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Abstract

When electromagnetic radiation interacts with objects of the same wavelength
as the radiation, the objects can act as resonators and strong scattering effects
appear. The goal of this PhD project has been to understand better scattering
effects and resonances in small particles and their relation to absorption properties.
The thesis considers two application areas, namely (i) absorption efficiency of
optically thin solar cells and (ii) absorption spectra from infrared microspectrocopy
of biological cells and tissues. These two application areas consider two different
wavelength regions, the visible light and the infrared radiation. However, since the
illuminated objects are of the same size as the wavelengths for both applications,
similar phenomena are present and the same approaches can be used to obtain a
better understanding of the underlying mechanisms.

In the field of optically thin solar cells, nano-structured surfaces are used to en-
hance absorption properties in the absorptive layers. Different mechanisms have
been explained in the literature for explaining the rationale behind the enhance-
ment effects. The thesis uses ray models to obtain a deeper understanding of
enhancement of absorption in the scattering of electromagnetic radiation at small
particles. An exact ray theory was developed by use of a semi-classical theory
to connect ray dynamics to the appearance of resonances. By carefully attach-
ing phases to infinitely many rays, the reflection, transmission and absorption
properties could be described exactly. The attached phases ensure that the wave
nature of light, the resonance structure, is described. The ray model was validated
against exact electromagnetic theory and by measured data of a film of SiNx. The
resonances in thin films were further investigated for layered systems. The study
shows how resonances in the absorptive layers increase the amount of absorbed
radiation in a thin film. By structuring these absorptive films, i.e. by attaching
non-absorptive films to it, it was shown that a resonance in the non-absorptive
film increases absorption as well.

In infrared microscopy of biological cells and tissues, scattering hinders the inter-
pretation of chemical absorbance in measured spectra. The spectroscopist is at a
loss to decide if radiation was lost due to scattering or due to absorption by the
sample. Thus, the interpretation of band ratios referring to different chemical con-
stituents can be biased. Since in the case of infrared microscopy, biological cells are
at the same size as the wavelengths employed. Therefore the same scattering phe-
nomena and resonant structures appears as in light scattering at nano-structured
solar cells. In the case of spherical or quasi-spherical objects such as biological
cells, the scattering is the so-called Mie-type scattering. Advanced methods have
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been developed to retrieve the pure absorbance spectra from these measured spec-
tra. However, it is not clear how shape deviation from a spherical shape affects
scattering features in Mie scattering such as the so-called wiggles and ripples in
the extinction efficiency. In this thesis, the extinction efficiency of a gradually
deformed circular scatterer was evaluated. Further the scattering behavior was
investigated by classical ray dynamics. The results indicate that sample defor-
mation with chaotic scattering has an accelerating effect on the disappearance of
Mie ripples, while deformation that is connected to regular scattering removes the
ripples at a slower rate.
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Sammendrag

N̊ar elektromagnetisk str̊aling interagerer med objekter som har samme størrelse
som str̊alingens bølgelengde, kan objektene fungere som resonatorer og sterke
spredningseffekter kan oppst̊a. Målet med dette doktorgradsprosjektet har vært
å forst̊a spredningseffekter og resonanser i sm̊a partikler og hvordan de p̊avirker
absorpsjonsegenskaper. Oppgaven tar for seg to bruksomr̊ader: (i) absorpsjon
av lys i optisk tynne solceller og (ii) absorpsjon av infrarød str̊aling i mikrospek-
troskopi av biologiske celler og vev. Disse to bruksomr̊adene betrakter to ulike
bølgelengdeomr̊ader, synlig lys og infrarød str̊aling. Siden objektene har samme
størrelse som bølgelengdene for begge bruksomr̊adene, er lignende feonomener til
stede og de samme tilnærmingene kan brukes for å f̊a en bedre forst̊aelse av de
underliggende mekanismene.

For optisk tynne solceller kan nanostrukturerte overflater brukes til å forbedre ab-
sorpsjonsegenskapene i de absorberende lagene. I litteraturen har ulike mekanis-
mer blitt brukt for å forklare den økte absorpsjonen. I opgaven er det brukt
str̊alemodeller for å f̊a en dypere forst̊aelse for økt absorpsjon og spredning av
elektromagnetisk str̊aling av sm̊a partikler. En eksakt str̊aleteori ble utviklet
ved bruk av semiklassisk teori ved å koble str̊aler til eksistensen av resonanser.
Ved å tilordne faser p̊a korrekt m̊ate til uendelig mange str̊aler, kan refleksjons-,
transmisjons- og absorpsjonsegenskapene beskrives nøyaktig. Fasene sikrer at ly-
sets bølgenatur, resonansstrukturen, blir beskrevet. Str̊alemodellen ble validert
mot eksakt elektromagnetisk teori og med m̊alte data fra en SiNx-film

Resonansene i tynne filmer ble videre undersøkt. Studien viser hvordan resonanser
i de absorberende lagene øker mengden absorbert str̊aling i en tynn film. Ved å
strukturere disse absorberende filmene ved å feste ikke-absorberende filmer til den,
ble det vist at en resonans i den ikke-absorberende filmen ogs̊a øker absorpsjonen.

