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Abstract
The salmonid fish Brown trout is iconic as a model for the application of conservation 
genetics to understand and manage local interspecific variation. However, there is 
still scant information about relationships between local and large‐scale population 
structure, and to what extent geographical and environmental variables are asso‐
ciated with barriers to gene flow. We used information from 3,782 mapped SNPs 
developed for the present study and conducted outlier tests and gene–environ‐
ment association (GEA) analyses in order to examine drivers of population structure. 
Analyses comprised >2,600 fish from 72 riverine populations spanning a central part 
of the species' distribution in northern Europe. We report hitherto unidentified ge‐
netic breaks in population structure, indicating strong barriers to gene flow. GEA loci 
were widely spread across genomic regions and showed correlations with climatic, 
abiotic and geographical parameters. In some cases, individual loci showed consistent 
GEA across the geographical regions Britain, Europe and Scandinavia. In other cases, 
correlations were observed only within a sub‐set of regions, suggesting that locus‐
specific variation was associated with local processes. A paired‐population sampling 
design allowed us to evaluate sampling effects on detection of outlier loci and GEA. 
Two widely applied methods for outlier detection (pcadapt and bayescan) showed low 
overlap in loci identified as statistical outliers across sub‐sets of data. Two GEA ana‐
lytical approaches (LFMM and RDA) showed good correspondence concerning loci 
associated with specific variables, but LFMM identified five times more statistically 
significant associations than RDA. Our results emphasize the importance of carefully 
considering the statistical methods applied for the hypotheses being tested in out‐
lier analysis. Sampling design may have lower impact on results if the objective is to 
identify GEA loci and their population distribution. Our study provides new insights 
into trout populations, and results have direct management implications in serving as 
a tool for identification of conservation units.
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1  | INTRODUC TION

Improving our understanding of the genetic basis of local adapta‐
tion is a main aim in evolutionary biology and is also of significance 
in applied research because of its relevance to the conservation 
of genetic resources, management of exploited populations and 
for predicting impacts of climate change (Allendorf, Hohenlohe, & 
Luikart, 2010; Lehnert et al., 2019). Traits that confer local adapta‐
tion are typically polygenic quantitative traits, and identification of 
the loci that determine variation in such traits is usually challenging 
(Savolainen, Lascoux, & Merilä, 2015). Testing hypotheses of local 
selective sweeps and their association with environmental drivers 
by means of scanning genomic profiles across diverged populations 
provides novel insights but has also been criticized, as a range of fac‐
tors may obscure or lead to false‐positive inference about adaptive 
processes and the ecological mechanisms that structure populations 
(Ahrens et al., 2018). Demographic processes may for instance ob‐
scure inference about selection and the role of the environment in 
driving spatial patterns of adaptation (de Villemereuil, Frichot, Bazin, 
Francois, & Gaggiotti, 2014). There is a general call for evaluation 
of statistical methods (Vatsiou, Bazin, & Gaggiotti, 2016), particu‐
larly for populations connected by gene flow (Bradburd, Coop, & 
Ralph, 2018; Luu, Bazin, & Blum, 2017). It has been suggested that 
in analyses of gene–environment associations (GEA), sampling mul‐
tiple populations exposed to similar environmental conditions is a 
means to increase detection power of true positives, especially 
for associations with weakly selected loci (Lotterhos & Whitlock, 
2015). However, studies applying such sampling design are still rare 
(Roschanski et al., 2016) and tend to be restricted to local geograph‐
ical scales (Ahrens et al., 2018).

Brown trout, Salmo trutta (in its anadromous form known as sea 
trout), is an ecologically and socioeconomically important salmonid 
fish species that allows for testing sampling effects on detection of 
local selective sweeps. Owing to its extreme ecological adaptability, 
it shows a widespread distribution throughout freshwater systems 
in most north‐east Atlantic and western Asian regions (Klemetsen et 
al., 2003). The species is considered as an indicator of habitat quality 
in its native range (Imhof, Fitzgibbon, & Annable, 1994), and there 
are concerns about its conservation status under a range of anthro‐
pogenic stressors and climate change (Ayllón et al., 2016). Since the 
first paper by Allendorf, Ryman, Stennek, and Stahl (1976), four de‐
cades of genetic marker‐based studies have identified genetically 
differentiated local populations of brown trout, sometimes even at 
small (<1 km) spatial scales (Ferguson, 1989; see Andersson et al., 
2017 for a recent example). Although sea trout is renowned for natal 
homing, straying between rivers maintains gene flow and reduces 
the impact of genetic drift on population demographics (Hansen, 
2002; Hansen, Fraser, Meier, & Mensberg, 2009). A suite of stud‐
ies has suggested that local adaptation plays a role in population 

structuring and dynamics (see Meier, Hansen, Bekkevold, Skaala, & 
Mensberg, 2011 and references herein). As a poikilotherm, tempera‐
ture directly affects the rate of biological processes and trout is ex‐
pected to display evolutionary adaptations to reach homoeostasis. 
Coupled with an anadromous life cycle, which for the iteroparous 
brown trout may entail several repeated movements between fresh, 
brackish and marine waters, trout is required to both adapt to local 
conditions while still retaining the capability for coping with strongly 
varying environments. Altogether, these characteristics render the 
species an optimal model for testing ecological and evolutionary pa‐
rameters, including local adaptation and its association with specific 
environments (Jensen et al., 2008).

In spite of brown trout being among the best studied fish species 
(Klemetsen et al., 2003), genomic resources have until recently been 
scarce compared to other salmonids, such as Atlantic salmon (S. salar 
L.) and rainbow trout (Oncorhynchus mykiss W.), which has hampered 
the study of GEA. Genomic resources for brown trout are develop‐
ing rapidly. Nonetheless, genome‐wide SNP analyses have hitherto 
not been applied to examine broadscale population genetic relation‐
ships and associations between genomic variation and evolutionary 
drivers across spatial scales. Thus, to date there has been no assess‐
ment of genome‐wide population structure beyond geographically 
restricted populations, limiting our understanding of the processes 
determining large‐scale population connectivity. Evidence for local 
adaptation is commonly based on comparisons of populations at local 
scales (Andersson et al., 2017; Lemopoulos, Uusi‐Heikkilä, Huusko, 
Vasemägi, & Vainikki, 2018; Meier et al., 2011), while assessments 
rarely concomitantly address small‐ and large‐scale patterns. Lack of 
knowledge about ecological drivers of population processes is espe‐
cially problematic given that many trout populations are considered 
under threat due to disturbances acting on both large scale, for ex‐
ample climate change (Jacquin et al., 2017; Pujolar, Vincenzi, Zane, 
& Crivelli, 2016; Vera, Martinez, & Bouza, 2018), and local scale. For 
example, anthropogenic habitat destruction, creation of impassable 
dams preventing gene flow (Hansen, Limborg, Ferchaud, & Pujolar, 
2014) and genetic introgression from widespread stocking with non‐
native strains (Gil, Labonne, & Caudron, 2016; Hansen et al., 2009) is 
expected to affect a wide number of populations.

