s surface is covered by sea, the management of
the sea and the coastal zones has become more important. Researchers
from different disciplines often use the notion blue economy when
studying the inter-relations between different marine economic activ-
ities. This includes commercial industries and their interplay with
physical and ecological systems in coastal zones and the oceans. There
will be aquaculture production for feeding the still growing population
of the world. A key issue in interdisciplinary marine research is how to
achieve an economic sustainable usage of the marine resources. The
present contribution is within the auspices of this type of research. We
have proposed a conceptual and simplified theoretical model for pos-
sible interrelations between two commercial marine activities: aqua-
culture production, which possibly induces marine pollution, and an
industry harvesting a wild fish stock. This model assumes the form of a

Fig. 12. The temporal evolution of the 4 state variables ξ (green), θ (turquoise), η (red) and ψ (blue) in the regime of low aquaculture production effect on the
biomass growth. The input parameters are given in Table 4 with = 0 (solid line), = 0.2 (dashed line) and = 0.5 (dotted line). The initial condition is selected
close to the asymptotically stable interior equilibrium point Qe

( ) for = 0.

H. Bergland, et al. Ecological Complexity 43 (2020) 100853

15



nonlinear autonomous dynamical system. We identify and characterize
possible equilibrium states within the framework of this system.

4.1. Main results

When investigating the impact pollution from aquaculture has on
the growth on the wild fish stock, we found that a necessary (but not
sufficient) condition for stability are low and moderate values of the
emission remediation parameter. Three intervals of the growth-re-
tardation parameter are identified in this regime of the emission-re-
mediation ratio. The regime of low and negligible influence of the
pollution on the biomass evolution gives rise to the existence of an
asymptotically stable equilibrium state characterized by a finite bio-
mass and a finite effort in the fishery. In the same regime we identify
two unstable equilibrium states of which the former one is character-
ized by no effort in the fishery, whereas the latter one is characterized
by no biomass and no effort. When the growth retardation parameter
exceeds a certain threshold, the fishery becomes unprofitable and the
equilibrium state characterized by no effort in the fishery becomes
asymptotically stable. By a further increase in this parameter above a
higher threshold value, also the biomass are wiped out and the equili-
brium state characterized by no biomass and no effort becomes
asymptotically stable.

Fig. 8 summarizes the findings regarding the existence and stability
of equilibrium states as a function of the growth-retardation parameter
α. A notable feature is that the structure of this dependence is the same
as the one observed for the existence and stability properties of the
equilibrium states as a function of the growth-retardation parameter α
in the simplified models for fixed prices and separate price formation.
The results regarding the existence and stability of the equilibrium
states seem to be sensible from a bioeconomic viewpoint. Our findings
confirm that when we have a small and moderate biomass growth-re-
tardation effect, the simple bioeconomic effects and the conventional
interrelations between the two seafood markets are present. The equi-
librium is characterized by activities in both industries. Moreover,
when we are in the intermediate value regime of the biomass growth
retardation, the harvesting industry becomes unprofitable due to pol-
lution, even in the case with a finite wild fish stock. Finally, for even
higher values of the biomass growth-retardation parameter, the model
shows that the stable equilibrium state also means that the wild fish
stock vanishes. We are not aware of any papers discussing this type of
global properties of the retardation impact.

4.2. Possible extensions

Our model is based on several simplifying assumptions. Other pos-
sible interesting factors could be relevant when elaborating on the
functioning between ecology, marine industries and consumption
markets for seafood.

For instance, we have only considered one typical exploited wild
fish stock and the consequences of aquaculture production and pollu-
tion on the growth potential of that fish stock and the associated pro-
duct market. We analyze a conceptual model without a specific context.
In reality, there are many economic activities in the coastal zone and in
the oceans, and pollution stems from many sources related to such
production and consumption, not only sea farming. In addition, the
effects from emissions can be more complex, and the dynamical
structure of the influences on the fisheries could be more sophisticated
than in our simple model. Widening the biological focus could reveal
different effects on various species that are interrelated in the ecological
system, and such an analysis could capture important dynamical as-
pects of pollution in the fisheries.