Ved infrarød mikrospektroskopi av biologiske celler og vev, vil spredning av den
infrarøde str̊alingen kunne føre til mistolkningen av kjemisk absorbans i m̊alte
spektre. For spektroskopisten er det usikkert om str̊alingen g̊ar tapt p̊a grunn
av spredning eller p̊a grunn av absorpsjon i prøven. Dermed kan tolkningen av
forholdene mellom absorpsjonsb̊andene, som refererer til forskjellige kjemiske be-
standdeler, være misvisende. For infrarød mikrospektroskopi er biologiske celler
i samme størrelse som bølgelengden til str̊alingen. Derfor kan de samme spred-
ningsfenomenene og resonansstrukturene som i lysspredning ved nanostrukturerte
solceller vises. N̊ar det gjelder sfæriske eller tilnærmet sfæriske objekter som biolo-
giske celler, er spredningen Mie-liknende spredning. Avanserte verktøy er utviklet
for å finne absorbansspektra fra de m̊alte spektrene. Det er imidlertid ikke klart
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hvordan en endring fra en sfærisk form p̊avirker spredningstrekk som de s̊akalte
‘ripples’ og ‘wiggles’ i Mie-spredningen. I denne oppgaven undersøkte vi sprednin-
gen til et gradvis deformert sirkulært objekt. Videre ble spredningen undersøkt
ved klassisk str̊aledynamikk. Resultatene indikerer at endring av form til en form
som gir kaotisk spredning gjør at ‘ripples’ forsvinner raskere enn om den endrede
formen gir regulær spredning.
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E. Olsen, and R. Blümel. Chaos: A new mechanism for enhancing
the optical generation rate in optically thin solar cells. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 29(9):093132, 2019

[6]
E. Seim, A. Kohler, R. Lukacs, M.A. Brandsrud, E.S. Marstein,
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M.A. Brandsrud, R. Blümel, J. Solheim, E.A. Magnussen, E. Seim,
and A. Kohler. Does chaotic scattering affect the extinction efficiency
in quasi-spherical scatterers? In Biomedical Spectroscopy,
Microscopy, and Imaging, volume 11359, page 113590C. International
Society for Optics and Photonics, 2020

x



Oral Presentations

?

M.A. Brandsrud, R. Lukacs, R. Blümel, E. Seim, E.S. Marstein,
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Chapter 1

Introduction

1.1 Motivation

The interaction of electromagnetic radiation with objects, which have a size that
is of the same order as the wavelength, has occupied physicists for a long time
[18, 19]. In this regime, strong scattering and resonance effects appear. As other
authors before, we will designate this regime in this thesis as scattering at small
particles [18]. Scattering effects in small particles, such as for example spherical
particles, are rich and have been explained for example as interference phenomena
or resonances such as whispering gallery modes in spherically shaped particles
[18,20,21]. When objects are absorbing, absorption may affect scattering and vice
versa. It is known that standing waves in a spherical resonator enhance the field
in the resonator, a mechanisms that may induce increased absorption [20–22].

Scattering and absorption of light at small particles, is relevant for different ap-
plications. The scattering and absorption properties are valid for all wavelengths
regions. In the visible the condition is fulfilled for scattering at nano-structures
and particles, while in the infrared the condition is fulfilled when the size of the
particles is in the micrometer range as is true for cells and tissues. In this work we
focused on two application areas. The first application is optically thin solar
cells with surface structures, where the surface structures are approximately of
the same size as the wavelength of the incoming light. The purpose of these surface
structures have been to increase the absorption of light in the energy-converting
material below the nano-structured surfaces. It has been previously shown that
surface structures with increased scattering of light gives increased absorption of
light in optically thin solar cells [23–26].