In order to investigate population differentiation and its po‐
tential environmental drivers in brown trout using genome‐wide 
analysis, we here developed and applied a SNP array encompassing 
ca. 3.8K mapped SNPs. In GEA analyses, populations showing hi‐
erarchically structured levels of gene flow (as in brown trout) can 
lead to obscured or false‐positive inference about adaptive pro‐
cesses and the ecological drivers of diversification (Ahrens et al., 
2018; Bradburd et al., 2018; Forester, Lasky, Wagner, & Urban, 
2018; Luu et al., 2017). Following Lotterhos and Whitlock (2015), 
we therefore applied a paired‐population sampling approach in 
order to analyse 72 S. trutta populations, spanning a central part of 
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the distribution of anadromous populations in Europe in order to 
first, describe regional scale population structure, and second, de‐
termine whether population divergence was associated with GEA 
and selective sweeps. Concomitantly, our study was designed to 
evaluate effects of sampling design and analytical approach on de‐
tection of outlier loci and GEA in a hierarchical population scenario. 
The aim was to contribute new insights on environmental selection 
pressures in general and in anadromous fish species in particular, 
and at the same time add to the knowledge of population structure 
of S. trutta, a key indicator species for the health and conservation 
of rivers and streams.

2  | MATERIAL S AND METHODS

2.1 | Population samples

A SNP development panel was built using genomic DNA from 2 
to 3 fish from each of seven ascertainment populations (Table 1). 
Populations were spread out geographically so as to span the region 
from the British Isles in west to the Baltic Sea in east (>1,500 km), 
and from Norway in north to the Wadden Sea in the southern North 
Sea (>1,000 km). All ascertainment samples represented the species' 
Atlantic clade (Bernatchez, 2001) and covered the geographical area 
represented by population collections in the present study.

To describe population genomic patterns, trout were collected 
from 74 spawning locations in 72 rivers (on average 36 fish collected 
per river; Table 1) draining into the North Sea, Skagerrak, Kattegat 
and the Western Baltic Sea (Figure 1). In analyses of GEA, sampling 
multiple populations exposed to similar environmental conditions 
represents a means to increase detection power of true positives, 
especially for associations including weakly selected loci (Lotterhos 
& Whitlock, 2015). We therefore aimed to sample a minimum of 
two rivers from each geographical sub‐area. Sub‐areas were here 
defined as geographically proximate river systems expected to share 
environmental drivers. When individual rivers show some degree of 
demographic isolation, as is the assumption in a natal‐homing anad‐
romous fish, the paired‐sampling approach thus represents a way to 
cross‐validate identified GEA loci. Sampling multiple rivers per sub‐
area was not possible in all cases. Data therefore included four col‐
lections each representing only a single sub‐region. Eight locations 
were sampled twice, 5–14 years apart, to examine temporal stability. 
Collections consisted of adipose fin clips from electrofished, anaes‐
thetized adults caught on spawning sites, or of 0–1 year juveniles, 
depending on availability (Table 1; Table S1). The River Ätran was 
represented by two collections, one from the main stem and one 
from its tributary Högvadsån. For the River Weser, collections of 
5–9 fish from each of three neighbouring tributaries were com‐
bined. Sampling was aimed at natural populations with gene pools 
presumed to be relatively weakly affected by human‐mediated in‐
trogression from farmed or foreign populations. However, several 
of the Danish populations were previously stocked with two closely 
related hatchery strains, leading to admixture and introgression 
(Hansen et al., 2009). Samples from the stocked hatchery strains 

were therefore also included in analyses in order to identify poten‐
tial impact of introgression (Table 1).

To compare regional structuring with patterns at broader geo‐
graphical scales, collections also included three geographically re‐
mote populations: the Estonian Vainupea River (draining into the 
Gulf of Finland in the eastern Baltic Sea), River Tamar in Cornwall, 
UK (draining into the western English Channel), and from les Usses 
River, draining into the River Rhone in the Haute‐Savoie in south‐
ern France. The latter representing the species' Mediterranean clade 
(Bernatchez, 2001). DNA from all samples was extracted from adi‐
pose fin clips using a commercial kit (E.Z.N.A.™ kit; Omega BioTek).

2.2 | SNP array development, genotyping and 
linkage analysis

A custom Illumina iSelect SNP array (with 6,000 SNPs) was devel‐
oped by aligning reads in 16 male and female ascertainment sam‐
ples against a draft genome assembly. Nextera sequencing libraries 
were prepared from genomic DNA and sequenced using a Illumina 
HiSeq 2000 to generate paired‐end reads (2 × 100 bp); between 5 
and 13 Gb of sequence was generated for each individual (average 
6.9 Gb, see Table S2). After filtering to remove adapter sequence, 
low‐quality sequence and any reads less than 60 bp, SOAPdenovo (Li 
et al., 2010) was used to generate a de novo assembly. Ignoring con‐
tigs <150 bp, the resulting fragmented assembly included 1,131,000 
contigs (N50 = 2,281) and contained 1.4 Gb of sequence. The as‐
sembly was repeat masked using RepeatMasker software (http://
www.repea​tmask​er.org/) and a locally developed salmonid‐specific 
repeat library developed with the RepeatModeler software. Reads 
from the 16 individuals were aligned to the reference using BWA (Li 
& Durbin, 2009); putative SNPs within each individual were identi‐
fied using SAMtools (Li et al., 2009). Selection criteria required that 
heterozygous SNPs should be supported by minimum of two reads 
in two individuals for the minor allele, across all samples at least one 
individual should be homozygous with a minimum of four reads, and 
only bi‐allelic SNPs separated by >60bp to the nearest indel or SNP 
were considered. A list of 47,380 putative SNPs was initially reduced 
by considering factors such as read depth, proximity to repeats and 
Illumina's Assay Design Score. Subsequent filtering prioritized SNPs 
based on whether they mapped to full‐length cDNA sequences/con‐
tigs from Atlantic salmon (Lien et al., 2011) were distributed across 
larger (>7,750 bp) brown trout contigs or fell within specific genes 
of interest.

To order SNPs by linkage group (LG) and generate a linkage 
map, we used the 6K SNP array to genotype both the 2,606 pop‐
ulation samples and family material consisting of 320 individuals 
applying the manufacturers' recommended protocol and by call‐
ing genotypes using GenomeStudio V2 (Illumina). Family material 
came from a study by Jensen et al. (2008) and consisted of 10 
F1 offspring from each of 30 full‐ and half‐sib families based on 
a total of 10 females and 10 males from two Danish populations 
also sampled separately for the current study (Lilleå and Karup). 
A modified version of the CRIMAP 2.4 software (Green, Falls, & 

http://www.repeatmasker.org/
http://www.repeatmasker.org/
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Crooks, 1990), including added utilities provided by Xuelu Liu and 
Michael Grosz (Monsanto, St. Louis, MO, USA), was used for the 
map construction. Initially, SNPs were assigned to LG based on 
pairwise linkages and the grouping algorithm implemented in the 
AUTOGROUP option of the programme. The analysis assigned 
3,894 SNPs to 40 LGs which correspond to the expected karyotype 

of brown trout (Martínez et al., 1991). After their initial grouping, 
SNPs were ordered within LGs using the BUILD and FLIPSN options 
in CRIMAP. The CHROMPIC option in CRIMAP was then used to 
phase genotypes within LGs, and a custom‐made script was used 
to correct or remove erroneous genotypes based on unlikely tight 
double recombination events. Finally, multipoint linkage maps for 

Country Region (Sea) Rivers (number in Figure 1)

Norway W Scandinavian peninsula 
(Hardangerfjord, North Sea)

1. Granvina, 2. Guddal

United Kingdom Britain, northeast (North Sea) 3. Spey, 4. Deveron, 5. Eyewater, 
6. Tweed, 7. Aln, 8. Coquet, 9. 
Tyne, 10. Wear, 11. Tees, 12. Esk, 
13. Ure

