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A poststratified ratio estimator for model-assisted biomass
estimation in sample-based airborne laser scanning surveys
Anna H. Ringvall, Göran Ståhl, Liviu T. Ene, Erik Næsset, Terje Gobakken, and Timothy G. Gregoire

Abstract: To estimate the aboveground biomass (AGB) for large areas, two-stage sampling designs using airborne laser scanning
(ALS) as a strip sampling tool in combination with subsampling of field plots have been successfully applied in several studies.
However, the studies have pointed to problems in the proposed estimator, partly related to the unequal length of flight lines in
irregularly shaped areas. In this article, we present a model-assisted ratio estimator for such two-stage designs utilizing the area
of the ALS strip as the auxiliary variable. The proposed estimator is further developed for estimation in subpopulations and for
poststratified estimation. When deriving a variance estimator of the poststratified estimator, we considered the dependencies
between estimates from different strata that arise since flight lines extend over several strata. An evaluation by simulated
sampling in an artificial population based on data from a survey in Hedmark County, Norway, showed that the proposed
estimators and their variance estimators performed well in the case of simple random sampling in both stages. In such cases, the
ratio and poststratified estimators improved the precision of AGB estimates by 30% and 70%, respectively, in comparison with the
earlier suggested estimator.

Key words: two-stage sampling, large-scale surveys, LULUCF reporting, REDD+.

Résumé : Pour estimer la biomasse aérienne (BA) sur de grandes superficies, les plans d'échantillonnage à deux degrés, utilisant
le balayage laser aéroporté (BLA) comme outil d'échantillonnage par bandes combiné au sous-échantillonnage de parcelles de
terrain, ont été appliqués avec succès dans plusieurs études. Cependant, des études ont mis en évidence des problèmes concer-
nant l’estimateur proposé, en partie liés à la longueur inégale des lignes de vol dans les zones de forme irrégulière. Dans cet
article, nous présentons pour ces plans d'échantillonnage à deux degrés un estimateur quotient assisté par un modèle qui utilise
la superficie de la bande de BLA comme variable auxiliaire. L’estimateur proposé est en outre mis au point pour l’estimation dans
les sous-populations et pour l’estimation poststratifiée. Pour obtenir un estimateur de variance de l’estimateur poststratifié,
nous avons examiné les dépendances entre les estimations de différentes strates qui surviennent parce que les lignes de vol
couvrent plusieurs strates. Une évaluation par échantillonnage simulé dans une population artificielle, basée sur les données
d’une enquête dans le comté de Hedmark, en Norvège, a montré que les estimateurs proposés et leurs estimateurs de variance
donnaient de bons résultats pour les deux degrés dans le cas de l'échantillonnage aléatoire simple. Dans de tels cas, les
estimateurs quotient et poststratifié ont amélioré la précision des estimations de BA de respectivement 30 et 70% par rapport à
l’estimateur suggéré jusqu’ici. [Traduit par la Rédaction]

Mots-clés : échantillonnage à deux degrés, enquêtes à grande échelle, rapport sur l’utilisation des terres, les changements
d’affectation des terres et la foresterie (LULUCF), réduction des émissions issues de la déforestation et de la dégradation forestière
(REDD+).

Introduction
Aboveground tree biomass (AGB) is the largest live biomass

component of the forest carbon pool, and methods for its estima-
tion have come in focus for LULUCF (land use, land-use change,
and forestry) sector reporting, as well as for the REDD+ (reducing
emissions from deforestation and forest degradation) mecha-
nism. National Forest Inventories (NFIs) are important in this con-
text (Maniatis and Mollicone 2010), but adaptations are needed
(Cienciala et al. 2008). NFIs generally have large sample sizes,
resulting in precise estimates at the national level but typically
less precise estimates for smaller regions or subpopulations, e.g.,
certain land cover types (Köhl et al. 2011). Remote sensing data
may provide a means to improve the precision of these estimates
(McRoberts et al. 2010). In tropical developing countries in focus

for the REDD+ mechanism, there is an urgent need to find meth-
ods that link remote sensing data with limited field surveys to
make the inventories feasible (Asner et al. 2010).

Among the remote sensing data sources, airborne laser scan-
ning (ALS) has emerged as very promising for large-area estimates
of AGB (Wulder et al. 2012; Zolkos et al. 2013). In tropical forests,
much focus has been on modeling the relationship between AGB
and ALS data and on mapping AGB (Mascaro et al. 2011; Asner et al.
2013), and so far, less attention has been paid to estimates for
larger areas and the estimation of the estimates accuracy. Inven-
tories for LULUCF sector reporting and the REDD+ mechanism
might cover very large areas such as entire counties or states and
acquisition of full coverage ALS data might be unfeasible due to
large costs (Beets et al. 2012). As an alternative, strategies using
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ALS data from a sampled part of the area of interest have been
suggested (Parker and Evans 2004; Stephens et al. 2012). In a large-
scale survey covering nearly 30 000 km2 in the Hedmark County
in Norway, a systematic sample of parallel ALS strips was overlaid
a permanent sample of NFI field plots with measurements of AGB
(Næsset et al. 2009; Fig. 1). Similar sampling designs have been
used in Alaska by Andersen et al. (2009, 2011), in Finland by Saarela
et al. (2015), and, recently, in Tanzania by Ene et al. (In press.).
Results from a simulation study (Ene et al. 2016) indicate that
sample-based ALS surveys are cost efficient in comparison with
surveys with ALS that cover the whole area. Hence, strategies
using ALS as a strip sampling tool are likely to be an important
part of future AGB monitoring. Further, space-borne LiDAR
(Nelson et al. 2009) as the proposed global ecosystem dynamics
investigation (GEDI) mission (available from http://science.nasa.
gov/missions/gedi/) results in designs with strip samples of LiDAR
data.