Due to the reduced thickness compared with conventional solar cells, optically thin
solar cells are expected to be cheaper due to reduced material costs. However, the

1



Chapter 1. Introduction

efficiency of optically thin solar cells are in general lower than the conventional,
crystalline silicon solar cells [27,28]. In order to utilize as much as possible of the
power of the incoming radiation in a solar cell, long optical absorption lengths are
needed. Especially, silicon solar cells require optimization of absorption properties
in the near-infrared region. In the case of silicon, up to a few hundred micron path
lengths are needed to obtain total absorption of the incoming radiation. However,
state-of-the-art optically thin solar cells have thicknesses below one micrometer
and have thus thicknesses that are much lower than a few hundred microns. Struc-
tured surfaces redirect light into the energy converting material resulting in longer
path lengths and thus better absorption properties [29, 30]. Both ordered struc-
tures and random structured surfaces have been evaluated in order to evaluate
light trapping of solar cells [30–35]. When absorption properties are enhanced
by nano-structured surfaces, thinner solar cells can be produced with comparable
absorption properties as thicker solar cells with no surface structuring.

Both numerical experiments and practical validations have shown that the absorp-
tion of light can be enhanced by nano-structures at the surface of the optically
thin solar cell. The absorption enhancement has been explained by several mecha-
nisms: (i) Numerical computation of the electromagnetic field, e.g. finite difference
time domain calculations, have shown that the near-field can be enhanced by res-
onances such as whispering gallery modes in spherical nano-particles on surfaces
of thin solar cells. The near-field enhancement has been interpreted as the cause
for an increased absorption of incoming solar radiation. (ii) Surface structures
that re-direct the light into the absorptive layer, called light trapping, has been
investigated as a cause for the enhancement of the absorption. Finally, (iii) when
for example nano-spheres are arranged in a lattice, waveguide modes may couple.
The coupling of the regularly organized nano-particles is expected to increase the
field locally and this effect may also increase the absorption of light in the thin-film
solar cells. [21, 30,36–38].

The second application area is infrared microspectroscopy of biological cells
and tissues. In infrared microspectroscopy of cells and tissues, the samples are also
at the same size as the wavelength. While infrared microspectroscopy is performed
to non-destructively perform a chemical and structural analysis of intact cells and
tissues, scattering affects the absorbance properties of the materials, leading to
skewed band ratios rendering the interpretation of the results difficult [39,40]. By
evaluating the absorbance of the sample as a function of wavelength, the chemical
composition of the sample can be found. Different molecular bonds absorb light
of a specific wavelength. The peaks in absorbance spectra are explained as the
fingerprint of the sample [41].

The enhanced scattering effects in spectroscopy are therefore generally a hurdle for
the spectroscopist. Since absorption bands are skewed and non-Lambert-Beer type
absorption is present, the interpretation of measured data is difficult. In infrared
microspectroscopy measurements, the aim is to quantify chemical compounds in
the sample by estimating the loss of radiation transmitting through the sample.
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1.1 Motivation

However, since extinction of the radiation is not only caused by absorption, but in
addition by scattering, it is hard for a spectroscopist to quantify the pure chemical
absorption properties of the material. In addition, absorption properties of the
sample lead to fluctuations of the real part of the refractive index, which causes
further distortions of chemical absorption bands. Therefore, in the field of infrared
spectroscopy of cells and tissues, sophisticated algorithms have been developed to
retrieve pure absorption signatures from highly scatter-distorted spectra [42–47].

There are various ways to achieve a better understanding of absorption phenom-
ena in solar cells and spectroscopy and how they are affected by scattering in
resonances:

• Use of exact electromagnetic theory
Idealized systems such as perfect spheres and infinitely extended films can be
solved by exact electromagnetic theory [18,19,48]. By use of the electromag-
netic boundary conditions, the exact behavior of the electromagnetic wave
can be found. The exact wave solutions can be found for a stack of films
by the transfer matrix method, which has been used to study photovoltaic
devices [49–51]. Within the field of spectroscopy, exact wave calculations
have been used to derive a model for mid-IR micro-spectroscopy for homoge-
neous layered samples [52,53]. The Mie theory has been used to understand
scattering and estimate parameters, such as size and refractive index, of
spherical samples [20, 54–57]. Advanced algorithms have been developed to
retrieve pure absorbance spectra from quasi-spherically shaped particles such
as cells [42–46] Rasskazov et al. presented a scattering correction algorithm
for cylinders, which is based on the exact Mie theory for cylinders [47]. In
the field of infrared spectroscopy, approximation formulae developed by van
de Hulst [18] have been used to model scattering and absorption in highly
scatter-distorted spectra [42–47]. The van de Hulst approximation formulae
describe interference phenomena well, while shape resonances are not de-
scribed. It is therefore interesting to investigate the validity of the employed
Mie formalisms in the field of infrared spectroscopy of cells and tissues.

