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ABSTRACT

The photogenerated current of solar cells can be enhanced by light management with surface structures. For solar cells with optically thin
absorbing layers, it is especially important to take advantage of this fact through light trapping. The general idea behind light trapping is to
use structures, either on the front surface or on the back, to scatter light rays to maximize their path length in the absorber. In this paper,
we investigate the potential of chaotic scattering for light trapping. It is well known that the trajectories close to the invariant set of a chaotic
scatterer spend a very long time inside of the scatterer before they leave. The invariant set, also called the chaotic repeller, contains all rays of
in�nite length that never enter or leave the region of the scatterer. If chaotic repellers exist in a system, a chaotic dynamics is present in the
scatterer. As a model system, we investigate an elliptical dome structure placed on top of an optically thin absorbing �lm, a system inspired
by the chaotic Bunimovich stadium. A classical ray-tracing program has been developed to classify the scattering dynamics and to evaluate
the absorption e�ciency, modeled with Beer-Lambert’s law. We �nd that there is a strong correlation between the enhancement of absorption
e�ciency and the onset of chaotic scattering in such systems. The dynamics of the systems was shown to be chaotic by their positive Lyapunov
exponents and the noninteger fractal dimension of their scattering fractals.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5111042

Chaotic scattering of light rays is a feature of many types of
surface-structured solar cells. Scattering structures that lead to
chaotic scattering have an invariant set of in�nitely long-lived tra-
jectories. In this paper, we illustrate how concepts and methods
from the �eld of chaos can provide valuable insights for fur-
ther developments in a vastly di�erent �eld: light management in
optically thin solar cells.

I. INTRODUCTION

Photovoltaic solar cells (PV) are an increasingly important
source of renewable energy. In order to increase the competitive-
ness of solar electricity, it is desirable to reduce the material costs
of solar cells and modules further. Thin solar cells are less prone
to bulk recombination and can exhibit larger voltages than their

thicker counterparts. In addition, they require less absorber mate-
rials, which can reduce cost and environmental footprint further.
Reducing the thickness of solar cells requires low surface recombi-
nation, as well as an e�cient light-trapping scheme to avoid exces-
sive transmission and/or re�ection losses. Silicon-based solar cells
represent by far the most widespread solar cell technology today.
However, silicon exhibits an indirect electronic band gap, which
results in weak absorption. This makes the development of surface
structures with e�cient light-trapping properties even more impor-
tant for thin silicon solar cells. Additionally, commercial silicon-
based PV production has become so re�ned that the theoretical
maximal e�ciency of 29.8%1 might soon be a limiting factor. This
further motivates to look to more e�cient alternatives like thin
�lm PV.

A number of di�erent mechanisms for absorption e�ciency
enhancement are discussed in the scienti�c literature and some
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of them are already implemented in solar cell technology. These
e�orts range from plasmonics2 to surface-structured light-trapping
designswith either ordered structures or random surfaces.3–9 In light-
trapping designs, the aim is to establish surface structures that keep
as many of the incoming light rays as long as possible in the absorber.
Thismaximizes the chance of absorption before the rays can leave the
solar cell. Themaximal enhancement factor for intensity with respect
to the incident intensity is 4n2, wheren is the index of refraction of the
solar cell, a limit shown by Yablonovitch in 1982, commonly called
the Yablonovitch limit.10 To show this, Yablonovitch theorized that a
truly random surface texture applied to both sides of a �lm would
randomize the direction of the rays interacting with the surface, thus
e�ectively trapping the light rays by maximizing the chance of total
internal re�ection to occur.

Ray trapping is a phenomenon that has been extensively investi-
gated in the context of chaotic scattering systems. Chaotic scattering
systems have been studied for quantum wave systems and the cor-
responding classical ray systems, and several textbooks have been
published in this �eld.11–13 Chaos is a mature �eld of research with
a rich set of tools to study dynamics both classically, using rays, and
quantummechanically, using waves. Chaotic systems were originally
studied by Henri Poincaré, who investigated the three-body prob-
lem in the 1890s.14 In the 1960s, Lorenz modeled the atmosphere
for weather prediction using three coupled nonlinear ordinary dif-
ferential equations.15 The famous butter�y e�ect originates from this
work. Both Poincaré and Lorenz found systems that exhibit extreme
sensitivity to the initial conditions. The study of dynamical billiards
started in 1898 when Hadamard showed that all trajectories in a
Hadamard billiard diverge exponentially, thus proving for the �rst
time the existence of what nowadays is called “deterministic chaos”
in a dynamical system.16 Later, in the 1970s and 1980s, Bunimovich
also studied dynamical billiards and proved that the dynamics of the
“Bunimovich stadium,” a special dynamical billiard [Fig. 1(a)],17–19

is chaotic. The class of dynamical billiards that is important for this
work are those where we consider a frictionless particle (a model
photon) moving on a �at surface in the presence of some addi-
tional structures that re�ect, transmit, and refract the particle, akin
to the dynamics in a dielectric cavity,20,21 such as the dielectric-loaded
Bunimovich stadium.22 Chaotic scattering systems were for the �rst
time studied in the late 1980s. By the early 1990s, many di�erent
chaotic scattering systems had been studied;23 three-disk scattering,24

celestial mechanics,25,26 charged-particle trajectories in electric and
magnetic �elds,27 and scattering in atomic and nuclear physics,28–30

to name only a few. A review of new developments was written by
Seoane and Sanjuán.31