Different approaches to estimation and variance estimation fol-
lowing sample-based ALS surveys have been tested (Ståhl et al.
2016). In Gregoire et al. (2011), a two-stage, model-assisted frame-
work was developed and successfully applied for the Hedmark
survey. Model-assisted inference is based on features of the prob-
ability sample, whereas model-based inference, as used by Ståhl
et al (2011) for the same survey, is based on features of the model
used to link the ALS data and the field sample (Särndal et al. 1992).
Surprisingly, the estimated precision of the AGB estimates in
Gregoire et al. (2011) indicated no or little improvement to the
field sample alone. Later results from simulation studies in artifi-
cial populations by Ene et al. (2012, 2013) showed that the variance
estimator used, based on an assumption of simple random sam-
pling, greatly overestimated the variance with the systematic
sampling design. In fact, the standard error of the model-assisted

estimator was approximately 40% of the standard error of the
estimator based on the field sample alone in Ene et al. (2012). The
simulation studies revealed that a large portion of the variance
was attributed to the large variability among ALS strips. One likely
reason for the large variability is that the ALS strips have different
lengths, because they extend over an irregularly shaped area
(Næsset et al 2013). Ståhl et al. (2011) and Andersen et al. (2011)
considered this issue by utilizing the area of the ALS strip as an
auxiliary variable in ratio estimators with model-based estimates
of AGB within each strip. Saarela et al. (2015) suggested selection
of strips with probability proportional to size. The inferential
problems encountered in these pioneering sample-based ALS in-
ventories seem to coincide with general problems encountered in
large-scale, multistage natural resource inventories (Magnussen
et al. 2014).

The objective of this article is to present a model-assisted, two-
stage ratio estimator utilizing the area of the ALS strip as an
auxiliary variable. The motivation for developing a ratio estimator
is two-fold: to improve precision of estimates and to provide a
better approximation of the variance of the estimator in case of
systematic sampling by taking the unequal strip length into ac-
count in the variance estimator. Further, estimates of AGB are
often required not only for the entire study area, but also for
certain subpopulations, e.g., for different land cover types. A ratio
estimator is easily modified to an estimator of the subpopulation
total by utilizing the area of the subpopulation within the ALS
strip as the auxiliary variable. Wall-to-wall tessellation into land
cover classes based on, e.g., satellite imagery might provide a
means to improve on estimation of total AGB for the entire study
area through a poststratified estimator (McRoberts et al. 2002). For
complex sampling designs such as these sample-based ALS sur-
veys, a poststratified estimator is given by the summation of the

Fig. 1. The left panel shows the four administrative units in Hedmark County with the ALS flight lines and locations of NFI field plots. The
right panel is an illustration of the resulting two-stage design with ALS strips as PSUs and the delineation of pixels as SSUs. Figure is provided
in colour online.
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ratio estimator for subpopulations (Smith 1991). Hence, the de-
rived ratio estimator for a subpopulation will lead directly to a
poststratified estimator of total AGB for the entire area. However,
the long ALS strips extending over several strata result in depen-
dencies between estimates from different strata that we consider
when deriving a novel variance estimator for this case. The pro-
posed estimators and variance estimators are evaluated by simu-
lated sampling in an artificial population and compared with
previously developed estimators for two-stage, model-assisted es-
timation.

A two-stage, model-assisted ratio estimator

Sampling design and notation
As in Gregoire et al. (2011), we will consider the combination of

ALS strips and field plots with AGB measurements as a two-stage
sampling design with model-assisted estimation of AGB. The area
of interest is portioned into M nonoverlapping parallel strips of
certain width, denoted as primary sampling units (PSUs). The
strips extend over the entire survey area and, therefore, will be of
unequal length (size). We denote with U1 the population of PSUs
(i.e., the M strips). In the first stage, a sample of PSUs is selected,
here denoted by S1. Each PSU is partitioned into Ni cells (pixels)
with a size corresponding to the field plots. The pixels are denoted
as the secondary sampling units (SSUs). In the second stage, we
presume that a sample of the SSUs is selected independently
within each selected PSU strip; this sample of field plots is de-
noted Si. We will also, for the variance derivation, assume that the
subsampling within selected PSUs is invariant of which PSUs are
selected in the first stage. With the partitioning of the study area
into PSUs and SSUs of certain size, the total size of the study area
can be expressed in terms of the total number of pixel units
N � �i�U1

Ni. Based on the field and ALS measurements, regression
models are developed and used to predict AGB for all units within
the selected PSUs. We focus on the estimation of either the total
AGB within the study area or the total AGB for a certain subpop-
ulation, denoted by t and th, respectively. These subpopulations
will be denoted as strata, as they are also used for estimators based
on poststratification. First, estimators, variances, and variance
estimators are derived for a two-stage sampling design with arbi-
trary inclusion probabilities. Secondly, estimators and variance
estimator are presented for the case of simple random sampling
without replacement (SRSwoR) in both stages. The estimators and
variance estimators of total AGB are easily modified to estimators
and variance estimators of average AGB per area unit by dividing
with the total area and the total area squared, respectively.

A ratio estimator of the population total
By taking the unequal PSU size into account, the total AGB

within the study area is estimated by a generalized ratio estimator
as (Särndal et al. 1992, p. 327)

(1) t̂R � N
�S1

t̂ir/�i

�S1
Ni/�i

where �i is the inclusion probability of PSU i, and t̂ir is the model-
assisted estimator of total AGB in PSU i given as

(2) t̂ir � �
k�1

Ni

ŷk � �
k�Si

yk � ŷk

�k|i

where ŷk is the model-predicted AGB in pixel k in the PSU, yk is the
AGB from the field plot for pixel k, and �k|i is the inclusion prob-
ability of pixel or plot k, given that PSU i is included in the sample.

This estimator is the same estimator as used in the second stage in
Gregoire et al. (2011). We note that in this setup, one assisting
model is being used in eq. 2 to link observed AGB data to the
corresponding ALS metrics, and another model is being used in
eq. 1 to adjust for varying sizes among the PSUs.

Variance and variance estimation
We derive an approximate variance of t̂R by linearizing the es-

timator through its first-order Taylor series expansion and by con-
ditioning on the first-stage sample (Appendix A1) whereby we
obtain

(3) V(t̂R) ≈ �
i�U1

�
j�U1

C(Ii, Ij)
(ti � RNi)

�i

(tj � RNj)

�j
� �

i�U1

V(t̂ir)

�i

where ti is the total AGB in PSU i and R � �U1
ti/�U1

Ni, i.e., the AGB
per pixel ratio. Ii and Ij are sample membership indicators, whose
covariance is �ij – �i�j, with �ij being the joint inclusion probability
of PSUs i and j. V�t̂ir� is the approximate variance of the model-
assisted regression estimator of the PSU total given as V�t̂ir� ≈

�k�1
Ni �l�1

Ni C�Ik, Il�
Ek

�k|i

El

� l|i
. The E terms are the deviations between a

measured and predicted AGBs, i.e., yk � ŷk, with ŷk given by the
model fitted based on the entire population rather than based on
the sample as in eq. 2 (Särndal et al. 1992, p. 246).