• Use of full numerical wave calculations
Full wave calculations and electromagnetic wave propagation have been used
extensively in the field of solar cells to model the absorption efficiency of solar
cells. Grandidier et al. [21,23,58] have shown that whispering gallery modes
in spherical SiO2 surface structures increases the spectral current density. It
is further shown how the reflection can be reduced and the light trapping
enhanced by adding structures on top of the thin film solar cells [33,38,59].
However, the rational behind the enhancement mechanisms is difficult to
decode in advanced numerical calculations. Full numerical calculations of
the electromagnetic field have also been used within spectroscopy. Davis et
al., e.g., demonstrate the diffraction and scattering effects in heterogeneous
layered samples [60].

3



Chapter 1. Introduction

• Use of a ray model in the classical limit of short wavelength
Classical ray tracing has been used to investigate structured solar-cell sys-
tems as well. Classical ray tracing does not take the wave nature of the light
into account, but is a good approximation when the size parameters of the
system are much larger than the wave length of the light [61–65]. In these
cases it can be used to estimate the absorption enhancement properties of
surface-structured solar cells. For systems where the wavelength of the radi-
ation is comparable with the size of the objects these methods are doomed
to fail, since they do not take into account the wave nature of the light.

While in the field of thin-film solar cells efficiency enhancement has been investi-
gated by ray models and wave calculations, the connection between these models
is poorly understood. Ray models in the field of solar cells are purely classical ray
models that were used to explain the absorption of light by structured solar cells in
the short-wavelength limit. When the size of the scatterer matches the size of the
wavelength, resonance structures occur and it is highly interesting to investigate
if these resonance structures can also be described in a ray picture. The role of
resonance structures are not well understood in the infrared spectroscopy of cells
and tissues. While the Mie formalism exhibits clear resonance structures, they are
not observed in most real measurements of biological cells.

1.2 Objective

The main objective of this work was to contribute to a better understanding of ab-
sorption and scattering properties of electromagnetic radiation by scatteres when
the size of the scatterers is of the same order as the wavelength.

The objective has been divided into subgoals:

• In the field of semiclassics, which connects classical dynamics and quantum
wave dynamics, powerful methods, so-called ray models, have been developed
for the interpretation of quantum wave phenomena. These tools have been
used in the field of microlasers, and to understand the dynamics in molecular
and atomic systems. One of the aims of this thesis is to investigate if these
ray models can be transferred to electromagnetic wave systems, and if they
can contribute to obtain a deeper understanding of absorption enhancement
due to scatter phenomena.

• Ray models in the field of semiclassics have been proven to be especially
useful for the investigation of chaotic quantum systems. Thus, another ob-
jective of this thesis is to investigate if ray models can be used to interpret
chaotic electromagnetic scattering systems.

• The role of resonances due to shape parameters of the object has been dis-
cussed frequently in the literature on surface-structured solar cells. It is
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1.2 Objective

important within the field of infrared microspectroscopy as well, in order
to understand the effect of scattering phenomena on the measured spectra.
Therefore, we wanted to understand the relation between resonances and
absorption enhancement. It is especially interesting to see if the appearance
of resonances is causally related to absorption enhancement and how shape
parameters of an object govern the appearance of resonances and thereby
absorption properties.

1.2.1 Organization of the thesis: Introduction and relation
to the papers

Resonance phenomena that occur when electromagnetic radiation impinges on
a scatterer that has a size at the same scale as the wavelength of the electro-
magnetic radiation, are exactly described by electromagnetic theory. We start in
section 2.1 by introducing the reader to methods used in electromagnetic theory to
describe the scattering and absorption of electromagnetic radiation at small par-
ticles. Both, for applications in nano-structured thin-film solar cells and infrared
mirospectroscopy it is important to be able to quantify the absorption properties.
We therefore introduce the reader in section 2.2 to the quantities absorption, scat-
tering and extinction efficiency as they are calculated in the field of solar cells and
in spectroscopy. In this context, we will also introduce approximation formulae
for extinction efficiencies as they have been frequently used in infrared microspec-
troscopy of cells and tissues. Finally we will introduce the reader briefly to the use
of ray models for describing electromagnetic scatter problems and the use of ray
dynamics for evaluating if a system is chaotic or not. The description of rays is
kept short since detailed introductions can be found in Paper I [1], Paper II [2] and
Paper IV [4]. Paper I [1] and Paper II [2] present an exact ray model for systems
consisting of films for both normal and oblique incident light and meet thereby the
first subgoal of the thesis. While Paper I [1] and Paper II [2] focus on applications
in the field of thin-film solar cells, the results are of rather generic nature. The
ray models presented in these papers are validated by comparing the ray models
with exact electromagnetic theory and with experimental data. Paper IV [4] deals
with an application in infrared microspectroscopy. We investigate the presence
and absence of resonances, so called ripples, which are predicted by Mie theory
in infrared absorbance spectra. We evaluated their presence and absence in the
electromagnetic field by exact and numerical simulations and classical ray tracing.
We investigate how scattering properties, i.e. regular or chaotic scattering, effects
the resonances in the scatterer. These investigations meet both the second and
third subgoals. In Paper III [3], we investigate one-dimensional systems in order to
evaluate how the resonance structure in both absorptive and non-absorptive layers
affects the absorption properties of a system. Paper III meets the third subgoal.
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Chapter 2