Furthermore, applicability of the present modelling framework is
limited to problem for which spatial effects can be ignored. In line with
this we expect that our model can be useful when dealing with pro-
blems for which transport effects can be neglected. This could be the

case in closed or strictly coastal ecosystems. On the contrary, physical
effects like advection could play a significant role when studying the
transport of pollutants and wild fish in for example open ocean eco-
systems. A possible extension of the present work could therefore
consist of taking into account spatial effects such as advection-diffusion
effects, in a way analogous to Heilmann et al. (2018). The diffusion
effects describe random movements of the pollutants and the wild fish
population, while the advection terms account for the fitness taxis i.e.
the preference of both the pollutants and the wild fish for moving to-
wards more favorable regions. This will result in a coupled system of
nonlinear partial differential equations of the advection-diffusion type.
A further development consists of introducing more biological realism
into this modeling framework by taking account of nonlocal diffusion
effects and/or encounter probabilities between pollutants and the wild
fish, thus ending up with a spatially nonlocal and nonlinear advection-
diffusion system. Such systems are generically known for supporting
spatial and spatio-temporal patterns, caused by a Turing type of in-
stability. See Heilmann et al. (2018), Murray (2001) and the references
therein for more details. The approaches for dealing with actual ad-
vection-diffusion systems can also be found in Cosner (2014).

Another possible extension consists of adding time dependent sto-
chastic effects. Quantities in both model blocks are subject to un-
certainties, and could because of this be treated as stochastic processes.
For example, it would be of interest to model the pollution state pro-
ducing a maximal remediation capacity as a stochastic variable. This
will eventually lead to a modeling framework, which must be dealt with
by using the theory of stochastic dynamical systems as elaborated in
Øksendal (2003). This problem might be a topic for future research.

Still another possible extensions could consist of taking absolute
and/or distributed time lag into account in different parts of the mod-
elling blocks, using the approaches presented in Cushing (2013).

Our analysis presumes that the fishery is characterized by an open
access regime. In future investigations one should also focus on en-
vironmental and fishery policies. Such policies could be based on
maximizing social welfare in a dynamic perspective, i.e., identifying
preferred allocations of possible stable equilibrium states of economic
growth, size of the fish stock, the effort in harvesting and volume of
effort and production of sea farmed fish. Here public regulatory me-
chanisms can play a crucial role. Such mechanisms could work to limit
the emissions impact from aquaculture, or find ways of increasing the
remediation capacity. Regulations could take the form of renovation
policies, or use indirect means such as taxes and subsidies to bring
about a preferable development. Developing the model further by
taking into account one or more of the possible complicating aspects
mentioned above, is an interesting task for future research in the field of
the blue economy, where the primary focus is on aquaculture produc-
tion, marine pollution and fish harvest. In particular, empirical studies
focusing on interrelations between wild fish and aquaculture, based on
dynamical modeling, would be needed to decide the relevance of the
different equilibria we have studied in our theoretical model.
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Appendix A

Fundamental properties of the dynamical system (20)–(29).
The dynamical system (20)–(29) has the following property summarized in the following theorem:

Theorem 3. Let Φτ denote the flow of the dynamical system (20)–(29). The set Σinv defined by

= >{( , , , ) ; 0, 0, 0, 0}inv

is an invariant set i.e. Φτ(Σinv)⊆Σinv which means that an orbit starting in Σinv will remain in Σinv.

Proof. Introduce the vector field F2 defined as

=F ( , , , )
( , , , )

( , , , )
.2

Let e and e denote the unit vectors along the ψ - and η - axis, respectively. Simple computation reveals that

= >

= H

F e

F e

( , , , 0)· 0 on the positive -axis

( , , , )· ( , , , ).

2

2

We notice that H is singular for points located at the hyperplane = 0. This means that no orbits of the system (20)–(29) can cross this hyperplane.
We conclude that solutions of the 2D subsystem = ,d

d =d
d starting in the first quadrant of the ψ, η - plane will remain in that quadrant. Here we

tacitly view ξ and θ as given functions of τ.
Next, let us consider the subsystem (20)–(21). This subsystem is of the Lotka-Volterra type. Then, by appealing to Lemma 2 in Appendix B in

Bergland et al. (2019), we conclude that ξ(0) > 0 (θ(0) > 0) if and only if ξ(τ) > 0 (θ(τ) > 0) and =(0) 0 ( =(0) 0) if and only if =( ) 0
( =( ) 0) for τ > 0.