The variance estimator is derived by estimating each compo-
nent in eq. 3 by its sample counterpart (Appendix A1) and is given
as

(4) V̂�t̂R� �
N2

N̂2��
i�S1

�
j�S1

C(Ii, Ij)

�ij

(t̂ir � R̂Ni)

�i

(t̂jr � R̂Nj)

�j
� �

i�S1

V̂(t̂ir)

�i
�

where N̂ � �S1
Ni/�i and R̂ � �S1

�t̂ir/�i�/�S1
�Ni/�i�. The term N2/N̂2 is an

adjustment factor, suggested for more stable variance estimation
(e.g., Thompson 1992, p. 61). Further, in ratio estimation of AGB
per area unit, the variance estimator in eq. 4 is divided by N2, and
the resulting expression with N̂2 is the commonly used variance
estimator for an estimate of a ratio (Thompson 1992, p. 61). The
variance of the model-assisted estimator at the PSU level is esti-

mated as V̂�t̂ir� � �k�Si�l�Si

C�IkIl�
�kl|i

ek

�k|i

el

� l|i
with ek � yk � ŷk, as in

Gregoire et al. (2011). We note that, for example, Särndal et al.
(1992, p. 238) and Mandallaz (2013) suggest to use the so called
g-weighted variance estimator, where the g weights compensate
for using an assisting model estimated from the sample and
not an external (known) model (Mandallaz 2013). Neglecting the
g weights might cause some slight underestimation of the variance
(Mandallaz 2013). However, for larger sample sizes, the difference
is small (Särndal et al. 1992, table 7.2).

In contrast to the variance estimator for a two-stage design with
a model-assisted regression estimator presented by Särndal et al.
(1992, p. 326) and used in Gregoire et al. (2011), we propose an
estimator based on the model-assisted estimator of ti (i.e., t̂ir) in-
stead of the HT estimator t̂i � �k�si

yk/�k|i, which is based solely on
the second-stage field sample. Then, the variance estimator sim-
plifies and cannot give negative variance estimates, a problem
observed by the variance estimator in Gregoire et al. (2011). Given
the large number of SSUs within selected PSUs, the strong rela-
tionship between predicted and true values, and the small sample
size of SSUs in the second stage in this application, we also argue
that t̂ir should be much more accurate than t̂i. Hence, our hypoth-
esis is that a variance estimator based on t̂ir is more stable (i.e., has
smaller variance) than a variance estimator based on t̂i. This has
been further verified by Saarela et al. (Saarela, S., Andersen, H.-E.,
Grafström, A., Schnell, S., Gobakken,T., Næsset, E., Nelson, R.F.,
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McRoberts R.E., Gregoire, T.G., and Ståhl, G. A new prediction-
based variance estimator for two-stage model-assisted surveys of
forest resources. In review.) for the two-stage model-assisted esti-
mator by Gregoire et al (2011). Ene et al. (2012, 2013) also used the
model-assisted estimates of the PSU totals in the variance estimators.

The ratio estimator with SRSwoR in both stages
In cases of SRSwoR in both stages, the ratio estimator in eq. 1

simplifies to

(5) t̂R � N
�i�1

m
t̂ir

�i�1

m
Ni

where m is the number of selected PSUs and

(6) t̂ir � �
k�1

Ni

ŷk �
Ni

ni
�
k�1

ni

ek

where ni is the number of selected SSUs within PSU i.
The variance estimator of t̂R in eq. 5 becomes

(7) V̂�t̂R� �
N2

N̂2�M2� 1
m

�
1
M�sr

2 �
M
m�

S1

Ni
2� 1

ni
�

1
Ni
�se

2�
where sr

2 �
1

m�1�i�1
m �t̂ir � R̂Ni�

2 with R̂ � �i�1
m t̂ir/�i�1

m Ni and

se
2 �

1
ni�1�k�1

ni �ek � ēi�
2 with ēi � � ek/ni.

The ratio estimator for poststratified estimation
Given that the total size of stratum h is known without errors,

an estimator of the total AGB within the stratum is given as

(8) t̂Rh � Nh

�S1
t̂irh/�i

�S1
Nih/�i

where Nh is the total number of pixels in stratum h within the
entire study area, Nih is the total number of pixels in stratum h
in PSU i, and t̂irh the model-assisted estimator of the total AGB
in stratum h in PSU i. Further, by utilizing that the total size
of stratum h in PSU i is known, the model-assisted estimator for
stratum h in PSU i is given as (e.g., Särndal et al. 1992, p. 401)

(9) t̂irh � �
k�1

Nih

ŷkh �
Nih

N̂ih
�
k�Si

ykh � ŷkh

�k|i

where ŷkh is the predicted target variable for pixel k if pixel k is in
stratum h and otherwise is zero. This means that ŷkh is the combi-
nation of the stratum-indicator variable and ŷk. Likewise, ykh is the
measured target variable in pixel k if pixel k is in stratum h and
otherwise is zero. The estimated size of stratum h in PSU i is given
as N̂ih � �k�Si

1/�k|i. The second term of t̂irh is a ratio estimator
accounting for the random sample size in stratum h.

Finally, as suggested by Smith (1991), a poststratified estimator
of the population total is given by the sum of the strata ratio
estimates as

(10) t̂PS � �
h�1

H

t̂Rh � �
h�1

H

Nh

�S1
t̂irh/�i

�S1
Nih/�i

where H is the total number of strata.

Variance
To derive the variance of t̂Rh, we recognize that eq. 8 is a special

case of the ratio estimator t̂R in eq. 1. Thus, the variance of t̂Rh is
obtained by replacing N and Ni with Nh and Nih, respectively, in
eq. 3. The approximate variance of t̂Rh is then given as

(11) V(t̂Rh) ≈ �
i�U1

�
j�U1

C(Ii, Ij)
(tih � RhNih)

�i

(tjh � RhNjh)

�j
� �

i�U1

V(t̂irh)

�i

where tih is the PSU total for stratum h, and Rh the mean per pixel
in stratum h. For PSUs without pixels in stratum h, this term will
be zero. The approximate within PSU variance is derived by rec-
ognizing that the adjustment term in eq. 9 is a ratio estimator
with the stratum indicator as auxiliary variable. The variance is

V�t̂irh� � �k�1
Nih �l�1

Nih C�IkIl�
Ekh�Ēih

�k|i

Elh�Ēih

� l|i
where Ekh is the residual

ykh � ŷkh (and hence zero for units outside stratum h) and

Ēih � �k�1
Nih Ekh/Nih (cf. Särndal et al. 1992, p. 401).