Britain, southeast (North Sea) 14. Stiffkey, 15. Glaven, 16. Nar

Britain, Cornwall (English Channel) Tamara

Germany Continental Europe, Jutland 
Peninsula, Wadden Sea (North 
Sea)

17. Weser, 18. Elbe

Denmark   19. Ribea,b, 20. Kongeåb, 21. 
Sneumb, 22. Vardeb

Continental Europe, Jutland 
Peninsula (North Sea)

23. Skjernb, 24. Storåb, 25. Liverb

Continental Europe, Jutland 
Peninsula (Limfjord, Kattegat)

26. Simested, 27. Jordbro, 28. Skals, 
29. Karupa

Norway E Scandinavian Peninsula 
(Skagerrak)

30. Sonsbeck

Sweden   31. Krokstrand, 32. Hogar/
Strommeå, 33. Anråsälv, 34. 
Bärfendalsbäcken, 35. Broälv, 36. 
Taskeå, 37. Karraå, 38. Bodelå, 
39. Henån, 40. Bratteforsan, 
41. Norumsån, 42. Säbyån, 43. 
Grannebyån, 44. Sörån

E Scandinavian Peninsula 
(Kattegat)

45. Krogarebäcken, 46. 
Hallebäcken, 47. Himleån, 48. 
Ätran & Högvadsån, 49. Fylleån

Denmark Continental Europe, Jutland 
Peninsula (Kattegat)

50. Elling, 51. Villestrup å, 52. 
Lilleåa, 53. Hevring, 54. Grenå, 55. 
Lake Hald, 56. Lake Mossø, 57. 
Giber åb

Continental Europe, Jutland 
Peninsula (W Belt Sea)

58. Kolding, 59. Tapså, 60. Adsbøl

Continental Europe, Belt Sea 
Islands (Belt Sea)

61. Stokkebækb, 62. Saltøb, 63. 
Fladsåb, 64. Mern, 65. Krobæk

Continental Europe, Bornholm 
Island (W Baltic Sea)

66. Tejna, 67. Læså

Estonia Continental Europe, Gulf of 
Finland (E Baltic Sea)

Vainupea

France Haute‐Savoie, Continental 
Europe, Mediterranean Sea

Rhone tributary Les Usses

Denmark Domesticated hatchery strains HAT1, HAT2

Note: Rivers with temporal replicates are underlined. Detailed sample information is given in Table 
S1.
aSamples included in the SNP development ascertainment panel. 
bPopulations exhibiting introgression from one or both partially domesticated hatchery strains. 

TA B L E  1  Collections of Salmo trutta 
indicating country, geographical region 
and river, where number refers to map 
location in Figure 1
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the 40 LGs were constructed using the FIXED option of CRIMAP. 
SNPs that could be mapped to LG and that showed Mendelian 
segregation of genotypes in pedigree material were selected (ex‐
cluding SNPs statistically deviating from expected proportions in 
chi‐square tests across >10% individuals). This resulted in the re‐
tention of information for 3,782 SNPs.

2.3 | Population analyses

Global and per SNP observed and expected heterozygosity (HO and 
HE) were determined for each of the 84 collections (samples from 74 
rivers, two hatchery strains and eight temporal replicates) using the 
R package adegenet (Jombart, 2008). Samples comprising siblings 

may bias allele frequency estimates (Hansen & Jensen, 2005). To 
avoid this, we used the maximum‐likelihood‐based method de‐
scribed in Wang (2013) to analyse genetic relationships in samples 
exhibiting statistically significant FIS estimates. Individuals exhibiting 
relatedness levels corresponding with half‐ and full‐sib relationships 
were recorded, and data were subsequently trimmed to exclude 
any such related individuals. This meant that 19 of 40, mostly ju‐
venile, fish from the River Ure were excluded from further analysis. 
Using adegenet, locus‐specific FST values were calculated across all 
samples and deviation from HWE within samples was tested using 
chi‐square testing. Linkage disequilibrium was estimated using the 
squared correlation between alleles at two loci, both per sample and 
averaging across samples, using the R package genetics (Warnes, 

F I G U R E  1   (a) Salmo trutta populations 
in the analysis (extant collections from 
France, Estonia and Cornwall are not 
shown on map) indicated by individual 
rivers' confluence with the sea, except for 
lake trout samples 55 and 56. Numbers 
refer to Table 1. Symbol colours reflect 
genetic clustering, where RGB colour 
code is determined by the first three 
axes in the principal component analysis. 
(b) Discriminant analysis of principal 
components clustering of individual 
genotypes at k = 10 for Discriminant 
functions 1 and 2, describing, respectively, 
37% and 20% of the variance. 
Geographical areas corresponding to 
genotype clusters are indicated by symbol 
colour and text. Geographically distant 
collections are indicated by #. Estonia 
forms a separate cluster (black), whereas 
the collection from Cornwall clustered 
with SE British samples
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2013). p‐values of HWE tests were adjusted for multiple compari‐
sons using false discovery rate (FDR; Benjamini & Hochberg, 1995). 
All loci were retained in initial analyses, but in GEA and outlier analy‐
ses only one SNP was retained when pairs of SNPs showed very high 
LD (r2 > .8) across samples.

Estimates of population structure and detection of outlier loci 
may be downwardly biased if markers are selected using specific 
criteria about the numbers of times they occur in the SNP develop‐
ment sample (Rosenblum & Novembre, 2007). Here, ascertainment 
bias (AB) was potentially non‐negligible due to the relatively strict 
criteria applied when selecting candidates for the SNP array, par‐
ticularly the criterion that at least two individuals from the ascer‐
tainment panel had to have the alternate allele in at least two reads. 
Potential effects of AB were assessed by inspection of minor allele 
frequencies per population sample, where the expected nonbiased 
distribution describes a beta distribution with high proportions of 
low‐frequency markers rapidly decreasing towards low proportions 
of high‐frequency markers.

Sample differentiation was described using pairwise ϴ (Weir & 
Cockerham, 1984). Isolation‐by‐distance (IBD) relationships were 
examined using a Mantel test and 999 randomizations in adegenet, 
including information for least waterway distance to river mouth in 
all spatial samples for all loci. Including all loci, clustering of samples 
was visualized using principal component analysis (PCA) and discrim‐
inant analysis of principal components (DAPC), following Jombart 
and Ahmed (2011). The French sample was excluded from these 
and subsequent analyses due to its highly divergent (Mediterranean 
lineage) origin. Bayesian information criterion (BIC) was used for 
evaluation of the partitioning of individuals into different number 
of clusters (k) in DAPC. Based on discriminant functions, individual 
posterior membership probabilities were subsequently evaluated to 
assess the suitability of the approach in terms of capturing corre‐
spondence between capture locality and genetic clustering.