Theory and Methods

2.1 Electromagnetic theory for scattering and ab-
sorption at small particles

2.1.1 Describing scattering and absorption requires the dual
nature of light

In this work we consider three-dimensional electromagnetic systems that are in-
variant in one or two dimensions and which are effectively one- or two-dimensional
systems. In order to describe the wave phenomena which occur in these systems,
e.g. when light is propagating towards an object as illustrated in Fig.2.1, we use
either exact theory or numerical approaches. When light is impinging on an ob-
ject, it is either scattered off, transmitted through or absorbed by the object as
shown in Fig. 2.1. Since most scattering objects are absorbing as well, we use the
term scatterer also in cases when we consider absorption phenomena.

Figure 2.1 illustrates a typical situation for scattering and absorption at small
particles. Due to conservation of energy, the intensity of the incoming radiation
I0 is conserved and given by the sum of the intensity of the scattered radiation
Is, the intensity of the absorbed radiation Ia and the intensity of the transmitted
radiation I according to

I0 = Is + Ia + I. (2.1)

When the wavelength of the incoming electromagnetic wave is of the same order
as the size of the scatterer, resonances may occur. The resonances are caused by
standing waves in the scatterer. In case of a film, standing waves appear, when an
integer number of wavelengths match two times the width of the film. In the case

7



Chapter 2. Theory and Methods

I0 IIa

Is

Is

Figure 2.1: Electromagnetic radiation of intensity I0 is propagating towards an object. The
incoming light is either scattered off (Is), transmitted through (I) or absorbed (Ia) by the
object.

of a circular or spherical scatterer, resonances are created when an integer number
of wavelengths fits approximately inside the circumference of the scatterer. The
standing wave creates an increased electric field inside the scatterer which leaks
to the outside of the scatterer [66]. An important part of the thesis concerns
understanding how these resonances contribute to the absorption enhancement in
different situations such as light absorption in nano-structured solar cells or ab-
sorption of infrared radiation in cells and tissues as in infrared microspectroscopy.
When establishing an electromagnetic model, we therefore need to consider both
scattering properties and absorption properties of light. These two properties
are explained by the dual nature of light. Light can be described as electro-
magnetic waves, as Maxwell did in the 19th century. The wave nature of light
describes the propagation of light and explains its interference properties. Quan-
tum physics introduced the particle interpretation of light. The particle is called
a photon and was introduced by Einstein in the beginning of the 20th century.

x

y

z
c

E

B

Figure 2.2: The electric (E) and magnetic (B)
field vectors in a linear polarized electromag-
netic wave. The fields are normal to each other
and to the propagation direction. The wave is
propagating in x-direction with a speed equal
to c.

The particle nature of light was needed
to explain how matter can absorb en-
ergy in the form of electromagnetic ra-
diation. We describe later in this sec-
tion, how absorption properties are in-
corporated in the electromagnetic the-
ory.

In the electromagnetic theory, electro-
magnetic radiation consists of an elec-
tric and a magnetic field. The electric
and the magnetic field are normal to
each other and to the propagation di-
rection as shown in Fig. 2.2. Electro-
magnetic radiation in vacuum satisfies
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2.1 Electromagnetic theory for scattering and absorption at small particles

Visible light

0.35 µm 0.78 µm

Mid-infrared

2.5 µm 25 µm

10−6 µm 10−4 µm 10−2 µm 1 µm 102 µm 104 µm 106 µm

10−5 µm 10−3 µm 10−1 µm 101 µm 103 µm 105 µm

Gamma
rays X-rays

Ultra-
violet Infrared Radio waves

Figure 2.3: The electromagnetic spectrum is divided into different spectral ranges depending
on the wavelength, i.e. the energy of the electromagnetic radiation. This thesis considers both
the visible region from 0.35 µm-0.78 µm and the mid-infrared region ranging from 2.5 µm-25
µm.

the wave equation,

∇2U = 1
c2
∂2U

∂t2
, (2.2)

where U is the electromagnetic field, i.e. either the E- or B-field and c is the speed
of light. Electromagnetic radiation is classified according to the wavelength in vac-
uum as shown in Fig. 2.3. The wavelength ranges of the electromagnetic radiation
considered in this work are the visible and mid-infrared region of the electromag-
netic spectrum. The visible range is considered for applications of enhancement of
electromagnetic radiation in optically thin solar cells, while the mid-infrared range
is considered for application of mid-infrared spectroscopy. The mid-infrared range
considered is approximately from 2.5 to 25 micrometers.

