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Summary 

Growing energy consumption and greater environmental concerns have contributed to a 

need for more research on alternatives to fossil-derived products. Biomass such as wood is a 

potential source of renewable fuels and carbon-based chemicals. A method for conversion 

of biomass into a more useful form is fast pyrolysis, a process in which the feedstock is 

heated in the absence of oxygen, and converted into a mixture of gas, liquid (pyrolysis oil) 

and solid char. Important factors for maximizing the oil yield are rapid heating to moderate 

temperatures (~ 500 °C), short vapor residence times at elevated temperatures, followed by 

rapid quenching of the produced vapors.  

The aim of this PhD study was to investigate the thermal behavior of wood particles during 

fast pyrolysis, as well as explore molten salts as potential heat transfer media in the process. 

Thermal processing of biomass in molten salts is a relatively small research area compared 

with more traditional conversion methods, and the work started with an extensive literature 

study (Paper I). Previous research showed that molten salts have good heat transfer 

characteristics, high thermal stability, and a catalytic effect in cracking and liquefaction of 

large molecules found in biomass. In addition, they could retain noxious compounds found 

in contaminated biomass. Most previous work was focused on gasification at higher 

temperatures or production of specific phenolic compounds from lignin, and there was a 

clearly need for more basic research on molten salt pyrolysis.  

The experimental part behind this thesis started with a study of the effect of particle micro- 

and macrostructure and vapor outflow pattern on the char yield in a fluidized sand bed at 

500 °C (Paper II). Artificial cylinders (L = 50 mm, d = 6 – 14 mm) were used as containers 

for milled beech wood (< 0.08 mm, 0.08 – 0.2 mm). The metal walls were solid (sw) or 

wire-mesh (wm), giving anisotropic and isotropic vapor outflow, respectively. The char 

yields from sw cylinders were comparable to those from natural wood cylinders of equal 

macrosize, both with an increasing trend with larger diameter. Hence, there was no notable 

effect of microstructure, and the char yield was predominantly determined by the outer 

cylinder diameter (i.e. macrostructure). The effect of outflow pattern was slightly more 

visible, with lower char yields from wm cylinders than sw cylinders. Although the observed 

effects were not very strong, it was suggested that vapors escaping in an isotropic manner 

have less contact with char, resulting in less polycondensations of vapors on char, and an 

overall lower yield.  

The thermal behavior of single wood particles was studied further in molten salts  

(Papers III and IV). Temperature profiles were constructed by recording the center 

temperature of cylindrical wood particles during pyrolysis, and this was used to evaluate 

reaction temperatures, heating rates, and devolatilization times. In Paper III, experiments 

were carried out with beech and pine wood (L = 30 mm, d = 1 – 8 mm) in FLiNaK at  

500 °C, and the results were compared to a similar study in a fluidized sand bed. In  

Paper IV, the behavior of beech wood (L = 30 mm, d = 3.5 mm) was investigated further in 



iv 

 

several salt mixtures (FLiNaK, (LiNaK)2CO3, ZnCl2-KCl, and KNO3-NaNO3) over a wider 

temperature range (400 – 600 °C). Finally, the whole pyrolysis process was studied in 

Paper V, including the construction and testing of an electrostatic precipitator (ESP) for 

collection of pyrolysis oil. Experiments were conducted with milled beech wood  

(0.5 – 2 mm) in FLiNaK and (LiNaK)2CO3 at temperatures between 450 and 600 °C. The 

yields of pyrolysis oil and char were determined, and the oils were analyzed with respect to 

water content.  

The results contribute with basic knowledge about the heat transfer from molten salts to 

wood particles during pyrolysis. Hardwoods (represented by beech) have higher thermal 

conductivities than softwoods (represented by pine). This was reflected with higher heating 

rates at the particle center and faster devolatilization times for beech wood. An interesting 

observation was that the reaction temperatures for the two wood types were still comparable 

(Paper III). It was also found that the effective pyrolysis temperature, where most of the 

cellulose and hemicellulose decompose, depended strongly upon particle size (Paper III), 

but was almost unaffected by the reactor temperature and salt composition (Paper IV).  

One of the most important findings during this work was that FLiNaK gives significantly 

higher heating rates compared with a fluidized sand bed for cylindrical beech wood particles 

with d ≤ 4 mm. For smaller particles, the process was dominated by the heat transfer 

medium, while the wood properties limited the heat transfer for larger particles (Paper III). 

FLiNaK and (LiNaK)2CO3 showed better promise as effective heat transfer media than 

ZnCl2-KCl, while KNO3-NaNO3 was found not suitable for thermal conversion of carbon 

containing materials due to exothermic reduction of nitrates to nitrites (Paper IV). The total 

devolatilization times were found to follow the empirical correlation . The 

corresponding activation energies indicated that the process was controlled by heat transfer 

rather than chemical kinetics.  

In spite of the good heat transfer performance of FLiNaK and (LiNaK)2CO3  

(Papers III and IV), the yields of pyrolysis oil were not comparable to other fast pyrolysis 

technologies, with a maximum of 34.2 wt % in FLiNaK at 500 °C (Paper V). The char 

yields were also higher than expected with regards to the high heating rates, and the oils 

were high in water content. A plausible explanation to these results are secondary reactions 

occurring because of mass transfer resistance in the melt leading to longer vapor residence 

times at elevated temperatures and prolonged contact with alkali elements (Na/K) found in 

the melts. However, the oil yields were generally higher than those previously reported for 

molten chloride pyrolysis of cellulose with cold trap condensers for oil collection.  

Possible hydration reactions during thermal processing of biomass in FLiNaK were 

examined by simulations in HSC Chemistry software and FTIR measurements of the outlet 

gas, but the results did not imply any significant amounts of HF (Paper V).   
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Sammendrag 

Økende energiforbruk og større miljøhensyn har bidratt til et behov for mer forskning på 

alternativer til fossilt fremstilte produkter. Biomasse som f.eks. trevirke er en potensiell 

kilde til fornybart brensel og karbon-baserte kjemikalier. En metode for å konvertere 

biomassen til en mer nyttig form er hurtigpyrolyse. Dette er en termokjemisk prosess der 

råvaren varmes opp uten tilgang til luft og omdannes til en blanding av gass, væske 

(pyrolyseolje) og fast stoff (kull). Viktige faktorer for å maksimere utbyttet av pyrolyseolje 

er rask oppvarming til moderate temperaturer (~ 500 °C), kort oppholdstid for de produserte 

gassene ved høye temperaturer og bråkjøling av de kondenserbare gassene.  

Formålet med denne PhD-avhandlingen var å undersøke den termiske oppførselen til 

trepartikler i hurtigpyrolyse samt utforske saltsmelters potensiale som varmeoverførings-

medier i prosessen. Termisk prosessering av biomasse i saltsmelter er et relativt lite 

forskningsområde sammenlignet med mer tradisjonelle konverteringsmetoder, og arbeidet 

startet derfor med et omfattende litteraturstudium (Paper I). Tidligere forskning viste at 

saltsmelter har gode varmeoverføringsegenskaper, høy termisk stabilitet og en katalytisk 

effekt i nedbrytning av store molekyler som finnes i biomasse. I tillegg vil skadelige 

forbindelser fra forurenset biomasse forbli i saltsmelten. Fokuset i de fleste tidligere arbeid 

var gassifisering ved høyere temperaturer eller produksjon av spesifikke fenolforbindelser 

fra lignin, og det var et klart behov for mer grunnleggende forskning innen saltsmelte-

pyrolyse.  

Den eksperimentelle delen bak denne oppgaven startet med å undersøke hvordan partiklers 

mikro- og makrostruktur, samt utstrømningsmønster av de dannede gassene (både 

kondenserbare og ikke-kondenserbare), påvirket utbyttet av fast stoff i en fluidisert 

sandreaktor ved 500 °C (Paper II). Kunstige sylindere (L = 50 mm, d = 6 – 14 mm) ble 

benyttet som beholdere for oppmalt bøk (< 0,08 mm, 0,08 – 0,2 mm). Sylinderne hadde 

vegger av metallfolie (sw [solid wall]) eller netting (wm [wire-mesh]), noe som gav 

henholdsvis anisotrop og isotrop utstrømning av de dannede gassene. Utbyttet av fast stoff 

fra sw-sylindere var sammenlignbart med det fra naturlige tresylindere av lik dimensjon, 

men begge gav økende utbytte for større diameter. Av dette kan det konkluderes med at 

mikrostruktur ikke gir noen merkbar effekt på utbyttet av fast stoff, men at det hovedsakelig 

påvirkes av sylindernes diameter (dvs makrostruktur). Effekten av utstrømningsmønster var 

noe mer synlig; utbyttet av fast stoff fra wm-sylindere var lavere enn fra sw-sylindere. Til 

tross for at de observerte effektene ikke var veldig tydelige, ble dette forklart ved at en 

isotrop utstrømning fører til mindre kontakt mellom de dannede gassene og fast stoff, noe 

som igjen resulterer i mindre polykondensasjon av gassene på fast stoff og et totalt lavere 

utbytte. 

Den termiske oppførselen til trepartikler ble studert videre i saltsmelter (Papers III og IV). 

Temperaturprofiler ble konstruert ved å måle temperaturen i sentrum av sylindriske 

trepartikler under pyrolyse, og dette ble benyttet til å evaluere reaksjonstemperaturer, 
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oppvarmingsrater og reaksjonstider. Bøk og furu (L = 30 mm, d = 1 – 8 mm) ble pyrolysert i 

FLiNaK ved 500 °C (Paper III), og resultatene ble sammenlignet med en lignende studie i 

en fluidisert sandreaktor. Den termiske oppførselen til bøk (L = 30 mm, d = 3,5 mm) ble 

videre undersøkt i flere saltblandinger (FLiNaK, (LiNaK)2CO3, ZnCl2-KCl og  

KNO3-NaNO3) over et større temperaturområde (400 – 600 °C) (Paper IV). Til slutt ble 

hele pyrolyseprosessen studert, inkludert konstruksjon og testing av et elektrostatisk filter 

(ESP) for kondensering av pyrolyseolje (Paper V). Forsøkene ble utført med oppmalt bøk  

(0,5 – 2 mm) i FLiNaK og (LiNaK)2CO3 ved temperaturer mellom 450 og 600 °C. 

Utbyttene av pyrolyseolje og fast stoff ble målt, og oljene ble analysert med hensyn til 

vanninnhold.  

Resultatene gir grunnleggende kunnskap om varmeoverføring fra saltsmelter til trepartikler i 

pyrolyseprosessen. Løvtrær (representert ved bøk) har høyere termisk ledningsevne enn 

bartrær (representert ved furu). Dette ble gjenspeilet med høyere oppvarmingsrater og 

raskere reaksjonstider for bøk. En interessant observasjon er at på tross av dette, var 

reaksjonstemperaturene for de to tresortene fremdeles sammenlignbare (Paper III). Det ble 

også funnet at den effektive pyrolysetemperaturen der mesteparten av cellulosen og 

hemicellulosen dekomponerer, avhenger sterkt av partikkelstørrelse (Paper III), men er 

nesten upåvirket av reaktortemperatur og saltsammensetning (Paper IV).  

Et av de viktigste funnene i dette arbeidet var at FLiNaK gir betydelig høyere 

oppvarmingsrater sammenlignet med fluidisert sand for sylindriske bøkepartikler med  

d ≤ 4 mm. For mindre partikler domineres prosessen av varmeoverføringsmediet, mens 
treegenskapene begrenser varmeoverføringen for større partikler (Paper III). FLiNaK og 

(LiNaK)2CO3 gav mer effektiv varmeoverføring enn ZnCl2-KCl, mens KNO3-NaNO3 ikke 

egnet seg for termisk konvertering av karbonholdige materialer på grunn av eksoterm 

reduksjon av nitrat til nitritt (Paper IV). Den totale reaksjonstiden ble funnet å følge den 

empiriske korrelasjonen De beregnede aktiveringsenergiene indikerte at 

prosessen ble kontrollert av varmeoverføring heller enn kjemisk kinetikk.  

Til tross for at FLiNaK og (LiNaK)2CO3 viste meget gode varmeoverføringsegenskaper 

(Papers III og IV), ble ikke utbyttet av pyrolyseolje sammenlignbart med andre 

hurtigpyrolyse-teknologier (Paper V). Det høyeste utbyttet ble målt til 34,2 vekt % i 

FLiNaK ved 500 °C. Utbyttet av fast stoff var også høyere enn forventet i forhold til de 

høye oppvarmingsratene, og vanninnholdet i oljene var høyt. En sannsynlig forklaring på 

disse resultatene er at de dannede gassene har fått massetransport-motstand i saltsmeltene, 

noe som igjen har ført til sekundære reaksjoner på grunn av lengre oppholdstider ved høye 

temperaturer og lengre kontakt med alkalielementer (Na / K) i saltsmeltene. Oljeutbyttene 

var imidlertid generelt høyere enn de som tidligere er rapportert for pyrolyse av cellulose i 

kloridsmelter der kjølefelle-kondensere ble benyttet.  

Mulige hydrolysereaksjoner under termisk prosessering av biomasse i FLiNaK ble 

undersøkt ved simuleringer i HSC Chemistry og gassmålinger med FTIR-spektroskopi, men 

resultatene viste at det ikke ble dannet noen vesentlige mengder HF-gass (Paper V).  
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1 Introduction 

The world has experienced a significant increase in the total energy consumption the last 

four decades (Figure 1-1), and according to the International Energy Agency (IEA) it 

reached 8 918 Mtoe (103 716 TWh) in 2011.1 Factors causing this increase include 

population growth, improving living standards in developing countries and an overall 

higher consumption in Western countries. 

 

Figure 1-1. Evolution from 1971 to 2011 of world’s total energy consumption by fuel (Mtoe). Data prior to 1994 

for biofuels and waste have been estimated. Other includes geothermal, solar, wind, heat, etc.1* 

In 2011, more than 80% of the world’s energy consumption was based on fossil resources 

like coal, oil, and gas.1 Fossil fuels are convenient energy sources that meet the energy 

demands of society very effectively today.2 The resources are, however, limited, and we 

are nowadays experiencing decreasing oil reserves together with increasing oil prices.3 

Another issue is the increasing emissions of greenhouse gases such as CO2 along with the 

increased use of fossil fuels. It is likely that there is a correlation between the emissions 

and climate change. In pace with growing energy consumption and greater environmental 

concerns, there has been a renewed interest in research on alternatives to fossil-derived 

products.2  

Renewable energy is a basic ingredient for sustainable development. Renewable energy 

sources can supply the energy we need on a long-term basis, reduce local and global 

atmospheric emissions, and enhance diversity in energy supply markets.4 Some of the 

main renewable resources available are wood and other forms of biomass including 

energy crops and agricultural and forestry wastes. There are many alternatives to 

renewable electricity, but biomass can provide the main source of renewable liquid, 

                                                 

* Figure reprinted with permission from OECD/IEA. 
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gaseous and solid fuels.5 It is estimated that bioenergy contributes to 10 – 14% of the 

world’s energy supply.6 

When used as fuel, biomass releases the CO2 it absorbed from the atmosphere in the 

recent past, not millions of years ago, as with fossil fuels. Because of the much shorter 

carbon cycle compared to fossil resources it contributes to less net CO2 in the 

atmosphere.2 Another advantage is that biomass is more evenly dispersed over the earth’s 
surface and is thus suitable for distributed local energy production.7 

A number of processes are available for conversion of biomass and residues to more 

valuable energy forms, including thermo-, bio-, and physiochemical processes. In 

thermochemical conversion, biomass can supply energy by direct combustion or via 

intermediates by gasification or pyrolysis.8 Pyrolysis has been applied for thousands of 

years for charcoal production,5 and in ancient Egyptian times tar from pyrolysis was used 

for caulking boats.9 In the last 30 years, fast pyrolysis with pyrolysis oil as the main 

product has become of considerable interest. In this process, biomass is heated rapidly 

without any oxidizing agent to moderate temperatures of around 500 °C and short reaction 

times of up to a few seconds. When wood is used as feedstock in continuously operated 

laboratory reactors and pilot plants, the best reported oil yields are between 60 and  

75 wt % on a dry-feed basis.5 Pyrolysis oil is a renewable liquid fuel with significantly 

increased energy density compared with the feedstock. It can be easily stored and 

transported, and used for fuels, chemicals or as an energy carrier.8  

1.1 Study aim and objectives 

The aim of this work was to study the thermal behavior of wood particles during fast 

pyrolysis, as well as investigate molten salts as potential heat transfer media in the 

process. The work started with an extensive literature study. Thermal processing of 

biomass in molten salts is a relatively small research area, and only a few publications 

were found on the subject from every decade since the early 70s. No review was published 

before, and the literature study resulted in a review article of thermal processing of 

biomass and waste in molten salts for production of renewable fuels and chemicals  

(Paper I). Most of the previous work focused on production of synthesis gas or specific 

chemical compounds. Very little work existed where the yields of pyrolysis oil were 

reported, and there was a need for more basic research on the subject.  

At the start of this work, there was limited experience with thermochemical conversion of 

biomass at NMBU. In order to design and develop an experimental setup, it was necessary 

to visit a well-established laboratory. Collaboration with the TCCB research group 

(Thermochemical conversion of biomass) at the University of Twente (Netherland) was 

established, including a 3 months exchange stay. The purpose of the stay was mainly to 

learn about thermochemical conversion of biomass by performing experiments with 

existing, well-working equipment. A fluidized sand bed was used to study the effect of 

micro- and macrostructure and vapor outflow patterns in fast pyrolysis. This was done by 
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inserting milled beech wood into artificial cylindrical containers (L = 50 mm,  

d = 6 – 14 mm) and comparing the char yields with natural wood cylinders of equal 

macrostructure. The results were included in a joint paper (Paper II) on the effect of 

particle geometry, size and microstructure on fast pyrolysis of beech wood. Only the 

experimental part performed during the exchange stay is described in this thesis, but the 

results are discussed in the context of the whole article.  

Based on the knowledge from the stay at Twente, a setup for molten salt pyrolysis was 

designed and constructed at NMBU. The study of the effect of particle size was continued, 

but in molten salt media. The focus in Papers III and IV was the thermal behavior of 

single wood particles in molten salts. The heat transfer characteristics of molten salts were 

studied by measuring the temperature at the center of cylindrical wood particles during 

heating. The temperature development was used to evaluate heating rates, reaction 

temperatures and devolatilization times. Beech and pine wood particles of various sizes  

(L = 30 mm, d = 1 – 8 mm) were studied in FLiNaK pyrolysis at 500 °C in Paper III. The 

samples were chosen as representatives for hardwood and softwood, respectively. The 

results were compared to a similar study in a fluidized sand bed. Beech wood (L = 30 mm, 

d = 3.5 mm) was studied further in Paper IV, where the effect of different salt mixtures 

(FLiNaK, (LiNaK)2CO3, ZnCl2-KCl, and KNO3-NaNO3) was evaluated over a wider 

temperature range (400 – 600 °C).  

The aim of Paper V was to study the whole pyrolysis process with emphasis on the yield 

of pyrolysis oil from milled beech wood (0.5 – 2 mm). An electrostatic precipitator (ESP) 

was constructed for condensing the pyrolysis oil. The salt mixtures that showed the most 

promising heat transfer performance in Paper IV were investigated systematically 

(FLiNaK and (LiNaK)2CO3), and the char yield, oil yield, and water content of the oil 

were measured.  
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2 Literature overview 

2.1 Biomass as an energy resource 

Biomass is defined as all organic material that is derived from living or recently living 

organisms.10 A common way to categorize biomass into different groups is based on their 

origin:3 

· Cellulose-rich plants – dry (forest fuels, energy forest, straw, hemp) 

· Cellulose-rich plants – moist (forage, cornstalks, beet tops) 

· Sugary / starchy plants (sugar beets, grain, potatoes) 

· Oil rich plants (rapeseed, turnip-rape) 

· Manure, garbage, sludge and other organic wastes 

The energy in biomass is solar energy stored as chemical energy via photosynthesis 

reactions.10 This energy can be recovered by burning biomass as a fuel, either directly or 

after conversion to intermediate liquid, solid or gaseous energy carriers. During 

combustion, previously absorbed heat and CO2 are released, and the use of biomass is 

essentially the reversal of photosynthesis.11 Biomass is considered a renewable energy 

source as long as it is based on sustainable utilization. If consumed at the same rate as new 

biomass is grown, there is no net atmospheric CO2 emissions.7  

Another advantage of bioenergy is that the geographic distribution is relatively even over 

the world,12 making local production possible.13 In this way, energy supply could be 

secured in regions without fossil fuel reserves.14  

According to the International Energy Agency (IEA), about 12.5% of the world’s energy 
consumption in 2011 came from biomass. The fraction in the EU-25 is lower (4.4%), but 

bioenergy is an important ingredient in the energy consumption in the Scandinavian 

countries (Figure 2-1).1 Bioenergy has a significantly lower proportion of the energy mix 

in Norway compared with the neighboring countries.3 Possible explanations to this are low 

electricity prices and few central heating facilities.15 About half of the total consumption 

of bioenergy in Norway is linked to the use of wood stoves in private households.16 

Many future energy scenarios predict large shares of bioenergy. The yearly global 

potential of bioenergy is believed to be between 788 and 27 100 Mtoe in 2050. The wide 

range of estimated numbers is due to insecurity about future demand for food,13 

productivity of forest and energy crops, and availability of land.17 
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Figure 2-1. Primary energy consumption in the Scandinavian countries in 2011.1* 

2.1.1 Overview of conversion technologies for energy purposes 

There are many ways of processing biomass leading to a large variety of chemicals and 

materials, and of electricity and fuels.18 The technologies for transforming biomass into 

more convenient energy carriers are mostly grouped as thermochemical (heat treatment), 

biochemical (microbiological), and physicochemical.5 This is summarized in Figure 2-2. 

Thermochemical conversion is primarily used on dry cellulose-rich plants such as wood.3 

There are three main processes available – combustion, gasification and pyrolysis.19 

Combustion is complete oxidation of the biomass material, and the final products are CO2 

and water / steam along with heat energy.20 Direct combustion for heating and cooking is 

the oldest way of using biomass, and this is still responsible for more than 97% of the 

world’s bioenergy production.10 Combustion of biomass to produce electricity is applied 

commercially in many regions, and electrical efficiencies of 20 – 40% are possible at a 

scale of 20 – 100 MW. Often the electricity is produced along with heat or steam in 

combined heat and power plants (CHP).12  

Gasification involves partial oxidation of the feedstock. Biomass gasification processes 

are generally designed to produce low- to medium-energy fuel gases or synthesis gases for 

the manufacture of chemicals such as methanol (CH3OH) and other hydrocarbons.20 It is 

very costly to store and transport the gases due to their low energy density, so they should 

be used immediately. In biomass gasification with turbine or engine to power production, 

efficiencies of 35 – 50% are achieved.19 The gases may also be used (directly or upgraded 

to light hydrocarbons) in fuel cells for electricity production. Liquid hydrocarbons for use 

in vehicle motors could be produced from syngas by Fischer-Tropsch synthesis.21 

 

                                                 

* Figure reprinted with permission from OECD/IEA. 
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Figure 2-2. Main conversion routes for various biomass feedstock to secondary energy carriers (adapted from 

Kullander3, Bridgwater5 and Goldemberg12). 
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Biomass pyrolysis is thermal decomposition of the organic components without any 

oxidizing agent.20 The material degrades to a mixture of gas, liquid (pyrolysis oil) and 

solid (charcoal), with relative yields depending on parameters such as temperature, heating 

rate, and vapor residence time.22 Pyrolysis is also always the first step in combustion and 

gasification processes, followed by total or partial oxidation of the primary products.19 

The pyrolysis products can be combusted to produce heat and electricity, or upgraded to 

liquid fuels.21 The pyrolysis process is described more extensively in Chapter 2.3.  

Biochemical conversion includes digestion to produce biogas and fermentation to produce 

ethanol (CH3CH2OH). Typical raw materials for biogas production are moist cellulose-

rich plants, manure, garbage, and sludge.3 Anaerobic digestion of biomass for electricity 

production is commercially available, but the conversion efficiency is quite low  

(10 – 15%).12  Sugary / starchy plants may also be used as feedstock for digestion, but 

these are more typical for ethanol production through fermentation.3 Production of ethanol 

by fermenting sugars is a classic conversion route for sugar cane and corn on a large scale, 

especially in Brazil, France, and the United States.12 Dry cellulose-rich plants such as 

wood or forestry residues could also be converted to ethanol through fermentation and 

hydrolysis, but these processes are usually more advanced.21  

In physiochemical conversion, oil rich plants are pressed, extracted and the oil esterified 

(typically with methanol) to produce fatty acid methyl esters (FAME), popularly known as 

biodiesel.3, 21  

2.1.2 Liquid biofuels 

As described in Chapter 2.1.1, there are several process routes leading to liquid biofuels. 

The dramatic rise in oil prices seen in the last decade has enabled biofuels to become cost-

competitive with petroleum-based transportation fuels, and this has led to a surge in 

research and production around the world.21  

Biofuels are classified according to their source and type. Fuels derived from only parts of 

the plant are referred to as first generation.23 The production technologies are well 

established and available on the market today, but they are in competition with the food / 

feed industry.21 It is estimated that biofuels from primary agricultural products should not 

increase above 1% of all liquid motor fuels in order to secure food for people and 

animals.3 Second generation biofuels are produced in a more sustainable way as they are 

derived from biomass that cannot be used in the food chain. The most typical feedstock is 

lignocellulosic material which makes up the majority of the cheap and abundant nonfood 

materials available from plants.21 The processing leading to second generation biofuels are 

more advanced, and further research and development are required on feedstock 

pretreatment and conversion technologies before they become cost effective. Although the 

feedstock is not directly in competition with food industry, there is concern over 

competing land use or required land use changes. This has led to research on third 
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generation biofuels specifically derived from microbes and microalgae.24 Third generation 

biofuels are not in the scope of this work, and will not be presented further.  

The main types of liquid biofuels are ethanol and biodiesel, the equivalents of fossil 

gasoline and diesel, respectively. Ethanol has a high octane number (107) and an E10 

blend (10% ethanol and 90% gasoline) could be used without modification of the gasoline 

engine. Higher concentrations such as E85 or E95 could be used with small modifications 

in so-called flexi-fuel vehicles. A major advantage of using ethanol is that NOx and dust 

emissions are lower compared to gasoline use only.25 Ethanol may also serve as feedstock 

for ethyl tertiary butyl ether (ETBE, C6H14O) which blends more easily with gasoline.21 

Worldwide, sugar cane and corn are the most important raw materials for first generation 

ethanol production,3 while lignocellulosic biomass could be used for second generation 

ethanol. The latter is more complex and requires extensive pre-treatment to make the 

sugars available for fermentation.21  

First generation biodiesel is produced from oil-containing seeds like rape seeds and soya 

beans. The oils may be used directly or modified through transesterification.21 Biodiesel 

can be used as a substitute of diesel with minor engine modifications. Rapeseed methyl 

ester (RME) is most common in Europe and Canada, while soya oil is typical in the 

United States. Biodiesel could also be produced from residual oils and plants.26 Addition 

of diesel oil is recommended when biodiesel is to be used at temperatures below −15 °C.  

Thermal processes may be used to produce second generation biodiesel, either by 

gasification followed by upgrading to methanol, dimethylether (DME, (CH3)2O) or 

Fischer-Tropsch diesel, or by pyrolysis followed by upgrading of the pyrolysis oil.21  

The types of liquid biofuels classified by generation are summarized in Figure 2-3. 

 

Figure 2-3. Classification of liquid biofuels according to the origin of the feedstock (adapted from Nigam24). 
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2.2 Wood structure and chemical composition 

Lignocellulosic materials such as wood are potential feedstock for second generation 

biofuels.3 About one third of the world’s land surface is covered by forest.27 Trees are 

seed-bearing plants which are divided into softwoods and hardwoods. Softwood belongs 

to the class of gymnospermeae trees, and many of these trees produce seed cones, pollen 

cones, or both. They have needlelike (e.g. pine, spruce) or scalelike (e.g. cedar) leaves 

which are retained for up to several years. Hardwood belongs to angiospermae trees. 

