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Beyond large‑effect loci: large‑scale GWAS 
reveals a mixed large‑effect and polygenic 
architecture for age at maturity of Atlantic 
salmon
Marion Sinclair‑Waters1,2* , Jørgen Ødegård3,4, Sven Arild Korsvoll3, Thomas Moen3, Sigbjørn Lien5, 
Craig R. Primmer1,2 and Nicola J. Barson5

Abstract 

Background: Understanding genetic architecture is essential for determining how traits will change in response 
to evolutionary processes such as selection, genetic drift and/or gene flow. In Atlantic salmon, age at maturity is an 
important life history trait that affects factors such as survival, reproductive success, and growth. Furthermore, age at 
maturity can seriously impact aquaculture production. Therefore, characterizing the genetic architecture that under‑
lies variation in age at maturity is of key interest.

Results: Here, we refine our understanding of the genetic architecture for age at maturity of male Atlantic salmon 
using a genome‑wide association study of 11,166 males from a single aquaculture strain, using imputed genotypes at 
512,397 single nucleotide polymorphisms (SNPs). All individuals were genotyped with a 50K SNP array and imputed 
to higher density using parents genotyped with a 930K SNP array and pedigree information. We found significant 
association signals on 28 of 29 chromosomes (P‑values: 8.7 ×  10−133–9.8 ×  10−8), including two very strong signals 
spanning the six6 and vgll3 gene regions on chromosomes 9 and 25, respectively. Furthermore, we identified 116 
independent signals that tagged 120 candidate genes with varying effect sizes. Five of the candidate genes found 
here were previously associated with age at maturity in other vertebrates, including humans.

Discussion: These results reveal a mixed architecture of large‑effect loci and a polygenic component that consists of 
multiple smaller‑effect loci, suggesting a more complex genetic architecture of Atlantic salmon age at maturity than 
previously thought. This more complex architecture will have implications for selection on this key trait in aquaculture 
and for management of wild salmon populations.

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco 
mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Characterizing genetic architecture is instrumental for 
understanding how quantitative traits will change in 
response to evolutionary processes such as selection, 
genetic drift, and/or gene flow. Reciprocally, knowledge 

of genetic architecture can help to elucidate how evo-
lutionary processes lead to particular genetic architec-
tures of quantitative traits, i.e. a few major effect loci 
(oligogenic) [1, 2], many small-effect loci (polygenic) [3, 
4], or genome-wide effects (omnigenic) [5, 6]. Empiri-
cal examples that demonstrate a variety of genetic 
architectures for quantitative traits are accumulating 
for species such as humans [7] and domesticated ani-
mals [8]; however, there remains a limited number of 
characterized genetic architectures for complex traits 
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in wild species. One factor that hampers characteriza-
tion of genetic architectures, particularly in wild spe-
cies, is limited sample size. As sample size decreases, 
the minimum effect size that can be detected increases 
[9]. This limitation likely led to a bias in the reported 
distribution of the genetic architecture for quantitative 
traits in wild species, for which either very large effect 
loci are reported [1], or a highly polygenic architecture 
is concluded due to a lack of any significant association 
being detected [10].

Aquaculture-reared Atlantic salmon offer an opportu-
nity to overcome sample size limitations. Tens of thou-
sands of individuals are routinely reared in a common 
environment, from fertilization to maturation. As Atlan-
tic salmon are recently domesticated (just 10 to 15 gen-
erations ago) [11], the genetic basis of many quantitative 
traits in domesticated Atlantic salmon is likely shared 
with that of wild populations. Recently, the genetic basis 
of sexual maturation has been extensively studied in 
Atlantic salmon due to its importance in both aquacul-
ture and the wild [1, 12–19]. In the wild, maturation is a 
critical point in an individual’s life history, since it affects 
fitness-related traits such as growth, survival, and repro-
ductive success [20]. Large variability in age at maturity 
is observed in Atlantic salmon, with some individuals 
returning to their natal rivers to spawn after just 1 year 
at sea and others spending multiple years at sea before 
returning (e.g. [21]). Individuals that delay maturation 
and spend more years feeding at sea can have a much 
larger body size and, thus, higher potential fecundity 
[20], compared to individuals that spend only 1  year at 
sea. However, individuals that spend multiple years at 
sea increase their likelihood of mortality prior to matu-
ration and spawning compared to individuals that spend 
less time at sea and return to spawn at a smaller size [22]. 
Variability in age and size at maturity is thought to have 
evolved in order to maximize fitness in highly variable 
river and ocean environments [23]. This variability also 
aids in population stability in the face of environmen-
tal change and stochasticity via the portfolio effect—a 
phenomenon where biological diversity within a species 
reduces population size fluctuations [24].