Hence, we can conclude that any solution of the full system (20)–(23) with initial condition in Σinv remains in Σinv. □

Appendix B

The analysis of case with separate price formation in the markets.
The dynamical system (20)–(29) simplifies to

=d
d

(1 ), (B.1)

= +
+

d
d

,1
2

3
6

(B.2)

= ±
d
d

f ( ; ),2 (B.3)

=d
d

R ( ; ).14 13 (B.4)

when = = 04 10 . Here

+± +f ( ; )
( )

( )( ).2
12

2
9 (B.5)

and

= ±± D1
2 12

7 9 12
(B.6)

with the discriminant D given as (39). We use the same approach as in the case with constant product prices: We readily find boundary equilibrium
points of the type ±Q1

( ) and ±Q ,2
( ) i.e.,

=±Q (0, 0, , ),e e1
( ) (B.7)

= = <±
± ± ± ± ± ±Q ( ( ), 0, , ), 1/ , 0 ,e2

( ) (1) (1) (1)
(B.8)

where = = +e whereas = ±e is given as (34) with = +, i.e.,
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±±
+

+
1

2
4 .14 14

2 2
13
2 2

Here we have tacitly assumed that < <+0 2
14

13
to ensure ψ ± to be real (and positive). We notice that the boundary equilibrium points ±Q1

( ) and
±Q2

( ) investigated in Sections 3.2.1 and 3.2.2, respectively, deform to the equilibrium points (B.7) and (B.8) when +, 04 10
( ). The stability results

for ±Q1
( ) and ±Q2

( ) given by (B.7) and (B.8) are qualitatively the same as the results derived in Sections 3.2.1 and 3.2.2: +Q1
( ) and +Q1

( ) are unstable.Q1
( )

is asymptotically stable for > (1) and unstable for <0 ,(1) whereas Q2
( ) is asymptotically stable for < <(2) (1) and unstable for

<0 (2). The equilibrium, states ±Q2
( ) merge together with ±Q1

( ) for = ±
(1) and cease to exist for > ±

(1). We have a transcritical bifurcation for
= (1).
Next, let us study existence and stability of interior equilibrium points =±Q ( , , , )e e e e e

( ) . We first observe that = +,e and consequently that
= ±e where ψ ± is given as (34) with = +. The conditions = =( , , , ) 0, ( , , , ) 0 can now be written as

+ = µ ,e (B.9)

+
+

= 01
2

3
6

(B.10)

where μe is defined by

µ 1 .e e (B.11)

We readily observe that a necessary condition for having strictly positive solutions of this system of equations is given by 0 ≤ α< αe where αe ≡ 1/
ψe. This restriction imposed on α implies that 0 < μe ≤ 1. Moreover, we must impose the condition that 0 < ξ, θ< μe. From the last equation in this
hierarchy, we find that

= =
+( )

( )
.2

6 1

3 2 1 3 3 6

6 1 (B.12)

Then by inserting this expression into the first equation we readily find that, ξ satisfies the cubic equation

=µ( , ) 0e3 (B.13)

where 3 is the cubic polynomial

+ + +µ µ µ( , ) ( ) ( )e e e3 1
3

6 1
2

6 2 1 3 3 6 (B.14)

in ξ, parameterized by means of μe. Simple analysis reveals that

= ± = >
±

µ µlim ( , ) , (0, ) 0,e e3 3 3 6 (B.15)

= +
+

<µ µ µ µ µ( , ) ( )( * ), * 1 1,e e e e e3 1 3 2 1
6

2
3 6 (B.16)

=µ µ µ µ( , ) ( ) .e e e e3 1
6

1
2 1 3 (B.17)

Moreover, 3 always has extremal points of which one is always positive. In fact, we find that