2.4 | Genome scan

A genome scan approach was used to distinguish genome‐wide 
processes expected to mainly reflect demographic histories, from 
processes at individual loci potentially reflecting local processes, par‐
ticularly selection. Genome scans may suffer from inflated numbers 
of false positives under hierarchical spatial structure coupled with 
isolation‐by‐distance dynamics (Excoffier, Hofer, & Foll, 2009). We 
therefore used a principal component analysis with a Mahalanobis 
distance‐based approach to identify outlier loci (Luu et al., 2017). 
This method, implemented in the R package pcadapt, allows for an 
examination of how different levels of population clustering affect 
outlier detection. It is reported to yield increased power compared 
to Bayesian models, especially when there is hierarchical population 
structure under divergence and range expansion scenarios (Luu et 
al., 2017). Initially, 50 principal components (PC) were used to assess 
the best supported genetic clustering among sampled individuals, 
where the optimal number (or range) of PC was determined using 
Cattell's graphical rule, following Luu et al. (2017). Outliers were then 

detected applying different levels of sample clustering and FDR to 
control error. Throughout, loci with global MAF <0.05 were excluded. 
To examine effects of sampling specific populations on outlier detec‐
tion, analyses were finally repeated for sub‐sets of data: (a) including 
one half of the geographically paired collections selected at random 
(N = 34), (b) including the other half of paired samples (N = 34) and 
(c) combining these two sets of data (N = 68; Table 1). In all three lat‐
ter cases, information was excluded for temporal replicates and for 
the four sub‐regions for which only a single collection was available, 
including extant populations Tamar, Vainupea and Haute‐Savoie 
(Table 1). pcadapt results were compared with results generated with 
the often used Bayesian bayescan method (Foll & Gaggiotti, 2008). 
This method is expected to exhibit low false‐positive rates, particu‐
larly when many population samples can be included (Narum & Hess, 
2011), which was the case here. Settings followed recommendations 
in Foll and Gaggiotti (2008), excluding information for 66 SNPs ex‐
hibiting global MAF below 0.05. Following Foll and Gaggiotti (2008), 
we used Jeffrey's scale of evidence and defined potentially selected 
loci as markers having log10 (PO) above 1, but excluded loci with Q‐
values above 0.01, to minimize FDR bias.

2.5 | Genotype‐environment association

Signatures indicative of local adaptation to environmental variables 
were investigated using the univariate GEA method implemented in 
LFMM v. 1.5 (Frichot, Schoville, Bouchard, & François, 2013). The ap‐
proach uses latent factor mixed models that take into account neu‐
tral population structure when testing associations between gene 
variation and candidate environmental variables. Environmental 
variables are entered into the model as fixed effects while popula‐
tion structure is modelled using latent factors. We used population 
clustering results from DAPC and pcadapt to guide the choice of k 
latent factors, varying k 9–14, and running 10 replicates per factor 
level, with Gibbs sampling algorithm with 20K iterations, discarding 
the first 5K iterations as burn‐in. In the LFMM model, a matrix term 
models the part of genetic variation that cannot be explained by the 
environmental variables. Selective responses in anadromous brown 
trout populations are expected to be mainly governed by regional, 
rather than by small‐scale environmental drivers (Hansen, 2002). 
Accordingly, we examined variables expected to reflect effects of 
different types of drivers on genetic variation. Firstly, to control for 
IBD dynamics and postglacial founder events, we entered sample 
latitude and longitude, and whether origin was either the British 
Isles, European continent or Scandinavian Peninsula (as a categorical 
variable). Secondly, potential relationships with abiotic conditions 
on spawning sites were examined by entering data on geochemis‐
try (using soil type and soil pH), annual average water temperature, 
minimum winter temperature and maximum summer temperature, 
annual temperature range, average annual precipitation and precipi‐
tation in driest month at collection site. Climate data were obtained 
from https​://esdac.jrc.ec.europa.eu/. Data on soil type (entered 
as categorical variable), and pH values were obtained from http://
euros​oils.jrc.ec.europa.eu/. Finally, to test for relationships between 

https://esdac.jrc.ec.europa.eu/
http://eurosoils.jrc.ec.europa.eu/
http://eurosoils.jrc.ec.europa.eu/
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genetic variation and abiotic environment first encountered during 
smolt sea‐migrating stage, information was included on average am‐
bient water temperature and salinity 1 km from river confluence with 
the sea (from http://marine.coper​nicus.eu/). Thirdly, we entered alti‐
tude at collection site as a proxy for both upstream spawning run and 
smolt downstream migration barrier. Fourthly, to examine effects of 
genetic introgression from stocked hatchery strains, we entered cat‐
egorical information about whether populations had previously been 
stocked with either of the two hatchery strains (pertains to Danish 
populations). Associations among variables were tested using the 
function PCAMIX in the R package PCAmixdata (Chavent, Kuentz‐
Simonet, Labenne, & Saracco, 2014) allowing for PCA of mixed quali‐
tative and quantitative data. Based on eigenvalues for 24 dimensions 
and using Cattell's graphical rule, the first five principal components 
from that analysis were used to reduce variables tested in the model. 
Following Frichot et al. (2013), p‐values < 10–5 obtained after apply‐
ing a Bonferroni correction for a type I error at α = .01 and ~10–4 loci, 
z‐scores >4.7 were considered to show GEA.

Recent simulation analyses suggest that multivariate GEA meth‐
ods, such as redundancy analysis (RDA), under some conditions 
may perform better than PCA‐based methods in identifying envi‐
ronmental predictors of genotype variation and in selective outliers 
(Capblancq, Luu, Blum, & Bazin, 2018; Forester et al., 2018). RDA 
is a multivariate ordination approach that combines PCs from allele 
frequency and multivariate environmental distance matrices to pro‐
duce canonical axes predicting relationships between environments 
and particular loci. We therefore compared results from LFMM with 
an RDA analysis using the vegan package (Oksanen et al., 2015) fol‐
lowing the procedure detailed in Forester et al. (2018). Missing data 
were imputed using the most common genotype observed within 
samples. As for the LFMM analysis, the five environmental PCs were 
tested against SNP data in 68 sample collections. The function vif.
cca was used to ascertain lack of multi‐collinearity among variables, 
as expected from the use of composite environmental variables, 
which alleviated the need for variable reduction. There was no a pri‐
ori control for population structure. Following Forester et al. (2018), 
we classified SNPs as showing statistically significant association 
with individual environmental parameters when they loaded with 
more than three standard deviations from the mean. We estimated 
correlations between these SNPs and their most strongly associated 
environmental variable following Forester et al. (2018).

3  | RESULTS

3.1 | SNP array performance

All SNP clusters were visually inspected using Genome Studio and all 
markers subjectively classified according to sample data point clus‐
tering precision and accuracy. A total of around 4,000 markers (72%) 
displayed tight grouping into three well separated genotype clusters, 
1,106 (20%) appeared to be monomorphic in the examined samples, 
and the remainder displayed clustering patterns making SNP geno‐
type calling unreliable.

The 40 brown trout LGs with 3,894 SNPs represent, on aver‐
age, 95 SNPs per LG (range 13–173) and adds up to a male map of 
1,316  cM and a female map of 2,494  cM (Table S2 for details on 
linkage map, assembly and annotation). Relative to the expected 
beta distribution, MAFs were skewed towards high values (Figure 
S1). Average MAF was 0.28, and 1.5% of loci had global MAF <0.05 
(Table S3). In total, 153 pairs of loci showed evidence of linkage dis‐
equilibrium with genotype associations at R2 > .8.

