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Abstract

In this paper, we present an automatic motion planner for agricultural robots that allows

us to set up a robot to follow rows without having to explicitly enter waypoints. In most

cases, when robots are used to cover large agricultural areas, they will need waypoints as

inputs, either as premeasured coordinates in an outdoor environment, or as positions in a

map in an indoor environment. This can be a tedious process as several hundreds or even

thousands of waypoints will be needed for large farms. In particular, we find that in

unstructured environments such as the ones found on farms, the need for waypoints

increases. In this paper, we present an approach that enables robots to safely traverse

not only between straight rows but also through curved rows without the need for any

predetermined waypoints. Most types of infrastructure found in agriculture, such as

polytunnels, are built on uneven terrain, thus containing a mix of straight and curved

plant rows, for which traditional methods of row following will fail. Different from

traditional approaches of row following that only consider straight‐line‐of‐sight rows, our
approach identifies the rows on each side with the goal of staying in the middle of the

rows, even if the rows are not straight. Waypoints are only needed on the very extreme

of the rows, and these will be automatically generated by the system. With our approach,

the robot can just be placed in the corner of the field and will then determine the

trajectory without further input from the user. We thus obtain an approach that can

reduce the installation time from potentially hours to just a matter of minutes. The final

autonomous system is low cost and efficient for various tasks that requires moving

between plant rows inside a polytunnel. Several experiments were performed and the

robot demonstrates 1.4% position drift over 21m of navigation path.
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1 | INTRODUCTION

In this paper, we address the problem of autonomous row following for

an agricultural robot in a tightly constrained space such as polytunnels.
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This study is part of a larger project,1 in which we develop agricultural

robots to automate food production (Grimstad & From, 2017a, 2017b;

Grimstad, Pham, Phan, & From, 2015). The Thorvald II robot has been

used for different purposes in food production such as phenotyping

(Grimstad, Skattum, Solberg, Loureiro, & From, 2017) and strawberry

picking (Xiong, From, & Isler, 2018). The Thorvald II robot is a highly

versatile robot due to its unique modular design.2 The robot for example

can be retrofitted to carry UV light bulbs for UV light treatment tasks, as

shown in Figure 1. Currently, the model robot has been actively used at a

cucumber greenhouse to provide UV light treatment (Grimstad, Zakaria,

Le, & From, 2018), in addition to strawberry polytunnels.

In this paper, we address the problem of autonomous navigation in

commonly found agricultural domains such as polytunnels or green-

houses. A polytunnel/greenhouse is a structured agricultural environ-

ment, where plants are grown in trays, which are organized as rows on

top of several poles along the polytunnel. The rows are evenly spaced and

spanned across the polytunnel and create a tightly constrained

environment. For polytunnel‐related tasks, the robot is usually required

to navigate between plant rows. In a tightly constrained space such as

polytunnels, curved rows make navigation more challenging.

We specifically aim to develop a low‐cost and efficient

autonomous system that is able to traverse through a polytunnel

while performing assigned tasks without human intervention. The

robot is equipped only with a planar laser scanner. The 2D laser

scanner exploits the structured environment to provide navigation

cues for the robot. To move along a row, a carefully designed

RANSAC algorithm (Fischler & Bolles, 1987) is used to filter laser

scans and reliably detect two parallel straight lines, which represent a

part of the plant row on both sides of the robot. Note that a row

comprises of several straight lines locally, which together form a

curved row. A pure pursuit controller is implemented to make the

robot follow the row. When the laser scanner cannot detect any

parallel lines, the robot assumes it has reached the end of a row. It

then switches to row transition mode to turn and enter the next row.

The proposed navigation method has been tested in both simulations

and in a mock‐up polytunnel.

The main contribution of this paper is a novel autonomous navigation

system that allows the robot to operate freely in a polytunnel. It is a low‐
cost and efficient system using only one type of sensor, a planar laser

scanner. Even though row‐following methods have been proposed in

earlier work (Åstrand & Baerveldt, 2005; Bakker et al., 2008; Bergerman

et al., 2015; Biber, Weiss, Dorna, & Albert, 2012; Hiremath, van Evert,

van der Heijden, ter Braak, & Stein, 2012; Moorehead, Wellington,

Gilmore, & Vallespi, 2012; Subramanian, Burks, & Arroyo, 2006; Zhang,

Chambers, Maeta, Bergerman, & Singh, 2013), they might not be suitable

for challenging constrained environments such as polytunnels.