Hardwoods have leaves that are generally broad or bladelike and usually shed their leaves 

at the end of the tree’s growing season once a year. Altogether 520 softwood and 30 000 

hardwood tree species are known worldwide. In Europe, however, only 10 softwood and 

51 hardwood species exist naturally.28 

The structure of wood is important because it affects its decomposition behavior during 

thermal conversion. The elemental composition of wood is approximately 50 wt %  

carbon (C), 6 wt % hydrogen (H), and 44 wt % oxygen (O). The chemical substances are 

originally produced in living cells of a tree, but at the time of cutting, the major portion of 

the tree no longer contains living cells. Thus, there are essentially no proteins and other 

nitrogenous substances normally associated with living cells.29  

Figure 2-4 shows the composition and structure of wood.30 The dark-colored pith at the 

center of the tree trunk is the tissue formed during the first year of growth and is called 

heartwood. The stem has a concentric layered arrangement called growth rings (annual 

rings), with the light-colored sapwood found in the outer part. The cell division and radial 

growth of the tree takes place in a very thin layer consisting of living cells between the 

wood and the inner bark.28 

The organic constituents of wood may be categorized as cell wall components or 

extraneous substances (extractives).29 The structural cell wall components are mainly 

cellulose, hemicelluloses, and lignin, and these govern the physical properties of wood to 

a large extent. A simplified illustration is that cellulose forms a skeleton surrounded by 

other substances functioning as matrix (hemicellulose) and encrusting (lignin) materials.28 

The extractives are present in the cell wall, but they are often more prevalent in cell 

cavities or in specialized anatomical structures, such as resins and gum ducts.29 In 

addition, wood materials also contain water and minor amounts of inorganic compounds 

known as “ash”.30 
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Figure 2-4. Wood structure. The macrostructure has a concentric layered arrangement with growth rings. The 

cell wall structure is fibrous and consists of cellulose, hemicellulose, and lignin, in addition to small amounts of 

extractives and ash.*  

Cellulose is the main component of the cell wall (approximately 40 – 45% of the dry mass 

in most wood).28 It is a homogeneous and linear polysaccharide with the elementary 

formula (C6H10O5)n.
31 The number of glucose monomers in a cellulose molecule ranges 

from a few to as many as 15 000, depending on its location within the cell wall.29 

Cellulose molecules aggregate together in the form of micro fibrils that are organized in 

fibrils through intra- and intermolecular hydrogen bonds. These are combined into 

cellulose fibers which are responsible for the fibrous nature of wood.30 The spaces 

between the micro fibrils in the cell wall layers are available for deposition of different 

chemical substances29 and for absorption of water through the numerous hydroxyl groups 

of cellulose.31 Due to the fibrous structure and the strong hydrogen bonds, cellulose has a 

high tensile strength and is insoluble in most solvents,28 including alkali and acids.27  

Hemicellulose accounts for approximately 25 – 40% of the total mass of the cell wall.29 It 

is also a polysaccharide, consisting of five- and six-carbon sugars.27 The structure is 

heterogeneous and branched and with a degree of polymerization of only around 200. The 

                                                 

* Figure reprinted with permission from the authors on behalf of Oskar Faix. 
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main function of hemicellulose is as supporting material in the cell walls.28 Together with 

lignin, hemicellulose forms the matrix in which the cellulose fibrils are embedded.30 

Hemicellulose is much more soluble and susceptible to chemical degradation than 

cellulose; it is mostly soluble in alkali, and it is relatively easily degraded by acid 

hydrolysis to simple sugars or sugar acids.27 

Lignin is a complex three-dimensional polymer with apparently no ordered arrangement. 

The polymer is largely composed of three distinct phenyl propane monomer units with 

many different types of linkages between the building blocks. Lignin encrusts the 

intercellular space and any openings in the cell walls between the cellulose and 

hemicellulose molecules, and contributes to 20 – 30% of the mass of dry wood. The 

function is to bind the cells together and give rigidity to the cell wall. Lignin also protects 

the wood against microbial degradation and is totally insoluble in most solvents.31 

The relative amounts of the components vary between different wood species, and data for 

some selected softwoods and hardwoods are given in Table 2-1.27 

Table 2-1. Chemical composition (wt %) of some selected wood species (adapted from Wenzl27). 

Species Cellulose Hemicellulose Lignin Extractives 

Softwoods     

Scandinavian Spruce 43 27 29 1.8 

Scandinavian Pine 44 26 29 5.3 

Douglas Fir 39 23 29 5.3 

Scots Pine 40 25 28 3.5 

Hardwoods     

Scandinavian Birch 40 39 21 3.1 

Silver Birch 41 30 22 3.2 

American Beech 48 28 22 2.0 

2.3 Pyrolysis  

2.3.1 Characteristics of pyrolysis processes  

Pyrolysis is thermal decomposition in the absence of an oxidizing agent in which large 

complex hydrocarbon molecules of biomass break down into relatively smaller and 

simpler molecules.2 The process involves a complex set of parallel and serial chemical 

reactions influenced by heat and mass transfer. A common assumption is to lump the 

products into three main classes; gas, liquid (pyrolysis oil) and solid char. The gas is a 

mixture of the non-condensable vapors CO, CO2, H2, CH4, and other small hydrocarbons, 

while pyrolysis oil is the fraction of the vapors that is liquid at room temperature. Char is 

defined as the solid residue left after devolatilization is complete.32 Vapors are usually 

referring to both non-condensable and condensable gases, including aerosols that are 
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found in the pyrolysis oil. The three lumped product classes are always produced, but their 

relative yields can be varied over a wide range by adjustment of several process 

parameters including the heating rate, residence time, and final temperature.2 The products 

may also partly shift towards each other during the conversion process.32 

It is common to categorize pyrolysis processes into slow and fast pyrolysis according to 

the heating rate and residence time as shown in Table 2-2. In slow pyrolysis the heating 

rate is very low and the vapor residence time is on the order of minutes or longer, favoring 

the production of charcoal. Carbonization is the oldest form of slow pyrolysis, in use for 

thousands of years. This process leaves mostly charcoal as residue, while conventional 

pyrolysis involves nearly equal amounts of all three types of pyrolysis products.2 Vapors 

do not escape as rapidly as they do in fast pyrolysis. Thus, components in the vapor phase 

continue to react with each other to form secondary products.9 In fast pyrolysis, the 

heating rates are much higher and the vapor residence time is on the order of seconds or 

milliseconds. The primary goal for this type of pyrolysis is to maximize the production of 

pyrolysis oil.2 When wood is used as a feedstock in continuously operated laboratory 

reactors and pilot plants for fast pyrolysis, oil yields could be as high as 75 wt % on a dry-

feed basis,8 but typical values are in the range 60 – 75 wt %.5 Longer residence times on 

the order of 10 – 30 s will result in lower oil yield (50%) in 2 phases.5 High temperatures 

and longer residence times will increase biomass conversion to gas.2  

Table 2-2. Parameters and products (wt %) of some pyrolysis processes (adapted from Basu2  and Bridgewater5). 

Pyrolysis process Residence 

time 

Heating rate Final 

temperature 

Liquid Solid Gas 

Carbonization (slow) Days Very low 400 °C (Mostly charcoal) 

Conventional (slow) 5 – 30 min Low 500 °C 30% 35% 35% 

Intermediate 10 – 30 s Intermediate 500 °C 50%  25% 25% 

Fast < 2 s Very high 500 °C 75% 12% 13% 

2.3.2 Reaction mechanisms 

The reactions that occur during pyrolysis can be divided into primary or secondary 

reactions. The primary reactions are those in which the products are generated directly 

from the starting material. When the primary products are reacting to form other products, 

this is referred to as secondary reactions. An example of a primary reaction is wood 

devolatilizing to form pyrolysis oil, while a secondary reaction could be oil cracking 

further to gases.32 

The reaction mechanisms of pyrolysis of wood and other biomass materials are chemically 

complex. The thermal decomposition proceeds through a complex series of chemical 

reactions, coupled with heat and mass transfer processes.2 There are also great differences 

between the thermal behavior of cellulose, hemicellulose and lignin. Yang et al.33 studied 

the pyrolysis characteristics of these three components using a thermogravimetric analyzer 
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(TGA) with differential scanning calorimetry (DSC) detector coupled with Fourier 

transform infrared (FTIR) spectroscopy. It was found that hemicellulose starts to 

decompose first, with the pyrolysis mainly between 220 and 315 °C. Cellulose pyrolysis 

occurs at higher temperatures (315 – 400 °C), while lignin decomposes slowly over a 

wider temperature range (150 – 900 °C).  

Cellulose and hemicellulose are the main sources of volatiles. Of these, cellulose is a 

primary source of condensable vapors, while hemicellulose yields more non-condensable 

gases. Owing to its aromatic content, lignin degrades slowly, making a major contribution 

to the char yield.2 Of the non-condensable gases released during pyrolysis, CO2 originates 

mainly from primary pyrolysis, while CO and CH4 are mainly secondary pyrolysis 

products. Cellulose generates the highest CO yield due to the thermal cracking of carbonyl 

and carboxyl. The highest yield of CO2 originates from hemicellulose because of its 

higher carboxyl content. Pyrolysis of lignin releases more H2 and CH4 because of the 

presence of aromatic rings and methoxyl groups.33  

Despite the different thermal behaviors, pyrolysis of the major constituent cellulose is 

often studied in detail in order to understand the mechanisms of wood pyrolysis. The 

Broido-Shafizadeh model (Figure 2-5) is the best-known model for cellulose pyrolysis. 

The model can be applied, at least qualitatively, to the pyrolysis of an entire biomass such 

as wood.2 

 

Figure 2-5. The Broido-Shafizadeh model for pyrolysis of cellulose (adapted from Basu2). The pyrolysis process 

involves an intermediate prereaction (I) followed by two competing first-order reactions (II and III). The 

products may further undergo secondary reactions (IV). The model could be reasonably applied to wood.  

According to the Broido-Shafizadeh model, pyrolysis starts with an intermediate 

prereaction (I) in which active cellulose is formed. The active cellulose subsequently 

decomposes by two competing first-order reactions: dehydration (reaction II) and 

depolymerization (reaction III). Reaction II involves dehydration, decarboxylation, and 

carbonization through a sequence of steps producing primarily char, water and CO2. 

Reaction III involves depolymerization and scission, forming vapors that may condense as 

pyrolysis oil. The activation energies for dehydration (reaction II) are lower than those of 

depolymerization (reaction III). Thus, a lower temperature (< 300 oC), slower heating rates 
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and a longer residence time favor dehydration reactions. Depolymerization is, on the other 

hand, favored at higher temperatures (> 300 oC), fast heating rates, and longer residence 

times due to the higher activation energies. The products can undergo secondary reactions 

(reaction IV), cracking further into secondary char, tar, and gases.2 Intra-particle reactions 

can happen either homogeneously in the vapor phase or heterogeneously by reaction with 

the solid wood or char. The rate of volatiles mass transport within and away from the 

particle will influence the extent of these reactions.32 However, secondary cracking inside 

the particles is relatively unimportant for small particles associated with fast pyrolysis.8 

But secondary reactions could also occur after escaping the particle, either homogeneously 

in the vapor phase or heterogeneously on the surface of other wood or char particles.32 

Secondary reactions may be avoided by moderate temperatures, short vapor residence 

times in the hot reactor zone followed by rapid quenching of the products.2  

2.3.3 Reactor configurations for fast pyrolysis 

An important part of fast pyrolysis processes is the reactor. It must be designed to meet the 

important criteria for achieving high yields of pyrolysis oil:5 

· Rapid heat transfer and high heating rates in order to minimize carbonization 

· Moderate reactor temperatures of around 500 °C 

· Short vapor residence times and rapid quenching in order to minimize secondary 

reactions  

The heat transfer can be divided into three parts:7, 34 

1. To the reactor heat transfer medium  

2. From the heat transfer medium to the biomass particle 

3. Within the pyrolyzing biomass particle 

The heat transfer medium (solid reactor walls, solid inert particles such as sand, fluids, 

gases) could be heated by burning the byproducts (char / gases). The mode of heat transfer 

from the heat transfer medium to the biomass particle in most configurations is mainly 

conduction, with smaller contributions from convection and radiation.34 The heat transfer 

within the biomass particle is a combination of conduction in the cell wall substance and 

radiation and convection in the pore system.7  

A number of laboratory reactor configurations for achieving the necessary heat transfer 

have been developed over the last 20 years. Several pilot plants have been constructed, in 

addition to a few demonstration installations. The principles of some selected reactor 

configurations are presented in Figure 2-6, followed by brief descriptions. For more 

details, the reader is referred to the review on fast pyrolysis technology development by 

Venderbosch.8  
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a) b)

c) d)  

e) f)  

Figure 2-6. Principles of selected reactor configurations. a) ablative reactor, b) fluidized bed (FB) reactor,  

c) circulating fluid bed (CFB) reactor, d) rotating cone reactor (RCR), e) screw / auger reactor, f) vacuum 

reactor.8*  

Ablative reactor 

In an ablative reactor, biomass is pyrolyzed by being pressed onto a rotating hot disc  

(~ 600 °C). Due to the rotation, the biomass is mechanically moved away, leaving a 

residual oil film that both provides lubrication for successive biomass particles and also 

rapidly evaporates to give pyrolysis vapors.35 It is possible to use larger particles, and 

there is no need for a carrier gas.34 The disc surface is heated by a hot flue gas produced 

by combustion of pyrolysis gases and/or produced char.8 The rate of reaction is strongly 

influenced by pressure, the relative velocity of biomass on the heat exchange surface, and 

the reactor surface temperature.35 Oil samples have been produced in yields of up to  

80 wt % (dry basis) in a small scale reactor of 2.5 kg/hr,36 but the complexity of the 

system makes it less attractive for up-scaling.8  

                                                 

* Figure reprinted with permission from Robbie Venderbosch. 
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Fluidized bed (FB) reactor  

FB reactors are popular due to their simple construction and operation.37 The biomass is 

fed into the reactor and mixed with inert sand particles (~ 250 μm) that are fluidized by an 

inert gas. The residence time of the feedstock material is controlled by the fluidizing gas 

flow rate. The temperature control is good, and efficient heat transfer to biomass particles 

is achieved.8 The heat is transferred from a heat source to the particles by a combination of 

convection and conduction. For efficient heat transfer throughout the sample, small 

particles of a few millimeters are required.34 Pyrolysis oil yields from wood are up to 60 – 

75 wt % on a dry feed basis.5 The technology is well understood, but there are still 

technical problems such as char separation and bed material ending up in the liquid 

product. Another problem is the use of large quantities of inert gas for fluidization of the 

reactor bed. The inert gas is still mixed with the non-condensable gases after the pyrolysis 

oil is condensed. For continuous use, the inert gas must be separated and reheated. 8  

Circulating fluid bed reactor (CFB) 

CFB reactors are based on the same heat transfer principles as FB reactors. The biomass is 

heated by mixing with inert sand particles in a fluidized bed. The same challenges with the 

large quantities of fluidization gas are experienced, but the main advantage of CFB is that 

sand is recirculated in the process. The sand and char are transported to a chamber where 

the char is combusted, resulting in reheating of the sand which may then be sent back to 

the reactor.8 The technology is well understood, and yields above 70 wt % have been 

reported.38 The operation, however, is somewhat problematic with substantial erosion 

problems and complications with the seals between various vessels.8  

Rotating cone reactor (RCR) 

In a RCR, biomass is fed near the bottom of a rotating cone together with excess flow of 

heat carrier material like sand.39 The biomass and sand are driven up the wall of the cone 

due to fast rotation speeds (up to 600 rpm), and pyrolysis products exit from the top of the 

cone. The sand and char are further transported to a separate fluid bed where the 

combustion of char takes place. The produced vapors pass through a cyclone before 

entering the condenser, in which the vapors are quenched by re-circulated oil. No inert gas 

is needed in the system. Typical oil yields for a heated surface temperature of 600 °C are 

around 60 wt %.37 It is demonstrated that it is possible to achieve auto thermal operation, 

but the technology is advanced and not that flexible for scale-up.8 

Screw / auger reactor 

The auger reactor is also based on mechanical mixing of biomass and a bulk solid heat 

transfer medium such as sand, but in contrary to RCR the mixing devices rotate inside a 

stationary horizontal reaction vessel. The vapors escape the system due to pressure 

differences, and there is no need for an inert carrier gas. The solid material (char and sand) 

leave at the end of the reactor into a combined heat exchanger and combustion reactor, in 

which the char is combusted and the sand is recirculated. The hot sand loop is maintained 

pneumatically or mechanically.8 The main advantages of this system is the compact 

design.40 Reported pyrolysis oil yields from wood are in the range of 40 – 50 wt %.41  
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Vacuum reactor 

In the vacuum reactor, biomass is carried through hot horizontal plates, and the produced 

vapors are instantly removed via a vacuum pump. It is not a true fast pyrolysis technique 

as the heat transfer is much slower than that observed in other reactors. However, the 

vapor residence time is short, and secondary decomposition reactions are minimized due 

to the vacuum.8 In the Pyrocycling process,42 the biomass is heated indirectly by a mixture 

of potassium nitrate (KNO3), sodium nitrite (NaNO2), and sodium nitrate (NaNO3). The 

salt itself is heated by burning the non-condensable gases from the process. It is possible 

to use larger particles, and there is no need for a carrier gas. Oil yields from wood is 

reported to be around 65 wt % at 15 kPa.43 The process is mechanically complicated,19 and 

the use of vacuum leads to larger equipment and higher cost.34 

2.3.4 Properties and applications of pyrolysis oil 

The liquid fraction of the pyrolysis products is mostly referred as pyrolysis oil, but it is 

also known under other names such as tar, bio-oil, bio-crude, and pyrolysis liquid. It is a 

dark brown, free-flowing liquid with a distinctive smoky odor.44 The oil is a complex 

mixture of different size molecules derived from depolymerization and fragmentation of 

cellulose, hemicellulose and lignin.45 More than 300 compounds have been identified,46 

with water being the single most abundant component.47 However, complete chemical 

characterization is very difficult since the oil contains nearly all species of oxygenated 

organics, such as esters, ethers, aldehydes, ketones, phenols, carboxylic acids and 

alcohols.48 

The composition and properties of pyrolysis oil is very different from petroleum-derived 

oils (Table 2-3),49 with an elemental composition more like that of biomass.44 The high 

water content of pyrolysis oil is due to original moisture in the feedstock and dehydration 

during decomposition. This lowers the heating value and flame temperature,45 and at high 

concentrations the water causes the oil to separate in two phases.49-50 The high oxygen 

content also lowers the heating value and makes it immiscible with hydrocarbon fuels. 

These properties make it difficult to use pyrolysis oil as a fuel directly in existing 

equipment constructed for petroleum-derived fuels. Also, the acidity makes the oil 

unstable and corrosive, resulting in more requirements on construction materials.45 

Pyrolysis oil is a low-grade fuel compared to petroleum fuels,51 but it has been 

successfully used as boiler fuel at commercial scale.44 Combustion tests indicate that the 

oils burn effectively in standard or slightly modified boilers and engines.49 It is also 

possible to use pyrolysis oils in gas turbines with some modifications of the  

equipment.52, 53 However, the water content makes ignition a challenge, and the organic 

acids are highly corrosive to common construction materials.49 
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Table 2-3. Typical properties of pyrolysis oil (from wood) and heavy fuel oil (adapted from Oasmaa49). 

Physical property Pyrolysis oil Heavy fuel oil 

Water content (wt %) 15 – 30 0.1 

pH 2.5 – 

Spesific gravity 1.2 0.94 

Elemental composition (wt %)   

  C 54 – 58 85 

  H 5.5 – 7.0 11 

  O 35 – 40 1.0 

  N 0 – 0.2 0.3 

  Ash 0 – 0.2 0.1 

HHV (MJ/kg) 16 –19 40 

Viscosity (at 50 °C) (cP) 40 – 100 180 

Solids (wt %) 0.2 – 1 1 

Distillation residue (wt %) up to 50 1 

 

For the use as transportation fuels, it is possible to emulsify pyrolysis oil with diesel fuel 

with the aid of surfactants. A process for producing stable microemulsions with 5 – 30% 

pyrolysis oil in diesel has been developed,54 but not commercialized due to high cost of 

surfactants and high amounts of energy required for emulsification. Another approach is 

deoxygenation of the oil, either by hydrotreating or catalytic vapor cracking. The 

processing costs are still very high, and the products are not competitive with fossil 

fuels.44 However, this is a research of great interest in several institutes and universities 

around the world.8  

Pyrolysis oil may also be the source of a range of chemicals. Some chemicals are already 

commercial, e.g. food flavoring (liquid smoke).37 Other potential chemicals include 

replacement of formaldehyde-phenols in resins for particleboards,55 biodegradable 

fertilizers, road de-icers, phenolic compounds, and sugars such as levoglucosan.8, 44  

2.4 Thermal processing of biomass in molten salts 

Thermal processing of biomass in molten salts is a relatively small research area compared 

to more conventional conversion methods. An overview is given here, and more details 

can be found in Paper I.  

The idea behind thermal processing of biomass in molten salts is to perform the 

decomposition in a molten salt bath. The role of the molten salt in the process is as a heat 

carrier, catalyst, solvent, and as a fluid reaction bed. The salts are powders at room 

temperature, but become liquid when they are heated above the melting point. Once 

melted, they are very stable over a wide temperature range, from around 120 °C to well 

above 1000 °C depending on the type of salt and number of components in the salt 
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mixture. Due to their high heat capacity, they can store a great amount of energy over a 

long period of time.56 Molten salts also have very good heat transfer characteristics. This 

has been studied for other purposes such as solar power towers and nuclear power plants.57  

The thermal properties of molten salts make them potential as heat transfer media in 

pyrolysis or gasification. It has been shown that the heating rates for wood increase in 

chlorides and carbonates compared to in an inert atmosphere,58 an important factor when it 

comes to maximizing the liquid fraction in fast pyrolysis.8 Another advantage is the low 

viscosity of the salts leading to rapid enclosing and infiltration of the biomass particles. In 

this way, larger particle area will be exposed to heating by the salt.56  

Some molten salts, especially halides, have a catalytic effect in the decomposition of 

larger molecules with respect to producing certain chemical compounds,59 and may thus 

give a simpler product mix in the pyrolysis process. Zinc halides have been found to have 

a superior selectivity to produce single-ring aromatic compounds in hydrocracking of 

hydrocarbons.60 This has been studied further for lignins, and it is reported that the yields 

of different phenolic compounds from pyrolysis of lignin in ZnCl2-KCl are affected both 

by the ratio of the salt components59 and salt-to-lignin ratio in the reactor.61 The type of 

salt is also found to affect the water content of pyrolysis oil from cellulose and rice husk.62 

Several researchers report higher concentrations of H2 in the product gas for thermal 

processing of wood63 and cellulose64-65 in carbonates compared to inert atmospheres. For 

thermal treatment of municipal refuse, selected noxious contaminants are retained in the 

melt, and the H2-rich product gas is essentially free of tars and oils. This means that the 

method is applicable for contaminated biomass and waste as well.66 Na2CO3 gives rise in 

reaction rates for gasification of wastepaper,67 while the carbon conversion is found to be 

most efficient with Li2CO3 present due to higher catalysis activity caused by the small Li-

atoms.68 Carbonates have also been used in gasification of organic waste.69  HJELP 70 71 72 

Chlorides have been used for recycling of plastics.70-72 The yields of liquid hydrocarbons 

in MgCl2 and KCl were poor, and HCl was observed in the product gas.71 Switching to 

NaOH and Na2CO3 gave usable paraffins and waxes, and no HCl was produced. However, 

salt was consumed in the process.72 Hjelpetekst73 74 75 

Molten salt gasification has been proposed in hybridization with solar energy, where a 

concentrating solar receiver could be used to heat and melt the salt. Due to the thermal 

stability and high heat capacities of molten salts, they could be used as a thermal storage 

for solar energy, making the gasification process stable under insolation fluctuations.64 

The process was originally considered for the gasification of coal and active carbon,73-75 

but the same principles may be applied for biomass.64-65   
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3 Experimental 

This chapter describes the experimental work performed in Papers II – V. Paper II is a 

joint paper with the TCCB research group at the University of Twente (Netherland), and 

only the experimental part performed during the exchange stay is included in the 

following. There is no description of the first article (Paper I) since this is purely a 

literature study.  

3.1 Preparation and characteristics of wood samples 

Untreated wood was used as feedstock in all the experimental work in this thesis. Beech 

wood for Paper II was purchased as cylindrical wood sticks (d = 14 mm) from Pijp-Lines 

Modelbouw & Hobby (Enschede, Netherland). The wood sticks were milled and sieved in 

two fractions (< 0.08 mm, 0.08 – 0.2 mm). Wood for use as feedstock in Papers III – V 

was purchased from Bauhaus (Vestby, Norway). Beech (Papers III and IV) and pine  

(Paper III) wood cylinders (d = 1 – 8 mm) were prepared from cylindrical wood sticks 

with the length parallel to the fibers (Figure 3-1a). These were chosen as representatives 

for hardwood and softwood, respectively. Beech wood sawdust (0.5 – 2 mm) for Paper V 

was obtained by milling larger wood logs followed by sieving to the desired size fraction  

(Figure 3-1b). All wood samples were dried for 24 hours at 105 oC prior to the 

experiments in order to minimize the water content. 

a)  b)   

Figure 3-1. Examples of feedstock used in the experimental work of this thesis. a) Beech wood cylinders prepared 

from cylindrical wood sticks. b) Beech wood sawdust prepared by milling larger wood logs.   

The heat transfer within a wood particle is a combination of conduction in the cell walls 

and radiation and convection in the pore system. To account for these mechanisms, the 

term effective or equivalent conductivity (keff) is often introduced. Due to the anisotropic 

nature of wood, the heat transfer also depends on the direction of heat flow, and keff is 

often reported as either parallel ( ) or perpendicular ( ) relative to the fibers. The effective 

conductivity parallel is usually between 1.5 to 2.7 times higher than that perpendicular to 

the fibers.7 The properties and chemical composition of dry beech and pine wood are 

given in Table 3-1.  
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Table 3-1. Properties and chemical composition of dry beech and pine wood.7 

 Beech  

(hardwood) 

Pine 

(softwood) 

Cellulose (wt %) 48 41 

Hemicellulose (wt %) 28 26 

Lignin (wt %) 22 28 

Density, ρ (kg / m3) 700 450 

Effective conductivity (W / K∙m)   

  Parallell to fibers, keff ( ) 3.490 ∙ 10-1  2.593 ∙ 10-1 

  Perpendicular to fibers, keff (  2.090 ∙ 10-1 9.769 ∙ 10-2 

 

The wood cylinders (Papers III and IV) with a diameter of 2 – 8 mm had a constant 

length of L = 30 mm, while the smallest cylinders (d = 1 mm) had a shorter length  

(L = 15 mm). All the cylinders had an aspect ratio (L/d) larger than 3, which makes the 

particles one-dimensional with respect to internal heat transfer,76 and the conductivity 

perpendicular to the fibers, keff ( ), is of importance. A hole was drilled from top to the 

center of the cylinders where a type K thermocouple was placed for measuring the particle 

center temperature. A 0.5 mm thermocouple was used for cylinders with d ≤ 3 mm, while 

a 1 mm thermocouple was used for the larger cylinders. It was confirmed experimentally 

that the two thermocouples gave similar results for cylinders with d ≥ 3.5 mm, and the 

largest was chosen for practical reasons. 

3.2 Preparation and characteristics of artificial cylinders 

In the study reported in Paper II, the effects of wood micro- and macrostructure and 

vapor outflow patterns (isotropic / anisotropic) on the char yield were studied in a 

fluidized sand bed. This was done by constructing two types of artificial cylindrical 

containers for milled wood as shown in Figure 3-2. The first type was made completely 

out of wire-mesh material, and the second type consisted of a solid wall covered with 

wire-mesh at the top and bottom, giving isotropic and anisotropic vapor outflow, 

respectively. The mesh used as wall in wire-mesh cylinders and bottom / top in both 

cylinder types was 9 μm. This pore size was chosen in order to let the produced vapors 

flow freely out, and at the same time char particles were retained inside the cylinders. The 

solid cylindrical wall was made of a double layer of 0.025 mm thick metal foil. The 

artificial cylinders were welded and filled with milled beech wood, with an overall density 

(mass wood / internal volume artificial cylinder) of 660 kg/m3; identical to the natural 

wood cylinders for comparison purposes. The largest cylinders were also filled with 

natural wood cylinders of 14 mm to study the effect of the artificial walls. The 

macrostructure was varied by using cylinders of different sizes (L = 50 mm, d = 6, 10, and 

14 mm), and the microstructure was varied by using different fractions of milled wood  

(< 0.08 mm, 0.08 – 0.2 mm).  
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a)  b)  

Figure 3-2. Artificial cylinders for the study of effects of wood microstructure and vapor outflow patterns in  

Paper II. a) Complete wire-mesh cylinders (9 μm) giving isotropic vapor outflow. b) Solid wall cylinders covered 

with wire-mesh at the top and bottom giving anisotropic vapor outflow.  

3.3 Salts and inert gases 

The salts used for the experiments in Papers III – V were purchased separately in their 

simplest form from Sigma-Aldrich (> 98.5% purity). The salts were mixed mechanically 

to obtain the eutectic compositions as listed in Table 3-2. 

Table 3-2. Composition of salts used for the experiments in Papers III – V. 

Molten salts composition (wt %) Melting point Paper 

LiF-NaF-KF (29.2 – 11.7 – 59.1) 454 °C77 III, IV and V 

Li2CO3-Na2CO3-K2CO3 (31.7 – 33.7 – 34.7) 397 °C65 IV and V 

ZnCl2-KCl (68.0 – 32.0) 181 °C62 IV 

NaNO3-KNO3 (60.0 – 40.0) 220 °C78 IV 

 

The salts are powders at room temperature, but become free flowing fluids when heated 

above the melting point (Figure 3-3).  

a)  b)  

Figure 3-3. a) FLiNaK powder before melting (T ~ 25 °C). b) Molten FLiNaK with inert gas bubbling (T ~ 500 C).  
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The salts used for the experiments in Papers III and IV were dried for at least 24 h at  

200 °C. For the experiments in Paper V, it was essential that the salts were completely 

moisture free before the crucibles were placed in the reactor since the char yield was 

determined by weighing the reactor before and after experiments. The salts were therefore 

pre-melted at 500 °C and kept in a drying cabinet at 200 °C until used (> 24 h). 

AGA provided the inert gases (Ar and N2) used in all the experimental work. The 

concentrations and most important impurities of the gases are listed in Table 3-3.  

Table 3-3. Concentration and most important impurities of the inert gases used in the experimental work.  