In the poststratified estimator of the population total, it is im-
portant to note that there may be dependencies between esti-
mates from different strata due to the fact that many PSUs extend
over several strata, i.e., have SSUs in several different strata. This
can be accounted for by first summing PSU-level estimates with
the poststratified weights, e.g., as in Kim and Wang (2009). Here,
we derive the variance of the poststratified estimator from the
covariance matrix of the strata estimates (Appendix A2). For the
derivation, we recognize that the estimator is a ratio estimator
and apply the same principles as when deriving the variance of
the ratio estimator (in eq. 3).

We then obtain the approximate variance of t̂PS as

(12) V(t̂PS) ≈ �
h�1

H

�
g�1

H ��
U1

�
U1

C(Ii, Ij)
(tih � RhNih)

�i

(tjg � RgNjg)

�j

� �
U1

1
�i

C(t̂irh, t̂irg)�
where the term C�t̂irh, t̂irg� is the covariance of the PSU estimators
t̂ir in stratum h and g, respectively, given as C�t̂irh,t̂irg� ≈

�k�1
Nih �l�1

Nig C�IkIl�
Ekh � Ēih

�k|i

Elg � Ēig

� l|i
.

Variance estimators can be derived following the same princi-
ples as applied to the ratio estimator (cf. eq. 4). Below, a variance
estimator is given for the case of SRSwoR in both stages.

The poststratified estimator under a SRSwoR design in both
stages

In case m PSUs are selected with SRSwoR in the first stage and ni

units are selected with SRSwoR in the second stage (in selected
PSU i), the estimator of a stratum total in eq. 8 simplifies to

(13) t̂Rh � Nh
�i�1

m
t̂irh

�i�1

m
Nih

with

(14) t̂irh � �
k�1

Nih

ŷkh �
Nih

nih
�
k�1

nih

ykh � ŷkh
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where nih is the number of units selected in stratum h in PSU i in
the second stage.

The variance estimator becomes

(15) V̂(t̂Rh) � �Nh

N̂h
�2�M2� 1

m
�

1
M�(mh � 1)srh

2

(m � 1)
�

M
m�

S1

V̂(t̂irh)�
where srh

2 �
1

mh�1�i�1
mh �t̂irh � R̂hNih�

2 with R̂h � �SI
t̂irh/�SI

Nih.

The within PSU variance V�t̂irh� is estimated as (cf. Särndal et al.
1992, p. 393)

(16) V̂(t̂irh) � Nih
2 � 1

nih
�

1
N̂ih

�sêih

2

with sêih

2 �
1

nih�1�k�1
nih �ekh � ēih�

2, where ēih �
1

nih
�k�1

nih ekh and

ekh � ykh � ŷkh. In obtaining eq. 16, ni(nih – 1)/(ni – 1)nih is approxi-
mated with 1. Särndal et al. (1992, p. 393) state that this expression
is close to the conditional variance suggested by, e.g., Särndal and
Hidiroglou (1989) as variance estimator for the regression estima-
tor for a certain domain following SRSwoR (given by replacing N̂ih
in eq. 16 by Nih). In applications when stratum h is covered by only
a fraction of the M first stage strips the estimator in eq. 15 can be
modified by the same principle (Appendix A3).

Finally, the poststratified estimator of the population total is, in
case of SRSwoR, given as t̂PS � �h�1

L Nh��i�1
m t̂irh/�i�1

m Nih�. In the case
of SRSwoR, the variance expression simplifies compared with the
general case, because the covariance of the ratio estimators of the
total in PSU i (t̂ir) for stratum h and g, i.e., C�t̂irh, t̂irg� in eq. 12 is zero
for all h ≠ g (cf. Särndal et al. 1992, p. 266).

Consequently, the variance estimator also simplifies and is then
given as

(17) V̂(t̂PS) � �
h�1

H

V̂(t̂Rh) � �
h�1

H

�
g≠h

Nh

N̂h

Ng

N̂g

M2� 1
m

�
1
M�

×
�i�1

m
[(t̂irh � R̂hNih), (t̂irg � R̂gNig)]

m � 1

with V̂�t̂Rh� given by eq. 15.

Evaluation
The proposed estimators and variance estimators were evalu-

ated by simulated sampling in an artificial population created
based on real data from a large-scale AGB survey in Hedmark
County in Norway, further described below. In the evaluation,
we compared the proposed two-stage, model-assisted ratio estima-
tor with the two-stage, model-assisted estimator proposed by
Gregoire et al. (2011). These two estimators will, in the following
text, be referred to as the “ratio estimator” and the “HT estima-
tor”, respectively. Both share the same model-assisted part, and
the notation highlights their differences as evaluated here. The
two estimators were compared for estimates of AGB per hectare
for the entire study area and for estimates of AGB per hectare in
four administrative units (AUs) within Hedmark County (Fig. 1). In
addition, the suggested poststratified estimator was evaluated
based on poststratification by the four AUs.

The empirical material and artificial population
The data collection in the Hedmark survey and the creation of

the artificial population based on these data are described in de-
tail in Ene et al. (2016) and references therein. We will give a brief
description of issues of importance for the current study.

ALS data in the Hedmark survey were collected along 53 parallel
flight lines that were equally spaced with a distance of 6 km
(Fig. 1). The average width of ALS strips was approximately 500 m.
The flight lines were located such that they covered each second
row of the Norwegian NFI’s sampling plots located on a 3 km ×
3 km grid. In total, 662 NFI plots were covered, each plot having a
size of 250 m2. On these plots, the AGB was predicted for all trees
with a diameter at breast height > 5 cm and height > 1.3 m using
tree-species specific allometric models (Marklund 1988). For each
plot, the tree level predictions were summed and were considered
here as the true AGB of live trees on each plot. The ALS strips were
partitioned into pixels of size 250 m2.