This paper is organized as follows. In Section 2, related works are

discussed. Section 3 provides details about the system including line

detection and navigation. Simulated and experimental results are

presented in Section 4. Conclusions are discussed in Section 5.

2 | RELATED WORK

Autonomous navigation systems are popular research areas, not

limited to any particular fields or type of robots. Most systems, for

example, Stoll and Kutzbach (2012), Cariou, Lenain, Thuilot, and

Berducat (2009), and Biber et al. (2000), depend on several types of

sensors such as inertial measurement units (IMU), high‐precision RTK

GNSS, 3D lidar, and so forth. Systems with high‐precision RTK GNSS

sensor navigate well only in open environments. Its performance will

suffer inside a polytunnel because GNSS signals may be blocked.

Inclusion of IMU will help with localization. Admittedly, fusion of

multiple sensor types might yield better results in navigation;

however, it also incurs a higher budget to the end users. Hence, in

this study, we aim to develop a low‐cost and efficient system.

There has been a lot of research on autonomous systems in

agricultural applications, such as Bergerman, Singh, and Hamner

(2012), Reid (2011), and Ting, Abdelzaher, Alleyne, and Rodriguez

(2011) to name a few. Among those, autonomous row following has

attracted interest (Åstrand & Baerveldt, 2005; Bakker et al., 2008;

Bergerman et al., 2015; Biber et al., 2012; Hiremath et al., 2012;

Moorehead et al., 2012; Subramanian et al., 2006). In Bakker et al.

(2008) and Åstrand and Baerveldt (2008), even though the authors

also develop autonomous systems for navigating between rows, they

rely on cameras to perform a Hough transform for row detection. In

Hiremath et al. (2012), a different method based on a particle filter to

extract lines from images is proposed to detect row lines. The usage

of computer vision for robotic applications has a long history. The

main drawback for camera‐based navigation systems is that they are

totally dependent on lighting conditions. For example, UV light

treatment needs to be carried out in a dark environment so that the

effect of UV radiation is not nullified by sunlight or any other white

light sources. In that situation, camera‐based navigation fails. Hence,

F IGURE 1 A design model of the Thorvald robot carrying ultarviolet
light bulbs [Color figure can be viewed at wileyonlinelibrary.com]

1https://rasberryproject.com/

2https://sagarobotics.com/
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a laser‐based sensor is the most suitable candidate for navigation

because it is independent of lighting conditions.

Navigation with 2D planar scanners has been a research topic for

the last decades. One of the most extensively used solutions for

autonomous navigation for ground mobile robots is move_base, a

package that is implemented in robot operating system (ROS).3 In

order for the robot to move, one must provide a goal for the robot to

reach. Topological navigation (Lázaro, Grisetti, Iocchi, Fentanes, &

Hanheide, 2017) is one way to automatically generate goal points for

the robot. However, the process to produce a topological map, which

contains all the necessary goal points, is tedious and time‐consuming

because one must manually add all the goal points. Given the fact

that a typical polytunnel is 60–120 by 9m, the total number of goal

points can be easily in the hundreds, which makes topological

navigation unsuitable for the task (Figure 2).

Our proposed solution, on the other hand, does not rely on any a

priori goal points. By detecting the two parallel lines in front of the laser

scan, the robot follows the path between those lines. When it reaches the

end of that path, it will continue to detect another set of parallel lines in

front of it to follow. In case it cannot detect any more lines, the robot will

try to determine whether it is possible to transit to the next row. First,

the robot detects the number of poles currently in the field of view of the

scanner. If the number of poles are more than two, the robot will go into

transition mode, which makes it enter the next row. If the number of

detected poles are less than two, the robot will stop moving because it

has already reached the end of the polytunnel. With this solution, the

robot can automatically traverse between all the rows inside a

polytunnels, for example, to deliver a UV light treatment. The desired

number of rows to traverse can also be predefined for the robot, so that

the robot will cover only a specific area of a polytunnel.