In this study, we investigate if chaotic scattering can be con-
sidered as a mechanism for absorption enhancement and eventually
used as a guide for designing e�cient solar cell surfaces for thin
solar cells. As a model system, we use a dome structure consisting
of half an ellipse and a rectangular slab mimicking the solar cell
absorber. The shape chosen is similar to the dielectric-loaded Buni-
movich stadium,22 which is a stadium that is cut in half along the
middle of the long side. We call our model system �lm + dome.
The �lm + dome system has mirrors at the bottom and on the sides.
The model system we have chosen is thus a model for dome-shaped
surface-structured solar cells. This is a two-dimensional model, but
we imagine a third dimension, orthogonal to the two-dimensional

FIG. 1. (a) The Bunimovich stadium is a dynamical billiard extensively studied in
the context of chaos. (b) The open system is comprised of three mirrors arranged
in a bucketlike shape. The energy converting material in a solar cell can be mod-
eled by a complex refractive index. (c) A 3.46µm tall dome on top of a 2µm thick
film. The width of the film and dome is 5µm. The arrows show how incident rays
are sent toward the surface.

plane of our model, in which our two-dimensional model is contin-
ued with cylindrical symmetry. Thus, our two-dimensional model
re�ects the dynamics of the three-dimensional cylindrically symmet-
ric system on a cut orthogonal to its cylinder axis. There are two
ray-splitting surfaces present; the elliptical air-dome interface and the
�at dome-�lm interface.

Outside of the �lm+ dome, the refractive index is equal to one.
Ray-splitting systems have been extensively studied in the �eld of
quantum chaos.32–38 In ray-splitting systems, rays impinging on the
surface of the �lm+ dome are transmitted and re�ected according to
probabilities, which in electrodynamics are calculated by the Fresnel
equations.

Since the mechanisms of chaos have to our knowledge so
far attracted very little attention in the context of absorption
enhancement,39 we start this paper with a brief account of classical
chaos, highlighting aspects of chaos of relevance for the understand-
ing of this paper. We then introduce our classical ray-tracing model
for studying dynamical scattering systems. We demonstrate and dis-
cuss the relevance of chaos in the context of absorption enhancement
due to surface structuring of solar cells. Finally, we compare our
classical ray-tracing simulations with �nite di�erence time domain
(FDTD) electromagnetic (E&M) wave calculations.

Chaos 29, 093132 (2019); doi: 10.1063/1.5111042 29, 093132-2

© Author(s) 2019

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

II. CLASSICAL CHAOS

Chaotic dynamical systems are extremely sensitive to initial
conditions. In practice, this means that although chaotic systems are
governed by purely deterministic laws, they do not have closed-form
solutions. Lorenz puts it this way: “Chaos: When the present deter-
mines the future, but the approximate present does not approximately
determine the future,” which expresses the fact that while the classi-
cal dynamics of deterministic chaos is in principle predictable, small
deviations lead to a completely di�erent dynamics. The sensitivity
to initial conditions can be quanti�ed by the Lyapunov exponent.
Consider two rays started from almost the same initial conditions
in phase space. If the rays are started from and evolve in a chaotic
region in phase space, they will, after some point in time, evolve on
dramatically di�erent trajectories. Before this happens, the two rays
will diverge exponentially fast away from each other. The Lyapunov
exponent is a measure of the rate of this divergence. It is given as

s(t) = eλts(0), (1)

where λ is the Lyapunov exponent, s(0) is the initial separation dis-
tance in phase space, and s(t) is the separation at a time t. A positive
Lyapunov exponent means that the divergence is exponentially fast.
Thus, a positive Lyapunov exponent is a signature of classical chaos.
The separation at t 6= 0 can be measured in a Poincaré surface of
section (PSOS), which is a section of the total phase space. A PSOS
may be used as a way to visualize a trajectory via an intersection
surface in physical space.