The speed of electromagnetic radiation in vacuum is independent of wavelength,
and it is found to be approximately c = 3 · 108 m

s . The speed is reduced in media,
and the ratio between c and the speed of light in media is the refractive index of
the media, m.

The behavior of electromagnetic radiation is described exactly by Maxwell’s equa-
tions. In case of no free charge and no free current and a linear, homogeneous
medium, Maxwell’s equations are given by
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Chapter 2. Theory and Methods

∇ ·E = 0, (2.3)
∇ ·B = 0, (2.4)

∇×E = −∂B
∂t
, (2.5)

∇×B = µε
∂E
∂t
, (2.6)

where E and B are the electric and magnetic field, ε is the permittivity and µ is
the permeability. The permittivity is given by ε = εrε0, where εr is the dielectric
constant of the material and ε0 is the permittivity of vacuum (εr = 1 for vacuum).
The permeability is given by µ = µrµ0 where µr is the relative permeability of the
material and µ0 is the permeability of vacuum (µr = 1 for vacuum) [48].

The materials investigated in this work are linear, homogeneous media where µr =
1. The refractive index, m, is related to the dielectric constant by

m = √εrµr. (2.7)

Both µr and εr are wavelength dependent. The refractive index m can be used to
describe absorption properties of matter as we will see in the following.

In 1905, Einstein laid the foundation for the understanding of the absorption of
light by matter. His seminal work on the photoelectric effect of 1905 prepared
the ground for the interpretation of light as particles, photons, with a discrete
energy [67–69]. Photons are stable, chargeless, massless elementary particles that
exist only at speed c. The energy of the photon can be quantized by energy levels
of electrons, atoms and molecules. The energy is dependent on the wavelength of
the corresponding electromagnetic radiation and is given by

Ef = hf, (2.8)

where h is Planck’s constant and f is the frequency of the waves. The frequency
f is given by f = c

λ , where c is the speed of light and λ is the wavelength.
Einstein’s theory laid among other contributions the foundation for the Quantum
mechanics, which at the end of the 1920’s was a well-verified theory due to the
work of Bohr, Born, Heisenberg, Schrödinger, De Broglie and others [67]. As
mentioned previously, quantum mechanics and the particle nature of light describe
the interaction between light and matter. In addition to the particle nature of light,
discrete energy levels of atoms, molecules etc. are needed in order to understand
absorption properties of materials. In general a photon that impinges on an object,
is redirected and scattered. However, when the energy of the incoming photon
matches the energy gap between energy levels of the atom, molecule, crystal etc.
with which the photon interacts, the photon can be absorbed. The absorbed
energy may be emitted as a photon of the same energy, where emission can in
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2.1 Electromagnetic theory for scattering and absorption at small particles

principle take place in any direction, it can be converted into electric current as
in thin film solar cells, it can be converted into thermal energy, etc..

While the particle nature of the light describes the interaction between light and
matter, i.e. the absorption and emission of light, we often use a semi-classical
picture of absorption, e.g. by the Lorentz model, when describing the scattering
and absorption of electromagnetic radiation in matter. In the Maxwell theory,
the absorption properties of materials are described by the imaginary part of the
refractive index m. The imaginary part of the refractive index can either be
calculated or measured. For calculations, different models can be applied. To
describe the absorption properties of dielectric molecules, the Lorentz models can
be used. The absorption properties of solar cell materials, i.e. semiconductor
materials, are described by the band gap of the material. Beer-Lambert law can
be used to describe the absorption [27,54]. The absorption properties of materials
are incorporated as the imaginary part ni of the refractive index m according to

m = nr + ini, (2.9)

where nr is the real part of m which describes the refraction properties of the
material and ni the imaginary part which describes the absorption properties
[48, 67, 68]. We will see later how the imaginary part of the refractive index can
be related to measured absorption properties of materials.

2.1.2 Approaches for solving the electromagnetic problems

All electromagnetic problems considered in this thesis are scattering problems
concerning small particles, where the small particles are homogeneous with respect
to the refractive index (see Fig.2.4).