We found that the work in Subramanian et al. (2006), Bergerman

et al. (2015), and Riggio, Fantuzzi, and Secchi (2018) is similar to ours.

Subramanian et al. (2006) also use a 2D laser scanner in combination with

a camera for row following in a citrus grove. However, a challenging

tightly space constrained condition like a polytunnel does not apply to

their environment. Bergerman et al. (2015) also use 2D laser scanner to

navigate in rows in tree fruit orchards but required reflective landmarks

for row transition, which we do not. Similar to Subramanian et al. (2006),

the robot in Bergerman et al. (2015) does not have to deal with tightly

space constrained environment. In Zhang et al. (2013), the authors

employ a spinning 2D laser scanner to detect 3D positions of tree rows

and tree trunks in orchards for row following. The spinning 2D laser

scanner generates 3D point cloud for registration. In comparison, a tree

trunk is much bigger than a steel pole used in a polytunnel. Hence, 3D

detection might not detect poles. Furthermore, like previously mentioned

methods, orchards environment is not tightly space constraint as

polytunnels. In Riggio et al. (2018), the authors developed a similar

low‐cost system of row following using only a 2D laser scanner but did

not explicitly address the problem of following curved rows.

3 | NAVIGATION INSIDE A POLYTUNNEL

To navigate inside a polytunnel, the robot must be able to

localize itself inside a given environment. We used adaptive Monte‐
Carlo localization (AMCL)4 (Thrun, 2002), the de facto SLAM method for

2D laser scanner without further development. The navigation strategy

for the robot inside a polytunnel is as follows. The robot is positioned in

front of a row. The robot can only see the poles, and not the tables placed

on the top of the poles or the plants. By detecting virtual lines between

poles, the robot traverses plant rows by following the central path

between them. When the robot reaches the end of a row, for example, it

cannot detect any more lines, the transition row module is activated to

get the robot to the next row. The navigation system as in Figure 3

comprises of row following and row transition module that can operate

seamlessly in and out of the polytunnel rows. The robot localizes itself

relative to poles using a prebuilt map. The laser scanner will monitor

consistently for the static or the dynamic obstacle in front of the robot

and make an emergency stop if an obstacle is detected within the

boundary region. The robot will remain stopped until the detected

obstacle is moved by itself or by the nearby worker since there is not an

adequate area for avoiding them.

F IGURE 2 A polytunnel for growing

strawberry in Norway [Color figure can be
viewed at wileyonlinelibrary.com]

3http://wiki.ros.org/move/_base 4http://wiki.ros.org/amcl
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3.1 | Line detection and following

The laser scanner can detect the poles that are aligned along every

polytunnel’s rows. This section of poles can be coupled together as virtual

lines so the robot can navigate by following the generated trajectory

between them as illustrated in Figure 4. A RANSAC algorithm (Tarsha‐
Kurdi, Landes, & Grussenmeyer, 2007) is implemented to fit a pair of

poles as individual line features ln. Unlike the solid walls, the laser scanner

observes the poles in the polytunnels as a cluster of points at equal

distant from each other. This scenario makes it challenging for the line

detection algorithm and consequently, a bounding box is established with

a designated boundary region R of length 6m and width 2m in size

(Figure 5b). The designated search boundary region R is constructed for

the sake of eliminating the scan points from another rows as best line fits.

From the laser scanner data, a data set a a a a a a a, , , , , ,t
n

x y x y x
n

y
n1 1 2 2

t t t t t t= [ … ]

is generated which contains the x and y axis positions of n number of scan

points that are extracted from the laser scan range and bearing values

within the boundary region R.