= + + + + + >µ µ µ µ( ) 1
3

( 1
2

) 3
4

3 ( ) 0m e e e e
1

6 1 6 1
2

1
2 2

1 2 1 3

is a strictly positive local minimum point of 3. Since <µ* ,e
6
1
we arrive at the following conclusions: For μe < μ*, we get > >µ µ µ µ( , ) 0 ( , )e e e e3 3

from which it follows that 3 has no positive zeros in the interval (0, μe). In the complementary regime <µ µ* 1,e e we find that <µ µ( , ) 0e e3 . In this
case we conclude that 3 has one and only positive zero, say = µ( ),e1 1 for which ξ1(μe) < μe. For the transition value =µ µ*,e e we readily find that

=µ µ( *) *e e1 . By appealing to (B.11), (B.16) and (52) (with = 04 ), we conclude that there is a unique interior equilibrium point for < ±0 ,(2)

whereas for > ±
(2) no such equilibrium point exists.

The result of this analysis is summarized in Fig. B.13. The input parameters underlying this computation are given in Table 4, except that we let
= = 04 10 . = = 0.2944e is the ψ - coordinate of the asymptotically stable equilibrium point of the subsystem (B.3)–(B.4). µ*e defined by (B.16) is

given as =µ* 0.3333e . It corresponds to = 2.2644(2) through the definition (B.11). The ξ - values of the points marked with K, L, M and N are ξ -
coordinates of four different interior equilibrium points of the system (B.1)–(B.4) for different values of = 0, = 0.6, = 1.2 and = 1.8, re-
spectively. Notice that these four α - values produce the four graphs in Fig. 9b.

Finally, we study the stability problem for the case when = = 04 10 . Let Qe denote an interior equilibrium point. The stability of the equilibrium
point depends sensitively on the slope of the remediation function evaluated at = e: Qe is asymptotically stable, if the positive slope condition
R′(ψe, γ13) > 0 is fulfilled, whereas it is unstable if R′(ψe, γ13) < 0. This means that the points K, L, M and N in the graph displayed in Fig. B.13
correspond to asymptotically stable equilibrium points of the system (B.1)–(B.4).

We finally notice that when = ±
(2) (corresponding to =µ µ*e e ),

+0 ,e i.e. which means that the equilibrium states ±Qe
( ) merge together with

the boundary equilibrium points of the type ±Q2
( ).
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Appendix C

Existence of interior equilibrium points.
Here we detail the procedure in Section 3.3.1 for the detection of interior equilibrium points of the type (59).
We first show that ξe and θe can be expressed in terms of ηe. The condition =( , , , ) 0e e e e enables us to express ξeθe as a function of ηe i.e.

= U ( ).e e e (C.1)

Here Ue is the rational function

= +

+
U ( )

( ^ )( ^ )
( )( )e

e e

e e
11 (C.2)

where

= ±± D1
2 12

7 9 12
(C.3)

whereas ±̂ is given by (38). The discriminant D is given as (39). We notice that < < +0 , < < +
^ 0 ^ and <+ +̂. For the Group 3 parameters

Fig. B1. The graphs of the two functions = =µ µ( )e e0 and = µ( )e1 on the interval (0,1] as functions of =µ 1e e. = µ( )e1 and = µ( )e2 are strictly positive
zeros of the polynomial 3 defined by (B.14). Input parameters in the computations are given in Table 4, except that we let = = 04 10 . = = 0.2944e is the ψ -
coordinate of the asymptotically stable equilibrium point of the subsystem (B.3) - (B.4). µ*e defined by (B.16) is given as =µ* 0.3333e . It corresponds to = 2.2644(2)

through the definition (B.11). The ξ - values of the points marked with K, L, M and N are ξ - coordinates of four different interior equilibrium points of the system (B.1)
- (B.4) for different values of = 0, = 0.6, = 1.2 and = 1.8, respectively. Notice that these four α - values are labeling to the four graphs in Fig. 9b.

Table 4
Group 2 - Group 4 parameters used in some numerical examples in the present paper.