Although beneficial in the wild, variation in age at 
maturation can be problematic in Atlantic salmon aqua-
culture. Early maturation, as soon as 1 year post-smolti-
fication (referred to as grilsing), causes significant losses 
in revenue [25] because flesh quality degrades during 
the maturation process [26], which can also negatively 
impact fish health [27]. For this reason, characterizing 
the genetic basis of maturation in Atlantic salmon has 
been of particular interest for aquaculture producers. In 
addition, knowledge of the genetic architecture of matu-
ration in aquaculture strains will provide insights into the 

genetic basis of maturation in wild Atlantic salmon and 
potentially other fish species.

Quantitative trait loci (QTL) mapping and genome-wide 
association studies (GWAS) have both been used to identify 
genetic variation associated with age at maturity in Atlantic 
salmon [1, 12–17, 19]. Using 220K SNP genotypes on 1404 
individuals from 57 European populations and genome rese-
quencing data on 32 individuals, Barson et al. [1] identified a 
large-effect locus on chromosome 25, vgll3, which explained 
39% of the phenotypic variation in sea age at maturity for 
wild European Atlantic salmon. The vgll3 gene is an adipos-
ity regulator and is also associated with age at maturity in 
humans [28, 29]. Another region on chromosome 9 was 
also strongly associated with maturation, however, it did 
not remain significant after population stratification cor-
rection, suggesting that this region may be associated with a 
correlated trait (e.g. body size) that is affected by a common 
environmental factor (e.g. river catchment area) [1, 30]. This 
region contains a transcription factor of the hypothalamus-
pituitary–gonadal axis (six6), which is also associated with 
height and age at maturity in humans [28, 29] and involved 
in regulating puberty in cattle [31]. In North American 
Atlantic salmon, late maturation alleles of vgll3 are observed 
in higher proportions in late-maturing females than in early-
maturing females, suggesting that vgll3 may also be associ-
ated with age at maturity in North American salmon [18]. 
QTL studies on aquaculture fish did not identify any QTL 
on chromosome 25, but did find two QTL (chromosomes 
10 and 21) for early maturation in males [12]. However, 
GWAS on aquaculture salmon that followed found a signifi-
cant association between the vgll3 region and maturation 
in some [13, 15] but not all [17, 19] aquaculture strains. In 
addition, markers located on almost all other chromosomes 
have shown an association with maturation timing in some 
studies but not in others [13, 16, 17, 19]. These discrepan-
cies among studies could be due to false positives or, alter-
natively, false negatives in studies that are under-powered 
to detect smaller effect loci due to low sample sizes, or they 
may reflect population differences in genetic architecture. 
Therefore, in spite of substantial improvement in our under-
standing of the genetic architecture of maturation timing in 
Atlantic salmon over the last decade, uncertainties remain 
regarding the details of its genetic architecture.

