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Summary

Recent advances in Light Detection and Ranging (LiDAR) sensors have led to
an increasing amount of large scale point cloud data collections. The LiDAR
sensors can capture the fine spatial details of a remote environment in a full
three-dimensional perspective, thus providing huge potentials for better machine
understanding of a 3D scene.

This thesis explores these potentials by providing robust and effective ways to
extract information from large scale point cloud data. The study focuses on the
utilization of deep learning techniques for the 3D scene understanding tasks, i.e
semantic segmentation and object detection. It should be noted that the deep
learning techniques were chosen mainly because the techniques simplify the
generation of representative and robust features taking into account the spatial
autocorrelation of input data, while often resulting in the highest prediction
accuracies.

As the backbone of this thesis, the deep learning approach has shown remarkable
progress in generating the highest classification accuracy for several benchmark
datasets, including our in-house dataset. Our contributions to improve the
quality of point cloud annotation is closely related to the improvement of the
deep learning models, i.e improving the deep learning preprocessing step by using
a better density sampling approach, restructuring the deep learning modules
by developing our Stochastic Atrous Network (SA-NET) architecture, and
refining the post-processing step of deep learning prediction by invoking spatial
and spectral similarities of point cloud data, using our Atrous X Conditional
Random Field (A-XCRF) algorithm.

The present PhD-work started by addressing some challenging problems
regarding the modelling of the 3D point cloud data, and it was completed
by providing a deliverable prototype capable of generating fast and accurate
point cloud annotation labels. During the research process, we have managed
to develop a better solution for extracting information in the form of semantic
labelling from 2D projected point cloud data. We also developed a post-
processing module refining point-level classifications directly generated from
raw point cloud data.

Finally, we developed an open-source and robust semi-automatic point cloud
annotation tool, called Smart Annotation and Evaluation (SAnE). The SAnE
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speeds up the point cloud annotation process while also offering significantly
better annotation accuracy than the baseline annotation approaches.

Keywords: point cloud annotation, deep learning, semantic mapping, 3D object
detection, land cover segmentation, autonomous vehicle application.
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Sammendrag

Utviklingen innen Light Detection and Ranging (LiDAR) sensorer har de siste
årene ført til en økende innsamling av data i form av storskala punktskyer. Med
LiDAR-sensorene kan man få høyoppløselige beskrivelser av objekter og miljøer
i 3D. De utgjør dermed et enormt potensiale for bedre maskin forståelse av et
3D-bilde.

Denne avhandlingen utforsker dette potensialet gjennom å utvikle robuste og
effektive metoder for å hente ut informasjon fra slike punktskyer. Hovedvekten
er lagt på dype kunstige nevrale nettverk for tolking av 3D-bilder. Dette
omfatter blant annet semantisk segmentering og objektdeteksjon. Denne
typen dyp læring er en sentral metode innenfor maskinlæring. Teknikken
ble hovedsakelig valgt fordi den forenkler etableringen av representative og
robuste beregningsfunksjoner samtidig som det er mulig å ta hensyn til romlig
autokorrelasjon i bildene som analyseres. Metodene viser seg også ofte å gi den
høyeste prediksjonsnøyaktigheten.

Metodene innenfor dyp læring som utgjør kjernen i denne oppgaven, har i
gjentatte sammenlignende tester gitt svært gode resultater i form av den høyeste
klassifiseringsnøyaktigheten for flere referansedatasett, inkludert vårt interne
datasett. Våre bidrag til å forbedre kvaliteten i tolkningen av punktskyer er
nært knyttet til forbedringen av modellene for dyp læring. Det innebærer for
det første en videreutvikling av dyp læring metoder for preprosessering av data
gjennom sampling med bedre tetthet. Videre har vi bidratt til restrukturering
av modulene for dyp læring ved å utvikle vår SA-NET-arkitektur. For det
tredje har vi forbedret etterbehandlingstrinnet i dyp læringsprediksjon ved å ta
hensyn til romlige og spektrale likhetstrekk innenfor punktskyen ved å bruke
vår A-XCRF-algoritme.

Dette doktorgradsarbeidet startet med å ta fatt i kjente utfordringer innen
modellering av punktskyer som avbilder fenomener i 3D. Gjennom arbeidet er
nye utfordringer identifisert og det er etablert en prototype for rask og nøyaktige
klassifisering av elementer i punktskyer. I løpet av forskningsprosessen har vi
klart å utvikle en bedre løsning for å trekke ut informasjon i form av semantisk
merking fra 2D projiserte punktskydata.

Vi har også utviklet en etterbehandlingsmodul som forbedrer klassifisering
av elementer direkte fra punktskyer. Til slutt utviklet vi (i form av åpen
kildekode) en robust, halvautomatisk verktøy for annotering av punktskyer, kalt
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SAnE. Med dette verktøyet kan annotasjon av punktskyer gjøres mer effektivt,
samtidig som det gis betydelig bedre kommentarnøyaktighet enn ved manuelle
tilnærmingsmetoder.

Nøkkelord: punktsky, dyp læring, semantisk kartlegging, 3D-objektdeteksjon,
arealdekke segmentering, autonome kjøretøyprogram.

vi



Ringkasan

Berbagai teroboson terbaru dalam teknologi Light Detection and Ranging
(LiDAR) menyebabkan penggunanan dan pengumpulan data berbasis point
cloud dalam skala besar meningkat. Sensor berbasis LiDAR dapat memberikan
tampilan tiga dimensi dari sebuah objek secara utuh, sehingga berpotensi
untuk meningkatkan kualitas sistem pengolahan citra secara otomatis dalam
lingkungan tiga dimensi.

Disertasi ini mengeksplorasi potensi-potensi di atas dengan menyediakan
berbagai terobosan yang aplikatif dan efektif dalam proses ekstrasi informasi dari
data berbasis point cloud. Penelitian ini berfokus pada implementasi teknologi
deep learning dalam bidang pengolahan citra digital untuk lingkungan tiga
dimensi, seperti segmentasi semantik and pendeteksian objek. Pendekatan
semacam ini dipilih karena teknologi deep learning memudahkan dan
menyederhanakan penyaringan dan pemilihan fitur-fitur terbaik dari sebuah
data masukan dengan memperhatikan korelasi dan kedekataan spasial dari
data-data tersebut, sehingga seringkali menghasilkan prediksi dengan tingkat
akurasi terbaik.

Sebagai bagian utama dari penelitian ini, teknologi deep learning telah
memperlihatkan berbagai capaian yang signifikan dengan memberikan prediksi
dengan tingkat akurasi tertinggi dari berbagai percobaan yang dilakukan,
termasuk percobaan menggunakan data-data patokan yang ada. Kontribusi-
kontribusi dari disertasi ini dalam rangka meningkatkan kualitas proses
penyediaan anotasi terhadap data berbasis point cloud sangat terkait dengan
terobosan yang diberikan terhadap pengembangan model deep learning, antara
lain: (1) perbaikan terhadap tahapan pemrosesan data sebelum dimasukkan
dalam proses pembelajaran mesin menggunakan pendekatan density-sampling
dan pemahaman data masukan, (2) penyusunan ulang bagian-bagian dari
arsitektur deep learning untuk menghasilkan arsitektur terbaik berdasarkan
kondisi data yang dimodelkan (arsitektur yang ditawarkan diberi nama SA-
NET) dan (3) perbaikan hasil prediksi dengan menghaluskan tingkat kekasaran
hasil prediksi dengan menekankan pentingnya kedekatan spasial dan kesamaan
spektral dari data berbasis point cloud (teknik ini diberi nama A-XCRF).

Dalam kerangka kerja (dan penelitian) yang utuh, penelitian doktoral ini
dimulai dengan menjawab berbagai tantangan yang ada dalam memodelkan
data tiga dimensi berbasis point cloud, kemudian diakhiri dengan menawarkan
produk berbasis software kode terbuka yang mampu menghasilkan anotasi
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data berbasis point cloud secara cepat dan akurat. Pertama-tama, sebuah
proses penelitian dilakukan yang kemudian menghasilkan solusi terbaik dalam
proses ekstrasi informasi dibidang segmentasi semantik dari data berbasis point
cloud. Sebagai catatan, data berbasis point cloud yang digunakan diproyeksikan
terlebih dahulu dalam bidang dua dimensi. Pada tahapan berikutnya, sebuah
algorithm penghalusan hasil prediksi diusulkan untuk memperbaiki hasil prediksi
segmentasi semantik yang dihasilkan langsung dari data input yang berasal
dari data mentah berbasis point cloud. Pada tahap akhir, sebuah software
berbasis kode terbuka ditawarkan. Software ini berfungsi untuk menganotasi
data berbasis point cloud secara cepat dengan akurasi yang jauh lebih tinggi
dibanding dengan proses anotasi secara manual.

Kata kunci: point cloud, deep learning, pendeteksian objek, segmentasi
semantik, aplikasi mobil otomatis.
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CHAPTER 1

Introductions

1.1 Overview

The ever increasing volumes of point cloud data and the advances of automatic
perception systems, has spawned new research targeting approaches to the
description, analysis, and understanding of 3D scenes. This new research
stream contributes to the development of automated systems using 3D data by
adding realm of point cloud data modelling (including semantic mapping and
object detection) to the previous focus on image analysis and hyperspectral data
(Qi et al., 2017b; Li et al., 2018; Shi et al., 2019). The point cloud measurement
technology can capture a very detailed (high resolution) three-dimensional
image of objects and their environments. In fact, the point cloud data have
already been used to generate high accuracy digital terrain models required for
hazard assessment, susceptibility mapping, and detecting surface displacements
(Jaboyedoff et al., 2012). There is also a substantial potential for improving
the quality of our automated perception systems by using point cloud data,
especially in the field of 3D scene understanding. Therefore, development and
systematic testing of new methodology is required to release this potential.

Many researchers from computer vision, remote sensing, and automated systems
have explored machine learning-based approaches to provide robust and accurate
ways to extract (meaningful) information from the point cloud data. In fact,
several recent dissertations from Stanford (Qi et al., 2018b), ETH Zurich (Hackel,
2018), and Imperial College London (McCormac, 2018) all addressed this issue,
aiming to improve the quality of our automatic perception system for point
cloud data based on different choices of deep learning architectures.

The success of deep learning for image analysis surpassing human-level
performance (He et al., 2016) has attracted considerable attention in the last
couple of years because of its potential for improving the quality of (automated)
perception systems. In point cloud classification, the deep learning modelling
approach has also shown superiority by providing the best performing classifiers
for several point cloud classification benchmarks, such as 3D Shapenets (Wu
et al., 2015), ScanNet (Dai et al., 2017), S3DIS (Armeni et al., 2016), and
ISPRS Vaihingen 3D Labeling (Niemeyer et al., 2014).

In this thesis, we focus on a similar challenge: To provide high-quality annotation
from large scale point cloud data using deep learning-based modelling techniques.
We addressed the question of what the best way is to provide high accuracy
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1. Introductions

annotation of point cloud data? We approached this question from three different
viewpoints, (1) by contributing to the state of the art methodology for 2D
image segmentation in generating semantic maps based on (2D projected) point
cloud data, (2) by employing deep learning modelling techniques specifically
developed for raw point cloud data handling directly, and (3) by combining
deep learning-based modelling and minimal human-perception in our proposed
semi-automatic annotation tool capable of generating fast and accurate point
cloud labels (Arief et al., 2018, 2019b,a, 2020).

1.2 Research Questions and Objectives

As the amount of available point cloud data is growing, the efforts to extract
meaningful information and accurate annotations also increases. Relying solely
on humans to provide the point cloud annotations is not only expensive and
time-consuming but can also result in inconsistent outcomes. Moreover, a
multitude of applications requires that annotations are provided and updated in
near real-time. Thus, it is a necessity to develop automatic (or semi-automatic)
approaches to provide and maintain these high-accuracy point cloud annotations.

The overall goal of this thesis has been to provide an effective way to provide
accurate annotations from large amounts of point cloud data. Such annotations
were provided in the form of point-level classification, bounding box localization,
and the combination of both.

The main research question of this thesis has been: What are the (most) efficient
and effective ways to generate high accuracy point cloud annotations? We have
tried to address and answer this question from three perspectives.

1. 2D Projections. Based on emerging researches and high-quality results
from 2D image understanding in computer vision, our first approach was to
embody the techniques from this field to generate automatic segmentation
based on 3D point cloud data by projecting the point cloud data into the
2D grids. This raises the questions: (1) Which state of the art techniques
for image understanding is suitable for this approach, (2) How accurate
are the existing techniques, and (3) How can we improve their accuracies
and overcome their limitations?

2. 3D Representations. One obvious problem with projecting point cloud
data in the 2D grids is that meaningful information useful for automatic
inference is lost. Therefore, the next objective of this thesis was to perform
semantic segmentation directly from the 3D point cloud representations.
This approach raises similar questions to the first approach: (1) What
and (2) How accurate is the state of the art technique for generating
point-wise segmentation directly from the point cloud data, and (3) How
can we improve the accuracy of this technique?

3. Semi-automatic Annotations. Given the efficiency and the quality of
the first two approaches, our last objective was to develop an annotation
tool for generating high-accuracy point cloud labels, guided by automatic
point-wise classification. This raises the questions: (1) How to efficiently
annotate the 3D point cloud data, (2) What are the obstacles to providing
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1.3. Contributions and Thesis Outline

robust annotation tools for point cloud data, and (3) How can we overcome
those problems?

By addressing these more detailed research questions, we have contributed
towards our main objective, to provide efficient and accurate ways to generate
high accuracy point cloud annotations.

1.3 Contributions and Thesis Outline

The contributions of this thesis have been published in several peer-reviewed
papers on high-impact journals and conferences. The key papers are included
in appendices A, B and C+D. The rest of the thesis is outlined as follows:

Chapter 2 provides background material. Previous work and current advances
in the deep learning techniques for point cloud data are presented in this chapter.
We also present the state of the art in automatic perception techniques for 3D
scene understanding. The point cloud datasets used as research material in this
thesis are also described here.

Our own research is described in Chapter 3. In the beginning of this thesis,
we proposed a deep learning architecture for generating high quality semantic
segmentation maps from a 2D projection of large amounts of point cloud
data (Arief et al., 2018). Our proposal combined both Light Detection and
Ranging (LiDAR)-derived features and image-based features. The results are
good and applicable for updating the existing segmentation maps (NIBIO,
2018). However, the preprocessing techniques, including point cloud projections
and height-above-ground (HaG) feature generations, are expensive and time-
consuming.

Alleviating the complex preprocessing pipeline from our first approach (Arief
et al., 2018), the XCRF algorithm was introduced (Arief et al., 2019b). In
combination with the PointCNN (Li et al., 2018) we were able to simplify the
generation of high accuracy semantic segmentation maps directly from the point
cloud data. This methodology provided the highest F1-score on the tested
benchmark dataset (Niemeyer et al., 2014). However, when the model derived by
the proposed approach was applied to a (very) different dataset, the promising
results could not be replicated, indicating a domain adaptation problem.

To overcome the domain adaptation problem and provide a robust point cloud
annotation tool, we introduced SAnE (Arief et al., 2020). The SAnE uses a
semi-automatic approach combining automatic perception (Arief et al., 2019a)
and human involvement to obtain faster and more accurate annotation of point
cloud data.

These approaches cover all the research questions stated in the previous section
and contribute to the development in the fields of computer vision and remote
sensing.

Paper A (Section 3.1). Here we propose a deep learning fusion architecture,
combining LiDAR-derived features and image-based features for generating
high quality land cover segmentation maps.

3



1. Introductions

• The proposed deep learning architecture integrates the deep atrous network
architecture including the stochastic depth approach for speeding up the
learning process while causing a regularization effect.

• By introducing an early fusion deep layer combining the image-based and
LiDAR-derived features, we obtained more than a 5% improvement in
the measured relative Mean Intersection over Union (MIoU) compared to
the atrous network (Vladimir, 2018).

• By including the multi-class Intersection over Union (IoU) loss function
in our implementation, the resulting model became better in handling
highly imbalanced datasets, preventing against overfitting.

Paper B (Section 3.2). Our contribution is the development of a point
cloud post-processing module, emphasizing the spatial autocorrelation of
unlabeled data and neighborhood embedding to generate high-accuracy
pointwise segmentation maps. Our propositions include:

• A novel technique for addressing the overfitting issue for automatic point
cloud classification.

• A technique for utilizing unlabeled data to refine a validated deep learning
model.

• A post processing module, A-XCRF, that can be combined with any
machine learning technique to strengthen classification accuracy.

• Our approach yields the highest accuracy in term of F1-score (71.05%)
for the Vaihingen 3D labelling dataset (Niemeyer et al., 2014).

Paper C (Section 3.3) and Paper D (Section 3.4). Finally, we have
contributed to the development of robust open source point cloud annotation
tools for generating fast and accurate point cloud annotation labels. Our
propositions include

• A density-adaptive sampling, enabling the pointwise segmentation
algorithm for heterogeneity density point cloud data.

• A denoising pointwise segmentation strategy, enabling the one-click
annotation technique.

• A motion model approach using our novel guided-tracking algorithm,
simplifying the frame-to-frame annotation process.

• A robust interactive open-source point cloud annotation tool for
simplifying the creation of high-quality bounding box annotations.

• Annotation using our method speeded up the annotation process by a
factor of 4.17 and provided annotation accuracy in term of Intersection
over Union (IoU) agreements of 92.02% and 82.22% with 2D bounding
box (BBOX) and Bird Eye View (BEV), respectively. A more carefully
executed annotation based on the same tool even achieves +8.84% higher
BEV IoU agreement than the baseline annotation accuracies.
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1.4 Publications

The work and results described in this thesis are based on the following
publications addressing several challenging problems concerning 3D point cloud
annotation by classification modelling based on deep learning:

• Paper A: Arief H, Strand GH, Tveite H, Indahl U. Land Cover
Segmentation of Airborne LiDAR Data Using Stochastic Atrous Network.
Remote Sensing. 2018 Jun 19;10(6):973.

• Paper B: Arief H, Indahl U, Strand GH, Tveite H. Addressing Overfitting
on Point Cloud Classification using Atrous XCRF. ISPRS Journal of
Photogrammetry and Remote Sensing (ISPRS Journal). Sept 2019. pp
90-101.

• Paper C: Arief H, Arief M, Bhat M, Indahl U, Tveite H, Zhao D. Density-
Adaptive Sampling for Heterogeneous Point Cloud Object Segmentation in
Autonomous Vehicle Applications. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) Workshops, pp.
26-33. 2019.

• Paper D: Arief H, Arief M, Zhang G, Indahl U, Tveite H, Zhao D. SAnE:
Smart annotation and evaluation tools for point cloud data. Submitted on
Nov 2019.
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CHAPTER 2

Background

Recent advances in LiDAR has enabled higher quality 3D scene representations.
This has fueled up a new research stream in 3D scene understanding, enriching
the automatic perception research area, that previously focused on 2D vision
and image processing (Krizhevsky et al., 2012; Simonyan and Zisserman, 2014;
He et al., 2016), with point cloud data modelling and 3D scene understanding
(Qi et al., 2017a,b; Li et al., 2018; Shi et al., 2019). Several datasets containing
point cloud data have recently been published both for remote sensing (Niemeyer
et al., 2014; Blom Geomatics AS, 2014; Hackel et al., 2017) and autonomous
vehicle applications (Geiger et al., 2013; Chang et al., 2019; Waymo, 2019).

The point cloud datasets used in this thesis are described in Section 2.1. In
Section 2.2, automatic perception techniques for 3D scene understanding are
introduced, and then previous work and current advances in deep learning
techniques for point cloud data are presented in Section 2.3.

2.1 Datasets

Compared to image-based datasets (Russakovsky et al., 2015; Everingham
et al., 2015), point cloud datasets are significantly larger in volume. This is
mostly because the point cloud data can capture 3D scenes better than the
high-resolution images. It should be noted that the more dense the point cloud
data are, the better their in-depth representation of the 3D view, resulting in
larger amounts of data.

In this thesis, we used a reasonably small point cloud dataset, the Vaihingen
dataset, for 3D semantic labeling (Niemeyer et al., 2014). This dataset contains
a few hundred thousand data points. We also used a larger dataset, the Follo
2014 LiDAR dataset (Blom Geomatics AS, 2014), containing approximately
eight billion points. Other datasets that were also used in this thesis, were the
NIBIO AR5 land cover / land use maps (NIBIO, 2018), the Bergen dataset
(Norwegian Map Authority, 2016), and the KITTI Vision Benchmark dataset
(Geiger et al., 2013).

Follo LiDAR 2014 (Blom Geomatics AS, 2014). The Follo dataset (Blom
Geomatic AS, using a Riegl LMS Q-780, with 5 points/m2, covering 850 km2)
was used in Paper A (Section 3.1) for generating land cover segmentation maps
from point cloud data projected into a grid / image structure (Arief et al.,
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2018). The dataset covers Follo (around 819 km2, a part of Akershus county
in Norway. The area is moderately hilly and dominated by forest with large
patches of agricultural areas and small areas of settlement). See Fig. 2.1 and
2.2.

The Follo 2014 dataset has both LiDAR-derived features (X, Y, Z-coordinates,
intensity, number of returns, and more), and image (RGB) features. It was
stored in 1877 files (structured as tiles) in LAZ (LAS compressed files) format.
Each tile covers an area of 600 m x 800 m, containing more than 2.4 million
data points each.

Figure 2.1: Map of Norway (1:15M, UTM Zone 33N) showing the location of
the Follo area.

NIBIO AR5 land cover / land use map (NIBIO, 2018). The AR5 land
cover / land use maps were used in Paper A (Section 3.1) as the ground truth
data for training and validating the SA-NET deep learning method (Arief
et al., 2018). The dataset consists of several types of classification: land
type (”arealtype” in Norwegian - a combination of land cover and land use),
forest productivity, tree type, and ground conditions. We used the ”arealtype”
classification, with 11 classes (Ahlstrøm et al., 2019). Some of the classes did not
exist or covered very small areas, so the number of classes was reduced to eight:
settlement, road/transportation, cultivation/grass, forest, swamp, lake-river,
ocean, and other.
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2.1. Datasets

Figure 2.2: Example from the Follo point cloud - forested area.

Class Number of Points
Training Data Test Data

Powerline 546 -
Low Vegetation 180,850 -

Impervious Surfaces 193,723 -
Car 4,614 -

Fence/Hedge 12,070 -
Roof 152,045 -
Facade 27,250 -
Shrub 47,605 -
Tree 135,173 -
Total 753,876 411,722

Table 2.1: Class distribution of the Vaihingen 3D semantic labeling dataset.

The Vaihingen dataset for 3D semantic labeling (Niemeyer et al., 2014).
This dataset is provided by ISPRS WG II/4, and was used in Paper B (Section
3.2) both as input and label data for 3D point cloud semantic labeling (Arief
et al., 2019b). It is a 3D point cloud covering a part of Vaihingen village in
Germany, acquired using a Leica ALS50 system. The dataset has a point density
of 6.7 points per m2, and has nine classes provided by Niemeyer et al. (2014).
The classes are powerline, low vegetation, impervious surface, car, fence/hedge,
roof, facade, shrub, and tree.

The Vaihingen point cloud dataset consists of more than one million data points,
divided into training and test data, containing 753,879 points and 477,722
points, respectively. The data are stored in CSV files, containing X-, Y- and
Z-coordinates, intensity values, number of returns, and class-id from one of the
eight classes. Along with the dataset, the ISPRS has since 2014 provided a
benchmark for 3D semantic labeling to compare the state of the art techniques
in this domain.

Bergen LiDAR Dataset (Norwegian Map Authority, 2016). The Bergen
dataset was used in Paper B (Section 3.2), as a transfer learning dataset for 3D
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semantic labeling (Arief et al., 2019b). The dataset was acquired using a Riegl
Q-1560 mounted on a Piper Aircraft P-31-350, and covers the Bergen region in
western Norway (see Fig. 2.3). It contains 3D spatial coordinates (XYZ) and
RGB values.

Figure 2.3: Map of Norway (1:15M, UTM Zone 33N) showing the location of
Bergen.

The Bergen classification schema contains eight classes, including ground, low
vegetation, medium vegetation, high vegetation, building, water, bridge, and
snow/ice. We only used 100 tiles of the dataset, containing 719,762,528 data
points, for the transfer learning experiment (Arief et al., 2019b).

The KITTI vision benchmark dataset (Geiger et al., 2013). The KITTI
dataset was used both in Paper C (Section 3.3) and Paper D (Section 3.4) for
3D semantic segmentation (Arief et al., 2019a) and object detection (Arief et al.,
2020), respectively. The dataset used for object detection contained 7481 scenes,
and each scene has (on average) 1.3 million data points. The data points were
collected using a Velodyne HDL-64E rotating 3D laser with 64 beams at 10 Hz.

The labels of the KITTI dataset is provided as bounding box locations,
containing center coordinates, dimensions, rotation angle, and object-id with
class reference. For the 3D semantic segmentation task, we preprocessed the data
by assigning the class label of a box to all the data points that it contained. We
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used the KITTI tracking dataset for object detection to show the applicability
of our guided tracking algorithm proposed in Paper D (Section 3.4).

2.2 3D Scene Understanding

3D scene understanding can be viewed as an automatic perception of geometric
structure and semantic information in a 3D scene, including the ability to
recognize objects and estimate the layout of the scene. It is a broad topic in
3D computer vision, involving object recognition, layout estimation, semantic
segmentation, motion estimation, and more (Qi et al., 2018b). In this thesis,
we focus on two tasks, namely semantic segmentation and object detection.

2.2.1 Semantic Segmentation

In (2D) image space, semantic segmentation can be defined as dense pixel
classification, where each pixel of the image is assigned to one class (Arief et al.,
2018). Similarly, in a 3D point cloud scene, semantic segmentation is used to
assign a class to each point in the scene, see Fig. 2.4. Thus, it is also called
pointwise classification or point-level segmentation.