Input parameters

Group 2: = = =2, 0.5, 0.5,1 2 3 = = =0.25, 1, 14 5 6
Group 3: = = =2, 0.5, 0.5,7 8 9 = = =0.25, 1, 110 11 12
Group 4: = = =0.5, 2.5, 113 14

Table 5
The number of positive solutions of the Eq. (33) in different parameter re-
gimes.

Parameter regime The number of positive solutions
of the Eq. (33)

< <0 14
2 13

2

= 14
2 13

1

> 14
2 13

0
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listed in Table 4, we find that = 0.6861, =+ 2.1861, =^ 0.6712 and =+̂ 2.4212.
We conclude that the condition U(ηe) > 0 is fulfilled if ηe ∈ J where J is the open interval

= + +J ( , ^ ). (C.4)

Simple computation reveals that U′(ηe) < 0.
The condition =( , , , ) 0e e e e with (C.1) makes it possible to determine ξe as a function of ηe. We readily find that

= V ( ).e e (C.5)

where the function V is given as

=
+ +

+ + + + + +
V

U
U U

( )
( ( ) )( )

( ( ) )( ) ( ) ( ( ) )
.e

e e

e e e e

6 3 5

1 3 5 2 5 4 3 (C.6)

Fig. C.14 shows the graphs of the functions U and V defined by (C.2) and (C.6), respectively.
Finally, we find from (C.1) and (C.5) that

= U V( ) ( ).e e e
1 (C.7)

The next step of the analysis of the existence of equilibrium points of the type Qe proceeds as follows: Let φ be the function

= + = +V U V( ) ( ) ( ) ( )e e e e e e
1 (C.8)

where U and V are defined by (C.1) and (C.6), respectively. The function ++ +: ( , ^ ] (0, ) is a smooth and positive function for which the
properties

= +
+

+
lim ( ) ,e

e
( ) (C.9)

= =
+ ++ +

++

V(^ ) (^ ) 1

(^ )
1
6

2
3 6

4

6 5 (C.10)

hold true. The profitability condition (14) (which is equivalent with the inequality (31)) implies that

<+(^ ) 1. (C.11)

In the remaining part of the procedure for determination of the interior equilibrium points we distinguish between the cases = 0 and α > 0.

1. The case = 0
By inserting (C.5) and (C.7) into the equation = =( , , , ) 1 0,e e e e e e we obtain

=( ) 1.e (C.12)

The conditions (C.9)–(C.11) imply that the Eq. (C.12) has at least one solution on the open interval = + +J ( , ^ ). Moreover, for the case φ′(ηe) ≠ 0,
the Eq. (C.12) has a an odd number of solutions in this interval. As the Eq. (C.12) can be recasted into a 8th degree polynomial equation, we
conclude that the maximal number of solutions to the Eq. (C.12) in the interval J for which φ′(ηe) ≠ 0 is 7. The change of the number of
equilibrium points takes place when the nontransversal intersection =( ) 1,e =( ) 0e . The actual findings are summarized as Theorem 2.
Fig. C.15 shows the graph of the function φ defined by (C.8) when the input parameters are given by Group 2 and Group 3 in Table 4. In this case
the function φ is strictly decreasing on the interval + +( , ^ ], thus showing that the Eq. (63) has a unique solution on that interval.

Fig. C1. The graphs of the functions U and V defined by (C.2) and (C.6), respectively. The input parameters are given by Group 2 and Group 3 in Table 4.
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2. The case α > 0
The condition =( , , , ) 0 yields (61). Then, by combining this result with the condition =( , , , ) 0,e e e e we readily find that ηe satisfies
the equation

=± ( ; ) 1.e (C.13)

where the function ± + +: [ , ^ ] is defined by

+± ±( ; ) ( ) ( ).e e e (C.14)

Here the function φ is defined by means of (C.8). We tacitly assume that the condition (40) is fulfilled in order to ensure that the functions ψ ±
are realvalued (and positive) on the interval + +[ , ^ ]. Since <+(^ ) 1 and < < +± +0 (^ ) , we find that ± +(^ ; ) is bounded for finite α.
Moreover, we observe that the functions φ ± are continuous with respect to α. We therefore conclude that

= + <± + + ± +(^ ; ) (^ ) (^ ) 1 (C.15)

for < ±0 (2). Here we have used the fact that ±
(2) defined by (52) can be expressed as

=±
+

± +

1 (^ )
(^ )

.(2)

(C.16)

Fig. C2. The graph of the function φ defined by (C.8). The input parameters are given by Group 2 and Group 3 in Table 4.