The artificial population was created to mimic the conditions in
the actual Hedmark survey. Hedmark County has an area of
27 340 km2, a high altitudinal variation, and an increasing linear
trend in the AGB per area unit from north to south (Ene et al.
2012). The artificial population was based on a delineation of for-
ested area in the Hedmark County from land cover maps, a digital
terrain model, and a satellite imagery mosaic (from Landsat 5 TM),
covering the whole forest area, and resampled to pixels with area
250 m2 to correspond to the plot size in the field survey. At first, a
Gaussian copula (Nelsen 2006) was fitted to relate the AGB esti-
mates from field plots to the ALS metrics and the spectral infor-
mation from the satellite imagery mosaic in pixels covering the
field plots. Then, a large sample (�100 000 observations) was gen-
erated with the copula model. Finally, observations from this sam-
ple were imputed to all pixels in the satellite imagery mosaic
within the forested areas by nearest neighbor imputation. At the
end, the artificial population consists of a set of images pixels
(250 m2) in forested areas, each with imputed values of ALS met-
rics and an imputed value of AGB (true value). The distributions of
AGB on NFI plots in the Hedmark County and in the artificial
population are shown in Table 1.

Simulated sampling
For the sampling simulations, the artificial population was di-

vided into M = 625 nonoverlapping PSUs representing the ALS
flight strips. These were, as in the actual Hedmark survey, ori-
ented in an east–west direction (see Fig. 1), and the delineation
followed the pixel representation in the image mosaic used as the
base for creating the population. Each PSU consists of a certain
number of SSUs, and each of these corresponds to one of the
pixels in the artificial population. The width of each strip was
32 SSUs (pixels), except the southernmost PSU, which had a width
of 29 SSUs due to the shape of the area.

In this population, repeated samples were generated by SRSwoR,
with three different sampling intensities. In total, K = 100 000 sam-
ples were simulated for each design (sampling intensity). For the
three designs, the number of selected PSUs in the first stage cor-
responded to a systematic strip spacing of 3 km, 6 km (as in the
Hedmark survey), and 9 km, respectively. That resulted in m = 104,
52, and 26 selected PSUs, for each design, respectively. The size of
the second-stage samples to be selected at PSU level was calculated
as the average number of SSU’s produced by a the systematic
sampling scheme using a spacing (easting, northing) of 3 km ×
3 km, 6 km × 3 km, and 9 km × 3 km, respectively. The number of
selected SSUs was 2487, 1290 and 874, respectively, in each re-
peated sample. For each design, the sampling intensity in the
second stage within selected strips were the same. Hence, the
subsampling resembled the actual application in Hedmark
County with the second-stage sample size being proportional to
the PSU size.

Estimation
For each simulated sample, a generalized linear model was fit-

ted based on imputed AGB values and imputed ALS metrics in the
pixels (SSUs) selected in the sample (Ene et al. 2016). The general-
ized linear model (McCulloch and Nelder 1989) was formulated as
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	g(�) � X̃�T

AGBi � � � �i

�i 
 N(0, 	2)

where the g(·) is the log-link function, X̃�T the linear predictor of
the logarithm of the expected AGB value, X̃ is the model matrix,
and �T is the vector of regression parameters (McCulloch and
Nelder 1989, p. 26–27). The linear predictor was defined as follows:

(18) log(E[AGBi]) � 
0 log(AGBi) � 
0 � 
1North � 
2 log(D10)
� 
3D90 � 
4Hmax � 
5 log(Elev)

where North is the northing coordinates of the plot center (UTM
zone 32N), D10 and D90 are canopy density metrics, Hmax is the
maximum echo height recorded on each plot, and Elev represents
the ellipsoidal heights of the NFI plot centers. For details regard-
ing the derivation of the ALS metrics from the laser acquisition in
Hedmark County, see Ene et al. (2016) and Gobakken et al. (2012).
When applied to the empirical data, the root mean squared error
(RMSE) of the fitted model was 15.92 Mg·ha−1 (30.38%), and the
average relative RMSE produced by 10-fold crossvalidation (RM-
SECV) was 33.91%.

For each simulated sample, the total AGB was estimated for the
entire study area (t̂) and for each of the four AUs (t̂1 � t̂4) based on
the predictions of AGB for all SSUs in selected PSUs (as above) and
the residuals between true and predicted AGB in SSUs selected
in the second stage. With the ratio estimator, the estimates of total
AGB, t̂ and t̂h, were calculated with eqs. 5–6 and eqs. 13–14, respec-
tively. For each repeated sample, we estimated the variance of the
estimators t̂ and t̂h. In case of the ratio estimator, V̂�t̂� was given by
eq. 7 and V̂�t̂h� was given by eq. 15. For the poststratified estimator,
V̂�t̂PS� was given by eq. 17. For comparison, the total AGB within the
entire study areas was estimated with the (here called) HT estima-
tor as t̂ � �S1

t̂ir/�i, with t̂ir given by eq. 6 and �i = m/M. The esti-
mated variance, V̂�t̂�, was given by eq. 7 in Ene et al. (2012). The
AGB per hectare in AU h was estimated by eq. 51–51 in Gregoire
et al. (2011) as its estimated variance V̂�t̂h� calculated by eq. 54 in
Gregoire et al. (2011).

Based on the estimated totals and variances from the K simu-
lated samples we calculated the

• observed bias as
�t̂k

K
� t, where t̂k is the estimated total AGB in

simulated sample number k,
• observed standard error as SE � ���t̂k � t̂�2/�K � 1� where

t̂ � �t̂k/K,
• the mean value of the estimated standard errors as SĒ̂ �

��V̂�t̂�k/K, where V̂�t̂�k is the estimated variance of t̂ in simu-
lated sample number k,

• the observed bias of the estimated standard errors as SĒ̂ � SE,
and finally,

• the standard deviation of the estimated standard error as

����V̂�t̂�k � SĒ̂ �2/�K � 1�.

Results are presented in terms of the average AGB per hectare,
calculated as �̂ � t̂/aN for the entire study area and �̂h �
t̂h/aNh for AU h, where a is the area of each pixel in hectares, N is the
total number of pixels in the study area, and Nh is the number of
pixels in AU h. Likewise, the standard errors of the estimated AGB
per hectare are obtained by dividing the standard errors of the
estimated totals with the factors aN and aNh, respectively.