Generating a high accuracy pointwise classification is not a trivial task. Not
only because it is difficult to handle large volumes of point cloud data in a
computational sense, but it is also (almost) impossible to deterministically
come up with a generic pattern that describes the irregular, unordered, and
(sometimes) not scaled point cloud representation for a specific classification
schema. Much research has been conducted to address these challenging
problems, e.g. by generating geometrical features (such as sphericity, deviation
angle, and planarity) and textural properties from point cloud data (Horvat
et al., 2016; Steinsiek et al., 2017; Yang et al., 2018), then feeding them to a
machine learning model such as K-Nearest Neighbour (Steinsiek et al., 2017) or
Random Forest (Niemeyer et al., 2014) to perform the pointwise classification.

Figure 2.4: Point-level classification from the Bergen dataset.
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Data-driven feature learning, like deep learning, is also used to do pointwise
classification. In fact, several 3D semantic segmentation benchmarks, such as
3D ShapeNet (Wu et al., 2015), ScanNet (Dai et al., 2017), S3DIS (Armeni et al.,
2016), and the ISPRS Vaihingen 3D labelling (Niemeyer et al., 2014), show
that deep learning-based techniques are (among) highest performing classifiers
(Qi et al., 2017a,b; Li et al., 2018; Arief et al., 2019b), providing high accuracy
semantic maps.

With the ability to provide accurate semantic mapping, the state of the art
semantic segmentation techniques are frequently deployed both in the field of
remote sensing and autonomous vehicle applications. In remote sensing, the
techniques are used for generating land cover and land use maps (Yousefhussien
et al., 2017; Yang et al., 2017; Arief et al., 2018, 2019b), road detection
(Caltagirone et al., 2017; Brust et al., 2015), water body extraction (Yu
et al., 2017; Kemker et al., 2018) and crop yield prediction (Payne et al.,
2013; Milioto et al., 2018). For autonomous vehicle applications, they are used
for environmental mapping and make up the backbone for object detection and
localization tasks (Yang et al., 2019a; Shi et al., 2019; Yang et al., 2019b; Arief
et al., 2020).

2.2.2 Object Detection

3D object detection, also called object localization, is used to determine the
location of objects in 3D space, represented using bounding boxes and/or
centroids. In contrast to semantic segmentation, object detection assigns a
unique object-id with a corresponding class name to each object. Each object,
in the 3D object detection task, will normally contain much more than one
point from the point cloud dataset, see Fig. 2.5.

Figure 2.5: 3D object detection based on PointRCNN (Shi et al., 2019).

In remote sensing, object detection techniques are used for building extraction,
tree classification, and pedestrian detection (Mnih, 2013; Du et al., 2017; Demir
et al., 2018; Van Etten et al., 2018). In other fields, like virtual reality and
autonomous driving, this research area plays an even more vital role as the
backbone of the applications. Because of its importance, researches have
proposed many approaches to perfecting the solutions for generating high
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accuracy bounding box and object location. Lahoud and Ghanem (2017)
proposed the use of histogram-based point coordinates to derive a 3D bounding
box location using a fully connected network. Zhou and Tuzel (2018) used voxel
grids to represent unordered point cloud data and implement voxel feature
encoding to perform object detection. Qi et al. (2018a) combined point cloud
feature learning and image-based object detection to detect object locations in
3D space.

2.3 Deep Learning for Point Cloud Data

Deep learning is a term that refers to a deep layer neural network, a machine
learning algorithm that has been around for decades. A Neural Network (NN)
algorithm tries to replicate the way the human brain works by providing neurons
and activation functions that are used to make decisions, similar to the cat’s
visual cortex experiments by Hubel and Wiesel (1962).

An early neural network architecture called LeNet-5 (LeCun et al., 1998)
provides a foundation for modern neural networks. The LeNet modules, such as
convolution layers, sub-sampling/pooling layers, activation function, and fully
connected layers are still widely adopted in current neural network architectures.
However, compared to the current standard and the result of other machine
learning algorithms, the old neural network results were significantly lower than
the present state of the art.

In 2015, the technology also reached a new level of success, a deep neural network
technique started to surpass human-level performance on visual recognition
challenges (He et al., 2016). And as the technology matured, the focus shifted
to more complex challenges, such as semantic segmentation, object detection,
and instance-aware segmentation (Chen et al., 2017).

The following chapters review the deep learning techniques applied to point
cloud data, such as deep learning on 2D projected point cloud with image-based
convolutional neural networks, deep learning for raw point cloud data, and deep
learning for semi-automatic annotation.

2.3.1 2D Projection

The deep learning approaches for 2D projected point cloud data are similar
to the deep learning techniques for image segmentation. The main difference
is that instead of using RGB values as input, the 2D projected point cloud
data use normalized height and intensity values. It should be noted that the
projected data can also use RGB values if these values are available.

Treating point clouds as image data enables the use of the Convolutional
Neural Network (CNN) based approach for automatic feature learning. It is
an important step, because CNN-based techniques can provide high-accuracy
predictions for (image-based) semantic segmentation problems (Long et al.,
2015; Ronneberger et al., 2015; Badrinarayanan et al., 2017; Chen et al., 2017).

Convolutional Neural Network. The CNN can be viewed as a stack of
learning blocks capable of capturing various spatial correlations, while at the
same time being inherently qualified to represent non-linear phenomena. CNN
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works by using three main modules, namely the convolution operation, the
pooling block, and a non-linear activation function.

The convolution operation is a dot product operation between input feature
maps and initially random numbers in a fixed size matrix, called kernel. The
kernel convolves on top of the feature maps, generating new feature maps, hence
the name convolution kernel (k), see Fig. 2.6. The convolution operation uses a
stride (s) to define the movement of the convolution kernel on top of the feature
maps; for 2D convolution, the stride is represented by two numbers defining
the kernel movement on the X and Y axis. In addition to stride value and the
kernel size, the convolution operation is defined by padding (p). The value of
(p) is used to fill the empty pixels caused by the striding of the convolution
kernel on top of the input feature maps.

The pooling block, on the other hand, acts as a local feature aggregation which
summarizes nearby features using an agreed value. Using the maximum value
of the nearby features is called max-pooling (see Fig. 2.7), while using the
average value of the nearby features is called average-pooling. The pooling
block not only reduces the spatial size of feature maps, which significantly
lowers the usage of memory storage and computational load but also invokes
an aggregation of the feature of interest and use them as the global feature
representation.

Another important component of CNNs is the non-linear activation functions.
Without such functions, CNN layers would become just “one big linear sandwich”
which cannot represent the nonlinear phenomena that are important in many
classification tasks (Minsky and Papert, 1988). CNN uses non-linear functions
such as a Rectified Linear Unit (ReLU) (Dahl et al., 2013) or one of its variants.
The ReLU clips all the input values that are below zero (< 0) and outputs
them as zero, while returning all other values (≥ 0), see Fig. 2.8. An important
property of a ReLu is that it outputs zero for half of the values and keep the
remaining values whenever the unit is active. This property makes a ReLU
favorable because it makes the model easy to optimize, while keeping the
computational costs low.

2D Semantic Segmentation. For the semantic segmentation task, a CNN

Figure 2.6: Convolution operation using 2D kernel.
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Figure 2.7: The max-pooling operation using a 2D kernel.

is equipped with upsampling modules capable of generating larger feature
maps from smaller ones, such as unpooling and transposed convolution layers
(Arief et al., 2018). The unpooling operation remaps the downsampled feature
maps using max-indices from its downsampling procedure to recover the pre-
sample feature maps (in the original spatial resolution). Max-indices contain
information about which pixel index was used to represent the nearby pixels.
From this information, the operation can recover the “original” spatial resolution
of a feature map without losing the spatial connectivity of their previous process.

Transposed convolution, on the other hand, works by enhancing the dot product
and sum operations of the upsampling kernel on a smaller feature map (with
extra padding) to generate larger feature maps. This approach forces the
upsampling kernel to fill in the padding values with more meaningful information,
often reflected in a lower classification loss. This is because the upsampling
kernel is updated during the parameter update operation, so its values will also

Figure 2.8: Rectifier unit (blue line). Image source: Dan Stowell (distributed
under a CC0 license).
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reflect the final loss that the deep learning model generates.

A Fully Connected Network (FCN) (Long et al., 2015) is one of the few deep
learning architectures that adopted upsample convolution at an early stage.
The idea is that instead of crude oversampling of the feature maps, learning
the oversampling procedure using the convolution operation could be more
meaningful. FCN also introduces skip connections for the upsampling process
to enrich and tighten the spatial connection between input data and the final
prediction. In fact, an enhanced version of FCN implements the skip connection
idea on all downsampled layers and then generates cascaded and hierarchical
upsampled feature maps to provide a more robust and high-accuracy classifier.

In addition to the FCN, there are several deep learning architectures specifically
designed for semantic segmentation. SegNet (Badrinarayanan et al., 2017)
uses the stacked of pooling-unpooling layers to perform upsampling feature
generation from input data. Ronneberger et al. (2015) designed u-net with
multi-level skip connections, structured as the letter U, generating high accuracy
semantic maps. Finally, the atrous network from deeplab (Chen et al., 2017)
uses a cascade of atrous kernel to learn spatial autocorrelation from image data
using convolutional layers with wider reach. It should be noted that the atrous
kernel, also called dilatation kernel, is a convolution kernel with distance space
(called rate) between each kernel value in a matrix space, see Chapter 3.1 for
more details.

2.3.2 3D Point Cloud Representation

3D point cloud data can come as coordinate list (COO), containing spatial
coordinates (X, Y, Z), intensity values, and sometimes RGB colors and class
labels, e.g. {x, y, z, i, r, g, b, c}. However, the COO format doesn’t have
neighboring information among points that are important for utilizing the
spatial autocorrelation, required in many automatic perception algorithms.
Typical search trees, like KD-Trees (Bentley, 1975; Sproull, 1991) are deployed
to identify the neighbors of points. However, compared to the neighboring search
complexity in 2D images O(1), the tree search is a very expensive operation
O(log(n)), especially when the number of points (n) is very large.

Feature Learning. In 2016, Qi et al. (2017a) introduced the PointNet
architecture, a deep learning model capable of generating (robust) feature
representations directly from (unordered) point cloud data. This work shows
that a typical Neural Network represented as Multi-Layer Perceptron (MLP),
can generate a reasonable feature projection of the un-order point cloud using
the T-NET architecture, resulting in a powerful point cloud classifier. A
hierarchical version of PointNet, called PointNet++ (Qi et al., 2017b), provides
higher accuracy than the original PointNet. It should be noted that there
are other point cloud feature learning techniques proposed to address similar
problems, i.e Hypervoxel (Mughees and Tao, 2017), SuperPoints (DeTone et al.,
2018), and 3D Convolution (Li, 2017). However, these other learning algorithms
require a more complicated pre-processing procedure than the ones that can
learn (directly) from the raw point cloud data (Qi et al., 2017a,b).

PointCNN. Li et al. (2018) proposed the PointCNN with the xConv operator,
enabling a (typical) convolutional operation to be directly applied to the

16



2.3. Deep Learning for Point Cloud Data

point cloud data. Similar to the PointNet approach, PointCNN uses an MLP
architecture for feature learning. The main difference is that the PointCNN
applies MLP by (first) embedding each point with their neighbor points
(enriching feature representations for each of the input points). The PointNet
ignores the neighborhood feature embedding.

Spatial Smoothing. Emphasizing neighbor points when building high-order
feature maps can also be applied as a post-processing approach for semantic
segmentation. This approach is called random field models, enforcing spatial
smoothing on a neighborhood of data. The idea is that data points that are close
to each other and have similar features of interest, should have the same class
label. Krähenbühl and Koltun (2011) proposed the use of Conditional Random
Field (CRF) similarity penalties using Gaussian filtering by treating image
pixels as a fully connected graph for the random field smoothing. Niemeyer
et al. (2014) also used the CRF idea to provide semantic labeling on 3D point
cloud input data. Other researchers, like Zheng et al. (2015) (even) deployed a
Recurrent Neural Network (CRF), treating the CRF model as a deep learning
architecture.

2.3.3 Semi-automatic Annotation

Semi-automatic annotation is an approach to combine the automatic perception
algorithms with human-based perception, also called human-in-the-loop. This
is because, even though the automatic perception techniques can generate
accurate predictions, (most often than not) these predictions are still nowhere
(near) perfect. Meanwhile, in many modern applications, very high accuracy
annotations are required to ensure safety and applicability.

(Hurl et al., 2019) shows that a better-annotated and bigger dataset contributes
results in a higher quality machine learning model. It should be noted that real-
world datasets are limited in size and accuracy compared to synthetic datasets,
but the current synthetic datasets are not (fully) domain transferable (Arief
et al., 2019b). Manual annotations, however, are (often) expensive and contain
erroneous labels (Wang et al., 2019). Therefore, it is important to provide
semi-automatic annotation tools capable of delivering fast and high-accuracy
annotation labels.

Castrejon et al. (2017) proposed PolygonRNN, a semi-automatic annotation
tool for image segmentation, leveraging polygon vertices outlining the
annotated object, delivering faster and more accurate annotations. In 2018,
PolygonRNN++ was published by Acuna et al. (2018), an enhanced version of
PolygonRNN providing more than 10% higher accuracy and faster annotation
than the original PolygonRNN.

Several annotation tools for point cloud data, that provide high accuracy point
cloud labels, have also been published i.e 3D-Bat (Zimmer et al., 2019) and
Latte (Wang et al., 2019). The 3D-Bat provides fully functional point cloud
annotation tools from keyboard only annotation, to semi-automatic tracking
interpolations (Zimmer et al., 2019). Latte, on the other hand, offers a robust
annotation toolbox with smart automatic perception algorithms, like semantic
segmentation with MaskRCNN (He et al., 2017), point cloud classification
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with GoogleNet (Szegedy et al., 2015), and object tracking with Kalman Filter
(Welch et al., 1995).

2.4 Evaluation Metrics

One of the most common metrics used for pixel classification or point-level
segmentation tasks is the pixel/point accuracies (PA), also called Overall
Accuracy (OA). The PA has been used in many classification tasks (Long et al.,
2015; Everingham et al., 2015; Russakovsky et al., 2015). For segmentation,
the accuracies are commonly measured using mean pixel accuracies (MPA),
mean intersection-over-union (MIoU), and the F-Measure (F1 Score). It should
be noted that for segmentation problems where the total area of the classes is
very different (imbalanced), the PA measure is less informative. This is because
assigning all of the pixels to the largest class may result in a large PA value,
even without training a model.

With k + 1 being the total number of classes (including the background class)
and pij denoting the number of pixels from class i assigned to class j, the
accuracy measures PA, MPA, and MIoU are defined (Garcia-Garcia et al., 2017)
as follows:

PA =
∑k

i=0 pii∑k
i=0

∑k
j=0 pij

, (2.1)

MPA = 1
k + 1

k∑
i=0

pii∑k
j=0 pij

, (2.2)

and

MIoU = 1
k + 1

k∑
i=0

pii∑k
j=0 pij +

∑k
j=0 pji − pii

. (2.3)

The MIoU equation shows that the metric awards valid predictions (pii) and a
penalizes false negatives (pij) and false positives (pji).

The F-Measure has been used to better evaluate the boundary region of the
predicted pixels (Badrinarayanan et al., 2017). We used the mean of the F-
Measure per class to evaluate the performance of the classifiers. This metric
considers both the precision (p) and recall (r) of the prediction results. With TP
denoting the true positives, FP denoting the false positives, and FN denoting
the false negatives, the F-Measure (F1 Score) is defined as:

p = TP

TP + FP
, (2.4)

r = TP

TP + FN
, (2.5)

and

F1Score = 1
k + 1

k∑
(i=0)

2 ∗ p ∗ r

p + r
. (2.6)
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For the sake of simplicity, we will refer to the pixel accuracy measure as PA
or OA, the mean pixel accuracy as MPA, the mean intersection-over-union as
MIoU, and the F-Measure as F1-Score.
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Figure 3.1: The early fusion SA-NET architecture.

3.1 Semantic Mapping for 2D Projected Point Cloud

For the purpose of generating high accuracy point cloud segmentation mask,
the 3D point cloud data were projected onto 2D grids enabling the use of high
accuracy deep learning algorithms for 2D images. During the research process,
several deep learning architectures were considered, and their prediction results
were compared and limitations were highlighted. Based on this work, we wew
able to take advantage of existing "state of the art" approaches on helping us
generate high accuracy segmentation masks, by avoiding several of the classical
limitations - such as high-memory consumption, (very) coarse up-sampling
output, overfitting certain classes etc. It should be noted that the segmentation
mask used, were low resolution maps compared to the high resolution input
data, causing imperfect match on the co-registered dataset (NIBIO AR5 and
Follo LiDAR data). Therefore, our resulting approach gave better predictios
than the "state of the art" methods.

Confronting the dataset challenges and the existing technique limitations, we

Figure 3.2: The 3 by 3 atrous kernel with different number of holes, defined
using the value of rate.
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Figure 3.3: Residual connection using bottleneck building block.

ended up proposing the Stochastic Atrous Network architecture with its fusion
layer (called earlyfusion SA-NET) , see Fig. 3.1. This architecture uses three
enhanced deep learning modules, namely atrous kernel (Chen et al., 2017),
residual layer (He et al., 2016), and stochastic learning (Huang et al., 2016).

1. The atrous kernel allows a wider (spatial) reach of a normal convolutional
kernel, enabling a better (spatial) generalization while keeping the
computation cost low. This approach is based on convolution kernels
with holes, see Fig. 3.2, but otherwise works as usual by dot product
operations, similar to the normal convolution operations in CNN.

2. The residual layer, with its shortcut connections (from the ResNet
architecture), includes training of the deeper neural network layers by
applying an identity information from the previous building block, see
Fig. 3.3. This idea is important, because the deeper the neural network
layers are located in the architecture, the risk of aggregated information
loss would otherwise increase critically. Therefore, by using the residual
approach, the total information loss of original input data is prevented,
while allowing the deep neural network kernels to generate more efficient
features.

3. The stochastic learning, on the other hand, acts as a catalyst to speed up
the training process, while causing an advantageous regularization effect
by randomly skipping the updating of some layers during training.

By using the SA-Net, the prediction accuracy in term of MIoU, improved by
5% compared to the original "benchmark" atrous network, providing a basis for
better and improved use of LiDAR data for automatic image-based segmentation,
see Table 3.1. Moreover, by inspecting the final prediction results and using
local knowledge, we note that the prediction results are (actually) better than
the labelled data. This indicate the usefulness of our proposal to streamline the
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PA MPA MIoU F1
FCN-8s 93.36 69.62 64.97 73.05
SegNet 92.11 63.79 59.12 67.13
Atrous Network + CRF 90.97 61.12 56.70 63.50
Atrous Network (DeeplabV2) 92.28 67.60 62.81 70.79
Earlyfusion SA-Net 93.96 73.00 68.51 75.81

Table 3.1: The test result for 2D semantic segmentation. CRF: conditional
random field; MIoU: mean intersection-over-union; MPA: mean pixel accuracies;
PA: pixel accuracy.

maintenance workflow of the labelled data (NIBIO AR5 dataset) by efficiently
directing the cartographer attention towards areas where changes/challenges
are most likely to be found.

The SA-Net demoonstrates the possibility of generating high accuracy
segmentation maps from 2D projected point cloud data. However, the required
data projection phase is clearly a very time consuming pre-processing step.
For our application it required three days for a 64-core processor to perform
the data projection for the Follo LiDAR data. Moreover, by projecting
the 3D representations to a compact 2D grid, some information loss is
inevitable, limiting the flexibility of the proposed approach in generating efficient
segmentation maps.
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Figure 3.4: Point cloud feature learning with MLP.

3.2 Pointwise Segmentation for 3D Point Cloud
Representations

As demonstrated in Paper A (Section 3.1), by projecting the 3D point cloud
data into the 2D grids, a high accuracy segmentation map can be generated
using the SA-NET. However, the prepossessing 2D-projection of the 3D point
cloud data is sub-optimal and time-consuming. Following up on these issues,
we decided to focus on training our high accuracy semantic segmentation maps
directly by using the raw point cloud coordinates (x-y-z) as the (main) input
data.

Similar to our first approach, we focus on the PointCNN as the baseline deep
learning architecture for classifying the raw point cloud data. The PointCNN
was developed from the idea of the T-NET (from the PointNet) into a more
sophisticated feature learning algorithm called x-Conv. Both T-NET and x-
Conv serve as feature extractors for a final Multi Layer Perceptron (MLP) block,
see Fig. 3.4. The main difference between tho two is that the x-Conv does
(some) on-the-fly preprocessing before feeding the input data to the MLPs, by
gathering and normalizing neighbouring points as the actual input features for
each point, see Fig. 3.5.

Figure 3.5: On-the-fly preprocessing on x-Conv algorithm: (a) point cloud
input data with x,y,z dimension, (b) each point gather neighboring points and
normalized their value, (c) final input data used for MLPs learning process.
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Class a b c d e f g h
Powerline 54.4 46.1 69.8 59.6 37.5 42.5 61.5 63.0
Low-Veg. 65.2 79.0 73.8 77.5 77.9 82.7 82.7 82.6

Imper-Surfaces 85.0 89.1 91.5 91.1 91.5 91.4 91.8 91.9
Car 57.9 47.7 58.2 73.1 73.4 74.7 75.8 74.9
Fence 28.9 5.2 29.9 34.0 18.0 53.7 35.9 39.9
Roof 90.9 92.0 91.6 94.2 94.0 94.3 92.7 94.5
Facade - 52.7 54.7 56.3 49.3 53.1 57.8 59.3
Shrub 39.5 40.9 47.8 46.6 45.9 47.9 49.1 50.7
Tree 75.6 77.9 80.2 83.1 82.5 82.8 78.1 82.7

Avg F1 55.27 58.96 66.39 68.39 63.33 69.2 69.5 71.1
OA 76.2 80.8 80.5 81.6 81.6 84.9 83.3 85.0

Table 3.2: A quantitative comparison between A-XCRF and other methods
on the Vaihingen dataset, namely (a) ISS_7 (Ramiya et al., 2016), (b) UM
(Horvat et al., 2016), (c) HM_1 (Steinsiek et al., 2017), (d) LUH (Niemeyer
et al., 2016), (e) RIT_1 (Yousefhussien et al., 2017), (f) WhuY4 (Yang et al.,
2018), (g) PointCNN (Li et al., 2018), and (h) A-XCRF (Arief et al., 2019b).
All cells except the last two rows show the per-class F1 score.

Our experimental results shows that the PointCNN prediction accuracy is
comparable to other proposals for the benchmark dataset (the Vaihingen 3D
labeling task), see Table 3.2. However, the PointCNN, as the other MLP
architectures, does not utilize the spatial auto-correlation properties of the
point cloud representation, which is obviously useful for modelling basedd on
spatial data. PointCNN uses gradient descent algorithm and a cross entropy loss
function in the weight optimization without utilizing spatial issues particularly.
Therefore, we claim that an improvement can be made by emphasizing the
importance of spatial and feature similarities between neighbors while doing the
weight optimization process (based on the spatial auto correlation theorem).

Our key contribution in this work is to demonstrate that spatial auto correlation
can be successfully combined with the PointCNN by using Conditional Random
Field (CRF) as a post processing module. The main idea is that two points,
that are (spatially) near each other and also have similar features, should belong
to the same class. In the CRF graph we used the Gaussian bilateral and spatial

Figure 3.6: Full pipeline of A-XCRF technique using the PointCNN as the main
deep learning architecture.
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filter. The purpose of the bilateral filter is to invoke the feature similarities while
the spatial filter is used to handle spatial similarities with the neighborhood
points. We combined these modelling components into a refinement block,
called A-XCRF, see Fig. 3.6.

An important property of the A-XCRF is that the module is trained with
unlabelled data to introduce noise in the validated deep learning model and
emphasize neighbourhood point similarities in the unlabelled data. The
underlying assumption is that if the resulting model respect the neighbourhood
point similarities for both training and unlabelled data, it can also produce
high accuracy predictions not only for the training data but also towards the
unlabelled data to prevent against overfitting. It should be noted that our
experimental results show that the A-XCRF prediction accuracy is superior to
the other proposals for the Vaihingen benchmark dataset, see Table 3.2.

We also tested the A-XCRF technique on the transfer learning- and domain
adaptation problems to show the applicability of the resulting classifier for
another dataset (the Bergen dataset) generated with a different LiDAR
setting, in a different environment and landscape without (model) retraining.
Interestingly, a consistent 3% improvement (in accuracy) could be achieved by
using our approach for the new dataset, showing the importance of utilizing
spatial auto correlation for modelling with spatial data. However, it should be
noted that the improvement was limited and the resulting predictions were not
at a level appropriate for production quality. This is makes sense because the
Vaihingen and Bergen dataset are very different in both topography, landscape,
and the number of data points. It should be noted that the number of data
points for the Vaihingen training data was only 753,876, while the (tested)
Bergen dataset has 719,762,528 data points (20% of the whole Bergen dataset).

27



3. Publications

3.3 Deep Learning for Point Cloud Annotations

The obtained accuracies of our two previous proposals seems to be the highest
on their respective domains of approach. However, for the purpose of providing
the most reliable way to generate high quality annotation labels for point cloud
data, those proposals inherit some weaknesses, in particular for the transfer
learning problem. Therefore, our next approach includes operation of humans
to overcome the imperfectness of the machine-based predictions to provide fast
and accurate point cloud labels.

In the present and the next section we focus on developing a robust semi-
automatic annotation methodology for point cloud data on autonomous
vehicle (AV) domain. The objective of the present section is to enable the
automatic pointwise classification algorithms, like the PointCNN, to work on
the heterogeneous point cloud densities, commonly generated by the mobile
LiDAR, such as the Veldoyne LiDAR for autonomous vehicle, see Fig. 3.7.
Finally, in the next section, our focus is adjusted to utilizing the automatic
classification approach for fully functional point cloud annotation tools.