In dynamical billiards and scattering systems, rays can follow
periodic trajectories, also called periodic orbits. However, in scatter-
ing systems, periodic orbits can never escape the system; otherwise,
they would not be periodic. These rays make up a part of the invari-
ant set of in�nitely long-lived trajectories; the other part is made
up of nonescaping, nonperiodic trajectories.40,41 The geometry of the
invariant set can be visualized in phase space. If the invariant set has
a fractal geometric structure in phase space, it is a sign of sensitiv-
ity with respect to initial conditions, thus a sign of chaos. Fractal
invariant sets in scattering systems are also called chaotic repellers.
It is known that when a trajectory is started near a chaotic repeller, it
takes a very long time to move away from the chaotic repeller when
the phase space is a mix of chaotic and regular regions.42

The notion of fractals and fractal dimensions was �rst discussed
by Mandelbrot in 1967, although the actual terms were introduced
later, in 1975.43 The fractal dimension of the invariant set can be
foundusing a standardmethod called box counting,44,45whichwewill
also use in our paper to estimate the fractal dimension of the phase
space. The procedure is to cover the phase spacewith boxes and count
how many boxes contain parts of the invariant set at di�erent scales.
We de�ne the fractal dimension d as

d = lim
M→∞

logN

logM
, (2)

where N is the number of boxes that contain a part of the invari-
ant set at a scaleM. In a numerical approximation of d, however, M
is �nite.

III. A MODEL FOR STUDYING CHAOS

A solar cell is a scattering system. Electromagnetic radiation
enters the system and may be completely or partially absorbed. We
may describe the electromagnetic radiation and its interaction with
a solar cell by a ray model in the following way. Light rays enter the
solar cell through the front surface. Light that is not absorbed may
be re�ected from the metallic back contacts and eventually leave the
solar cell. The absorption of electromagnetic radiation by the solar
cell can be taken into account by associating the rays with ampli-
tudes that are decreasing according to the attenuation described by
the Beer-Lambert law. In this paper, we simulate a solar cell by intro-
ducing a model system with a de�ned geometry and enclosing it
in a “bucket” of perfect mirrors, see Fig. 1(b). With this constraint,
the rays can only leave through the front side. Although real mir-
rors have some degree of absorption and transmission, we neglect
these e�ects in our simulations and, for the sake of simplicity, treat
all mirrors in our simulations as perfect mirrors. In our open bucket,
we study chaotic and regular ray dynamics with the help of classical
ray tracing and use our simulations to compare systems exhibiting
chaotic phase-space structures with systems exhibiting more regular
phase-space structures.

It is known that circular, rectangular, and triangular billiards
are regular systems with no chaotic dynamics. However, introduc-
ing a stepped potential inside such billiards produces chaos.46,47 This
is analogous to placing a material with an index of refraction larger
than 1 in our mirror bucket. Our model system, which we place in
the bucket, is a structure comprised of a �at �lm with a dome placed
on top as seen in Fig. 1(c). The dome structure is half an ellipse and
the �lm is a rectangular slab. The shape is similar to a Bunimovich
stadium cut in half along the middle of the long side, which, simi-
lar to our ellipses, has semicircles attached to its rectangular middle
section. We name our model system �lm + dome. We explore �lm
+ dome systems, where we keep the refractive index in the �lm at a
constant value of n�lm = 2 + 0.0054i and vary the refractive index in
the dome ndome to look for a transition from regular to chaotic scat-
tering dynamics. The imaginary part of n�lm is chosen to be the same
value as for silicon at 800 nm,48 truncated to four decimals. Silicon is
not a very good light absorber at this wavelength. Thus, the value is
a good choice when looking to improve absorption properties.

A. Classical ray tracing

In principle, if properly equipped with phases, Maxwell’s equa-
tions may be solved exactly using classical rays. We illustrated this
wave-ray equivalence recently by solving the wave equation of a
one-dimensional, dissipative, and layered solar cell exactly with the
help of classical rays that were properly equipped with phases.49 An
equivalently exact ray-tracing theory for two-dimensional dissipative
systems has not yet been described. However, in the geometric-optic
limit, where thewavelength is small compared to the scattering struc-
tures, it is common practice in the literature to consider optical rays.
Following this practice, we will use a classical ray-tracing approach,
neglecting proper inclusion of phases. Since we know that the inclu-
sion of phases is essential to obtain a one-to-one correspondencewith
Maxwell’s equations, we accept that our results are approximations.
However, quantities computed as averages over ensembles of rays
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may still be quite accurate, since statistical averaging tends to cancel
out phases.