To execute the line detection algorithm, let us suppose that the line

model Lt can be expressed as a function f St( ) which depends on

randomly generated subset of points in St taken from the set at
n as

L f S ,t t= ( ) (1)

where S p p p p a, , ,t x y x y t
n1 1 2 2

t t t t= [ ] ⊆ comprises the position of the two

randomly generated points p1 and p2 from the set at
n at time t ,

respectively. The function f St( ) computes the model line parameters

such as slope mt and y‐intercept bt based on the two randomly

selected points p x y,
1

t t( ) and p x y,
2

t t( ) is given by

m
p p

p p

b p m p

,

.

t
y y

x x

t y t x

2 1

2 1

1 1

t t

t t

t t

=
−
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= −

(2)

When the line model parameters are computed, let E L a,t t
n( ) be

the objective function constructed using the least squares method

for line fitting (York, 1966). The objective function E L a,t t
n( )

proclaims the sum of all the residual values for each point belonging

to the set at
n with respect to the estimated line model Lt . Therefore

minimizing the objective function E L a,t t
n( ) will eventually minimize

the residual values so that the estimated line will be close enough to

most of the points from set at
n. The optimal set of line model

parameters mt and bt are need to be found as per least squares

method for minimizing the residuals. Hence the objective function

minimizing the sum of the the squared normal distances from each

point takes on the form:

E L a a m a b, .t t
n

p

n

y
p

t x
p

t
1

2
t t∑( ) = ∥( − − )∥

=

(3)

The standard RANSAC algorithm has few parameters defined

beforehand as preconditions that are suitable for the polytunnel

environment. For minimizing the objective function E L a,t t
n( ), a

F IGURE 3 Modules of navigation

F IGURE 4 The proposed line detection
algorithm identifies two lines (blue) from
the laser scanner points using a Hokuyo

laser which is mounted on the robot. The
standard RANSAC algorithm is used for
line extractions. The robot detects only

two poles on each side [Color figure can be
viewed at wileyonlinelibrary.com]
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threshold parameter d is introduced which represents the threshold

distance from the two chosen random points for fitting the

remaining scan points as inliers (see Figure 5a). The parameter k

describes the total iterations required to determine the best

line fit and therefore it will keep updating the best line fit if the

better line feature with more inliers are found for the entire kth

number of iterations. The parameter inliersmin represents the

minimum number of inliers to be necessitated for finalizing the

estimated line as a best line model. The RANSAC estimates the line

after the predefined conditions are satisfied. Thus the parameters for

the preconditions are tuned in such a way that it fits the parametric

line model given as

E L a d

d k

, ,

where 0.05 m , 100, inliers 10.
t t

n

min

( ) ≤

= ( ) = =
(4)

The RANSAC will run twice such that after satisfying the parameters

in the preconditions, two best line fits will be estimated. Thus the points

from the set St are incorporated as line features l1 and l2. For the sake of

simplicity, we do not include time t in the line feature equations. As soon

as the RANSAC algorithm identifies the lines l l l l l, , ,x y x y
1 1 1 1 1

1 1 2 2= [ ] and

l l l l l, , ,x y x y
2 2 2 2 2

1 1 2 2= [ ] by satisfying the predefined conditions, some

additional constraints are considered to avoid multiple detections,

overlaps, and other false positives (see Figure 6). The false detections

are ignored. If no pair of lines is detected, the algorithm uses the previous

detections until the new set of lines appears.

These constraints aid in fitting the best line features for the entire

navigation system. The first constraint is the minimum distance between

the end‐points p p,x y x y,
1

,
2

t t t t( )( ) ( ) for each of the two detected lines l l,t t
1 2( )

that has to be always more than the threshold value τ as in Equation (5).

This particular constraint avoids the possibility of detecting the incorrect

best line fit when more inliers are stacked up together at one place (the

black circled area in Figure 6a) and it is expressed as

l l l l

l l l l

,

.

x x y y

x x y y

1 1
2

1 1
2

2 2
2

2 2
2

1 2 1 2

1 2 1 2

τ

τ

( − ) + ( − ) >

( − ) + ( − ) >
(5)

While traversing through the inclined shaped rows, the robot can

also find the line features diagonally between two parallel rows as

the best line fit at the same time (Figure 6b). For avoiding this

situation, the constraint based on the angle between two end‐points
of the detected line is introduced. This angle is presumed to be less

than Φ which is assigned as 15° at maximum so that it can still detect

the curved shaped poles but it can also avoid finding cross line

detections at the same time. The second constraint can be written as

l l

l l

l l

l l

arctan ,

arctan .

