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Abstract 11 

Salmon lice (Lepeophtheirus salmonis) is a marine ectoparasite responsible for major losses 12 

to the salmon farming industry each year. Salmonids are the primary hosts of the parasite, 13 

including the widely farmed species Atlantic salmon (Salmo salar) and rainbow trout 14 

(Oncorhynchus mykiss). Improving resistance towards the parasite in farmed Atlantic salmon 15 

could decrease the need for treatments, increase the welfare of the fish, as well as reduce 16 

the infection pressure on wild populations. Phenotypic resistance can be recorded in 17 

controlled challenge-tests and has been found to be moderately heritable. The aim of the 18 

study was to compare three different genomic selection models with respect to within- and 19 

across-family prediction accuracy with both moderate and high SNP-chip densities (215K 20 

and imputed 750K). The models tested were: Genomic Best Linear Unbiased Prediction 21 
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(GBLUP), BayesC and a model combining a polygenic term and a BayesC term (BayesGC). 22 

Predictive abilities of the models were compared using five-fold cross-validation. 23 

 24 

The trait was found to be highly polygenic. All three models had a similar predictive ability. 25 

The BayesGC model had a slight advantage over the GBLUP and BayesC models, however 26 

this difference was not significant. For within-family prediction there was no advantage 27 

from increasing the SNP density from 215K to 750K genotype density. However, for across-28 

family prediction a slight improvement in predictive ability was observed at the higher 29 

density compared to the lower. 30 

 31 
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1. Introduction 35 

Genomic Prediction (GP) is being adopted in the fields of plant, animal and aquaculture 36 

breeding and human genetics. GP links data on individual phenotypes with genomic data 37 

from genome-wide dense marker maps, using a reference population of both genotyped- 38 

and phenotyped individuals to predict a population with only genotyped individuals 39 

(Meuwissen, Hayes & Goddard, 2001). The accuracy of GP is dependent on the heritability 40 

of the trait, the size and quality of the reference population and the genetic relationships 41 

between the reference population and the predicted population (Calus & Veerkamp, 2007; 42 

Meuwissen, Hayes & Goddard, 2001). 43 

 44 



   
 

   
 

Salmon louse (Lepeophtheirus salmonis) is a naturally occurring ectoparasitic copepod that 45 

is found on most salmonid species in the Salmo, Onchorhynchus and Salvelinus genera, such 46 

as Atlantic salmon (Salmo salar), Sea trout (Salmo trutta), Pink salmon (Oncorhynchus 47 

gorbuscha) and Rainbow trout (Onchorhynchu mykiss) (Torrissen et al., 2013). The parasite 48 

causes large welfare- and economic problems for the Atlantic salmon and rainbow trout 49 

farming industries. In 2011, the losses due to the parasite in the Norwegian fish farming 50 

industry were estimated to 436 million US dollars (Abolofia et al., 2017), and the losses have 51 

increased markedly since then (Overton et al., 2018). The parasite also poses a threat to 52 

wild populations, as salmon louse copepods from farmed fish may infect wild salmonids. To 53 

reduce impact on wild stocks, treatment of farmed fish is mandatory at low infestation 54 

levels in Norway. The treatment costs, rather than damages caused by the parasite itself, 55 

are the major problems for the industry. Treatments are performed frequently, have high 56 

mortality rates, and cause stress for the fish. In addition, salmon lice are developing 57 

resistance to some of the drugs used for treatment (Overton et al., 2018). The effects of 58 

salmon lice infestations from fish farms to wild salmon population are hard to quantify but 59 

there are definitely sizable negative effects to wild stocks (Torrissen et al., 2013). 60 

 61 

Genetic variability in host-resistance to Lepeophtheirus salmonis is found in multiple studies 62 

(e.g. Gjerde, Ødegård & Thorland, 2011), (H. Y. Tsai et al., 2016) & (Ødegård et al., 2014). 63 

The heritability estimates of the trait depend on the recording conditions. In a natural 64 

disease outbreak, the heritability estimates range between 0.02±0.02 and 0.14±0.02 65 

(Kolstad et al., 2005). For challenge tests in sea cages the estimates are around 0.14±0.03 66 

(Ødegård et al., 2014), and for challenge tests in land-based tank conditions a heritability of 67 

0.33±0.05 is found (Gjerde et al., 2011). There are also naturally differences in the 68 



   
 

   
 

susceptibility of different salmonid species, seen especially in the Pacific salmons 69 

(Oncorhynchus spp.) where the Coho- (Oncorhynchus kisutch) and Pink salmon 70 

(Oncorhynchus gorbuscha) reject the lice more rapidly than the Chinook (Oncorhynchus 71 

tshawytscha) (Torrissen et al., 2013). 72 

 73 

Selective breeding for disease resistance is often dependent on challenge tests performed 74 

on siblings for phenotypic data. It can also be performed on disease data collected in the 75 

field environment. For challenge tests, the tested individuals are, due to regulative 76 

restrictions, excluded as selection candidates when tested fish are not allowed to re-enter 77 

the breeding nucleus after being exposed to potential pathogens. Estimates of Breeding 78 