The standard version of the PointCNN assumes that the density of the input data
is homogeneous, therefore, its MLP parts can learn and generate representative
features, resulting in high accuracy pointwise segmentations. However, in the
AV domain, the assumption of homogeneity does not hold. There, the density
of the point cloud data is higher near the ego-vehicle while decreasingly lower

Figure 3.7: The nature of point cloud data from two different domains: (a)
driving scene point cloud from Velodyne-type LiDAR (b) landscape map point
cloud from airborne LiDAR along with point density distributions (c-d).
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Method MPA MIoU
VB Block-10 0.6329 0.3369
VB Block-20 0.6999 0.5263
VB Block-30 0.8273 0.5717

Without oversampling
GBR-Original 0.8895 0.6418
GBU-Original-XY-0.25 0.8641 0.6179
GBU-Original-XY-1 0.8731 0.6511

XY-GRID with Oversampling
GBU-XY-grid-0.25 0.8876 0.5840
GBU -XY-grid-1 0.8983 0.6304
GBR -XY-grid-0.25 0.9152 0.6342
GBR -XY-grid-1 0.8881 0.6504

XYZ-GRID with Oversampling
GBU-XYZ-grid-0.25 0.9026 0.6471
GBU-XYZ-grid-1 0.9040 0.6346
GBR-XYZ-grid-0.25 0.9225 0.6816
GBR-XYZ-grid-1 0.9217 0.6509

Table 3.3: The performance of each of the sampling scenario. VB: Voxel
based sampling; GBU: Grid based uniform sampling; GBR: Grid based random
sampling.

further avay from the ego-vehicle.

To provide a robust semi-automatic point cloud annotation tool, our main
contribution and stepping stone in this work is a (preprocessing) sampling
approach, enabling pointwise segmentation algorithms for the AV domain. It
should be noted that in our experiment, the PointCNN was used as the pointwise
segmentation architecture.

The proposed sampling technique, on the other hand, is a grid-based sampling
approach. The points inside each grid are over-sampled until the point density
of each grid is equal to the overall average point cloud density. Thereafter,
the point cloud data are randomly sampled from the complete collection of

Figure 3.8: The density-adaptive sampling pipeline for semantic segmentation
for heterogeneous density point cloud.
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point cloud grids, before using them as training data for the PointCNN and
the subsequent inference process. The proposed sampling approach is called
density-adaptive sampling.

In Table 3.3, the experimental results show that with our proposal, the
accuracies, in term of MPA and MIoU, improved by about 10% compared to the
voxel-based sampling approach. In addition, some misalignment problems within
the KITTI benchmark dataset (Fig. 3.9) are also pointed out, emphasizing the
importance robustness required for our annotation tools to be able to generate
fast and accurate bounding box labels.

Figure 3.9: Point cloud visualization of the KITTI dataset with (a) Prediction
results, and (b) Ground truth label with missing object bounding box.
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Figure 3.10: The interface of SAnE, a semi-automatic annotation tool based on
one-click annotation scheme empowered with denoising point-wise segmentation
approach and robust guided-tracking algorithm.

3.4 Semi-automatic Point Cloud Annotation Tools

Starting from a workable pointwise segmentation for raw point cloud data, in
this section, our focus is on developing the semi-automatic annotation tools.
This is achieved by merging the automatic pointwise segmentation algorithm of
the previous section with motion modelling and human based perception. While
most semi-automatic annotation tools for point cloud data combine image- and
LiDAR point cloud data as input, we here focus on the utilization of point
cloud data alone to provide the desired high accuracy annotation labels.

Producing high accuracy bounding boxes from point cloud scene is a complicated
and time-consuming task while the results are (often) inaccurate (Arief et al.,
2019a; Wang et al., 2019). Here, we propose an annotation tool called SAnE
(Smart Annotation and Evaluation tools for point cloud data), capable of
generating fast and accurate bounding box annotations, see Fig. 3.10. It should
be noted that the SAnE have been build on top of the Latte annotation tool by
Wang et al. (2019).

Our main contributions are threefold: (1) we propose a denoising pointwise
segmentation strategy enabling one-click annotation (see Fig. 3.11), (2) we
expand the motion model approach with our novel guided-tracking algorithm,
simplifying the frame-to-frame annotation process, and (3) we provide a robust
interactive open-source point cloud annotation tool, simplifying the generation
of high-quality bounding box annotations. Several enhancements were applied
in the SAnE, from the AI-assisted features (i.e fully automated bounding box
proposal, one-click annotation, and guided-tracking algorithm) to the UI-based
functionalities, such as side-view refinement, height estimation, keyboard-only
annotation, object recoloring, and more.
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Figure 3.11: The results of denoising algorithm (a) before and (b) after
the implementation. The algorithm enables the use of one-click annotation
techniques for annotation tool.

IoU value vs Baseline vs KITTI
BBOX BEV BBOX BEV BBOX

Objects in ≈ 90-degree view
GT 100.00 100.00 - - 27.35
Baseline 89.49 76.35 0.00 0.00 16.84
Annot1 90.87 85.19 1.38 8.84 18.22
Annot2 92.02 82.22 2.53 5.87 19.37
Objects in 360-degree view
Baseline - 77.10 - 0.00 -
Annot1 - 84.57 - 7.47 -
Annot2 - 79.57 - 2.47 -

Table 3.4: Bounding box accuracies for objects in front of the ego vehicle and
objects in the whole area of the point cloud using IoU agreement between
annotated bounding boxes and GT. BBOX denotes the accuracies for bounding
boxes projected in the image while BEV (Bird Eye View) denotes the accuracies
for bounding box from the top view of point cloud scene.
*The IoU agreement between KITTI labels and GT labels is 72.65%.

In table 3.4, the experimental results show that by using the SAnE, the
annotation accuracy improved by about 8% in terms of MIoU in combination
with considerably faster annotation times, confirming the applicability of our
proposal for generating fast and accurate bounding box annotation for the point
cloud data.
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CHAPTER 4

Conclusions

In this thesis, we have presented several contributions towards the 3D
scene understanding. The contributions are provided in the area of
semantic segmentation, pointwise classification, and point cloud semi-automatic
annotation. We have developed a novel deep learning architecture, called
SA-NET. The new architecture incorporates a data fusion strategy capable
of combining the point cloud derived features and image-based features to
generate high accuracy land cover maps. We have also proposed a robust
post-processing module, called A-XCRF, capable of invoking the spatial and
spectral similarities between unordered point cloud data. The module provides
a noticeable improvement of the deep learning inference output. Finally, we
also made the point cloud annotation process more affordable for a wider user-
community by providing an open-source and robust semi-automatic annotation
tool, called SAnE. This tool is suited to generate fast and accurate point cloud
labels.

4.1 Technical Evolution of The Thesis

This thesis is the result of research conducted during a three-year PhD study.
The research process was designed to fulfill the main research objective: To
provide the best way to generate fast and accurate point cloud labels. The first
part of the work explored the current state of the art in the field of computer
vision and remote sensing. This followed by the development of a new deep
learning architecture, called earlyfusion SA-NET (Arief et al., 2018). The next
part was used to develop a spatial smoothing algorithm for point cloud data,
called XCRF (Arief et al., 2019b). This algorithm emphasizes the spatial and
feature similarities among points on the point cloud region during inference
process, resulting a better point-level prediction. The final part of the work
was on developing a finished product, an open-source software, called SAnE
(Arief et al., 2020). This software combines an automatic pointwise classification
technique (Arief et al., 2019a) and human-based perception suited to deliver
fast and accurate ground truth annotation based on the point cloud data. The
main contributions are presented in the core sections of this thesis (Section 3.1,
3.2, and 3.3+3.4) and the technical evolution of our work is explained below.

Semantic segmentation. The work documented in Paper A (Section 3.1)
started as an exploration of semantic segmentation in the field of remote sensing.
The main idea is that given the projected point cloud data, we should be able to
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generate high-quality land cover maps. We started by projecting the 3D point
cloud data in the 2D plane and extracting the feature information by matching
the projected point cloud data with a ground-truth dataset. It should be noted
that some part of the point cloud data was used as a training dataset, while
the rest was used to assess the accuracy of the classification. Several state of
the art techniques based on the deep learning algorithms were deployed and
their prediction results were compared. Finally, the SA-NET was proposed and
its prediction capability was tested. It should be noted that the SA-NET was
developed to overcome the limitations of other state of the art techniques in
this domain, i.e sparsely prediction map, high memory consumption, and long
training time.

The prediction accuracy of SA-NET was the highest among the deep learning
architectures tested in this study. However, the preprocessing time needed to
create the projected point cloud data was very long, making it impracticable for
use with a larger point cloud scene. Moreover, we realized that testing multiple
techniques is time-consuming and the prediction results are data-dependent.
Results obtained with a particular technique using a test dataset may give
different results from those obtained when the technique was deployed and
tested by their original authors.

Therefore, in Paper B (Section 3.2), a deep learning module capable of generating
and refining the point cloud segmentation maps directly from the point cloud
data was developed, and the results were compared with an existing benchmark
dataset.

Point-level classification. Paper B (Section 3.2) focuses on improving the
existing deep learning techniques for raw point cloud data. In this part of
the research, a post-processing module based on the conditional random field
principle was proposed. It is called the A-XCRF algorithm and is capable of
invoking feature similarity between the nearby point in the process of generating
final prediction maps. The algorithm is provided as a stand-alone post-processing
module (a software library) that can be applied to any machine/deep learning-
based techniques.

The A-XCRF prediction results provided the highest accuracy (in terms of
the F1-Score) in the benchmark dataset. However, when the full pipeline was
tested on the domain adaptation problem, the promising accuracy could not be
replicated. Therefore, in Paper C (Section 3.3) and Paper D (3.4), we proposed
a semi-automatic annotation tool. This tool involves (minimal) human effort in
the making of high accuracy annotations, thus addressing the domain adaptation
problem.

Semi-automatic point cloud annotation. The final section of our work
comprises two parts, Paper C (Section 3.3) and Paper D (Section 3.4). In Paper
C (Section 3.3), a density adaptive sampling technique was proposed. This
technique enables the use of the deep learning architectures (like the PointCNN)
for heterogeneous density point cloud data, see Fig. 3.7. In Paper D (Section
3.4), we proposed the SAnE, a semi-automatic point cloud annotation tool.
It was developed to overcome the limitations of other annotation tools, like
the Latte and 3D-Bat. Experimental results show that by using the SAnE, an
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annotator can create a more accurate point cloud labels while achieving faster
annotation times (a speedup by a factor of 4.17).

4.2 Limitations of our approach

As we provided several contributions to the field of remote sensing and computer
vision (in general), especially in the domain of 3D scene understanding, there
are also weaknesses and shortcomings with our proposals. In this section, the
details of these limitations are explained.

Semantic segmentation

• Computation cost. Modern deep learning techniques emphasize the
importance of an end-to-end learning process, from the raw input data
to the finalized (expected) outcome. This process not only prevents
information loss during prepossessing but also alleviates the complexity
of product generation. The SA-NET, however, does not embrace this idea
for point cloud annotations. The result is an arduous data preprocessing
pipeline demanding expensive (computational) resources.

• Complicated solution. As we addressed the technical problems on
the existing deep learning architectures for semantic segmentation (by
stacking and restructuring the up-sampling modules and atrous kernels
while offering several other solutions), we failed to realize that our final
(data fusion) proposal became more complicated and therefore, is difficult
to deploy.

Point-level classification

• Domain adaption. Addressing the overfitting problem in a limited
dataset was the objective behind our proposal in the point-level
classification task, resulting in the development of the A-XCRF algorithm.
This algorithm uses the unlabeled data points to introduce controlled
noise into a validated deep learning model, relaxing the overfitting model
of the training data. However, when applied to the unseen dataset with a
(very) different landscape, the (more) generalized model failed to generate
high accuracy prediction maps.

• Two step learning. In order to introduce the unlabeled data to a
validated model, the model must first be trained and validated. This
process makes our A-XCRF a two-step learning approach, resulting a
complicated training pipeline.

Semi-automatic point cloud annotation

• Shape representations. Relying solely on the point cloud data to
generate high-quality annotation labels requires a (perfect) point cloud
object representation. Meanwhile, in many cases, objects in the point
cloud scene are only represented by few points with many different shapes
(U-Shape, I-Shape, dot shape, and others), making it complicated to
deliver perfect annotation labels.
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• Frame rate and tracking. The guided-tracking algorithms included in
the SAnE annotation tool is based on a deterministic search algorithm
aiming to locate objects within a consecutive data frame. On a high-
frequency LiDAR scan, the proposed tracking algorithm can work fine,
because the location of each object (in the next frame) is relatively
unchanged. However, with a low frame rate, significant changes in object
locations (in the next frame) are expected, resulting in an expensive and
unreliable search outcome.

4.3 Future Directions

In a complete framework perspective, some of the limitations in Section 4.2 have
been addressed and presumed better solutions have been proposed in sections
3.2, 3.3, and 3.4, consecutively. The future directions for further research and
potential solutions to other limitations, that have so far not been addressed,
will be discussed below.

• Two step learning. By treating the process of fitting the training
data as a classification task and the process of fitting the unlabeled data
as a generation task, the GAN training style (Goodfellow et al., 2014)
can be adopted to simplify and speed up the A-XCRF training process.
Even though the process of finding the state of equilibrium in GANs
is relatively unstable, this approach is still more stable than separating
the training process into different training pipeline, like in the A-XCRF
pipeline. Therefore, it is worth exploring how effective the GAN training
style is with respect to improving the stability and easing the complexity
of the A-XCRF proposal.

• Shape representations. Several learning-based techniques have been
proposed for scene completion and point cloud generation (Dai et al.,
2018; Groueix et al., 2018). These techniques (individually or combined)
can potentially alleviate the incomplete object representation, easing the
generation of point cloud labels and the (automatic) detection of point
cloud objects.

• Frame rate and tracking. The (proposed) deterministic approach relies
on a consistent point cloud representation to detect and track objects by
location. This precondition is not present in the low-frequency LiDAR
scans, and a heuristic or learning-based approach could (potentially)
provide a better tracking solution. The learning-based approach, like
the T-NET model (Qi et al., 2017b), might be able to perform this task
better, by generating consistent and trackable features from an object in
different positions. By providing a suitable objective function and fast
feature matching algorithm (similar to Scale Invariant Feature Transform
(SIFT) algorithm by Brown and Lowe (2002)), then a fast, accurate and
reliable object tracking (technique) for a low-frequency LiDAR scan, can
be deployed.
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4.4 Outlook

The 3D scene understanding capabilities, specifically for object detection and
semantic segmentation tasks, have been significantly improved during the last
couple of years. Meanwhile, 3D laser scanners are becoming more affordable and
their use is increasing rapidly. An example of a fast-growing application area of
these scanners is in autonomous vehicle. The machine vision combined with the
3D laser scanner will most likely play a major role in providing full autonomy
in remote sensing, autonomous vehicles, and even in virtual reality. In remote
sensing, the machine vision can provide automatic generation of high resolution
semantic (land cover and land use) maps, building extraction, tree identification,
crop yield prediction, and more. More strikingly, in robotic and autonomous
driving, several (smart autonomy) companies have started deploying the 3D
scene understanding capabilities in their (pre-market) autonomous products.
Another field of applications is the virtual and augmented reality, where semantic
segmentation and object detection techniques are used to transform our real
and virtual world for a better and bright future.
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Abstract: Inspired by the success of deep learning techniques in dense-label prediction and the
increasing availability of high precision airborne light detection and ranging (LiDAR) data, we present
a research process that compares a collection of well-proven semantic segmentation architectures
based on the deep learning approach. Our investigation concludes with the proposition of some novel
deep learning architectures for generating detailed land resource maps by employing a semantic
segmentation approach. The contribution of our work is threefold. (1) First, we implement the
multiclass version of the intersection-over-union (IoU) loss function that contributes to handling
highly imbalanced datasets and preventing overfitting. (2) Thereafter, we propose a novel deep
learning architecture integrating the deep atrous network architecture with the stochastic depth
approach for speeding up the learning process, and impose a regularization effect. (3) Finally, we
introduce an early fusion deep layer that combines image-based and LiDAR-derived features. In a
benchmark study carried out using the Follo 2014 LiDAR data and the NIBIO AR5 land resources
dataset, we compare our proposals to other deep learning architectures. A quantitative comparison
shows that our best proposal provides more than 5% relative improvement in terms of mean
intersection-over-union over the atrous network, providing a basis for a more frequent and improved
use of LiDAR data for automatic land cover segmentation.

Keywords: land cover segmentation; stochastic depth atrous network; IoU loss function; airborne
LiDAR data; deep learning data fusion

1. Introduction

The advancement of airborne LiDAR (light detection and ranging) technologies over the past
decades have contributed significantly to the increased availability of high precision point cloud
data. Thanks to the government project “Nasjonal detaljert høydemodell” [1], LiDAR data are already
available for many parts of Norway through the “høydedata” website [2]. The aim of the project is to
provide national coverage of high-resolution elevation data by 2019.

Easy access to high-precision LiDAR data in Norway opens an opportunity to identify and extract
valuable information for many different purposes. Airborne LiDAR data have become the basis for
generating a high accuracy digital terrain model, hazard assessment and susceptibility mapping, and
the monitoring of surface displacements [3]. In terms of land cover classification, LiDAR data have been
used to automatically generate maps for forest fire management [4] and land/water classification [5].
However, due to the complexity of the data and the difficulty of generating features of interest, most
of the current techniques suffer from scaling problems when transferred to larger datasets [6].

We have investigated deep learning techniques to create a classifier for the AR5 land resource
dataset [7] from Norwegian Institute of Bioeconomy Research (NIBIO). AR5 is the national
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high-resolution, combined land cover and land capability dataset for Norway. Challenges with
this dataset include: (a) AR5, as “ground truth” data, is an imperfect match with our LiDAR data due
to the difference in resolution/level of detail; (b) the different generalization approaches and data
sources that have been used to generate the AR5 classes; (c) differences in the acquisition times of
AR5 and the LiDAR data; (d) point cloud data are represented as points in a specified location, which
requires a fine-grain preprocessing technique to make them usable in a semantic segmentation pipeline.

One of the most common techniques for doing land cover segmentation is by engineering
handcrafted features from the LiDAR data to train a machine learning algorithm for automatic
detection. Guo et al. investigates 26 manually derived features from LiDAR data for the purpose of
automatic classification [8], while MacFaden et al. utilizes normalized difference vegetation index
(NDVI), normalized digital surface model (nDSM), and high-resolution multispectral images to do
high-resolution tree canopy mapping for the same purpose [9]. Yan et al. [10] reviews a number
of research projects that utilize LiDAR data for automated extraction, using three LiDAR-derived
features for generating urban land cover maps [11] to several full waveform-derived features for the
classification of dense urban scenes [12].

The manual engineering of features as inputs to a machine learning classifier has become common
practice for generating land segmentation maps [8–12]. However, such approaches limit the ability
to provide a richer representation of the data [13]. The chosen features may not be sufficient to
characterize the uniqueness of a certain class or object [14], and the quality of the resulting classifier
depends heavily on the feature engineering output. As each particular segmentation problem is more
or less unique [15], different feature engineering approaches are often needed for different problems.

Deep learning methodologies contribute to simplifying the feature engineering process, and by
using a deep multi-layer convolutional neural network (CNN) [16], the features are learned from the
data during the training process. Consequently, a successfully trained CNN model can be considered
as a feature extractor that both combines features in different spatial locations and takes into account
the aspects of spatial autocorrelation between features.

From the era of AlexNet [17] in 2012 to the more complex deep learning architectures such as
GoogleNet [18] and ResNet [19] in 2014 and 2015, respectively, deep learning has become one of the
most successful machine learning techniques for approaching problems related to computer vision,
including image classification, object detection, and more advanced challenges such as semantic
segmentation and instance-aware segmentation. In the remote sensing community, deep learning
has also been used successfully for land cover classification [20], road detection [21], and scene
understanding [22].

The purpose of the present paper is to investigate and compare a collection of well-proven
semantic segmentation architectures based on the deep learning approach. Based on the experiences
obtained from this investigation, we propose a novel deep learning architecture for the particular
land cover segmentation problem of interest. The proposed architecture involves a CNN fusion
layer for merging the image-based features with height above ground information and intensity
values. The output of the fusion layer provides the basis for training an atrous deep network [23]
using the stochastic depth approach [24] combined with a rescaling of the derived feature map
using skip connections and the learnable upsampling approach, which is similar to the technique in
fully convolutional networks [25]. The final layer of our architecture includes a softmax activation
function combined with an intersection-over-union (IoU) loss function [26] that both speed up the
convergence process and improve the accuracy of the resulting classifier. We are able to demonstrate
that the classifier resulting from our proposed architecture gains more than 5% accuracy improvement
(validated) over the atrous network (DeeplabV2) [23].

In the next section, we review some of the most popular deep learning techniques for semantic
segmentation. In the subsequent sections, we describe the characteristics and properties of our datasets,
and the challenges that come with them. Thereafter, we report the results of our research process,
where we explore some of the most well-proven deep learning architectures for semantic segmentation.
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Based on our findings, we propose a novel deep learning architecture. Finally, we summarize and
discuss the classification results obtained by the various architectures. Based on the conclusions
drawn from our findings, we indicate future work, including possible improvements of our novel
deep learning architecture and benchmarking with more traditional land cover segmentation methods.
The trained model and reproducible code are available at https://github.com/hasanari/SA-net.

2. Semantic Segmentation

Semantic segmentation is essentially a dense pixel classification task, where each individual pixel
on a raster grid is classified according to a predefined classification schema. Here, we will review some
of the proposed and well-proven techniques in the area of computer vision for semantic segmentation
since the start of the era of deep learning.

One of the most prominent architectures in this area is fully convolutional networks (FCN) [25].
This architecture gave a 20% relative improvement in classification performance on the PASCAL
VOC 2012 dataset [27]. FCN has been used for many semantic segmentation tasks, ranging from
medical image analysis [28] to multispectral remote sensing [29]. Motivated by the success of the FCN
architecture, several alternative architectures and modifications have been proposed and demonstrated
to be appropriate for these types of applications. In particular, we mention the segmentation networks
(SegNet) [30], the deconvolutional networks (DeconvNet) [31], the pyramid scene parsing network
(PSPNet) [32], and the atrous networks [23].

2.1. Characteristics of the Different Architectures

The FCN architecture offers a learning pipeline with the possibility of embedding pre-trained
classification networks such as AlexNet [17] and VGGnet [33] for solving the pixel segmentation
problem. More specifically, the existing deep learning architectures used to address the image
classification problem can be reused with their pre-trained model, and their last fully connected
layers can be retrained to obtain the complete dense pixel classifier. In addition, the FCN also includes
the possibility of using the so-called skip connection method in order to deal more effectively with the
coarseness of the predicted pixels.

Unlike the FCN, SegNet includes the unpooling operation [30], i.e., an upsampling technique
to obtain an appropriate segmentation map in a resolution identical to the corresponding original
image. Instead of directly generating pixel-wise predictions from the smallest feature maps, SegNet
applies the unpooling method as a step encoder in order to regenerate larger feature maps from
the resulting max indices obtained from a max pooling operation in the corresponding unpooling
layer, see Figure 1a,b. Following this approach, the feature indices that have the maximum value will
be preserved as dominant in the upsampling procedure, often resulting in improved classification
performance. In addition to the unpooling technique, deconvolutional networks or deconvnet [31]
propose a “transposed” convolution operation referred to as “deconvolution”, see Figure 1d.

Another architecture of interest to our problem is the pyramid scene parsing network
(PSPNet) [32]. These architectures include a pyramid pooling module that instead of using a fixed
kernel size, uses kernels of different sizes to generate pyramidal convolutional layers generating
multi-size feature maps. The purpose of this approach is to help improve the classification performance
by more effectively incorporating a broader spatial context for the different feature map resolutions.

For our field of application, we finally consider atrous convolution architecture [23] to be of
particular interest. An important advantage of this architecture is the moderate amount of pooling
layers, which prevents the extensive use of rescaling procedures. Using this approach, we can avoid
extensive upsampling [34].
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Figure 1. Illustration of (a) pooling, (b) unpooling, (c) convolution, and (d) transposed convolution
operation. Each operation uses a 3 × 3 kernel with a stride/step of two, and for any overlapping cell,
a summation of the overlapping values of the cells are performed.

2.2. The Atrous Convolution Architecture

In the present study, we implemented an atrous convolution architecture that resembles the deep
residual network (ResNet) [19]. The main idea of the ResNet is to pass the input feature maps of a
learning block, as a form of identity reference, to the final output of its block. It is hypothesized that it
is easier to optimize feature maps with residual references than unreferenced ones. According to the
original ideas of the ResNet, the residual learning of a particular layer is defined as:

y = F(x, (Wi)) + x, (1)

where x and y denote the representation of the input and output features of the layer, respectively.
x also denotes an identity mapping from the previous block, while the function F(x, (Wi)) denotes
the process of convolving Wi through x, including the use of rectified linear unit (ReLU) activation
functions [35]. We used a residual learning called “bottleneck” building block in our research, as shown
in Figure 2.
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The particular variant of ResNet that we utilize here is called ResNet 101. This architecture
consists of 101 residual layers with four main blocks. In the remaining parts of this paper, we will refer
to each such block as a MainBlock. Each MainBlock has three, 4, 23, and three inner blocks, respectively.
MainBlock 1 and 2 use 64 and 512 depth kernels, while MainBlock 3 and 4 use 1024 and 2048 depth
kernels, respectively. In the atrous network, MainBlock 1 and 2 consist of several bottleneck building
block using convolution kernels, while MainBlock 3 and 4 use the building blocks with atrous kernels.

Unlike normal convolutional layers, atrous convolutions convolve through the feature spaces
using a sparse kernel including gaps that are referred to as the rate, as shown in Figure 3. An atrous
kernel with rate one is identical to an ordinary convolution kernel. The idea of kernels with gaps is
to obtain convolutions of various aggregated regions without changing the spatial resolution of the
output layer. This property enables an atrous layer to combine features that are close, but are not
directly spatially connected, while maintaining the spatial resolution and avoiding the use of larger
kernels. This approach allows the analysis to benefit from the presence of spatial autocorrelation in
the data.
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2.3. Evaluation Metrics

Various evaluation metrics can be used to determine the effectiveness of a machine learning model
for predicting the unseen data. One of the most common metrics used for pixel classification problems
is the pixel accuracy (PA). The PA has been frequently used in many classification tasks [25,27,36].
However, in the segmentation problem, the accuracies are commonly measured using mean pixel
accuracies (MPA), mean intersection-over-union (MIoU), and the F-Measure (F1 Score). It should be
noted that for segmentation problems where the total area of the classes is very different (imbalanced),
the PA measure is less informative. This is because assigning all of the pixels to the largest class may
result in a large PA value, even without training a model.