Here, we conducted a large-scale examination of 11,166 
males from a single year-class that were genotyped with a 
50K SNP array. We imputed up to a higher density using 
parents that were genotyped using a 930K SNP array, 
combined with pedigree information. Using a GWAS, 
we aimed at further resolving the genetic architecture of 
maturation timing in male Atlantic salmon and identify-
ing potential candidate genes to provide new insight into 
the mechanisms involved in determining age at maturity 
in Atlantic salmon.
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Methods
Sample collection and phenotyping
Fish were sampled from the Norwegian AquaGen Atlan-
tic salmon breeding line. This population is the outcome 
of a breeding program that began in the 1970’s and stems 
from crosses of founder individuals that originated from 
41 wild Norwegian rivers [11]. Pedigree information was 
available from the breeding programme. In total, 11,379 
individuals were collected: 11,166 male offspring from the 
2015  year-class and an additional 213 parents from the 
2012 parental year-class. Association testing was not con-
ducted on females because the prevalence of early matura-
tion in females in this population is very low. The sample 
set of male offspring from the 2015  year-class consisted 
of 578 full-sibling families, with a mean size of 20 (range: 
1 to 64), and 213 half-sibling families with a mean size of 
106 (range 1 to 206). Maturation phenotype was scored 
using visual assessment for presence of maturation char-
acteristics (developed kype and darkened colouration) for 
all males from the 2015 year-class as a binary trait: either 
grilse (early-maturing) or non-grilse. Scoring occurred 27 
to 30 months post-fertilization, during the winter months 
(December-March), when visible differences between 
mature and immature fish are strong, and prior to any 
selection of individuals for optimal growth. Early-matur-
ing individuals were preferentially selected for genotyping 
to increase effective sample size for downstream GWAS 
analyses. As a result, the prevalence of early maturation 
in our study sample is higher than in the population as a 
whole.

Genotyping and quality control filtering
The 2015 year-class individuals, consisting of 2104 grilse 
and 9062 non-grilse, were genotyped using a custom 50K 
SNP Affymetrix array developed for Atlantic salmon. The 
SNPs on the 50K array are a subset of those included on 
the 930K XHD Ssal array (dbSNP accession numbers 
ss1867919552–ss1868858426) that is described in Barson 
et  al. [1]. The 930K SNP array was used for genotyping 
184 parents from the 2012 year-class. The remaining 29 
parents were genotyped using the 50K SNP array.

The 930 K XHD Ssal array was filtered to 646,528 SNPs 
based on genotyping quality (categories PolyHighResolu-
tion and NoMinorHom), minor allele frequency (MAF) 
higher than 0.001, and correct allele segregation in family 
material of 840 individuals sampled from the AquaGen 
strain. All SNPs used in downstream analyses were posi-
tioned based on the Atlantic salmon reference genome 
(assembly ICSASG_v2) [32].

Genotype phasing and imputation
Pre-phasing of the reference panel of 184 parents that were 
genotyped with the 930K SNP array was performed using 

Beagle 4 [33, 34]. Individuals genotyped with the 50K array 
were imputed to the pre-phased reference panel (646,528 
SNPs) using SHAPEIT v2 [35] and the duoHMM method, 
which incorporates pedigree information to improve phas-
ing accuracy [36]. We used a window size of 5  Mb for 
defining haplotypes and incorporated pedigree informa-
tion, which consisted of 889 parent–offspring duos and 
10,248 mother-father-offspring trios from 40 families. 
Prior to imputation and phasing, we removed 773 SNPs 
from the 50K array that were not on the 930K reference 
panel. Following phasing and imputation, 134,131 SNPs 
with a MAF lower than 0.01 were removed using PLINK 
1.9 [37], leaving 512,397 SNPs for downstream analyses.

To assess the accuracy of imputation, we masked gen-
otypes in the 184 parents that had been genotyped with 
the 930  K array. Masked genotypes consisted of 930K 
array SNPs that were not on the 50K array. In addition 
to the parents genotyped with the 930K array that served 
as a reference panel, individuals with masked genotypes 
were included as extra individuals in the imputation pro-
cess described above. We then compared the imputed 
genotypes to the actual genotypes for the 184 parents and 
calculated the mean proportion of discordance between 
imputed and actual genotypes at each site using the diff-
site-discordance function in vcftools [38].