Values (EBVs) are predicted for the elite breeding candidates based on the information from 79 

their challenge tested full sibs. Because the EBVs are predicted for animals without 80 

phenotype data, prediction is mainly based on family information (full- and half-sib). This 81 

implies that only the between family component of the EBV can be predicted by traditional 82 

Best Linear Unbiased Prediction (BLUP), which reduces both the intensity of selection and 83 

the accuracy because there is no information on the within family deviation, which 84 

encompasses half of the genetic variation (Gjerde et al., 2011). 85 

When using genomic data and genomic selection, within family deviations can be predicted 86 

based on the DNA data (Sonesson and Meuwissen, 2009), and this increases the prediction 87 

accuracy as more of the genetic variation can be explained. Ødegård et al. (2014) found that 88 

using genomic prediction methods gave a higher reliability than using only pedigree 89 

information. However, Sonesson & Meuwissen (2009) found in their simulation study that 90 

the accuracy of selection dropped when the challenge test was done only every other 91 



   
 

   
 

generation or only in one generation when using the GBLUP method. This implies that it 92 

would be necessary to challenge test every generation to get accurate predictions. 93 

 94 

The accuracy of genomic predictions increases with the number of phenotypes relative to 95 

the effective number of genomic segments of the population (Daetwyler et al., 2010). 96 

Bayesian variable selection methods (Meuwissen et al., 2001; Verbyla, Bowman, Hayes, & 97 

Goddard, 2010) attempt to increase the relative weight of markers being in LD with casual 98 

mutation and remove markers that are not linked to causal loci (i.e., not useful for 99 

prediction), and thereby reduce the number of marker effects to estimate.  100 

 101 

Bayesian selection approaches such as Bayes (A/B/C/R) have been found to have a higher 102 

predictive ability in simulation studies, but differences were smaller in studies using real 103 

data (Neves et al., 2012). One of the biggest differences between the Bayesian methods and 104 

GBLUP is that GBLUP assumes that genetic variance is evenly distributed over SNPs, whilst 105 

the Bayesian methods try to differentiate SNPs with respect to their relative importance. In 106 

the current study we investigate the BayesC (Habier et al., 2011), and  BayesGC models 107 

(Iheshiulor et al., 2017). In BayesGC, a polygenic effect and a Bayesian term are fitted 108 

simultaneously, so that we account for both numerous SNPs of small effect, as well as a 109 

smaller group of SNPs with a potentially larger effect. In contrast to Iheshiulor et al. (2017), 110 

who used an iterative conditional expectation (ICE) algorithm for the BayesGC model, we 111 

fitted this model using a Gibbs-sampling approach. 112 

 113 

The aim of this study was to compare three methods of genomic prediction: Genomic Best 114 

Linear Unbiased Prediction (GBLUP), using a genomic relationship matrix, two Bayesian 115 



   
 

   
 

variable selection methods BayesGC (Meuwissen et al., 2020) and BayesC for the trait host 116 

resistance to salmon lice in Atlantic salmon, measured as number of lice per fish. 117 

Furthermore, prediction accuracies of the GEBVs based on a 215K SNP genotypes and 118 

imputed 750K SNP panels were compared using both within-family and across-family 119 

prediction scenarios. 120 

 121 

2. Methods 122 

The data came from an admixed population of Atlantic salmon (S. salar) that were 123 

genotyped and challenge tested for susceptibility to L. Salmonis. The challenge test was 124 

conducted by adding L. salmonis in the water of sea-net cages closed off with tarpaulins. 125 

After 10-15 days the number of lice were manually counted. The fish were from the 2011 126 

year-class from the AquaGen population as described in (Ødegård et al., 2014). The total 127 

number of challenge-tested fish was 2850 from the test conducted in the period July 16-18, 128 

2012. The challenge test is thoroughly described in (Ødegård et al., 2014) and was approved 129 

by the Norwegian Animal Research Authority (S-2012/148773). 130 

 131 

From the challenge-tested fish, 1385 fish were genotyped and their data was used here. The 132 

1385 phenotyped- and genotyped fish belonged to 99 full-sib families and were offspring 133 

from 68 sires and 69 dams. The smallest family consisted of 7 individuals and the largest 21 134 

with a mean size of 14. Lice resistance was recorded as the number of lice counted from 135 

each fish (LC). However, this trait was highly skewed and thus the trait was log-transformed 136 

and called logLC (Ødegård et al., 2014). 137 

 138 



   
 

   
 

All 1385 fish were genotyped with a 220K Affymetrix genome-wide SNP-chip. The total 139 

number of SNPs after quality control was 215610. A group of parents (n = 59) was 140 

genotyped with a high-density SNP-chip with 990K SNPs from a custom SNP-chip used by 141 