Fig. C3. The graph of the functions φ ± defined by (C.14). The input parameters are given by Table 4 and = 1.
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By appealing to the condition (C.9) and the boundedness of ± +( ), we find that

= +±
+
+

lim ( ; )e
e (C.17)

for all α. We then make use of the continuity of φ ± with respect to ηe to conclude that the equations in (C.13) have at least one solution in the
interval = + +J ( , ^ ) for < ±0 (2)9. We recall that <+

(2) (2). Hence for < +0 (2) we are guaranteed at least one solution of each of the
equations =+ ( ; ) 1e and =( ; ) 1,e whereas for <+

(2) (2) we can only conclude that =( ; ) 1e has at least one solution. We have
thus proved Theorem 2.
The content of Theorem 2 and Corollary 1 is visualized in Fig. C.16.

Remark 1. The functions ± + +: ( , ^ ) depend continuously on the input parameters in Group 2 - Group 4. This means that the monotonicity
property for these functions visualized in Fig. C.16 also holds true for some open neighborhood in the parameter space about the input parameters
used in the computations underlying this figure. We suspect that this property holds true in general. An investigation of this problem will, however,
lead to cumbersome calculations. We have therefore decided not to pursue this problem in detail, but rather list it is as an open problem.

Appendix D

Stability of interior equilibrium points.
Here we present the procedure for assessing the stability of the interior equilibrium points ±Qe

( ) as a function of α. This means that we fixate the
parameters = …i, 1, 2, , 14i and ϱ whereas we let the growth-retardation parameter α vary.

We first derive the formal expression for the Jacobian ±Q( )e4
( ) ( ) of the vector field F defined by (32) evaluated at this equilibrium. Doing this we

readily find that it can be written as

=±

± ± ±

± ± ±

Q

Q Q Q

Q Q Q

R

( )

0

( ) ( ) ( ) 0

( ) ( ) ( ) 0

0 0 ( ; )

.

e

e e e

e e e e e e

e e e

e

4
( ) ( )

( ) ( ) ( )

( ) ( ) ( )

14 13 (D.1)

Here the partial derivatives ±Q( ),e
( ) ±Q( ),e

( ) ±Q( ),e
( ) ±Q( ),e

( ) ±Q( )e
( ) and ±Q( )e

( ) are given as

= +
+

+
+

=
+

=
+

=
+

=
+

=
+

+

±

±

±

±

±

±

Q

Q

Q

Q

Q

Q

( )
( )

,

( )
( )

,

( )
( )

,

( )
( )

,

( )
( )

,

( ) (
( )

) .

e
e e e

e
e

e e

e
e

e

e
e

e e
e

e
e

e e
e

e
e

e

( )
1

4

5

2 3

3
2

( ) 2
2

3
2

( ) 4

5
2

( ) 10

11
2

2

( ) 10

11
2

2

( ) 8

9
2 12

2

In the process of deriving the expressions for these partial derivatives we have made use of the equilibrium conditions = 0 and = 0. Moreover,
for convenience we have used the notation =±Q ( , , , )e e e e e

( ) .
The characteristic polynomial ±4,

( ) of the Jacobian ±Q( )e4
( ) ( ) which for each α ∈ [0, α ±) is defined as

=±
±det Q( ) { ( )}e4,

( )
4 4

( ) ( ) (D.2)

is a quartic polynomial in λ.
The coefficients of this polynomial are smooth functions of α. Noticing that the constant term ±a4

( ) of this polynomial is equal to ±det Q{ ( )}e4
( ) ( ) .