With k + 1 being the total number of classes (including the background class) and pij denoting
the number of pixels from class i assigned to class j, the accuracy measures PA, MPA, and MIoU are
defined [37] as follows:

PA =
∑k

i=0 pii

∑k
i=0 ∑k

j=0 pij
, (2)

MPA =
1

k + 1 ∑k
i=0

pii

∑k
j=0 pij

, and (3)

MIoU =
1

k + 1 ∑k
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
. (4)



Remote Sens. 2018, 10, 973 6 of 22

The definition of MIoU (Equation (4)) shows that this metric considers both the valid prediction
(pii) and a penalization with respect to the false negatives (pij) and false positives (pji). Training an
architecture based on the MIoU contributes to making the resulting model both robust in terms of
good predictions and more sensitive against the bad ones.

In addition to the MIoU, we also use the F-Measure to better evaluate the boundary region of the
predicted pixels [30]. We use the mean of the F-Measure per class to evaluate the performance of the
classifiers. This metric considers both the precision (p) and recall (r) of the prediction results. With TP
denoting the true positives, FP denoting the false positives, and FN denoting the false negatives,
the F-Measure (F1 Score) is defined as:

p =
TP

TP + FP
, (5)

r =
TP

TP + FN
, and (6)

F1 Score =
1

k + 1 ∑k
i=0 2 ∗ p ∗ r

p + r
. (7)

For the sake of simplicity, we will refer to the pixel accuracy measure as PA, the mean pixel
accuracy as MPA, the mean intersection-over-union as MIoU, and the F-Measure as F1 throughout
this paper.

3. Data Sources

In this section, we describe the datasets and preprocessing techniques used in our experiments
prior to the deep learning training process.

3.1. Study Area and Datasets

Our study area covers the Follo region, which is a part of the county of Akershus, Norway,
as shown in Figure 4. Follo is located in Southern Norway, covers 819 km2, and has a relatively long
coastline. It consists of moderately hilly terrain dominated by forest, with large patches of agricultural
areas and smaller areas of settlement. There are also some lakes in the area.
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The datasets that we have used for our research are gridded (1 m × 1 m) LiDAR point cloud data
as input data, and the AR5 land resource map from NIBIO as label/ground truth data. The LiDAR
data used for this research were taken from the Follo 2014 project with project number BNO14004.
The project was operated by Blom Geomatics AS with a specification of 5 points/m2 covering 850 km2

using a Riegl LMS Q-780. The scan was done from 1030 m aboveground with a pulse repetition
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frequency of 266,000 Hz and a scan frequency of 93 Hz [38]. The LiDAR data used for this project
have both LiDAR-derived features (height, intensity, number of return, and more) and image-based
(red–green–blue, or RGB) features. The total number of points is approximately eight billion, which is
divided into 1877 tiles that are stored in LAZ (LAS compressed files) format. Most of the tiles have a
size of 600 m × 800 m (600 × 800 pixels), and each tile consists of more than 2.4 million points.

The ground truth data that we have used for this project are the NIBIO AR5 land resource
dataset [7]. The dataset covers Follo and consists of four types of classification, namely land
type category (arealtype, a mixture of land use and land cover classification), forest productivity
(skogbonitet), tree type (treslag), and ground conditions (grunnforhold). In this project, we utilize
only the land type classification, which originally covers 11 classes. Due to the non-existence or very
small coverage of some of the land type classes in the Follo area, we have simplified the classification
task to the modeling and prediction of the following eight classes: settlement, road/transportation,
cultivation/grass, forest, swamp, lake–river, ocean, and other land types. The other land type class is a
combination of undefined objects, open interpretations, and other classes with limited representation
in the area (below 0.5%).

The AR5 dataset was first established in the 1960s, and has been updated continuously since 1988
for the purpose of agriculture and forest management in Norway. The precision for the agricultural
classes is recorded down to 500 m2. Other areas such as forest, swamp, and open areas smaller than
2000 m2 are not registered, but include surrounding or neighboring classes. In addition, classes such as
road and settlement have their origin in auxiliary datasets that have been merged into the AR5 dataset,
thus resulting in a varying level of details (LoD) and accuracy for the included classes. These conditions
represent considerable challenges when using the AR5 dataset as ground truth for classifying areal
types based on the high-precision LiDAR dataset, since perfect classification results based on the image
data are impossible to achieve.

3.2. Challenges with the AR5 Dataset

One of the most pronounced challenges with respect to learning the AR5 classes using LiDAR
data is the difference in resolution. The laser data has a submeter LoD, while the AR5 dataset has a
maximum resolution of 500 m2. The difference in the original resolutions clearly contributes to making
the regridded ground truth class labeling data inaccurate at the 1 m2 resolution of the gridded LiDAR
dataset. In addition, differences pertaining to acquisition times (last time of update) also contribute to
inaccuracies in the class labeling.

There is also a notable difference between the AR5 classes with respect to their internal
homogeneity. E.g., a “forest” can be composed of different tree species producing heterogeneous
structures in terms of their LiDAR footprints. Parts of the forest may consist of old stands, while other
stands are recent clear-cuts. In between these extremes, every age group is represented within the
“forest” class.

Therefore, the accuracy with respect to the prediction of the ground truth data is correspondingly
limited by these shortcomings. For example, some settlement classes are actually combinations of roads,
trees, and buildings. This makes it more challenging to train a classifier to successfully distinguish
between these classes.

Another practical challenge is the imbalance in the relative frequencies of the different class labels.
More than 50% of the Follo area has class labels marked as Forest, and about 20% of the area has
class labels marked as cultivation. The remaining areas are unevenly distributed over the other six
classes. This imbalance calls for the training process to focus more intensively toward modeling the
underrepresented classes.

3.3. Preprocessing Procedures

The pipeline of data preprocessing for the current investigation can be described as follows:
(1) extracting of height above ground (HAG) for the LiDAR point cloud, (2) aggregating the HAG values
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into a two-dimensional (2D) grid, and (3) normalizing the feature values in the new representation.
The summary of the preprocessing pipeline can be shown in Figure 5.Remote Sens. 2018, 9, x FOR PEER REVIEW  8 of 22 
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augmentation was only applied to the training dataset.

Firstly, the HAG values were extracted using a HAG filter in the point data abstraction library
(PDAL) toolkit [39]. The purpose of this process was to obtain a height representation that reflects the
variation in the vegetation cover and the built environment.

Secondly, in the gridding step, the LiDAR data were aggregated to a 1 m × 1 m resolution grid
based on their spatial location. The AR5 dataset was therefore regridded into the same 1 m × 1 m
resolution as the LiDAR data, and each cell was given a (RGB) color roughly according to the style
used for the NIBIO AR5 web map service (WMS) [40]. This process was the most time-consuming step,
because billions of LiDAR points required individual processing before the grid cell aggregation. The
processing was completed by an extensive multi-threaded application of the LibLAS library for python.

The grid size of 1 m was chosen to be consistent with the unit size of the coordinate system that
covers the laser data. Consequently, an individual point was assigned to a grid cell by truncation of
its coordinate values. Aggregated values for each grid cell were from the assigned points. The most
frequent value in each of the RGB channels were taken as the RGB channel values of the grid cell,
while for HAG and intensity, mean values were used. Using the mean value for a high-resolution grid
with (on average) five points yields small corresponding standard deviations, in particular within
areas that are roughly homogenous. The complete aggregation process results in a dataset containing
gridded LiDAR with RGB, HAG, and intensity as features. It should be noted that we have padded
the empty grid cells with zeros, similar to zero padding in CNN [19]. This requires less computation
than using an interpolation algorithm, and arguably, for a deep learning architecture, it has a similar
effect on a high-density point cloud (5 points/m2) [17].

Lastly, after completing the gridding process, we performed zero mean and unit variance
normalization. The values of each channel were obtained by subtracting the channel mean and
dividing by the channel standard deviation. Finally, we split the normalized tiles into sets of training
(70%), validation (10%), and test data (20%), respectively.

For the training data, we performed a patching process with a sliding window for each tile.
We used a patch size of 224 × 224 pixels and a 168-pixel (3/4) step size. For all of the boundary patches
that were smaller than the patch size, we shifted the origin of the boundary patches back and/or
up so that the patches all have the size of 224 × 224 pixels. The reason for choosing a patch size of
224 × 224 is that this is the most commonly applied crop size for both the VGGnet and the ResNet
architecture [19]. This choice simplifies the benchmarking process, because the other deep learning
architectures that we have explored in our study were designed for the 224 × 224 patch size.
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The resulting preprocessed dataset is a set of overlapping patches, where the pairwise overlap of
horizontally and vertically neighboring patches is 1/4 (25%). The overlap contributes to reducing the
impact of disturbing boundary effects in the resulting classifiers.

The successful training of a deep learning architecture requires access to a large number of
training samples. Therefore, the final part of the preprocessing procedure is the data augmentation
step. With image data, the data augmentation process is completed by generating additional data
through flipping and rotating the original images. For each of the patches described above, we did
a 90◦ clockwise rotation and up–down and left–right flipping. This process increases the dataset by
300%, and at the end of the preprocessing pipeline, we obtained a total of 57,036 patches that were
available for the training process.

It should be noted that for the validation and test data, we omitted the sliding window and data
augmentation parts. Most of the architectures can process images of any size; therefore, the validation
and test accuracies were calculated by using the original LiDAR gridding (600 × 800 pixels) to simplify
the inference process. We used the validation data for selecting the “best model” for each architecture,
and the test data to calculate the final accuracies of the selected models.

The implementations for all of our experiments were based on the TensorFlow library [41] for
deep learning developed by Google. The deep learning architectures were trained for at least 50 epochs
with an ongoing updating of the classification accuracies on a desktop computer using 11GB GeForce
GTX 1080 Ti graphics cards. The full setup for our training process of the various architectures took
several weeks. However, the final and best model was trained to the reported performance in only
two days.

4. The Research Process (Modeling Workflow)

The workflow of our research process was as follows. First, we carried out a number of
experiments by training several well-known deep learning architectures for semantic segmentation
with our data. The purpose of these experiments was to identify the baseline level of classification
performance, and generate the required experiences to propose some of the potentially useful
alternative architectures for later benchmarking. It should be noted that the initial experiments
only included image-based (RGB) features, since architectures designed for using LiDAR data are
hardly available.

Based on the experimental results, we did an elementary qualitative analysis by inspecting the
predicted output masks (Figure 6) and associated confusion matrices (Figure 7). Among our notable
findings were that the classifier obtained by training an atrous network generalized considerably
better than the classifier obtained by the FCN-8s architecture. In Figure 6a, the FCN-8s erroneously
predicted most of the area to be green. In Figure 6b, we see that the FCN-8s generalizes too heavily for
the highlighted area. We argue that this is most likely due to the effect of the small receptive field in
the FCN kernel. The atrous network, on the other hand, was quite successful in predicting the most
common classes, but it failed more frequently in predicting the less common ones.

We also noted that the atrous network upsampling, which utilizes a nearest neighbor technique,
failed to generate a valid prediction mask. Figure 6c,d shows the insufficiency of this upsampling
technique in recovering the thin and linear class of roads. We suspect that this insufficiency is closely
related to the upscaling technique being part of the atrous network’s architecture.

With the ambition of preserving the advantages of the above architectures, and compensating for
their limitations, we were lead to propose an alternative architecture for our classification problem.
The proposed alternative architecture included atrous convolution kernels for improved generalization
and the FCN-based upsampling approach to strive for predictions that are less coarse. In addition, we
incorporated the softmax with IoU loss function, which is known to be effective in other architectures.
We also included LiDAR-derived features such as HAG and intensity together with an effective merging
technique to include the additional features, aiming at improving the classification performance of our
alternative deep learning proposals.
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Figure 6. Qualitative segmentation results from FCN-8s and atrous network. The mean pixel accuracy
(MPA) value is included at the bottom of each prediction map. Classes and colors: other land types (red),
settlement (pink), road/transportation (chocolate), cultivation/grass (orange), forest (green), swamp
(dark blue), lake–river (eggshell blue), and ocean (light cyan). (a) and (b) show the ability of the atrous
network to predict the most common classes better than the FCN-8s. (c) and (d) show the shortcoming
of the upsampling technique in the atrous network compared to the one in the FCN-8s.
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Figure 7. Comparison of the confusion matrix between (a) FCN-8s and (b) atrous network. The class
names are (1) other land types, (2) settlement, (3) road/transportation, (4) cultivation/grass, (5) forest,
(6) swamp, (7) lake–river, and (8) ocean. The colored bar represents the value of each cell: the higher
the value, the darker the cell color.
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4.1. Baseline Experiments

An initial investigation based on modeling exclusively with RGB features is required to establish
the benchmark classification performances associated with various existing deep learning architectures
for our problem. We started out this investigation by exploring four different architectures, i.e.,
the DeconvNet, the SegNet, the FCN-8s, and the atrous network from DeepLab.

The first architecture that we explored was the DeconvNet, where we used Fabian’s
implementation [42] with five full convolutional blocks followed by five deconvolutional blocks.
The architecture was trained using a mini batch gradient descent strategy by including 15 images
per iteration. The training process was based on the Adam optimizer [43] with an initial learning
rate of 1 × e−4. By training from scratch (no utilization of a pre-trained model for this architecture),
two weeks of training was insufficient for obtaining a satisfactory classification model. We therefore
decided to abort the training process at that stage, and not pursue the training of this architecture
any further.

The second architecture that we explored was the SegNet, where we used the Aerial Images
implementation from Ørstavik [44] (called AirNet). We implemented the AirNet using five encoders
and five decoders in a SegNet architecture with training based on the AdaGrad [45], including a
dropout technique acting as regularization [46] to prevent against overfitting. The dropout works by
ignoring a certain percentage of its neurons randomly in each epoch of the training process.

The initial learning rate for AirNet was set to 1 × e−4, and the architecture was trained from
scratch for 90 epochs (with an additional 40 epochs due to not utilizing a pre-trained model). The
resulting model obtained an accuracy of 59.12% in terms of MIoU and 92.11% in terms of PA. It should
be noted that the test accuracies for AirNet were calculated using test data with a sliding window
of 224 × 224 and no augmentation. This is due to the limitation of the unpooling module of this
architecture to address dimensions of 600 × 800, which were the dimensions on the original test data.

The third architecture that we explored was the FCN-8s architecture. We used the FCN-8s
implementation from Shekkizhar [47]. Shekkizhar’s FCN-8s was built based on VGGnet architecture.
We trained the model by using the Adam optimizer and fine-tuned it by using VGGnet weights
obtained from MatConvNet [48]. Similar to the SegNet, the FCN-8s was also trained with regularization
by using the dropout technique. The initial learning rate was set to 1 × e−4, and the architecture was
trained for 50 epochs. Interestingly, by using the straightforward upsampling technique of FCN-8s,
a MIoU equal to 64.97% was obtained for the test data.

The last architecture that we explored was the deeplabV2 [23], which utilized an atrous
convolution layer on top of a ResNet architecture; we called it the atrous network. For training this
architecture, we utilized the DeepLab–ResNet architecture rebuilt in TensorFlow, as seen in Vladimir’s
implementation [49]. The atrous network implementation was trained with an initial learning rate
of 2.5 × e−4 and a weight decay of 0.0005. The training process was optimized using a momentum
update [50] with a momentum value of 0.9 and batch normalization [51] to reduce the internal covariate
shift due to the parameters update during back propagation. The nearest neighbor technique was used
to upsample the final feature maps back into the original input size, before calculating the accuracies.

Two approaches were used to calculate the test set prediction accuracies for the atrous network
architecture. The first one included the post-processing conditional random field (CRF) [52], and the
second one did not. It should be noted that by skipping the CRF post-processing, we obtained the
better classifier, as seen in Table 1.
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Table 1. The test result using image-only features. CRF: conditional random field; FCN: fully
convolutional networks; MIoU: mean intersection-over-union; MPA: mean pixel accuracies; PA: pixel
accuracy; SegNet: segmentation networks.

PA MPA MIoU F1

FCN-8s 93.36 69.62 64.97 73.05
SegNet 92.11 63.79 59.12 67.13

Atrous Network (DeeplabV2) 92.28 67.60 62.81 70.79
Atrous Network + CRF 90.97 61.12 56.70 63.50

4.2. The FCN-Based Architectures Including IoU Loss

The results obtained by using the atrous network revealed to us some weaknesses due to the
application of a non-learnable upsampling technique, as seen in Figure 6. We therefore decided to
integrate the FCN upsampling technique with the atrous network’s architecture in order to try to
overcome these problems.

In order to integrate the ResNet–FCN [53] and the atrous kernel, we modified the third and fourth
MainBlock of the ResNet-FCN with atrous kernels with rates of two and four, respectively. The output
of the last three MainBlocks were upsampled using transposed convolution to get the same size of
the output as for the first MainBlock, and all of the MainBlock outputs were combined by using the
addition operator. Note that before combining, the first MainBlock was updated with an additional
convolution layer using a 1 × 1 kernel with a depth of eight and a stride of one. Finally, the original
image size was recovered using a transposed convolution, as shown in Figure 8.
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The main idea summarized in the resulting architecture reflects the desire to obtain a model that is
capable of looking widely for the appropriate feature maps by using the atrous kernels. Simultaneously,
the ability of learning the upsampled feature maps is maintained by using transposed convolutions.
We will refer to this architecture as the Atrous-FCN.

We explored the possibilities of training with both the softmax with cross-entropy loss function [54],
and the softmax with IoU loss function [26]. The results were compared in a quantitative analysis.
The reason for exploring the IoU type of loss function is to try to make the network more robust against
bad predictions, as the IoU metric penalizes against both false positives and false negatives. With TP
denoting the true positives, FP denoting the false positives, and FN denoting the false negatives,
the original IoU is defined as:

IoU =
TP

FP + TP + FN
. (8)
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By using a loss function closely related to the MIoU metric, we experienced that the
training was effective not only for speeding up the training process, but also for improving the
classification performance.

The IoU (Equation (8)) is by definition a non-differential function that cannot be used directly
with the back-propagation algorithm. Fortunately, Rahman et al. has proposed an approximation
of the IoU by a differentiable function that replaces the counting operations with multiplications
and additions [26]. For a binary classification problem, they proposed a formulation of the IoU by
considering the ratio between intersection I(X) and union U(X), where I(X), U(X), and the IoU loss
(LIoU) were defined as:

I(X) = ∑
v∈V

Xv ∗Yv, (9)

U(X) = ∑v∈V Xv + Yv − Xv ∗Yv, and (10)

LIoU = 1− I(X)

U(X)
. (11)

Here, V is the set of all of the pixels in the image, X is the pixel probabilities obtained by a sigmoid
function, and Y ∈ {0, 1}v are the ground-truth values. Y = 0 represents the background pixel label,
and Y = 1 represents the object pixel label in this notation.

The implementation of the IoU loss in our application had to be done slightly differently, because
our classification problem was non-binary. In our solution, we used a softmax approach to obtain the
pixel probabilities for each class. Subsequently, we used the one-hot encoding to enable the binary
classifiers to handle the multiclass ground-truth data. The LIoU (Equation (11)) was used to calculate
the losses for each class, as well as a summation of all of the losses, which was used to reflect the
final loss of the network. Note that the weight-regularization loss approach [55] was not included in
our implementation.

For a final comparison, the ResNet-FCN with cross-entropy loss, the ResNet-FCN with IoU
loss, and the Atrous-FCN with IoU loss were all fine-tuned using the pre-trained model from
DeepLab-ResNet [49]. Each network was trained for 50 epochs using a momentum update with
the same initial learning rate of 0.01. The test results are shown in Table 2.

Table 2. The test result using FCN-based architectures.

PA MPA MIoU F1

ResNet-FCN 1 92.94 68.25 63.34 71.42
ResNet-FCN 2 93.07 71.44 66.01 74.12
Atrous-FCN 2 92.52 72.18 66.52 74.39

SA-Net 2 93.25 73.07 66.67 74.40
1 Trained using cross-entropy loss function. 2 Trained using IoU loss function.

The results in Table 2 demonstrate the effectiveness of the IoU loss function. By only changing
the loss function on a ResNet-FCN, the test accuracies improved with 3.19% on MPA and 2.67% on
MIoU. In addition, the test result also confirmed the advantage of integrating the ResNet-FCN with
atrous kernel. The Atrous-FCN reached the MIoU of 66.52%, which was a 3.71% improvement from
the original atrous network (Table 1).

It should be noted that implementing atrous kernels on top of ResNet-FCN requires substantially
more memory, which slows down the training process. This is because the atrous kernels maintain the
larger feature maps of the deeper layers (output stride of eight). Therefore, convoluting through the
larger feature maps and deeper architectures requires a significant amount of memory for holding the
larger number of parameters. When using an 11GB GeForce GTX 1080 Ti, the Atrous-FCN required 43
min to process a single training epoch.
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4.3. The Stochastic Depth Extension

In order to speed up the Atrous-FCN, we therefore decided to integrate it with the stochastic
depth paradigm. The resulting architecture is referred to as the Stochastic Atrous Network (SA-Net).

The stochastic depth paradigm comes with the idea of wanting much shorter training times. It is
implemented by randomly skipping some layers in each epoch of the learning process [24]. Inclusion
of the stochastic depth approach has been demonstrated both to speed up the learning process and
cause an advantageous regularization effect for the training process.

In the original publication [24], stochastic depth in a residual building block of a ResNet is
defined as:

Hl = ReLU(bl fl(Hl−1) + id(Hl−1)), (12)

where bl denotes a Bernoulli random variable with values 0 or 1, and represents the active (bl = 1)
or inactive (bl = 0) of the lth residual learning block, while the rest is a residual block with the
ReLU activation function, which has been explained in Equation 1. bl is controlled by another set of
hyperparameters called survival probabilities and marked as pl. This value decides the randomness
degree of bl. Stochastic depth networks commonly implement the linear decay of the value of its
survival probabilities (pl): the deeper the layer, the smaller its probability for survival.

The integration of the stochastic depth approach with our atrous-FCN architecture is a
straightforward procedure, because it is already developed for use with a ResNet architecture. The final
structure of the suggested SA-Net architecture is shown in Figure 9a (at the present stage, ignore the
fusion layers, except for the RGB input).
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Figure 9. Data fusion technique based on the Stochastic Atrous Network (SA-Net) architecture. (a) Our
proposed EarlyFusion architecture, which merges red–green–blue (RGB), intensity and height above
ground (HAG) in the early convolution layers. (b) The FuseNet style architecture, which encodes RGB
values and depth (HAG) using two branches of encoders, as inspired by C. Hazirbas et al.’s work [56].
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We attached the stochastic depth mechanism to all of the bottleneck building blocks on
Atrous-FCN by using an 0.5 linear decay. This means that the probability of a block being skipped is
increased linearly up to 50% at the end of the final building block. Our training and test results show
that by including the stochastic paradigm, the training time was reduced by 30%, while the test set
MIoU values increased slightly to 66.67%, as seen in Table 2.

4.4. The Final Extension Including More Features by Data Fusion

The purpose of data fusion in deep learning is to improve the resulting classifiers by merging more
types of data (such as intensity and HAG from the LiDAR measurements) with the traditional RGB
image data to get an even better representation of the problem domain. However, such merging is not
always successful, and we have experienced that extending a deep learning architecture to incorporate
non-RGB channels does not always lead to improved classification performance (the introduction of
noisy data can sometimes corrupt the training process and damage the final classification performance).

An extension of the proposed SA-Net approach to include data fusion provides the final
architecture of our investigation. The required extension from SA-Net is quite straightforward,
as shown in Figure 9a. We refer to this architecture as the EarlyFusion SA-Net. The idea of data
fusion in deep learning relates to the FuseNet architecture [56].

The original FuseNet architecture was built with the 16-layer VGGnet [33] using an
encoder–decoder, SegNet-style architecture. The FuseNet uses two branches of encoders: one RGB
encoder and one depth encoder. The output of each of the Convolution + Batch Normalization +
ReLU (CBR) layers of the depth encoder is combined with the output of the corresponding CBR
layers of the RGB-encoder using addition. The convolution block in a CBR consists of 64 convolution
layers with 7 × 7 kernels and a stride of two, followed by Batch Normalization [51] and the ReLU
activation function.

Our implementation of the FuseNet is based on our SA-Net architecture (Figure 9b), where we
include two branches of encoders, which were both created by using the stochastic atrous approach
with different kernels. In the fusion process, we combine the output from each MainBlock of the
depth-encoder branch with the RGB MainBlock output using the same fusion technique as in the
original FuseNet. The decoder part was built using the FCN upsampling approach with transposed
convolutions and skip connections.

The models obtained by training our implementation of the FuseNet style architecture turned out
to perform below our expectations. With a big network and huge memory footprint, the best test set
accuracy that we achieved was only 65.49% for MIoU and 93.38% for PA. One of the main challenges
seemed to be that the separated branches of depth and RGB encoders consumed most of the graphics
processing unit (GPU) memory. Due to this, the GPU was only capable of training 50 layers, compared
with the 101 layers in the SA-Net architecture.

The experiences from the FuseNet style approach actually helped us in specifying the EarlyFusion
SA-Net architecture (Figure 9a). Instead of creating separated encoders for different types of input
data, we realized that using only one encoder might be advantageous. The solution was to assemble
three CBR blocks for individually processing the RGB, Intensity, and HAG data. Each CBR block was
equipped with its own kernel, and the outputs from the blocks were combined by addition into the
fusion layers. Before taking the combinations, pooling layers using 3 × 3 kernels with a stride of
two were included at the end of each CBR block (to reduce the feature maps to have an output stride
of four). The resulting fused inputs where then integrated with the SA-Net architecture, as shown
in Figure 9a. Based on this approach, we managed to reduce the number of required blocks in the
encoders, allowing the incorporation of additional types of input data.