Results and discussion
The observed bias of the proposed ratio and poststratified esti-

mators and their variance estimators were in all cases small but
increased slightly with decreasing sampling intensity (Table 2).
The results indicate that the estimators and variance estimators
perform well under a simple random sampling design. The ratio
and poststratified estimators were both more precise than the
earlier suggested HT estimator (Table 2). The increase in precision,
in terms of standard errors, was (in comparison with the HT esti-
mator) around 30% for the ratio estimator and around 70% for the
poststratified estimator. However, the difference in precision be-
tween the HT and the ratio estimators was somewhat smaller than
expected given the large differences in the size of the ALS strips in
the study area. This is probably explained by the strong gradient
in productivity from north to south, with a lower AGB per hectare,
on average, in longer strips in the north and a higher AGB per
hectare, on average, in the shorter strips in the south (Ene et al.
2012). Hence, the correlation between PSU totals of AGB and strip
length is less than if the productivity had been similar across the
whole study area. The geographic division in AUs partly accounts
for the gradient in productivity, which also results in a large im-
provement in precision by poststratification based on the AUs. In
this study, a rough estimate of the total AGB in the PSUs had
probably been a better choice as the auxiliary variable in the ratio
estimator. This estimate could for example be based on pixel-wise
estimates of AGB from wall to wall satellite imagery, as used for
PPS sampling in Saarela et al. (2015).

Considering the separate estimates of AGB in each of the four
different AUs, the ratio estimator resulted in considerably smaller
standard errors than the HT estimator (Table 3). The improvement
in precision (compared with the HT estimator) was larger com-
pared with the case of estimating AGB for the entire study area
and was, in terms of standard errors, between 78% (AU4) and 88%
(AU2) for the sample size of 52 PSUs. These results confirm that the
internal AUs conditions are more homogenous than the entire
study area, resulting in a better correlation between the size of
the individual PSUs within an AU and the corresponding total
AGB in each individual PSU (within the AU). The observed bias
of the AGB estimates in each of the four AUs was small, like the
case for the entire study area. The observed bias did not, for the
sample sizes 52 and 104 PSUs, exceed 0.1% in any AU, and for

Table 1. Aboveground biomass distribution in field plots and in the artificial population in the four
administrative units (AUs) and in total in Hedmark County, Norway.

Administrative
level

Field plots Artificial population

No. of
plots

Mean
(Mg·ha−1)

Standard
deviation
(Mg·ha−1)

No. of pixels
(250 m2)

Mean
(Mg·ha−1)

Standard
deviation
(Mg·ha−1)

AU1 178 33.0 32.7 31 184 859 35.7 34.6
AU2 261 49.2 51.5 34 652 963 48.1 42.1
AU3 548 62.4 62.4 9 197 260 56.2 46.7
AU4 169 72.2 63.6 19 093 027 64.5 41.0

Total 662 51.7 53.7 94 128 109 48.1 43.6

Ringvall et al. 1391
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the sample size 26 PSUs, it was at most 0.34% (in AU2; values not
shown in tables). The observed biases of the estimated standard
errors of subpopulation means were larger than the corre-
sponding estimates for the entire study area but still modest in
size and, in most cases, smaller than the observed bias of stan-
dard errors for the HT estimator (Table 3). However, the stan-
dard deviation of the estimated standard errors was in some
cases larger than those of the HT estimator, especially in the

smallest stratum (AU3) and with the smallest sample size. The
results indicate that the proposed subpopulation estimators per-
form well also in the case of small sample sizes but that their
variance estimators in such cases might be unstable and should be
used with caution.

Designs using ALS as a strip sampling tool in combination with
subsampling of field plots have now been tested in several land-
scapes (Gregoire et al. 2011; Andersen et al. 2011; Saarela et al.

Table 2. Observed bias and observed standard error (SE) for estimates of AGB per hectare in Hedmark County with
three estimators and sampling intensities (m) together with mean values of estimated standard errors and the
observed bias and standard deviation of the estimated standard errors.

Estimator

Observed bias Observed SE Observed bias SĒ̂

Mean (%)a Mean (%)a SĒ̂ Mean (%)b
Standard
deviation SĒ̂

PSU m = 104 (corresponding to strip spacing 3 km)
HT estimator –0.010 (–0.02) 1.590 (3.31) 1.561 –0.029 (–1.81) 0.110
Ratio estimator 0.006 (0.01) 1.142 (2.37) 1.130 –0.012 (–1.05) 0.105
Poststratified estimator 0.006 (0.01) 0.500 (1.04) 0.503 0.002 (0.46) 0.055

PSU m = 52 (corresponding to strip spacing 6 km)
HT estimator 0.023 (0.05) 2.363 (4.91) 2.431 0.068 (2.89) 0.230
Ratio estimator –0.002 (0.005) 1.660 (3.45) 1670 0.009 (0.56) 0.329
Poststratified estimator 0.044 (0.09) 0.749 (1.56) 0.741 –0.008 (–1.00) 0.178

PSU m = 26 (corresponding to strip spacing 9 km)
HT estimator 0.221 (0.46) 2.807 (5.84) 2.866 0.059 (2.11) 0.350
Ratio estimator 0.049 (0.10) 2.122 (4.41) 2.057 –0.065 (–3.06) 0.630
Poststratified estimator 0.073 (0.15) 0.935 (1.94) 0.908 –0.028 (–2.97) 0.319

aIn percent of the mean value in the population.
bIn percent of the observed standard error of the estimated mean value.

Table 3. Observed standard error (SE) for estimates of AGB per hectare in four administrative units (AUs) with two estimators and three
sampling intensities (m), together with mean values of estimated standard errors and observed bias and standard deviation of
estimated standard errors.

HT estimator Ratio estimator

AU1 AU2 AU3 AU4 AU1 AU2 AU3 AU4

m = 104 PSU (corresponding to strip spacing 3 km)
Observed SE

Mean 4.02 5.48 9.16 8.06 0.68 1.11 1.62 1.02
(%)a (11.27) (11.39) (16.29) (12.50) (1.91) (2.31) (2.88) (1.59)

SĒ̂ 4.23 5.54 9.71 8.41 0.67 1.14 1.67 1.01

Bias SĒ̂
Mean 0.213 0.063 0.555 0.356 –0.013 0.026 0.045 –0.008
(%)b (5.29) (1.15) (6.06) (4.42) (–1.85) (2.30) (2.76) (–0.81)

Standard deviation SĒ̂ 0.27 0.38 1.01 0.58 0.15 0.37 1.39 0.38

m = 52 PSU (corresponding to strip spacing 6 km)
Observed SE

Mean 6.13 7.87 13.56 12.25 0.97 1.71 2.43 1.50
(%)a (17.17) (16.36) (24.12) (19.01) (2.72) (3.55) (4.31) (2.33)