Therefore we can conclude that the corresponding interior equilibrium point is unstable for α for which <±det Q{ ( )} 0e4
( ) ( ) . In the complementary α -

regime we must resort on the Routh-Hurwitz criterion for a quartic polynomial as described in Appendix F in order to assess the stability. We proceed
as follows: The stability analysis is based on the Routh - Hurwitz determinants ±D ,1

( ) ±D ,2
( ) ±D3

( ) and ±D4
( ) defined in Appendix F. These determinants

are smooth functions of α. Noticing that = >± ±D tr Q( ) { ( )} 0,e1
( )

4
( ) ( ) the stability assessment procedure is summarized in the study of the com-

posite map

9 Notice that this result does not exclude the possibility for the equations in the system (C.13)–(C.14) to have solutions for the complementary α - regime. We do not
pursue a study of this problem here, however.
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±
±

±

± ± ±

Q

D D D

[0, ) ( ) ( )

( ( ), ( ), ( ))

D
e

D

F

(2) ( .1)
4
( ) ( ) ( .2)

4,
( )

( .2)
2
( )

3
( )

4
( ) (D.3)

The composite map (D.3) thus defines a parameterized curve in the
± ± ±D D D, ,2

( )
3
( )

4
( ) - space where ±[0, )(2) . The Routh - Hurwitz criterion implies that we have an α-value, say = ,0 producing a point in the

interior of the first octant of this space if and only if the real part of all the zeros of the characteristic polynomial ±4,
( )0 is strictly negative. Since the

parameterized curve in the ± ± ±D D D, ,2
( )

3
( )

4
( ) - space is a smooth curve, we can argue by continuity that there is an open subinterval about α0 producing

zeros of ±4,
( ) with the same property i.e. with negative real parts. Such α - values give rise to asymptotically stable equilibrium points. For α - values

giving rise to curve segments located outside the first octant in the ± ± ±D D D, ,2
( )

3
( )

4
( ) - space, the corresponding equilibrium points are unstable.

For the equilibrium pointQe
( ) given by (69), we readily find that the corresponding Routh - Hurwitz determinants D ,2

( ) D3
( ) and D4

( ) are strictly
positive for the case = 1 i.e. =D (1) 2.5796,2

( ) =D (1) 1.26573
( ) and =D (1) 0.1139,4

( ) which means strictly negative real part of all the zeros of 4
(1).

This result is indeed consistent with the direct computation of the eigenvalues =i, 1, 2, 3, 4i of the Jacobian Q( ),e4
(1) ( as mentioned in the

Section 3.3.2.
This concrete example is also consistent with the findings summarized in Fig. D.17: In this figure the α - variation of the Routh - Hurwitz

determinants D ,2
( ) D3

( ) and D4
( ) for the characteristic polynomial 4,

( ) corresponding to Qe
( ) are displayed. The input parameters used in the

computations underlying these figures are given in Table 4. We observe that the Routh - Hurwitz determinants D ,2
( ) D3

( ) and D4
( ) are strictly

Fig. D1. The Routh-Hurwitz determinants D ,2
( ) D3

( ) and D4
( ) for the characteristic polynomial ( )4,

( ) for the equilibrium pointQe
( ). The input parameters are listed

in Table 4. The inset shows that >D ( ) 04
( ) .

Fig. D2. The Routh-Hurwitz determinants +D ,2
( ) +D3

( ) and +D4
( ) for the characteristic polynomial +( )4,

( ) for the equilibrium point +Qe
( ).

H. Bergland, et al. Ecological Complexity 43 (2020) 100853

23



positive. Interestingly, D3
( ) depicted in Fig. D.17 is a decreasing function which approaches zero from above as (2). We conclude by appealing

to Appendix F that the corresponding interior equilibrium point is asymptotically stable for all [0, )(2) .
In Fig. D.18 the graphs of the Routh - Hurwitz determinants +D ,2

( ) +D3
( ) and +D4

( ) for the characteristic polynomial +4,
( ) corresponding to +Qe

( ) as
functions of α on the interval +[0, )(2) are shown. We readily observe that < <+ +D D( ) 0 ( )3

( )
4
( ) for all +[0, ),(2) which means that +Qe

( ) is
unstable for all these α - values.