Our EarlyFusion SA-Net approach was trained using a combination of RGB, Intensity, and HAG
features (all normalized by using zero mean and unit variance). All of the networks were trained with
the IoU loss function and an incorporation of momentum update for optimization [50] with an initial
learning rate of 0.001.
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The models were fine-tuned with a modified pre-trained model inspired by the pre-trained
FuseNet model described in C. Hazirbas et al.’s work [56]. The non-RGB kernels were initialized by
using the mean value of the pre-trained RGB kernel (the values for the channels in the RGB kernel
were summarized and divided by three, as the RGB has three input channels). This initialization
strategy was applied for both the HAG and the Intensity convolution kernel. Each model was trained
for 50 epochs, and the results are shown in Table 3.

Table 3. The test results for the data fusion approach using SA-Net-based architectures. F1: F-Measure.

Features Metrics

RGB HAG Intensity PA MPA MIoU F1

FuseNet style
architecture 1 v v 93.38 72.08 65.49 73.53

Earlyfusion SA-Net v v 94.02 72.52 67.40 75.02
Earlyfusion SA-Net v v 91.80 69.80 63.78 72.09
Earlyfusion SA-Net v v 91.38 67.59 62.39 71.31
Earlyfusion SA-Net v v v 93.96 73.00 68.51 75.81

1 Based on SA-Net with ResNet 50.

Using the same types of input (RGB and HAG), our EarlyFusion approach and the Fusenet
style architecture obtained MIoU values of 67.40% and 65.49%, respectively. Incorporating intensity,
our model achieved the highest MIoU values of 68.51%, which is a 5.7% relative improvement from
the original atrous network (Table 1). The qualitative results of our EarlyFusion SA-Net is shown in
Figure 10.
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Figure 10. Final prediction results from our EarlyFusion SA-Net with RGB, HAG, and Intensity.
The color legend is presented in the caption of Figure 6. The figures cover and visualize different types
of areas, such as (a) forest and ocean, (b) settlement and road, and (c) cultivation and open land.

5. Discussion

5.1. Interesting Insights

We consider the most interesting finding of the present research project to be the significant
contribution of the IoU loss function in increasing accuracies. By changing the loss function from
cross-entropy loss to IoU loss, the test accuracies increased by more than 3%. It should be noted that
the training error (loss values) of the IoU loss decreased steeper than for cross-entropy, as seen in
Figure 11. We assume that this is not just due to the different scaling of loss values, but also due to a
reflection of a better error representation.
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Figure 11. Training errors and validation accuracies from the utilization of the cross-entropy and IoU
loss functions on the deep residual network (ResNet)-FCN architecture. The training errors were
calculated as the mean loss for all of the iterations in every epoch of a training process, while the
validation accuracies were calculated at the beginning of each epoch using the validation data.

Looking through the behavior of the IoU loss in Figure 11, the accuracy of the ResNet-FCN could
most likely be improved by additional training time. With 50 epochs of training time, the loss values
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were still decreasing steadily, and the accuracies were increasing steeply even in the last training
iterations. It should be noted that we stopped at 50 epochs to make the training iterations comparable
with the number of training epochs executed for the other methods.

Another interesting finding was concerned with the stochastic depth paradigm. In our experience,
the SA-Net with the stochastic depth approach protects against overfitting considerably better than the
Atrous-FCN. Figure 12 shows the seemingly superiority of the Atrous FCN training accuracy (MIoU)
over SA-Net, which is due to considerable overfitting. This was confirmed by the validation accuracies.
The highest peak on the training accuracies (MIoU) for Atrous-FCN and SA-Net were 77.25% and
73.16%, respectively, and the validation accuracies for MIoU were 66.52% and 66.67%, respectively.Remote Sens. 2018, 9, x FOR PEER REVIEW  18 of 22 
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SA-Net’s ability to resist overfitting opens an opportunity in simplifying the training process.
For limited training data, one can rely on the stochastic depth strategy to prevent overfitting and train
the model with all of the data, including the validation data. With additional regularizations, such as
weight regularization and dropout, this approach could contribute to even better predictions in terms
of test set accuracies.

Another of our findings was related to the use of HAG and Intensity features to improve the
prediction accuracies. The test set results in Table 3 shows a negative effect from combining RGB
with Intensity only, reducing the test set MIoU values from 66.67% to 62.39%. LiDAR intensity is
mainly determined by the reflectance characteristic of the reflector object, which shows the strength of
the reflection of light [57]. This is similar to the optical sensors that produce RGB image data. This
similarity amplifies the information contained in the RGB data, and also amplifies the noise in the data,
resulting in a poor classifier.

In contrast, combining HAG with RGB improved the classification accuracies. HAG contains
elevation information. This type of information is not captured in the image data, and our Earlyfusion
architecture successfully manages to combine this into an improved classifier.

LiDAR data contain not only HAG and intensity features, but also Z-values, number of returns,
flight angle, flight direction, and point classification. It is also possible to generate simple handcrafted
features such as sparsity, planarity, linearity, and many more [13]. Incorporating those features with
our fusion approach could potentially improve the performance of a resulting classifier.

5.2. Ground Truth Refinement

The different resolution/LoD of the LiDAR and the NIBIO AR5 data makes it difficult to obtain a
good quantitative performance for the final model. Actually, we cannot expect (or aim for) a complete
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match between the classification and the ground truth. A certain mismatch will always be present due
to both temporal and geometrical differences between the input data and the data used as ground truth.

The qualitative assessments of the results from our best model show that the prediction map
in many locations actually may be more correct than the ground truth map, because the prediction
identifies areas where the land cover or land use has changed after the last incremental maintenance of
the land resource map. This could make the proposed model a potentially powerful tool for a guided
incremental update of the AR5 ground truth dataset, making it possible to produce higher-resolution
agricultural maps.

Inspecting the final predictions in Figure 10 and using local knowledge, it is actually fair to claim
that our prediction results are better than the labeled data. The image data in Figure 10b,c show
that our classifier can correctly predict some roads and forest patches that have been ignored in the
label data. Figure 10a also shows that the classifier can predict the existence of small settlement and
cultivation classes, even if they have been removed from the label data as a result of the cartographic
generalization process.

Our model can be used during the incremental update of AR5 by taking advantage of the
probability prediction maps. The probability prediction maps are the output from the final softmax
layer of the architecture. They show the confidence in the classification. A reasonable hypothesis is
that locations classified differently by our model and the label data are likely to represent real changes,
in particular if the probability of the prediction is high. This hypothesis has to be subject to another
study. If it is correct, then our method can be used to streamline the maintenance of the AR5 dataset by
efficiently directing the attention of the cartographers toward the areas where changes are most likely
to be found.

Taking this use of the model one step further, human inspection or a trained regression classifier
could be used to refine the thresholds and provide better trained weights. This approach could simplify
the refinement process and increase the potential for full automation of the maintenance of the land
resource map.

6. Conclusions

In this paper, several novel architectures for predicting land cover segmentation using airborne
LiDAR data is presented. The main contribution of our research is the development of a scalable
technique for doing dense-pixel prediction that incorporates image-based features and LiDAR-derived
features, to update a generalized land resource map in Norway. With the aim to understand the
behavior of ground-truth data constructed from different sources and with varying resolution of the
label classes, we managed to develop a deep learning architecture (the EarlyFusion SA-Net) that
is not only capable of predicting generalized classes, but also identifying the less common ones.
In the preprocessing procedures of our work, we projected the three-dimensional (3D) laser data to a
two-dimensional (2D) representation, and used RGB, HAG, and Intensity as the features of interest.
As for the classifier, SA-Net was introduced, which is a deep learning architecture using atrous kernels
on a ResNet-FCN architecture using the stochastic depth technique. The atrous kernel is robust
for feature generalization based on spatial autocorrelation, the ResNet-FCN provides a simple yet
powerful learnable upsampling technique, and the stochastic depth with its layer regularization is
not only helpful for speeding up the training process, it is also capable of improving the prediction
performance. The IoU loss was also implemented, and was shown to increase the accuracies for our
particular dataset. In addition, an Earlyfusion layer proved helpful for combining image-based features
and LiDAR-derived features.

Experiments were carried out on the Follo 2014 LiDAR dataset with the NIBIO AR5 as
ground-truth data. Comparisons were made with other deep learning-based architectures for
segmentation, namely DeconvNet, SegNet, FCN-8s, and the atrous network (DeeplabV2). Experimental
results show that our proposed architectures were better than the other architectures. Accuracy, when
calculated using MPA and MIoU, increased by more than 5%.
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With the increasing availability of LiDAR data and the advancement of LiDAR technology, more
and more high-quality LiDAR data can be accessed with ease. That and the maturing of deep learning
technology can significantly simplify the automatic generation of high-resolution land cover, land-use,
and land-change maps. Our research provides a scalable and robust way of transforming LiDAR data to
a more meaningful map of information. Further improvement may be achieved by additional training
with a deeper atrous layer, by implementing stochastic depth and fusion, or a combination of both.
Improvements could also be achieved by adding more features of interest from the LiDAR data and by
skipping the validation and increasing the use of stochastic procedures with additional regularization.
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Abstract

Advances in techniques for automated classification of point cloud data introduce great opportunities for many new
and existing applications. However, with a limited number of labelled points, automated classification by a machine
learning model is prone to overfitting and poor generalization. The present paper addresses this problem by inducing
controlled noise (on a trained model) generated by invoking conditional random field similarity penalties using nearby
features. The method is called Atrous XCRF and works by forcing a trained model to respect the similarity penalties
provided by unlabeled data. In a benchmark study carried out using the ISPRS 3D labeling dataset, our technique
achieves 85.0% in term of overall accuracy, and 71.1% in term of F1 score. The result is on par with the current best
model for the benchmark dataset and has the highest value in term of F1 score. Additionally, transfer learning using
the Bergen dataset, without model retraining, was also performed. Even though our proposal provides a consistent
3% improvement in term of accuracy, more work still needs to be done to alleviate the generalization problem on the
domain adaptation and the transfer learning field.

Keywords: Point cloud classification, Overfitting problem, Conditional Random Field

1. Introduction

The increased availability of high precision point
cloud data, including airborne LiDAR (light detection
and ranging) data, has opened interesting possibilities
for many applications such as generating digital eleva-
tion models (Podobnikar and Vrečko, 2012), creating
land use and land cover maps (Arief et al., 2018), 3D
building reconstruction (VosDeepselman et al., 2001),
and scene understanding in large dynamic environments
(Zhao et al., 2010).

Improving the visual quality and accuracy of auto-
mated point cloud classification is an important topic
in the computer vision, remote sensing and photogram-
metry research communities. Many methods have been
proposed to address this issue. Interesting examples in-
cludes the SVM (Support Vector Machine) based point
cloud classification for urban areas (Mallet et al., 2008),
the Random Forest combined with CRF (Conditional
Random Field) approach (Niemeyer et al., 2014) for
building detection, and the CNN (Convolutional Neu-
ral Network) approach for 3D semantic labeling (Yang
et al., 2017; Yousefhussien et al., 2017; Zhao et al.,
2018).

The use of DNN (Deep Neural Network) for point
cloud classification has attracted considerable attention

in the last couple of years because of its potential of im-
proving the quality of the automated classification task.
The quantitative results from several point cloud clas-
sification benchmark datasets, such as 3D Shapenets
(Wu et al., 2015), ScanNet (Dai et al., 2017), S3DIS
(Armeni et al., 2016), and ISPRS Vaihingen 3D Label-
ing (Niemeyer et al., 2014) show that the majority of
high performance classifiers for all these datasets are
based on some choice of DNN model, such as MCNN
(Zhao et al., 2018), PointNet++ (Qi et al., 2017), and
PointCNN (Li et al., 2018).

An easy and yet robust implementations of DNN
for point cloud data is known as the PointCNN (Li
et al., 2018). The PointCNN uses a so-called X-
Transformation to allow a convolution operator to work
directly within the point cloud data. In contrast to other
methods such as voxel-based methods (Maturana and
Scherer, 2015) and raster based methods (Zhao et al.,
2018), the PointCNN reduces significantly both the re-
quired amount of time for preprocessing and the mem-
ory usage. Such advantages are important for real-time
classification of point cloud data.

One of the main challenges of PointCNN and other
DNN based models is that when only relatively limited
size datasets are available, they are highly vulnerable to
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overfitting. This is because such models usually include
several millions of parameters, and robustly fitting such
amounts of parameters requires a large number of train-
ing data. With the proposed Atrous XCRF method we
obtain a novel way to overcome the overfitting prob-
lem by inducing controlled noise when training a DNN
based classifier. The method works by retraining a vali-
dated model using unlabeled test data. The training su-
pervision is directed by utilizing the hierarchical struc-
ture of the CRF penalty procedure (Krähenbühl and
Koltun, 2011). In our experiment with the ISPRS 3D la-
beling benchmark dataset, we get an Overall Accuracy
(OA) of 85.0% and an F1-Score of 71.1% (Niemeyer
et al., 2014).

In addition, we also enriched our experiments with
transfer learning challenge (Pan and Yang, 2009) using
Bergen dataset (Norwegian Map Authority, 2018), i.e
by predicting point-wise segmentation on a dataset that:
(1) has different class distribution, (2) taken from differ-
ent area and landscape, (3) acquired using different sen-
sor settings, and (4) predicted without model retraining.
As expected, the prediction accuracy is poor, however,
a consistent 3% improvement can be noticed provided
by our Atrous XCRF technique, from 87.2% to 90.2%
in term of OA and from 17.1% to 20.1% in term of F1-
score.

The present paper is organized as follows: In section
2, we provide a brief review of DNN, PointCNN, and
CRF modelling. We also explain the XCRF and our
proposed Atrous XCRF method for handling the over-
fitting problem. In the following section, we describe
the experiment, including the data source, preprocess-
ing procedure, training strategies, and results analysis.
Thereafter, we discuss the limitations and characteris-
tics of our proposed method. Finally, we provide the
conclusions and indicate potential improvements of our
novel technique.

2. Methodology

2.1. Brief review of DNN

Deep neural networks (DNN) or Deep Learning is
an extension of a classical two-layer neural network
(Blum and Rivest, 1989) using more (and wider) lay-
ers with some important enhancements. In contrast to
the classical networks, the architechture of DNNs typi-
cally includes up to thousands of layers and up to mil-
lions of parameters which are normally trained using
the complete architecture with an end-to-end fashion
to achieve the best possible classification performance
(LeCun et al., 2015).

The version of DNN currently most popular for im-
age classification tasks is the CNN (LeCun et al., 1995).
The CNNs extend the classical neural network princi-
ples into an extraordinary powerful classifier (Srivas-
tava et al., 2014). They involve three basic opera-
tions, namely, convolutions, pooling operations, and
non-linear activation functions (Schmidhuber, 2015).

A convolution operation is essentially a collection of
dot product operations which allow a number of param-
eters (organized as a set of corresponding kernels) to ag-
gregate on top of the feature maps provided by the pre-
vious layer to create the input to the subsequent layer.
The convolution operations makes it possible for a CNN
to capture spatial autocorrelation phenomena in the data
into the resulting CNN model.

The pooling operation steps in CNN modelling is
necessary for reducing the spatial size of the input fea-
ture map. Taking the maximum value of the features
to represent the derived combined features is usually re-
ferred to as the max-pooling. In addition to reducing the
spatial size of the feature map (e.g. reducing the need
for memory storage and computation), the pooling oper-
ations also create a spatially generalised representation
of the data.

Another important aspect of CNN modelling is the
non-linear activation functions associated with the com-
putational nodes in the network. It is there to obtain
non-linearity in the transformations between the subse-
quent layers of the network. If omitted, a CNN (in fact
any Neural Network) could be collapsed into a single
linear transformation incapable of modelling the mas-
sively nonlinear phenomena present in most practical
applications (Minsky and Papert, 1988). Most applica-
tions of CNNs use (some version) of a Rectified Linear
Unit (ReLU) (Dahl et al., 2013) as their non-linear acti-
vation functions.

A CNN model is trained by the use of gradient de-
scent methodology (Recht et al., 2011), which calcu-
lates the contribution of weight kernels towards the fi-
nal loss value. The parameter update of a CNN model
is based on the chain rule using the backpropagation al-
gorithm (LeCun et al., 2015). The cross-entropy loss
function (De Boer et al., 2005) is used to measure the
precision of the trained CNN model, and reflects the de-
gree of correspondence between the true and predicted
class labels.

2.2. Brief review of the PointCNN

The convolution operation of CNNs is efficient for
capturing the spatially-local correlations from regular
and densely gridded datasets, such as images. The
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Figure 1: PointCNN architecture for point level prediction.

PointCNN introduces a modified version of the convo-
lutions used in CNNs which we will refer to as the X-
Conv. The X-Conv modifies the ordinary CNN convo-
lution to work for irregular and unordered datasets such
as point cloud data (Li et al., 2018). Because the X-
Conv can be used directly with irregular data, the need
for preprocessing is significantly reduced.

Similar to a CNN convolution, the X-Conv includes
the calculation of inner products (element-wise product
and summation operations) between feature maps and
the convolution kernels. The X-Conv takes into consid-
eration the information of neighbour points among the
features of interests, and finally transforms these fea-
tures by a Multi-Layer Perceptrons (MLP) (Atkinson
and Tatnall, 1997).

The X-Conv operation is described in Algorithm 1.
Here K denotes the number of neighboring points, p
denotes the input point, P denotes the K neighboring
points, and F denotes the previous feature representa-
tions of the K neighboring points.
X-Transformation, on the other hand, is in the lines

4-6 of the Algorithm 1 which transform the canonical
point representation (P′) into K x K matrix using MLP
operation hence the term transformation. It should be
noted that X is dependent on the order of the input
points because it will permute F∗ according to the spe-
cific input order. We refer the interested reader to the
PointCNN paper (Li et al., 2018).

The PointCNN for point cloud segmentation is
stacked into several Conv-DeConv blocks (Noh et al.,
2015) using the U-Net architectural design (Ron-

Algorithm 1 X-Conv Operator, taken from (Li et al.,
2018)
Input: K, p, P, F
Output: Fp

. Features projected, or aggregated, into a represen-
tative point p.

1: P′ ← P - p
. Move P to a local coordinate system with p as
origo.

2: Fδ ← MLPδ (P′)
. Individually lift each neighbor point into Cδ di-
mensional space.

3: F∗ ← [Fδ, F]
. Concatenate Fδ and F, F∗ is a K × (Cδ + C1) ma-
trix.

4: X← MLP(P′)
. Learn the K × K, X-Transformation matrix.

5: FX ←X × F∗
. Weigh and permute F∗ with the learnt X.

6: Fp ← Conv(K, FX )
. Finally, typical convolution between K and FX .

neberger et al., 2015). Similar to the U-Net, the Conv
blocks are used to generate the global feature maps
by maintaining local connectivity, while the DeConv
blocks are used to propagate the global features into
point level predictions. For the PointCNN, both the
Conv and the DeConv blocks involves the X-Conv op-
eration but with a different number of points and recep-
tive fields. Similar to the U-Net design, the output from
the previous Conv block is forwarded not only to the
next Conv block but also to the corresponding DeConv
block, see Fig. 1 for details (K denotes the number of
nearby points, N denotes the number of output repre-
sentative, and D denotes the atrous distance). It should
be noted that the PointCNN also includes dropout reg-
ularizing the Fully Connected (FC) layer to improve
the accuracy of the resulting classifier (Srivastava et al.,
2014).

2.3. Brief review of the Fully Connected CRF

A Conditional Random Field (CRF) is a probabilis-
tic graphical model often used for sequence segmenta-
tion and labeling, capable of relaxing the strong inde-
pendence assumptions of a graph model (Lafferty et al.,
2001). A fully connected CRF (Krähenbühl and Koltun,
2011) is a variant of CRF that applies on a fully con-
nected graph. For example, if the fully connected CRF
is implemented on an image with its probability maps,
the conditional penalty for a pixel in the image is con-
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ditioned by the similarities and distances between that
pixel and all the other pixels of the image.

The CRF can by characterized as representing a
Gibbs distribution and for a fully connected CRF the
corresponding Gibbs energy E(x) is defined as:

E(x) =
∑

i

ψu(xi) +
∑

i< j

ψp(xi, x j), (1)

where x denotes the label assignment (of the entire im-
age), i and j denotes pixel locations, ψu(xi) denotes the
unary potential on pixel i (the unary potential is the re-
sult of an independent classifier) and ψp(xi, x j) denotes
the pairwise potential between the labels xi and x j and
is defined as:

ψp(xi, x j) = µ(xi, x j)
K∑

m=1

w(m)k(m)( fi, f j), (2)

k(m)( fi, f j) is a Gaussian kernel (Paris and Durand, 2006)
that calculates the similarity between the feature vec-
tors fi and f j for the pixels i and j, respectively. For
multi-class classification, the Gaussian kernel is imple-
mented as contrast sensitive two-kernel potentials us-
ing a weighted (w(m)) Gaussian filter (Tomasi and Man-
duchi, 1998). The pairwise potential is also weighted
by the compatibility function denoted as µ(xi, x j) using
a Potts model (Krähenbühl and Koltun, 2011). µ(xi, x j)
penalizes nearby similar pixels that have different la-
bels. A fully connected CRF is trained using iteratives
Mean Field Approximation, and the Gaussian filterings
are computed using the permutahedral lattice (Adams
et al., 2010), a high dimensional filtering algorithm.
The details are explained in the above mentioned paper
describing the fully connected CRF (Krähenbühl and
Koltun, 2011).

A variant of a fully connected CRF, implemented by
using convolution operations and trained end to end us-
ing a DNN principal, is the so-called CRF Recurrent
Neural Network (CRF-RNN) (Zheng et al., 2015). The
iterative CRF mean field operation of the CRF-RNN
is structured as a stack of CNN layers, and the Gaus-
sian filter is implemented using the permutahedral lat-
tice where the filter coefficients convolves the weighted
kernels on the lattice space. The mean-field iteration
takes a weighted sum of the previous filter outputs for
each class label, corresponding to a 1 by 1 convolu-
tion on every class label. The compatibility transform
can also be seen as the convolution of a Potts model
with the outputs calculated in the previous step. Finally,
the update operation of a unary potential is obtained by
adding the pairwise potentials and the current unary po-
tential together. The updated outputs are then used as

the new unary potentials. The described operations are
organized into a Recurrent Neural Network (RNN) ar-
chitecture (Mikolov et al., 2010), so that gradient de-
scent can be used to update the weighted Gaussian ker-
nel and the CRF compatibility matrix.

2.4. Training the artificial labels using Atrous XCRF

The Atrous XCRF (A-XCRF) can be explained as a
variant of CRF-RNN, which has the same properties of
calculating the pairwise similarities and penalizing ac-
cording to the predictions. The main difference between
the two is that the A-XCRF does not require a permu-
tahedral lattice structure. The pairwise penalty of A-
XCRF is implemented using a hollow matrix and one-
hot encoding of the predicted label, and the method is
used to refine a trained DNN model.

The X term in XCRF is associated with the X-
Transformation in the PointCNN which utilizes the
nearby points to create features of interest and uses
atrous (Arief et al., 2018) indices for point selections,
more explanation about the X-Transformation can be
found in subsection 2.2. For point data, the atrous ap-
proach (see Fig. 2) means that the selected indices are
not necessarily close to each other but closest by some
number of intermediate (unselected) points, see (Arief
et al., 2018) for a detailed explanation of atrous indices
for raster / grid data.

While CRF-RNN is fully connected, XCRF is not
fully connected and only considers the specified K num-
ber of nearby points. The intuition justifying its appli-
cation is that a patch of point cloud data can be spread
out in a very large region, and the points being far apart
should not influence each other very much. By ignor-
ing such distant pairs of points, we gain substantial sav-
ings computationally and in memory consumption. The
XCRF is outlined in Algorithm 2. P, U, F denote the
matrices containing input points (P), current unaries po-
tential (U), and existing features for each of the points
(F), respectively. K, D, r, I denote the number of nearby
points (K), an atrous distance between point indices (D),
the number of update iterations (r), and nearby point in-
dices (I), respectively.

In line 1, for point p in P, PI gathers the indices of K
nearby points according to the specified atrous distance
(D) from a list of the indices of the K x D nearest points,
sorted on the distance from p in I. Line 2-3, the simi-
larity penalties between a point and its K neighbours is
calculated using the Gaussian bilateral and spatial filters
denoted B f and S f , respectively. These filter are defined
as:
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(a) (b)

(c) (d)

Figure 2: Atrous indices for point selections with K=5, the selected points are marked as black dots with the center point marked as grey, (a) D=1,
(b) D=2, (c) D=3, and (d) D=4.
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Algorithm 2 XCRF Algorithm
Input: P, U, K, I, r, F, D
Output: U1

. Updated unary potentials respecting the K points
similarity

1: PI ← gather(I, D, K)
. For a point p in P, gather the K x D nearest point
indices I, sorted on increasing distance, and skip D
points for each gathered point index (PI).

2: Dcalc ← distance(P, F, PI)
. Calculate the euclidean distances between p and
P[PI], and the distances between the feature values
of Fp and F[PI].

3: B f , S f ← Gaussian(Dcalc)
. Implement the Gaussian filtering (Krähenbühl and
Koltun, 2011) on Dcalc, with B f for the bilateral fil-
ter and S f for the spatial filter.

4: Gw ← B f ×Wb + S f ×Ws

. Passing the Gaussian weights (Wb and Ws) on the
previous outputs, as weighted Gaussian (Gw).

5: U1 ← U
. Duplicate original Unary (U).

6: while i ≤ r do
. Update iteration as RNN, range(r).

7: Us ← softmax(U1)
. Normalize the unary potential with the softmax

function (LeCun et al., 2015).
8: Wu ← OneHot(Us) * Wc

. Calculate hollow weighted unaries by using the
dot product of the one hot encoding of the Us and a
hollow weighted matrix (Wc).

9: UG ← Us × Gw

. Pass the normalized unary to the weighted
Gaussian output.

10: Up ← UG * Wu

. Calculate the pairwise penalty as a dot prod-
uct of the weighted Gaussian and the compatibility
hollow matrix.