 Argon (Ar) Nitrogen (N2) 

Concentration 99.99% 99.999% 

Impurities   

   H2O ≤ 20 ppm ≤ 3 ppm 

   O2 ≤ 20 ppm ≤ 3 ppm 

   CnHm n.a. ≤ 1 ppm 

3.4 Experimental setup and procedure 

Two types of experimental setups were used during this study. The experimental work in 

Paper II was performed in an existing fluidized sand bed reactor at the University of 

Twente. For the experimental work in Papers III – V, a molten salt reactor was developed 

at NMBU. The two setups are described separately, with most emphasis on the molten salt 

reactor, as the development of this reactor was a part of the PhD study.  

3.4.1 Fluidized sand bed reactor 

The experimental work in Paper II was performed in a fluidized sand bed reactor  

(Figure 4, Paper II). For the experiments with the artificial cylinders, only the first part of 

the pyrolysis system was used. The reactor was constructed of stainless steel  

(H = 200 mm, ID = 90 mm) and placed in an electric furnace for independent temperature 

control. The reactor temperature was kept at 500 oC for all experiments, continuously 

controlled by a submerged K type thermocouple. The incoming fluidization gas (N2,  

12 L/min) was preheated to 500 oC and led to the bottom part of the reactor. After entering 

the reactor, the hot gas was led through a gas diffuser with pores of 30 μm in order to 
distribute the gas evenly into the fluidized bed. 1 kg silica sand (particle size  

212 – 300 µm) was used as bed material.  

The artificial cylinders with milled wood were fed to the reactor by a batch-wise feeding 

system consisting of two ball valves. The lower valve was closed, and three identically 

prepared cylinders were placed in the space between the valves. The upper valve was then 

closed, and the lower valve was opened so that the samples would fall into the reactor. A 

small N2 flow was introduced along with the samples. After the pyrolysis reactions were 
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completed, the power was turned off, and the reactor was left under N2 flow until ambient 

temperature was reached. The artificial cylinders were recovered from the sand bed, and 

the char yield was determined by weighing each cylinder separately before and after 

experiments. Due to the small number of cylinders fed to the reactor in each experiment, it 

was not possible to determine accurate oil and gas yields.  

3.4.2 Molten salt reactor 

The general experimental equipment used in molten salt pyrolysis (Papers III – V) is 

shown in Figure 3-4. Schematic representations may also be found in the respective papers 

(Figure 1 in Paper III / IV, Figure 3 in Paper V).  

 

Figure 3-4. General experimental setup for molten salt pyrolysis. 

The salt mixture (200 g [Papers III and IV] or 300 g [Paper V]) was filled in a nickel 

crucible (H = 190 mm, ID = 52 mm), giving molten bed heights ranging from 45 to  

70 mm depending on the type of salt and final reactor temperature. The parts in contact 

with the molten salt were constructed out of nickel because this material is more resistant 

to the corrosive environment associated with molten salts at high temperatures.57 The 

crucible was placed inside a stainless steel reactor (H = 200 mm, ID = 62 mm) that was 

sealed at both ends by bolt type flanges with mineral wool (Superwool 607 Paper, 2 mm) 

as gasket material (Figure 3-5a). The tubes for inert gas, feeding of wood samples, 

temperature measurements, and outlet of vapors were welded on the top of the sealed 

reactor and connected to other parts of the system by tube fittings (Swagelock-316).  
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a)  b)   

Figure 3-5. Experimental equipment for molten salt pyrolysis. a) Nickel crucible (left) and stainless steel reactor 

(right). b) Ball valve based feeding system.  

The reactor was placed in an open ceramic tube furnace (< 1250 °C) having a base of 

insulating ceramic blocks. The heating was controlled by a programmable temperature 

regulator (Eurotherm 3200). Ceramic blocks and mineral wool (Superwool 607 Blanket, 

38 mm) were used as isolation around the reactor at the top of the furnace. Preliminary 

experiments showed a uniform temperature throughout the furnace. The reactor 

temperatures for the different experiments are given in the respective papers.  

The inert gas (Ar / N2) was flowed into the reactor through a 4 mm nickel tube with a flow 

rate of 2 L/min (Papers III and IV) or 0.6 L/min (Paper V). The tube was kept above the 

salt during the heating, but immersed to a depth of 1 cm from the bottom of the crucible 

after the salt was completely melted. The turbulent bubbling of inert gas ensured an 

oxygen free atmosphere, enhanced the heat transfer from the salt to the wood during the 

pyrolysis process, and led the produced vapors (both condensable and non-condensable) 

out of the reactor.  

The samples were introduced to the reactor manually through a ball valve based feeding 

system similar to the one described for the fluidized sand bed reactor (Chapter 3.4.1), but 

with a plug at the top (Figure 3-5b). It was designed so that tubes / rods could slide 

through the plug without any gases entering or leaving the system. For the temperature 

measurement experiments (Papers III and IV), the samples were attached to a long 

thermocouple (L = 1000 mm), placed inside a steel tube for mechanical support. In this 

way, the samples could be pushed down, and it was made sure that they were completely 

submerged in the molten salt bath during the experiments (Figure 1, Paper III / IV). The 

thermocouple was connected to a logging system (HIOKI 8430-20 Memory Hilogger), 

and the temperature was measured at a frequency of 2 (Paper III) or 5 (Paper IV) times 

per second. The data was further processed in Wolfram Mathematica (version 8).  
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The milled wood particles (Paper V) were fed in batches of 0.3 – 0.5 gram (ca 20 –  

25 grams in total). The feeding tube was kept 1 – 2 cm above the molten salt bath, and the 

particles were forced into the reactor with the aid of a push rod. The mixing of small 

particles in a fluid bed was checked visually in a cold-flow glass model with a water-sugar 

solution to obtain similar characteristics as molten salts, and a quick mixing was observed 

due to the turbulent bubbling of the inert gas.  

A 9 μm wire-mesh filter was placed at the exit of the reactor for in situ filtration of char 

and ash from the hot pyrolysis vapors. This type of filtration prior to condensation has 

been shown to give yields comparable to those obtained when cyclones are used, but with 

less solids, alkali metals, and ash in the liquid product.79 In the experiments during this 

study, there was much less clogging of the outlet tube when this filter was used. Also, it 

keeps unreacted wood particles inside the hot reactor. The vapors were led out of the 

reactor through a 4 mm transfer line heated externally to 450 °C by a heating wire (SAN 

Electro Heat, 316W). An electrostatic precipitator (ESP) was constructed for collection of 

pyrolysis oil (Figure 1, Paper V). The ESP consisted of a grounded cylinder made of 

stainless steel (H = 150 mm, ID = 50 mm) placed inside an outer cylinder made of the 

isolating material polyoxymethylene (POM). POM was chosen due to its low coefficient 

of friction, good dielectric properties, and good resistance to oils, greases, and solvents.80 

A stainless steel wire (1 mm) co-axial with the grounded cylinder was connected to a high 

voltage source (Spellman, SL300) and used as discharge electrode (positive potential,  

0 – 20 kV). The ESP was cooled externally with tap water (~ 20 °C). Initial tests were 

carried out to choose the proper settings of the ESP giving stable operation without spark-

overs and complete separation of the condensable vapors from the remaining gas stream. 

A bubble flask with water was attached at the exhaust, and it could be easily observed if 

the outlet gas contained any uncondensed pyrolysis vapors, as these would fill the empty 

part of the flask with white “smoke” as shown in Figure 3-6.  

a)  b)  

Figure 3-6. For the testing of the electrostatic precipitator (ESP), a bubble flask with water was attached at the 

exhaust of the ESP. a) Normal operation of the ESP. No uncondensed vapors are observed. b) Failure of the ESP 

(too low voltage or spark-overs). The pyrolysis vapors are clearly visible.  
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A tubular cotton gas filter (filtration level 10 μm) was used for capturing the remaining 

vapors, and the non-condensable gases were vented off. After the experiments were 

completed, the power was turned off, and the system was left under inert atmosphere until 

ambient temperature was reached.  

For the temperature history studies (Papers III and IV), only the first part of the system 

was used, since the small amounts of feedstock did not provide enough oil for accurate 

yield measurements. The char product was covered and infiltrated with salt  

(Figure 4-5, p. 33), making accurate char yield measurements difficult as well.  

In Paper V, the char yield was determined by weighing the reactor filled with salt and 

char before and after the experiment. The pyrolysis oil yield was determined 

gravimetrically by reweighing the entire ESP and cotton filter. The water content of the oil 

recovered from the ESP was determined by Karl Fischer titration (KFT) (Metrohm 870 

KF Titrino plus). The used titer was Hydranal Composite 5. The outlet gas was analyzed 

to detect possible produced HF gas from FLiNaK pyrolysis with a FTIR gas analytical cell 

(Thermo Scientific, Nicolet 6700 FTIR spectrometer).  
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4 General results and discussion 

In this chapter, the most important outcomes from the experimental work (Papers II – V) 

are presented and discussed. A summary of the literature study (Paper I) was given in the 

theoretical part of the thesis (Chapter 2.4). For Paper II, the main focus is on the 

experiments performed during the exchange stay at the University of Twente, but the 

results are discussed in the context of the whole paper. In the last subchapter, challenges 

with molten salts in thermal processing of biomass are discussed.  

4.1 Effect of particle structure and vapor outflow pattern in a fluidized 

sand bed 

In order to achieve rapid heating associated with fast pyrolysis, biomass particles are 

traditionally kept smaller than 2 – 3 mm.34 However, later research by Wang et al.76, 81 has 

shown that the biomass particle size of wood cylinders (d = 0.7 – 14 mm) only has a minor 

effect on the lumped product yields in both theoretical simulations and experimental work. 

Salehi et al.82 reported a rapid decrease in oil yield for sawdust particles as the size was 

raised from < 0.59 mm to 1 mm, while the decrease in oil yield leveled off for larger 

particles. The effect of smaller biomass particles (0.18 – 5.6 mm) was also studied by 

Shen et al.83 It was found that the yield of pyrolysis oil decreased rapidly with particle size 

up to 1.5 mm, but no significant effects on the yields were discovered for larger particles. 

For both studies, the very high oil yields for the smallest particles were accompanied by 

low char yields. Shen et al.83 suggested that changes in biomass cell structure during 

grinding could make the components more available for decomposition and give the high 

oil yields and low char yields observed for the smallest particles.  

The aim of Paper II was to study this hypothesis further. Artificial wood containers were 

constructed (L = 50 mm, d = 6, 10, and 14 mm) and filled with milled beech wood 

particles (< 0.08 mm, 0.08 – 0.2 mm). These were used to evaluate the effect of wood 

micro- and macrostructure and vapor outflow patterns on the char yield in a fluidized sand 

bed at 500 °C. Figure 4-1 describes the outflow pattern of the wood particles and the 

artificial containers. Natural wood cylinders have channels in the longitudinal direction, 

and the vapor outflow is anisotropic. This channel structure is destructed when the wood 

goes through extensive milling, and the particles consist only out of cell wall material. 

Scanning electron microscope (SEM) was used to confirm this destruction (Figure 4-2). 

The microstructure of the extensively milled particles was very different than for larger 

particles. Particles of 1 mm still had the channel structure intact (Figure 4-2a), while the 

small particles used in this study consisted only of cell wall material (Figure 4-2b). This 

means that the vapors produced during pyrolysis can flow freely out in all directions. In 

addition, the particles in the artificial cylinders are randomly packed, in contrast to the 

highly structured longitudinal channels found in natural wood cylinders. Artificial solid 

wall cylinders give anisotropic outflow, while wire-mesh cylinders give isotropic outflow.  
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Figure 4-1. Wood particles and artificial containers. Arrows out of the cylinders indicate the direction of the 

outflow of produced vapors. (a) Natural wood cylinders with channels in longitudinal direction, giving 

anisotropic outflow. (b) Milled wood where the channel structure has been destructed. (c) Milled wood in solid 

wall cylinders giving anisotropic outflow. (d) Milled wood in wire-mesh wall cylinders giving isotropic outflow.  

a)  b)  

Figure 4-2. Scanning electron microscope (SEM) of milled beech wood particles. (a) 1 mm particles with the wood 

channels still intact. b) Particles smaller than 0.08 mm with the wood structure completely destructed. The same 

destruction was also observed for the fraction 0.08 – 0.2 mm (not shown).  

By inserting the extensively milled particles (< 0.08 mm) in artificial cylinders of different 

sizes and comparing the results with natural wood cylinders, it was possible to evaluate 

whether internal microstructure or macrostructure is dominant with respect to the char 

yield. Due to too high char loss (1 – 3 wt %) for the artificial wire-mesh cylinders with the 

smallest particles, these experiments could only be performed with solid wall cylinders. 

The effect of outflow pattern was examined by inserting the other particle fraction  

(0.08 – 0.2 mm) in the wire-mesh cylinders. Although the particles were slightly larger, 

the channel structure was still destructed for this particle fraction. Hence, the 

microstructure was the same, but the vapors formed in the solid wall cylinders could only 

flow out in the longitudinal direction of the cylinder, while they were allowed to flow out 

in all directions in the wire-mesh cylinders.  

In order to ensure that the metal walls did not influence the heating rate nor give any 

catalytic effects, natural wood cylinders of 14 mm were inserted in the artificial cylinders. 

The char yield of the wood cylinders enclosed by the solid wall and wire-mesh wall 
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cylinders were identical to the char yield of separately pyrolyzed wood cylinders (23.0, 

23.1, and 23.0 wt %, respectively). Hence, no heat transfer limitations or catalytic effects 

of the materials in the artificial cylinders were discovered. It was also confirmed in 

separate experiments that the artificial wood cylinders experienced equal heating rates as 

the natural wood cylinders of equal size, and that no significant amounts of sand entered 

the artificial cylinders during sand fluidization. The char loss was found to be less than 

0.4% of the initial char for all cases except for the already mentioned case with the 

smallest particles (< 0.08 mm) in wire-mesh cylinders. 

Three cylinders were used in each experiment. The cylinders were weighed separately to 

ensure reproducibility, and the standard deviation between the char yields of experiments 

of identical artificial cylinders was always smaller than 0.3%. Table 4-1 shows the data for 

a typical experimental run, and Figure 4-3 shows an example of a wire-mesh cylinder  

(d = 14 mm) filled with milled beech wood before and after an experiment. A few 

experiments had to be repeated because of too high deviation in the results. It was 

assumed that sand had entered the cylinders or char was lost due to poor welding or other 

experimental errors. In most of these cases, rupture of the artificial cylinders could be 

observed.  

Table 4-1. Data for a typical experiment with artificial cylinders (Paper II).  

Information  

Experiment number 14 

Date 4/29/2011 

Wood particle size (mm)  0.08 – 0.2  

Cylinder diameter (mm) 14 

Cylinder wall material Wire-mesh 

Results 

Cylinder i ii iii 

Wood input (g) 5.558 5.458 5.242 

Char yield (g) 1.080 1.068 1.012 

Char yield (wt %) 19.4 19.6 19.3 

Average (wt %) 19.4 

Standard deviation 0.13 

 

Figure 4-4 shows the average char yield of the artificial cylinders as function of cylinder 

size, expressed as percent of the initial dry wood mass. Data for loose particles and natural 

wood cylinders are included for comparison. It was clear that the char yield increased as 

the particle size was increased. A discontinuity was observed between loose milled 

particles and wood cylinders. The same discontinuity was also observed for the oil and gas 

yields (Figure 5, Paper II): the milled particles had higher oil and lower gas yields. The 

loose particles have a shorter particle length, and will thus experience faster heating rates 

Figure 4-3. Artificial wire-

mesh cylinder (d = 14 mm) 

before (left) and after (right) 

pyrolysis in a fluidized sand 

bed (500 °C) 
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in all directions. The vapors will also have a shorter escape route, minimizing the 

probability of secondary reactions within the particles. 

 

Figure 4-4. Char yields as function of particle size in a fluidized sand bed at 500 °C. The char yield of the natural 

wood cylinders, and the artificial solid wall (sw) and wire-mesh (wm) cylinders are plotted as function of cylinder 

size.  

The char yields of artificial solid wall cylinders and natural wood cylinders of equal size 

were comparable within the accuracy of the data. Although the microstructure was very 

different, it appeared that this had no notable effect on the char yield of large cylinders  

(6 – 14 mm). The yields of artificial cylinders were nowhere near the yields of the loose 

milled particles in spite of the same microstructure. Instead, the char yield was 

predominantly determined by the outer cylinder diameter. This could be because the larger 

particles have a lower heating rate due to the poor conductivity of wood. This will give a 

lower average temperature at which the pyrolysis reactions occur, leading to more char.  

The effect of outflow pattern was slightly more visible, with lower char yields for wire-

mesh cylinders compared to solid wall cylinders. The hypothesis was that when the vapors 

escape from artificial cylinders in an isotropic manner, there is less contact of formed 

vapors with char due to shorter outflow distances. This results in no further 

polycondensations of the vapors on char, and an overall lower char yield. The hypothesis 

was not contradicted by the experiments, but the observed effects were not very strong.  

Although only the char yield was measured in the experiments with the artificial cylinders 

in Paper II, this was an indication on the mechanisms occurring during the pyrolysis 

process. During pyrolysis of only cell wall material, resulting droplets can vaporize much 

faster than inside a channel of a large particle. Slower vaporization processes of droplets 

under high temperature pyrolysis conditions result in the formation of more char by cross-

linking reactions instead of the outflow of produced vapors from the reacting particle(s).  
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4.2 Temperature history of wood particles in molten salt pyrolysis 

In Papers III and IV, the aim was to investigate the thermal behavior of wood particles, 

as well as gain a better understanding of molten salts as heat transfer media during fast 

pyrolysis. The temperature at the center of cylindrical wood particles was recorded during 

molten salt pyrolysis, and this was used to evaluate heating rates, reaction temperatures 

and devolatilization times. The experiments were performed in triplicate to ensure 

acceptable reproducibility. Figure 4-5 shows a pine wood cylinder (d = 6 mm) before and 

after pyrolysis in FLiNaK at 500 °C. The charred particles were in most cases still left on 

the thermocouple after the experiment, but they were very brittle. It could be observed that 

the samples were covered and infiltrated with salt.  

a)  b)  

Figure 4-5. Pine wood cylinder (L = 30 mm, d = 6 mm) before (a) and after (b) pyrolysis in FLiNaK at 500 °C. 

The solid residue was covered and infiltrated with salt.  

4.2.1 Definitions of characteristic points during wood pyrolysis 

The temperature at the particle center was measured, and the heating rate was calculated 

using three point estimation according to Eq. 4-1.  

           (4-1) 

Figure 4-6 shows the recorded temperature and the calculated heating rate for pyrolysis of 

beech wood (d = 6 mm) in FLiNaK at 500 °C. The shape of the temperature profiles and 

the heating rate curves are qualitatively the same for all the experiments performed in 

Papers III and IV (except for pyrolysis in nitrates, these results are treated separately). 

The temperature rises rapidly until the main degradation of cellulose and hemicellulose 

occur at a nearly constant temperature plateau. The temperature at this point could be 

regarded as representative of the effective pyrolysis temperature.84 After the endothermic 

degradation of cellulose and hemicellulose is nearly completed, the slower, high-

temperature exothermic degradation of lignin dominates.85 The temperature rises rapidly 

before the particle temperature reaches and stabilizes at the reactor temperature. In some 

cases a maximum temperature higher than the bed temperature is observed. This was more 

prominent for the thickest particles used in Paper III due to the higher mass of lignin and 

the longer time for the gases to escape from the particle.  

Several characteristic points stand out clearly during the wood pyrolysis process. We have 

chosen to follow the same definitions of these as given by Di Blasi and Branca in their 
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study of pyrolysis of cylindrical beech wood particles (L = 20 mm, d = 2 – 10 mm) in a 

hot sand bed (T = 534 °C) fluidized by nitrogen.86 Brief descriptions of the points are 

given in Table 4-2, and more thorough descriptions may be found in the result part of 

Paper III.  

 

Figure 4-6. Temperature profile and calculated heating rate at center of cylindrical beech wood (L = 30 mm,  

d = 6 mm) in FLiNaK pyrolysis at reactor temperature T = 500 °C. Several characteristic points stand out clearly, 

and these are described in Table 4-2. 

 

Table 4-2. Description of characteristic points during pyrolysis of wood particles. 

Characteristic 

points 
Description 

h1 / t1 /T1 Maximum heating rate. This is measured right before any reactions 

occur. After this point, degradation starts in the outer part of the 

cylinder and inward heat transfer is hindered.  

h2 / t2 /T2 Point of high variation. This indicates the beginning of the 

endothermic degradation of cellulose and hemicellulose at the particle 

center. 

h3 / t3 / T3 Local minimum of heating rate. This point represents the main 

occurrence of degradation of cellulose and hemicellulose, and T3 may 

be regarded as the effective pyrolysis temperature. 

h4 / t4 / T4 Local maximum of heating rate. The exothermic degradation of lignin 

– which happens over a wider temperature range – starts to slow down. 

At this point, the conversion is about 95%. 

t5 / T5   Maximum temperature. The conversion process is practically 

terminated, and t5 may be regarded as the total devolatilization time. 
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4.2.2 Effect of wood type and particle size  

In Paper III, the focus was to evaluate the effect of wood type and particle size in 

FLiNaK at 500 °C. In general, molten fluoride salts are known to have high thermal 

conductivities, high specific heats, low viscosities, and high boiling points.57 FLiNaK has 

in particular shown good heat transfer performance in previous research of heat transfer 

media for solar power towers and nuclear power plants.77 Two types of wood were chosen 

for Paper III, namely beech and pine wood. These were chosen as representatives for 

hardwood and softwood, respectively. Beech wood has a higher thermal conductivity than 

pine wood (Table 3-1, p. 22), and this was reflected as beech wood particles reached the 

different pyrolysis stages faster than pine wood with the same dimensions (Figure 4-7). 

 

Figure 4-7. Temperature profiles at the center of cylindrical beech (black) and pine (red) wood particles in 

FLiNaK at 500 °C.  

In spite of the time difference during heating, the characteristic temperatures were 

comparable for the two wood types (Figure 4-8). This indicated that the thermal properties 

of the wood sample play a less important role for the reaction temperatures during 

pyrolysis. The high scatter in T1 was ascribed to the associated high heating rates  

(Figure 4-9), making precise evaluation of the corresponding temperatures difficult. T2 

and T4 were practically independent of the particle size, while the effective pyrolysis 

temperature (T3) decreased from 469 ± 4.5 °C for d = 1 mm to 412 ± 6.5 °C for d = 8 mm. 

This particle dependence was in accordance with both simulations and experimental work 

for wood pyrolysis in a fluidized sand bed reactor at 500 °C by Wang et al.76,81  

 



36 

 

  

Figure 4-8. Characteristic temperatures as a function of cylinder diameter at the center of cylindrical beech 

(black) and pine (red) wood particles in FLiNaK at 500 °C.  

Figures 4-9 – 4-12 show the characteristic heating rates (h1 – h4) as a function of cylinder 

diameter. Beech and pine wood cylinders are represented by black and red lines, 

respectively. Results for fluidized sand bed estimated from Di Blasi and Branca86 (green 

lines) are included for comparison. All the heating rates decreased with increasing particle 

size because of increasing internal heat transfer resistance inside the particles. For molten 

salt pyrolysis, the values were always slightly higher for beech wood than pine wood for 

otherwise identical conditions. This was ascribed to the higher thermal conductivity of 

hardwoods (Table 3-1, p. 22).   

 

Figure 4-9. Maximum heating rate h1 at the center of cylindrical beech (black) and pine (red) wood particles in 

FLiNaK at 500 °C. Reference values (green) are estimated for beech wood in a fluidized sand bed at 534 °C.86 
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One of the most important findings in Paper III was that the maximum heating rate (h1) 

was significantly higher in FLiNaK than in fluidized sand for beech wood cylinders with  

d ≤ 4 mm (Figure 4-9). h1 is of special interest because it is measured before the thermal 

decomposition starts, and differences between the heating media appear. Heating rates as 

high as 218 ± 6 and 186 ± 15 °C/s were observed for beech and pine wood, respectively, 

but with an exponential decrease with increasing particle size. For particles with  

d > 4 mm, there were practically no effects of wood type or heating media.  

 

Figure 4-10. Point of high variation of the heating rate h2 at the center of cylindrical beech (black) and pine (red) 

wood particles in FLiNaK at 500 °C. Reference values (green) are estimated for beech wood in a fluidized sand 

bed at 534 °C.86 

  

Figure 4-11. Local minimum heating rate h3 at the center of cylindrical beech (black) and pine (red) wood 

particles in FLiNaK at 500 °C. Reference values (green) are estimated for beech wood in a fluidized sand bed at 

534 °C.86 
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Figure 4-12. Local maximum heating rate h4 at the center of cylindrical beech (black) and pine (red) wood 

particles in FLiNaK at 500 °C. Reference values (green) are estimated for beech wood in a fluidized sand bed at 

534 °C.86 

Cellulose and hemicellulose degrade over a very narrow range of temperatures,87 and the 

heating rates associated with this (h2 / h3) were not much affected by the heating media 

(Figures 4-10 and 4-11). They were, however, strongly dependent on the wood type and 

particle size. An exponential decrease with increasing particle size was observed, but not 

as prominently as for the maximum heating rate. The decrease was explained by a 

combination of heat transfer limitations and an increased cooling effect due to higher 

amounts of endothermic reacting cellulose and hemicellulose. Lignin decomposes over a 

wider temperature range.85 This was reflected in h4 with a stronger dependence on the 

heating media, as well as wood type (Figure 4-12). Differences in reactor temperature in 

FLiNaK and fluidized sand bed (500 °C and 534 °C, respectively) could also be a reason 

for the differences observed for h4.  

4.2.3 Effect of salt composition and reactor temperature 

Paper III showed that the maximum heating rates for beech wood in FLiNaK were 

significantly higher than in fluidized sand for particles with d ≤ 4 mm. In Paper IV, the 

aim was to investigate the effect of different salt compositions and reactor temperatures. 

The constant particle size (L = 30 mm, d = 3.5 mm) was a compromise between small 

enough particles in order to discover differences between heating media and large enough 

particles to facilitate sample preparation and execution of the experiments.   

Four different salt mixtures were chosen; FLiNaK, (LiNaK)2CO3, ZnCl2-KCl, and  

KNO3-NaNO3. FLiNaK had already shown promise as an effective heat transfer medium 

in wood pyrolysis (Paper III). The choice of the other salt mixtures was based on 

previously reported results (Paper I). Several researchers have demonstrated a strong 

influence by molten carbonates on thermal processing of coal73-75 and cellulose.64,65 



39 

 

Adinberg et al.64 reported an increase of 20% in the reaction rate of cellulose in a eutectic 

mixture of K2CO3 and Na2CO3 compared to in an inert gas atmosphere at 850 oC. 

Hathaway et al.65 added Li2CO3 to the carbonate mixture and measured an increase in the 

pyrolysis rate by 74% compared to in an inert gas atmosphere. This was explained by 

enhanced heat transfer within the salt. ZnCl2-KCl has been used in pyrolysis of lignin. 

Sada et al.59, 61, 88 focused on the yield of phenolic compounds from kraft and solvolysis 

lignins heated in mixtures of molten ZnCl2 and KCl. It was found that the yields of 

different phenolic compounds depend on both the molar ratio of the two salts59 and the 

salt-to-lignin ratio in the reactor.61 In the Pyrocycling process, a mixture of KNO3, NaNO2 

and NaNO3 was used as an indirect heat transfer medium in vacuum pyrolysis.42 The heat 

transfer characteristics for nitrates were also investigated for the purpose of storing 

thermal solar energy. “Solar salt” (KNO3-NaNO3) was found to be a better candidate than 

“Hitec” (NaNO3-KNO3-NaNO2) due to higher heat transfer efficiency during heat storage 

and discharge stages.78  

The experiments in Paper V were performed in the temperature range of 400 – 600 °C, 

with some differences due to respective melting and decomposition temperatures of the 

salt mixtures (Table 3-2, p. 23). The characteristic points during the pyrolysis process 

were defined in the same way as for Paper III (Figure 4-6, p.34). Figure 4-13 shows the 

recorded temperature at the center of cylindrical beech wood particles (d = 3.5 mm) at 

reactor temperature 500 °C, where one representative curve is chosen for each salt 

mixture.  

 

Figure 4-13. Temperature profiles at the center of beech wood particles (L = 30 mm, d = 3.5 mm) at reactor 

temperature T = 500 °C in FLiNaK (black), (LiNaK)2CO3 (red), ZnCl2-KCl (green), and KNO3-NaNO3 (blue). 

The temperature profile for pyrolysis of beech wood in nitrates differed greatly from the 

other salt mixtures. After a few seconds, a sudden increase in temperature was observed. 

This was followed by a maximum much higher than the reactor temperature, indicating 

that an exothermic reaction occurred. Simulations performed in HSC Chemistry software59 
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(Eqs. 4-2 and 4-3) showed that nitrates are reduced by carbon to nitrites. Since carbon is 

one of the products formed during pyrolysis, this is a plausible explanation to the strange 

observation. The same behavior was observed for the other reactor temperatures, and the 

results for nitrates were excluded from further analyses.  

  (4-2) 

  (4-3) 

 

It was very clear that the composition of the molten salt affected the thermal behavior of 

the wood particles (Figure 4-13), but the reaction temperatures were not affected to a great 

extent (Figure 4-14). For T1 there was a relatively high scatter in the observations, but the 

variation within one salt was greater than the variation between the salts, and it was 

therefore not possible to say if there were differences between the salt mixtures. The 

scatter was large for T1 in Paper III as well (Figure 4-8, p.36), and this was ascribed to 

the high heating rates observed at the first characteristic point (h1), making it difficult to 

evaluate the corresponding temperatures accurately. In Paper III, the sampling rate was 2 

times per second, while it was increased to 5 times per second in Paper IV. The scatter 

was reduced, but it is not clear whether it was an effect of higher sampling frequency.  