SĒ̂ 6.30 7.59 14.36 12.44 1.00 1.68 2.43 1.46

Bias SĒ̂
Mean 0.169 –0.278 0.804 0.188 0.030 –0.028 0.000 –0.046
(%)b (2.76) (–3.54) (5.93) (1.54) (3.07) (–1.63) (0.02) (–3.09)

Standard deviation SÊ 0.60 0.85 2.18 1.30 0.53 1.22 4.61 1.23

m = 26 PSU (corresponding to strip spacing 9 km)
Observed SE

Mean 7.37 9.69 15.98 14.90 1.22 2.14 3.05 1.83
(%)a (20.67) (20.15) (28.43) (23.12) (3.41) (4.44) (5.43) (2.85)

SĒ̂ 5.52 9.37 15.04 13.30 1.22 2.05 3.00 1.83

Bias SĒ̂
Mean –1.851 –0.316 –0.936 –1.607 –0.001 –0.088 –0.054 –0.002
(%)b (–25.11) (–3.26) (–5.86) (–10.78) (–0.06) (–4.11) (–1.77) (–0.11)

Standard deviation SÊ 0.80 1.32 3.27 1.88 0.98 2.17 8.72 2.42
aIn percent of mean value in each subpopulation.
bIn percent of observed standard error of estimated mean values.
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2015; Ene et al. In press.). Simulation studies (Saarela et al. 2015;
Ene et al. 2016) confirms that sample-based ALS surveys are a large
improvement to field sampling alone and cost efficient in com-
parison with surveys based on ALS that cover the whole area. The
estimators and variance estimators proposed in this study are, in
theory, improvements to the earlier suggested estimators. Both
the proposed ratio and poststratified estimators are reasonable
estimators for all equal probability designs, estimating the AGB
per area unit from the sum of predicted AGB in pixels in sampled
ALS strips (corrected by the residual term) divided by the total area
of sampled pixels. The derived variance estimators take both
stages of sampling into account, and in case of the poststratified
estimator, also the covariance between subpopulations estimates
based on PSUs straddling several AUs. This is a novel feature of the
variance estimator we propose. The importance of taking the co-
variance term, as well as the second-stage subsampling, into con-
sideration might be more or less negligible in practice, depending
on the population studied. In case the variance due to second-
stage sampling is small the approximate but simpler variance
estimator used by Ene et al. (In press.) might be preferable for
practical reasons. The need of handling the covariance term when
estimating the variance of the poststratified estimator is illus-
trated by calculating the added variance of the four estimates of
total AGB within each strata as in “ordinary” simple random sam-
pling. The resulting standard error of AGB per hectare for the
entire study area (calculated from the observed SE of estimated
AGB per hectare in Table 3 and the size of each AU in Table 1) was,
for a sample size of 52 PSUs, 0.805 compared with the observed SE
of the poststratified estimator, which was 0.749 (Table 2). Hence,
by ignoring the covariance in this case, it leads to an overestima-
tion of the standard error of about 6%. The overestimation indi-
cates that, in this case, we have a negative covariance (Gregoire
et al. 2016). The covariance is based on the residuals (t̂irh �
R̂hNih; eq. 17) and the gradient in productivity from north to south
together with the orientation of AUs (Fig. 1) results in that strips
that crosses the southernmost part of an AU and the northern-
most part of the next AU have, in the former AU, AGB values above
that stratum average (positive residual) and, in the latter AU, AGB
values below the stratum average (negative residual). However, it
should be noted that both the size and sign of the covariance term
depend on the features of the subpopulation studied in relation to the
PSUs.

Magnussen et al. (2014) listed four general problems with
model-assisted estimation in large-scale, multistage natural re-
source inventories: (i) the use of PSUs with unequal sizes, (ii) PSUs
containing SSUs from several strata, (iii) a small fraction of sample
units in the second (last) stage implies few sample units in small
subpopulations, and (iv) the common use of systematic sampling
designs (due to their effectiveness), and they argued that these
problems favor model-based estimation. Considering two-stage
ALS surveys with model-assisted estimation, we have presented
solutions to the first two issues. The proposed ratio estimator also
improves on estimates in subpopulations (issue iii), but the vari-
ance estimates were unstable with the smallest sample size. Re-
garding, issue iv, we hypothesized that the ratio estimator’s
SRSwoR variance estimator possibly could result in a better ap-
proximation to the variance with a systematic design than HT
estimator’s variance estimator. In this study, the estimated stan-
dard errors were 1.66 for the SRSwoR ratio estimator and 0.75 for
the SRSwoR poststratified estimator with the sample size corre-
sponding to strip spacing 6 km compared with the observed stan-
dard error of 0.47 in Ene et al. (2016). Hence, as an approximation
to the variance in case of systematic sampling, the ratio estima-
tor’s SRSwoR variance estimator might still lead to considerable
overestimation pointing to the need of alternative variance esti-
mators, as tested with good results in Ene et al. (2013, 2016).
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Appendix A

A1. Variance of the ratio estimator
To derive the variance of t̂R, we approximate the variance with

its first-order Taylor series expansion whereby we obtain

(A1) V(t̂R) � N2V(R̂) ≈
N2

(E(N̂))2
V��S1

t̂ir

�i
� R�S1

Ni

�i
�

The V(·) part on the right-hand side is then expanded to

(A2) V( · ) � V��S1

t̂ir

�i
� � R2V��S1

Ni

�i
� � 2RC��S1

t̂ir

�i
,�S1

Ni

�i
�

To further develop the three terms in eq. A2, we condition on
the first-stage sample and utilize that V(·) = VIEII(·|S1) + EIVII(·|S1) and
C(·,·) = CIEII(·,·|S1) + EICII(·,·|S1), where the subscripts denotes the
stages. With this approach, the first term on the right-hand side
will be

(A3) V��S1

t̂ir

�i
� � VI��S1

ti

�i
� � EIVII

� �i�U1�j�U1
C(Ii, Ij)

ti

�i

tj

�j
� EIVII

where Ii and Ij are sample membership indicators, whose covari-
ance is �ij – �i�j. The EIVII term will, due to the independent
selection of the second-stage sample within each selected PSU, be

(A4) EIVII��S1

t̂ir

�i
� � EI��S1

V(t̂ir)

�i
2 � � �U1

V(t̂ir)

�i

where V�t̂ir� is the variance of the estimator of the PSU total.
To address the second term of eq. A2, there is no need to apply

a conditioning approach, and the variance part of the term can be
obtained directly as