Genome‑wide association testing
We tested for associations of SNP genotypes with age 
at maturity of males from the 2015  year-class using the 
linear mixed model method BOLT-LMM [39], which 
accounts for population structure and relatedness based 
on the following model:

where γ is the vector of phenotypes (0/1 for non-grilse/
grilse); xtest is the vector of genotype codes (0/1/2) for the 
SNP being tested, which was modelled as a fixed effect 
with βtest as regression coefficient; XGRMβGRM is the 
genetic effect modelled as a random effect, where XGRM 
is a matrix of genotypes and βGRM is a vector of SNP 
effects; and e is the vector of residual errors, modelled 
as random effects. BOLT-LMM implements a non-infin-
itesimal model that does not assume equal effect sizes 
and can, therefore, better accommodate SNPs of large 
effect, while still effectively modelling smaller genome-
wide effects. BOLT-LMM uses two prior distributions 
of effect sizes ( βGRM ) to accommodate both large-effect 
SNPs and small-effect SNPs [39]. Since it is known that 
age at maturity of salmon does not have an infinitesimal 
architecture [1], we chose a model with increased power 
to detect signals when the architecture is non-infinites-
imal and consists of loci with differing effect sizes. The 
genetic effect, XGRMβGRM , accounts for the confounding 

γ = xtestβtest + XGRMβGRM + e,
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effects of relatedness and family structure [39]. XGRM 
was computed using BOLT-LMM for each SNP tested, 
using a subset of SNPs that fulfilled the following criteria: 
from the 50K SNP array and not imputed; showing no 
evidence of high linkage disequilibrium (LD) to reduce 
confounding effects of redundant genotypic information; 
and not located on the same chromosome as the test SNP 
to avoid proximal contamination [40]. SNPs in high LD 
(r2 > 0.8) were identified with PLINK 1.9’s indep-pairwise 
function [37] using a 1-Mb window size and a 10-kb step 
size. The resulting association statistics were calibrated 
using the LD score regression intercept, as implemented 
in BOLT-LMM. We estimated LD scores for all SNPs 
using LDSC [41]. The genome-wide significance level of 
9.8 ×  10−8 for P-values was determined using the strict 
Bonferroni correction (α = 0.05/# of association tests). 
The linear regression beta coefficients and corresponding 
standard errors from BOLT-LMM were transformed to 
odds ratios using LMOR [42].

Identifying candidate genes
Multiple SNPs within a region can show a significant 
association due to LD around a causal SNP, but they 
are not all independently associated with the trait. One 
approach to account for this LD is to select only the 
top-associated SNP within the region, but this can fail 
to identify instances where true secondary signals exist 
within the region. To overcome this challenge, we per-
formed conditional and joint analyses with the cojo-slct 
function [43] implemented in GCTA v1.91.6 [44]. The 
cojo-slct function converts marginal effect sizes from a 
single-SNP association test to joint effect sizes by incor-
porating information of covariance among SNPs based 
on the LD structure. Joint effect sizes and P-values were 
calculated conditional on other SNPs, using a stepwise 
procedure, beginning with the top-associated SNP and 
iterating over all remaining SNPs [43]. P-values and beta 
values obtained from the BOLT-LMM association test 
were analyzed with cojo-slct to identify independently 
associated SNPs. We considered a SNP to be indepen-
dently associated with the maturation phenotype if the 
conditioned P value was less than 9.8 ×  10−8. Linkage 
disequilibrium was calculated using the genotyping data 
(512,397 SNPs) of all 11,166 male offspring.

Any SNP that was significantly associated with age 
at maturity in the conditional and joint analyses was 
assigned a candidate gene. A SNP that was located 
within a gene region was assigned to that gene, other-
wise the nearest gene (within 50 kb upstream or down-
stream) was assigned. If a SNP was located within two 
overlapping genes, both genes were considered can-
didates. We used the function closest implemented in 
BEDTools (v2.26.0) [45] to assign candidate genes to 

SNPs. Genes and gene locations were based on the cur-
rent Atlantic salmon genome assembly (ICSASG_v2) 
[32]. RefSeq annotations for Atlantic salmon genes 
(available at: https ://www.ncbi.nlm.nih.gov/gene/) were 
used to determine the overlap between candidate genes 
for age at menarche in humans [28, 29] and maturation 
timing in aquaculture Atlantic salmon.