 

Figure 4-14. Characteristic temperatures at the particle center for beech wood cylinders (L = 30 mm, d = 3.5 mm) 

as functions of the reactor temperature in FLiNaK (black), (LiNaK)2CO3 (red), and ZnCl2-KCl (green).  

The other characteristic temperatures were slightly, but not significantly, lower for  

ZnCl2-KCl. The values for all the salt mixtures were comparable to a corresponding study 

in a fluidized sand bed by Di Blasi and Branca.86 These findings from Paper IV showed 

that the heat transfer medium is of less importance to the reaction temperatures during 

pyrolysis.  

For T2 and T3 there was only a weak dependence on reactor temperature. As also stated in 

Paper III, these temperatures are associated with the degradation of cellulose and 
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hemicellulose, reactions that are known to occur at a narrow temperature range,87 and 

these results were as expected. Values for the effective pyrolysis temperature (T3) were in 

the range of 404 to 438 °C. T3 was much more affected by the particle size (Paper III), 

indicating that the properties of the wood dominate the process to a larger extent than the 

heating media and reactor temperature. The reactor temperature had a stronger effect on T4 

because this is related to the degradation of lignin, reactions that may happen over a wider 

temperature range.85  

All the characteristic heating rates (h1–h4) showed an increasing trend with increasing 

reactor temperature (Figures 4-15 – 4-18).  

 

Figure 4-15. Maximum heating rate h1 at the particle center of beech wood cylinders (L = 30 mm, d = 3.5 mm) as 

functions of the reactor temperature in FLiNaK (black), (LiNaK)2CO3 (red), and ZnCl2-KCl (green). 

 

Figure 4-16. Point of high variation of the heating rate h2 at the particle center of beech wood cylinders  

(L = 30 mm, d = 3.5 mm) as functions of the reactor temperature in FLiNaK (black), (LiNaK)2CO3 (red), and 

ZnCl2-KCl (green). 
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Figure 4-17. Local minimum of heating rate h3 at the particle center of beech wood cylinders (L = 30 mm,  

d = 3.5 mm) as functions of the reactor temperature in FLiNaK (black), (LiNaK)2CO3 (red), and ZnCl2-KCl 

(green). 

 

Figure 4-18. Local maximum of heating rate h4 at the particle center of beech wood cylinders (L = 30 mm,  

d = 3.5 mm) as functions of the reactor temperature in FLiNaK (black), (LiNaK)2CO3 (red), and ZnCl2-KCl 

(green). 

As pointed out both in Paper III and IV, the maximum heating rate (h1) is of special 

interest because it is measured before any reactions occur, and this is where variations 

between heat transfer media are shown. Although there was some scatter in the 

observations, it was clear that the highest heating rates were obtained in FLiNaK  

(46 – 56 °C/s), followed by (LiNaK)2CO3 (38 – 52 °C/s) and then ZnCl2-KCl  

(35 – 43 °C/s). The other characteristic heating rates showed a strong dependence on 

reactor temperature, but the differences between the salts were negligible.   
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4.2.4 Prediction of devolatilization times 

Prediction of the total devolatilization time in pyrolysis is important for reactor design. A 

typical empirical correlation for the effect of particle size is the power-law relation given 

by Eq. 4-4:89 

           (4-4) 

where A and n are fitted to match the experimental data. According to Kanury,90 n should 

be either 1 or 2, depending on external or internal heat and mass transfer control, 

respectively. If the value is between 1 and 2, the particles that the experiments are based 

on cover both regimes. The correlation was originally proposed for coal,89 but has later 

been shown to be applicable for wood particles as well.86,91,92  

Several definitions for total devolatilization time are used in literature; measurements of 

gas evolution,91 rate of weight loss,93 or temperature history.84 In Paper III, the total 

devolatilization time was defined as the time when the particle center attained the 

maximum temperature (t5). This is the time when the reactions are practically 

terminated.86 In Paper IV, it was not possible to distinguish the maximum temperature T5 

from small temperature oscillations associated with structural changes or measurement 

errors in all the experiments (possibly due to higher sampling frequency), and t4 was used 

instead. This corresponds to the second local maximum in the heating rate at the particle 

center, and the conversion is about 95%.84 

For pyrolysis of beech and pine wood cylinders in FLiNaK at 500 °C (Paper III), it was 

found that the total devolatilization time followed the empirical correlation: 

       (4-5) 

with the values for ρ and keff (  as given in Table 3-1 (p. 22). There was a good 

agreement between the experimental data and the empirical correlations (Figure 4-19). 

According to Eq. 4-5, the devolatilization time should increase with increasing density, 

but this effect vanished on the expense of the exponential decrease with higher 

conductivity, and beech wood was found to decompose faster than pine wood for all the 

examined particle sizes. The correlations were in accordance with previous model 

predictions performed by Di Blasi,94 stating that density and thermal conductivity are the 

most important physical properties affecting the conversion time in biomass pyrolysis.  
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Figure 4-19. Total devolatilization times (expressed as t5 = tdev ) for beech (black) and pine (red) cylinders as 

functions of the cylinder diameter in FLiNaK at 500 °C. Symbols are for the experiments and solid lines for the 

empirical correlation given by Eq. 4-5. 

In Paper IV, the focus was the temperature dependence of the parameter A. Since only 

one wood type was used, the dependence on the physical properties was disregarded. 

However, the value n = 1.05 was retained, since the particle size (d = 3.5) was within the 

particle range used in Paper III (d = 1 – 8 mm). The devolatilization times in FLiNaK and 

(LiNaK)2CO3 were comparable within the accuracy of the data for all reactor 

temperatures, while the decomposition took longer time in ZnCl2-KCl for the lowest 

temperatures (Figure 4-20). The differences diminished with increasing reactor 

temperature, and for T = 600 °C the devolatilization times were practically the same in all 

the melts.  

 

Figure 4-20. Effect of reactor temperature on the devolatilization times (expressed as t4  [~ 95% conversion] for 

beech wood particles (L = 30 mm, d = 3.5 mm) in FLiNaK (black), (LiNaK)2CO3 (red), and ZnCl2-KCl (green). 
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An Arrhenius plot was constructed (Figure 4-21) to show that A depended exponentially 

on reactor temperature with the relations given in Table 4-3. This was in close agreement 

with the results reported by other researchers for both coal89 and wood.86, 92 The 

corresponding activation energies (Table 4-3) were in the same range as found by other 

researchers,86, 89 and their low values indicated that the process was controlled by heat 

transfer rather than chemical kinetics.95  

 

Figure 4-21. Effect of reactor temperature on the correlation parameter A (Eq. 4-5) for the devolatilization times 

for beech wood particles (L = 30 mm, d = 3.5 mm) in FLiNaK (black), (LiNaK)2CO3 (red), and ZnCl2-KCl 

(green). 

Table 4-3. Correlation parameter A, R2 values, and activation energies for beech wood cylinders (L = 30 mm,  

d = 3.5 mm) in molten salt pyrolysis.  

Molten salt 

 

A R2 Corresponding 

activation energy 

FLiNaK 0.698e1600/T  95.98 13.3 kJ/mol 

(LiNaK)2CO3 0.194e2662/T 99.28 22.1 kJ/mol 

ZnCl2-KCl 0.105e3264/T 99.51 27.4 kJ/mol 

4.3 Construction of an electrostatic precipitator (ESP) 

As described in Chapter 2.3.3, a large volume of inert gas is needed in most types of 

pyrolysis reactors.8 In molten salt pyrolysis, inert gas is used for turbulent mixing of the 

biomass and the melt, and for transportation of the produced vapors out of the reactor. The 

vapors are mostly in the form of aerosols, and contribute to less than 5 vol % of the total 

gas stream. This makes separation a difficult task.37, 96 In early pyrolysis configurations, 

quenching and solvent methods were widely used.5 Later research has found electrostatic 

precipitation (ESP) to be more effective,97 and this is currently the preferred method.5  
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One of the objectives in Paper V was the design and testing of a tubular ESP for oil 

collection in molten salt pyrolysis. Earlier attempts showed that external cooling both with 

tap water (~ 20 °C) and ice (~ 0 °C) was not sufficient, as it could be observed that 

uncondensed vapors were flowing out of the condensers. Solvent methods were not 

considered because the subsequent separation would complicate and add cost to the 

process,97 as well as give less accurate mass balances in laboratory scale experiments.  

In an ESP, the vapors are charged by a corona discharge and separated from the remaining 

gas stream by an electric field. The charged droplets are attracted to a grounded wall 

where they are neutralized and collected.98 No additional solvent has to be introduced to 

the system. The design of the ESP used in Paper V was adopted from Bedmutha et al.98  

(Figure 1, Paper V).  

A challenge when using an ESP is spark-overs, a phenomenon occurring when electrons 

find a conducting path and reach the grounded wall without being captured by molecules 

or particles. Spark-overs can happen when the voltage is too high or the inert gas breaks 

down.99 A lot of experimental effort was put in finding the settings that would give a 

stable operation during pyrolysis without experiencing any spark-overs. The ESP was 

operated by setting the central electrode at a positive potential ranging from 0 to 20 kV, 

and the V-I characteristics were determined by increasing the voltage slowly until spark-

over occurred. This was repeated several times to assure reproducibility. The values of the 

output voltage and current were read directly from the power supply, with the results 

shown graphically in Figure 4-22. Initial tests were performed with pure inert gases (Ar 

and N2) and during pyrolysis experiments with milled beech wood particles (0.5 – 2 mm) 

in a FLiNaK melt at 500 °C.  

 

Figure 4-22. Current vs voltage characteristics for the electrostatic precipitator (ESP).  

The ESP showed most stable operation when N2 was used as inert gas. The increase in 

current with applied voltage was slower, indicating poor conductivity of the gas. In 
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addition, spark-over occurred at a higher voltage. The different behavior was ascribed to 

lower break down voltages for Ar100 and differences of impurities of the inert gases  

(Table 3-3, p.24), the latter an effect also reported by Bedmutha et al.98 When pyrolysis 

vapors were included in the gas stream, the point for spark-over was raised. This was most 

likely because the vapors absorbed the electrons formed at the cathode, and thus reduced 

the possibility for the electrons to reach the grounded wall and cause sparking.  

By observing the outlet gas from the ESP through a bubble flask (Figure 3-6, p. 27), it was 

revealed that a minimum of 12 kV was required for separation of condensable pyrolysis 

vapors from the remaining gas stream. Since it was not possible to achieve stable 

operation with Ar at such high voltages, N2 was chosen as inert gas for the rest of the 

experimental work in Paper V.  

4.4 Molten salt pyrolysis of milled beech wood 

There is limited work within molten salt pyrolysis where the yields of pyrolysis oil have 

been reported. The only study with published results was performed by Jiang et al.62 

Pyrolysis experiments were carried out in molten chlorides with cold trap condensers for 

collection of pyrolysis oil. The highest oil yield from cellulose was 35.0 wt % in a ZnCl2 

melt at 450 °C, while the use of other chloride mixtures (ZnCl2-KCl, KCl-CuCl,  

ZnCl2-KCl-CuCl, ZnCl-KCl-FeCl2) only gave yields up to 15.0 wt %.  

In Papers III and IV, the melts FLiNaK and (LiNaK)2CO3 showed most promise as heat 

transfer media in pyrolysis. These salts were therefore selected for the pyrolysis 

experiments in Paper V, where the aim was to produce and collect pyrolysis oil. It was 

chosen to use milled beech wood particles (0.5 – 2 mm) in order to ensure rapid heat 

transfer throughout the samples.  

The feeding of the milled wood was a challenge. Several feeding methods were tested, but 

problems with clogging of the feeding tube occurred repeatedly. It was attempted to add 

the particles directly below the melt surface, but the feeding tube was clogged after a few 

batches, even when inert gas was introduced along with the samples. In the end, a ball 

valve based feeding system with a push rod was chosen (described in Chapter 3.4.2). It 

was important to add the particles in small batches and wait for complete mixing with the 

melt before adding a new batch. Due to the difficulties with the feeding, it was decided to 

perform three identical experiments with beech wood in FLiNaK at 500 °C to assure 

reproducibility of the experimental method. The rest of the experiments were performed 

once. Data for a typical experiment is shown in Table 4-4. Figure 4-23 shows an example 

of the pyrolysis oil collected from the ESP.  
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Table 4-4. Data for a typical experiment with milled beech wood (Paper V).  

 

Figure 4-24 and 4-25 show the influence of reactor temperature and salt composition on 

the yields of pyrolysis oil and char. The water content of the pyrolysis oil is depicted in  

Figure 4-26. Only the oil collected from the ESP (92 – 97 wt % of total oil yield) was 

analyzed with respect to water content.  

 

Figure 4-24. Pyrolysis oil yield (collected in ESP and cotton filter) as a function of the reactor temperature in 

FLiNaK (black) and (LiNaK)2CO3 (red).  

Information  

Experiment number 7 

Date 5/19/2014 

Wood particle size (mm)  0.5 – 2  

Salt (LiNaK)2CO3 

Reactor temperature 550 °C 

Results 

Wood input (g) 23.1 

Char yield (g) 5.0 

Char yield (wt %) 21.6 

Total pyrolysis oil yield (g) 5.2 

  ESP (g) 5.0 

  Cotton filter (g) 0.2 

Total pyrolysis oil yield (wt %) 22.5 

Water content of pyrolysis oil (wt %) 59.0 

Figure 4-23. Pyrolysis oil collected 

from the ESP during pyrolysis  

of milled beech wood in molten salts. 
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Figure 4-25. Char yield as a function of the reactor temperature in FLiNaK (black) and (LiNaK)2CO3 (red).  

 

 

Figure 4-26. Water content of pyrolysis oil collected from the ESP as a function of the reactor temperature in 

FLiNaK (black) and (LiNaK)2CO3 (red).  

The highest pyrolysis oil yield was achieved in FLiNaK, with a maximum of 34.2 wt % at 

500 °C, followed by a decrease with increasing reactor temperature. The pyrolysis oil 

yield in (LiNaK)2CO3 was nearly constant with temperature (19.0 – 22.5 wt %). Only 

minor temperature dependence on the char yield was observed in both salt mixtures for 

reactor temperatures above 500 °C. The water content varied greatly between pyrolysis in 

FLiNaK and (LiNaK)2CO3, but the same trend with lower water content for higher oil 

yields were observed.  

The oil yields were lower and the char yields higher compared with other fast pyrolysis 

technologies. For example, the yields for milled beech wood of equal particle size in a 
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fluidized sand bed at 500 °C (Paper II) were ~ 60 wt % pyrolysis oil and ~ 12 wt % char. 

In addition, very high water contents of the pyrolysis oil were observed in molten salt 

pyrolysis. This was somewhat unexpected, given the good heat transfer characteristics of 

the employed salts revealed in Papers III and IV. These findings from Paper V 

demonstrated that rapid heating of wood was not sufficient for maximizing the yields of 

pyrolysis oil, even if the reaction temperatures were comparable with other fast pyrolysis 

technologies (Papers III and IV). The results were explained by secondary reactions 

occurring. Early research has stated that longer vapor residence times were a major factor 

for secondary reactions, while later research has shown that the product yields are not as 

dependent on the residence time as originally assumed.81, 101 However, minerals 

containing the alkali elements Na and K are known to promote the formation of gaseous 

species and char on the expense of pyrolysis oil.102 Hence, the poor pyrolysis oil yields are 

most likely caused by a combination of mass transfer resistance in the melt leading to 

longed vapor residence times at elevated temperatures and at the same time giving 

prolonged contact with alkali elements found in the melts catalyzing further cracking. The 

oil yields were, however, generally higher than those previously reported for molten 

chloride pyrolysis of cellulose with cold trap condensers.62 

4.5 Challenges with molten salts in thermal processing of biomass 

Hydration of metal halides can result in formation of HX, where X represents a halide 

ion.103 In wood pyrolysis, water is one of the major products.47 Given the hygroscopic 

nature of FLiNaK, formation of HF gases according to Eqs. 4-6 – 4-11 is a concern. The 

HF gas could contaminate the pyrolysis products and also lead to extensive corrosion of 

metal elements found in process equipment.103  

      (4-6) 

      (4-7) 

       (4-8) 

       (4-9) 

       (4-10) 

       (4-11) 

The possible hydration reactions were simulated in HSC Chemistry software,59 with the 

results shown graphically in Figure 4-27. According to the simulations, hydration will not 

occur in the experimental temperatures ranges used in Papers III – V. It should be noted 

that the Gibbs free energies are well above zero for temperatures relevant for gasification 

processes as well.  
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Figure 4-27. Gibbs free energy as a function of temperature for the possible hydration reactions in FLiNaK.  

The concentration of HF in the outlet gas was also examined during pyrolysis of milled 

beech wood in FLiNaK at 600 °C by means of a FTIR gas analyzer (Paper V), but no 

significant amounts were detected. 

Using molten salts in thermal processing of biomass and waste has several technical 

challenges compared with more traditional methods. The choice of reactor materials is 

limited due to the corrosive nature of most molten salts. The challenge is greatest with 

halides, while oxygenated melts such as nitrates and carbonates actually passivate metals 

at moderate temperatures.66 The corrosion problem could be solved by using ceramic-

lined vessels and pipes instead of metals.  

Because the melts solidify at ambient temperatures, a form of storage and dump tank is 

needed for the startup and shutdown of continuous systems. Once melted, the salts may be 

easily circulated and pumped centrifugally or with gear pumps, or by simple gas-lift 

pumps.56 

Another possible obstacle is the separation of char and salt. It has been proposed to drain 

out the char residue due to density differences64 or burn out the char from the salt 

mixture.66 The latter would produce sufficient energy to make the process auto thermal. 

Because of the very low vapor pressure and high boiling point, the salts will not 

decompose in the process. Another possibility is to gasify the remaining char in a separate 

reactor, and produce valuable syngas at the same time. The remaining ash in the salt may 

be removed electrolytically or as slag at higher temperatures, and the salt could be 

reused.56 
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5 Conclusion  

The aim of this PhD work was divided in two main parts; the study of the thermal 

behavior of single wood particles of various sizes in fast pyrolysis and the investigation of 

molten salts as heat transfer media in the process. The literature research (Paper I) 

revealed that molten salts had previously been found to have good heat transfer 

characteristics, an important factor for achieving the rapid heating associated with fast 

pyrolysis. Molten salts also have very high thermal stability, a catalytic effect in cracking 

and liquefaction of large hydrocarbons, and selected noxious compounds could be retained 

in the melt after processing contaminated biomass. The focus in most of the reviewed 

work was gasification at higher temperatures or production of specific phenolic 

compounds from lignin, and it was clearly a need for more basic research on molten salt 

pyrolysis.  

The experimental work started with investigations of the effect of particle micro- and 

macrostructure and vapor outflow pattern in fast pyrolysis (Paper II). It was found that 

artificial solid wall cylinders (L = 50 mm, d = 6 – 14 mm) filled with milled beech wood  

(< 0.08 mm) and natural beech wood cylinders of equal macrosize gave comparable char 

yields in a fluidized sand bed reactor at 500 °C, meaning that no significant effect of 

microstructure was observed. At the same time, they both showed increasing char yields 

for larger cylinder diameters. In other words, the char yield was predominantly determined 

by the macrostructure. The outflow pattern showed a slightly more noticeable effect. 

Lower char yields were obtained for artificial wire-mesh cylinders (isotropic outflow) 

compared to solid wall cylinders (anisotropic outflow) filled with milled beech wood 

particles (0.08 – 0.2 mm). Although the observed effects were not very strong, it was 

claimed that the lower char yields were a result of less polycondensations of the vapors on 

char due to the fact that the vapors having an isotropic outflow have less contact with char.  

The study of thermal behavior of single wood particles was continued in molten salt media 

(Papers III and IV), and the discoveries provided basic knowledge on the heat transfer 

from molten salts to wood particles during pyrolysis. Beech wood cylinders (L = 30 mm,  

d = 1 – 8 mm) showed higher heating rates at the particle center and faster devolatilization 

times than pine wood cylinders of equal size in FLiNaK pyrolysis at 500 °C. This was 

ascribed to the higher thermal conductivity of the former. Yet, the all the reaction 

temperatures were still comparable for the two wood types (Paper III).  

One of the most important outcomes from the experimental work in this thesis was that the 

maximum heating rates were significantly higher in FLiNaK than in a fluidized sand bed 

for cylindrical beech wood particles with d ≤ 4 mm (Paper III). For smaller particles, the 

type of heat transfer medium was dominating, while the wood properties limited the 

process for larger particles. Comparison of several salt mixtures concluded that FLiNaK 

and (LiNaK)2CO3 showed better promise as heat transfer media than ZnCl2-KCl.  
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KNO3-NaNO3 was on the other hand not suitable for pyrolysis based on the observation of 

exothermic reactions between the salt and the formed carbon (Paper IV).  

The experimental results also showed that the effective pyrolysis temperature (T3), in 

which most of the cellulose and hemicellulose decompose, decreased rapidly with 

increasing particle size (Paper III). However, T3 was almost unaffected by reactor 

temperature (400 – 600 °C) and heating media (Paper IV).  

The total devolatilization times for cylindrical wood particles were found to follow the 

empirical correlation  (Papers III and IV). In Paper III, beech and pine wood 

cylinders were compared, and the parameter A was found to depend on the physical 

properties (density and thermal conductivity) of the wood. Based on the value of the 

exponent of the diameter (n = 1.05), it was claimed that the studied particle range covered 

both internal and external heat and mass transfer control. The parameter A also showed an 

exponential dependence upon reactor temperature (Paper IV) for beech wood  

(d = 3.5 mm). The corresponding activation energies were rather low (13.3 – 27.4 kJ/mol), 

indicating that pyrolysis of beech wood was controlled by heat transfer rather than 

chemical kinetics.  

Paper V dealt with the whole pyrolysis process with focus on collection of the produced 

pyrolysis oil. A tubular electrostatic precipitator (ESP) was designed and tested, and it was 

established that N2 as inert gas gave the most stable operation. A minimum of 12 kV was 

required for separation of the condensable pyrolysis vapors from the remaining gas 

stream. Pyrolysis experiments were conducted with milled beech wood (0.5 – 2 mm) in 

FLiNaK and (LiNaK)2CO3 at reactor temperatures between 450 and 600 °C. In spite of the 

good heat transfer performance of the employed salts (Papers III and IV), the oil yields 

were not comparable to other fast pyrolysis technologies, with a maximum of 34.2 wt % in 

FLiNaK at 500 °C (Paper V). The char yields and water contents of the oils were also 

higher than anticipated, and it was concluded that high heating rates were not sufficient for 

maximizing the oil yields, even if the reaction temperatures were proven to be comparable 

to other fast pyrolysis technologies (Papers III and IV). It is likely that mass transfer 

resistance in the melts have led to longer vapor residence times and more contact with 

alkali elements (Na/K) found in the melts, causing secondary reactions. However, the oil 

yields were for most parts higher than those reported for molten chloride pyrolysis of 

cellulose where cold trap condensers were utilized for oil collection.  

A possible concern when using FLiNaK as a reaction medium in thermochemical 

conversion of biomass is the reaction between the salt and produced water to form HF gas. 

According to both simulations and FTIR measurements of the outlet gas (Paper V), no 

significant amounts of HF are produced during beech wood pyrolysis in FLiNaK.  
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6 Future perspectives 

The focus in this work has mainly been on the heat transfer characteristics of molten salts 

during fast pyrolysis. Several salts showed good promise as heat transfer media, but the 

yields of pyrolysis oil were not as good as expected. It was suggested that prolonged vapor 

residence time and / or contact with alkali elements (Na / K) found in the melts were the 

cause of this. There are several ways in which this could be explored further:  

· The flow rate of inert gas stream affects the vapor residence time.  The effect of 

the flow rate of the inert gas on the yields of pyrolysis oil should be investigated in 

more detail.  

 

· The residence time is also affected by the void space above the melt. The salts 

densify drastically after melting. In this study, the crucibles were filled completely 

with salt powders, yet the salt height was less than half the crucible height after 

melting. More salt could be added through several premelting steps, giving less 

empty space in the reactor and a shorter vapor residence time.  

 

· The alkali elements Na and K are known to catalyze gasification on the expense of 

oil production if the produced vapors are kept in contact with them for longer 

times at elevated temperatures. It would be an idea to investigate other salt types 

that do not involve these elements.  

In this study, complete mass balances were not conducted due to lack of equipment for gas 

analyses. It was assumed that all the condensable gases were captured in the ESP and the 

cotton filter (based on visual observations), but there could also be losses that were not 

detected. By including a gas meter to measure the total gas flow and a micro-GC for 

quantifying the non-condensable gases, the produced gas fraction could be calculated, and 

potential losses in the system would be revealed. In addition, quantification of the non-

condensable gases could imply if secondary reactions are occurring, since it is known that 

CO2 originates mainly from primary pyrolysis, while CO and CH4 are mainly secondary 

pyrolysis products. 

The feeding system of milled wood could be improved. Continuously feeding of biomass 

by e.g. a mechanical screw would give both smoother feeding and pyrolysis reactions. In 

this way, even smaller particles could be added without experiencing clogging of the 

feeding tube, possibly leading to increased oil yields. The feeding tube could also be 

cooled to avoid decomposition of the feedstock before reaching the melt. Better mixing of 

biomass particles and melt could be achieved with mechanical stirring in addition to inert 

gas bubbling. However, these improvements require a redesign of the whole reactor setup.   
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In this work, the obtained pyrolysis oil was only analyzed with respect to water content. 

An important next step is to characterize the oils further in order to explore the possible 

applications of the oil obtained from molten salt pyrolysis.  

Another approach that would be interesting to pursue is gasification of biomass in FLiNaK 

and (LiNaK)2CO3. Pyrolysis is always the first step in gasification, and rapid heat transfer 

and reaction rates are important for gasification processes as well. Gasification has been 

the focus in previous research within thermal processing of biomass in molten salts, and 

perhaps this is a more promising way to utilize the good transfer characteristics of the 

salts. (LiNaK)2CO3 has been studied previously, but there are no published data on the use 

of FLiNaK in biomass gasification.  
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Abstract
Renewable energy has gained great attention and interest in recent years due to growing energy

consumption and greater environmental concerns. Biomass is regarded as a promising candidate for
replacing fossil-derived products, through either thermal, biological, or physical processes. This review

focuses on thermal processing of biomass in molten salts for production of renewable fuels and

chemicals, concepts based on dispersion of biomass or waste particles in a molten salt bath. Inorganic
salts have very high heat capacities and good thermal stability at high temperatures. Some molten salts

have catalytic properties, and in thermal processing of biomass, the product yields and compound

compositions of products can be adjusted by varying compositions and amount of molten salts. In
addition, molten salts will retain noxious contaminants, and it is thus possible to use difficult

convertible- and/or contaminated biomass as feedstock.

Keywords: pyrolysis; gasification; biofuels; molten salts; renewable energy
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1 INTRODUCTION

The world energy consumption has increased significantly the

last four decades. This increase is in pace with population
growth, improving living standards in developing countries

and an overall higher consumption in Western countries [1].

Due to the use of fossil fuels, the emissions of greenhouse
gases such as CO2 have increased. With growing energy con-

sumption and greater environmental concerns, there is a need

for more research on alternatives to fossil-derived products [2].
There are many alternatives to renewable electricity, but

biomass such as wood, energy crops and agricultural and for-

estry wastes can provide the main source of renewable liquid,
gaseous and solid fuels [3]. When used as fuel, biomass releases

the CO2 it absorbed from the atmosphere in the recent past,

not millions of years ago as with fossil fuel. Because of the
much shorter carbon cycle than fossil fuels, it contributes to

less net CO2 in the atmosphere [2]. There are a number of pro-

cesses for the conversion of biomass and residues to more
valuable energy forms. These include thermal, biological,

mechanical or physical process. In thermochemical conversion,

biomass can supply energy by direct combustion or via inter-

mediates by gasification or pyrolysis [4].

A common biomass material in thermochemical conversion
is wood [5]. Wood is an organic material that consists of

≏50% carbon, 6% hydrogen and 44% oxygen. The chemical

substances are originally produced in living cells of a tree, but
at the time of cutting, the major portion of the tree no longer

contains living cells. Thus, there are essentially no proteins and

other nitrogenous substances normally associated with living
cells [6]. The chemical structure of wood consists mainly of

cellulose (40–45%), hemicellulose (25–30%) and lignin (15–

35%). A simplified illustration is that cellulose forms a skeleton
surrounded by other substances functioning as matrix (hemi-

cellulose) and encrusting (lignin) materials [5].

This review focuses on pyrolysis and gasification of biomass
and waste in molten salts with renewable fuels and chemicals

as the main products. The research reviewed includes many

investigations that have not so far progressed beyond the la-
boratory scale. Thermal processing in molten salts is a relatively

small research area compared with “traditional” conversion

methods. There have been only a few publications within the
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subject every decade since the early 70s, and no review has

been published before.