AquaGen. After quality control there was a total 745,998 SNPs remaining.  142 

Our 1385 phenotyped and genotyped fish were imputed to 750K using the FImpute 143 

software (Sargolzaei et al., 2014). FImpute is a rule-based, deterministic method for 144 

genotype imputation and phasing (Wang et al., 2016). The parental fish had not been 145 

challenge-tested, and were only used as reference animals for the imputation and phasing.  146 

 147 

Both the original 215K and the 750K imputed genotypes were used to construct two 148 

genomic relationship matrices (G-matrix; one using 215K and one using 750K), using own 149 

software based on VanRaden method 1 (VanRaden, 2008); 150 

𝑮𝑮 =  𝑀𝑀𝑀𝑀’
2∑𝑝𝑝𝑗𝑗�1−𝑝𝑝𝑗𝑗�

, 𝑀𝑀𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖 − 2𝑝𝑝𝑗𝑗  151 

where 𝑥𝑥𝑖𝑖𝑖𝑖 is the genotype of fish i for SNP j, with 𝑥𝑥𝑖𝑖𝑖𝑖= 0,1 or 2 for the reference homozygote, 152 

heterozygote and opposite homozygote, respectively, and 𝑝𝑝𝑗𝑗 is the allele frequency of the 153 

alternative allele of SNP j for all fish. The G-matrices were then used in the genomic 154 

predictions described below. 155 

 156 

2.1 Calculation of Yield Deviations 157 

LogLC was corrected for fixed effects by calculating Yield Deviations (YD), since the Bayesian 158 

variable selection approach models used here could not handle complicated modelling of 159 

fixed effects. The model was: 160 

y = Xb + Zu + e 161 



   
 

   
 

where y is a vector of logLC phenotypes, b is a vector of fixed effect of overall mean, person 162 

counting the lice, the day of count, and a fixed regression on the weight of the fish 163 

measured on the day of the count (correcting for the fact that bigger fish may contain more 164 

lice due to a larger surface area). Z is a design matrix linking individuals to the phenotype. u 165 

is the random effect of the individual fish (u~N(0,Aσa2) where A is the pedigree relationship 166 

matrix; e is the residual effect, where (e~N(0,Iσe2), where I is an identity matrix. This model 167 

was analyzed using DMU (Madsen and Jensen, 2013). The DMUAI module was used to 168 

estimate the variance components and the DMU4 model to produce individual Yield 169 

Deviations (YD) that were used in the further analysis. 170 

 171 

2.2 GBLUP 172 

The YD were first analysed by the GBLUP model:  173 

YD = 1μ + Zu + e 174 

Where YD is a vector of the Yield Deviation of LogLC, μ = overall mean, Z = design matrix 175 

linking individuals to the YD, u = vector of random effects of the individual fish (u~N(0,Gσu2), 176 

where G is the genomic relationship matrix, and e = vector of random residuals with 177 

variance e ~N(0, 𝐈𝐈σe2) and Identity matrix I. 178 

 179 

2.3 BayesC 180 

The model for BayesC (Habier et al., 2011) was as follows: 181 

 YD = 1μ + ∑ Ii𝐗𝐗𝐢𝐢sii + 𝐞𝐞     182 

where YD = Yield Deviation, 1 is a vector of ones, μ is overall mean, 𝐗𝐗𝑖𝑖 is a vector of 183 

genotypes for SNP i containing 0 for homozygote individuals, 1 for heterozygotes, and 2 for 184 



   
 

   
 

the alternative homozygote genotype. I𝑖𝑖  is an indicator of whether the SNP i is in the model 185 

in a particular MCMC-cycle or not (0/1). si is the SNP effect, where if the SNP i is in the 186 

model: si ~N(0, σm2 ) and e is the residual with variance e ~N(0, Iσe2) where I is an identity 187 

matrix. The MCMC – chain was run for 20 000 Gibbs-cycles using 4000 burn-in cycles, in two 188 

distinct chains. The prior probability of I𝑖𝑖  = 1 is π. If the SNP i is in the model: si ~N(0, 189 

σu2/1000). e is the residual, where e ~N(0, Iσe2) and 𝐈𝐈 is an identity matrix. 190 

 191 

2.4 BayesGC 192 

The BayesGC model fits a polygenic effect and a BayesC term simultaneously. The polygenic 193 

effect is fitted using the genomic relationship matrix (G) as in the GBLUP model. The BayesC 194 

term assumes SNPs to have normally distributed effects with probability (π) or an effect of 0 195 

with probability (1-π). The BayesC method is the same as the one used in (Iheshiulor et al., 196 

2017), except that we use a Monte Carlo Markov Chain (MCMC) algorithm for estimation of 197 

SNP effects and the polygenic effect whereas they use an iterative conditional expectation 198 