We wrote a numerical ray-tracing code to study classical chaos
where Snell’s law is the physical principle used to determine the
evolution of a ray, i.e.,

n1 sin(θ1) = n2 sin(θ2). (3)

Here, n1 and n2 are the real parts of the index of the refraction of
either side of an interface and θ1 and θ2 are the incident and refracted
angles, respectively. Each ray is given an initial “intensity,” I0 = 1.
There are three mechanisms that a�ect the intensity: re�ection at
and transmission through a boundary between two materials and
absorption along the path of the ray, which we will model with the
Beer-Lambert law. To calculate the intensity I, when a ray crosses an
interface between di�erent materials, we need re�ection and trans-
mission coe�cients. The transverse electric (TE) Fresnel equations
correspond to the case where the polarization of the electric �eld
is perpendicular to the plane of incidence. For the one-dimensional
case, there are no separate Fresnel equations for TE and transverse
magnetic (TM). This is because the incoming ray vector coincides
with the interface normal, and thus there is no plane of incidence.
For the exact one-dimensional case,49 there are no separate Fresnel
equations for TE and TM. This is because the incoming ray vector
coincideswith the interface normal, and thus there is no plane of inci-
dence. The re�ection and transmission amplitudes of the transverse
electric (TE) case are given by

rTE =
cos θ1 −

√

n′2 − sin2 θ1

cos θ1 +
√

n′2 + sin2 θ1
, (4)

tTE =
2 cos θ1

cos θ1 +
√

n′2 − sin2 θ1
, (5)

where n′ = n2/n1. The choice of using the TE Fresnel equations
ensures that a scalar wave equation is exact when evaluating elec-
tromagnetic systems in two dimensions, or equivalently, three-
dimensional systems with cylinder symmetry. The polarization of
light does not change when it moves across an interface if the polar-
ization is perpendicular to the plane of incidence. For later com-
parisons, our ray model was equipped with these speci�c Fresnel
equations. These equations govern how much of the intensity is
re�ected and howmuch is transmitted. The corresponding re�ection
and transmission coe�cients are

R = |rTE|
2 , (6)

T =

√

n′2 − sin2 θ1

cos θ1
|tTE|

2 . (7)

We consider materials with a small absorption coe�cient ni and,
therefore, neglect the fact that absorption turns homogeneous into
inhomogeneous plane waves in absorptive media.50,51 Whenever
Snell’s law is referred to, it is the familiar law stated in Eq. (3).

Whenever a ray crosses an interface between two materials, it
splits into a re�ected ray and a transmitted ray. The practical impli-
cation of this is that calculations must be truncated because of run
time. As long as we have splitting rays, there will be branches of the
original ray that are inside the scatterer forever. We implemented a

FIG. 2. A plane wave enters an absorbing material with a complex index of refrac-
tion n = nr + ini . The intensity of the wave decays exponentially with a factor of
e−4πni x/λ.

truncation condition that stops the simulation of a particular branch
when Ib < 10−5, where Ib is the intensity in that branch. The e�ect of
the truncation threshold was thoroughly investigated by calculating
the average intensity lost due to terminating the rays early, i.e., the
truncation loss. For ndome ≤ 2, this value never exceeded 0.037% of
the total average intensity. When ndome > 2, the truncation loss was
higher, but it never exceeded 0.74% of the total average intensity.

Whenever a ray splits, the intensity in the resulting two branches
is determined according to the Fresnel coe�cients stated in Eqs. (4)
and (5). The subsequent absorption in thematerial is governed by the
Beer-Lambert law explained in Sec. III B.

B. Beer-Lambert law of absorption

We use the Beer-Lambert law of absorption to provide an
approximate measure of the absorption e�ciency of our model,
which we call the Beer-Lambert e�ciency. It is an approximation
because the classical ray model does not take di�raction into account
as an electromagnetic simulation would do. The extinction coe�-
cient in the Beer-Lambert law determines how fast the intensity of
incoming radiation is decaying. Consider a plane wave eikx, incident
on a slab of absorbing materials (see Fig. 2). Inside the material, the
index of refraction, n = nr + ini, is complex, and the wave is

einkx = ei(nr+ini)kx = e−nikxeinrkx, (8)

where k = 2π/λ denotes the wave vector and x is the penetration-
depth into the material. To obtain the intensity of the wave, we must
take the absolute square value

∣

∣e−nikxeinrkx
∣

∣

2
= e−4πnix/λ. (9)

We now see that the intensity is decaying exponentially as a function
of the path length inside of the absorbing material and the imaginary
part of the refractive index of the material. In order to use our clas-
sical ray tracing approach, a transition from waves to rays is needed.
We have chosen to assign each incoming ray an initial intensity of 1,
which is reduced as a function of the path length only, since ni is kept
constant in the absorbing material.

IV. THE TRANSITION FROM REGULAR TO CHAOTIC

DYNAMICS ENHANCES ABSORPTION EFFICIENCY

In this section, we discuss how the �lm + dome system transi-
tions from regular to chaotic scattering dynamics and establish our
central result, the correlation between the onset of chaos and the
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rapid increase in the Beer-Lambert e�ciency that systematically fol-
lows. We present results that show the transition from regular to
chaotic dynamics in three di�erent ways as a function of ndome:

1. computation of the fractal dimension of the invariant set of
in�nitely long-lived trajectories;

2. the chaotic nature of Newtonian rays entering the system from
the outside;

3. calculation of the absorption cross section, averaged over the
wavelength in an electromagnetic simulation using a commercial
�nite-di�erence time-domain (FDTD) solver.52

To corroborate and con�rm that the correlation between the onset of
chaos and the enhancement of the Beer-Lambert e�ciency is not spe-
ci�c to a certain special �lm thickness but a structurally stable phe-
nomenon, we repeated the three routes we use to show the transition
to chaos �ve times for varying �lm thicknesses. The only exceptions
to this procedure are the electromagnetic simulations, which were
studied only in the case of the 2µm �lm. We start by showing the
onset of chaos and its signatures for the system in Fig. 1(c), which
has a 3.46µm tall elliptical dome on top of a 2µm thick �lm as an
example, and end the section by showing the structural stability of the
connection between the onset of chaos and the onset of absorption
enhancement.