λλ

Incoming
plane wave

m

Γ

Figure 2.4: An electromagnetic plane wave of wavelength λ is propagating towards the small
particle. The particle is homogeneous and has a refractive index m. The particle is separated
from the surroundings by the boundary Γ.

To solve the problems exactly, the wave equation

∇2U = m2

c2
∂2U

∂t2
, (2.10)
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has to be solved for all areas with constant refractive index m while in addition,
electromagnetic boundary conditions are imposed on the boundary. At a boundary
Γ (see Fig. 2.4), the E- and B-fields are discontinuous. The discontinuity is
described by Maxwell’s equations (Eqs. 2.3-2.6). The electromagnetic boundary
conditions in case of no free charge or free current at the surface are given by

ε1E
⊥
1 = ε2E

⊥
2 , (2.11)

~E
‖
1 = ~E

‖
2 , (2.12)

B⊥1 = B⊥2 , (2.13)
1
µ1

~B
‖
1 = 1

µ2
~B
‖
2 , (2.14)

where the subscripts 1 and 2 indicate the two different materials. The superscript
⊥ and ‖ indicate the components perpendicular and parallel to the boundary [48].

Electromagnetic problems are in general three-dimensional problems, since elec-
tromagnetic fields are vector fields (Fig. 2.2). However, when the electric field is
normal to the plane of incidence, i.e. when light is perpendicular polarized, the in-
trinsically three-dimensional problem can be simplified and scalar wave theory can
be used to describe the effectively two-dimensional scattering system. The plane
of incidence is described as the plane which is formed by the propagation vector
and the normal to the boundary [48]. By use of scalar wave theory, we can reduce
the three dimensional electromagnetic problem to a scalar one- or two dimensional
problem. Then our system satisfies boundary conditions which are equivalent to
the corresponding quantum mechanical boundary conditions, i.e. that wave func-
tion and the first derivative of the wave function both are continuous across the
boundary. [70].

For special shapes of the objects, such as films or spheres, exact solution can be
found for the problems. In the case of more complex systems, numerical methods
are used. Many different and powerful numerical approaches and software packages
have been developed to describe the propagation and absorption of electromagnetic
radiation. Techniques which solve electromagnetic problems numerically are for
example the Finite Difference Time Domain (FDTD) method, the Finite Element
Method (FEM) and Rigorous Coupled Wave Analysis (RCWA) [71, 72]. Solvers
based on these techniques are available as commercial software and are used within
several fields. In this work, FDTD by the commercial program Lummerical [73]
and FEM by Comsol’s wave optics module [74] were used in order to evaluate
various electromagnetic problems. In addition to the use of commercial software
packages, an algorithm based on the Green function was developed in this thesis for
initial investigations, for gaining a deeper understanding and for comparison with
commercial software packages. The developed algorithm, is a scalar wave method
finding a solution of the Helmholtz equation by the use the Green function method.
Below we present the Green function method that was used at the beginning of the
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2.1 Electromagnetic theory for scattering and absorption at small particles

thesis work to achieve a better understanding of the physics in light scattering at
small particles. We further compare the Green function results with commercial
solvers. We finally introduce shortly the Gaussian beam method method, which
was used to study the interaction of a finite beam and a small particle.

Greens function method

For simplification and without loss of any generality, a two-dimensional system
that is described by the scalar wave function was considered. This is for several
cases is a good approximation. The solution of the scalar Helmholtz equation
for an arbitrary potential is found by the Lippmann-Schwinger equation with the
free two-dimensional Green function [75]. For periodic potentials [76], the Green
function was combined with the Bloch ansatz [77, 78], which allowed us to treat
infinite surfaces. While the method allowed to choose an arbitrary but periodic
structure, we focused on periodic structures with circular shapes (disks) and disks
placed on an energy converting material. The investigated systems are effectively
two dimensional and equivalent to three-dimensional infinite cylinders.

In order to investigate the effectively two-dimensional systems, we searched for a
solution of the time-independent wave equation for the given potential

−∆ψ(~r) + k2m2(~r)ψ(~r) = 0 (2.15)

where ~r is the position vector, m(~r) is the index of refraction, k is the the angular
wavenumber, which is related to the wavelength, λ, by k = 2π

λ . The wave function
ψ(~r) is calculated in the potential V (~r) given by

V (~r) = k2v(~r), (2.16)

where v(~r) = 1−m(~r).

A solution of the problem can be obtained by solving the Lippmann-Schwinger
equation [75]

ψ(~r) = ϕ(~r)−
∫
G(~r, ~r′, k)V (~r)ψ(~r′)d2~r′, (2.17)

where ϕ(~r) is the wave function of the incoming wave and ψ(~r) is the wave function
in the potential V (~r).