(ICE) algorithm to approximate the results from such an MCMC analysis. 199 

 200 

Here we describe how the total genetic variance 𝜎𝜎𝑢𝑢2 is partitioned over the fitted SNPs and 201 

the polygenic effect.  For the Bayes C method; 202 

𝜎𝜎𝑚𝑚2  = 𝐹𝐹𝐹𝐹∗𝜎𝜎𝑢𝑢
2

𝐻𝐻𝐻𝐻𝐻𝐻������  203 

Where 𝜎𝜎𝑚𝑚2  is the genetic variance explained by a single SNP, 204 

 Fr = the fraction of the total genetic variance explained by a single fitted SNP, i.e. 1/1000 205 

because we assume each SNP explain 1/1000th of the genetic variance. 206 

𝐻𝐻𝐻𝐻𝐻𝐻������ = average heterozygosity =  2∑𝑝𝑝𝑖𝑖 (1−𝑝𝑝𝑖𝑖)
𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

 207 



   
 

   
 

For a Bayes C model, this would mean using prior probability of fitting a SNP of: 208 

𝜋𝜋𝑐𝑐 = 1000
𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

  209 

Such that  𝜎𝜎𝑢𝑢2 = 𝜋𝜋𝑐𝑐  ∙ 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∙  𝐻𝐻𝐻𝐻𝐻𝐻������  ∙  𝜎𝜎𝑚𝑚2   210 

For the BayesGC method we both have a polygenic effect and fitted SNP effects. Again, we 211 

also assume that each fitted SNP explains 0.1% of the total genetic variance. 212 

In addition, the total genetic variance 𝜎𝜎𝑢𝑢2 should not be affected by the partitioning of the 213 

variance across the SNPs and the polygenic effect. Let q be the fraction of 𝜎𝜎𝑢𝑢2 explained by 214 

SNPs, then the variance explained by the polygenic effect is 𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝 2  = (1-q) 𝜎𝜎𝑢𝑢2. Hence, 215 

𝜎𝜎𝑢𝑢2  = 𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝2 + 𝑞𝑞 ∙ 𝜋𝜋 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∙  𝐻𝐻𝐻𝐻𝐻𝐻������ ∙ 𝜎𝜎𝑚𝑚2  216 

It follows that:  217 

𝜋𝜋𝑔𝑔𝑔𝑔 = 𝑞𝑞 ∗  𝜋𝜋𝑐𝑐  218 

Where 𝜋𝜋𝑔𝑔𝑔𝑔 is the 𝜋𝜋 value used for the BayesGC model. Four different values of q were 219 

tested for BayesGC, q = 0.05, 0.25, 0.5 and 0.75 corresponding to SNPs explaining 5%, 25%, 220 

50% and 75% of the total genetic variance (denoted BayesGC_05, BayesGC_25, BayesGC_50, 221 

BayesGC_75, respectively). 222 

 223 

The BayesGC model is thus as follows: 224 

 YD = 1μ + Zu + ∑ I𝑖𝑖𝐗𝐗𝑖𝑖s𝑖𝑖𝑖𝑖 + 𝐞𝐞    225 

where YD is a vector of the Yield Deviations of LogLC, 1 is a vector of ones, μ is overall mean, 226 

Z is a design matrix that links individuals to the YD, u = random polygenic effect with 227 

variance V(u) = Gσpol2 . 𝐗𝐗𝐢𝐢 = vector of genotypes for SNP i containing 0 for homozygote 228 

individuals, 1 for heterozygots, and 2 for the alternative homozygote genotype. I𝑖𝑖  is an 229 

indicator of whether SNP i is in the model in a MCMC-cycle or not (0/1) and the prior 230 



   
 

   
 

probability of I𝑖𝑖  = 1 is π. si is the SNP effect, where if the SNP i is in the model: si ~N(0, σm2 ). 231 

e is the residual with variance e ~N(0, Iσe2) where I is an identity matrix. The MCMC – chain 232 

was run for 4000 burn-in cycles and a total of 20000 Gibbs-cycles. The EBVs from the two 233 

Gibbs-chains had a correlation of >0.9999 and thus the EBVs were assumed to be 234 

converged, and the results presented for both BayesC and BayesGC is the average of two 235 

Gibbs-chains. 236 

 237 

2.5 Cross Validation 238 

We compared the three methods of genomic prediction for their predictive ability obtained 239 

from a 5-fold-crossvalidation design. There were two alternative scenarios (see below) and 240 

all models and scenarios were analyzed using two different SNP densities (215K and 241 

imputed 750K). The cross-validation for each scenario was performed by randomly splitting 242 

the data set (with some restrictions depending on the scenario; see below) into five 243 

separate subsets. In each “fold” the phenotypes of the corresponding data set were set to 244 

missing (masked), while phenotypes of the remaining four subsets were included in the 245 

analysis. This way the animals with phenotype included was set as the reference population 246 

(training-set) and the animals with missing phenotype were used as a validation population 247 

whose phenotypes were predicted (validation-set). Each fish was once included in the 248 

validation set over the five folds, i.e. there was no overlap between the validation sets. 249 

There were six replications of the five-fold cross-validation. Each five-fold cross-validation 250 

produced two Gibbs-chains and thus the results within each replicate is the result of two 251 

Gibbs-chains and the results shown is the average of these chains over the six replicates. 252 

 253 

We analyzed two different cross-validation scenarios: 254 



   
 