A. Scattering fractals and periodic orbits

A signature of chaos is the existence of chaotic repellers.53 We,
therefore, look for chaotic repellers in the invariant set of in�nitely
long-lived trajectories. We choose the bottom mirror of the bucket-
shaped system as our PSOS and send nonabsorbing Newtonian rays
from 10 080 equispaced positions in the spatial interval x ∈ (0, 5),
spanning the full width of the system, and from 10 080 equispaced
angles in the interval θ ∈ (−π ,π). The lifetime of these Newto-
nian rays is characterized by the number of collisions they make
with the PSOS. This characterization ensures that a trapped ray may
not simply live a long time in the scatterer, but has to return to the
back mirror, thus spending a portion of its lifetime in the absorb-
ing �lm, in order to be trapped. Rays with the initial angle π or −π

are omitted since they would bounce back and forth between the
right and left mirrors forever. Figure 3 shows a visualization of the
initial conditions of the rays, color-coded according to their life-
times, ranging from deep blue for short lifetimes to yellow for long
lifetimes, for four di�erent indices of refraction of the dome. Since
many subsets of these visualizations have fractal dimensions, we
refer to these visualizations as scattering fractals. The horizontal axis
of the scattering fractals corresponds to x, while the vertical axis
corresponds to θ .

The lifetime of each ray is measured by the number of bounces
it makes with the PSOS, in this case the rear mirror. The fractal
dimension of each scattering fractal for ndome between 1 and 2.5 in
steps of 0.1 is found by the box counting method, see Fig. 7. In gen-
eral, the transition to chaos may or may not be abrupt. In the case
where it is not abrupt but gradual, more and more of the phase
space will be chaotic during the transition. The �lm + dome sys-
tem has a gradual transition to chaos. We have opted to de�ne the
onset of chaos in terms of ndome as the cases where the calculated

FIG. 3. Scattering fractals for four different film+ dome systems for four different
values of ndome, respectively. In the case of (a), where ndome = 1.4, the fractal
dimension is ' 2. Hence, it is essentially a regular system. In (b) (ndome = 1.8),
(c) (ndome = 1.9), and (d) (ndome = 2.3), the fractal dimensions are less than the
threshold value of 1.95. The scattering fractals show the lifetime in terms of the
number of collisions with the PSOS. The initial angles, θi , and the initial positions,
xi , of the rays, cover the PSOS.

fractal dimension dropped below 1.95. In general, the scattering frac-
tals will not behave as self-similar monofractals with simple scaling
rules. The box-counting method was, therefore, used carefully and
only on scattering fractals which did not exhibit multiple scaling
rules. When computing scattering fractals for chaotic systems, one
must also respect that the extreme sensitivity of chaos means that
calculation precision can degrade quickly. The rays used for calcu-
lating fractal dimensions are cut o� at 20 bounces on the PSOS to
prevent this problem. This limit is the only truncation of the life-
time of the rays since absorption was turned o� for the calculation
of the scattering fractals. The example of the 2µm thick �lm shows
a fractal dimension below 1.95 when ndome ≈ 1.5, as indicated by the
horizontal dashed line in Fig. 7(c).

When ndome is exactly 1, it is equivalent to no dome at all, only
the �at �lm,whichmust have fully regular dynamics. As expected, the
fractal dimension is integer, d = 2. This is because rays started from
the inside at shallow angles will be trapped forever due to the total
internal re�ection. There is a sharp transition frombeing trapped for-
ever and escaping immediately in this case. When ndome is increased,
the geometry of the scattering fractal changes [Fig. 3(a)]. No longer
is there a sharp transition between the trapped and the escaping rays.
The border exhibits a fractal geometry and the lifetime of rays is
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sensitive to the initial coordinate and angle. Further increase in ndome

yields an even more complex border where the lifetime of the rays is
very sensitive to their initial conditions [Figs. 3(b) and 3(c)]. These
complex borders are fractal, meaning that rays which enter the region
near them might stay for a very long time in the system.42