We finally notice that the positive slope condition R′(ψe, γ13) > 0 for the remediation function is fulfilled forQ ,e
( ) whereas for +Qe

( ) we have R′(ψe,
γ13) < 0 for the concrete examples summarized in Figs. D.17 and D.18. Thus, the stability results obtained in the special cases studied in
Section 3.2.3 carry over to the general case.

Appendix E

Low aquaculture production effect on the biomass growth (0 < α ≪ 1).
For the case 0 < α ≪ 1, our modeling framework (20)–(23) becomes in accordance with Vasil’eva et al. (1995) a regularly perturbed system with

α as a perturbation parameter:

= = +d
d

x F x F x F x( , ) ( ) ( ).0 1 (E.1)

Here F0 and F1 are the vector fields

= =F x x x x x F x( ) ( ( ), ( ), ( ), ( )) ( ) ( , 0, 0, 0)T T
0 0 1 (E.2)

where =x ( , , , )T . The function 0 is defined as

=x( ) 10

whereas the functions , and are given as (25)–(27), respectively.
Let us assume that 0 < α ≪ 1. According to Vasil’eva et al. (1995) the asymptotic approximation of the solution of the initial value problem for

(E.1) is given by the power series expansion in α i.e.

= + +x x x( ) ( ) ( )0 1 (E.3)

in this case. Here x ,0 x ,1 ... satisfy the hierarchy of initial value problems

= =d
d
x F x x x( ), (0) ^ ,0

0 0 0 0 (E.4)

= + =d
d
x F

x
x x F x x 0( )· ( ), (0) ,1 0

0 1 1 0 1

(E.5)

where x̂0 denotes the initial condition of the system (E.1). This means that the leading order approximation of the solution is described by means
of x0. We also notice that the evolution of the components in the perturbation x1 is governed by a linear first order, nonhomogeneous system.

The outcome of the analysis of existence and stability of equilibrium points can be summarized in the following way:

1. Existence of equilibrium points. Assume that we have an equilibrium point x0 for = 0. This means that

= =F x F x 0( , 0) ( ) .0 0 0

Then the Jacobian 4
(0) defined by means of (D.1) is non-singular if an only if 3

(0) defined by

=
± ± ±

± ± ±

Q Q Q

Q Q Q

0

( ) ( ) ( )

( ) ( ) ( )

e e

e e e e e e

e e e

3
(0) ( ) ( ) ( )

( ) ( ) ( )
(E.6)

is non-singular. The vector function F is a smooth function of x( , ) where x and for all . The implicit function theorem implies that
there is a unique smooth parametrization =x x: ( ); [0, ) for some ε > 0 satisfying

= =F x 0 x x( ( ), ) , (0) .0

2. Stability of equilibrium points. Assume that x0 is a hyperbolic equilibrium point of the dynamical system (E.4) (which means that the real part of all
the eigenvalues of 3

(0) is non-zero). Then =x x: ( ); [0, ) also represents a hyperbolic equilibrium point of the system (E.1). This means
that the dynamical system (E.1) is locally structurally stable about its equilibrium point for = 0. The stability properties in the α ≠ 0 - case
emerge as a continuous deformation of the stability properties of the = 0 - case.

Appendix F

The Routh-Hurwitz criterion for a quartic polynomial.
The Routh-Hurwitz criterion gives necessary and sufficient conditions for all the roots of a nth degree polynomial n in λ to be located in the left-

half plane (Hurwitz, 1895). In the present paper we apply this criterion in the case =n 4.
The starting point is the quartic polynomial
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= + + + +a a a a( ) .4
4

1
3

2
2

3 4 (F.1)

The location of the eigenvalues of this Jacobian can be determined by appealing to the Routh-Hurwitz criterion: The Routh-Hurwitz determinants D1,
D2, D3 and D4 are given as

= =

= =

D a D a a a

D a a a a a a D a D

, ,

, .

1 1 2 1 2 3

3 1 2 3 1
2

4 3
2

4 4 3 (F.2)

The Routh-Hurwitz criterion says that > =D n0, 1, 2, 3, 4n and a4 > 0 if and only if < =Re n( ) 0, 1, 2, 3, 4n where =n, 1, 2, 3, 4n denote the
zeros of ,4 i.e., =( ) 0n4 .
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