y y

x x

y y

x x

1 1

1 1

2 2

2 2

2 1

2 1

2 1

2 1

−

−
< Φ

−

−
< Φ

(6)

There is another possibility of false detection in which the RANSAC

could detect the already chosen best line fit as second best line fit again

(see Figure 6c) because the line detection will keep finding the two best

line fit l1 and l2 at time t and this case will also satisfy the first and second

constraints as well. Therefore the third constraint is proposed as

l l l l l l l l .x x y y x x y y
1 2 1 2 1 2 1 2

1 1 1 1 2 2 2 2≠ ≠ ≠ ≠ (7)

This added constraint as given in Equation (7) will avoid the situation

where both the detected lines do not overlap each other. If the

overlapping is detected using this constraint, then this pair of lines from

the concerned iteration in RANSAC is rejected. After fulfilling all the

three proposed constraints, the two lines lt
1 and lt

2 will be extracted on

both sides of the robot to navigate between them. The desired trajectory

has been derived as an average of the two estimated lines as in Figure 5b.

Once the desired trajectory has been estimated, a low‐level controller is

F IGURE 5 Row‐following module: Line detection methodology. (a) Two randomly selected laser points (green) classifies the remaining laser points

within d limits as inliers (red). (b) Detected pair of lines (blue) and desired path (red) within the bounding box region (white) [Color figure can be viewed
at wileyonlinelibrary.com]
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used for sending the necessary velocities as joint commands. The linear

velocityVt is constant and it moves at 0.3m/s for safety reasons. To steer

the robot, a low‐level pure pursuit controller (Coulter, 1992) is used to

calculate the respective steering velocity tω for following the center line

based on two estimated lines lt
1 and lt

2 by the line detection algorithm as in

Figure 5. The steering velocity tω equation is written as

R
e

e
arctan 2

sin
t l

x y,

t

t t

ω
θ

⎜ ⎟= ⎛

⎝

⎞

⎠( )

(8)

where R e e, ,l x y,t t tθ ( ) are the total length of the robot, errors along its

rotation angle and its position with respect to the current goal at the

time t respectively.

F IGURE 6 False cases of line detection. (a) False line detections covering not more than one pole (black circled); (b) cross line detections; (c)
overlaps in line detections [Color figure can be viewed at wileyonlinelibrary.com]
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3.2 | Row transition

Once the row‐following module could not detect any more new lines,

the robot will navigate till the end of the current desired trajectory

using the last pair of detected lines. When it reaches the end of the

current desired trajectory, it shifts autonomously to the row

transition module. The operation of the row transition comes to an

end when the robot progressed to the beginning of the next row and

switches back to the row‐following module.

In this module, the pole detection algorithm identifies the closest

three poles which comprises of two poles on one side and another one

pole on the other side of the robot based on its next course of direction.

For instance, if the robot needs to transit to the new row on the right‐
hand side then the pole detection algorithm will give the pair of closest

poles on right‐hand side (Figure 7b) and one pole on the left‐hand side

or vice versa for the turning to the next row on the left‐hand side

condition. Thus the virtual goal points are generated by taking the

average between the three detected poles and adding a constant offset

to it as seen in Figure 7. Then the pure pursuit controller is designed in

such a way that it will navigate the robot to the first virtual goal point

from the current row and makes a 90° turn around that first goal point.

Furthermore, it repeats the same process for the second virtual goal

point (Figure 7a) to shift into the new row. Therefore the course of the

turning direction should be given beforehand such that the robot can

navigate any polytunnels which has a larger number of rows. Moreover,

the row transition module brings the integration with the row‐following
module and makes a complete autonomous navigation system

exclusively for polytunnels like environments. The pseudocode (Algo-

rithm 1) exhibits the integration of both the navigation modules for both

the straight and curved shaped polytunnels.

4 | EXPERIMENTAL RESULTS

4.1 | Simulations

The proposed method is verified in simulation and field trials. We

show that our system can move along rows efficiently. We also

discuss how our system can be extended to different environments,

such as polytunnels that hang plant trays instead of using poles.