When ndome is increased beyond the index of refraction of the
�lm, the invariant set gets drastically smaller [Fig. 3(d)]. The total
internal re�ection is now a possibility at the dome-�lm interface and
thus rays are ejected from the chaotic repellermuch earlier.Moreover,
triangularlike regions of trapped rays start to appear in the scattering
fractals for values of ndome around 2 near the center of the scatter-
ing fractal. This can be seen as the small yellow regions in Figs. 3(c),
3(d), and 4(a), which shows an enlargement of the upper small yel-
low region in Fig. 3(c). To more clearly bring out the ray dynamics in
the vicinity of the regular island shown in Fig. 4(a), Fig. 4(b) shows
the phase-space portrait of rays that were sent out from the initial
conditions of Fig. 4(a) and, to accurately represent the relatively long
trajectories that linger in the vicinity of the regular island, the cut-
o� is now at 200 bounces instead of 20. The phase-space portrait in
Fig. 4(b) shows a stable island surrounded by hyperbolas that close
in on the three corners of the stable island. The orbit correspond-
ing to the center of the stable island is shown in Fig. 4(c). This orbit
is totally re�ected at the air-dome interface. In the case of the total
internal re�ection, the full intensity of the ray is re�ected, which
is very bene�cial from a light-trapping perspective. The fact that
we are not looking to calculate the fractal dimension, but periodic
orbits at this point, justi�es the cut-o� limit of 200 bounces on the
bottom mirror. A ray launched from the initial condition pinched
by the hyperbolas produces an orbit with period three, as seen in
Figs. 4(d) and 4(e).

B. Newtonian rays sent in from the outside

The onset of chaos can also be inferred from Newtonian rays
sent in from the outside. When we model surface-structured solar
cells with rays, we send the rays in straight down from the out-
side. Such rays behave very predictably for values of ndome up to
1.65 as seen in Figs. 5(a) and 5(b). There is no sign of sensitivity
with respect to the initial position above the �lm + dome system.
In Figs. 5(c) and 5(d), we let ndome = 1.70 and ndome = 1.75, respec-
tively, and we see that some of the rays start to take wildly di�erent
paths compared to their neighboring rays. This indicates the onset
of chaos.

It is important to note that Fig. 5 shows Newtonian rays.
Figure 5(a) does not show the trajectories of non-Newtonian rays,
which are used for calculating the Beer-Lambert e�ciency. The rays
shown in Fig. 5(a) are Newtonian rays sent in from the outside.
Despite the simplicity of this visualization, it captures the emergence
of sensitivity to the initial positions of the rays.

Chaos in dynamical ray systems is often de�ned by a positive
Lyapunov exponent. We calculated the Lyapunov exponent of New-
tonian rays sent normally toward the dome-�lm interface from the
outside. Figure 6 shows the Lyapunov exponents as a function of the
initial starting positions, xi, of the rays above the �lm+ dome (2µm
thick �lm) system. Like in Fig. 5, we see a change when increas-
ing ndome beyond 1.65. At ndome = 1.7, some of the rays exhibit a
positive Lyapunov exponent. The number of rays with a positive

FIG. 4. (a) A chaotic repeller in the scattering fractal of the film + dome system
for ndome = 1.9. (b) The phase-space portrait generated by rays started for initial
conditions in (a). (c) An orbit started near a fixed point. (d) An orbit started near
a period three orbit. (e) A crop of the dashed area in (d) showing that the orbit is
indeed a period three orbit.

Lyapunov exponent increases with ndome. This result is consistent
with the behavior of the scattering fractals and the results shown in
Fig. 5.

C. Beer-Lambert efficiency

Wesimulate incoming sunlight by sending 5000non-Newtonian
rays in from the top as shown in Fig. 1(c) and average over the
e�ciency of each individual initial ray in order to calculate the
Beer-Lambert e�ciency. We chose to use λ = 500 nm in Eq. (9)
for comparison with FDTD calculations, which will be presented in
Sec. IV D. The initial conditions of the 5000 rays are evenly spread
over the interval x ∈ (0, 5). Since only the �lm is absorbing, the
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FIG. 5. Newtonian rays sent from the outside for different values of ndome. At the
breakpoint value ndome = 1.7, the rays become sensitive to their initial condition.

trajectories will have to spend a long time inside of it, not only in
the dome structure, in order to deposit their intensity. This moti-
vates the desire for long-lived trajectories, which could be provided
by chaotic ray dynamics. Figure 7 shows that the Beer-Lambert e�-
ciency increasesmonotonically as a function of ndome before it falls o�
for ndome > 2.1. Using the 2µm thick �lm in Fig. 7(c) as an example,
the increase in the Beer-Lambert e�ciency starts slowly for ndome <

1.6 and then increases rapidly after a critical value ndome = 1.6. There
is a systematic tendency of a slow increase for small values of ndome,
followed by a rapid increase at a critical value for all �lm thick-
nesses, although it is not so pronounced in the 0.5µm thick �lm
example, Fig. 7(a). The reason why the Beer-Lambert e�ciency falls
o� at about ndome > 2.1 is due to the total internal re�ection at the
dome-�lm interface, which prevents rays from coming back into the
absorbing �lm. This e�ect starts at ndome & 2, but the real impact on
the Beer-Lambert e�ciency is when ndome > 2.1. This e�ect is more
dramatic for the thicker �lm examples because the path-length di�er-
ence between a ray going straight down into the �lm and one coming
in at an angle is greater than for a very thin �lm layer. At this point, the
box counting method loses its usefulness. The invariant set is small
and sparse, so the fractal dimension of the scattering fractal looks to
be dependent on the scale. This is why there are no data points for
the fractal dimension in Fig. 7 for ndome > 2.1.