   
 

Within-family scenario:  Evenly distributing the fish within each full-sib group across the five 255 

subsets, so all fish have full-sibs in the training data when its own phenotype is masked. 256 

Across-family scenario: Entire full-sib families are allocated at random to one of the subsets, 257 

masking entire families at the same time. Half-siblings may still be present in training and 258 

validation sets. The analysis (either BayesC, GBLUP or BayesGC) was then performed for 259 

each fold and we extracted the GEBVs from the animals whose records were masked (the 260 

records of each individual were masked in one of the 5 folds). The accuracy of prediction 261 

was estimated as: 262 

 𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝑐𝑐𝑐𝑐𝑐𝑐(GEBV , 𝑌𝑌𝑌𝑌)
√ℎ2

 263 

Where h2 is estimated using a pedigree-based model. 264 

 265 

2.6 Significance test 266 

To test the models for significant differences in prediction accuracy we used a bootstrapping 267 

procedure (Efron, B. Tibishirani, 1994) to test the correlation between GEBV and YD in each 268 

model following (Iversen et al., 2019). Two models at a time were compared to find which 269 

predicted the YDs best by randomly bootstrap sampling data points triplets (EBVs for each 270 

of the two models and the corresponding YD) with replacement. 10,000 bootstrap samples 271 

were constructed for each pairwise comparison. We determined which model yielded a 272 

higher correlation with the YD for each bootstrap sample. The models were considered 273 

significantly different if one of the models had a higher correlation in at least 97.5% of the 274 

bootstrap samples (equals a p-value of 5% due to the two-sidedness of the test).  275 

 276 

3. Results 277 



   
 

   
 

The estimates of the variance components of LogLC were σe2 = 0.414 and σu2 = 0.069 278 

resulting in a heritability of h2 = 0.14 estimated using the pedigree relationship matrix. For 279 

the 215K SNP-chip and the within-family scenario (Table 1) the highest prediction accuracy 280 

was 0.675 which was achieved by BayesGC_05 and BayesGC_25. The accuracy of GBLUP and 281 

BayesC was 0.671 and 0.672 respectively.  282 

 283 

In the 215K SNPchip and across-family scenario (Table2), the highest prediction accuracy 284 

was for BayesGC_05 at 0.602 Followed by BayesGC_25 and BayesGC_50 with an accuracy of 285 

0.601. BayesC and GBLUP followed at 0.599 and 0.596 respectively. There were no 286 

significant differences between any of the models using 215K genotypes neither within- nor 287 

across-family. For the 750K SNPchip and within-family scenario (Table 3). BayesGC_25 had 288 

the highest accuracy of 0.673 followed by BayesGC_05 with an accuracy of 0.673. GBLUP 289 

and BayesC had an accuracy of 0.669 and 0.670 respectively. The differences between the 290 

methods were not significant in the within-family scenario. For the 750K across-family 291 

scenario (Table 4), the highest accuracy was obtained from BayesC and BayesGC_75 with an 292 

accuracy of 0.611. GBLUP had an accuracy of 0.607 and BayesGC_05 and BayesGC_50 had 293 

an accuracy of 0.605, but none of the differences were statistically significant. 294 

Increasing genotype density from 215K to 750K within family (Tables 1 and 3) had no effect 295 

on the accuracy of prediction. However, between the 215K and 750K genotype densities for 296 

the across family scenarios (Tables 2 and 4), we can see a slightly higher accuracy all of the 297 

methods. For GBLUP: 0.596 versus 0.607, for BayesGC_05: 0.602 versus 0.605, for 298 

BayesGC_25 0.601 versus 0.610 and for BayesC 0.599 versus 0.611 using genotype densities 299 

215K and 750K respectively. However, there were no significant differences in prediction 300 

accuracy between different genotype densities in the across family scenario. 301 



   
 

   
 

 302 

3.1 Regression coefficient 303 

The slopes for the within-family scenarios are 1.1 and for the across-family the slope is 1.2. 304 

There were no differences in estimates of the slopes between the methods. A too high slope 305 

indicates that the spread of the EBVs is too small. Possibly the estimated genetic variance is 306 

too small. The estimated variance is based on a pedigree relationship matrix, while we are 307 

using a genomic relationship matrix in our predictions. 308 

 309 

 310 

3.2 Posterior probabilities 311 

A brief analysis of our posterior probabilities was conducted (Appendix A), and no SNPs with 312 

posterior probability higher than 0.02 were detected. Hence, we could not detect any QTLs 313 

for the trait, but there was some regions with elevated posterior probabilities, which might 314 

indicate that some regions are more associated with the trait than others.  315 

 316 

 317 

4. Discussion 318 

The accuracy of genomic predictions of host resistance to salmon lice (Lepeophtheirus 319 

salmonis) was substantial and varied between 0.59-0.68. Within-family predictions yielded 320 

higher accuracies than across-family predictions. This was expected as there will be a higher 321 

genetic relationship between the test- and training animals in the within-family prediction 322 

scenario, and a higher genetic relationship between test- and training set is often connected 323 