2 PRINCIPLES OF THERMOCHEMICAL
CONVERSION PROCESSES

In thermochemical conversion, heat is supplied and the

biomass decomposes to a mixture of liquids (tars/oils), non-
condensable gases and solid chars. Char is the solid residue left

after devolatilization is complete. Tars/oils are defined as the

volatile products that are liquid at room temperature. The
remaining products are non-condensable gases such as CO,

CO2, H2, CH4 and other small hydrocarbons. The relative

yields depend on the amount of the oxidizing agent, process
temperature, pressure, heating rates and reaction time. The

choice of conversion technologies depends on properties and

quantity of the feedstock as well as on the desired main
product [3].

2.1 Pyrolysis
In pyrolysis, the decomposition of biomass occurs without any

oxidizing agent. The relative yields of the products depend
mostly on the rate of heating and the final temperature. The pro-

duction of charcoal is favored in slow pyrolysis—slowly heating

at low temperatures and long vapor residence times. Higher
yields of gas are achieved with higher temperatures and longer

residence times. Fast pyrolysis is applied when the aim is to

maximize the liquid fraction (bio-oil/pyrolysis oil) [4]. In fast
pyrolysis, biomass is heated rapidly to moderate temperatures of

around 5008C and short reaction times of up to 2 s. When wood

is used as a feedstock material in continuously operated labora-
tory reactors and pilot plants, typical oil yields are between 60

and 70 wt% on a dry-feed basis. This has been shown in a

number of laboratory reactor configurations developed over the
last 20 years, including bubbling fluid beds, circulating and

transported beds, cyclonic reactors and ablative reactors. Several

pilot plants have been constructed, in addition to a few demon-
stration installations. A detailed description of the reactor con-

figurations may be found in the review of fast pyrolysis

technology development by Venderbosch and Prins [3].
Pyrolysis oil is a dark brown, free-flowing liquid. The oil is

a complex mixture of components from depolymerization of

cellulose, hemicellulose and lignin [7]. Several hundred compo-
nents have so far been identified, with water being the single

most abundant component [3]. Other major groups of com-

pounds identified are hydroxyaldehydes, hydroxylketones,
sugars, carboxylic acids and phenolic compounds. The elemen-

tal composition resembles that of biomass rather than that of

fossil fuel oil, and the properties of pyrolysis oils are therefore
somewhat different from that of heavy fossil fuel oil [7].

The heating value of pyrolysis oil is ≏50% that of heavy

fossil fuel oils due to the high moisture and oxygen contents.
However, the moisture content also reduces the viscosity and

enhances fluidity, which is beneficial for combustion in an

engine. Much of the oxygen is distributed in carboxylic acids,

which makes the pyrolysis oil unstable and corrosive and thus
imposes requirements on construction materials in boilers and

engines if it is to be used directly. The viscosity of the pyrolysis

oil decreases rapidly at higher temperatures, but increases
during storage [7].

2.2 Gasification
Gasification is thermal decomposition by partial oxidation.

The first step in biomass gasification is evaporation of the
moisture. This is followed by pyrolysis, in which the biomass

decomposes to give a mixture of gas, vaporized tars or oils and

a solid char residue [4]. Using cellulose as representative feed-
stock composition under idealized conditions, the pyrolysis re-

action is given by [5]:

C6H10O5 ! 5COþ 5H2 þ C ð1Þ

The pyrolysis products will further react with a gasifying agent

to give permanent gases of CO, CO2, H2 and small quantities

of hydrocarbon gases [4]. This could be represented by carbon
gasification. Two general routes are gasification with CO2

(Boudouard reaction) or steam (water gas shift reaction), re-

spectively [8]:

Cþ CO2 ! 2CO ð2Þ
Cþ H2O ! COþ H2 ð3Þ

The carbon reduces the gasifying agent and the main product

is synthesis gas, a mixture of H2 and CO. The synthesis gas

could be used directly as a low-to-medium energy fuel gas or
further upgraded to liquid fuels, synthetic natural gas or other

hydrocarbons [5].

Due to reactor and chemical reaction limitations, it is not
possible to achieve a complete reaction of all the pyrolysis pro-

ducts. Hence, the final product gas is contaminated with tars

to a certain extent. Tar formation is the most significant tech-
nical barrier, and much research is focused on thermal and/or

catalytic tar cracking [4].

A number of reactor configurations have been developed
and tested for biomass gasification; mainly downdraft

(co-current) fixed bed gasifiers, but also fluid bed reactors are

available. Several technologies have been successfully demon-
strated at a large scale, but the process is still expensive com-

pared with fossil-based energy. The available reactor

configurations for biomass gasification have been reviewed by
Bridgwater [4].

3 THERMAL PROCESSING IN MOLTEN
SALTS

In molten salt pyrolysis and gasification, the thermal decom-
position of biomass is performed in a molten salt bath. During
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the process, the molten salt is simultaneously used as the heat

carrier, catalyst and solvent.

Inorganic molten salts, ranging from zinc chloride and alkali
metal halides to alkali metal carbonates and nitrates, have very

good heat transfer characteristics [9]. They have large heat cap-

acities and are very stable at high temperatures and may be used
over a wide range of temperature, from around 1208C to well

over 10008C. These properties make molten salts suitable for

rapid heat supply in thermal processing of biomass [10]. It has
been shown that thermal processing in molten salts give higher

heating rates than without molten salts [11], an important factor

in fast pyrolysis in order to maximize the liquid fraction [3].
Some molten salts, especially halides, have a catalytic effect

in the decomposition of larger molecules with respect to pro-

ducing certain chemicals [12] and may thus give a simpler
product mix in the pyrolysis process. The catalytic effect makes

it possible to adjust the product yields and compound compo-

sitions of products by varying the composition and amount of
molten salts [9, 12–14].

In the gasification process, carbonates are known to catalyze

the carbon gasification reactions with CO2 and steam [10],
according to the following mechanisms [15]:

Carbon gasification by CO2:

M2CO3 þ 2C ! 2Mþ 3CO ð4Þ

2Mþ CO2 ! M2Oþ CO ð5Þ

M2Oþ CO2 ! M2CO3 ð6Þ

Carbon gasification by H2O:

M2CO3 þ 2C ! 2Mþ 3CO ð7Þ

2Mþ 2H2O ! 2MOHþ H2 ð8Þ

2MOHþ CO ! M2CO3 þ H2 ð9Þ

M is an alkali metal. The total reactions are the Boudouard reac-

tion [Equation (2)] and water gas shift reaction [Equation (3)],

respectively, and no salt is consumed in the process.
Another advantage in thermal processing of biomass in

molten salts is that selected noxious contaminants are retained

in the melt [16], which makes it possible to apply the method
on contaminated biomass and waste.

The use of molten salts in thermochemical processing of

biomass has several technical challenges compared with conven-
tional methods. The choice of reactor vessel and other process

materials is limited by the high corrosiveness of the melts.

Halides are the most troublesome, and in some cases,
ceramic-lined vessels and pipes have to be used instead of metals.

Oxygenated melts such as nitrates and carbonates may on the

other hand passivate metals at moderate temperatures. The
startup and shutdown in an industrial scale is more of a problem

than in conventional processes due to the fact that melts solidify

at ambient temperatures. Some form of storage and dump tank is
required where the salt could be melted prior to being pumped to

the reactor system. The melt can be circulated and pumped cen-

trifugally or with gear pumps or by simple gas-lift pumps [10].

3.1 Wood pyrolysis
Yasunishi and Tada [11, 17] studied wood pyrolysis in molten

salts. Sapwood of sugi (Cryptomeria japonica) and konara

(Quercus serrata) were in both studies pyrolyzed at 600–9008C
in different mixtures of carbonates and chlorides. In the first

study [11], molten salt was found to give heating rates of

sample wood 4–10 times that in an inert atmosphere, with the
highest heating rate being 12 5008C/min in a mixture of

sodium chloride (NaCl) and potassium chloride (KCl) at

9008C. It was also found that molten salt gave increased yields
of wood gas and char. The focus in the second study [17] was

the composition of the yields. Carbonates or mixtures of zinc

chloride (ZnCl2) and KCl were found to give highest concen-
trations of hydrogen in the gas, while the mixture of NaCl and

KCl gave the highest concentration of methane and ethylene.

A more recent experimental study of pyrolysis of biomass in
molten salt media was conducted by Jiang et al. [13]. Samples

of cellulose and rice stalk were pyrolyzed in molten mixtures of

metal chlorides and nitrates at temperatures between 400 and
6008C. The yields of bio-oil increased and then decreased with

increasing temperature, with an optimal temperature at

≏5308C. This was explained by the fact that increasing tem-
perature also causes secondary cracking reactions and thus

higher yields of gaseous products at the sacrifice of liquid pro-

ducts. Both liquid yield and water content of bio-oil were
found to be strongly dependent on the molten salt compos-

ition. ZnCl2 have the highest yield of bio-oil (35 wt%), but

with a water content of 46 wt%. A mixture of KCl and CuCl
gave a much lower water content (21 wt%), and the yield of

bio-oil was also significantly lower (11.8 wt%).

3.2 Pyrolysis of lignin for production of phenolic
compounds
A few studies on the pyrolysis of lignin in molten salts for the

production of chemicals have been reported [12, 14, 18].
Lignin is a major constituent of wood and other biomass

materials. It is constructed from aromatic subunits, and it is

suggested that valuable chemicals such as phenolic compounds
can be derived from lignin [12]. In order to achieve high yields

of phenolic compounds, there is need for a method that pro-

motes the production of aromatic compounds. Previous re-
search on the hydrocracking of coal have shown that zinc

halides have a superior selectivity to produce single-ring aro-

matic compounds due to a low hydrocracking activity on
single-ring coal derivatives [19].

Sada et al. [12] studied the conversion of kraft and solvoly-

sis lignin into phenolic compounds by molten salt pyrolysis.
The pyrolysis was performed in mixtures of molten ZnCl2 and

KCl with molar ratios of 3/7 and 7/6 over the temperature

range of 500–8008C. KCl was added to ZnCl2 as a viscosity
reducer to promote phase separation, in addition to reducing

Review of thermal processing of biomass and waste in molten salts
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the melting point of the salt. The yields of phenolic com-

pounds were influenced by both the temperature and the

molten salt composition. At low temperatures, the major pro-
ducts were cresols, while higher temperatures also gave

phenols. Further, it was shown that a molar ratio of 7/6 had a

high selectivity to cresols, giving a maximum yield of 4.6 wt%
from solvolysis lignin at 6008C. For kraft lignin, a maximum

yield of cresols of 1.8 wt% was found under the same

conditions.
In order to improve the liquid yields in the molten salt pyr-

olysis of lignin, Kudsy et al. [14] continued the studies by

adding tetralin vapor as a hydrogen donor in the same reactor
arrangements. Kraft lignin was pyrolyzed in a molten ZnCl2–

KCl mixture with a molar ratio of 7/6. The temperature ranged

from 400 to 7008C and the tetralin vapor was added in 0.4 and
4 mol% diluted with N2. The gaseous products H2, CH4 and

CO were analyzed by gas chromatography. The results did not

show any significant effect of tetralin vapor addition on the H2

yield, indicating that the hydrogen radical produced from tet-

ralin was not consumed in the formation of H2 but instead in

the formation of phenolic compounds and light liquids. The
yields of CH4 and CO were on the other hand slightly

increased with the addition of tetralin vapor. The yields of

phenolic compounds such as p-, m- and o-cresols, phenol and
2,5- and 2,6-xylenols were all increased by tetralin vapor add-

ition. At 6008C and 4 mol% tetralin vapor, the yields of cresols

and total phenolic compounds were increased by 38 and 78%,
respectively. The formation of the light liquids benzene,

toluene and xylene were also enhanced by the tetralin vapor

addition, most likely due to reactions between lignin tar and
hydrogen radicals.

The arrangements for molten salt pyrolysis of lignin were

further modified by Kudsy and Kumazawa [18] to allow in-
vestigation of the kinetics in the pyrolysis process. Kraft

lignin was pyrolyzed in molten ZnCl2 and KCl with a molar

ratio of 7/6 at temperatures of 500, 550 and 6008C. The
effect of the amount of salt was also examined by using three

levels of salt-to-lignin ratios (SRs); SR ¼ 1, 2 and 3. Nineteen

kinds of phenolic compounds were identified and quantified
by gas chromatography. Among these were monohydroxyphe-

nols, guaiacols, catechols and syringols. The yields of both

gaseous and liquid products were found to depend strongly
on the amount of salt. SR ¼ 1 gave the lowest value of

gaseous products and the highest yield of phenolic com-

pounds except for phenol. The latter attained highest yields
at SR ¼ 3. There was a maximum in the yields of all phenolic

compounds at a reaction time of 15 min for SR ¼ 1 and a

temperature of 5508C. After the maximum, the yields of
most phenolic compounds decreased, and the formation of

gaseous products was observed. The study also examined the

kinetics of the phenolic compounds’ decomposition. It was
found that the formation of cresols and guaiacols follow a

first-order reaction sequence, while another model is required

for catechol.

3.3 Hybridization with solar energy
Molten salt gasification has been proposed in hybridization
with solar energy. The process was originally considered for the

gasification of coal and active carbon [8, 20, 21], but the same

principles may be applied for biomass [9, 22]. Conventional gas-
ification depends on heat by partial combustion of the biomass

feed within the reaction bed [4]. In solar gasification, a concen-

trating solar receiver could be used to heat and melt the salt.
Biomass is introduced to the molten salt bath where the decom-

position reactions occur. The molten salts may also be used as a

thermal storage for solar energy. In this way, the gasification
process is stable under the fluctuation of insolation [9].

Yoshida et al. [8] studied the gasification of active carbon

and coal with CO2 in a mixture of potassium carbonate
(K2CO3) and sodium carbonate (Na2CO3) at 9008C. CO2 was

chosen as a gasifying agent instead of H2O due to easier

feeding to the reactor and the possibility to store more energy
per mole of carbon. In addition, recycling of CO2 helps redu-

cing the amount of CO2 emission in the environment. CO2

was streamed along the molten salt surface, and the CO evolu-
tion rate was measured. The molten salt was found to enhance

the gasification rate by 3.3 and 1.5 times for coal and active

carbon, respectively, compared with the absence of the molten
salt. However, the CO evolution rate decreased after 5 min due

to sedimentation of the coke formed by coal pyrolysis.

Matsunami et al. [20] modified the reactor to allow CO2 bub-
bling through the molten salt. In the modified reactor, better

contact between CO2 and coke formed by coal pyrolysis was

achieved. Due to the CO2 gas bubbling, the coke particles were
suspended in the molten salt thus preventing their sedimenta-

tion. This approach was found to be an effective method to

maintain a high CO evolution rate.
Adinberg et al. [9] proposed a hybridization of solar and

bioenergy using molten salts as a further development of the

solar gasification of coal. In the experiments, a eutectic
mixture of K2CO3 and Na2CO3 with a melting point of 7108C

was used. Cellulose tablets were pyrolyzed at reaction tempera-

tures of 800–9158C without any gasifying agent in order to
study the first step in the gasification process. Experiments

were also conducted without molten salt for investigation of

the influence of molten salt on the process. The molten salt
was found to increase the heating and reaction rates in the pyr-

olysis process and the total amount of gas produced. At 8508C,

the reaction rate was increased by 20% and a total solid-to-gas
conversion of 94 wt% was observed in the molten salt reaction

medium, in contrast to 72 wt% in an inert atmosphere. The

yield of H2 was 26 and 21 vol% with and without salt, respect-
ively. These observations were explained by enhanced heat

transfer and the catalytic effect that carbonates have on the re-

action between char and pyrolytic water.
A solar gasification study with independently explorations

of pyrolysis and gasification reactions was reported by

Hathaway et al. [22]. Pyrolysis of cellulose and steam gasifica-
tion of activated wood charcoal were performed in a eutectic
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mixture of lithium, potassium and sodium carbonates at tem-

peratures ranging from 851 to 9628C. In the presence of

molten salt, the pyrolysis rate was increased by 74% and the
gasification rate by more than an order of magnitude. Catalysis

was not observed in the pyrolysis because the reactions were

too fast for sufficient contact between the melt and the cellu-
lose. The increased pyrolysis rate was instead explained by

enhanced heat transfer within the salt. However, the data sup-

ported a catalytic effect of salt during the steam gasification of
carbon. For cellulose pyrolysis in molten salts, the yields of the

primary products H2 and CO were found to be increased by

29%, while the CO2 yield decreased by 62% compared with
pyrolysis in the absence of molten salts. The increase in H2

and CO was explained by a combination of reduced CO2 pro-

duction and cracking of retained tars.

3.4 Thermal treatment of waste in molten salts
There have been several reports on using waste as feedstock in
molten salt pyrolysis and/or gasification for the production of

fuels. Experiments have been conducted with, for example,
municipal refuse [16] and plastic waste [23–25]. More recent

studies have focused on wastepaper and organic waste as

feedstock [15, 26, 27].
Hammond and Mudge [16] reported a feasibility study of

pyrolysis of municipal refuse in molten salts. A typical refuse

mix was pyrolyzed in molten Na2CO3 at 870–10008C. The
off-gas initially contained ≏50 mol% H2, but pretreatment of

the melt with steam gave up to 73 mol% H2. The gas was es-

sentially free of tars and oils, and as a consequence of this,
minimal gas cleanup was required. To make the process auto-

thermal, it was suggested to combust the char residue with air

or oxygen. Molten salt pyrolysis of municipal refuse was found
to be technically feasible, but economically impractical com-

pared with other recovery methods. This was mainly due to

the high cost of the materials needed for resisting the corrosiv-
ity of the molten salt. Also, the ash removal was found to be

quite complicated. However, because noxious contaminants

were retained in the melt, molten salt pyrolysis was recom-
mended as a destruction method of hazardous wastes.

Menzel et al. [23] reported a study on using molten salt for

recycling of plastics. Polyethylene, polystyrene and polyvinyl
chloride (PVC) were pyrolyzed in a mixture of MgCl2 and KCl

at temperatures between 640 and 8508C. The main products

from the pyrolysis of polyethylene were ethylene and methane.
A small amount of propene was also detected, but the content

decreased with increasing temperature. A large amount of

styrene was found from the pyrolysis of polystyrene, but the
yield decreased with increasing temperature in favor of

benzene. Pyrolysis of PVC gave up to 58 wt% HCl, and only

up to 29 wt% liquid hydrocarbons.
The work was followed up by Bertolini and Fontaine [24],

who investigated the pyrolysis of plastic waste in molten salts

in an eutectic salt consisting of NaOH and Na2CO3 at relatively
low temperatures (420–4808C). The “pure” plastics

polyethylene, polypropylene, polystyrene and polyvinyl chlor-

ide were used in the experimental studies. The studies showed

that the pyrolysis of polyethylene and polypropylene gave
usable paraffins and waxes, but they had to be separated from

the pyrolysis oil. Chlorine containing plastics were almost

completely dechlorinated by using basic salts, and no HCl acid
was produced, in contrast to what Menzel et al. [23] reported.

However, since salt was consumed in the process due to the

formation of chlorides in the melt, Bertolini and Fontaine [24]
primarily suggested molten salt pyrolysis as a method of pro-

ductive elimination for mixed plastic waste.

Another study of the pyrolysis of polymer waste was
reported by Chambers et al. [25]. They investigated the pyr-

olysis of the rubber-rich organic fraction from an automobile

shredder in eight different eutectic mixtures of chlorides. The
temperatures in the experiments were between 380 and

5708C. One of the aims of the research was to determine con-

ditions maximizing both the amount of oil produced and the
fraction of low-boiling components in the oil. Acidic melts

such as NaCl/AlCl3 gave the highest gas production, while the

highest yields of oil were obtained in chloride melts contain-
ing copper at a temperature of 5008C. Oils with the largest

fraction of low-boiling compounds were produced under con-

ditions that gave methane as the largest hydrocarbon compo-
nent in the gas. The light components of the oil were

aromatic; primarily toluene, ethylbenzene, styrene and C3 and

C4 alkylbenzenes. The results suggested that recycling of the
higher boiling components through the melt would lead to

further cracking. Hydrogen is a limiting factor in molten salt

pyrolysis. Too low hydrogen content results in incomplete
conversion of carbon to gaseous or liquid hydrocarbons and

thus great amounts of carbon in the residue char. Chambers

et al. found the most efficient conversion of H2 in the KCl/
LiCl melt with 10% CuCl.

More recent studies have focused on converting wastepaper

and organic waste into valuable fuels by thermal processing in
molten salts. The main content of wastepaper is cellulose, and

it could be regarded as a kind of biomass. Iwaki et al. [15]

studied wastepaper gasification with carbon dioxide and steam
in molten carbonates at temperatures between 700 and 7508C.

In the experiments, wastepaper was represented by tissue

paper. Different mixtures of Li2CO3, Na2CO3 and K2CO3 were
used. In CO2 gasification, carbon conversion was most efficient

when Li2CO3 was included in the melt. This was ascribed to

the molecular size of the salts; smaller alkali metals ought to
be more easily dipped into the wastepaper and thus have

higher catalysis activity. A few experiments were also conducted

with newspaper and copy paper. These also contain fillers like
silicon dioxide, silicate, calcium carbonate and kaolin. The

results implied that the process could be applied to all the

materials, although copy paper had a somewhat lower reaction
rate, most likely due to the calcium content which inhibits the

contact efficiency between the paper and CO2.

The work was followed up by Jin et al. [26] who focused on
wastepaper gasification with CO2 catalyzed by molten carbonate
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melts at temperatures between 650 and 7508C. Experiments

without salt were conducted for comparison. It was found that

no CO was produced when the wastepaper was introduced in a
gaseous environment without molten salts. Once Na2CO3 was

present, a remarkably rise in the reaction rate was observed.

This was explained by the shift of the interface between wastepa-
per and CO2 in the reaction system from gas-solid to gas-liquid,

allowing CO2 to attack wastepaper effectively.

The maximum reaction rate increased by four times for the
intermixture of Na2CO3 and K2CO3 and by five times when

Li2CO3 was present. It was suggested that alkali metals catalyze

the process of breaking b(1,4)-glycosidic bonds found between
the glucose monomers that form the cellulose polymer.

Sugiura et al. [27] reported a study on the gasification of

organic waste with CO2 in a molten salt comprising Li2CO3

and K2CO3. Sludge from a sewage plant and rice were selected

as representatives of organic waste, and experiments were con-

ducted at temperatures from 500 to 7508C. The highest tem-
perature was found to be best for gasification. Sulfur was

assumed to be absorbed by the molten salt, but SOx was found

in the product gas. This was explained by too short contact
time between sludge and molten salt.

4 CONCLUSIONS AND
RECOMMENDATIONS FOR FUTURE WORK

Thermochemical conversion of biomass in molten salts is a

relatively small research area compared with “traditional”
methods. With increasing energy consumption and an increas-

ing concern about the limitations and environmental problems

associated with fossil fuels, the research area has gained
renewed interest the last few years. However, only lab-scale

experiments have been reported, and the processes are yet to

be tested further in pilot and demonstration scales.
Molten salts have very good heat transfer characteristics and

therefore provide an efficient heat transfer in the processes.

Molten salts also have very high thermal stability and are
capable of storing a great amount of heat over a long period of

time. The fact that molten salt processing of biomass is pro-

posed to be combined with solar energy makes the process
even more interesting from a renewable point of view. Besides

the role as a heat transfer medium, molten salts could work as

a fluid reacting bed and as a catalyst in the conversion process.
Because noxious contaminants are retained in the melt,

thermochemical conversion in molten salts might be a good

way of destroying and converting hazardous waste into fuel or
other valuable chemicals. Even chlorine containing plastics are

completely dechlorinated, no HCl is produced in the pyrolysis

process. However, the products have to be thoroughly exam-
ined so that no hazardous chemicals will be released during

further processing.

The focus in most of the previous work on molten salt pyr-
olysis and gasification has been the yields of synthesis gas.

Molten carbonate baths at relatively high temperatures have

been used for this purpose, resulting in high yields of H2 in

the gaseous fraction. Some work has also been conducted with
chlorides, but carbonates seem to give more desirable effect in

these processes.

At lower temperatures, the liquid fraction is favored. Molten
salts are found to give higher heating rates, which will promote

the fast pyrolysis leading to a larger liquid fraction. The studies

of production of bio-oil prescribe the liquid yield to the cata-
lytic effect halides have on producing single-ring aromatic

compounds. However, there seems to be no good explanation

on why chlorides are chosen instead of other halides.
There has not been very much work on the characterization

of the liquid fraction. The yield of phenolic compounds in the

liquid fraction has been investigated, but further characteriza-
tion needs to be conducted in order to explore the possible

applications of the oil obtained from molten salt pyrolysis

compared with oils from other pyrolysis processes.
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ABSTRACT: The influence of particle geometry and microstructure in fast pyrolysis of beech wood has been investigated.
Milled wood particles (<0.08−2.4 mm) and natural wood cylinders (2−14 mm) with different lengths (10−50 mm) and artificial
wood cylinders (Dp = 0.5−14 mm) made of steel walls, filled with small milled wood particles (<0.08−0.140 mm), have been
pyrolyzed in a fluidized bed at 500 °C. From the results of the experiments, the influence of particle geometry and microstructure
on char, gas, and pyrolysis oil yield and pyrolysis oil composition has been derived. The product yields of large cylinders with
diameters of 6−14 mm are primarily determined by the outer diameter and resulting heating rate. The microstructure of these
cylinders, being either natural channels or randomly packed small milled wood particles, has turned out to be much less
important. For the smaller milled wood particles, the microstructure does have a profound effect on the product yields. The
smallest particles (<0.140 mm), which consist only out of cell wall material and have lost their typical wood channel structure,
show a clearly higher oil yield and lower char yield. It is postulated that the high pyrolysis oil yield can be explained by larger
mass transfer rates of pyrolysis products from these smallest particles, as compared to mass transfer from particles containing
channels.

■ INTRODUCTION

Fast pyrolysis of biomass is a thermochemical conversion
method to obtain a pyrolysis oil, along with a solid char and
noncondensable gas, by fast heating of the biomass in the
absence of oxygen. Pyrolysis oil is a complex mixture of many
oxygenated compounds like sugars, acids, furans, phenols,
aldehydes, ketones, and water insoluble lignin derived
oligomers.1−3 Water is one of the most abundant compounds
in pyrolysis oil.4 Water lowers the viscosity and the heating
value of the oil, and at high concentrations, it causes the oil to
phase separate.5−8 Levoglucosan is an interesting monosugar
that can be hydrolyzed to form glucose or can be directly
fermented to produce ethanol.9 The water-insoluble lignin
derived oligomers present in pyrolysis oil have the potential to
be used for the production of transportation fuels.10

In the last three decades, many pyrolysis reactors have been
developed. Generally, these reactors can be classified as
bubbling fluidized beds, circulated fluidized beds, ablative
reactors, screw reactors, rotating cones, and vacuum
reactors.11−13 Design and optimization of these pyrolysis
processes requires insight and understanding of the chemical
reactions and physical processes involved during the conversion
of the biomass particles. One area that still needs further
research is the effect of the biomass particle shape and size on
char, gas, and pyrolysis oil yield and composition. Wang et al.14

have shown that variation of the diameter of wood cylinders
between 0.7 and 14 mm (Lp/Dp > 3) has a minor effect on the
total liquid yield. It was observed experimentally in their study
that the water production increased as the diameter of the
cylinder increased. Shen et al.15 studied the effect of mallee
wood particle size (18−5.6 mm) on the yield and composition
of pyrolysis oil using a fluidized bed reactor operated at 500 °C.

It was found that the bio-oil yield decreases as the particle size
increased from 0.3 to 1.5 mm. Shen et al.15 postulated that
destruction of the wood particle structure by milling could be a
reason for higher oil yields for smaller particles. In the particle
size range of 1.5−5.6 mm, no further decrease of oil was found
by these researches. Salehi et al.16 pyrolyzed three fractions of
milled wood particles, <0.59, 0.59−1, and 1−1.4 mm, in a
fluidized bed operated at 500 °C and noticed that the oil yield
decreased rapidly from 62 to 52 wt % as the sawdust size
increased from <0.59 to 0.59−1 mm. For larger sawdust sizes,
the decrease in oil yield leveled off.
Since the costs associated with biomass grinding increase

with decreasing particle size,17 there is need to identify the
optimal particle size for which acceptable oil yields are obtained
and if the oil still satisfies the specifications for further usage.
One of the important characteristics of the pyrolysis process

is the heating rate of the biomass particle.18−20 Heating rate and
final pyrolysis temperature both have a large impact on the
pyrolysis product yields and pyrolysis oil quality.5,21,22 For
particles larger than ∼1 mm, the external heat transfer and/or
thermal diffusivity controls the conversion rate. For beech
wood particles smaller than ∼1 mm, decomposition is said to
take place very close to the reactor temperature and is more
likely to be controlled by its kinetics.18

In addition to heat transfer and final pyrolysis temperature,
the time needed for the (partial) depolymerized biomass, being
in the liquid or solid state, to leave the reacting particle by
vaporization/sublimation of vapors or physical entrainment of
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aerosols is seen as an important issue determining the product
distribution.5,15,22,23 Haas et al.23 performed real-time micro-
scope analysis of poplar wood undergoing pyrolysis. The poplar
wood was heated with 150 °C/min to 500 °C. It was clearly
visualized that liquid droplets exist inside the decomposing
wood structures and that some of the droplets were trapped
inside the particle. This is a clear indication on limitations for
newly formed liquid (partly depolymerized biomass) to leave
the particle. Vapors/aerosols created inside the biomass
particles find their way out mainly via channels inside the
biomass structure (anisotropic vapor outflow).23 When these
compounds do not leave the hot biomass particle fast enough,
they will cross-link and eventually form char.22

There are two main objectives in the present paper. The first
objective concentrates on the effect of beech wood geometry
(shape and size) on the char, gas, water, organics, water
insolubles, and levoglucosan yield. Wood cylinders of 2−14
mm and milled particles of 0.25−2.5 mm were pyrolyzed in a
fluidized bed at 500 °C. The second objective of this study is
focused on the effect of wood microstructure and vapor/aerosol
outflow patterns (anisotropic/isotropic) on the char yield.
Artificial wood cylinders with solid walls (1, 6, 10, or 14 mm
inner diameter) and wire-mesh end-caps at both sides, filled
with milled particles (<0.08 mm), were used to study the effect
of microstructure on pyrolysis. The results will be compared
with those obtained with artificial cylinders completely made
from wire mesh (6, 10, 14 mm), filled with milled particles of
0.140 mm to investigate the effect of isotropy/anisotropy in
outflow of the produced vapors.