3.2 | Genetic relationships within and among 
populations

The 3,782 SNPs contained within the linkage map and conform‐
ing to Mendelian segregation rules were typed across >95% of the 
2,536 individuals in the 84 sample collections. HE varied 0.31–0.37 
across collections (average = 0.35) and tended to be slightly lower 
in collections from Britain (average ± SD = 0.33 ± 0.01) than in conti‐
nental and Scandinavian populations (average ± SD = 0.36 ± 0.01; t 
test = 9.259, df = 79, p < .001). No other trends in HE were observed 
among geographical regions. Excluding information from extant 
populations, global, locus‐specific Ɵ values ranged between 0.007 
and 0.237, with a slightly lower median (0.061) than mean value 
(0.067) (Table S4). Evidence for departure from HWE (at α =  .05) 
was found in 4,541 of 150,066 tests, whereof nine remained sig‐
nificant after correction for multiple testing, none of which were 
particular to specific collections or loci. Global differentiation 
among sample collections was estimated at 0.068. The geographi‐
cally distant sample collections Tamar in west and Vainupea in 
east both showed relatively strong differentiation from their geo‐
graphically closest collections (Tamar‐Stiffkey Ɵ = 0.10; Vainupea‐
Tejn Ɵ = 0.11). As expected, the les Usses sample representing the 
Mediterranean lineage showed the strongest differentiation of all, 
varying between 0.36 and 0.46 in pairwise comparisons (Table S4). 
Relatively low differentiation was observed between les Usses 
and the Danish hatchery strain #1, corresponding with the fact 
that this strain has been exported to France and is represented in 
brood stock used for stocking in the region. Hence, this strain has 
now introgressed into several French Mediterranean populations 
(Gil et al., 2016).

Average Ɵ between temporal replicates within location was 
0.011, ranging from 0.001 to 0.052 (Table S4). None exhibited sta‐
tistically significant differentiation, except for the River Skals, where 
one replicate sample consisted of only 10 individuals, which may 
have biased allele frequency estimates. Forty‐three comparisons 
between spatial collections did not exhibit statistically significant 
differentiation (Table S4). In all cases, they represented collections 
from either neighbouring rivers or rivers from the same geograph‐
ical area separated by less than 70 km. These included (a) Wadden 
Sea rivers Ribe, Kongeå and Sneum; Elbe and Weser, (b) Western 
Baltic rivers Krobæk and Mern, (c) British rivers Aln and Coquet, 
(d) Swedish Kattegat rivers Himleån and Fylleån, and (e) Swedish 
river Ätran and its tributary Högvadsån. Finally, Swedish Skagerrak 
collections spanning from River Hogarälv in north to Grannebyån in 

http://marine.copernicus.eu/
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south generally exhibited lack of allele frequency differences (nos. 
33–44 in Table 1). Pairwise differentiation between collections was 
positively associated with geographical distance (Monte Carlo ran‐
domization test; 999 randomizations: observed = 0.7157, p < .001, 
observed standard deviation = 12.868, expectation = −0.0002, vari‐
ance = 0.0031). However, density analysis also suggested that IBD 
dynamics differed across geographical regions, as evidenced by the 
presence of at least two distinct clusters in the data (Figure 2). One 
of the clusters corresponded with comparisons between British 
and European/Scandinavian samples, as shown by the fact that one 
of two main clusters disappeared when British samples were ex‐
cluded from analyses (Figure S2). When British samples were tested 
alone, two distinct clusters were suggested (Figure S3). Although 
sample size was somewhat limited encompassing 15 British col‐
lections in total, this suggested disjoint IBD dynamics with one 
strong north–south genetic break within this geographical region. 
A distinct separation between northern and southern British and 
all other populations was also evident in the PCA. Here, the three 
first principal components (PCs) described 5.3% of the variation, 
accounting for 2.4%, 1.6% and 1.3%, respectively (Figure S4). PC1 
differentiated populations from continental Europe from all others, 
and PC2 separated SE British from NE British populations and Baltic 
Sea samples from other European samples, whereas PC3 mainly 
separated SE British samples from all others. In correspondence 
with a general IBD relationship, population sub‐structure was ev‐
ident within each of the three main geographical regions, where 
individual genotype clustering to a large extent followed geograph‐
ical relationships (Figures S5–S7). Genetic relationships within and 
between geographical regions are visualized in Figure 1a.

Using DAPC to determine population groupings returned most 
likely k  =  10, with relatively similar BIC for k  =  10–14, and geno‐
type clustering strongly corresponding with geographical regions 
(Figure 1b). Expanding beyond 10 clusters identified increasing 

sub‐clustering within geographical areas, but with correspondingly 
decreasing posterior membership probabilities of individuals (not 
shown). DAPC returned overall good proportions of correct poste‐
rior assignment of individuals to the 10 clusters. Thus, between 0.50 
and 1.00 (average = 0.91) of individuals per sample were assigned to 
a cluster including their collection origin. Hatchery admixed popula‐
tions generally exhibited below‐average assignment to cluster origin 
(posterior assignment to cluster of origin in introgressed samples 
0.50–0.91, average = 0.69), and when samples from introgressed pop‐
ulations were removed from analyses, average posterior assignment 
to cluster of origin increased to 0.95. A post hoc clustering analyses 
excluding all SNPs exhibiting positive outlier behaviour (see below) re‐
turned the same number of, and individual genotype affiliations with, 
population clusters as did analysis including all SNPs (not shown).

3.3 | Identification of SNP outliers

The pcadapt analyses comprising all samples showed agreement 
with the results using adegenet by providing the optimal model reso‐
lution when grouping genotypes into 10 clusters (Figure S8). When 
controlling for population clustering, pcadapt identified 24 outlier 
SNPs distributed across 13 LGs, which was considerable lower than 
the global result from bayescan, which identified 576 outlier SNPs 
(183 with lower and 393 with higher than expected divergence, 
Table S3). Seventeen outlier SNPs were identified with both meth‐
ods. Comparing pcadapt outliers detected in paired sub‐sets of data, 
11, 11 and 17 outliers were identified in sub‐set 1, sub‐set 2 and sub‐
set 1 and 2 combined, respectively. There was good correspondence 
in the numbers of geographical clusters identified for the three data 
sets (Figure S9), but relatively little overlap between loci identified 
as outliers in the sub‐sets 1 and 2 (four of 11 outlier loci, Table S3, 
Figure S10). The low overlap in outliers detected with different sub‐
sets of samples was also evident with the bayescan approach, where 
just 137 of 401 outlier loci (34%) were identified in both sub‐sets 1 
and 2 (Table S3, Figure S11). Outlier SNPs identified with bayescan 
were distributed across all LGs (Figure 3, Table S3). There was no 
trend for covariance between LG size and numbers of outliers identi‐
fied and no apparent clustering of outliers within LG.

3.4 | Genotype associations with environment

Principal component analysis of spatial and environmental variables 
showed that the five top PCs explained 69% of the variation (Figure 
S12). PC1 (32% variation explained) described parameters distin‐
guishing the three main geographical regions, Britain, Continental 
Europe and Scandinavian Peninsula, including temperature (higher 
for Britain) and salinity (lower for Continental European samples). 
PC2 (15%) was associated primarily with climatic variables related 
to precipitation. PC3 (10%) was associated with soil pH. PC4 (6%) 
was associated with high summer temperatures, and PC5 (5%) was 
associated with soil type (Tables S5 and S6). Varying the number of 
latent factors in the GEA model affects identification of loci associ‐
ated with parameters (Frichot et al., 2013), which may particularly 