Variation in the maturation phenotype explained 
by the resulting set of significant SNPs was estimated 
using the Monte Carlo average information restricted 
maximum likelihood method for variance component 
analysis implemented in BOLT-REML [39]. The model 
was defined as follows [4]:

where γ is a vector of phenotypes (0/1 for non-grilse/
grilse), σ1Z1u1 and σ2Z2u2 are variance components to 
be estimated, and σ0u0 is a random residual error effect. 
We partitioned the SNPs into two sets based on whether 
they were significant or not. Any SNP in high LD (r2 > 0.8) 
with a significant SNP was excluded from both sets. We 
then calculated the variance component for each set of 
SNPs. The variance in phenotype explained by each vari-
ance component was then estimated.

Heritability ( h2 ) of male maturation timing was 
inferred using the restricted maximum likelihood 
(–reml) method implemented in GCTA, which uses 
SNP-based relatedness estimates to calculate the pro-
portion of phenotypic variance explained by a set of 
genotyped SNPs. The model was defined as follows:

where σ2u is the additive genetic variance explained by 
SNPs and σ2e is the error. We estimate h2 with only the 
50K SNP-array dataset because heritability estimates can 
vary with imputation certainty [46]. GCTA estimates h2 
on the observed (quantitative) scale, which we then trans-
form to the underlying liability scale assuming varying 
levels of early maturation population prevalence (0.01, 
0.025, 0.05) [47]. Due to the overrepresentation of the 
early maturation phenotype in this study sample, preva-
lence values below the sample prevalence (0.19) were 
used for transforming h2 estimates from the observed 
scale to the liability scale.

Results
Genome‑wide association testing
Data on 11,166 males from the 2015 year-class imputed 
to 512,397 SNPs were used for association testing. The 
mean discordance between masked and actual geno-
types for each chromosome ranged from 0.21 to 0.24 
(see Additional file 1: Table S1). The linear mixed model 

γ = σ0u0 + σ1Z1u1 + σ2Z2u2,

h
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= σ
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association method showed that significant associa-
tions with maturation timing occurred on 28 of the 29 
Atlantic salmon chromosomes (Fig.  1). In total, 13,149 
of the 512,397 tested SNPs showed a significant associa-
tion with maturation timing. A quantile–quantile plot of 
BOLT-LMM P-values indicated genomic inflation that is 
characteristic of a polygenic architecture of the trait [41] 
(see Additional file 2: Figure S1).

Identification of candidate genes
Conditional and joint analysis identified 116 SNPs that 
were independently associated with maturation time 
and reached genome-wide significance (Fig.  1) and (see 
Additional file 1: Table S2). These 116 SNPs were located 
on 22 of the 29 Atlantic salmon chromosomes. All of 
the 116 SNPs were on the 50K SNP array and, thus were 
not imputed. By selecting the gene in closest proxim-
ity to a significant SNP, this set of 116 SNPs tagged 120 
candidate genes (see Additional file 1: Table S2). A SNP 
251,183  bp downstream of a previously identified can-
didate gene, vgll3 [1], was selected via conditional and 
joint analysis. Vgll3 was not the closest gene to this SNP 
and, thus we assigned both the closest gene and vgll3 as 
candidate genes tagged by this SNP. Vgll3 was the only 

candidate gene assigned based on prior knowledge. For 
all other SNPs, the closest gene was assigned. For SNPs 
with a minor allele effect that increased the odds of early 
maturation, the odds ratios (OR) ranged from 1.01 to 
3.07 (0- to 3-fold). The OR ranged from 0.11 to 0.99 (0- 
to 9-fold) for SNPs with a minor allele effect that delayed 
maturation (Fig. 2) and (see Additional file 2: Table S3). 
Five genes that were previously identified as candidate 
genes for age at maturity in humans were also candidate 
genes in this study. The first gene, six6, on chromosome 
9, is tagged by an upstream SNP (9:24886574, OR = 0.55) 
(Fig.  3a). The second gene, ndufs4, is located on chro-
mosome 15 and its tag SNP (15:6399839, OR = 0.74) 
is a missense variant. An intron SNP on chromosome 
16 (16:27617999, OR = 1.70) tags the third gene, rora. 
Another intronic SNP on chromosome 22 (22:13016434, 
OR = 1.31) tags the fourth gene, cntn4. The fifth gene, 
vgll3, on chromosome 25 is tagged by a downstream SNP 
(25:28910202, OR = 0.42) (Fig. 3b) (see Additional file 1: 
Table S3). 