11: U1 ← U - Up

. Update the unary values with the pairwise
penalty, and after r iterations, return U1 as the new
unaries.

12: i = i + 1
13: end while

B f = exp

−
∣∣∣pi − p j

∣∣∣2

2θ2
α

−
∣∣∣Ii − I j

∣∣∣2

2θ2
β

 , and (3)

S f = exp

−
∣∣∣pi − p j

∣∣∣2

2θ2
γ

 (4)

where, pi denotes the spatial (x, y, z)-coordinates of
point pi and Ii denotes the feature vector of pi. θα, θβ,
and θγ, are the normalizing constants for the euclidean
distances. B f and S f act as similarity penalties because
their values increase as the associated euclidean sim-
ilarities decrease (dissimilar features) and decrease as
the euclidean similarities increase. In other words, the
penalties are larger for nearby and similar points and
smaller for more remote or dissimilar points. In step 4 of
the XCRF-algorithm, the Gaussian outputs are weighted
with kernels (Wb and Ws) being updated in the training
process of the complete architecture. In step 5, the orig-
inal unaries are duplicated (to be updated in step 6-end).
In steps 6, the unary potentials and the similarity penal-
ties are combined to update the pairwise unary poten-
tials as a RNN iteration, see also (Zheng et al., 2015).
The effect of step 6 is that the original unary potential
are recursively updated using the weighted Gaussian fil-
ters and the similarity label penalties using the hollow
compatibility matrix.

The Gaussian filters in the XCRF algorithm yields a
sharpening of the edge between two dissimilar points
based on their normalized euclidean similarity dis-
tances. The weighting coefficients determine the
amount of penalization according to the similarities.
The hollow matrix and the one hot encoding output, on
the other hand, works by penalizing label differences
with weighted penalties and does not penalize equal la-
bels, similar to the Potts model of the fully connected
CRF (Krähenbühl and Koltun, 2011). XCRF can there-
fore be seen as a strict penalty procedure that is particu-
larly sensitive to nearby similar points having different
labels.

The proposed A-XCRF block builds on the XCRF al-
gorithm, but includes a modification to work as a refine-
ment block for DNN architectures, similar to the CRF-
RNN. The main difference is that, in addition to the re-
current structure, the Atrous XCRF requires multiple Ds

(atrous distances between point indices) to implement
the hierarchical structure of the XCRF, see Fig. 3.

With U f inal denoting the final unary values, n denot-
ing the number of different Ds in D, and Ps denoting the
collection of XCRF parameters as described for Algo-
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Figure 3: Implementation design of a full A-XCRF architecture.

rithm 2, the A-XCRF is simply defined as:

U f inal =

n∑

i=1

XCRF (Ps, Di). (5)

A two-step process is required to train the A-XCRF.
The first step is seeking the best possible (in the vali-
dated sense) model for a DNN architecture by training
the model with a split-validation approach. Inclusion of
the split-validation part is important to prevent against
harmful overfitting.

The second step includes training of the XCRF pa-
rameters against the validated model obtained in the first
step. The training is carried out using the unseen data
(unlabeled test data). The labels for these data are the
predicted labels of the validated model, called artificial
labels, see Fig. 4. The quality of the artificial labels ob-
viously depends on the accuracy of the validated model
from the first step.

The underlying idea of the second step is to intro-
duce noise in the validated model by invoking the strict
pairwise penalties of XCRF on the unseen data. The
validated model is therefore forced to respect the XCRF
penalties when fitted to the training data. By using this
approach, one can invoke the differences between the
calculated DNN probabilities obtained before and af-
ter they have passed through the A-XCRF refinement
block.

Invoking the XCRF as a controlled noise genera-
tor can be highly useful when training a DNN model.
This is particularly the case for PointCNN architectures
where features generated from nearby points are lim-
iting the potential use of data augmentations such as
rotation and scaling. The introduction of a controlled

amount of noise acts as a regularizer on the DNN model
that helps to overcome the ordinary limitations of point
cloud data augmentation.

In order to maintain the accuracy of a validated
model, the training process in the second step succes-
sively swaps between the two datasets (the training data
and the unseen data with its artificial labels). The cross
entropy loss function is used for training with both
datasets. The parameter update using the backpropaga-
tion algorithm, on the other hand, works differently for
the two datasets. For the training data, the backprop-
agation updates both the DNN kernels and the XCRF
kernels. However, for the unlabeled data, the algorithm
only updates the DNN kernels while the XCRF kernels
are kept fixed, see Fig 4. By this approach, the updating
of the DNN kernels works well with the training data,
and at the same time respects the pairwise penalties of
XCRF associated with the unseen data.

The trained model, including both the DNN- and A-
XCRF parts of the architecture, makes up the result-
ing point classifier. The classifier works by passing
the unary outputs from the DNN to the A-XCRF block
for calculating the final unary potentials or the non-
normalized prediction maps. A softmax normalization
of the prediction maps generates the final class probabil-
ity maps and the index of the highest class probability
identifies the predicted class label for a particular point
in the point cloud.

3. Experiments and Results

3.1. Benchmark Dataset
The proposed method was evaluated using an open

benchmark dataset, the ISPRS 3D labeling dataset
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Figure 4: Training flow for the PointCNN with A-XCRF using labeled and unlabeled data.

Class Number of Points
Training Data Test Data

Powerline 546 -
Low Vegetation 180,850 -

Impervious Surfaces 193,723 -
Car 4,614 -

Fence/Hedge 12,070 -
Roof 152,045 -

Facade 27,250 -
Shrub 47,605 -
Tree 135,173 -
Total 753,876 411,722

Table 1: Class distribution of the Vaihingen 3D labeling dataset.

(Cramer, 2010). The labeling was provided by
Niemeyer (Niemeyer et al., 2014). The dataset is an
Airborne Laser Scanning (ALS) dataset acquired using
a Leica ALS50 system with mean flying height 500 m
above Vaihingen village in Germany. The dataset has
a median point density of 6.7 points/m2 and has nine
classes for the 3D labeling task (powerline, low vege-
tation, impervious surfaces, car, fence/hedge, roof, fa-
cade, shrub, and tree). The dataset was divided into two
parts, the training data and the test data with 753,876
points and 411,722 points, respectively. Both parts con-
tained spatial coordinates (XYZ), intensity values and
the number of returns for each point. Table 1 shows the
class distribution for the training data.

The benchmark dataset was evaluated using the Over-
all Accuracy (OA) and the F1 score. OA is the percent-
age of points that were correctly classified, ignoring in-
correct classifications. The F1 score is the harmonic av-
erage of precision and recall. The F1 score is more sen-

sitive to the unbalanced class distribution, as observed
in the training data.

The F1 score is defined as follows:

precision =
T P

T P + FP
, (6)

recall =
T P

T P + FN
, and (7)

F1 S core = 2 ∗ precision ∗ recall
precision + recall

, (8)

where T P, FP and FN denote True Positive, False Pos-
itive, and False Negative, respectively.

3.2. PointCNN and XCRF parameter setting

PointCNN works by training a batch of point blocks
at once. It is therefore necessary to slice the dataset into
point blocks before the model can be trained. For this
purpose, 25m by 25m splitting blocks were used. The
choice of block size was based on the point density of
the dataset and the fact that PointCNN resamples and
trains 2048 points in one forward pass (training itera-
tion).

The training data was first sliced using 100m by 100m
blocks (ignoring the Z axis), resulting in 12 blocks, each
block containing between 25 000 and 120 000 points.
Of these blocks, 80% were used for training and the re-
maining for validation, ensuring that there is no overlap
between the training and validation data. Each of the
100m by 100m blocks were then sliced using 25m by
25m splitting blocks. Re-slicing were also performed
by moving the initial slicing block by 12.5m (half sliced
block) overlapping all the edges of the previous sliced
blocks, hence increase the number of blocks and data
points by repetition. The slicing process produced 286
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and 44 blocks for the training and validation data, re-
spectively. The number of points per 25m by 25m block
varied between 1300 and 9000 points. The test data was
also sliced using the same process, and produced 119
blocks of test data. It should be noted that the spatial
coordinates for the points were transformed to local co-
ordinate systems with origin at the center of the block
the point belongs to.

For every training batch, 2048 points per block were
randomly sampled by PointCNN. For blocks that have
less than 2048 points, points were resampled with re-
placement. One 11GB GeForce GTX 1080 Ti graphics
card was used for training, and the batch size was set
to only six, due to capacity limitations of the GPU. It
should be noted that increasing the batch size could im-
prove the results, because PointCNN uses Batch Nor-
malization (Ioffe and Szegedy, 2015) to reduce the in-
ternal covariate shift of the DNN parameters, and the
technique performs better for a bigger batch size. Un-
less otherwise mentioned, the Tensorflow (Abadi et al.,
2016) DNN library was used, and the training process
started with a learning rate of 0.005, reducing it by 20%
for every 5000 iterations, with a minimum learning rate
of 1e-6.

The XCRF weight parameters were initialized to one,
assuming an equal contribution from each parameter to-
ward the final loss. The compatibility matrix was also
initialized to one, but multiplied with a zero diagonal
matrix to produce a hollow matrix. The Gaussian filter
parameters (θα, θβ, and θγ) were initialized using a grid
search, see (Krähenbühl and Koltun, 2011) for Gaussian
filter initialization strategies. It should be noted that the
filter parameters decide the size of the areas to be con-
sidered when calculating the pairwise similarities.

The XCRF uses five iterations (r) to update the unary
potentials both for the XCRF parameters update and for
generating the final predictions. The A-XCRF is imple-
mented on six hierarchies, with D equal to 1, 2, 3, 4, 8
and 16, respectively. For all of the levels a K (number
of neighboring points) value of 64 was used, therefore
the farthest neighboring point that is considered for the
sixth level of the A-XCRF is the 1024th point (K=64 by
D=16).

3.3. Training Strategies and Results
In order to test our proposed method, we trained the

original PointCNN and the PointCNN with A-XCRF
separately and analyzed the results to quantify the im-
provements. For the remainder of this paper, we use
term ”PointCNN” for the original PointCNN and ”A-
XCRF” for the PointCNN with Atrous XCRF. Both
techniques were trained using x, y, z and two additional

Class PointCNN CRF-RNN A-XCRF
Powerline 61.5 68.5 63.0

Low Vegetation 82.7 81.7 82.6
Impervious Surfaces 91.8 92.1 91.9

Car 75.8 75.7 74.9
Fence/Hedge 35.9 38.2 39.9

Roof 92.7 93.5 94.5
Facade 57.8 58.8 59.3
Shrub 49.1 50.1 50.8
Tree 78.1 79.5 82.7

Average F1 69.5 70.9 71.1
OA 83.3 83.6 85.0

Table 2: OA and F1 scores for PointCNN based techniques on the test
data of the Vaihingen Dataset. All cells except the last two rows show
F1 scores.

features: 1) Height Above Ground (HaG) generated us-
ing TerraScan, and 2) intensity, both of these additional
features were normalized to the range [-0.5, 0.5].

PointCNN and A-XCRF were trained using the split-
validation dataset and the training was concluded after
10 consecutive training epochs without any change in
the validation accuracies.We also trained the PointCNN
with CRF-RNN using the same dataset and stop proce-
dure. The PointCNN with CRF-RNN was trained end-
to-end, as recommended in the CRF-RNN paper (Zheng
et al., 2015).

Tabel 2 shows a comparison of the results on the
test data for A-XCRF, PointCNN and PointCNN with
CRF-RNN (CRF-RNN in the table). Fig. 5 shows the
confusion matrices of PointCNN and A-XCRF. It can
be noticed that A-XCRF slightly improves the OA on
PointCNN for most of the classes (7 out of 9 classes).
Similar to the PointCNN, A-XCRF has a problem with
classifying the Powerline points. This is because the
atrous approach of both models create holes in the group
of neighbouring points while gathering nearby points,
and this does not work well for linear features such as
powerlines. CRF-RNN calculates similarity using all
the nearby points, which seems to be a better strategy
for such features.

Based on Table 2, it is clear that A-XCRF only offers
a slight (between 1 and 2 percent) improvement in per-
formance compared to the other techniques. However,
A-XCRF is used for post-processing, and could be used
as an extension to other machine learning-based classi-
fiers, making it interesting as a tool for improving the
quality of any classifiers. Fig. 6 shows the classification
maps and error map produced by the A-XCRF.
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(a) (b)

Figure 5: Comparison of the confusion matrices of (a) PointCNN and (b) A-XCRF.

3.4. ISPRS and Benchmark Results

A quantitative comparison between our method (A-
XCRF) and other methods tested on the Vaihingen
dataset are shown in Table 3. ISS 7 (Ramiya et al.,
2016) applied a supervoxel method on the point cloud
data using the voxel cloud connectivity algorithm; then
the local connectivity of the supervoxels were used to
generate segmented objects; and finally, the generated
segments were classified using machine learning tech-
niques. UM (Horvat et al., 2016) used a combina-
tion of the point cloud attributes, textural properties
and geometrical attributes generated using morphologi-
cal profiles, and trained the features using One-vs-One
(OvO), a multiclass machine learning technique. HM 1
(Steinsiek et al., 2017) used k-nearest neighbors (KNN)
to select neighboring points and eigenvalue-based fea-
tures to generate geometrical features at the point level,
then conducted the contextual classification using CRF.
The LUH (Niemeyer et al., 2016) applied hierarchial
higher order CRF by using two independent CRFs on
the points and segments level (clustered points), respec-
tively. It should be noted, that the majority of the tech-
niques listed in Table 3 did not explain their stop pro-
cedure or their use of validation data. This information
would be helpful when trying to replicate their result as
well as when testing how A-XCRF would behave as a
post-processing step for these methods.

RIT 1 (Yousefhussien et al., 2017) and WhuY4 (Yang
et al., 2018), are DNN based techniques for point cloud
classification. RIT 1 used a 1D-fully convolutional net-
work with terrain-normalized points and spectral data.
WhuY4 used a multi-scale CNN on the point to raster

representations, utilizing geometrical features such as
planarity, sphericity, and variance of deviation angles,
in addition to the HaG and intensity values.

It should be noted that there is another DNN method
called NANJ2 (Zhao et al., 2018) but is not shown
in Table 3. This is because it ignored the powerline
class (Zhao et al., 2018), therefore the accuracy and
the average F1 cannot be directly compared with the re-
sults from other methods. The NANJ2 generated deep
features learned from the height, intensity, and rough-
ness attributes and trained the features using multi-scale
CNN.

3.5. Sensitivity Analysis

The A-XCRF technique uses several variables as in-
put parameters, including the number of neighbors (K)
and the number of XCRF layers (n) with their structure
of atrous distances (D). Table 4 shows the sensitivity of
those variables with respect to the test accuracy.

The number of neighbor points considered for calcu-
lating the point similarity matters the most with respect
to the OA. With K=8, the accuracy increases with the
number of XCRF layers (n), with a corresponding in-
crease in the number of neighbor points to be consid-
ered. A too large K becomes harmful for the refine-
ment quality, as demonstrated for K=128. In addition,
with the increase of XCRF layers (n >= 6) with K=128
comes the Out of Memory (OOM) problem. This is due
to the large matrices (K by K by n) that need to be stored
in GPU memory for gradient update purposes. For this
sensitivity analysis, K=64 with n=6 gives the most ef-
fective number of neighbor points (and XCRF structure)
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(c)

Figure 6: Classification map generated by (a) the A-XCRF method and (b) Vaihingen label test set, and (c) error map. Classes and colors: power
line (orange), low vegetation (dark green), impervious surface (light gray), car (red), fence/hedge (dark red), roof (blue), facade (blue navy), shrub
(green yellow), and tree (lime green).
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Class ISS 7 UM HM 1 LUH RIT 1 WhuY4 A-XCRF
Powerline 54.4 46.1 69.8 59.6 37.5 42.5 63.0

Low Vegetation 65.2 79.0 73.8 77.5 77.9 82.7 82.6
Impervious Surfaces 85.0 89.1 91.5 91.1 91.5 91.4 91.9

Car 57.9 47.7 58.2 73.1 73.4 74.7 74.9
Fence/Hedge 28.9 5.2 29.9 34.0 18.0 53.7 39.9

Roof 90.9 92.0 91.6 94.2 94.0 94.3 94.5
Facade - 52.7 54.7 56.3 49.3 53.1 59.3
Shrub 39.5 40.9 47.8 46.6 45.9 47.9 50.7
Tree 75.6 77.9 80.2 83.1 82.5 82.8 82.7

Avg F1 55.27 58.96 66.39 68.39 63.33 69.2 71.1
OA 76.2 80.8 80.5 81.6 81.6 84.9 85.0

Table 3: A quantitative comparison between A-XCRF and other methods on the Vaihingen dataset. All cells except the last two rows show the
per-class F1 score.

for implementing the AXCRF technique to generate a
high accuracy classifier.

n=1 n=2 n=6 n=8
K=8 83.71 83.68 84.45 84.69
K=64 84.50 84.70 84.97 82.65∗

K=128 84.38 83.68 82.64∗ 82.68∗

Table 4: Sensitivity analysis of A-XCRF input variables in terms of
OA on the Vaihingen test data. ∗Only calculated for inference without
retraining due to the OOM problem during retraining.

3.6. Transfer Learning

We also include a transfer learning experiment using
the Bergen dataset (Norwegian Map Authority, 2018).
The idea is to show the applicability of the model
(trained on the Vaihingen dataset) and the A-XCRF
module for another dataset without retraining, and with
a different LiDAR setting and environment (Pan and
Yang, 2009).

The Bergen dataset is an ALS dataset acquired us-
ing a Riegl VQ-1560i mounted on a Piper Aircraft P-
31-350 flying over the Bergen region in western Nor-
way. The project was handled by Terratec and the data
is co-registered with the R-G-B channels. The data are
classified, including the ground class, low vegetation,
medium vegetation, high vegetation, building, water,
bridge and snow/ice (Norwegian Map Authority, 2018).

Due to the different classification schemes, we only
use the roof class of the Vaihingen dataset to predict
the building class of the Bergen dataset. We trained the
PointCNN using the X-Y-HaG features of the Vaihingen
training data, and tested the trained model using 20%
of the Bergen dataset (100 files containing 719,762,528

data points). For A-XCRF we also used the R-G-B fea-
tures of the Bergen dataset to calculate the point simi-
larities, and trained the second-step of A-XCRF using
only the roof class with unlabelled Bergen data.

Table 5 shows the quantitative results of PointCNN
and A-XCRF on the Bergen dataset. A consistent 2-3%
improvement in terms of accuracy is achieved. In addi-
tion Fig. 7 shows how the PointCNN prediction maps
are improved when using the A-XCRF refinement tech-
nique.

It should be noted that even though a slight improve-
ment can be noticed, the results are not yet of production
quality. The quality of the probability maps provided
by PointCNN for the Bergen dataset is poor. This is un-
derstandable because PointCNN has never been trained
on the Bergen dataset. It was trained on the Vaihingen
dataset, and there are many differences between these
two datasets, including topography, size of trees, etc.
In addition, being a DNN technique, PointCNN thrives
with a large number of data points for training. In this
case, the number of data point used for training and test-
ing differs by a few order of magnitudes, significantly
deteriorating the quality of the resulting classifier.

The A-XCRF, on the other hand, works on refining
the probability maps by increasing or decreasing the
probability value of a point belong to a certain class de-
pending on the feature similarity of that particular point
compared to its neighboring points. When the probabil-
ity maps provided for A-XCRF is poor, the refinement
results will also be limited, hence the quantitative results
shown in Table 5.
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(a) (b)

(c) (d)

Figure 7: Top view of the segmentation maps on one of the files from the Bergen dataset (file id: 32-1-467-147-74). (a) point cloud data (X-Y-HaG)
colored by elevation, (b) label data using only building class, (c) the PointCNN prediction maps, and (d) the A-XCRF prediction maps.
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(a)

(b)

(c)

Figure 8: Training summaries of A-XCRF, includes (a) Training accuracy, (b) Training loss, and (c) Learning rate.
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Precision Recall OA F1-Score
PointCNN 09.5 83.7 87.2 17.1
A-XCRF 11.5 78.4 90.2 20.1

Table 5: The performance for transfer learning on 20% of the Bergen
dataset.

4. Discussion

4.1. Limitations

The improvement offered by A-XCRF was about 2%,
which may not be considered as very significant in terms
of accuracy improvement. However, the use of artificial
labels and XCRF similarity penalties to re-train a vali-
dated model is a novel idea and provides a basis for a
future research direction.

In modelling with DNN architectures, parameter up-
date and gradient descent works by tracking the gradi-
ent flows of the parameters and updating the parameters
based on the accumulative loss caused by those param-
eters. Consequently, the distances between feature vec-
tors are not emphasized in DNN modeling. Invoking the
similarity penalties between features by using the CRF
technique as a post-processing procedure to improve
classification accuracy is not a new idea (Krähenbühl
and Koltun, 2011; Chen et al., 2018; Zheng et al., 2015).
However, this paper extends the idea by using unlabeled
data with similarity penalties to improve the results, and
the improvement is confirmed in Table 2 and 3.

Geometrical features calculated from the nearby K
points can be used to strengthen the point similarity
penalties. Sphericity, planarity, and deviation angle
variance, proposed in (Yang et al., 2018), are examples
of geometrical features that can be generated and used
as additional features for the XCRF.

Including the geometrical features when calculating
the pairwise similarity penalties may help the XCRF
to provide better classification results on classes that
have a linear geometrical shape, such as Powerline, Fa-
cade, and Fence/Hedge. Fig. 5 shows the unsatisfac-
tory classification accuracies of those particular classes.
Including geometrical features, such as planarity and
sphericity, that are capable of detecting linearity from
neighbouring points in the point cloud could contribute
to overcome this problem. However, more research is
needed to define a well-suited similarity penalty for-
mula for such geometrical features.

The Gaussian kernel defined in Eq. 3 in (Krähenbühl
and Koltun, 2011) includes a contrast sensitive two-
kernel potential combining a bilateral and a spatial filter,
that give higher penalties for smaller distances. This ap-
proach does not seem to be very well suited for stacking

many different features with different characteristics,
because stacking them in the mentioned kernel seems
to reduce the impact on the final similarity penalties.
In other words, adding many different features in the
Gaussian kernel are likely to both increase dissimilar-
ity values and reduce the pairwise penalties. More work
seems to be required to derive similarity formulas that
works better with generated and dissimilar geometrical
features.

4.2. End-to-end Atrous XCRF

When used as a post-processing module, the A-
XCRF seems to be well suited to improve the prediction
quality of machine learning based classifiers. However,
the two loss functions of A-XCRF are making it more
complicated to formulate the method as an end-to-end
training process. This is because both loss functions up-
date the same kernel (DNN parameters) and distributing
the losses in an end-to-end fashion would results in in-
tractable parameter updates.

Fig. 8 shows the training summaries of A-XCRF, in-
cluding (a) the loss values, (b) the validation accuracy,
and (c) the learning rate. The spikes in the training loss
occur after every training epoch on the unseen data. The
loss values were not decreasing monotonously, but dis-
play a nice decreasing trend. One notable phenomenon
is that after the first learning rate decay, the validation
accuracies demonstrate a relatively consistent improve-
ment. This indicates that learning rate treatment and
initialization strategy is important when training the A-
XCRF.

End-to-end training and parameter update could sim-
plify the A-XCRF learning process. Generative Adver-
sarial Network (GAN) (Goodfellow et al., 2014) train
both of GANs losses using minimax game theory (Sal-
imans et al., 2016), with finding an equilibrium as the
objective function. Using a GAN training style, we can
set up both of the A-XCRF loss functions as the same
minimax objective function and perform parameter up-
date using the gradient flow and parameter update in the
GAN architecture. Although both models are unstable
and hard to train, A-XCRF with the minimax game al-
gorithm could potentially be an end-to-end architecture
with a better accuracy.

5. Conclusions

In this paper, a novel technique for addressing the
overfitting issue for automatic classification of point
cloud data is presented. The main contribution of our
research is the proposal of an XCRF training algorithm
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and an A-XCRF layer for training, utilizing the unla-
beled part of a dataset to improve model accuracy. To
address the overfitting behavior of DNN based models,
we introduced a method that is not only capable of using
similarity values between features of interest, but also
induces a controlled noise in the validated model. In
the preprocessing procedures of our work, we sliced the
point cloud data using voxel blocks and used HaG and
Intensity as the features of interest. PointCNN was used
as a classifier. PointCNN is a DNN architecture that
uses the X-Transformed technique to consume irregu-
lar and unordered data points using a convolution-like
operator. For the post-processing, A-XCRF was used,
which can be viewed as a DNN layer that forces the
DNN models to respect the similarity penalties given by
the unseen data. A-XCRF is a stack of XCRF modules
that penalizes nearby similar points that have the dis-
similar predicted label with a strict penalty procedure
using a hollow compatibility matrix.

Experiments were carried out using the ISPRS 3D
labeling benchmark dataset. Comparisons were made
with PointCNN and PointCNN with CRF-RNN. In ad-
dition, a comparison with other techniques that has been
tested on the benchmark dataset was presented. Exper-
imental results show that our proposed technique was
better than the other proposals in term of average F1
Score (71.1%) and the overall accuracy was on par with
the current best proposal.

Experiments with the transfer learning challenge was
also performed using the Bergen dataset. Even though
the final accuracy is poor, our proposal consistently pro-
vides 3% improvement both in term of OA and F1-
Score, from 87.2% to 90.2% and from 17.1% to 20.1%,
respectively.

Further improvement may be achieved by introducing
geometrical features in the XCRF algorithm to better
handle classes with a linear geometrical shape and doing
end-to-end training of A-XCRF layer using a GAN style
architecture.
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Abstract

Robust understanding of the driving scene is among the
key steps for accurate object detection and reliable au-
tonomous driving. Accomplishing these tasks with a high
level of precision, however, is not trivial. One of the chal-
lenges come from dealing with the heterogeneous density
distribution and massively imbalanced class representation
in the point cloud data, making the crude implementation of
deep learning architectures for point cloud data from other
domains less effective. In this paper, we propose a density-
adaptive sampling method that can deal with the point den-
sity problem while preserving point-object representation.
The method works by balancing the point density of pre-
gridded point cloud data using oversampling, and then em-
pirically sample points from the balanced grid. Using the
KITTI Vision 3D Benchmark dataset for point cloud seg-
mentation and PointCNN as the classifier of choice, our
proposal provides superior results compared to the origi-
nal PointCNN implementation, improving the performance
from 82.73% using voxel-based sampling to 92.25% us-
ing our proposed density-adaptive sampling in terms of per
class accuracy.