F I G U R E  2  Relationship between geographical distance (Dgeo) 
between river mouths (in kilometres) and genetic differentiation 
(Dgen) estimated by Nei's distance, between pairwise collections 
of Salmo trutta. Colour contours indicate local kernel density 
estimates, where higher densities are shown by increasing degrees 
of red. The line indicating the least squares linear relationship 
between parameters is included for visual representation
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influence inference if population structure follows an IBD model 
and number of population clusters is ambiguous. In our analysis, 
997 loci showed GEA when K was set to 14 population clusters, all 
of which were a sub‐set of loci identified at K = 9–13. We therefore 
report GEA results for K = 14 to reduce rates of false positives. The 
majority of loci (89%) showed association (at z > 4.7) with a single 
variable. There was generally low overlap between loci showing 
GEA with the tested variables and loci identified as outliers, and 
just 13 loci were identified in all three tests. All LGs contained GEA 
loci (ranging 4–50 loci, average 25, per LG; Figure 3). The major‐
ity of GEA were observed with variables differing among the three 
geographical regions (421 PC1 associations) and with temperature/
soil variables (371 PC2 associations). GEA was less often related 
to geochemistry (207 PC3 associations), maximum temperature/
precipitation (172 PC4 associations) and soil type (33 PC5 associa‐
tions). There were several instances of interaction between GEA 
and geographical region. Thus, for 11 loci coming out as statistical 
outliers in pcadapt and showing GEA, there was a strong effect of 
geographical region on relationships between allele frequencies and 
environmental variables. This suggests that associations are lineage 
specific and potentially confounded by the phylogenetic history of 
populations. An example of a typical region‐specific GEA relation‐
ship is shown in Figure 4a. In other cases, GEA was observed across 
all three main geographical regions, suggesting that loci were af‐
fected in the same direction by specific selective pressures across 
demographic lineages (exemplified in Figure 4b). The locus show‐
ing the strongest association with salinity exhibited concurrent 
relationships in the two geographical regions bordering the North 
Sea–Baltic Sea transition zone describing a salinity gradient varying 

from fully saline waters (34 ppt) to brackish conditions (8 ppt), but 
also large allele frequency variation within the more salinity‐invari‐
ant British populations (Figure 4c).

In the RDA, the first three components explained, respec‐
tively, 40%, 27% and 18% of the variation, and the five compos‐
ite environmental parameters all showed statistically significant 
variation with genotypes (all p < .001). The first three axes sepa‐
rated, respectively, (a) British and West Norwegian populations, 
(b) Scandinavian populations and (c) SE British populations. As in 
LFMM analyses, PC1 (mainly associated with geography and tem‐
perature variables) showed the strongest association, followed by 
PC2, associated with precipitation and soil type (Figure 5). When 
testing which SNPs were most strongly associated with each of the 
five parameters, respectively, 6, 12, 10, 19 and 8 SNPs (55 SNPs 
in total) came out with high loading values for PC1–5. Correlations 
between these SNPs and their most strongly associated environ‐
mental parameters were not marked (average r =  .29, range .15–
.49). Thirty‐nine of the 55 SNPs (71%) identified as showing GEA 
in RDA also showed GEA in LFMM (Table S3).

4  | DISCUSSION

Our study has two main merits. Firstly, by taking advantage of 
genomic resources developed for S.  trutta, this study provides the 
most detailed examination of large‐scale genetic structure in a cen‐
tral part of the species' native range. We identified very strong sam‐
ple clustering corresponding with broad geographical regions, as well 
as clear genetic breaks among samples within regions, that in several 

F I G U R E  3  Manhattan plot showing z‐values from gene–environment association (GEA) analyses for 3,629 SNP loci aligned by position 
in LG 1–40. Individual plots a–e show z‐values associated with each SNP for each of the five composite environmental variables Dim1‐5. 
SNPs above the blue horizontal line show statistically significant GEA. Green symbols indicate 138 positive outlier SNPs identified in both 
population sub‐sets with pcadapt and/or bayescan. SNP loci showing association with individual variables in RDA are circled in red



10  |     BEKKEVOLD et al.

cases were associated with climatic variables. Secondly, we con‐
tribute to the evaluation of state‐of‐the‐art statistical approaches 
for identifying genetic signatures of selection and their association 
with environments, through reporting on genome‐wide detection of 
loci exhibiting GEA and showing that discovery in some cases was 
strongly dependent on statistical method and sampling design.

4.1 | Inference from genome‐wide SNP variation in 
S. trutta

Genomic resources are rapidly growing for S.  trutta (Carruthers 
et al., 2018; Leitwein et al., 2017; Lemopoulos et al., 2018), but 

our study is the first to apply genome‐wide SNP data to examine 
broadscale population relationships and associations with evolu‐
tionary drivers across regional scales. The stringent criteria for 
selecting SNPs are likely to have caused some ascertainment bias, 
thereby skewing MAF towards higher values and lowering power 
to disentangle effects of neutral versus selective processes. 
Ascertainment bias in SNP selection may bias inferences of popu‐
lation demography (Guillot & Foll, 2009, but see also Albrechtsen, 
Nielsen, & Nielsen, 2010). In this study, individuals from all major 
genetic clusters detected were represented in the ascertainment 
panel, suggesting that our assessment of spatial structure is un‐
likely to suffer substantial bias with respect to the magnitude of 

F I G U R E  4  Association between environmental variables and frequency of major allele for populations in the three geographical 
regions Britain (open symbols, dotted line), Scandinavian peninsula (black symbols, solid line) and Continental Europe (grey symbols, 
stippled line), exemplifying gene–environment association relationships that are as follows: (a) specific to geographical regions; locus 
“Gdist_S82886_3406,” identified as selective outlier in both pcadapt and bayescan, (b) general across regions; locus “cDNA_S415600_5145,” 
showing no outlier behaviour but association with temperature parameters and latitude (shown here) or (c) general across regions 
characterized by salinity gradients, but not in the salinity‐invariant region Britain; locus “cDNA_S84920_5746.” None of the three loci 
exhibited statistically significant outlier behaviour in RDA (see text). Least squares regression lines are shown to guide inference
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genetic differences among populations, at least across larger geo‐
graphical scales. Individuals in the SNP development ascertain‐
ment panel represented both the NE British and the SE British 
population clusters. The lower overall genetic diversity observed 
in samples from Britain was thus unlikely an artefact of ascertain‐
ment bias. Although methods have been proposed to correct for 
ascertainment bias (Guillot & Foll, 2009), most require some as‐
sumption about allele frequency distributions under un‐biased 
conditions. Lacking such information, we therefore refrained 
from estimating demographic parameters, such as phylogenetic 
relationships and divergence times. Yet, we emphasize that given 
the genomic coverage and quantity of markers, the relative mag‐
nitudes of differentiation detected among samples are expected 
to be robust.

4.2 | Geographical breaks in population structure

Our results support previous inference based on smaller marker 
panels and samples with more restricted geographical coverage. 
Accordingly, this study reinforces the notion that trout commonly 
show temporally stable (at least on a decadal scale) genetic struc‐
ture on local river or neighbouring watershed scales and that the 
distribution of genetic variation can often be described by isola‐
tion‐by‐distance dynamics, attributed to the species' homing in‐
stinct (Griffiths, Koizumi, Bright, & Stevens, 2009; Meier et al., 2011; 
Stelkens, Jaffuel, Escher, & Wedekind, 2012). Although our sampling 
scheme was not exhaustive, we benefitted from substantial geo‐
graphical sample coverage allowing fine‐scale inference about struc‐
tural relationships from wide to small geographical scales. First, we 
identified strong genetic breaks among populations inhabiting the 

landmasses Britain, the European continent and the Scandinavian 
Peninsula, most likely reflecting allopatric divergence during post‐
glacial colonization events (Bernatchez, 2001; Cortey, Vera, Pla, & 
García‐marín, 2009; Hewitt, 2000).