Both the fractal dimension and the Beer-Lambert e�ciency
are shown in Fig. 7. We see a striking correlation between the
onset of chaos and the start of the rapid increase in the Beer-
Lambert e�ciency. The proposed explanation of this correlation is

FIG. 6. Lyapunov exponents of Newtonian rays sent from the outside perpendic-
ular with respect to the dome-film interface.

that the properties of chaotic scattering dynamics are bene�cial for
absorption e�ciency modeled with the Beer-Lambert law because
chaotic scattering, in conjunctionwith sticking to the chaotic repeller,
leads to long trajectories inside of the absorbing �lm, which enhances
the absorption. In addition, we demonstrated that chaos in the sys-
tem leads to the spreading out of rays entering from the outside, a
bene�cial feature, which, again, leads to long trajectories with accom-
panying enhanced absorption, complex fractal boundaries in the
invariant set as seen in the scattering fractals, which are “sticky,”
and the existence of stable periodic orbits. Themost notable periodic
orbit that was found is the period-three orbit, as shown in Fig. 4(b).
It leads to “slow hyperbolic corners” in which the movement of the
trajectories in the PSOS slows down tremendously [as seen from the
closeness of successive points in Fig. 4(b)] as they approach, and
ultimately round, the period-three corners of the stable islands.

It must be noted that the sole purpose of plotting the fractal
dimension together with the Beer-Lambert e�ciency in Fig. 7 is to
show that the fractal dimension drops below the threshold value 1.95
for the same ndome as the Beer-Lambert e�ciency starts to increase
more rapidly. There is no one-to-one relationship between the two
quantities.

D. FDTD simulations of the electric field

The classical ray model that we presented provides us with an
approximation of the amount of absorbed energy in a dielectricmate-
rial. A real solar cell has complex physical processes that are not taken
into account and take place starting from when light �rst enters the
device, to the point when electric power is produced. Our model
aims to predict and explain the e�ciency enhancement due to light
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FIG. 7. Visualization of the fractal dimension (red) and the Beer-Lambert efficiency (blue). The onset of chaos is determined by the first data point below a fractal dimension
of 1.95, indicated by a horizontal dashed line. The rapid increase of the Beer-Lambert efficiency is indicated by a vertical dotted line.

trapping, i.e., the increase in 1 − R, on the basis of classical trajec-
tory simulations. To prove that our ray-based results are relevant, we
show here that full electromagnetic wave calculations, in the form of
FDTD simulations of the �lm + dome system, corroborate what we
have found in our classical simulations.

Our FDTD simulations are conducted in the following way.
First, we chose our system, consisting of a dome of height 3.5µm
and an absorbing �lm of width 5µm, a thickness of 2µm, and a
�xed index of refraction of n�lm = 2 + 0.0054i. For this �lm+ dome
system, for each value of ndome of a relatively dense set of ndome

FIG. 8. (a) Absorption efficiency calculated with a commercial FDTD solver compared to the Beer-Lambert absorption efficiency calculated by rays. (b) Absorption efficiency
as a function of wavelength calculated with FDTD for a range of ndome. The number of resonances increases as ndome increases.
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values, ranging from ndome = 1 in steps of 1ndome = 0.05 to ndome

= 2.5, we computed the FDTD absorption value 1 − R, and aver-
aged 1 − R over wavelengths ranging from 480 nm in steps of 0.3 nm
to 510 nm. The averaging mimics the fact that in practice solar cells
are never irradiated with monochromatic light of a speci�c wave-
length, but are irradiated with solar radiation, which is spread out
over a range of wavelengths. As an additional, welcome bene�t, the
averaging smoothes over accidental wave resonances in our system,
wave features that are clearly not present in our classical simula-
tions. The result of our averaged FDTD simulations is shown in
Fig. 8(a). We see that our classical simulations are very close to
the full FDTD wave calculations, which shows that our classical ray
simulations capture most of the (average) wave phenomena in our
model solar cell. In addition, our FDTD simulations con�rm the
existence of the roughly three regions already presented and dis-
cussed in connection with Fig. 7, i.e., a slowly increasing region
for ndome < 1.6, a rapidly increasing region for 1.6 < ndome < 2.1,
and a decreasing region for ndome > 2.1. We explain the good agree-
ment between the full-E&M FDTD calculations and our classical
simulations on the basis that the wavelength of the incoming light