1. Introduction
The ever-growing availability of large-scale point cloud

data and easy access to affordable Light Detection and

Ranging (LiDAR) sensors have opened new streams of re-
search in the computer vision field in recent years [10]. In-
stead of having to estimate distances between objects in
a scene from images in order to reconstruct a 3D scene,
researchers can now achieve the same objective by lever-
aging hundreds of thousands of point coordinates. Point-
Net [3] and PointCNN [13] are two popular deep learning
models for learning the features of a scene from raw point
cloud data, achieving an appealing performance of 83.7%
for PointNet and 86.14% for PointCNN in terms of part-
averaged IoU when applied on the ShapeNet Parts dataset
[13]. Due to the novelty of its approach in accounting for
the spatial information in the point cloud data, PointNet
has commonly been used as the backbone of many recently
developed deep learning models for raw point cloud data
[17, 21].

Point cloud datasets usually contain an extremely large
number of points, preventing deep learning models to in-
clude all the data points simultaneously. In that setting, it
is common practice that only a few samples are considered
in one learning iteration. The point sampling procedure in
PointNet++, for example, is carried out by first partition-
ing the point cloud data into several voxels, and then per-
forming random sampling from each of the voxels to con-
struct training sets with the maximum number of points that
is permissible by the architecture [18]. This approach pre-
sumes that the point density in each voxel is homogeneous.
While the homogeneous point density distribution setting



Figure 1. The nature of point cloud data from two different do-
mains: (a) driving scene point cloud from Velodyne-type LiDAR
(b) landscape map point cloud from airborne LiDAR along with
point density distributions (c-d).

usually holds true for some applications, e.g. geomapping
with point clouds from airborne LiDAR [1] or object scan-
ning with point clouds from close-range scanning LiDAR
[5], it is severely violated in the context of autonomous ve-
hicle (AV) applications. In this context, the point cloud data
are collected using a LiDAR with rotating beams (such as
the Velodyne LiDAR) and the AV being in the center of
the point clouds, thus the further the distance is, the less
dense the points become (see for instance the Kitti dataset
[9]). Because of this heterogeneity, the standard sampling
technique with the voxelization method is not suitable. Fig.
1 illustrates the problem. In this figure, point cloud data
from the Kitti Velodyne lidar (for a driving scene) and from
the ISPRS Vaihingen airborne LiDAR (for a mapping ap-
plication) are presented along with the top-view voxeliza-
tion grids that are commonly used in training deep learning
models.

The main contribution of our work is the use of a density-
adaptive sampling method for improving the classification
accuracy for heterogeneous point clouds with highly imbal-
anced class representation, especially when constructing the
training set with an intention of balancing the point density
distribution of the point cloud during the training process.

Other approaches have been studied in the context of learn-
ing from imbalanced datasets [2, 11]. We argue that ob-
taining point samples from grids of point cloud data with
homogeneous point density distributions provides a good
training set that is suitable with deep learning architectures
utilizing raw point cloud data as input. In the experiment,
we investigate the performance of various sampling strate-
gies and observe that a class of sampling methods that are
density-adaptive, i.e. taking into account the distribution of
point density into the sampling scheme, yields a superior
result compared to other sampling methods, including the
crude voxelization-based sampling that is implemented in
several existing deep learning architectures [13]. The exper-
imental results using the Kitti 3D dataset show a significant
improvement, from 82.73% using the original sampling to
92.25% using our proposed density-adaptive sampling, in
terms of per class accuracy. We note that the performance
of the proposed method is compared with accuracy metrics
(true positive rate), rather than MIoU score, because our
model discovered more objects compared to what the Kitti
ground truth semantic labels provide, hence computing the
MIoU score unfairly exacerbates our performance. A more
detailed discussion will be provided in Section 5.

In what follows, we provide some background informa-
tion describing the context of the challenges of work and
review some related works. In Section 3, we present our
method and the metrics used for evaluation. In Section 4,
we describe the experiment settings and the Kitti dataset
and show our results. In Section 5, we discuss our findings
and finally we present the conclusion in Section 6.

2. Related Work

In this section, we provide an overview of the nature of
point cloud data and an overview of selected work related to
semantic segmentation using raw 3D point cloud data and
sampling methods for learning models.

2.1. Point cloud and LiDAR

The growing interest analyzing point cloud data that cap-
ture spatial features of complex 3D scenes have become a
trend in various fields, including mapping, object recon-
struction, driving navigation, etc. A point cloud is a set
of points in 3D space, each described by x, y, z coordinate
values that are usually collected by LiDAR sensors. The
sensor sends out pulses of beams at high frequency and cal-
culates object distances based on the time for the pulses to
return. By sweeping a region of interest with the LiDAR
beams and combining the information from all points in a
scene, usually in the order of hundreds of thousands or even
a few million points, a data collection effort using LiDAR
can provide accurate spatial information of complex scenes
quite efficiently.



The point cloud data inherit unique characteristics, e.g.
in terms of the distribution of point density in various sub-
regions or grids of the scene or object of interest, depend-
ing on the nature of the scene of interest and the types of
LiDAR utilized [16, 20]. Point cloud data from Airborne
LiDAR, for instance, which is widely used for mapping ge-
ographical areas from a top-view, generally have a relatively
even point density in each grid of the scene. Point clouds
obtained from a close-range portable 3D object scanner Li-
DAR will have a point density distribution according to the
surface captured by the scanning process. In contrast, point
cloud data collected from Velodyne-type LiDARs, which
is prevalent in AV applications with 360-degree surround-
ing environment as the scene of interest, will have highly
heterogeneous point density in its grids. Fig. 1 shows the
difference of point density distribution for different types of
point cloud data.

2.2. Deep learning for point cloud segmentation

On its own, obtaining accurate semantic segmenta-
tion label from scenery data has less meaningful practical
uses. However, semantic segmentation has been shown to
be a good processing mechanism for object detection on
point cloud data [6, 15]. That is, the scene segmentation
task, which often is implemented as a supervised learning
scheme, can be coupled with a classification or clustering
method to build an accurate and efficient object detection
pipeline or end-to-end framework. Hence, achieving a good
performance for semantic segmentation on point cloud is a
good intermediate objective. [21] provides a good review of
the various frameworks used for semantic segmentation for
point cloud data.

On a high level, these frameworks can be divided into
several classes based on the input data that are exploited in
the training of the deep learning models. Some frameworks
[4, 14, 22] use an image projection or voxel representation
of the point cloud data making it ready for the convolu-
tional operations in the deep architectures. PointNet++ and
PointCNN use the raw point cloud data directly which to
some extent should have the advantage of being able to ex-
ploit the spatial information from the point cloud data. In
these frameworks, the training set is constructed via sam-
pling method. In the original PointNet++ implementation,
the sampling is done by partitioning the scene of interest
into several overlapping partitions by some distance met-
ric, from which the local features are extracted. The local
features are then clustered into larger units in a hierarchi-
cal fashion to capture the features of the whole scene [18].
PointCNN uses point cloud data and learns by utilizing the
so-called X-Conv operations [13]. Similar to the convolu-
tion operation in ConvNet [12], X-Conv includes the cal-
culation of inner products of transformed point cloud data
and convolution kernels. The learning process relies on the

Multi-Layer Perceptron (MLP) algorithm and uses a Unet-
like architecture [19] to do point-level segmentation. The
implementation of both methods on the ShapeNet data set
have yielded appealing results: 85.1% for PointNet++ and
86.14% for PointCNN. These methods, however, have not
obtained the same performance when applied on point cloud
data from Velodyne LiDAR, such as the Kitti dataset.

2.3. Sampling methods

Selection of the training data for training a deep learning
model is always a critical task with respect to future good
generalization. The large number of point clouds in a scene
combined with the heterogeneous point density distribution
and the implementation of complex deep learning architec-
tures necessitate an efficient sampling scheme that is capa-
ble of selecting a good set of points that are informative
for training purposes. In the machine learning literature,
this problem is closely related to learning from imbalanced
classes. Researchers have proposed the use of various sam-
pling strategies, including random sampling, oversampling,
undersampling, and stratified sampling, to achieve certain
criteria that balance the training set [2, 7]. Interested readers
are referred to [11] and [7] for more extended discussions
about training set optimization for deep learning models.

3. Methodology
Our proposed method uses density-adaptive sampling

that can be achieved by performing oversampling in grid
cells where the number of points is below a certain thresh-
old. In this section, we will elaborate how this density-
adaptive sampling scheme is implemented as part of seman-
tic segmentation framework to assist the learning models
learn the most scene features from the training data.

3.1. Semantic segmentation framework

Semantic segmentation for point cloud data is essentially
a point-wise classification task, where each point in the
point cloud is classified into the class-object the point be-
longs to. In the AV context, point cloud segmentation is
utilized to assign object class (such as car, pedestrian and
cyclist) to each point and to use the segmented points for
generating object bounding boxes. We used a step-wise
semantic segmentation pipeline for Velodyne-based point
cloud data by implementing a density-adaptive sampling
technique in the preprocessing of the input data. We then
employed PointCNN feature learning to generate probabil-
ity maps. See Fig. 2 for an illustration of the framework.

3.2. Sampling method

To address the density problem, we utilize density-
adaptive sampling method. The key idea is that feature
learning using more balanced training sets will ease the



Figure 2. The proposed pipeline for semantic segmentation with PointCNN as the classifier of choice.

learning process of the deep learning kernels. In that sense,
the density-adaptive sampling aims to amplify the likeli-
hood that features from scenes with fewer points will be
considered in the learning iterations. Density-adaptive sam-
pling scheme can be achieved by using grid-based uniform
sampling. This sampling method calculates the average
point density (apd) on pre-gridded 3D point cloud data. The
point density in each grid will then be normalized by over-
sampling points within the grid cell to make the point den-
sity equal to the value of apd. Finally, an empirical or uni-
form sampling technique (without replacement) is applied
to the normalized-density-grid to select the points used for
training the deep learning model.

3.3. Classification algorithm

In this study, we use PointCNN as the classifier of
choice. The novelty of PointCNN in learning from point
cloud data is the use of nearby points as features for a point
of interest. It uses point cloud as input represented as (x, y,
and z) coordinates along with a scalar denoting the inten-
sity value for each point. With these inputs, PointCNN en-
riches the features by exploiting the spatial auto-correlation
of nearby points. Technically, PointCNN employs hierar-
chical convolution; this feature is similar to the well-known
pooling layer in ConvNet. The hierarchical convolution of
PointCNN aggregates information from neighborhood fea-
ture maps to fewer points by applying the X-Conv operation
recursively, clusters nearby points as the feature represen-
tation of the point of interest using a K-nearest neighbor
algorithm, and projects the clustered points into the local
coordinate system with the point of interest being the center
of the cluster. After a series of transformations based on the
PointCNN pipeline using MLP coupled with X-Conv oper-
ators and higher-dimensional projections, the segmentation
class for each point is acquired.

3.4. Evaluation metric

For a class-imbalanced data set, such as AV point cloud
data where the environment class by far dominates the in-

teresting classes (such as car, pedestrian, cyclist, etc.), only
a few alternative metrics will be appropriate for evaluating
the segmentation task. This is the case because metrics such
as the overall accuracy performance are meaningless. By
just ignoring building a classifier and instead using the sim-
ple rule of assigning all points into environment class would
give good results in terms of the overall accuracy. To avoid
this issue, we use Mean of Per-class Accuracy (MPA) met-
ric as a notion of accuracy. The simultaneous comparison of
true positive (TP ) rate as correct prediction and false nega-
tive (FN ) combined with false positive (FP ) rate as wrong
prediction is a common practice. Hence, we will also con-
sider the Mean Intersection over Union (MIoU). The cal-
culation of each metric is as follow, with k being the total
number of classes and pij being the number of points of
class i but classified as class j.

MPA =
1

k

k−1∑

i=0

pii∑k−1
j=0 pij

, and (1)

MIoU =
1

k

k−1∑

i=0

pii∑k−1
j=0 pij + pji − pii

. (2)

4. Data and Experiment
We use the KITTI Vision Benchmark 3D data set [8]

for our experiment, which records point clouds of driving
scenes from Karlsruhe, Germany. The Kitti point cloud data
set is collected using a Velodyne HDL-64E rotating 3D laser
scanner, collecting data with 64 beams at 10 Hz. For our ex-
periment purposes, we downloaded the 3D point cloud data
set and labels from the Kitti website, totaling 29 GB in size.
The data set contains 7481 scenes from an ego car view-
point located in the center of the scenes. On average, each
scene has 1.3 million points.

The labels provided are in the form of bounding box
coordinates and class label (e.g. car, pedestrian, cyclist,
etc.) for each of the boxes. We treat any points outside the
bounding boxes for the pedestrian, car, and cyclist classes



(a) (b)
Figure 3. The accuracy performance (per-class accuracy) for the trained model using (a) the original voxel-based sampling and (b) the
best-performing density-adaptive sampling.

Class Number of Points (Percentage)
Training Data Validation Data

Environment
604,128,641

(98.46%)
273,993,242

(98.44%)

Pedestrian
561,147
(0.091%)

271,529
(0.10%)

Car
8,705,256
(1.418%)

3,990,825
(1.43%)

Cyclist
181,974
(0.029%)

87,222
(0.03%)

Table 1. The distribution of class in the data set.

as environment, so most of the points belong to the environ-
ment class (around 98% of all the points). The distribution
of classes is shown in Table 1. Moreover, the point density
is decreasing with distance. To set the stage, we prepro-
cessed the data by assigning the class label of the box to
all points it contains, so we obtained point-wise labels. We
then used 5,145 scenes for training and 2,336 scenes for
validation purposes.

4.1. Experimental setup

Each PointCNN model was trained using one 11 GB
GeForce GTX 1080 Ti graphics card with eight-point
blocks per batch, following the capacity limitation of the
GPU. The Tensorflow version of PointCNN was used as
the training code and environment. Unless otherwise noted,
initial learning rate for all models is 0.005 with 20% learn-
ing rate decay for every 5,000 iterations and was trained for
125,000 iterations. In order to force the model to recognize
objects during training for such an imbalance data set, the
weighted penalty (for loss calculation) for the environment
class was set to 0.1, and to 1 for other classes. For calculat-

Method MPA MIoU
VB Block-10 0.6329 0.3369
VB Block-20 0.6999 0.5263
VB Block-30 0.8273 0.5717

Without oversampling
GBR-Original 0.8895 0.6418
GBU-Original-XY-0.25 0.8641 0.6179
GBU-Original-XY-1 0.8731 0.6511

XY-GRID with Oversampling
GBU-XY-grid-0.25 0.8876 0.5840
GBU -XY-grid-1 0.8983 0.6304
GBR -XY-grid-0.25 0.9152 0.6342
GBR -XY-grid-1 0.8881 0.6504

XYZ-GRID with Oversampling
GBU-XYZ-grid-0.25 0.9026 0.6471
GBU-XYZ-grid-1 0.9040 0.6346
GBR-XYZ-grid-0.25 0.9225 0.6816
GBR-XYZ-grid-1 0.9217 0.6509

Table 2. The performance of each of the sampling scenario.

ing the validation accuracy, the weighted penalty for all the
classes was set to 1. The highest MPA and MIoU score for
the validation data are then used to evaluate and compare
the prediction accuracy for all models in the experiment.

4.2. Sampling scenario

We test our hypothesis by training the PointCNN with
different sampling methods. The benchmark is the voxel-
based sampling (the original PointCNN sampling package).
We also include grid-based uniform sampling and grid-
based random sampling for comparison. Each of the meth-
ods sample (without replacement) 10,000 points per block



Figure 4. Point cloud visualization with (a) Prediction results, and (b) Ground truth label with missing object bounding box.

to be used as the PointCNN input. PointCNN, for every
training iteration, will sample 2,048 random points to be
used. It should be noted that randomly selecting 2048 points
from 10,000 points per iteration will generate different point
sets, hence increasing the variation of data learned by the
PointCNN model.

In terms of sampling parameters, block sizes of 10, 20,
and 30 coordinate values were used for the voxel-based
sampling methods with the assumption that the average

point densities per block are 100, 25, and 10, respectively.
The grid-based sampling methods used grid size 0.25 and
1 coordinate values. For the sake of simplicity, we refer
to the voxel-based method as VB, grid-based uniform sam-
pling as GBU, and grid-based random sampling as GBR
throughout this paper. We also include versions of GBU and
GBR without the rebalancing point density and call these
versions GBU-Original and GBR-Original, respectively. In
addition, we also compare the results for 2D and 3D grids



Figure 5. The MPA trends of the model during training using vari-
ous sampling schemes.

(XY and XY Z axis) for both GBU and GBR sampling.
Table 2 shows the performance of the resulting models in
terms of MPA and MIoU. Fig. 5 shows the per-class ac-
curacy using the original voxel-based method and the best-
performing density-adaptive sampling method.

5. Discussion

In this section, we discuss our findings related to the ac-
curacy, learning stability, and the MIoU performances.

5.1. Per-class accuracy performance

As shown in Table 2, the proposed method, using a
density-adaptive sampling scheme, yields superior mean
per-class accuracy performance compared to the original
voxel-based sampling method. The best performance for
the proposal achieves 92.25% (GBR-XYZ-grid-0.25) com-
pared to 82.73% for the original sampling method (VB
Block-30). Table 2 shows the voxelization in the origi-
nal sampling scheme does not improve the accuracy per-
formance. It suggests that removing the partitions of the
training sets while keeping the heterogeneous density, thus
shifting from stratified sampling into randomized sampling
based on the empirical distribution of the original data, only
alleviates a part of the problem.

On the other hand, density-adaptive sampling methods,
which superficially augment the representativeness of the
features from all grids in the scene by means of oversam-
pling, seems effective in increasing the generalizability of
the trained model when classifying the unseen data, and
works best when coupled with randomized sampling and
a small grid size. The best-performing grid size for GBR-
XYZ density-adaptive sampling class is 0.25, which is rea-
sonable, because the smallest grid size forces the training
points to be most evenly distributed covering whole scene.

Finally, Fig. 3 presents the confusion matrix showing
TP , TN , FP , and FN for PointCNN trained using the
original sampling method (top) and our density-adaptive
method (bottom). It is clear that the proposed sampling
method attains a model with better accuracy performance
for all classes. The most significant increase in performance
is observed for classes with fewer points (pedestrian and cy-
clist), thus indicating the robustness of our sampling scheme
in dealing with class-imbalanced data sets.

5.2. Performance stability and learning rate

In Fig. 5, the accuracy of the model during training is
computed against the validation data set in each training it-
eration. Notice that the model trained using the original
voxel-based sampling method with grid size 10 (VB Block-
10) has the most volatile performance and the other original
VB methods have less volatile performance in earlier stages
of its learning procedure, while the density-adaptive meth-
ods have more stable performance during training. This
observation indicates that the training set from density-
adaptive methods makes it easier for the deep learning mod-
els to learn hidden features from the point cloud data, hence
achieving more stable learning rate and faster convergence.
It is therefore promising to devise an objective function and
parameterize the sampling scheme so as to maximize the
learning rate and overall performance of the deep learning
model in this setting. We plan to derive such a schema in
our future work.

5.3. The MIoU and inaccurate bounding boxes

Fig. 4 shows the comparison of our segmentation re-
sult (left) with the provided labels from the Kitti data set
(right), where the trained model discovers more car objects
than the ground truth label provides (the car highlighted in
the right figure is not labeled). We also notice some inaccu-
rate bounding box locations. Computing the MIoU metric
penalizes the trained model for discovering unlabeled ob-
jects or locating the bounding boxes more accurately, due
to the smaller intersection (appearing in the numerator of
Equation 2) and larger union (in the denominator of Equa-
tion 2) between boxes from the provided labels and model
prediction. In this situation, we argue that the MIoU cannot
be used as an appropriate metric for segmentation perfor-
mance. Therefore, we cannot use the MIoU from Table 2 to
compare the performance of the sampling methods, though
it is interesting to see that the MIoU score from the original
voxel-based sampling scheme.

6. Conclusion

In this study, we have proposed a density-adaptive sam-
pling method to be combined with a deep learning archi-
tecture for semantic segmentation using raw point cloud



data, such as the PointCNN. We have shown that the het-
erogeneous point density and the class imbalance of the
point cloud from Velodyne-type LiDARs in AV applica-
tions render the voxel-based sampling method in the orig-
inal PointCNN implementation ineffective for constructing
a good training data set. By implementing density-adaptive
sampling, i.e. by oversampling the less dense grids of the
scene hence augmenting the representativeness of the fea-
ture in the less dense scenes using various parameterization
scenarios, we show that the deep learning models yields su-
perior performance in terms of classification accuracy and
learning stability. Furthermore, we have shown empirically
that the trained model is more robust against the class im-
balance that is prevalent in real-world driving scenes.
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Abstract

Bridging the needs to provide high-quality, time-
efficient, and easy-to-use annotation tools, we propose
SAnE, a semi-automatic annotation tool for labelling point
cloud data. While most current methods rely on multi-
sensor approaches to provide bounding box annotations, we
here focus on maximizing the potentials of point cloud data
alone to provide high-quality point cloud labels. The con-
tributions of this paper are threefold: (1) we propose a de-
noising pointwise segmentation strategy enabling one-click
annotation, (2) we expand the motion model technique with
our novel guided-tracking algorithm, easing the frame-to-
frame annotation process, and (3) we provide an interactive
yet robust open-source point cloud annotation tool, simpli-
fying the creation of high-quality bounding box annotations.
Using the KITTI dataset, we show that our approach speeds
up the annotation process by a factor of 4.17 while achiev-
ing Intersection over Union (IoU) agreements of 92.02%
and 82.22% with 2D bounding box (BBOX) and Bird Eye
View (BEV), respectively. A more carefully executed anno-
tation based on the same tool even achieves +8.84% higher
BEV IoU agreement than the baseline annotation accura-
cies.

1. Introduction

The growing popularity of high-frequency point cloud
data, scanning real-world driving scenes, fuels up a new re-

Figure 1. The interface of SAnE, a semi-automatic annotation tool
based on one-click annotation scheme empowered with denoising
point-wise segmentation approach and robust guided-tracking al-
gorithm.

search stream about 3D perception systems, enriching the
perception systems discussion previously centered around
image analysis (from cameras) to the realm of point cloud
analysis, which include point cloud classification, segmen-
tation and object detection [6, 5]. In fact, several new large
driving scene datasets containing point cloud data have re-
cently been published by self-driving tech companies, such
as ArgoVerse, Waymo, Lyft, etc [2], highlighting an in-
creasing trend of the use and collection of the Light De-
tection and Ranging (LiDAR) point cloud data as the self-
driving technologies are being developed and deployed in
the real world.



Developing robust self-driving technologies require
more than just data acquisition. Data annotations, i.e. la-
beling objects in the point cloud scenes, are also a neces-
sity. However, the annotation process is usually tedious and
resource-consuming while the results might be inaccurate
if done manually [23]. The challenge of providing datasets
with high-quality point cloud annotation include: 3D an-
notation complexity and human errors. Unlike annotating
2D images, drawing bounding boxes in 3D space is com-
plicated. Annotating a single 3D instance not only requires
the accurate center location, length, width, and height of
the bounding box, but also requires the orientation of the
object. The detailed process of 3D ground truth annotation
is described in Sun RGBD [22]: it requires switching be-
tween different views to obtain accurate location and orien-
tation. Manually providing all such details for each object
in the scene is a complicated and tedious process. Hence,
the workload of human annotators as well as the cost of pro-
viding high-quality 3D datasets grows in the complexity of
the scene and dataset size. Furthermore, as the complexity
of annotating 3D point clouds increases, human annotators
become more prone to making mistakes. The annotation
errors for 3D objects have been found to be significantly
higher compared to those of 2D instances. The erroneous
labels of the KITTI 3D object detection dataset (such as ob-
jects with missing labels or objects having incorrect bound-
ing box locations) [1] is an example of the practical chal-
lenge of providing high-quality ground truth annotations.

To tackle these challenges, researchers have proposed
semi-automated annotation tools in recent years, including
Polygonrnn++, 3D-bat, and Latte. Polygonrnn++ [3] is an
improved version of the earlier work Polygonrnn method[7]
that employs semi-automatic algorithm to detect the ver-
tices of polygons that contain the objects, which has helped
reduce the annotation effort and time required to annotate
image data. The 3D-bat application [28] proposes a 3D an-
notation toolbox which is equipped with various features,
highlighting the usability and annotation efficiency but un-
dermining the automatic functionalities. Latte [23] pro-
poses an annotation tool for 3D point cloud annotation with
one-click annotation (based on the DBSCAN algorithm [9])
and frame tracking (based on the Kalman Filter [25]), which
reduces the complexity of the annotation task, attaining im-
proved efficiency and reasonable accuracy performance.

We propose the Smart Annotation and Evaluation
(SAnE) tool for efficient point cloud annotation, which
adopts the Latte interactive tool and implements a 3D point
cloud deep learning model and a guided tracking algorithm
to boost the performance. SAnE enables human annotators
to annotate both accurately and efficiently by implementing:

1. Denoising pointwise segmentation, a novel nearly
noise free semantic segmentation strategy, enabling a
robust one click annotation technique. In addition,

the denoising technique eliminates the need to have a
workable ground-removal algorithm that is a require-
ment in Latte’s proposal [23].

2. Guided Tracking, based on a motion model that pro-
vides baseline tracking throughout all the frames, re-
fined using the heuristics approaches (greedy search
and backtracking algorithm). Hence, only minimal ad-
justment (if any) is required from the human annotator
to track sequential point cloud scenes.