■ EXPERIMENTAL SECTION

Wood Particles. Beech wood (660 kg/m3) was used as feedstock
in the pyrolysis experiments. The ash content was determined to be
between 0.5 and 0.6 wt % and elemental composition was as follows:
N = 0.5 ± 0.1, C = 46 ± 1, H = 7 ± 0.5, and O = 46 ± 1 wt %. The
biomass was dried for 24 h at 105 °C prior to the experiment. The
residual moisture content is below 1 wt %. In this paper, we changed
both the geometry (shape and size) and microstructure of the wood.
Wood cylinders (Dp = 2−14 mm) and milled particles (Ls = <0.08−
2.4 mm) were used. The length of the cylinders was always 50 mm
resulting in an aspect ratio larger than 3, which made the particles one-
dimensional (the diameter) with respect to internal heat transfer.
Milled wood particles were obtained by extensive milling of the wood
cylinders followed by sieving (using sieves of 0.08−2.4 mm) into
several fractions. The size of the milled wood (Ls) is herein defined as
the middle value of the upper and lower size limits of the sieve meshes.
This definition of the particle size is about the same as that of Shen15

used to allow for comparison. It must be noted that the smallest
dimension of a particle in a certain sieve fraction, the one being most
important for heat transfer, can be smaller than the size of the smallest
sieve. The shape of the milled wood particles can vary a lot and is
difficult to define. From microscope analysis, it became clear that most
milled particles have rectangular or (almost) round shapes. The effects
of the wood geometry on pyrolysis has been studied by comparing the
pyrolysis product yields of wood cylinders and milled particles of
varied sizes.
The effect of the microstructure of milled particles and wood

cylinders on the char yield was also studied. The microstructures used
in our work are schematically visualized in Figure 1. For wood
cylinders, the microstructure consists of longitudinal channels (cells).
The outflow of vapors, aerosols, and gases is anisotropic; these
products leave the biomass mainly via the channels. Figure 2 shows
that for the milled particles of 1 mm the wood still consist of channels.
Milled particles of around 0.1 mm, however (shown in Figure 3),
consist only of cell wall material. Microscope analysis of the sieve
fractions showed the fractions of 0.14 mm and below only consisted of

cell wall material. Hence, the microstructure of these particles is
different compared to the cylinders and the larger milled particles.

The milled particles (<0.08 mm) are also inserted in metal
(stainless steel) cylinders with a solid cylindrical wall (Dp = 0.5, 6, 10,
14 mm, internal diameter) and wire-meshes at the bottom and top.
These cylinders are called further artificial solid wall (sw) cylinders.
The microstructure of these artificial wood cylinders is very different
compared to the natural wood cylinders: randomly packed particles
versus highly structured longitudinal channels. By comparing the char
yields of natural wood cylinders with those of artificial cylinders while
varying the diameter, it can be evaluated whether cylinder diameter or
internal microstructure is dominant with respect to the char yield.

Also artificial cylinders (filled with milled particles of 0.14 mm)
completely made out of wire-mesh were used. Produced vapors,
aerosols, and gases flow out of the particle in an isotropic manner.
These cylinders are called further artificial wire-mesh (wm) cylinders.
Comparison of the char yield of these cylinders with char yield of
identical artificial cylinders with a solid cylindrical wall provides
information on the importance of the outflow pattern.

Artificial wood cylinders of 0.5 mm ID and varied length (10−50
mm) were filled with small milled particles (<0.08 mm) consisting
only of cell wall material. By comparing the char yields of the cylinders
with different length, it is investigated if the contact time of produced
vapors and aerosols with char has influence on the char yield.

Figure 1. Particles used. (A) Wood cylinders having channels in
longitudinal direction. (B) Milled particles containing channels or
existing only out of cell wall material. (C) Milled particles inserted in
metal cylinders with anisotropic outflow. (D) Milled particles in metal
cylinders with isotropic outflow. Arrows out of the particles indicate
the direction of the outflow of produced gases, vapors, and aerosols.

Figure 2. Scanning electron microscope (SEM) pictures of 1 mm
beech wood particles.

Figure 3. SEM pictures of beech wood particles smaller than 80 μm.
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Comparing the results of these artificial cylinders to natural particles of
0.5 mm gives information on the influence of the microstructure.
Preparation and Characteristics of the Metal Cylinders.

Metal walled cylinders with varied diameter were prepared. The
bottom and top of the solid wall cylinders were covered with wire-
mesh to ensure the anisotropic outflow of vapors. The cylinders with a
diameter (ID) of 6, 10, and 14 mm had a constant length of 50 mm.
The length of the 0.5 mm artificial metal cylinder was varied between
50 and 10 mm. The solid cylindrical wall was made of a double layer of
0.025 mm thick metal foil and the 0.5 mm internal diameter cylinder
was made of a 0.25 mm thick metal wall. The thermal resistance of the
metal walls can be neglected (α > 104 W/(m2 K)) with respect to
heating of the particle if the contact between the metal wall and the
internal milled particles is sufficient. For the artificial cylinders of 6
mm and more, the mass of metal represents less than 0.1% of the total
mass and can be also neglected. The mass of metal of the 0.5 mm
artificial cylinders is >99% of the total mass leading to slower heating
as compared to the 0.5 mm milled particle.
The overall density of the wood inside the artificial cylinders was set

to 660 kg/m3 (mass wood/internal volume artificial cylinder);
identical to the natural wood cylinders.
Wood cylinders of 14 mm were inserted in the solid wall and wire-

mesh steel cylinders with an internal diameter of 14 mm. After
pyrolysis of the wood cylinder, both fed as wood cylinder and inside
the metal cylinders, the char yield was determined. By comparing the
char yields of the wood cylinders enclosed by the wire-mesh and solid
wall cylinders with the separately pyrolyzed wood cylinders, possible
heat transfer limitations and/or catalytic effects of the stainless steel
cylinder walls became visible. The char yield of the wood cylinders and
wood cylinders of the same size inserted in the artificial solid wall and
wire-mesh cylinders was identical, 23.0, 23.1, and 23.0 wt %,
respectively. Hence, no influence on the heating rate nor catalytic
effects of the metal wall of the artificial wood cylinder was observed.
In another experiment, the heating rate of the 14 mm wood and

artificial cylinder filled with milled particles in a fluidized bed at 500 °C
was measured with a thermocouple inserted in the center of the
cylinders. The initial heating rate (2.5 °C/s) and the time to reach
95% of the fluid bed temperature (210 s) of the wood and artificial
cylinder filled with milled particles turned out to be nearly the same. It
can be concluded that also the milled particles have sufficient contact
with the wall of the artificial wood cylinder to experience an equal
heating rate as the wood cylinder.
The mesh used for the artificial cylinders (wall in wire-mesh

cylinder and bottom, top in both cylinders) was 9 μm. Because of the
possible attrition of char inside the wire-mesh and solid cylindrical wall
cylinders during the pyrolysis experiment, resulting char loss could be
a problem. The char loss from the wire-mesh and solid cylindrical wall
cylinders was determined experimentally, by fluidizing the cylinders
filled with char for 2 h. The attrition loss of all artificial solid wall
cylinders was found to be less than 0.4% of the initial char for the 140
and 300 particles. Due to too high char loss (1−3 wt %) for the
artificial wire-mesh cylinders including milled particles of <80 μm,
experiments with these smallest sizes (<80 μm) were only performed
with solid wall cylinders. No sand entered the wire-mesh cylinders, as
determined by measuring the ash content of the char before and after
the 2 h experiments. No difference between the ash contents per unit
weight char was found. Experiments with the artificial cylinders were
always performed in triplicate to check the reproducibility.
Experimental setup. Fast pyrolysis experiments were performed

in a fluidized bed reactor made of stainless steel and placed in an
electric furnace. The setup used is shown in Figure 4. The reactor
temperature was kept at 500 °C for all experiments. The incoming
fluidization gas (nitrogen) was preheated to 500 °C.
As bed material 1 kg silica sand with a particle size of 212−300 μm

was used. This size fraction was used in order to prevent entrainment
of sand particles from the reaction section into the bio-oil recovery
section of the setup, while minimizing the required volumetric flow of
fluidization gas. The nitrogen flow was set to 12 normal L/min,
resulting in a vapor/gas residence time of less than 2 s in the hot part
of the setup.

One hundred grams of milled particles or wood cylinders was fed
manually in batches of 4−8 g together with 2 g sand with a valve
system into the fluidized bed reactor. The temperature drop of the
reactor bed during feeding of the cold wood/sand mixtures never
exceeded 10 °C.

A 5 μm filter at the reactor outlet was used to remove char/ash from
the hot pyrolysis vapors. The pyrolysis liquid was collected by two
sequential condensers. The first condenser was an electrostatic
precipitator (ESP) operated at 17−21 kV and cooled externally with
tap water at 20 °C. The remaining vapors, mostly lights, were further
led to a glass wall intensive cooler (IC) operated at −5 °C. A tubular
cotton gas filter (10 μm) was introduced to capture the remaining
liquid. A dry gas meter was used to measure the gas flow before it was
sent to the main ventilation system. A more detailed description of the
setup can be found elsewhere.24 The only modification in this study is
the replacement of the continuous feeding system by a 2-valve,
batchwise feeding system. The first valve (upper one) is opened to fill
the tube above the second valve (lower one) with the feedstock. After
filling, the first valve is closed and the second valve is opened to feed
the feedstock to the reactor. No gas could escape to the environment
in this closed system.

For experiments with sawdust and wood cylinders, the whole setup
was used. An important feature of the setup is that it can facilitate
enough biomass particle residence time, even for the 14 mm cylinders,
to achieve full conversion. The total liquid yield was determined
gravimetrically by weighing the condensers and the gas filter before
and after the experiments. Gas samples were taken frequently (10
times) during the experiments, and the gas composition was
determined. On the basis of the GC analysis and the known amount
of nitrogen added, the produced noncondensable gases could be
calculated. The char yield was measured as the difference between the
bed and filter mass before and after experiments.

For the experiments with the artificial cylinders, only the char yield
was determined as the small number of three cylinders fed to the
reactor is insufficient for accurate oil and gas yield determination. The
experiments with the artificial cylinders were performed in triplicate to
ensure good reproducibility of the obtained char yields.

After the ESP, the remaining gases and vapors were sent to the main
ventilation system. The operating conditions of the batch pyrolysis
unit are summarized in Table 1.

Analysis. The water content of the oil is determined by Karl
Fischer titration. Hydranal Composite 5 was used as titer. The
elemental composition of the different wood cylinders and milled
particles is determined by an elemental analyzer EA 1108 CHNS-O.
The composition in terms of carbon, nitrogen, hydrogen, and oxygen
(calculated) was obtained. Gas samples were analyzed in a gas
chromatograph for H2, CH4, CO, CO2, C2H4, C2H6, C3H6, C3H8

Figure 4. Fluidized bed fast pyrolysis setup: (1) feeding system, (2)
reactor bed, (3) filter at the reactor outlet, (4) electrostatic
precipitator, (5) intensive cooler, (6) gas filter, (7) gas analyzer .
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(Varian Micro GC CP-4900 with two analytical columns, 10 m mole

sieve 5A and 10 m PPQ, using Helium as a carrier gas).

The water insolubles are determined by a cold water precipitation

method described by Garcia-Perez.25 The content of Solids6 (char and

traces of some possibly entrained sand) were determined by

gravimetric analysis. The ash content of the biomass was determined

by NPR-CEN/TS 15403-550 °C. The levoglucosan content in the

pyrolysis oil was determined by HPLC (p.n. PL1170-6820 Agilent

Technologies), Column PL Hi-PLex-Pb 9 μm, 7.7 × 300 mm. The

eluent used was DDI water (0.6 mL/min). The injection volume was

10 μL, and the temperature of the column was 70 °C. The HPLC

detectors used were the RID (55 °C) and VWD (210 nm).

■ RESULTS

Pyrolysis experiments were conducted on milled wood particles
(dp = 0.25−2.5 mm) and wood cylinders (dc = 2−14 mm, l =
50 mm.). The obtained closure of the mass balances was always
between 92% and 97%. Pyrolyzing very small particles of ≤0.3
mm in a fluidized bed reactor is difficult. Therefore, three
identical experiments with these small particles were performed
to check its reproducibility. The product yields were as follows:
oil 71% ± 1%, gas 15% ± 1%, char 10% ± 1% showing that the
experiments could be reproduced well. Only the pyrolysis of
<0.08 mm particles led to major experimental difficulties.
Therefore, the pyrolysis data of the <0.080 mm particles is
excluded from this research. The terminal falling velocity (26
cm/s) of the 0.3 mm beech wood particles was always much
higher than the applied fluidization velocity (8 cm/s). Because
of the filter installed at the reactor outlet, the partly
decomposed biomass will remain in the reactor anyway and
decomposes further at 500 °C. Large particles >6 mm can float
on the top of the bed, but if they do the heat transfer rate is still
high enough to achieve fast pyrolysis because of the hot sand
splashing at the top of the fluid bed. A detailed study on this
phenomenon is described elsewhere.14 The 9 μm solid filter
positioned in the outlet of the reactor worked well. The amount
of solids in the pyrolysis oil never exceeded the 0.05 wt % and
there were no operational problems. The experiments with the
artificial wood cylinders were always performed in triplicate.
The standard deviation between the char yields of experiments
of identical artificial cylinders was always smaller than 0.3%.

Table 1. Operating Conditions of the Batch Pyrolysis Unit

operating conditions pyrolysis unit beech wood dimension

experimental run time 30 min

mass sand 1.1 kg

diameter sand 212−300 μm

mass wood fed 100 g

total mass milled particles in artificial cylinders fed 0.07 − 16 g

bed height 0.20 m

U/Umf 2−3

residence time vapors <2 s

temperature reactor bed 500 °C

temp gas out first condenser 20 °C

temp gas out intensive cooler −5 °C

Figure 5. Pyrolysis oil, organics in pyrolysis oil, gas, and char yields are plotted as functions of the particle size. The char yield of the artificial solid
wall (sw) and wire-mesh (wm) cylinders are plotted as a function of various sizes. The length of the artificial and wood cylinders was 50 mm. Only
for the 0.5 mm cylinder was the length varied between 10 and 50 mm.

Energy & Fuels Article

dx.doi.org/10.1021/ef201688n | Energy Fuels 2012, 26, 2274−22802277



In Figure 5, the pyrolysis oil, organics in the pyrolysis oil, gas,
and char yields are plotted versus the milled particle and wood
cylinder size. In Figure 5, also the char yields of the artificial
cylinders with solid and wire-mesh wall are included. Figure 6
shows the water, levoglucosan, and water insolubles yield as
functions of the particle size.
According to Figures 5 and 6, for wood cylinders with a

diameter between 2 and 14 mm, the yields of pyrolysis oil and
gas is almost constant, while the yield of char and water
increases as the particle size is increased. The organics yield
remains almost constant between 2 and 5 mm and decreases as
the wood cylinder diameter is further increased. These results
are in line with the results obtained by Wang14 for pine wood
cylinders. The yields of levoglucosan and water insolubles only
slightly decrease with the size of the wood cylinders between 2
and 14 mm.
A discontinuity between all the product yields obtained from

wood cylinders and milled particles can be seen between 2 and
2.4 mm: the milled particles have higher oil and organics yields
and lower char and gas yields. An explanation could be the
shorter length of the milled particles compared to the wood
cylinders. Another explanation is faster heating rates of the
milled particles because of smaller aspect ratios and the
presence of particles with smaller characteristic heat transfer
lengths compared to the sieve size. A third explanation could be
partial destruction of the particles by milling resulting in
different microstructures compared to the wood cylinders15

(see Figures 2 and 3).
For the milled particles, the pyrolysis oil, organics in the oil,

levoglucosan, and water insolubles yields decrease rapidly as the
particle size increases from 0.25 to 1 mm. The char yield
increases drastically when the particle size is increased, while a

less sharp increase in water and gas yield is observed. As the
size of the milled particles is further increased from 1 to 2.4
mm, the decrease and increase of these aforementioned
products tend to level off. It should be noted that similar
results were obtained by Chen for milled particles of mallee
wood.15

The sharp decrease in the yields of pyrolysis oil and organics
in the pyrolysis oil as the milled particle size is increased from
0.25 to 1 mm could be caused by differences in microstructures.
As can be seen from Figures 2 and 3, for very small particles
only cell wall material is visible while the 1 mm particles still
have the original structure of the wood cells containing wood
channels.
During pyrolysis of only the cell wall material (Figure 3),

resulting droplets can vaporize much faster than inside a
channel of a large particle. Slower vaporization processes of
droplets under high temperature pyrolysis conditions result in
the formation of more char by cross-linking reactions instead of
the outflow of produced vapors/aerosols from the reaction
particle(s). This outcome is underpinned by a lower yield of
high boiling point molecules like the water insolubles for the
larger milled particles and an increasing yield of water, a
component that is known to be formed as a side product of
cross-linking and polycondensation reactions. This competition
between the formation of char and the release of vapors/
aerosols was clearly pointed out in our previous study on
stepwise pyrolysis of pine wood.22

It is worthwhile to mention the observation that for the
smallest milled particles with diameter <0.4 mm, the sand bed
turned black, while only very little char particles were visually
observed after the experiment This is not observed for pyrolysis
of larger biomass particles that result in clearly identifiable char

Figure 6. Yields of water, levoglucosan, and water insolubles as functions of the milled particle and wood cylinder size.
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particles and clean sand. This could mean that “explosions” or
(complete) disruption of the wood structure takes place during
pyrolysis so that these particles could not be found back.
Another explanation could be that very large molecules leaving
the small particle as aerosol or vapor adhere or recondensate on
the sand particles. Our data show (see Figure 6) that indeed
more heavies (water-insolubles) are produced from the smallest
particles. A third explanation could be that liquid intermediates
(droplets) attach to the sand by contact between the pyrolyzing
biomass particle and the sand particles. From the observations
made by Haas et al.,23 it was found that these droplets originate
from the middle lamella where most of the lignin fraction of the
wood is situated.26 If these droplets can find sand particles, they
may adhere on these particles. A recent study on lignin
pyrolysis clearly pointed out that lignin melts and adheres to
the sand to eventually form lumps.27

Scott and Piskorz21 reported oil yields as high as 75−80 wt %
from pyrolysis of low ash Aspen-poplar and Maple. These
values have been often used as reference in defining the
maximal pyrolysis oil yield that can be obtained. However,
these high oil yields are seldom, if at all, achieved by other
researchers. In light of our results, an explanation for the high
oil yields reported by Scott and Piskorz is the use of very small
particles <105−250 μm, including considerable amounts of
fines even smaller than 88 μm.
The gas yield decreases rapidly for particles <1 mm. For the

smallest particles, pyrolysis does take place at the reactor
temperature due to almost instantaneous heating. So practically
the whole pyrolysis process takes place at the highest
temperature. Still they have the lowest gas yields. This is
rather surprising, given that most studies report that higher
pyrolysis temperatures favor the production of gas.5,17,22,28 A
plausible explanation for the lower gas yield for the smallest
particles is that gas is not only a product from vapor phase
cracking but also a side product of cross-linking and
polycondensation reactions inside the particles. For smaller
particles cross-linking reactions proceed to a lesser extent
indicated by a decrease in production of char and water.
Figure 5 includes the char yield data of the artificial wood

cylinders as function of the cylinder diameter. First the
experimental data of the artificial wood cylinders with a solid
metal wall (called artificial sw cylinder in the further text and in
the figure) with diameters between 6 and 14 mm are discussed
and later the data of the artificial wood cylinders made
completely from wire-mesh (called artificial wm cylinder in the
further text and in the figure). It appears that the char yields of
the artificial sw cylinder and the wood cylinders of equal
diameter are comparable and could be considered equal, within
the accuracy of the data. We have shown that the internal
heating rate for a cylinder with a certain diameter is almost
identical for the wood cylinders and the artificial sw cylinders
(see the Preparation and Characteristics of the Metal Cylinders
section). Hence, comparing the results for a fixed diameter
should indicate the effect of the difference in microstructure. It
can be concluded that the microstructure has no notable effect
on the char yield of large cylinders (6−14 mm). The
experimental results (see Figure 5) show that char yield of
the wood and artificial wood cylinders is predominantly
determined by the outer cylinder diameter; larger particles
have a lower heating rate giving a lower average temperature at
which the pyrolysis reactions run leading to more char.
Artificial wm cylinders with diameters of 6−14 mm, filled

with 140 μm milled particles, were used to study the effect of

outflow pattern by comparison with the artificial sw cylinders
(isotropic vs anisotropic outflow). The hypotheses was that if
vapors/aerosols can escape from the artificial cylinder in
anisotropic manner, this results in overall less contact of the
formed vapors/aerosols with char, because of the shorter
outflow distances, and therefore less total char is produced due
to less polycondensations of these vapors/aerosols on char.
This is not contradicted by our data (the char yields of artificial
wm cylinders of 10 and 14 mm lie below the yields of the
artificial sw cylinders), but the observed effects are not very
strong or may even not be real.
The length of the artificial sw cylinders with a diameter (ID)

of 0.5 mm was varied between 10 and 50 mm. As can be seen
from Figure 2, the milled particles of <0.08 mm inserted in the
artificial cylinders only consist out of cell wall. The milled
particles of 0.5 mm actually contain both particles with intact
channels and some particles that consist only of cell wall
material. For the 0.5 mm artificial sw cylinder with lengths of 50
and 20 mm, the char yield is higher compared to the 0.5 mm
milled particles. This may be ascribed to the longer outflow
distance of the vapors leading to more polymerization (char
formation) on the internal milled particles, as compared with
the milled particles used as such which had a length much
shorter than 5 mm.
When the length of the 0.5 mm artificial sw cylinder is 10

mm, the char yield decreases further and is below the char yield
of the 0.5 milled particles. This cannot be explained on basis of
the outflow distance of vapors/aerosols. The length of the 10
mm (artificial sw cylinder) is much longer than the length of
the 0.5 mm milled particles. If polymerization of vapors/
aerosols in the pores (of the milled particles) or over the
internal milled (char) particles of the artificial sw cylinder is
dominant, this would lead to more char for the artificial sw
cylinder. We observed the opposite experimentally. As
mentioned before, the heating rate of tis artificial cylinder is
considerably lower than the corresponding natural wood
cylinder because of the high mass of the steel wall. Lower
heating rates are typically reported to result in more char.
Again, we observed the opposite. On the basis of these two
observations, it is argued that, if polymerization of vapors/
aerosols and heating rate are not dominating phenomena, the
microstructure of the 0.5 mm artificial sw cylinder (filled with
<0.08 mm milled particles) remains as an important factor
controlling the char yield.

■ CONCLUSION

The effect of particle geometry and microstructure on the fast
pyrolysis of beech wood was investigated in a fluidized bed
reactor operated at 500 °C. When the particle size is decreased
from 1 to 0.25, the pyrolysis oil yield and organic yield increases
rapidly mostly due to the increase in production of
levoglucosan and water insolubles. In contrast, the char and
gas yield decreases rapidly. The wood microstructure is a major
factor controlling the release of vapors/aerosols from the
converting wood of 1−0.25 mm. For the very small particles,
pure cell wall material is pyrolyzed resulting in less transport
resistance of vapors/aerosols leaving the particle compared to
particles that are intact and have their original cell structure
which includes channels. For particles sizes between 1 and 5
mm, only little changes in all product yields were observed.
When the particle size is further increased, the oil and organic
yield decreases further while the char and gas yield increases. In
this particle size regime, the release of the vapors is almost not
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influenced by the microstructure and vapor outflow pattern, but
mostly by internal heat transfer limitations.
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Thermal History of Wood Particles in Molten Salt Pyrolysis
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ABSTRACT: Molten salt pyrolysis is a thermochemical conversion process in which biomass is fed into and heated up by a
molten salt bath. Molten salts have very high thermal stability, good heat transfer characteristics, and a catalytic effect in cracking
and liquefaction of large molecules found in biomass. In this study, the heat transfer characteristics of molten salts are studied by
recording the thermal history of wood particles in molten salt pyrolysis. Experiments have been carried out with cylindrical beech
and pine wood particles with constant length (L = 30 mm) and varying diameter (d = 1−8 mm) in a FLiNaK melt with a
temperature of 500 °C. The thermal history at the particle center has been used to evaluate the reaction temperatures, the
heating rates, and the devolatilization times. Results have been compared with a similar study in a fluidized sand bed. It is found
that FLiNaK gives significantly higher heating rates for cylinders with d ≤ 4 mm. For larger cylinders, the process is dominated by
heat transfer within the wood particle, and the heat transfer medium is of less importance. For the smallest cylinders (d = 1 mm),
heating rates as high as 218 ± 6 and 186 ± 15 °C/s were observed for beech and pine wood, respectively. The average heating
rate for wood cylinders until the main degradation takes place has been found to follow the empirical correlation β = (keff/
ρ)103(24 + 390 e−0.49d), and the total devolatilization time has been found to follow the empirical correlation tdev = ρ(0.146 e−keff

− 1.09)d1.05.

■ INTRODUCTION

With increasing energy consumption and greater environmental
concerns, research on renewable energy has gained more
attention in the last years. While renewable electricity has many
alternatives, biomass is regarded as the main source of
renewable liquid, gaseous and solid fuels.1 Pyrolysis is a
thermochemical conversion process in which biomass is heated
in the absence of any oxidizing agent and is converted to a
mixture of liquids (pyrolysis oil), noncondensable gases, and
solid chars. In fast pyrolysis, the aim is to achieve high yields of
liquids. The biomass should be heated so rapidly that it reaches
the pyrolysis temperature (preferably around 500 °C) before it
starts to decompose, and thus minimizes exposure to the lower
temperatures that favor formation of char. A short vapor
residence time of 2−3 s followed by rapid quenching of the
pyrolysis vapors is also of importance.2

A number of laboratory reactor configurations for pyrolysis
have been developed over the last 20 years, including bubbling
fluid beds, circulating and transported beds, cyclonic reactors,
ablative reactors, and vacuum moving beds. Several pilot plants
have been constructed, in addition to a few demonstration
installations.1 A less studied approach is molten salt pyrolysis,
in which the thermal decomposition of biomass is carried out in
a molten salt bath. During the process, the molten salt is
simultaneously used as a heat carrier, catalyst, and fluid reacting
bed.3 A review of thermal processing of biomass in molten salts
has recently been published.4 The research reviewed includes
many investigations that have not so far progressed beyond the
laboratory scale. It is a relatively small research area compared
with traditional conversion methods, and there is clearly a need
for more basic research on the subject.
Inorganic molten salts are found to have very good heat

transfer characteristics, properties that make them suitable for
rapid heat supply in thermal processing of biomass. They have
large heat capacities and are very stable at high temperatures,

and will give a stable reaction temperature throughout the
process. Due to their low viscosity, the molten salts will enclose
the biomass particles rapidly and also infiltrate the pores,
leading to a larger particle area exposed to heating by the salt.3

Adinberg et al.5 demonstrated that molten carbonates have a
strong thermal impact upon pyrolysis reactions. Cellulose
tablets were pyrolyzed in a eutectic mixture of K2CO3 and
Na2CO3 and an increase of 20% in the reaction rates compared
to in an inert gas atmosphere at 850 °C was observed. In their
study, they also proposed hybridization of solar energy and
bioenergy in which a concentrating solar receiver could be used
to heat and melt the salt that was used in the pyrolysis process.
In this way, the molten salts may provide thermal energy
storage due to their high heat capacity. The process was
originally considered for gasification of coal and active
carbon,6−8 but the same principles may be applied for biomass.5

Molten salts could also be used indirectly as a heat transfer
medium in pyrolysis. In the Pyrocycling process,9 the biomass
is carried through horizontal plates and heated indirectly by a
mixture of KNO3, NaNO2, and NaNO3, and the produced
vapors are instantly removed via a vacuum pump. The salt itself
is heated by burning the noncondensable gases from the
process.
Some molten salts have a catalytic effect in the decom-

position of biomass, and this makes it possible to adjust the
product yields and compound compositions of products by
varying the composition10 and amount of molten salts.11 Zinc
halides are found to catalyze production of single-ring aromatic
compounds in thermal processing of hydrocarbons.12 Sada et
al.10 investigated pyrolysis of lignin in a molten mixture of
ZnCl2 and KCl. They found that the yields of different phenolic
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compounds depend on both the molar ratio of the two salts10

and the salt-to-lignin ratio in the reactor.11

Another advantage in thermal processing of biomass in
molten salts is that selected noxious contaminants are retained
in the melt,13 which makes it possible to apply the method on
contaminated biomass and waste. Several studies have been
reported on thermal treatment of municipal refuse,13 plastic
waste,14−16 and organic waste.17

Molten salt pyrolysis has several technical challenges
compared with more traditional methods. The corrosiveness
of molten salts limits the choice of reactor materials.13 An
option is to use ceramic-lined vessels and pipes instead of
metals. Another challenge is that the melts solidify at ambient
temperatures, which complicates the startup and shutdown of
the system. This could be solved by a form of storage and dump
tank. When melted, however, molten salts may be easily
circulated and pumped centrifugally or with gear pumps or by
simple gas-lift pumps.3

A possible obstacle in molten salt pyrolysis is the separation
of char and salt. Adinberg et al.5 suggested in their continuous
solar reactor concept that the char residue, together with some
salt, could be drained out due to density differences. Hammond
and Mudge13 proposed that the char residue could be burned
out of the salt and produce sufficient energy to make the
process autothermal. Because of the very low vapor pressure
and high boiling point, the salts will not decompose in the
process. Another possibility is to add a gasifying agent and
produce syngas in a separate reactor. The remaining ash in the
salt may be removed electrolytically or as slag at higher
temperatures.3

The heat transfer characteristics of molten salts have been
investigated for applications other than thermal processing of
biomass such as solar power towers and nuclear power plants.
Among the salts studied are fluorides. Molten fluoride salts are
characterized by high thermal conductivities, high specific heats,
low viscosities, and high boiling points.18 Williams19 inves-
tigated the applicability of different fluorides, fluoroborates, and
chlorides as a heat transfer fluid in nuclear plants. As a class of
salts, fluorides showed to be the best heat-transfer fluids, and
FLiNaK in particular showed the best heat-transfer perform-
ance. FLiNaK is a ternary eutectic alkaline metal fluoride salt
mixture LiF−NaF−KF (46.5−11.5−42 mol %) with a melting
point of 454 °C and a boiling point of 1570 °C.
The purpose of this study is to gain a better understanding of

molten salts, particularly FLiNaK, as a heat transfer medium in
the pyrolysis process. This is done by recording the thermal
history undergone by wood particles. The thermal history is
used to evaluate the heating rates, reaction temperatures, and
devolatilization times. The results are compared with a similar
study in a more “traditional” fluidized sand bed by Di Blasi and
Branca.20

■ EXPERIMENTAL SECTION

Cylindrical beech and pine wood particles were used as feedstock in
the pyrolysis experiments. These were chosen as representatives for
hardwood and softwood, respectively. Because wood is an anisotropic
material, the thermal properties vary with the direction of heat flow
with respect to the fibers. The heat transfer takes place through a
complex interaction between conduction of the cell wall substance and
radiation and convection in the pore system. The term effective or
equivalent conductivity (keff) is often introduced and is reported as
either parallel (∥) or perpendicular (⊥) relative to the fibers. The
effective conductivity parallel is usually between 1.5 to 2.7 times higher
than that perpendicular to the fibers. The effective thermal

conductivities for the dry wood used in this study as reported by
Grønli21 are listed in Table 1, along with the chemical composition.
The proximate and ultimate analysis are listed in Table 2.