   
 

   
 

to a higher prediction reliability (Wu et al., 2015). Although the across-family scenario does 324 

not contain full-sibs in a training set for any animals in the validation set, half-sibs may still 325 

be present, and so the relationship between animals in the across-family scenario is lower 326 

than for the within-family, but cannot be regarded as very distant. It would be interesting to 327 

see if there is a larger difference between the models when the relationship between the 328 

animals in a training set and test set is more distant, as the predictions would need to rely 329 

more on the LD between markers and not so much the family relationships Unfortunately, 330 

the family structure of our data does not allow to test at lower genetic relationships. 331 

 332 

Sonesson (2007) studied the decay of prediction accuracy as the relationship between the 333 

reference population in a sib-testing scheme decreases over generations. Within a 334 

generation, the markers that only explain family effects could be used for the prediction of 335 

family means, whereas across generations, the family effects decay and the SNPs that 336 

explain the trait variance become more important. Hence, higher SNP density and 337 

accounting for single SNP effects in BayesGC is expected to become more important at more 338 

distant genetic relationships between training and validation sets.    339 

 340 

The main differences between the three models in our study lie in how they model the 341 

genetic variance of the SNPs. The GBLUP method explains the variance by assuming all SNPs 342 

have an equal variance, and all SNPs are fitted jointly through the G-matrix. The BayesC 343 

model assumes that the genetic variance is explained by a relatively small fraction of the 344 

SNPs and fits those SNPs explicitly in the model. BayesGC fits all SNPs through the G-matrix, 345 

and at the same time fits a few SNPs that explain substantially more genetic variance than 346 

the others. The different BayesGC versions differentiate in how the total genetic variance is 347 



   
 

   
 

divided between the G-matrix or the SNP-markers. This is one of the reasons we had hoped 348 

to see a bigger difference between the models for the across-family prediction scenario. 349 

 350 

Other studies showed promising results for a BayesGC type of method. Solberg, Sonesson, 351 

Woolliams, Odegard, & Meuwissen (2009) fit a polygenic effect using pedigree information 352 

and the Bayes B method from Meuwissen, Hayes, & Goddard (2001) to fit SNP effects. They 353 

conclude that fitting a polygenic effect has a small impact on the accuracy of genome-wide 354 

EBVs in the generation immediately following phenotyping, but as the generations progress, 355 

the predictions with a polygenic effect retain a higher accuracy, and that this persistence in 356 

accuracy is significant for higher marker densities. Calus & Veerkamp (2007) found an 357 

increase in the prediction accuracy when including a polygenic effect when the SNP density 358 

and heritability was high. Calus et al. did not predict over generations and generally had a 359 

smaller genome size and lower marker densities than Solberg et al., (2009). Hence, it is 360 

expected that including a BayesC and polygenic term increases prediction accuracies, 361 

especially as the genetic relationships between the training and evaluation animals 362 

decrease. However, both these studies are simulation studies. We found from our study 363 

with real data, that there was no significant difference between our models in the across-364 

family scenario compared to the within-family scenario at either genotypic densities. 365 

 366 

 Ma et al. (2019) found that using a Bayesian model including known QTLs increased the 367 

reliability of prediction accuracy regardless of the genetic distance between the reference 368 

population and the predicted population. They found that the Bayesian methods had a 369 

larger advantage for traits linked to major genes such as milk yield and fat compared to 370 

fertility and mastitis that had almost no effect. They also saw that a small reference 371 



   
 

   
 

population (<1000 individuals) could affect the reliability of the prediction. As we have both 372 

a relatively small reference population (~1000 individuals) in addition to a highly polygenic 373 

trait, this might have had an impact on why the Bayesian methods did not outperform 374 

GBLUP. 375 

 376 

 Iheshiulor et al. (2017) compared the Bayes GC method with GBLUP and BayesC on real 377 

data from cattle. Their BayesGC method used an iterative conditional expectation (ICE) 378 

algorithm to fit their BayesC term while we used a Gibbs sampling algorithm. They found 379 

that the BayesGC performed marginally better than GBLUP and BayesC for all their traits 380 

and for one trait the difference was significant. Iheshiulor et al (2017) finds that BayesC 381 

always performs between GBLUP and BayesGC. Our results showed that the BayesC method 382 

performed either the same or worse than BayesGC and the same or slightly better than 383 

GBLUP. In other words, the BayesC term did not add prediction accuracy compared with the 384 

GBLUP model, which may explain why the BayesGC model did not have an advantage over 385 

GBLUP. Moreover, the performance of the Bayesian methods may be affected by the 386 

assumption that each SNP explains 0.1% of the genetic variance, which limits the number of 387 

SNPs fitted. However, fitting more SNPs would make the use of fitting both a polygenic trait 388 

and a Bayes C term redundant, as fitting many small SNPs would be practically the same as 389 

fitting polygenic effects. On the other hand, fitting fewer and larger SNPs would not agree 390 

with the polygenic nature of the trait. We did, however, test different assumptions for the 391 