(A5) V��S1

Ni

�i
� � �U1�U1

C(Ii, Ij)
Ni

�i

Nj

�j

Regarding the covariance in the third term of eq. A2, condition-
ing on the first-stage sample leads to

(A6) CII��S1

t̂ir

�i
,�S1

Ni

�i
� � 0

and thus EICII = 0, because the only random terms involved are
related to the estimation of the PSU totals (there is no random
component linked to the PSU sizes when we condition on the
first-stage sample). However, studying the component CIEII, we
obtain the following:

(A7) CI��S1

t̂ir

�i
,�S1

Ni

�i
� � �i�U1�j�U2

C(Ii, Ij)
ti

�i

Nj

�j

By putting all components together, the variance of t̂R is given
as

(A8) V(t̂R) ≈ �
i�UI

�
j�UI

C(Ii, Ij)
ti

�i

tj

�j
� �

i�UI

V(t̂ir)

�i

� R2�
i�UI

�
j�UI

C(Ii, Ij)
Ni

�i

Nj

�j
� 2R�

i�UI

�
j�UI

C(Ii, Ij)
ti

�i

Nj

�j

For the variance estimator, we propose to estimate the first
term in eq. A8 with

(A9) �
i�S1

�
j�S1

C(Ii, Ij)

�ij

t̂ir

�i

t̂jr

�j
� �

i�S1

V̂(t̂ir)

�i
� 1
�i

� 1�
The correction form is the ‘standard’ deduction made to com-

pensate for the overestimation due to using estimated rather than
measured PSU totals (e.g., Särndal et al. 1992, p. 137). However, we
propose an estimator based on the model-assisted estimator of ti
(i.e., t̂ir) instead of the HT estimator t̂i � �k�si

yk/�k|i, based solely on
the second-stage field sample as suggested by Särndal et al. (1992,
p. 326). The second term in eq. A8 is estimated with �i�SI

V̂�t̂ir�/�i
2

(as usual), and the first two terms are then simultaneously
estimated by

(A10) �
i�S1

�
j�S1

C(Ii, Ij)

�ij

t̂ir

�i

t̂jr

�j
� �

i�S1

V̂(t̂ir)

�i

The two remaining terms are estimated by their sample coun-
terparts, and the variance estimator becomes
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given that the sampling design is such that �ij > 0 for all pairs i and j.

A2. Variance of the poststratified estimator
Following Ståhl et al. (2011), we derive the variance of the post-

stratified estimator of the population total, t̂PS, from the generic
formula

(A12) V(t̂PS) � �
h�1

H

�
g�1

H

C(t̂Rh, t̂Rg) � �
h�1

H

�
g�1

H

NhNgC(R̂Rh, R̂Rg)

By applying the customary Taylor linearization for ratio estima-
tors (as above)

(A13) C(t̂Rh, t̂Rg) ≈
NhNg

E(N̂h)E(N̂g)
C��

SI

t̂irh

�i
� Rh�

SI

Nih

�i
,�

SI

t̂irg

�i
� Rkg�

SI

Nig

�i�
the C(·) expression is then further expanded to (cf. Cochran 1977 p. 181)

(A14) C( · ) � C��
SI

t̂irh

�i
,�

SI

t̂irg

�i
� � RhRgC��

SI

Nih
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As for the derivation of the variance of the ratio estimator, each
of these terms is further developed by conditioning on the out-
come of the first-stage sample and utilizing that C(·,·) = CIEII(·,·|S1) +
EICII(·,·|S1). With this approach, the first component of the first
term of eq. A11 will be

(A15) CIEII��
SI

t̂irh

�i
,�

SI

t̂irg

�i
�SI� � C��

SI

tih

�i
,�

SI

tig

�i
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UI

�
UI
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tih

�i

tjg

�j

and the second component will be

(A16) EICII��
SI

t̂irh

�i
,�

SI

t̂irg

�i
�SI� � EI��

SI

1

�i
2
C(t̂irh, t̂irg)�

� �
UI

1
�i

C(t̂irh, t̂irg)

due to the assumption of an independent selection of the second-
stage sample within each selected PSU. The term C�t̂irh, t̂irg� is the

covariance of the PSU estimators t̂ir in stratum h and g, respectively.
As earlier, to address the second term of eq. A11, there is no need to
apply a conditioning approach because no subsampling is involved. In

the third (and fourth) terms of eq. A14, CII��SI

t̂irg

�i
, �SI

Nih

�i
�S1� � 0 and

EICII = 0 but CIEII � CI��SI

tig

�i
, �SI

Nih

�i
� � �U1�U1

C�Ii, Ij�
tig

�i

Njh

�j
.

By putting all components together, we obtain

(A17) V�t̂PS� ≈ �
h�1

H

�
g�1

H ��
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�
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A3. The variance estimator of the stratum estimator in case
of SRSwoR

In case m PSUs are selected from M available PSUs with SRSwoR,
an estimator of the variance of t̂Rh is given as

(A18) V̂(t̂Rh) � �Nh

N̂h
�2�M2� 1

m
�

1
M�(mh � 1)srh

2

(m � 1)
�

M
m�

S1

V̂(t̂irh)�
where srh

2 �
1

mh�1�i�1
mh �t̂irh � R̂hNih�

2 and mh is the number of se-

lected PSUs in S1 with any SSU in stratum h. The first part of eq. 1,
i.e., the between PSU variance, can be further elaborated as

(MhN̄h)
2

�M
m

mhN̄̂h�2
M2� 1

m
�

1
M�(mh � 1)sr

2

(m � 1)
� �N̄h

N̄̂h
�2

Mh
2� m

mh
�2� 1

M
�

1
m�

×
(mh � 1)sr

2

(m � 1)
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�2

Mh
2� 1

mh
�

1
M̂h

� m
mh

(mh � 1)sr
2

(m � 1)

where Mh is the total number of PSU in U1 that have any SSU within

stratum h, N̄h � Nh/Mh, N̄h � N̂h/M̂h, and M̂h �
M
m

mh. Following

Särndal et al. (1992, p. 404), we approximate
m

m � 1

mh � 1

mh
with 1. In

combination with the second part of eq. A18 (the within PSU vari-
ance), the variance estimator becomes

(A19) V̂(t̂Rh) � �N̄h

N̄̂h
�2�Mh

2� 1
mh

�
1

M̂h
�srh

2 � �Mh

mh
�2m

M�
S1

V̂(t̂irh)�
because �Nh

N̂h
�2

M
m
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�2�Mh

mh�2
m
M

.
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