The cylinders were prepared from untreated wood sticks with the
length parallel to the fibers. The cylinders with a diameter (d) of 2−8
mm had a constant length (L) of 30 mm. The length was chosen in
order to always have an aspect ratio larger than 3, which makes the
particles one-dimensional (1D) (the diameter) with respect to internal
heat transfer.23 This means that it is the heating perpendicular to the
fibers that is measured in this study, and that keff (⊥) is of importance.
The smallest cylinders (d = 1 mm) had a shorter length of L = 15 mm
due to preparation difficulties, but the aspect ratio is still well within
the limit for the one-dimensional requirement. The samples were dried
at 105 °C for 24 h prior to the experiments.

A hole was drilled from top to the center of the cylinders where a
type K thermocouple was placed for measuring the particle center
temperature T. For the smallest cylinders (d ≤ 3 mm) a 0.5 mm
thermocouple was used, while for the larger particles (d ≥ 4 mm) a 1
mm thermocouple was used. It was confirmed experimentally that the
two thermocouples gave similar measurements for d ≥ 4 mm, and the
latter was chosen for practical reasons. The thermocouple was placed
inside a steel tube for support.

Lithium fluoride (LiF), sodium fluoride (NaF), and potassium
fluoride (KF) were purchased separately from Sigma-Aldrich, all in
powder form and at least 98.5% purity (puriss). The salts were mixed
mechanically to obtain the FLiNaK composition (LiF−NaF−KF:
46.5−11.5−42 mol %).

A schematic representation of the laboratory scale setup used in this
study is shown in Figure 1.

The reactor was made of stainless steel and placed in an electrically
resistance heated furnace for independent temperature control. The
reactor temperature was kept at 500 °C for all experiments, controlled
by a submerged type K thermocouple. The reactor height was 200
mm, and the inner diameter was 62 mm. 200 g of FLiNaK was placed
in an inner vessel of nickel with an inner diameter of 52 mm, giving a
bed height of 45 mm at 500 °C. Nickel was chosen because it is most
compatible with FLiNaK with respect to corrosion.18

The incoming inert gas (Ar) was bubbled through the molten salt
bath through a nickel tube. The Ar flow was set to 2 L/ min, giving a
vapor/gas residence time of less than 3 s in the hot zone. The role of
the inert gas was to ensure an inert atmosphere, remove the produced
vapors from the hot reacting zone, as well as provide turbulent mixing

Table 1. Properties and Chemical Composition of Dry
Beech and Pine Wood21

beech pine

ρ (kg/m3) 700 450

keff ∥, (W/K·m) 3.490 × 10−1 2.593 × 10−1

keff ⊥, (W/K·m) 2.090 × 10−1 9.769 × 10−2

cellulose (%) 48 41

hemicellulose (%) 28 26

lignin (%) 22 28

extractives (%) 2 5

Table 2. Proximate and Ultimate Analysis of Dry Beech and
Pine Wood

beech22 pine21

volatile matter (wt %) 84.9 87.6

fixed carbon (wt %) 14.1 12.3

ash (wt %) 1.0 0.1

C (wt %) 42.2 46.9

H (wt %) 6.0 6.3

N (wt %) 0.2 0.1

O (wt %) 50.5 46.7
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of the salt. Turbulent mixing gives a homogeneous temperature in the
reactor and enhances the heat transfer from the salt to the wood
cylinders.
The samples were introduced to the molten salt reactor manually,

and it was ensured that the wood particles were completely submerged
in the molten salt bath during the experiments. The temperature was
measured at a frequency of twice per second. Each experiment was
performed at least three times to ensure reproducibility.
The produced pyrolysis vapors were led through a 4 mm heated

transfer line (450 °C) and into a water cooled condenser where the
pyrolysis oil could be collected. However, due to inadequate amounts,
it was not possible to weigh and determine the pyrolysis oil yields in
this study. After the condenser, the remaining gases and vapors were
vented.
After the pyrolysis reactions were completed, the power was turned

off, and the reactor and sample were left under Ar flow until the
temperature was lowered to ambient temperature.

■ RESULTS AND DISCUSSION

Figure 2 shows a pine wood cylinder (d = 6 mm) before and
after pyrolysis in FLiNaK at 500 °C. The shape remains the
same after the pyrolysis process. The solid residues were very
brittle, but they were, in most cases, still left on the
thermocouple after the experiment was conducted. They were

covered with salt, and it was also observed that the salt had
infiltrated the samples. The charred particles could be burned
to give heat to the process. The salts will remain unaffected due
to the very low vapor pressure and high boiling point and could
be recirculated.13

Definitions. The temperature profile was recorded for all
cylinders, and the heating rate was calculated using three point
estimation. The graphical results for beech wood with d = 6
mm are shown as an example in Figure 3. We have chosen to

follow the definitions of the characteristic points for the thermal
behavior as given by Di Blasi and Branca20 in order to compare
the results. They studied pyrolysis of beech wood cylinders (L
= 20 mm, d = 2−10 mm) in a hot sand bed (T = 534 °C)
fluidized by nitrogen. The temperature was measured by a type
K thermocouple (0.5 mm) in the center of the wood cylinders.
Their results showed that the different pyrolysis stages have a
strong influence on the heating rate at the particle center and
that the pyrolysis in a fluidized bed is controlled by the rate of
internal heat transfer under the studied conditions.
The first characteristic point represents the maximum

heating rate (h1). This is the point where degradation starts
in the outer part of the cylinder. The inward heat transfer is
hindered, resulting in a decrease in the heating rate. The
maximum heating rate is important because it is measured
before any reactions occur, and it is therefore a way of
measuring the heat transfer characteristics of the heat transfer
medium.
The second characteristic point is a point of high variation in

the heating rate (h2). This represents the beginning of the
endothermic degradation of cellulose and hemicellulose in the
particle center.
The local minimum heating rate (h3) represents the main

degradation of cellulose and hemicellulose in the particle
center. The corresponding reaction temperature T3 is practi-
cally constant for a short while. According to Antal and
Varhegyi,24 the endothermic degradation of cellulose and
hemicellulose is completed before the slower, high-temperature
exothermic degradation of lignin starts. Since cellulose and
hemicellulose contributes to up to 67 and 76% of the mass of
pine and beech wood, respectively (Table 1), T3 could be
regarded as representative of the effective pyrolysis temper-
ature.25

The main lignin degradation is represented by an increase in
the heating rate. This reaction is slower, exothermic, and occurs
over a wider temperature range.24 Thus, it is not possible to
define a clear reaction temperature such as for cellulose and

Figure 1. Schematic representation of the experimental setup for
recording the thermal history of wood particles in molten salt
pyrolysis.

Figure 2. 6 mm pine wood cylinder before (left) and after (right)
pyrolysis in FLiNaK at 500 °C. The solid residue is covered and
infiltrated with salt.

Figure 3. Temperature profile and calculated heating rate in the center
of beech wood (d = 6 mm) at reactor temperature T = 500 °C as an
example for the definitions of characteristic points in the thermal
history of wood particles in molten salt pyrolysis.
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hemicellulose.25 A local maximum of the heating rate is
observed (h4) when the lignin degradation slows down. For
thick particles, this is the time when conversion is about 95%.25

A maximum temperature (point 5) higher than the reactor
temperature is attained due to the exothermic degradation of
lignin. At this point, the conversion process is practically
terminated, and t5 is regarded as the total devolatilization time.
Temperature Profiles and Reaction Temperatures.

The temperature profiles at the particle center for various
cylinder diameters are shown in Figure 4. The beech and pine

wood cylinders are represented by black and red lines,
respectively, and one representative curve is chosen for each
cylinder diameter. As expected, it can be clearly seen that, as the
particle diameter increases, the time required reaching the
characteristic points increases. The shape of the temperature
profiles is qualitatively the same, with a plateau of nearly
constant temperature where the main degradation of cellulose
and hemicellulose occur. A higher maximum temperature than
the reactor temperature is observed due to the exothermic
degradation of lignin, and this is more evident for the thicker
particles due to the higher mass of lignin and the longer time
for the gases to escape from the particle. The higher thermal
conductivity of beech wood (Table 1) is reflected as the beech
wood cylinders reach the different stages faster than pine wood
cylinders with the same dimensions.
Figure 5 shows the characteristic temperatures for beech

wood cylinders (black lines) and pine wood cylinders (red
lines) as a function of cylinder diameter. A high scatter is
observed for T1 for small particles of both wood types. This
could be due to the very high heating rates observed (Figure 6),
making it difficult to evaluate the corresponding temperature

accurately. Temperature measurements with higher sampling
frequency would possibly have given less variance. The scatter
could also be due to variations with respect to growth rings
between such small samples. The values are, however, included
in the results to show the trends.
Both T2 and T4 are practically independent of the cylinder

diameter.
T3 represents the effective pyrolysis temperature, where most

of the cellulose and hemicellulose decompose.25 The effective
pyrolysis temperature affects the yields in pyrolysis. In fast
pyrolysis, the goal is to reach a high temperature before the
biomass starts to decompose in order to maximize the liquid
fraction.2

The effective pyrolysis temperature in this study decreases as
the particle size is increased, from 469 ± 4.5 °C for d = 1 mm
to 412 ± 6.5 °C for d = 8 mm. This is in close agreement with
the 1D model simulations for biomass pyrolysis in a fluidized
bed reactor at 500 °C by Kersten et al.23 The simulations also
showed that the particle size only had a minor effect of the total
liquid yield up to 20 mm (corresponding to an effective
pyrolysis temperature down to 400 °C). This was also
confirmed experimentally.26 However, for particles larger than
3 mm, the water content of the produced pyrolysis oil increased
substantially.
An interesting observation is that even though the two wood

types reach the characteristic points at different times, the
reaction temperatures are comparable. This means that the
thermal properties of the wood particle play a less important
role than the particle size for the reaction temperatures in the
pyrolysis process.

Heating Rates. The characteristic heating rates (h1−h4) as a
function of cylinder diameter are shown in Figures 6−9. Beech
wood cylinders are represented by black lines and pine wood
cylinders by red lines. Results for fluidized sand bed are
estimated from Di Blasi and Branca20 (green lines). h2 could
not be determined for d = 1 mm for beech wood and d ≤ 2 mm
for pine wood and is therefore not plotted in Figure 7. A
general observation is that all of the characteristic heating rates
at the particle center become slower as the particle size
increases due to the increasing internal heat transfer resistance
inside the wood cylinders. For molten salt pyrolysis, the values
are always slightly higher for beech than pine wood for
otherwise identical conditions. This is due to the higher
conductivity of the former.
The maximum heating rate (h1) decreases exponentially with

the cylinder diameter for all types (Figure 6). For the smallest
cylinders (d = 1 mm), heating rates as high as 218 ± 6 and 186

Figure 4. Temperature profiles at the particle center for beech (black)
and pine (red) wood for various cylinder diameters in FLiNaK. The
reactor temperature is 500 °C.

Figure 5. Characteristic temperatures at the particle center for beech
(black) and pine (red) cylinders as functions of the cylinder diameter
in FLiNaK at 500 °C.

Figure 6. Maximum heating rate h1 at the particle center for beech
(black) and pine (red) cylinders in FLiNaK at 500 °C. Reference
values (green) are estimated for beech wood cylinders in fluidized sand
bed at 534 °C.20
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± 15 °C/s were found for beech and pine wood, respectively. It
is further observed that the maximum heating rates in molten
salt pyrolysis are significantly higher than in fluidized sand bed
for cylinders with d ≤ 4 mm. For the smaller particles, the
properties of the heat transfer medium dominate the process,
while the properties of the wood limit the heat transfer for the
larger particles.
The heating rates at the start of the degradation of cellulose

and hemicellulose (h2) are not significantly different for beech
wood in molten salt and fluidized sand bed (Figure 7). The
same could be said about the local minimum heating rate (h3,
Figure 8). This could be because cellulose and hemicellulose

degrade over a very narrow range of temperatures,27 and the
process is less dependent on external factors such as the heat
transfer medium and the reactor temperature. Both character-
istic heating rates are, however, strongly dependent on internal
factors such as the cylinder diameter and the wood type. Beech
wood contains more cellulose and hemicellulose than pine
wood (Table 1), and this will affect h2 and h3. Both h2 and h3
decrease exponentially with cylinder diameter, but not as
prominently as h1. The decrease is due to heat transfer
limitations within the particle, but it could also be due to higher
amounts of degrading cellulose and hemicellulose. The
endothermic reactions will have a cooling effect on the sample.
The effects of external factors are more visible in the local

maximum heating rates (h4, Figure 9). Lignin decomposes over
a wider range of temperatures24 and is more dependent on
external factors. This could also be the reason why more scatter
is observed in h4 for all types. The values for fluidized sand are

in this case higher than those for molten salt. This could be due
to the higher bed temperature in the study by Di Blasi and
Branca (534 vs 500 °C). h4 shows a less dependence on the
cylinder diameter, but a small decreasing trend is observed. The
differences between the wood types are ascribed to the
differences in the lignin content (Table 1).
Another approach to measure the heating rate in pyrolysis is

the average heating rate until the main degradation of cellulose
and hemicellulose occur:25

β =
−T T

t

( )3 0

3 (1)

where T0 is the initial temperature.
For pyrolysis of wood cylinders in FLiNaK at 500 °C, it has

been found that β may be correlated empirically to the initial
diameter and the wood properties by

β
ρ

= +
−

k
10 (24 390 e )deff 3 0.49

(2)

with the values for ρ and keff (⊥) as given in Table 1. The
experimental data and the empirical correlations show a very
good agreement (Figure 10).

Characteristic Times and Total Devolatilization Time.
The characteristic heating times for beech wood cylinders
(black lines) and pine wood cylinders (red lines) as a function
of cylinder diameter are shown in Figure 11. The characteristic
heating times follow a power law dependence on the cylinder
diameter for both wood types. The times to reach the highest
heating rate (t1) are practically the same for beech and pine

Figure 7. Point of high variation of the heating rate h2 at the particle
center for beech (black) and pine (red) cylinders in FLiNaK at 500
°C. Reference values (green) are estimated for beech wood cylinders
in fluidized sand bed at 534 °C.20

Figure 8. Local minimum heating rate h3 at the particle center for
beech (black) and pine (red) cylinders in FLiNaK at 500 °C.
Reference values (green) are estimated for beech wood cylinders in
fluidized sand bed at 534 °C.20

Figure 9. Local maximum heating rate h4 at the particle center for
beech (black) and pine (red) cylinders in FLiNaK at 500 °C.
Reference values (green) are estimated for beech wood cylinders in
fluidized sand bed at 534 °C.20

Figure 10. Average heating rate β at the particle center for beech
(black) and pine (red) cylinders in FLiNaK at 500 °C. Symbols are for
the experiments and solid lines for the empirical correlation given by
eq 2.
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wood. As already discussed, the first characteristic point is
measured before any reactions occur and depends mainly on
the heat transfer characteristics of FLiNaK. For the remaining
heating times, it is clear that beech wood conducts the heat to
the particle center faster than pine wood.
Prediction of the total devolatization time (tdev) in pyrolysis

is important for reactor design. For coal particles, an empirical
correlation for the effect of initial particle size is typically given
by a power-law relation in the form of28

=t Ad
n

dev (3)

where A and n are fitted to match the experimental data. Values
for n typically range between 1 and 2. The variations reported
in literature are believed to be caused by different experimental
conditions and definitions of devolatilization time.28 The same
empirical correlation has been shown to be applicable for
pyrolysis of wood particles in fluidized beds.20,29,30

The definition for the devolatilization time could be based on
measuring gas evolution,29 rate of weight loss,31 or time
history.25 We have chosen to define the total devolatilization
time as the time when the particle center attains the maximum
temperature (t5). This is the time when the reactions are
practically terminated.20 For pyrolysis of wood cylinders in
FLiNaK, we found that the total devolatilization time follows
the empirical correlation:

ρ= −
−

t d(0.146 e 1.09)k

dev
1.05eff (4)

with the values for ρ and keff (⊥) as given in Table 1.
Equation 4 gives Abeech = 6.625 and Apine = 10.53. The

experimental data and the empirical correlations are shown
graphically in Figure 12.

We have found that the value of A depends on the properties
of the wood for the particle sizes used in this study. The
devolatilization time becomes longer as the density increases or
the thermal conductivity decreases, with the effect of the
density being more pronounced. Therefore, the devolatilization
time for beech wood is larger than for pine wood, given the
higher density and higher thermal conductivity (Table 1).
These findings are in agreement with the model predictions
performed by Di Blasi.32 Di Blasi studied the effects of variable
physical properties on the conversion time in biomass pyrolysis.
It was found that the density was the most important factor,
followed by the thermal conductivity. Only smaller effects were
associated with other physical properties such as permeability
and heat capacity. The linear increase in conversion time with
the density is due to the successively slower particle heating
rate, while the exponential reduction with conductivity is
caused by the increased rate of heat transfer toward the interior
of the particle.
The value n = 1.05 is well within the range of values reported

previously for both biomass and coal devolatilization. According
to Kanury,33 the devolatilization times for combustible particles
are proportional to either d or d2, depending on external or
internal heat- and mass-transfer control, respectively. A value
between 1 and 2 indicates that the particle sizes used in this
study cover both regimes.

■ CONCLUSIONS

The aim of this work was to study the heat transfer
characteristics of FLiNaK in molten salt pyrolysis. The
temperature history at the particle center of beech and pine
wood cylinders of various sizes was recorded, and this was used
to evaluate the reaction temperatures, heating rates, and
devolatilization times.
Due to the higher thermal conductivity of beech wood, the

characteristic heating rates (h1−h4) are slightly higher than for
pine wood. The characteristic times (t1−t5) are larger for pine
wood for the same reason. However, the reaction temperatures
(T1−T4) for the two wood types are comparable. A decreasing
trend in the effective pyrolysis temperature (T3) is observed
with larger particles, from 469 ± 4.5 °C for d = 1 mm to 412 ±
6.5 °C for d = 8 mm.
The maximum heating rate (h1) for molten salt pyrolysis is

significantly higher than for fluidized sand bed for smaller
particles (d ≤ 4 mm). Heating rates as high as 218 ± 6 and 186
± 15 °C/s are observed for 1 mm beech and pine wood,
respectively. For larger particles (d > 4 mm), the maximum
heating rates are comparable.
The main degradation of cellulose and hemicellulose takes

place at the effective pyrolysis temperature T3. The average
heating rate for wood cylinders until the main degradation takes
place is found to follow the empirical correlation β = (keff/
ρ)103(24 + 390 e−0.49d).
The total devolatilization time is found to follow the

empirical correlation tdev = ρ(0.146 e−keff − 1.09) d1.05. The
value of the exponent of d indicates that the particle sizes used
in this study cover both external and internal heat transfer
regimes.
The results show that FLiNaK is suitable as a heat transfer

medium in fast pyrolysis, particularly for smaller particles where
the properties of the heat transfer medium dominate the
process. For larger particles the heat transfer process is limited
by the wood properties, and the heat transfer medium is of less
importance.

Figure 11. Characteristic heating times at the particle center for beech
(black) and pine (red) cylinders as functions of the cylinder diameter
in FLiNaK at 500 °C.

Figure 12. Total devolatilization times (tdev) for beech (black) and
pine (red) cylinders as functions of the cylinder diameter in FLiNaK at
500 °C. Symbols are for the experiments and solid lines for the
empirical correlation given by eq 4.
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Abstract 

The thermal behavior of wood particles in molten salt pyrolysis was investigated. Cylindrical beech wood particles (L = 30 mm, 
d = 3.5 mm) were pyrolyzed using different mixtures of molten salts (FLiNaK, (LiNaK)2CO3, ZnCl2–KCl, KNO3–NaNO3) over 
the temperature range of 400–600 °C. The temperature at the particle center was measured during the process, and used to 
evaluate heating rates, reaction temperatures, and devolatilization times. A general observation was that beech wood is heated 
faster in fluoride and carbonate melts, but the differences diminish with increasing reactor temperatures. The highest heating rates 
at the particle center were observed in FLiNaK (46 – 56 °C/s). The effective pyrolysis temperature at which the main 
decomposition of cellulose and hemicellulose takes place showed a weak dependence on reactor temperature, but no significant 
difference between the heating media was discovered. The devolatilization time corresponding to conversion of 95% may be 
empirically correlated with the power law expression . Arrhenius plots were constructed to show the exponential 
dependence of temperature on the parameter A. The correspondingly low activation energies (13.3 – 27.4 kJ/mol) indicate heat 
transfer control during the decomposition process. 
© 2014 The Authors. Published by Elsevier Ltd.  
Peer-review under responsibility of the Scientific Committee of RERC 2014.  
Keywords: Beech wood; Pyrolysis; Molten Salts; Heating rate 

1. Introduction 

In fast pyrolysis, biomass is heated rapidly in the absence of oxygen and converted to a mixture of liquids 
(pyrolysis oil), non–condensable gases and solid chars. Important process conditions for high pyrolysis oil yields are 
moderate reactor temperatures (~500 °C), high heating rates, short vapor residence time (2 – 3 s), and rapid 
quenching of the pyrolysis vapors. It is essential that the biomass particles reach optimum process temperatures 
before they start to decompose as exposure to lower temperatures would favor formation of charcoal.[1] This makes 
rapid heat transfer important in the process. There are several approaches to achieve rapid heat transfer in pyrolysis, 
including bubbling fluid beds, circulating and transported beds, cyclonic reactors, ablative reactors, and vacuum 
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moving beds. A detailed description of these configurations may be found in the review of fast pyrolysis technology 
development by Venderbosch and Prins.[2]  

A less studied approach is molten salt pyrolysis. The biomass is fed into a preheated molten salt bath where the 
decomposition takes place. Inorganic molten salts have very good heat transfer characteristics, large heat capacities, 
are very stable at high temperatures, and may be used over a wide range of temperatures, from around 120 °C to 
well above 1000 °C. Due to their low viscosity, they will cover the biomass particles rapidly and also infiltrate the 
pores, leading to a larger particle area exposed to heating by the salt.[3] A review of thermal processing of biomass 
in molten salts has recently been published.[4] The research reviewed includes many investigations that have not so 
far progressed beyond the laboratory scale. It is a relatively small research area compared with more traditional 
conversion methods, and there is clearly a need for more basic research on the subject. 

The heat transfer characteristics of molten salts have been studied for various applications.[3] Several researchers 
have demonstrated an increase in reaction rates by molten carbonates in thermal processing of coal [5-7] and 
cellulose.[8, 9] ZnCl2–KCl has been used in pyrolysis of lignin, and it is found that the yields of different phenolic 
compounds depend on both the molar ratio of the two salts [10] and the salt–to–lignin ratio in the reactor.[11] In the 
Pyrocycling process [12], a mixture of KNO3, NaNO2 and NaNO3 was used as an indirect heat transfer medium in  
vacuum pyrolysis. Nitrates have also shown good heat transfer performance in storing thermal solar energy.[13] 
Molten fluoride salts have been studied as a heat transfer medium in solar power towers and nuclear power plants 
[14], and particularly FLiNaK has been found to have good heat transfer performance.[15]  

The pyrolytic behavior of single particles is important for reactor design. The aim of this work is to study the 
behavior of beech wood particles in molten salt pyrolysis and gain a better understanding of molten salts as a heat 
transfer medium in the process. This is done by measuring particle temperatures, and use these to evaluate heating 
rates, reaction temperatures, and devolatilization times. In a previous study [16] we found that FLiNaK gives 
significantly higher heating rates compared with fluidized sand bed [17] for cylindrical beech wood particles with  
d ≤ 4 mm at 500 °C. In the present work, we evaluate the effect of different salt mixtures (FLiNaK, (LiNaK)2CO3, 
ZnCl2–KCl,  KNO3–NaNO3) over a wider temperature range (400 – 600 °C).  

2. Experimental section 

Cylindrical beech wood particles with length (L) of 30 mm and diameter (d) of 3.5 mm were prepared from 
untreated wood sticks with the length parallel to the fibers. This gives an aspect ratio (L/d) well within the limit for 
one–dimensional (1D) internal heat transfer (L/d > 3) [18], and the heat transfer perpendicular to the fibers is 
measured. This is important because of the anisotropic nature of wood, with higher thermal conductivity parallel 
compared to perpendicular to the fibers.[19] The samples were dried at 105 °C for 24 h prior to the experiments in 
order to minimize the water content. A 1 mm type K thermocouple, placed inside a steel tube for support, was used 
to record the temperature T at the particle center at the frequency of 5 times per second. The salts were purchased 
separately in their simplest form from Sigma–Aldrich (> 98.5% purity) and mixed mechanically to obtain the 4 
different compositions listed in Table 1. Differences in the experimental temperature ranges are due to the respective 
melting points. The nitrate mixture starts to decompose at 560 °C [13], and is only used up to 500 °C in this study.  

Table 1. Composition and properties of salts used in the experiments. 

Molten salts composition (wt %) 
Experiment 
temperatures 

Melting point Reference for 
melting point 

LiF–NaF–KF (29.2–11.7–59.1) 475 – 600°C 454 °C [15] 

Li2CO3–Na2CO3–K2CO3 (31.7–33.7–34.7) 450 – 600°C 397 °C [9] 

ZnCl2–KCl (68.0–32.0) 400 – 600°C 181 °C [20] 

NaNO3–KNO3 (60.0–40.0) 400 – 500°C 220 °C [13] 

 
200 g of pre–dried salt mixture was filled in a nickel crucible (H = 190 mm, ID = 52 mm) placed inside a 

stainless steel reactor (H = 200 mm, ID = 62 mm) that was externally heated by an electric furnace (Figure 1). 
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Nickel was chosen for the inner crucible because it is more resistant to corrosion by molten salts.[14] When the 
heating was started, inert gas (Ar) was continuously flowed into the reactor through a nickel tube (4 mm) to ensure 
an oxygen–free atmosphere. The salt temperature was controlled by a submerged type K thermocouple. Once the 
salt was completely melted, the nickel tube was submerged in the melt to give turbulent mixing and a homogeneous 
temperature throughout the reactor. Turbulent mixing enhances the heat transfer from the salt to the wood particles 
in the pyrolysis process.  

 

Figure 1.  Experimental setup for recording the centre temperature of beech wood particles (d = 3.5 mm) in molten salt pyrolysis. 