The simulated environment (Figure 8) is created using Gazebo to

mimic the real polytunnel environment. It consists of a plane ground and

several sets of cylinders with plant trays on top. The spacing between

each set of cylinders can be modified to match reality.

In this environment, the robot is tasked to traverse all the rows, while

in reality, it might not have to do so due to the requirement of UV light

treatment, for example, not every row requires UV light treatment. In

the simulated environment, the robot is fixed at an initial known

position in front of one of the rows. The row‐following module in the

navigation system begins traversing through the initial row that it

perceives first in the environment. The robot can find the curved shaped

rows and extract the trajectory lines by the line detection technique at

every time step t . Then, the robot can steer in both clockwise and

counter‐clockwise directions and can revert back to straight row

following with the lesser amount of steering as shown in Figures 910.

The pure pursuit controller in both the row‐following module and

the row‐transition module assist the robot to steer between and

outside the rows of the polytunnels. The error in the graph indicates

the angular difference between the current robot position and

current dynamic goal position that the controller should correct at

each time step t . The controller maintains the required steering angle

error to be less than 0.15 radians in row‐following and 0.01 radians in

row‐transition modules. They can maintain the error close to zero as

shown in Figure 9 throughout the entire trajectory. The steering

error increases whenever the robot needs to traverse through

curved areas in the rows but it reduces again over time. In the row

transition module, the controller makes the robot move along the

two virtual goal points with the given steering commands and transit

to the beginning of the next row.

4.2 | Navigating in a mock‐up polytunnel

The robot used in the field test is shown in Figure 13. We

constructed a mock‐up polytunnel, which is 24 m long by 9 m

F IGURE 7 Row‐transition module: Row‐transition methodology. (a) Robot assigned to reach goal points (G1, G2) and make (+/–) 90° turn
around the goal points for transiting into new row. (b) Poles at end of the row (blue) are detected and generate goal points (green) by implying

an offset to it [Color figure can be viewed at wileyonlinelibrary.com]
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wide. The mock‐up polytunnel has 32 poles, which create three

long rows. We deliberately added constant displacements to 12

middle poles (inside the square) as shown in Figure 12a. In Figure

12, we show how the robot detects parallel lines and moves in the

center of a row. The curved lines are detected and shown on

Figure 12d–g. Transition points (two green circles) are shown in

Figure 12i. They are automatically computed when the robot

reaches the end of the row and detects three poles (blue circles)

in front of it. The whole trajectory is shown in Figure 12j.

The robot is tasked to traverse through every row. We evaluate

the robot navigation quality by two metrics, including displacement

to centering lines and distances to poles on both sides of the robot.

We explain these metrics in details next.

(a) Translation error: All the poles’ positions are carefully measured

using a Leica Total Station TCA1100 with distance measurement

accuracy ±1mm. These measurements are for computing virtual

centering line segments on each row, which are considered ground

truth. We evaluate the quality of navigation by calculating the deviation

of the actual trajectory from the ground truth. For each segment of a

row, we first compute the Euclidean distance of each robot position

measured by the Leica to the ground truth. The average of these

distances is considered as the robot translation error on that segment.

For the whole row, we again average all the translation errors of all

segments. The reason we choose this metric is that it provides insight

into how the robot performs on each segment of a row.

(b) Distance to poles error: We measure the distances from the

center of the robot body to the poles on both of its sides when passing

them. The distance from the robot body center to each pole on the left

and right sides of the robot are taken by a laser measurement Uni‐T
UT390B+ with ±2mm accuracy. These measurements are used to

evaluate how well the robot stays in‐between poles.

We collect our metric measurements by letting the robot run

autonomously through the mock‐up tunnel 10 times. The final result

is averaged over these 10 trials.

The result of ground truth comparison is shown in Figure 14. The

ground truth trajectory (blue line) consists of line segments

representing the ideal trajectory that stays exactly in the middle of

rows. The translation errors are shown in Table 1. We ignore the

robot trajectory that is outside rows. Given the average path of each

F IGURE 9 Steering controller error in simulated polytunnel.
Steering errors when the robot follows rows are shown in blue.
Steering errors when the robot changes rows are shown in red. Best

view in color [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 8 Experiments in simulated environments. (a) Curved poles environment in gazebo; (b) two‐dimensional map of polytunnel
environment [Color figure can be viewed at wileyonlinelibrary.com]

8 | LE ET AL.



row is 21m, the maximum mean error is only 29.3 cm, which yields a

relative small 1.4% drift over a traveled distance.