3. Improved annotation flow, enhanced with both AI-
based functionalities (one-click annotation, guided-
tracking, and fully automated bounding box proposals)
and User Interface (UI) based improvements, such as
keyboard-only annotations, multi-user environments,
user-adjusted parameters, and 3D bounding box esti-
mation.

Our experiments using the KITTI dataset [11] highlight
that with 4.17× less annotation time, SAnE can achieve
IoU agreements of 92.02% and 82.22% for 2D bounding
boxes (BBOX) and Bird Eye View (BEV), respectively. A
more carefully executed annotation even achieves 8.84%
and 7.47% higher IoU agreements than the baseline anno-
tation accuracies for objects in front of the ego vehicle and
objects in the whole point cloud area, respectively.

The rest of our work is organized as follows. In Section
2, we review point cloud annotation algorithms available in
the literature. In Section 3, we describe the key machineries
that we have either designed or adopted from earlier work
when developing the SAnE. Experiment results and discus-
sions are provided in Section 4. Finally, conclusions are
provided in Section 5.

2. Related Work
2.1. Existing point cloud dataset

Modern deep learning models are data intensive, for
which reason many existing works have contributed to pro-
duce public datasets for research in autonomous driving.
The KITTI 3D object detection dataset is popular for cur-
rent autonomous driving projects. It contains 15,000 frames
of road scenes with corresponding images, point clouds, and
ground truth annotations. The Apollo Space dataset con-
tains 12,360 frames of annotated sequential point clouds,
collected from complex traffic conditions. In addition to
these real-world datasets, several researchers have proposed
synthetic datasets for their ease of generation and annota-
tion. The PreSIL dataset is a synthetic dataset generated
from the commercial video game GTA V, which contains
over 50,000 frames with point-wise segmentation and accu-
rate bounding box annotations for all vehicles and people.
However, both the existing real-world and synthetic datasets



have drawbacks. Real-world datasets are limited in size
and annotation accuracy compared to synthetic datasets, but
synthetic datasets are not domain transferable at present [4].
Thus, it is still a necessity for people to customize their own
datasets rather than just using the same public datasets for
all specialized tasks.

2.2. Point cloud semantic segmentation and object
detection

LiDAR based 3D object detection is essential for au-
tonomous driving because point clouds collected from Li-
DAR contain rich 3D information, including location, di-
mension, and orientation. However, compared to 2D im-
ages, 3D point clouds appear irregular and unordered.
Therefore, it is hard to leverage the traditional image analy-
sis techniques to perform general recognition tasks on point
clouds, such as semantic segmentation. In early works, peo-
ple manually transformed irregular point clouds into regu-
lar 3D voxel grids [27]. Such a transformation successfully
represents irregular 3D data but is constrained by the data
sparsity and the shape of the objects. More recent works
operate directly on 3D point clouds. PointNet [19] directly
consumes point cloud data and provides a unified approach
to general 3D recognition tasks. PointCNN [16] is a gener-
alized CNN framework that includes feature learning from
point clouds to achieve point cloud segmentation. We lever-
age and improve this method using our proposed denoising
pointwise segmentation method, which boosts the accuracy
and efficiency of the SAnE.

Other than the works for semantic segmentation, there
are also works that achieve end-to-end object detection
tasks on point clouds. Many works have tried to lever-
age mature 2D detectors for generating 2D proposals and
perform bounding box regression in 3D space, such as the
Frustum Pointnet [18]. Inspired by the 2D region pro-
posal network like F-Convnet [24], AVOD [15] proposes a
novel architecture that contains a feature extractor and sub-
networks for 3D proposal generation and regression. To
further eliminate the influences of 2D data limitations, re-
cent work like PointRCNN [21] generates high quality 3D
proposals directly from the point clouds by segmentation,
and perform accurate refinement to generate better bound-
ing box predictions. Comparing the segmentation frame-
works, these methods provide efficient localization of vehi-
cles in 3D spaces.

2.3. Annotation tools for point cloud

With the development of LiDAR-based detection meth-
ods and the rise of demands for 3D datasets in recent
years, some works have contributed to make annotation
tools that aim at improving the efficiency of creating use-
ful datasets. PolygonRNN and PolygonRNN++ propose
a semi-automatic approach to polygon region prediction

speeding the image annotation process by a factor of 7.
Apart from the success of annotation tools on 2D im-
age data, 3D annotation tools have also improved. 3D-
Bat [28] and Latte [23] provide outstanding works with
well-developed point cloud annotation tools integrated with
semi-automatic functionalities deployed as web-based ap-
plications. Latte realizes one-click annotation that sig-
nificantly reduces complex annotation works into a sim-
ple click operation. It also proposes frame-to-frame ob-
ject tracking that further boosts the annotation efficiency
of sequential data frames. However, Latte is still using
2D detectors (MaskRCNN [14]) on images, combined with
points projected from 3D point clouds, for label prediction.
This approach is constrained by the camera views, image
qualities, and tends to mislabel closely located objects. To
address this problem, we propose denoising pointwise seg-
mentation to improve the prediction accuracy and the sym-
plicity of one click annotation technique.

3. SAnE Annotation
Creating an open source, yet high-quality, AI-assisted

point cloud annotation tool has been the goal for this
project. In this section, we emphasize three key contribu-
tions of our work, namely: (1) The denoising pointwise
segmentation strategy, enabling accurate one click annota-
tion, (2) The guided-tracking algorithm, easing the frame-
to-frame annotation process, and (3) An interactive yet ro-
bust point cloud annotation tool that simplifies the creation
of high-quality 3D annotation datasets.

3.1. Denoising pointwise segmentation

Deep learning based pointwise segmentation techniques,
such as PointNet[19], PointNet++ [20], and PointCNN [16],
are based on the cross-entropy loss function and the back-
propagation algorithm in their kernel optimization pro-
cesses. These techniques, even though they tend to provide
high accuracy prediction results [20], are prone to provide
a noisy segmentation near the object boundaries, see Fig.
2a and 2b. This is because the particular loss function pe-
nalizes all wrong predictions, ignoring the location of the
errors, see Eq. 1.

L = −
C∑

i

tilog(f(s)i) (1)

A noisy pointwise segmentation complicates the annota-
tion process, such as the Latte one-click-annotation tech-
nique (see [23]). This technique uses the Density-based
Spatial Clustering of Applications with Noise (DBSCAN)
algorithm [9] to isolate point-clusters and generate a bound-
ing box for the selected cluster. A noisy cluster may result
on a wrong bounding box shape and an inaccurate predic-
tion of the box direction, see Fig. 2c and 2d.



Figure 2. The impact of the denoising pointwise segmentation
on estimating bounding box proposals using one-click annotation
technique: (a-b) noisy boundaries pointwise segmentation, (c-d)
bounding box estimation using a standard one-click annotation
technique on noisy point cloud segmentation, and (e-f) bounding
box estimation using the denoising pointwise segmentation tech-
nique.

The proposed denoising technique aims to provide a
noise free segmentation, enabling the one-click annotation
technique. In addition, the technique also does ground re-
moval that is required for the one-click annotation process.

The main idea of the denoising technique is to force the
deep learning model to avoid wrong predictions near object
boundaries during the kernel optimization (training process)
by increased penalization. As shown in Fig. 2e and 2f,
the same one-click annotation technique provides the best
bounding box proposals generated from nearly noise free
point cloud segmentation data.

The denoising technique is implemented as a set of

penalty values to the prediction results during the loss cal-
culation. Therefore, the technique can be implemented both
for the cross-entropy loss function as well as other loss
functions [5, 17].

Algorithm 1 Denoising weight penalty
1: Wp, nO, nW,w, zO . Weighted penalties,

noise offset, noise weight, normal weight, and distance
offset to the ground.

2: for obj in allObjects do
3: Iin ← obj.pointIndicesInsideBox()
4: obj.dimensions← obj.dimensions + nO
5: Iout ← obj.pointIndicesInsideBox()
6: Wp[Iout]← nW
7: zMin← min(P [Iin, ZAXIS ]) + zO
8: Wp[Iinand(Wp[:, ZAXIS ] > zMin)]← w
9: end for

Given a set of weighted penalties Wp in the point cloud
data (P ), the denoising penalties are described in Alg. 1.
For all objects in a frame, the denoising-weight-penalty cal-
culates all point indices inside the bounding box (Line 3),
and recalculate all point indices inside the enlarged (+nO)
bounding box (Line 5). Lines 6-8 assigns the noise penalty
(nW ) for all boundary locations and ground object areas,
forcing the loss function to give higher penalties around
those areas.

3.2. Guided tracking algorithm

Annotating sequential frames of point cloud data can be
time consuming but it can be speeded up using a frame-
to-frame tracking algorithm. For example, the Kalman fil-
tering approach [25] is adopted by Latte [23] to track the
bounding box center of an object, and provides a speed-up
by a factor of 4.74 compared to manually creating bound-
ing boxes for each new frame. In fact, a tracking algo-
rithm does not only speed-up the annotation process, but
also gives better annotation agreement and accuracy of the
tracked bounding boxes [23].

Formally, Latte’s implementation of the Kalman filter
defines xk = [px, py, vx, vy, ax, ay]T as a state vector at
frame k, where px,py denotes the coordinates of the cen-
ter of the bounding box, while vx,vy and ax,ay denote the
bounding box center velocity and acceleration along the
axis (x,y). The Kalman filter is used to estimate x̂k|k by
weighting the observation zk = [px,k, py,k]T taken from
the annotator adjustment of the proposed bounding box at
frame k. See [23] for an in depth implementation of the
Kalman filter.

The predicted state x̂k+1|k, on the other hand, is obtained
as the motion model implementation between the estimated
state x̂k|k and the state transition model F ∈ R6x6. It is
used as the new bounding box location for the next frame



(k + 1) and is formally given by:

x̂k+1|k = Fx̂k|k (2)

where

F =




1 0 ∆t 0 1
2∆t2 0

0 1 0 ∆t 0 1
2∆t2

0 0 1 0 ∆t 0
0 0 0 1 0 ∆t
0 0 0 0 1 0
0 0 0 0 0 1




The new bounding box location p̂x̂,k+1, p̂ŷ,k+1 ∈ x̂k+1|k
is a representation of physical flow of an object. However,
x̂k+1|k comes from the relative motion of an object with
respect to the ego vehicle and ignores the independent as-
sumption of those objects. Therefore, errors are expected
for the prediction, and refinement of the annotations is nec-
essary. In addition, the initial velocity vx,y and accelera-
tion ax,y are set to zero, therefore the first few consecutive
frames need to be refined and/or reannotated until the es-
timated velocity v̂x,y and acceleration âx,y can give more
accurate predictions. Refining and reannotating bounding
boxes is a time consuming effort, especially when more ob-
jects are found in the frames, which is very common in the
urban areas.

The motion model technique is extended in this work by
using the guided-tracking algorithm. The objective of this
algorithm is to reduce the effort to refine and/or reannotate
the tracked objects. The idea is that some initial bound-
ing box location (p̂x̂,k+1, p̂ŷ,k+1) can be regressed to fit
the closest point cloud cluster. The hypothesis is that each
cluster belongs to a different object, therefore regressing the
bounding box to fit the closest cluster will effortlessly refine
the bounding box location given by the motion model.

The guided-tracking algorithm comes with three mod-
ules, namely: (1) A greedy search, regressing the bound-
ing boxes to their closest corresponding clusters, (2) Back-
tracking, preventing overlapping between multiple bound-
ing boxes, and (3) Tracking refinement, optimizing the final
bounding box location based on the closest point cluster.

Greedy Search. The greedy search algorithm, explained
in Alg. 2, works by moving the predicted bounding box
around its initial location. It uses the bounding box cen-
ter location and the point cloud data denote as b and P ,
respectively. A dictionary (s), containing bounding box
movements, is also used. For each new location of b,
the number of points inside the bounding box is counted
(numPoints) and the distances between points inside the
box and their closest edges, are also calculated and sum-
marized (avgDist). The new location with maximum
numPoints and minimum avgDist is assumed to be the
best possible location for the current iteration. The search

Algorithm 2 Greedy search algorithm
1: procedure GREEDYSEARCH(s, b, P )
2: bu ← b . b contains bounding box information. b.c

denotes the bounding box center locations along x and
y axis.

3: b.c.x← b.c.x - sp
4: b.c.y← b.c.y - sp
5: stride← sp ∗ 2/snum . snum denotes number of

strides.
6: for x = 0; x ≤ snum; x++ do
7: for y = 0; y ≤ snum; y++ do
8: xt ← bu.c.x← b.c.x + x ∗ stride
9: yt ← bu.c.y ← b.c.y + y ∗ stride

10: Psin ← bu.contains(P )
11: sdict[xt, yt][0]← (len(Psin))
12: sdict[xt, yt][1]← (bu)
13: sdict[xt, yt][2]← Dist(Psin, bu.edges)
14: sdict[xt, yt][2]← Avg(sdict[xt, yt][2])
15: end for
16: end for
17: maxIndices← argMaxes(sdict[...][0])
18: if len(maxIndices) > 1 then
19: minIdx← argMin(sdict[maxIndices][2])
20: numPoints, bnow ← sdict[minIdx][0, 1]
21: else
22: numPoints, bnow ← sdict[maxIndices][0, 1]
23: end if
24: if numPoints > snumPoints then . snumPoints

is a global variable, denoting the highest numPoints
from previous iterations.

25: snumPoints ← numPoints
26: sdict ← {}
27: Return GREEDYSEARCH( sdict, bnow, P )
28: end if
29: Return s, b, P . b.c[x, y] is the optimal bounding

box location.
30: end procedure

is implemented using a recursive function, and an itera-
tion that doesn’t change the value of numPoints ends the
search process.

Alg. 2 relies on the value of padding size (sp) to move
the bounding box to the best possible location with the high-
est numPoints. A higher sp means a higher possibility for
the bounding box to overlap with other bounding boxes, see
Fig. 3a. Therefore, a backtracking algorithm is included to
alleviate this problem.

Backtracking. The backtracking algorithm works by
re-tracking (move-back) the overlapped bounding box loca-
tions (Bs) to the best possible locations where the boxes do
not overlap anymore. The first step is that for each bound-
ing box, the distance between the initial (p̂x̂,k+1, p̂ŷ,k+1)



Figure 3. The backtracking algorithm for fixing the greedy search
overlapping problem: (a) before and (b) after the backtracking al-
gorithm.

and the updated bounding box location from Alg. 2 is cal-
culated. Then, ovelapping boxes are re-tracked based on
those distances. The overlapping boxes with the longest
distances are moved until the particular boxes are not over-
lapping anymore, see Alg. 3 for a more rigid explanation.

The backtracking algorithm can separate overlapping ob-
jects effectively, see Fig. 3b. However, the proposal for each
updated bounding box location might not be optimal. This
is because the algorithm does not optimize the numPoints
and avgDist of the moved boxes. Therefore, the tracking
refinement step is required to both optimize the bounding
box locations while preventing overlap.

Tracking Refinement. The tracking refinement is a
reimplementation of Alg. 2 with much smaller sp. The in-
tuition is that after the first greedy-search and backtracking
processes, the proposed bounding box locations are already
closed to the optimal solutions. Therefore, only a small
change is required to find the best fitted location.

In addition to the smaller sp, the refinement algorithm
also validates collisions between bounding box proposals
when striding to the new bounding box locations (Line 8-9,
Algorithm 2) to assure that only new locations with non-
overlapping bounding boxes are proposed.

3.3. AI-assisted annotation tool

Based on an effective denoising technique and the ro-
bust frame-to-frame tracking algorithm, we offer an open
source semi-automatic annotation tool for 3D point cloud

Algorithm 3 Backtracking algorithm
1: procedure BACKTRACKING(Bs)
2: isOverlapExist← true
3: while isOverlapExist do
4: isOverlapExist← false
5: for i = 0; i < len(Bs); i++ do
6: for j = 0; j < len(Bs); j++ do
7: idx← −1
8: if i 6= j then
9: while idx 6= 0 ∧Bs[i].Overlap(Bs[j]) do

10: isOverlapExist← true
11: iDist← Bs[i].centerDist()
12: jDist← Bs[j].centerDist()
13: if iDist ≥ jDist then
14: idx← Bs[i].updateIdx()
15: else
16: idx← Bs[j].updateIdx()
17: end if
18: end while
19: end if
20: end for
21: end for
22: end while
23: end procedure

data. Several easy-to-use yet powerful features are embed-
ded, such as fully automated bounding box generation, one
click annotation, frame-to-frame tracking, and many other
non-AI functionalities.

Fully automated bounding generation. This feature is
used to automatically generate bounding boxes for a frame
given a set of point cloud dataset, and is implemented in a
three step process. First, PointCNN [16] with the denois-
ing technique, followed by XCRF refinement [4] is used to
provide pointwise segmentation of the input data. Then, the
DBSCAN algorithm [9] is used to separate the segmented
points into several point clusters. Finally, for each point
cluster, the L-shape fitting algorithm [26] with its fitting
criterion is used to estimate the bounding box shape and
direction.

One click annotation. The one click annotation is
adopted from Latte’s implementation [23]. The main im-
provement is that the denoising technique is used to replace
the ground removal algorithm by inducing enhanced penal-
ties around the ground areas. Additionally, region growing
step based on a Nearest Neighbor (NN) search is used as a
replacement for the Latte’s DBSCAN implementation. This
is because this DBSCAN implementation is computation-
ally slow (each click requires around 5-10 seconds to pro-
cess). We hypothesize that the segmented point clusters are
separated from each other by some distance, therefore, us-
ing NN search with a predefined search radius works faster



for estimating point clusters while giving similar (or better)
region proposals compared to the DBSCAN implementa-
tion.

Frame to frame tracking. The frame to frame tracking
implemented in the annotation tool follows the description
from Subsection 3.2 including both the motion model tech-
nique and the guided tracking. The annotators can choose
which tracking algorithm they actually want to use.

Complementing the AI functionalities, SAnE is also
equipped with several useful features, including side-view
refinement, height estimation, keyboard-only annotation,
object recoloring, and more. The side-view refinement is
used to simplify the bounding box refinement in locating,
isolating, and magnifying the selected object. The height
estimation is used to estimate object height based on the
maximum and minimum point inside the bounding box,
normalized with the RANSAC algorithm [10]. Moreover,
keyboard-only annotation is used for annotation using only
the keyboard by maximizing the use of predefined hotkeys
while the object recoloring is used for contrasting the color
of point inside and outside a selected bounding box.

4. Experiment results and findings

4.1. Experimental setup

We evaluate our approach on the KITTI tracking dataset
[11], and use the training data with their labels for our ex-
periments. The dataset contains 20 scenes and 8 object cat-
egories, including car, van, truck, pedestrian, cyclist, sit-
ter, tram, and miscellaneous. 3D Velodyne point cloud data
with their colored images along with GPS/IMU data and
3D object tracklet labels are included in the dataset. Due to
the limitations of the KITTI labels, i.e inaccurate bounding
boxes [23, 1] and only objects in front of ego vehicle being
annotated [11], we also used an expert annotator to provide
high quality Ground Truth labelling (GT). For the rest of
this paper, we treat this labelling (GT) as the actual ground
truth. It should be noted that the IoU agreement between
GT and KITTI labels is 72.65%.

For the experiment, we selected 7 scenes and used the
first 10 frames per scene to do the annotations. We then
conducted the experiments by asking human annotators to
annotate objects on those frames by using a manual annota-
tion tool and the SAnE separately. Due to limited resources,
we only used a handful of human annotators. Four people
used the baseline annotation (each of them annotating 25%
of the data), and two people, called Annot1 and Annot2, an-
notated the whole dataset using the full features of SAnE. It
should be noted that we do not compare our results with the
Latte annotation tools [23] because we can not get reason-
able results with their ground removal algorithm.

In our annotation tool, we used PointCNN [16] as the
pointwise segmentation architecture. It was trained by us-

Per frame Per object
Time(s) Speed-up(×) Time(s) #Ops

Baseline 201.22 1.00 5.25 34.09
Annot1 226.32 0.89 7.42 28.97
Annot2 48.30 4.17 3.87 19.53

Table 1. Annotation times with speed-up (×), number of clicks
(#Ops), and actual time in seconds (s) are presented.

ing the density adaptive sampling method [1] and weighted
using the proposed denoising technique. The DBSCAN al-
gorithm and region growing method were used for point
level clustering, and the proposed guided tracking algorithm
with the motion model was implemented for simplifying the
frame to frame tracking processes.

4.2. Metrics

Intersection over Union (IoU) was used for quantifying
the bounding box accuracies. The IoU agreement can be
seen as the proportional overlap between the intersection
areas of the bounding box proposal and its corresponding
ground truth data, and the combination (union) of those ar-
eas. We used the KITTI evaluation script to calculate the
accuracy values [12].

The annotation times were also calculated to demon-
strate the speed-up of the annotation process provided by
our annotation tool. The annotation times are represented as
the number of clicks called #Ops (number of operations)
and speed-up values represented as the number of times (×).

4.3. Results and findings

Table 1 shows that the fastest per frame annotation time
occurred in about 48.30s i.e. 4.17 times faster than the
baseline annotation (201.22s). Moreover, 3.87s with 19.53
#Ops and 7.42s with 28.97 #Ops are required to annotate
an object using SAnE by Annot2 and Annot1, respectively,
while using manual annotation, the annotator required 5.25s
with 34.09 #Ops.

In term of accuracies, Table 2 in the ≈ 90-degree view
shows that the Annot2 achieves the highest BBOX IoU
agreement 92.02%. It is 2.53% and 19.37% higher than
the Baseline and KITTI IoU agreement with the GT, re-
spectively. For BEV accuracies in the 360-degree view, on
the other hand, Annot1 achieves the highest IoU agreement,
84.57%, 7.47% higher IoU agreement than the Baseline ac-
curacy.

As can be seen in Table 2, relying solely on point cloud
data to generate bounding box annotations leads to some
problems, especially when using IoU as the accuracy met-
ric. The IoU accuracies for the baseline and our annotation
tool (Annot1) are only 76.35% and 85.19%, respectively.
The IoU improvement of 8.84% is good but the IoU accura-
cies can be considered low for a semi-automatic technique.



IoU value vs Baseline vs KITTI
BBOX BEV BBOX BEV BBOX

Objects in ≈ 90-degree view
GT 100.00 100.00 - - 27.35
Baseline 89.49 76.35 0.00 0.00 16.84
Annot1 90.87 85.19 1.38 8.84 18.22
Annot2 92.02 82.22 2.53 5.87 19.37
Objects in 360-degree view
Baseline - 77.10 - 0.00 -
Annot1 - 84.57 - 7.47 -
Annot2 - 79.57 - 2.47 -

Table 2. Bounding box accuracies for objects in front of the ego
vehicle and objects in the whole area of the point cloud using IoU
agreement between annotated bounding boxes and GT. BBOX de-
notes the accuracies for bounding boxes projected in the image
while BEV (Bird Eye View) denotes the accuracies for bounding
box from the top view of point cloud scene.
*The IoU agreement between KITTI labels and GT labels is
72.65%.

This is because the IoU is a very sensitive metric and per-
fect overlap (IoU=1.0) between two bounding boxes on the
point cloud scene is almost impossible, see Fig. 4a. More-
over, objects in the point cloud scene can be represented by
only a few points, see Fig. 4b. Therefore, a tightly fitted
bounding box is constrained by the annotators subjective
preferences.

4.4. Limitations

Based on a straight forward weighted penalty, the de-
noising technique is easy to use and offers powerful guid-
ance for bounding box generation, especially using the one
click annotation algorithm [23]. However, as the penalties
emphasize in the object boundaries, other areas far from
the boundaries suffer with bad prediction results. This is
understandable and even desirable for annotation tools, but
for fully automated pointwise segmentation, this approach
yields a lower prediction accuracy.

In addition to the segmentation accuracy problem, the
one click annotation is also senstive to point-density distri-
bution and object shape representations. The L-shape fitting
algorithms [26] are good for generating high quality bound-
ing boxes when the annotated objects are in prefect L-shape
forms. However, the L-shape is not the only shape of ob-
jects appearing in point cloud scenes. I-shape, U-Shape and
even dot-shape are other typical shapes, and the fitting al-
gorithm does not really work on all of these shapes.

The guided tracking algorithm is relatively slow com-
pared to the motion model implementation, especially when
the tracking refinement step is enforced. This is a weakness
when the algorithm is implemented in fully automated sce-
narios. In addition, the algorithm depends on the point den-

Figure 4. Problems on drawing high accuracy bounding boxes
(IoU=1.0) on point cloud scene. Annotator subjective preference
plays an important role in judging the tightness and correctly fitted
bounding box proposals.

sity of an object. It should be noted that objects represented
by high-density point-cloud-clusters are easy to track while
objects represented by only few points are harder. More
work, such as scene completion [8] and point cloud genera-
tion [13], is needed to overcome these problems.

5. Conclusions
In this work we have introduced SAnE, a robust semi-

automatic annotation tool to simplify the creation of high
accuracy bounding box annotation for point cloud data. The
main contributions of our research are threefold. Firstly, we
have proposed a denoising point-wise segmentation strat-
egy that can provide a nearly noise free point level classi-
fications enabling one click annotation. Secondly, we have
developed a novel guided tracking algorithm, enhancing the
motion model tracking using the combination of greedy
search and backtracking algorithm, easing the frame-to-
frame annotation processes. Finally, we provide an open-
source and easy-to-use annotation tool combining AI-based
functionalities, such as fully automated bounding box pro-
posals (and one-click annotation), frame-to-frame track-
ing, and UI-based enhancements, i.e side-view refinement,
height estimation, keyboard-only annotation, object recol-



oring, and more.
Experiments were carried out on the KITTI dataset and

the results show that SAnE can speed up the annotation pro-
cess by a factor of 4.17 while achieving higher accuracy
than the manual annotation process. Our proposal achieves
IoU agreements of 92.02% for BBOX and 82.22% for BEV.
Moreover, with a more careful annotation process, the BEV
IoU agreement of SAnE can reach 85.19% that is 8.84%
better than the baseline accuracy. Further improvement may
be achieved by combining the scene completion and point
cloud generation algorithms, alleviating the limitations of
point cloud data on representing complete object structure,
reducing the subjectivity of human annotation preference.
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