BayesC method, assuming that each SNP explain 1
500

, 1
2000

 and 1
10000

 of genetic variance. 392 

None of these assumptions yielded a significantly different accuracy for the BayesC 393 

prediction accuracy and thus the results were not included here. 394 

 395 



   
 

   
 

Increasing marked densities increased the accuracy slightly for across-family prediction for 396 

all methods, but for within family, the accuracy was the same for both marker densities or 397 

could even seem slightly lower for the high-density genotype. For highly polygenic traits 398 

such as lice resistance, most of the accuracy comes from information on close relatives. 399 

Studies have found that these relationships are accurately predicted with marker panels as 400 

low as 1000 SNPs across genome (Kriaridou et al., 2020). We had 215K SNPs at our lowest 401 

density and so the relationships are expected to be accurately fitted by a 215K marker 402 

panel, and thus there is limited effect of increasing the SNP density even more. Still, a small 403 

increase in accuracy for across-family predictions may be expected for the higher genotype 404 

density, as across-family predictions relies more on LD between markers and causative 405 

mutations. However, the benefits of higher density might be reduced due to imputation 406 

errors. Our 750K genotypes were imputed, whereas the 215K genotypes were recorded. Our 407 

reference population for the imputation was small (59 parents) and did not include all the 408 

parents of the animals in our dataset. This means that some of the families were imputed 409 

based on parental animals from other families. Close relatives share long haplotypes, which 410 

likely results in similar imputation, and possibly similar imputation errors, within the 411 

haplotype. Incorrect imputation may thus be more likely to cause bias in across-family than 412 

within-family prediction (within-family relationships are still accurately captured by the 413 

imputed SNPs). As BayesGC fits a polygenic term in addition to the BayesC term, it could be 414 

more robust than BayesC towards these kinds of errors, however differences in accuracy 415 

were small and not statistically significant in our study. 416 

 417 

4.1 Posterior probabilities 418 



   
 

   
 

When fitting the BayesC-term we have both a prior and a posterior probability of whether a 419 

SNP should be fitted in the model or not. The prior probability is an input parameter, and 420 

the posterior probability is determined by the model from the Gibbs-sampling and data. The 421 

posterior probability is the probability of how often the SNP was fitted in the model for all 422 

the Gibbs samples. If one SNP explains more variance than another it should have a higher 423 

posterior probability of inclusion. It is feasible to detect QTLs using the posterior 424 

probabilities from Bayes C (van den Berg et al., 2013). However, in order to detect QTLs, the 425 

recommendation is to use large datasets and highly heritable traits. For our study, the 426 

sample size is limited (n=1385), and the heritability is low to moderate. Tsai et al., (2016) did 427 

a GWAS analysis for the trait host resistance to salmon lice (Lepeophtheirus salmonis) but 428 

did not find any QTL for the trait. However, Rochus et al., (2018) found 2 QTL, on 429 

chromosome 1 and 23 respectively using a mixed linear model GWAS, and 70 SNPs using a 430 

forward multiple linear regression model that did not correct for population stratification 431 

and relatedness, and thus many of the 70 SNPs may be due to population structure. A few 432 

small QTL have also been found for sea lice more prevalent in the southern hemisphere 433 

(Caligus rogercresseyi). Among these, Cáceres et al., (2019) found 7 windows explaining up 434 

to 3% of the genetic variance for Atlantic salmon. The regions were associated with immune 435 

responses, cytoskeletal factors and cell migrations. Robledo et al., (2019) also found 3 single 436 

QTLs that explained approximately 4% of the genetic variance each. 3 QTL regions of 3-5 Mb 437 

explaining between 7.8 and 13.4% of the genetic variance of sea lice density for the C. 438 

rogercresseyi lice. However, it is known that estimates of QTL variances coming from the 439 

same data in which they were detected are overestimated by the Beavis effect (Xu, 2003). 440 

Hence, some QTL for sea lice resistance were found in the literature, however the genetics 441 



   
 

   
 

and heritability of lice resistance has also been found to depend on the recording 442 

methodology. 443 

 444 

 445 

5. Concluding remarks 446 

When using Genomic Prediction within-families, a SNP-density of 215K seems to be more 447 

than sufficient to achieve a good prediction accuracy. However, if one want to predict 448 

across-family one might benefit from a higher density genotype, although, if genotype 449 

imputation is required to achieve the higher density, imputation errors might reduce the 450 

benefits. Host resistance to salmon lice behaved as a highly polygenic trait in our data with 451 

no major QTL regions and there seems to be virtually no benefit in fitting a BayesC term for 452 

this trait since the GBLUP, BayesC and BayesGC yielded very similar accuracies. 453 