Variance component partitioning was used to deter-
mine the proportion of variance explained by the set of 
116 independently associated SNPs for maturation tim-
ing in male aquaculture salmon. The 116 SNPs explained 

Fig. 1 Manhattan plots for genome‑wide association analysis of male early maturation. a Manhattan plot showing all SNPs. b Zoomed view of 
SNPs with association statistics below a –log10(P‑value) of 25 (truncated Y‑axis). The significance threshold (dashed line) was adjusted to account for 
multiple‑testing using Bonferroni correction. Red dots indicate loci that were significant after conditional and joint analysis
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78% of the genetic variance, with the remaining 22% of 
the genetic variance explained by the remaining 512,244 
SNPs in the imputed dataset.

GCTA estimates of the SNP-based h2 was 0.61. After 
transforming to the liability scale, h2 estimates ranged 

from 0.54 to 0.84, depending on underlying prevalence 
(0.01–0.05) (see Additional file 1: Table S4). Given these 
estimates, we can infer that 42.1, 53.8, and 65.5% of the 
phenotypic variance was explained by the set of 116 

Fig. 2 Minor allele frequency (MAF) (red line) and estimates of SNP effects on maturation relative to the major allele (black dots) as log‑odds ratios, 
for the set of 116 independently associated SNPs (listed in Additional file 1: Table S2), ordered from largest to smallest MAF
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the odds of early maturation (late allele). Black squares indicate the mean phenotype value for each genotype (grilse = 1 and non‑grilse = 2)
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SNPs, for population prevalences of 0.01, 0.025 and 0.05, 
respectively.

Discussion
Our sample size was substantially larger than in previ-
ous studies on the genetic basis of maturation of Atlantic 
salmon and focused on a single aquaculture strain, thus 
improving power and minimizing confounding effects 
of population stratification. This approach enabled us to 
look beyond large-effect loci and allowed us to reveal the 
polygenic component of maturation in Atlantic salmon. 
We confirmed the importance of a large effect locus in 
the vgll3 region on chromosome 25 that was identified in 
previous studies [1, 15], but also identified several mod-
erate effect loci (1.75- to 2-fold) including the six6 locus 
on chromosome 9. The remaining loci identified either 
had smaller effects or they had large to moderate effects 
but low MAF (< 0.05). Furthermore, the number of addi-
tional regions of the genome that were associated with 
maturation suggests that this trait has a more polygenic 
architecture than previously indicated. The 120 candidate 
genes identified here provide a valuable resource for fur-
thering our understanding of maturation in both aqua-
culture strains and wild populations. This work broadens 
the scope of empirical examples for the genetic architec-
ture of quantitative traits, which is valuable for devel-
oping analytical frameworks to understand the genetic 
architecture underpinning quantitative traits in nature.

We observed a “new” highly significant SNP on chro-
mosome 9, with an OR of 0.55, which remained signifi-
cantly associated with age at maturity after correction 
for relatedness. This region was also identified in Bar-
son et  al. [1], but its association signal was lost after 
correction for population stratification in that study. 
Here, the most highly significant SNP in the region 
occurred ~ 16,000  bp upstream of six6, which has been 
increasingly recognized as a candidate gene for matura-
tion in mammals [28, 31]. Population stratification cor-
rection is recommended to avoid spurious associations 
due to, e.g., systematic differences in ancestry between 
groups with different phenotypes [48], but there is the 
danger that it eliminates signals when trait-associated 
loci have different effects across populations (e.g. loci 
involved in local adaptation) [49]. Indeed, the six6 region 
has been identified as potentially involved in local adap-
tation in numerous population genetic studies of Atlantic 
salmon. For example, the six6 region is under divergent 
selection among Atlantic salmon populations in North 
America [50, 51] and the Teno/Tana River [30]. In addi-
tion, the six6 gene has been associated with variation in 
run timing [30, 52] and river catchment area [30], and 
there is evidence that it plays a role in local adaptation in 
other fish species [53]. The potential role of six6 in local 