When the melt was stabilized at the desired temperature, the beech wood particles were introduced to the reactor 
manually through the top of the sealed reactor. It was ensured that the samples were completely immersed in the 
molten salt bath throughout the whole experiment. Each experiment was performed at least in triplicate, giving 
acceptable reproducibility.  The flow rate of Ar was set to 2 L/min during the experiments to ensure removal of the 
produced pyrolysis vapors in less than 3 seconds. The vapors were led out of the reactor through a 4 mm heated 
transfer line (450 °C) made of stainless steel. The system was connected to a water cooled condenser, but the small 
samples in this study did not provide enough pyrolysis oil for accurate yield measurements. The non–condensable 
gases were vented off.  

3. Results and discussions 

3.1. Temperature profiles and definitions of characteristic points 

The temperature measurements were used to construct temperature profiles and calculate heating rates. The 
temperature profiles at the particle center at reactor temperature T = 500 °C are shown in Figure 2a, where one 
representative curve is chosen for each salt mixture. Figure 2b shows the temperature profile and corresponding 
heating rate in FLiNaK at 475 °C, where several characteristic points stand out clearly.  

It is clear that the salt mixtures have different effects on the thermal behavior of the wood samples. The 
temperature profile for the nitrate mixture is very different from the others; a sudden increase in temperature is 
observed with a maximum much higher than the reactor temperature. It is believed that the salt is reacting 
exothermically with the components in the wood sample. Carbon is one of the products from wood pyrolysis, and 
nitrates are reduced by this according to Eqs. (1) and (2) (simulations performed in HSC Chemistry software [21]).  
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a) b)  

Figure 2.(a) Temperature profiles at the center of beech wood particles (d = 3.5 mm) at reactor temperature T = 500 °C in FLiNaK (black), 
(LiNaK)2CO3 (red), ZnCl2–KCl (green), and KNO3–NaNO3 (blue); (b) Temperature profile and calculated heating rate at the center of beech 
wood (d = 3.5 mm) in FLiNaK pyrolysis at reactor temperature T = 475 °C. 

 (1) 
 (2) 

A similar pattern is observed for the other reactor temperatures, and the results for this salt are excluded from 
further analyses since the characteristic pyrolysis points are not clear. For the remaining salts, the shape of both the 
temperature profiles and heating rates are qualitatively the same for all the investigated reactor temperatures.  

The characteristic points shown in Figure 2b are briefly described in Table 2. We have used the same definitions 
as in our previous study, where we have also included more thorough descriptions.[16] The characteristic points 
were originally proposed by Di Blasi and Branca in their study of pyrolysis of cylindrical beech wood particles  
(L = 20 mm, d = 2 – 10 mm) in a hot sand bed (T = 534 °C) fluidized by nitrogen.[17]  

Table 2. Description of characteristic points during pyrolysis of beech wood particles. 

Characteristic 
points 

Description 

h1 / t1 /T1 Maximum heating rate. This is measured right before any reactions occur. After this point, degradation starts in the outer 
part of the particle and inward heat transfer is hindered.  

h2 / t2 /T2 Point of high variation. This indicates the beginning of the endothermic degradation of cellulose and hemicellulose at the 
particle center. 

h3 / t3 / T3 Local minimum of heating rate. This point represents the main occurrence of degradation of cellulose and hemicellulose, 
and T3 may be regarded as the effective pyrolysis temperature.  

h4 / t4 / T4 Local maximum of heating rate.  The exothermic degradation of lignin – which happens over a wider temperature range 
than cellulose and hemicellulose – starts to slow down. At this point, the conversion is about 95%. 

t5 / T5   Maximum temperature. The conversion process is practically terminated, and t5 may be regarded as the total 
devolatilization time. 

3.2. Reaction temperatures and heating rates 

The effect of reactor temperature (400 – 600 °C) on the characteristic temperatures in molten salt pyrolysis is 
shown in Figure 3. For T1 there is a relatively high scatter in the observations. The high heating rates at this point 
(Figure 4) makes it difficult to evaluate precise corresponding temperatures. Since the variation within one salt is 
greater than the variation between the salts, it is not possible to say if there are differences between the salt mixtures. 
The other characteristic temperatures are more consistent. They are slightly, but not significantly, lower for  
ZnCl2–KCl. The values are comparable to a corresponding study in fluidized sand bed by Di Blasi and Branca [17], 
indicating that the heat transfer medium is of less importance to the reaction temperatures. For T2 and T3 there is 
only a weak dependence on reactor temperature, with values in the range 352 – 386 and 404 – 438 °C, respectively. 
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These temperatures are associated with the beginning and the main occurrence of cellulose and hemicellulose 
degradation. The reactions are known to occur at a narrow temperature range [22], and depend more on particle size 
[16] than heat transfer medium. T4 is related to the degradation of lignin. This happens over a wider temperature 
range [23], and is more dependent on the reactor temperature than the other characteristic temperatures. An increase 
in T4 from 435 to 522 °C is observed as the reactor temperature is increased from 450 to 600 °C.  

 

Figure 3. Characteristic temperatures at the center of beech wood particles (d = 3.5 mm) as functions of the reactor temperature in FLiNaK 
(black), (LiNaK)2CO3 (red), and ZnCl2–KCl (green).  

The characteristic heating rates (h1 – h4) as a function of reactor temperature are shown in Figure 4. All the 
heating rates show an increasing trend with increasing reactor temperature. The maximum heating rate (h1) is of 
special interest because it is measured before any reactions occur, and this is where variations between heat transfer 
media are shown. Although there is some scatter in the observations, it is clear that FLiNaK generally has higher 
values (46 – 56 °C/s), followed by (LiNaK)2CO3 (38 – 52 °C/s) and then ZnCl2–KCl (35 – 43 °C/s). The other 
characteristic heating rates show a strong dependence on reactor temperature; h2 increases from 8 to 31 °C/s, h3 from 
1 to 20 °C/s, and h4 from 4 to 43 °C/s. Variations between the salts are, however, negligible.   

 

a) b)  

c) d)  

Figure 4. Characteristic heating rates at the center of beech wood particles (d = 3.5 mm) as functions of the reactor temperature in FLiNaK 
(black), (LiNaK)2CO3 (red), and ZnCl2–KCl (green).  
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3.3. Devolatilization times  

Prediction of the total devolatilization time in pyrolysis is important for reactor design. Several definitions are 
used in literature; measurements of gas evolution [24], rate of weight loss [25], or temperature history [26]. Based 
on the definitions previously introduced (Figure 2b), t5 could be regarded as the total devolatilization time. 
However, precise evaluation of t5 is difficult in this study, because the maximum temperature T5 cannot be 
distinguished from small temperature oscillations associated with structural changes or measurement errors for such 
small particles. We have instead chosen to use t4 for the evaluation of the devolatilization time to allow for 
comparison between salt mixtures and reactor temperatures. This corresponds to the second local maximum in the 
heating rate at the particle center, and the conversion is about 95%.[26] 

Figure 5a shows t4 as a function of the reactor temperature. Values for FLiNaK and (LiNaK)2CO3 are comparable 
for all reactor temperatures, while the pyrolysis process takes longer time in ZnCl2–KCl. However, the differences 
diminish as the bed temperature is increased, and for reactor temperature T = 600 °C there are no significant 
differences. A common empirical correlation for the devolatilization time is the power–law relation n

dev Adt = , 
where A and n are fitted to match the experimental data. This was originally proposed for coal particles [27], but has 
also been shown to be applicable for pyrolysis of wood particles.[17, 24, 28] Values for n typically range between 1 
and 2, depending on external or internal heat– and mass–transfer control.[29] Factors such as bed temperature, 
sample varieties, oxygen concentration, etc., are usually incorporated in the parameter A.[27] In our previous study 
[16] we found n = 1.05 for cylindrical beech wood particles with diameters between 1 and 8 mm in FLiNaK at  
500 °C. We continue to use this value for n, and focus on the parameter A in the following. We have constructed an 
Arrhenius plot of ln(A) as function of 1000/Treactor for each salt mixture (Figure 5b), and found that A depends 
exponentially on reactor temperature with the relations given in Table 3. This is in agreement with the results 
reported by other researchers for both coal [27] and wood.[17, 28]   

a) b)  

Figure 5. (a) Characteristic heating times for beech wood particles (d = 3.5 mm) as functions of the reactor temperature in FLiNaK (black), 
(LiNaK)2CO3 (red), and ZnCl2–KCl (green). (b) Effect of reactor temperature on the correlation parameter A for the devolatilization time for 
pyrolysis of beech wood particles (d = 3.5 mm) in FLiNaK (black), (LiNaK)2CO3 (red), and ZnCl2–KCl (green). 

The R2 values for the regression analysis are very good (Table 3), especially for (LiNaK)2CO3 and ZnCl2–KCl. 
We have calculated the corresponding activation energies (Table 3), and these are in the same range as found by 
other researchers.[17, 27] The values are quite low on chemical kinetic scales, indicating heat transfer being the 
controlling mechanism in the process.[30]  

Table 3. Correlation parameter A and corresponding values for the activation energy of beech wood particles in molten salt pyrolysis.  

Molten salt A R2 Corresponding activation energy 

FLiNaK 0.698e1600/T  95.98 13.3 kJ/mol 

(LiNaK)2CO3 0.194e2662/T 99.28 22.1 kJ/mol 

ZnCl2–KCl 0.105e3264/T 99.51 27.4 kJ/mol 



 Author name / Energy Procedia 00 (2014) 000–000   7 

4. Conclusions 

The pyrolytic behavior of cylindrical beech wood particles (L = 30 mm, d = 3.5 mm) in FLiNaK, (LiNaK)2CO3,  
ZnCl2–KCl, and KNO3–NaNO3 at temperatures between 400 to 600 °C was investigated. Temperature profiles were 
made based on temperature measurements at the particle center during pyrolysis reactions, and these were used to 
evaluate the reaction temperatures, heating rates, and devolatilization times.  

The nitrate mixture was not suitable for pyrolysis. The temperature profiles differed greatly from the others with 
a sudden increase in temperature and a maximum much higher than the reactor temperature. This indicates that the 
salts react exothermic with the carbon formed in the process, also supported by large negative Gibbs free energies 
for simulated reactions in HSC Chemistry software.  Although nitrates have previously shown good heat transfer 
performance in storage of solar energy [13] and in vacuum pyrolysis [12], these studies do not involve direct contact 
with carbon containing material.  

The characteristic reaction temperatures are slightly, but not significantly, lower for ZnCl2–KCl. The main 
degradation of cellulose and hemicellulose (T3) show a weak dependence on reactor temperature (404 – 438 °C), but 
a stronger dependence is observed for T4 (435 – 522 °C), which is associated with the degradation of lignin. The 
highest heating rate (h1) is measured before any reactions start. Some scatter exists in the observations, but it is still 
clear that FLiNaK generally has higher values (46 – 56 °C/s), followed by (LiNaK)2CO3 (38 – 52 °C/s) and then 
ZnCl2–KCl (35 – 43 °C/s). The other characteristic heating rates are comparable for the salts, but they all depend 
strongly upon reactor temperature. The devolatilization time t4 (corresponding to conversion of about 95%) is found 
to follow the empirical power–law relation . Arrhenius plots were constructed for each salt mixture to 
show that A depends exponentially upon temperature. The plots were in good agreement with experimental results, 
with R2 values above 96%. Corresponding activation energies were calculated to be in the range from 13.3 to 27.4 
kJ/mol, indicating heat transfer control rather than kinetic control in the decomposition process.  

The results show that all though the highest heating rate and devolatilization times are affected by the external 
heating, the heat transfer media is of less importance to reaction temperatures and the remaining heating rates.  
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Abstract. A tubular electrostatic precipitator (ESP) was designed and tested for collection of pyrolysis 

oil in molten salt pyrolysis of milled beech wood (0.5 – 2 mm). The voltage-current (V-I) characteristics 

were studied, showing most stable performance of the ESP when N2 was utilized as inert gas. The 

pyrolysis experiments were carried out in FLiNaK and (LiNaK)2CO3 over the temperature range of  

450 – 600 °C. The highest yields of pyrolysis oil were achieved in FLiNaK, with a maximum of 34.2 wt % 

at 500 °C, followed by a decrease with increasing reactor temperature. The temperature had nearly no 

effect on the oil yield for pyrolysis in (LiNaK)2CO3 (19.0 - 22.5 wt %). Possible hydration reactions and 
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formation of HF gas during FLiNaK pyrolysis were investigated by simulations (HSC Chemistry software) 

and measurements of the outlet gas (FTIR), but no significant amounts of HF were detected.  

Introduction 

Pyrolysis is a thermochemical conversion process in which biomass is heated in the absence of 

oxygen. The products are pyrolysis oil, non-condensable gases and solid char, with respective yields 

depending on various process parameters such as heating rate, reaction temperature, and residence 

time in the hot zone of the reactor system.1 In fast pyrolysis, the biomass particles should be heated 

rapidly to temperatures around 500 °C, followed by quenching of the produced vapors. In this way 

secondary reactions are kept to a minimum and the oil yield is maximized.2  

Inorganic molten salts are potential candidates for rapid heat transfer in fast pyrolysis due to their 

good heat transfer characteristics, thermal stability and large heat capacities.3 However, there are 

limited reported results with focus on the yield of pyrolysis oil in molten salt pyrolysis. Jiang et al.4 

performed an experimental study on pyrolysis of biomass in molten chlorides, and claimed that both the 

oil yield and water content of pyrolysis oil can be adjusted by varying the composition of molten salts. 

The highest yield of pyrolysis oil (35.0 wt %) was obtained from cellulose pyrolysis in ZnCl2 at 450 °C, 

while the use of other chlorides mixtures (ZnCl2-KCl, KCl-CuCl, ZnCl2-KCl-CuCl, ZnCl-KCl-FeCl2) only gave 

yields up to 15.0 wt %. Other researchers have concentrated on gasification of cellulose in carbonates5,6 

or production of specific phenolic compounds from lignin in chlorides.7,8 The use of molten salts have 

also been reported for thermal treatment of municipal refuse,9  wastepaper,10,11  and recycling of 

plastics.12-14 Other applications of molten salts as heat transfer media include solar power towers and 

nuclear power plants.15 

In most pyrolysis reactor configurations, a large volume of inert gas is needed for fluidization and/or 

transportation of the produced vapors out of the reactor.2 This means that the vapors, which are mostly 

in the form of aerosols, are present at relatively low concentrations in an inert gas (< 5 vol %), and the 
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separation is a difficult task.16,17 Quenching by direct contact with product pyrolysis oil or in an 

immiscible hydrocarbon solvent has been widely practiced,1 but careful design and temperature control 

are needed to avoid blockages in the system due to broad condensation temperature range of the 

organic volatiles.17 Solvent methods have relatively high collection efficiencies, but the need for 

subsequent separation of the pyrolysis oil from the solvent adds cost to the process.18 The currently 

preferred method is electrostatic precipitation (ESP),1 a method that has been found to be more  

effective than solvent and cooling methods.18 In an ESP, the vapors are charged by a corona discharge 

and separated from the inert gas by an electric field. The charged droplets are attracted to a grounded 

wall where they are neutralized and collected.19  

There are two main objectives in the present paper. The first objective is the design of a tubular ESP 

for collection of pyrolysis oil. The voltage-current (V-I) characteristics are investigated with pure inert 

gases (N2 and Ar) and with pyrolysis vapors included in the gas streams. The second objective is to use 

the ESP for collection of pyrolysis oil in molten salt pyrolysis of milled beech wood (0.5 – 2 mm). In a 

previous study20 we found that FLiNaK gives significantly higher heating rates compared with fluidized 

sand bed21 for beech wood cylinders with d ≤ 4 mm. In a subsequent study22 (LiNaK)2CO3 also showed 

good heat transfer characteristics. In this study we focus on the yield of pyrolysis oil in molten salt 

pyrolysis. Experiments are performed in FLiNaK and (LiNaK)2CO3 in the temperature range 450 – 600 °C. 

The effects of salt mixture and reactor temperature on the yields of pyrolysis oil and char are 

investigated, and the oil is analyzed with respect to water content.  

Design characteristics of electrostatic precipitator 

A schematic of the constructed ESP is shown in Figure 1, with the design adopted from Bedmutha et 

al.19 The inner cylinder was made of stainless steel and was electrically grounded. It was 50 mm in 

diameter and 150 mm long. A stainless steel wire (1 mm) co-axial with the inner cylinder was connected 

to a high voltage source and used as discharge electrode (positive potential). The outer cylinder was 
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made of polyoxymethylene (POM), an isolating material with a low coefficient of friction, good dielectric 

properties and good resistance to oils, greases, and solvents.23 The ESP was cooled externally with tap 

water (~20 °C). 

 

Figure 1. Schematic of the electrostatic precipitator (ESP). 

For the initial testing, a bubble flask with water was attached at the exhaust of the ESP. It could be 

easily observed if the outlet gas contained any uncondensed pyrolysis vapors as these would fill the 

empty part of the flask with white "smoke". Argon (Ar, purity 99.99%, H2O ≤ 20 ppm, O2 ≤ 20 ppm) and 

nitrogen (N2, purity 99.999%, H2O ≤ 3 ppm, O2 ≤ 3 ppm) purchased from AGA were used as inert gases.  

The ESP was operated by setting the central electrode at a positive potential ranging from 0 to 20 kV, 

and the V-I characteristics (Figure 2) were determined with pure inert gases and during pyrolysis 

experiments with milled beech wood particles in FLiNaK at 500 °C. The voltage was increased slowly 
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until spark-over occurred, and the values of the output voltage and current were read directly from the 

power supply. The procedure was performed several times to assure reproducibility.  

 

Figure 2. Current vs voltage characteristics for the electrostatic precipitator.  

The two employed gases showed very different influence on the V-I characteristics, with the point for 

spark-over being the most prominent. Sparking is a phenomenon occurring when a conducting path is 

formed between the electrodes and electrons reach the grounded wall without being captured by 

molecules or particles. This can happen when the voltage is too high or the inert gas breaks down.24 

With pure inert gas streams, the spark-over occurred at 9.1 kV for Ar and 18.9 kV for N2. Argon and 

molecular nitrogen have similar ionization energies (1520.6 and 1503.0 kJ/mol, respectively25), but the 

break down voltages are generally observed to be lower for argon.26 The different V-I behaviors could be 

caused by differences of impurities as well, an observation also reported by Bedmutha et al.19 In the 

presence of pyrolysis vapors, the spark-over voltage for Ar was increased to 11.9 kV, while no spark-over 

was observed for N2 within the voltage range of the power supply. This could be explained by the 

pyrolysis vapors absorbing the electrons formed at the cathode and thus reducing the possibility for 

sparking. 
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It was visually observed that a minimum of 12 kV was required for separation of pyrolysis vapors and 

the remaining gas stream. Since these conditions were not possible without experiencing spark-overs 

using Ar, N2 was chosen for the rest of the experiments in this study. Also, with N2 as an inert gas, the 

increase in current with applied voltage is slower (Figure 2). This indicates poor conductivity of the gas, 

giving a more stable operation of the ESP.  

Experimental procedure for pyrolysis of beech wood 

Beech wood was used as feedstock in all the pyrolysis experiments. Beech wood is a hardwood 

consisting of 48% cellulose, 28% hemicellulose, 22% lignin and 2% extractives.27 Untreated beech wood 

logs were milled and sieved, and a fraction of particle diameter of 0.5 – 2 mm was used. The samples 

were dried at 105 °C for 24 h prior to the experiments in order to minimize the water content. 

The salts were purchased separately in their simplest form from Sigma-Aldrich (> 98.5% purity). The 

salts were mixed mechanically to obtain the different compositions listed in Table 1. The mixtures were 

pre-melted at 500 °C and kept in a drying oven (> 200 °C) for at least 24 h.  

 

Table 1. Composition and properties of salts used in the experiments. 

Molten salts composition (wt %) Melting point Experiment temperatures 

LiF-NaF-KF (29.2-11.7-59.1) 454 °C15 475-600 °C 

Li2CO3-Na2CO3-K2CO3 (31.7-33.7-34.7) 397 °C28 450-600 °C 

 

300 g of dried salt mixture was filled in a nickel crucible (H = 190 mm, ID = 52 mm) placed inside a 

stainless steel reactor (H = 200 mm, ID = 62 mm) that was heated externally by an electric furnace 

(Figure 3). Nickel was chosen because it is more resistant to corrosion by molten salts.29 The height of 

the melt varied between 60 and 70 mm, depending on the type of salt mixture and reactor temperature. 
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A 9 μm wire mesh filter was placed at the exit of the reactor to remove char and ash from the hot 

pyrolysis vapors. This type of in situ vapor filtration prior to condensation has been shown to give yields 

comparable to those obtained when cyclones are used, but with less solids, alkali metals, and ash in the 

pyrolysis oil.30 The filter also ensures that possibly unreacted wood particles remain in the hot reactor. 

 

Figure 3. Schematic representation of the experimental setup for pyrolysis of biomass in molten salts.  

When the heating was started, inert gas (N2) was continuously flowed into the reactor through a 

nickel tube (4 mm) to ensure an oxygen-free atmosphere. The salt temperature was controlled by a 

submerged type K thermocouple. Once the salt was completely melted, the nickel tube was submerged 

in the melt to give turbulent mixing and a homogeneous temperature throughout the reactor. Turbulent 

mixing enhances the heat transfer from the salt to the wood samples in the pyrolysis process. The 
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heating was continued until the desired reactor temperature was reached. The temperature ranges 

used in the experiments for the two salt compositions are listed in Table 1.  

The samples were introduced to the reactor manually through a ball valve based feeding system. The 

small particles were filled in a tube above the ball valve. The tube was then closed with a plug, and the 

valve was opened to feed the wood to the reactor. No gas could escape to the environment in this 

closed system. Due to problems with clogging of the feeding tube, the tube was kept 1 – 2 cm above the 

molten salt bath and the particles were fed to the top of the melt with the aid of a push rod. A total of 

ca 20 – 25 grams was added in small batches of 0.3 – 0.5 gram every minute. In preliminary 

experiments, the mixing of wood particles with a fluid bed (water-sugar solution to obtain similar 

characteristics as molten salts) was studied visually in a cold-flow glass model. At room temperature, the 

particles were mixed well in the fluid due to the turbulent bubbling of inert gas.  

The flow rate of N2 was set to 0.6 L/min during the experiments. This was a tradeoff between 

relatively short vapor residence time in the order of a few seconds and to avoid extensive splashing of 

the salt which could possibly clog the wire mesh filter at the top of the reactor. The vapors were led out 

of the reactor through a 4 mm heated transfer line (450 °C) made of stainless steel. The system was 

connected to the previously described ESP for collection of pyrolysis oil. The ESP was operated at 12 – 

15 kV and cooled externally with tap water at 20 °C. A tubular cotton gas filter (filtration level 10 μm) 

was attached to the exhaust of the ESP for capturing the remaining vapors, and the non-condensable 

gases were vented off. After the experiments were completed, the power was turned off, and the 

system was left under inert atmosphere until ambient temperature to prevent corrosion.  

The char yield was measured as difference between the reactor mass before and after experiment. 

The total pyrolysis oil yield was determined by weighing the ESP condenser and the cotton filter before 

and after the experiment. The water content of the oil was determined by Karl Fischer titration, using 

Hydranal Composite 5 as titer. 
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Results and discussions 

Three identical experiments with beech wood in FLiNaK at 500 °C were conducted to assure 

reproducibility of the experimental method. The remaining experiments were performed once, except 

for a few cases where clogging of the feeding tube or failing of the electrostatic precipitator occurred. 

These experiments were repeated, and the results from the failed experiments were disregarded. For 

the successful experiments, no uncondensed pyrolysis vapors were observed at the outlet of the ESP.  

The ESP contained between 92 and 97 % of the produced pyrolysis oil, with the remaining amount 

found in the cotton filter. Only the fraction condensed in the ESP was analyzed further with respect to 

water content. The collected oil was in one phase in the case of FLiNaK at 475 and 500 °C, while a two-

phase oil was recovered for the rest of the experiments. The two-phase samples were heated slowly 

until good mixing was achieved before the water content was determined.  

Effect of salt mixture and temperature on product yields 

The yields of pyrolysis oil and solid char as a function of reactor temperature are plotted in Figure 4. 

Figure 5 shows the influence of reactor temperature and salt composition on the water content of the 

pyrolysis oil.  

a) b)  

Figure 4. Yields of pyrolysis oil (a) and solid char (b) as function of the reactor temperature in FLiNaK 

(black) and (LiNaK)2CO3 (red).  
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Figure 5. Water content of pyrolysis oil (collected from the ESP) as a function of reactor temperature for 

pyrolysis of beech wood in FLiNaK (black) and (LiNaK)2CO3 (red). 

The reactor temperature showed a strong effect on the pyrolysis oil yield in FLiNaK, with a maximum 

of 34.2 wt % at 500 °C, followed by a decrease with increasing reactor temperature. The yield of 

pyrolysis oil in (LiNaK)2CO3 was nearly constant with temperature, with values between 19.0 and  

22.5 wt %. For the char yield, only a minor temperature dependence was observed in both salt mixtures 

for reactor temperatures above 500 °C. The water content varied greatly between pyrolysis in FLiNaK 

and (LiNaK)2CO3, but the same trend with lower water content for higher oil yields are observed.  

The pyrolysis oil yields are for the most part higher than those reported in molten chloride pyrolysis 

by Jiang et al.4, where cold trap condensers were utilized for oil collection. But the oil yields are 

generally lower and the char yields higher compared to typical values reported for other fast pyrolysis 

technologies.2 These results, in addition to the high water contents of the pyrolysis oils (Figure 5), 

indicate that secondary reactions are occurring. Even though the inert gas should bring the vapors out of 

the reactor within a few seconds, the vapors could experience mass transfer resistance in the melt 

leading to longer vapor residence time at elevated temperatures. However, several researchers have 

stated that the oil yield is much less dependent on vapor residence times than originally assumed. Wang 

et al.31 did not observe any effect on the product yields for vapor residence times between 1 and 6 

seconds, while Scott et al.32 found no significant influence up to 10 seconds. Hoekstra et al.33 stated that 
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pyrolysis vapors can be exposed to elevated temperatures for a long time, given that these are poor in 

mineral content, since minerals containing alkali elements such as Na and K promote the formation of 

gaseous species and char on the expense of pyrolysis oil. Taking this into account, it is likely that the 

presence of minerals in the molten salts play a role in the pyrolysis process, and that the lower yields of 

pyrolysis oil are caused by a combination of longer vapor residence times and prolonged contact 

between the salts and the formed vapors.  

Another possible explanation is insufficient mixing of wood and salt leading to slower heating than 

assumed based on our previous work where single particles were studied,20,34 and thus dehydration and 

carbonization reactions could take place at lower temperatures on the expense of depolymerization to 

condensable gases. However, turbulent bubbling and splashing of the molten salt should ensure the 

same contact between the hot melt and the wood particles giving heating rates typical for fast pyrolysis.  

Formation of HF in FLiNaK pyrolysis 

Hydration of metal halides can result in formation of HX, where X represents a halide ion. Given the 

hygroscopic nature of FLiNaK, formation of HF gas (Eqs. 1 – 6) is a possible concern when this salt is 

utilized in pyrolysis where water is one of the species formed in the process. The HF gas could 

contaminate the pyrolysis products and also lead to extensive corrosion of metal elements found in 

process equipment.35 

 

       (1) 

        (2) 

        (3) 

        (4) 

        (5) 

        (6) 
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The hydration reactions were simulated in HSC Chemistry software7, with the results plotted in Figure 

6. According to the simulations, hydration will not occur in the experimental temperature ranges of this 

study. It should be noted that the Gibbs free energies are well above zero for temperatures relevant for 

gasification processes as well.  

 

Figure 6. Gibbs free energy versus temperature for possible hydration reactions in FLiNaK.  

The concentration of HF in the outlet gas was also examined during FLiNaK pyrolysis at 600 °C by 

means of a FTIR gas analyzer (Thermo Scientific, Nicolet 6700), but no significant amounts were 

detected.  

Conclusions 

The aim of this work was to investigate molten salt pyrolysis with the focus on pyrolysis oil 

production. A tubular electrostatic precipitator (ESP) was designed and tested for collection of pyrolysis 

oil in the process. The voltage-current (V-I) characteristics of the ESP were studied with the inert gases 

N2 and Ar, and N2 was found to give the most stable operation. This was attributed to higher break down 

voltages, and lower concentrations of impurities, and lower conductivity of the inert gas. The minimum 

voltage required for separation of pyrolysis vapors from the remaining gas stream was found to be  

12 kV.  
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Beech wood particles (0.5 – 2 mm) were pyrolyzed in FLiNaK and (LiNaK)2CO3 at temperatures 

between 450 and 600 °C. The ESP worked well, and no uncondensed vapors were observed at the gas 

outlet. The pyrolysis oil yields were generally higher than those reported in chloride pyrolysis by Jiang et 

al.4, with a maximum of 34.2 wt % for FLiNaK at 500 °C. The pyrolysis oil yields were lower and the char 

yields higher compared to other fast pyrolysis technologies. The oils were also high in water content. 

These results were somewhat unexpected, since the employed molten salts have been found to give 

very high heating rates for beech wood particles in our previous work.20,22  One possible explanation to 

this is transport resistance of vapors leaving the melt leading to longer vapor residence times and 

secondary reactions into char, non-condensable gases and water. Another reason could be contact 

between the formed vapors and alkali elements (Na/K) in the melt leading to the formation of gaseous 

species and char on the expense of pyrolysis oil. 

A possible concern when using FLiNaK as a reaction medium in thermochemical conversion of biomass 

is the reaction between the salt and produced water to form HF gas. According to both simulations and 

FTIR measurements of the outlet gas, no significant amounts of HF are produced during beech wood 

pyrolysis in FLiNaK.  
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