FIG. 9. FDTD simulations of the electric field inside the film + dome system for
several values of ndome. The black-line overlays show the shape of the film +

dome system. The colors are chosen for the sole purpose of making clear visuals
and to bring out the patterns in the electric field. Thus, the assignment of colors
to electric field intensities is not necessarily the same for all four frames. Since
only the structure of the field is of interest here, not the specifics of the intensities,
color bars that would reflect the assignments of electric field intensities to colors
are omitted.

is much smaller than the system size. Therefore, the classical ray
model approximates the full E&M wave solution very well, as seen
in Fig. 8(a). While, as mentioned in Sec. III A, complete agreement
between classical and wave calculations can be expected only if the
classical rays are properly equipped with phases, which are neglected
in our classical simulations, the averaging of our FDTD results over
di�erent wavelengths clearly contributes to de-emphasize the impor-
tance of phases, an expected result according to our discussion
in Sec. III A.

For some selected values of ndome, Fig. 8(b) shows the FDTD-
computed resonance structures in the absorption 1 − R as a function
of wavelength that we averaged over in Fig. 8(a). As the value of ndome

increases, the number of resonances in the selected frequency inter-
val is seen to increase. This is easily understood on the basis that, for
increasing ndome, the e�ective wavelength inside of the domematerial
becomes shorter (λdome = λvacuum/ndome), allowing more resonances
to exist inside the �xed dome geometry.

An additional corroboration for the chaos transition at ndome ∼

1.5 can be obtained by directly inspecting the wavefunctions in the
�lm + dome system. To this end, we used the FDTD solver to com-
pute the absolute square value, |E|2, of the electric �eld, for four dif-
ferent values of ndome (see Fig. 9). For small values of ndome [Figs. 9(a)
and 9(b)], the electric �eld behaves predictably. We see that, reminis-
cent of the behavior of the rays shown in Fig. 5, the dome is focusing
the incoming light into the absorbing �lm, where a plane-wavelike
resonance forms. For larger values of ndome [see Figs. 9(c) and 9(d)],
we see a distinct qualitative di�erence in the structure of |E|2, show-
ing complexwave patterns and so-called scarlets54 that are a signature
of chaos. In addition, whenever there is a transition from regular to
chaotic dynamics, it is expected that at the transition to chaos the
electric �eld starts to spread out over the entire available scattering
volume. This phenomenon can, to some degree, also be seen directly
in the |E|2 patterns in Fig. 9.

FIG. 10. The ncritical is the value for when the Beer-Lambert efficiency (blue) starts
to increase more rapidly, the fractal dimension (red) is below 1.95, and the Newto-
nian rays sent from the outside directly downwards (green) visually start to behave
sensitively on the initial condition. ncritical can be directly read off from Figs. 5 and 7.
The lines between the dots are there to guide the eyes.
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E. Structural stability

In Fig. 10, we summarize our results across the �ve �lm+ dome
systems we investigated, where �lm thickness was the independent
parameter. The onset of chaos has been determined from the frac-
tal dimension of the scattering fractals (see Fig. 7) and from visually
inspecting the sensitivity of Newtonian rays to their initial condi-
tions (see Fig. 5). There is a clear trend that shows that the onset
of chaos correlates with the onset of the rapid enhancement of the
Beer-Lambert e�ciency.

V. CONCLUSION

We have evaluated absorption enhancement in a scattering sys-
tem exhibiting a transition between regular and chaotic classical
dynamics. The model system mimics a structured solar cell and was
obtained by placing an elliptical dome structure on top of a �at
absorbing �lm. A classical ray-tracing code was developed for mod-
eling surface-structured optically thin solar cells. The Beer-Lambert
law was used to model the absorption of light in the dielectric
material.

We found that increasing the index of refraction inside the dome
structure leads to a transition of the system from one that scatters
regularly, to one with chaotic scattering dynamics. The scattering
dynamics was investigated by calculating Lyapunov exponents and
the fractal dimension of scattering fractals. We demonstrate that
this transition from regular to chaotic dynamics goes along with
an enhancement of the absorption e�ciency in the �lm. Enhancing
absorption e�ciency by surface structuring is not new and is already
well documented. However, in this paper, we have demonstrated that
the onset of chaotic scattering dynamics is clearly correlated with
absorption enhancement.

We, therefore, suggest to actively use the mechanism of chaos
in the design of surface structures for solar cells. The classical ray
model approximation presented in this paper represents one strategy
for the establishment of a connection between chaotic scattering and
absorption enhancement. It allows one to exploit this connection as
a powerful guide for designing surface structures with a very high
light-trapping e�ciency for use in optically thin solar cells.
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