adaptation may explain why its association signal was lost 
after population stratification correction in Barson et al. 
[1]. This highlights the importance of examining geno-
type–phenotype associations within single populations, 
in addition to multi-population studies. Together, these 
findings suggest that the role of the six6 gene in deter-
mining age at maturity may vary among populations, but 
it should not be ruled out as a candidate gene for matura-
tion in Atlantic salmon.

In this study, we also found that vgll3 is important for 
controlling maturation, which agrees with some previous 
studies [1, 15], but not all [17, 19]. This may reflect conti-
nental differences in genetic architecture, with the locus-
effect occurring only in the European lineage, or it may 
be due to low polymorphism in this region among North 
American derived aquaculture populations. Although we 
find a strong association of the vgll3 region with matura-
tion, which parallels that found in wild European salmon, 
we are not sure whether the same dominance pattern 
at the vgll3 gene as observed in Barson et  al. [1] exists 
here. Due to a trade-off between size and age at maturity, 
sexual conflict occurs in the wild, whereby late maturing 
alleles are favoured in females and early maturing alleles 
are favoured in males. In the vgll3 gene, this conflict is 
resolved via sex-dependent dominance [1]. Based on pro-
portions of late-maturing and early-maturing individu-
als for each genotype observed here, it does not appear 
that strong dominance of the early allele is at play in this 
aquaculture population (Fig.  3b). Genetic dominance is 
commonly defined as a deviation from a linear relation-
ship between genotype dosage and effect on phenotype. 
However, here, sexual maturity is a binary trait and there-
fore does not follow a linear dose–response relationship. 
Thus, inferring dominance is complicated by this non-lin-
ear genotype dosage effect for binary traits. The pattern 
observed here, however, does suggest that sex-dependent 
dominance at this locus has been lost in this aquaculture 
strain. Indeed, factors suggested to cause sexual conflict, 
such as sex-specific maturation age and size optima, are 
eliminated in the aquaculture environment, since males 
and females are strictly selected for the same age at matu-
ration. This suggests that genetic architecture can be rap-
idly altered in a setting with weak or no sexual conflict, 
which may be plausible, e.g. via modified expression and/
or methylation patterns [54, 55]. Changes to dominance 
patterns in response to environmental changes have been 
previously described in some organisms [56, 57].

In addition to the six6 and vgll3 genes, we identified 
114 other candidate loci with varying effect sizes, dem-
onstrating a mixed genetic architecture that underlies 
maturation in Atlantic salmon (i.e., a small number of 
large-effect genes combined with a polygenic compo-
nent). These 114 additional candidate loci included nine 
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loci with moderate to large effects (1.75 < fold) across 
six chromosomes (4, 8, 9, 10, 24 and 29), and numerous 
smaller effect loci (1.75 > fold) distributed across 21 chro-
mosomes (see Additional file 1: Table S2). These findings 
provide evidence that maturation in Atlantic salmon is 
a polygenic trait and reveal many new candidate genes 
that underlie variation in timing of maturation. In addi-
tion, we found some overlap (5 genes) between the can-
didate genes identified here and candidate genes for age 
at maturity in humans [28, 29]. This suggests that some 
aspects of the genetic control of the timing of maturation 
may be conserved across evolutionarily distant species.