In Table 2, the results of staying in‐between poles are presented.

The distance between two poles on each side of a robot is 1.5m. The

robot width is 1m. It means the robot needs to stay at least 25 cm away

from poles on each side. The maximum mean distance to poles on the

right side is approximately 25.1 cm, and to the left side is 28.2 cm. This

shows that the closest distances the robot gets to a left and a right pole

are approximately 24.9 and 22.8 cm, respectively, which are well within

the ideal safety distance. Also, the maximum difference between the

mean distances on both sides of the robot is 8.9 cm. It shows that the

robot well maintains its position at the center along rows by keeping the

same distances to poles on both sides of a row.

The pure pursuit controller in field tests behaves in a similar way

to the simulation. Unlike the simulated environment, the poles are

not aligned perfectly straight with respect to each other in real fields.

The lines that are detected from line detection algorithm are not

exactly straight as well; hence the steering error in the real‐field tests

is higher than the one in the simulation. As in Figure 11, the curved

areas are evident in which the steering error peaks in each row along

the mock‐up polytunnel. In the row transition module, the steering

error is kept to a low value even in the uneven terrain that are similar

to simulations (Figures 12–14).

We also compare our proposed method with Krajník et al. (2014a).

The topological navigation approach proposed in Krajník et al. (2014a) is

currently being used in our RASBerry project.5 To use topological

navigation, one needs to manually create topological nodes that connect

each other to form a topological map as shown in Figure 15. Given a

topological map, the robot can move from one arbitrary node to another.

This method relies on AMCL for localization, which is similar to ours.

We run 10 trial tests and collect the same metric measurements

for comparison. The final result of topological navigation is averaged

over 10 runs and shown in Tables 1 and 2 altogether with our

proposed system for comparison. Bold numbers indicate better results.

Our method on average achieves better result in both metrics.

We also note that the topological navigation requires creating

topological nodes, which must be done manually and therefore

unsuitable for a large polytunnel. This is one of the motivations of

our proposed method. One might argue that a sparse topological map

would be easier to make. However, we found that in practice, a tightly

constrained space requires a dense topological map for the robot to

travel safely. In addition, by relying on a cost map for planning, the

robot is prone to make dangerous path planning such as in Figure 16,

whereas our method does not. Furthermore, the use of cost mapmakes

the system more sensitive to faulty reading from sensor. As shown in

Figure 16, an artificial obstacle due to noisy laser scanner was added

to the cost map and forced the robot to move out of the row. This is a

dangerous behavior. The robot is likely to collide with other poles

because there is not enough space for rotation. Hence, we claim that

our proposed system is better suited for polytunnel environment.

A video of the robot moving in the mock‐up polytunnel is

available online: https://youtu.be/xkSpEkcBXaU.

F IGURE 10 Snapshots of the robot movement in simulation. (a) Clockwise turning movement; (b) anticlockwise turning movement; (c)
return to straight‐line movement [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 11 Steering controller error in mock‐up polytunnel.
Steering errors when the robot follows rows are shown in blue.

Steering errors when the robot changes rows are shown in red. Best
view in color [Color figure can be viewed at wileyonlinelibrary.com]

5https://rasberryproject.com/
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4.3 | Discussion

One key aspect of our system is low cost. However, we have shown

that autonomous navigation in tightly constrained agricultural

domains such as polytunnels can be carried out efficiently. Our

system works well in the challenging environment of polytunnels,

where features for laser scanner detection are sparse. Our system

can be easily adapted to different types of polytunnels without much

F IGURE 12 Results of autonomous navigation between rows in a mock‐up polytunnel. Blues lines are virtual lines between detected poles. Red
lines are the central paths between rows. Yellow line is the complete actual trajectory [Color figure can be viewed at wileyonlinelibrary.com]
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effort. For example, plant trays might be hanged using cables instead

of sitting on poles. In this case, if those cables are smalls and cannot

be reliably detected by the laser scanner, we can adjust to mount the

laser scanner to directly detect the trays. Our system can continue to

work normally without any further changes. The line detection will be

easier since laser scanner detects more points from trays.