A novel result was the identification of strong divergence be‐
tween northern and southern British populations. Our sampling de‐
sign did not allow for precise definition of the geographical break 
between the two clusters of samples, nor whether geographically in‐
termediate populations constituted a hybrid zone between clusters. 
Analyses of mitochondrial DNA markers have not identified genetic 
breaks between populations sampled in south and north (McKeown, 
Hynes, Duguid, Ferguson, & Prodohl, 2010). However, complex phy‐
logeographical processes and incomplete lineage sorting could have 
affected this result (McKeown et al., 2010) masking the divergence 
observed with nuclear markers. In contrast to Northern Britain, the 
area spanning from Wales in west to east Anglia in east was ice‐free 
during the last glaciation and thus has a different geological history 
from that of the north. Moreover, the entire Southeast Britain pre‐
viously constituted the catchment area for the River Thames drain‐
ing into the southern North Sea (Rose, 1994). Analyses of additional 
samples from the River Thames and from rivers draining into the 
English Channel support the existence of close genetic relation‐
ships among SE British trout populations (D. Bekkevold, A. King, J. 
Stevens, unpublished results). Trout populations in SE Britain are 
generally characterized by inhabiting short, lowland rivers, whereas 
NE British populations included in our study generally inhabit larger 
upland rivers with stronger gradients and higher water flow. The ge‐
netic discontinuity identified in our study is hence in agreement with 
expectations for two population clusters inhabiting different envi‐
ronments and having discrete evolutionary histories potentially as‐
sociated with selective sweeps that maintain separate demographics 
to present day.

We identified another prominent genetic break between popu‐
lations from the Scandinavian Peninsula and Continental Europe (in‐
cluding the Danish Belt Sea islands). There was apparently a strong 
barrier to genetic exchange between rivers draining into east and 
west of the Skagerrak and Kattegat seas, in some places separated 
by less than 60‐km waterway. Such strong genetic separation is re‐
markable, given the species' propensity for long distance feeding 
migrations (Koljonen, Gross, & Koskiniemi, 2014), including within 
the Kattegat area (D. Bekkevold, unpublished data), and points to 
accurate homing to specific geographical regions.

As expected, genetic structure was also evident within regional 
population clusters. In most cases, genome‐wide differentiation 
followed geographies in correspondence with founder events com‐
bined with isolation‐by‐distance dynamics. Nonetheless, we stress 
that although inference about overall genetic relationships among 
populations should be robust, the potential ascertainment bias of 
the applied markers could somewhat influence the inference of the 
underlying demographic processes. Even so, the markers analysed 
here will be useful for delineating conservation units and their dis‐
tributions in time and space, as well as for individual assignment and 
identification of population admixture (Nielsen et al., 2012).

F I G U R E  5  Redundancy analysis results showing the first two 
axes, explaining, respectively, 40% and 27% variation. Grey points 
indicate individual SNPs, and dots indicate individual fish colour 
coded by their geographical region following notation in Figure 1 
(Continental Europe: blues and greens; E Scandinavian Peninsula: 
purples; W Scandinavian Peninsula: pink; NE Britain: light yellow; 
SE Britain: brown). Blue vectors represent the environmental 
predictors represented by the five composite environmental PCs. 
Both SNP and individual fish scores are scaled symmetrically by the 
square root of the eigenvalues
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4.3 | Contrasting results from different genome 
scan approaches

We used one of the, to our knowledge, largest sample sizes to 
date for outlier analysis across a large number of geographically 
widespread populations and typed more than 3,000 SNPs, which 
is the suggested threshold to limit false discovery bias (Ahrens et 
al., 2018). The application of two different genome scan method‐
ologies allowed further insights into the processes hypothesized to 
drive population differentiation. The overarching result from both 
methodologies was the finding of statistical outliers across broad 
expanses of the trout genome. Large blocks of highly divergent loci 
positioned in one or a few linkage groups (sometimes referred to as 
“genomic islands” often attributed to chromosomal structures such 
as inversions) have been identified to differentiate ecotypes in fish 
(Bradbury et al., 2013; Hemmer‐Hansen et al., 2013; Lamichhaney 
et al., 2017). However, unless a population has undergone a recent 
selective sweep, local selection is unlikely to act on only a few large‐
effect loci or genomic regions (Rockman, 2012). Although the ge‐
netic structures we observe likely also reflect drift and, potentially, 
postglacial secondary contact between lineages, our results are thus 
in line with the pattern from other salmonids (Bourret et al., 2013; 
Pritchard et al., 2018) that populations exhibit genomic variation in‐
dicative of multiple sweeps and divergent selection acting on broad 
expanses of the genome.

When all collections were included in global analyses, the two 
methodologies returned large numerical differences in detected 
outlier loci. Thus, bayescan identified 11% outliers, whereas when 
controlling for regional population clustering, pcadapt identified 
less than one per cent outliers. Albeit both figures at face value 
differ from estimates of ~5% outlier loci seen in other species, they 
are still within the reported range (reviewed in Ahrens et al., 2018). 
Our analysis is also consistent with results being dependent on 
both statistical methods used (Bradbury et al., 2013) and the type 
of genetic variation studied (de Villemereuil et al., 2014; Vasemägi, 
Nilsson, & Primmer, 2005; but see Ahrens et al., 2018). The bayes-
can approach may yield low detection power under an “isolation 
with migration” model, as is expected for brown trout populations, 
and sampling large numbers of genotypes may concurrently inflate 
numbers of false positives (de Villemereuil et al., 2014). The popu‐
lation clustering parameter (k) applied in our pcadapt analysis was 
based on all loci, rather than restricted to sub‐sets of loci presumed 
to reflect neutral demographic processes. This could potentially 
have reduced number of outliers detected with the pcadapt ap‐
proach, compared to the “demography‐naïve” bayescan approach. 
Conversely, in a minor number of cases, paired rivers did not exhibit 
statistically significant divergence, which could have led to slightly 
increased numbers of false positives identified across sub‐set anal‐
yses. All of these error sources may have contributed to the ob‐
served discrepancy between the two outlier analysis approaches. 
The inference gained in our study from comparing methods is that 
outliers may be highly specific to hierarchical population clusters, 
as evidenced by the much lower number loci detected with the 

pcadapt approach incorporating demography than in the approach 
not incorporating demography. The relatively low overlap in outli‐
ers identified in sample sub‐sets corroborates the view that sam‐
pling design may have a strong effect on detection of genomic 
regions underlying selection. However, when comparing outliers 
identified across both sample sub‐sets, all four pcadapt outliers 
and 90% of 137 bayescan outliers also showed GEA. This supports 
the notions that comparing results from different statistical meth‐
ods (de Villemereuil et al., 2014) and applying a paired‐population 
sampling design (Lotterhos & Whitlock, 2015) can strengthen in‐
ference about selective processes under a hierarchical population 
scenario.