 454 
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Table 1. Results from the within-family predictions using 215K genotype density.  561 

  acc SE(acc) b π 𝛔𝛔pol2   𝝈𝝈m2 𝐧𝐧mrk 

GBLUP 0.671 0.011 1.08 0 0.069 0 0 

BayesGC_05 0.675 0.011 1.09 0.0002 0.065 0.00017 50 

BayesGC_25 0.675 0.011 1.09 0.0012 0.052 0.00017 250 

BayesGC_50 0.674 0.011 1.09 0.0023 0.034 0.00017 500 

BayesGC_75 0.673 0.011 1.09 0.0035 0.017 0.00017 750 

BayesC 0.672 0.011 1.09 0.0046 0 0.00017 1000 

acc is accuracy of prediction (Pearson correlation between estimated and true breeding value 562 
divided by the square root of the heritability).  563 

SE(acc) is the standard error of the means of the accuracy for each replication. 564 

b is the regression coefficient. π is the prior probability of a SNP having an effect or not.  565 

𝛔𝛔pol2 is the variance attributed to the polygenic effect.  566 

𝝈𝝈m2 is the variance assumed for a single SNP effect (if fitted in the model).  567 

𝐧𝐧mrk is the estimated number of markers fitted in the model based on the π value multiplied by the 568 
total number of markers.  569 



   
 

   
 

Table 2. Results from the across-family predictions using 215K genotype density. 570 

  acc SE(acc) b π 𝛔𝛔pol2   𝝈𝝈m2 𝐧𝐧mrk 

GBLUP 0.596 0.012 1.18 0 0.069 0 0 

BayesGC_05 0.602 0.014 1.23 0.0002 0.065 0.00017 50 

BayesGC_25 0.601 0.013 1.19 0.0012 0.052 0.00017 250 

BayesGC_50 0.601 0.013 1.19 0.0023 0.034 0.00017 500 

BayesGC_75 0.600 0.013 1.19 0.0035 0.017 0.00017 750 

BayesC 0.599 0.013 1.19 0.0046 0 0.00017 1000 

acc is accuracy of prediction (Pearson correlation between estimated and true breeding value 571 
divided by the square root of the heritability).  572 

SE(acc) is the standard error of the means of the accuracy for each replication. 573 

b is the regression coefficient. π is the prior probability of a SNP having an effect or not.  574 

𝛔𝛔pol2 is the variance attributed to the polygenic effect.  575 

𝝈𝝈m2 is the variance assumed for a single SNP effect (if fitted in the model).  576 

𝐧𝐧mrk is the estimated number of markers fitted in the model based on the π value multiplied by the 577 

total number of markers. 578 

  579 



   
 

   
 

Table 3. Results from the within-family predictions using 750K genotype density. 580 

  acc SE(acc) b π 𝛔𝛔pol2   𝝈𝝈m2 𝐧𝐧mrk 

GBLUP 0.669 0.010 1.09 0 0.069 0 0 

BayesGC_05 0.673 0.011 1.10 0.00007 0.065 0.00027 50 

BayesGC_25 0.676 0.012 1.03 0.00034 0.052 0.00027 250 

BayesGC_50 0.672 0.010 1.10 0.00067 0.034 0.00027 500 

BayesGC_75 0.671 0.011 1.10 0.00101 0.017 0.00027 750 

BayesC 0.670 0.011 1.10 0.00134 0 0.00027 1000 

acc is accuracy of prediction (Pearson correlation between estimated and true breeding value 581 
divided by the square root of the heritability).  582 

SE(acc) is the standard error of the means of the accuracy for each replication. 583 

b is the regression coefficient. π is the prior probability of a SNP having an effect or not.  584 

𝛔𝛔pol2 is the variance attributed to the polygenic effect.  585 

𝝈𝝈m2 is the variance assumed for a single SNP effect (if fitted in the model).  586 

𝐧𝐧mrk is the estimated number of markers fitted in the model based on the π value multiplied by the 587 

total number of markers. 588 

  589 



   
 

   
 

Table 4. Results from the across-family predictions using 750K genotype density. 590 

  acc SE(acc) b π 𝛔𝛔pol2   𝝈𝝈m2 𝐧𝐧mrk 

GBLUP 0.607 0.009 1.21 0 0.069 0 0 

BayesGC_05 0.605 0.012 1.24 0.00007 0.065 0.00027 50 

BayesGC_25 0.610 0.013 1.16 0.00034 0.052 0.00027 250 

BayesGC_50 0.605 0.012 1.24 0.00067 0.034 0.00027 500 

BayesGC_75 0.611 0.009 1.23 0.00101 0.017 0.00027 750 

BayesC 0.611 0.009 1.23 0.00134 0 0.00027 1000 

acc is accuracy of prediction (Pearson correlation between estimated and true breeding value 591 
divided by the square root of the heritability).  592 

SE(acc) is the standard error of the means of the accuracy for each replication. 593 

b is the regression coefficient. π is the prior probability of a SNP having an effect or not.  594 

𝛔𝛔pol2 is the variance attributed to the polygenic effect.  595 

𝝈𝝈m2 is the variance assumed for a single SNP effect (if fitted in the model).  596 

𝐧𝐧mrk is the estimated number of markers fitted in the model based on the π value multiplied by the 597 

total number of markers. 598 

 599 
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