Interestingly, a number of SNPs found to be associ-
ated with maturation in this study were low-frequency 
variants with moderate (1.75- to 2-fold) to large (two- to 
ninefold) effect sizes (Fig. 2). Such low-frequency variants 
have been a topic of interest in human genetics research 
[58, 59]. The “rare allele model” has been proposed as the 
reason for the missing heritability issue [60]. It suggests 
that low-frequency alleles with large effects can contrib-
ute to a particular phenotype at the population level, 
whereby rare alleles at a particular locus explain most of 
the variation in just a small number of individuals, but 
when such rare, large effect alleles occur at many loci, the 
collective contribution of rare alleles can be large at the 
population level. However, it has also been shown that 
low MAF can cause an inflated number of false positives 
in GWAS and biases in effect sizes [61–63]. Therefore, 
further validation of these large-effect low-frequency 
variants is recommended.

Candidate genes were identified via conditional and 
joint analysis and, therefore, represent independent sig-
nals, i.e., they are not merely the result of being in LD 
with another associated locus. Although the candidate 
genes assigned based on proximity to these signals are 
plausible, we cannot conclude that these are the causal 
genes for differences in age at maturity. Instead, the 
causal gene may be further upstream or downstream. 
Future annotation of non-coding variation in the Atlantic 
salmon genome will help to validate SNP-to-gene assign-
ment. Furthermore, although some candidate loci had 
small independent effects, they were still identified as 
candidates because their association with age at maturity 
was highly significant when considered in combination 
with other loci (see Additional file 1: Table S2). This situ-
ation can arise when a genotyped SNP does not account 
for the total amount of variation explained by a QTL (e.g. 
[64, 65]), or when multiple causal variants exist at a sin-
gle QTL (e.g. [2, 66]). Based on the selection criteria used 
here, we consider these loci as strong candidates in spite 
of their small independent effect size.

The maturation-associated QTL identified here pro-
vide a valuable contribution to our understanding of 

how aquaculture strains can respond to selection. Mul-
tiple smaller effect QTL indicate that there is an oppor-
tunity for fine-tuning of the trait via approaches such as 
genomic selection—an opportunity that would not exist if 
the trait was controlled by a single large-effect locus. Fur-
thermore, this work suggests that a polygenic approach 
to selective breeding aimed at optimizing maturation 
timing may be beneficial. Focusing on just a few QTL 
(e.g. six6 and vgll3) may not be sufficient to prevent early 
maturation, as there are a number of other QTL that may 
modify maturation timing. In addition, considerations of 
this mixed genetic architecture are valuable for designing 
effective management and conservation strategies of wild 
Atlantic salmon. Maintenance of variation in age at matu-
rity is of ecological, economic, and cultural importance 
[67]. Factors such as fishing [21] and ecological changes 
in the marine environment [68] could affect early- and 
late-maturing individuals differently, which could lead to 
reduced variation in sea age [69]. Our improved under-
standing of the genetic architecture for maturation can 
help to more accurately predict the effects of such fac-
tors. This study also exemplifies how smaller effect genes 
can be missed until a sufficiently high-powered analysis 
is used. For this reason, even when large-effect loci are 
identified, it is important that management and conser-
vation strategies consider remaining genetic variation 
and continuously aim at maintaining genome-wide vari-
ation [70].

We did not perform association testing for loci involved 
in female maturation due to the very low occurrence of 
female grilsing in this strain. From an aquaculture per-
spective, this low prevalence also implies that determin-
ing the genetic basis of maturation in females is of lower 
importance in farmed strains such as this one. However 
in the wild, early maturation in females is more com-
monly observed and, therefore, studies aimed at refin-
ing the genetic architecture of this trait in females would 
benefit future research on wild populations. In addition, 
because we focused on only one strain, determining the 
generality of the mixed architecture of maturation identi-
fied here requires assessment of additional wild popula-
tions and aquaculture strains.

Conclusions
We refined our understanding of the genetic archi-
tecture of maturation of male Atlantic salmon using a 
large-scale GWAS. We revealed a polygenic component 
of age at maturity in Atlantic salmon and identified sev-
eral moderate- and large-effect loci. The 120 candidate 
genes identified here can serve as a valuable resource 
for furthering our understanding of maturation in both 
aquaculture strains and wild populations. These results 
also help to elucidate how this trait will respond to 
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factors such as fishing and environmental changes in 
the wild.
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