4.4 | Genotype‐environment associations 
within and among clusters

We identified several GEA related to climatic variables temperature 
and precipitation, which is consistent with results in other fish spe‐
cies, including other salmonids (Bourret et al., 2013; Chen, Farrell, 
Matala, & Narum, 2018; Hecht, Matala, Hess, & Narum, 2015; 
Matala, Ackerman, Campbell, & Narum, 2014; Perrier, Bourret, Kent, 
& Bernatchez, 2013). Such general relationships are not surprising 
given that in fishes, temperature is linked to key physiological, de‐
velopmental and behavioural processes, rendering fish highly sensi‐
tive to climatic and thermal conditions (Crozier & Hutchings, 2014; 
Eliason et al., 2011). Climatic drivers are hence expected to exert 
selection pressures on local populations, also in trout (Jensen et al., 
2008), although some salmonid studies indicate stronger effect of 
phenotypic plasticity rather than adaptation to specific temperatures 
(Solberg, Dyrhovden, Matre, & Glover, 2016). Nonetheless, tempera‐
ture and precipitation are likely to be correlated with other, untested, 
environmental variables, and short of experimental manipulations, 
GEA studies can only be indicative of drivers underlying local adap‐
tation (McCairns, Smith, Sasaki, Bernatchez, & Beheregaray, 2016). 
LD, especially high within salmonids, is likely to show low decay 
across broad genomic regions, also obscuring the direct relationship 
between specific SNP's and environmental variables. Thus, confir‐
mation of functional and adaptive significance of post hoc identified 
genes requires rigorous testing, and although several GEA studies 
report annotation of SNPs found to be associated with environ‐
mental variables, we follow the argumentation in Pavlidis, Jensen, 
Stephan, and Stamatakis (2012) and refrain from mining for annota‐
tion of GEA markers. In GEA testing, both the univariate latent fac‐
tor mixed model approach LFMM and the ordination‐based method 
RDA identified loci associated with environmental parameters, but 
the latter method identified less than 5% of the numbers of SNPs 
as the former. This differs from results of a recent study in Populus, 
where RDA had superior statistical power and showed lower non‐
detection rates than LFMM (Capblancq et al., 2018). That study also 
found that the two approaches did not consistently identify known 
QTLs, whereas in our study, SNPs showing GEA with RDA gener‐
ally also were identified with LFMM. Interestingly, there was rela‐
tively stronger consistency in loci identified with both methods to 
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be associated with the variable Dim1 that comprised the main differ‐
ences among geographical regions than across analyses for Dim2‐5, 
associated with environmental variables that were less specific to 
individual geographical regions. This indicates that GEA methods 
were most consistent for variables showing the strongest inter‐re‐
gional divergence. Numbers of GEA identified with LFMM were high 
(totalling almost 30% of all loci) and spread across all LGs. Although 
results were controlled for inflation of false positives, this suggests 
that absolute numbers of GEA identified may have been upwardly 
biased. Irrespective of a potential bias, the identification GEA across 
broad expanses of the trout genome with both methods is sugges‐
tive of locally adapted variation being pervasive throughout multiple 
genomic regions. Our results may also reflect the expectation that 
locally adapted traits often are polygenic and governed by loci that 
individually exhibit low effect that are difficult to detect statistically 
(Savolainen et al., 2015).

A strength of our sampling design is that it represents a paired‐
gradient design, in the sense that it allowed for an assessment of 
whether the same loci were associated with climatic gradients 
across presumably allopatric population clusters. Although several 
loci showed consistent relationships with environmental variables, 
there were also several cases where relationships were evident 
within only one or two population clusters. This was exemplified by 
the locus showing maximal association with salinity. Here, both the 
Scandinavian and the European mainland population clusters, which 
co‐habit the North Sea–Baltic Sea salinity gradient, were found to 
display increasing allele frequencies with decreasing salinity, al‐
though variance among populations was pronounced. For the same 
locus, allele frequencies also varied greatly across the British popu‐
lations that invariantly inhabit rivers, which drain into high‐salinity 
coastal environments. This result could indicate that salinity condi‐
tions, rather than demography alone, drive dynamics in that locus 
in Scandinavian and European mainland populations, and that neu‐
tral, or at least dissimilar, dynamics drive allele frequencies in British 
populations. The application of composite environmental variables 
in the GEA models, rather than examining single, in several cases 
inter‐correlated variables individually may have obscured identifi‐
cation of strong relationships between specific variables and SNPs. 
However, in the present context association between environments 
and genomic regions suggests that adaptation to local environments 
may be complex but is pervasive across populations.

4.5 | Genetic management of brown trout

Although genomic analysis and identification of adaptive variation is 
not a requirement for conservation per se (Flanagan, Forester, Latch, 
Aitken, & Hoban, 2018), our results have direct management impli‐
cations. First, our results can be applied to define conservation units 
and to prioritize management actions (Funk, McKay, Hohenlohe, 
& Allendorf, 2012; also see discussion in Mee, Bernatchez, Reist, 
Rogers, & Taylor, 2015). Specifically in salmonids, supplementary 
stocking has been a popular management tool to mitigate dwin‐
dling populations in the face of habitat deterioration and fisheries 

exploitation. A substantial body of literature has addressed po‐
tential genetic effects of stocking non‐native genetic material into 
wild populations (Laikre, Schwartz, Waples, & Ryman, 2010) where 
effects on population fitness are mainly expected to be negative 
(Edmands, 2007). Our SNP data represent a valuable genomic re‐
source for assessment and monitoring of introgression in local popu‐
lations (Glover et al., 2013; Vera et al., 2018) and as a tool to design 
experimental tests of fitness effects of introgression (Hagen et al., 
2019). A practical advantage of our SNP array approach, in com‐
parison with, for example RAD and other genotyping‐by‐sequenc‐
ing‐based approaches (Andrews, Good, Miller, Luikart, & Hohenlohe, 
2016), is that our markers are directly transferrable between geno‐
typing platforms and that information can be used to tailor analyses 
addressing specific management objectives. To maximize the ef‐
ficiency of conservation efforts, there is increasing effort to tailor 
releases by using the genetically most suitable stocking material 
(Caudron, Champigneulle, Guyomard, & Largiader, 2011). Genomic 
coverage was relatively low in our study, and the knowledge gained 
here is unlikely to fully reflect functionally significant differentiation 
within and among populations. It is therefore possible that some of 
the populations exhibiting no genetic differentiation in fact are lo‐
cally adapted. Moreover, our sampling design was not equally com‐
prehensive across all geographical regions. Although our study thus 
has shortcomings, it nonetheless provides essential information on 
the geographical distribution of populations more likely to share 
evolutionary histories that would allow for successful reintroduc‐
tions, where needed. We identified geographical regions exhibit‐
ing overall weak genetic differentiation among neighbouring rivers, 
as, for example, was the case for several Swedish Skagerrak rivers. 
Where human‐mediated gene flow can be discounted, genetically 
similar populations are inferred to also display stronger demographic 
connectivity. Results could indicate that population dynamics can 
be described in a meta‐population context, where demographic 
stability may be dependent on regional, rather than local processes 
(Østergaard, Hansen, Loeschcke, & Nielsen, 2003). Especially in 
systems consisting of small, temporally unpredictable streams (in 
terms of discharge), straying between neighbouring rivers might be a 
strategy that has been favoured by natural selection. Conversely, in 
a number of cases, river populations within a relatively constrained 
geographical area exhibited marked genetic divergence, suggestive 
of selection against interbreeding. In such cases, restocking activities 
should refrain from mixing gene pools, which could result in intro‐
gression and outbreeding depression. Although extensive genomic 
and experimental analyses are required to predict the suitability of 
directed releases of specific non‐native strains, most applied conser‐
vation work relies on the establishment of practical guidelines that 
do not require detailed case‐by‐case study. An applied conservation 
guideline adhered to in Denmark is that restocking material should 
represent fish of the genetically closest related population and from 
the geographically closest population if that information is not avail‐
able (Berg & Hansen, 1998). Governance of salmonid stocking var‐
ies strongly among north‐east Atlantic legislative units, and there 
is a call for increased attention to halt unsustainable management 
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practises (Aas et al., 2018). Our results serve as a tool that can be 
directly implemented in outlining conservation units and to advice 
on the geographical distribution of genetic populations that can be 
expected to be suitable for preserving adaptive state, for example 
under local restocking activities.
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