Another practical consideration is how to determine the window

size for pole detection. In our implementation, the window size is

fixed and its value is set upon the applied standard polytunnel

structure, that is, the distance between two consecutive poles in a

row is approximately 3m, the row width is 1.5 m. These values can be

preset once with respect to the actual environment before letting the

robot move. It might sound preferable to have an automatically

adaptive window size, but in fact, we rarely see a polytunnel with

different spacing between poles. For most cases, polytunnels are

built in compliance with a standard, for which we argue that a

corresponding fixed size window is adequate.

It is obvious that our system makes strong assumptions about the

environment such as the distance between poles is constant, number

of poles on each side of a row is equal. Our proposed system may fail

to operate if those assumptions are not satisfied. However, we argue

that those assumptions are reasonable, that is, it is uncommon to find

a polytunnel with asymmetrical structure. Therefore our proposed

system is useful for most cases.

5 | CONCLUSIONS

In this paper, a simple but efficient navigation solution of row

following for an agricultural robot is presented. Our main goal is to

develop an efficient but also cost effective system that can work

reliably in polytunnels, which are the typical space constrained

agricultural environment. We deliberately employ one 2D laser

scanner. Using only this type of sensor, the robot is able to move

between rows while keeping equidistant to both sides of a row. We

claim this is important for several tasks, in which the robot must stay

in the middle of a row, such as delivering UV light treatment, or

autonomous transporting harvested products in and out of a

polytunnel.

Experimental testing in both simulation and a mock‐up polytunnel

were performed to evaluate the quality of navigation. The results

show a small drift of 1.4% over total traveled distance per row and

the robot maintains the same distance to poles on both sides. We

F IGURE 13 Robot setup, a 2D Hokuyo laser scanner UST‐20 LX
is mounted in front of the robot as shown in the highlight area [Color
figure can be viewed at wileyonlinelibrary.com]

F IGURE 14 Qualitative analysis of trajectories [Color figure can

be viewed at wileyonlinelibrary.com]

TABLE 2 Mean errors of distance from the center of the robot
body to poles on both sides

Distance to poles (m)

To left poles dℓ To right poles dr d dr−ℓ∣∣ ∣∣

Ours

Krajník

et al.
(2014a) Ours

Krajník

et al.
(2014a) Ours

Krajník

et al.
(2014a)

Row 1 0.257 0.272 0.226 0.215 0.031 0.057

Row 2 0.282 0.214 0.193 0.257 0.089 0.043

Row 3 0.235 0.321 0.251 0.147 0.016 0.174

Note: Bold numbers indicate best results.

TABLE 1 Translation errors per row

Translation errors (m)

Minimum Average Maximum

Ours

Krajník
et al.

(2014a) Ours

Krajník
et al.

(2014a) Ours

Krajník
et al.

(2014a)

Row 1 0.052 0.024 0.117 0.128 0.165 0.169

Row 2 0.101 0.101 0.213 0.187 0.293 0.292

Row 3 0.063 0.131 0.154 0.237 0.203 0.386

Note: Bold numbers indicate best results.
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compare our proposed row‐following method with an existing one in

Krajník et al. (2014a). We show that our method achieves better

results.

We have discussed how our system can be easily adapted to

different types of polytunnels. In rare cases, where the structure of

a polytunnel is irregular, that is, distances between poles are

different, number of poles on each side of a row are not equal, our

system will fail. However, it is unusual to have a structure like

that. Our proposed solution replaces the traditional and other way

point based methods such as topological navigation (Krajník et al.,

2014b) and thus simplifies the robot operation process. For future

work, we aim to develop a full‐scale SLAM‐based navigation system.

More navigation and safety sensors will also be used on the robot

for the human aware navigation in the future that can cooperate

along human laborers and also in respect to the safety standards in

the polytunnels.
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