In our simulations, the incoming wave is given by a plane wave. G(~r, ~r′, k) is the
Green function for the free Helmholtz equation [79]. The Green function is given
by

G(~r, ~r′, k) = i

4H
(+)
0 (k|~r′ − ~r|), (2.18)

where H
(+)
0 is the Hankel function of the first kind and zero order [79]. The

Lippmann-Schwinger approach, Eq. 2.18, gives us the possibility to investigate an
arbitrary potential.
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When the arbitrary potential is periodic, as shown in Fig 2.5, the Bloch ansatz
can be applied to the Green function [70].

y

x

Cell #-2 Cell #-1 Cell #0 Cell #1 Cell #2

x = −2a x = −a x = 0 x = a x = 2a x = 3a

Figure 2.5: A periodic two-dimensional potential of width a.

The solution of the Helmholtz equation is given by

ψ(r) = u(r)eibr (2.19)

where b is the Bloch momentum and u(r) has the same period as the crystal
lattice with u(r) = u(r + a) [70, 77, 78]. It gives us the possibility to investigate
infinite periodic potentials [76]. For a potential that is periodic in x-direction
as shown in Fig. 2.5, the Bloch momentum is equal the x-component of the
angular wavenumber of the incoming wave. This can be found by requiring that
the incoming wave also satisfies the Bloch condition.

We can compute the wave function in cell number 0 in Fig. 2.5 by the Lippmann-
Schwinger equation. In this case we have to use the Lattice Green function [76]
given by

G̃(k, r0, r’0) =
∞∑

M=−∞
G(k, r0, r’0 +Ma)eib·Ma (2.20)

where M is the cell number. The Green function method has several limitations
which the optimized commercial software packages can handle. The accuracy of
the Greens Function method decreases as the differences between refractive index
of the materials evaluated increases. The simulations are time and memory con-
suming. In the following section we present the comparison of the Green function
method with commercial software packages, which was done as initial work in the
thesis.

Comparison between Green function methods, FDTD and analytical
solutions

In order to determine the precision of our Green Function method and of the com-
mercial software tool, we compared in total three approaches for a disk: (i) the
algorithm based on the Green function method, (ii) an FDTD-based electromag-
netic simulator [73] and (iii) the analytical Mie solution. The radius of the disk
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2.1 Electromagnetic theory for scattering and absorption at small particles

was chosen to be 500 nm and the refractive index as 1.2. By evaluating the three
plots of the absolute squares of the wave functions in Fig. 2.6 visually, the three
approaches give the same field for a disk.

Figure 2.6: The absolute square of the field is shown for the scattering of a plan electromag-
netic wave at a disk using three different approaches for the calculation of the field. The disk
has a radius of 500 nm and a refractive index of 1.2. The surrounding square has a refractive
index equal to 1. The incoming plane wave is propagating from the top and has a wavelength
of 615 nm. In (a) the absolute square of the perpendicular polarized electric field for the sys-
tem calculated by FTDT [73] is shown, (b) shows the absolute square of the wave function
found by the Green function method and (c) shows the absolute square of the exact wave func-
tion of the system.

The three approaches were further compared by evaluating the value of the abso-
lute square of the field in a given grid. The FDTD calculations were performed
using a resolution of 200 x 200. The simulation by the Green function method was
accomplished with a 100 x 100 grid. We compared the field in points with the same
x- and y-values. Field deviations are shown in Tab. 2.1, where the comparison is
done pairwise for the three different approaches.

Table 2.1: An element-wise comparison for the three approaches. The calculations corre-
spond to the situation for which the absolute square of the field is presented in Fig. 2.6. Here
we evaluate the root mean squared error, RMSE, calculated pairwise between the three ap-
proaches. Comparing the FDTD and the method based on the Green function, we find a rela-
tively low RMSE, while the comparison of the two numerical approaches with the exact solu-
tion, reveals a larger error.

Methods compared RMSE
FDTD and Greens function method 0.0044
FDTD and Exact solution 0.0615
Exact solution and Greens Function Method 0.0617

The difference between the simulations from FDTD and the Green function differ
by an RMSE = 0.0044. The numerical programs differ both with a RMSE equal
to 0.06 when comparing them with the exact solution.
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Illuminating an object with a finite beam - the Gaussian Beam

In order to evaluate the scattering and absorption properties of an object that
is illuminated by a beam with finite width, we can propagate a Gaussian beam
towards the surface of the object and let it transmit the surface and propagate in
the object. As before we consider a two-dimensional problem without losing any
generality of our findings. The Gaussian beam is, in contrast to a plane wave, a
radiation source of finite width.

The transverse profile of the optical intensity of a Gaussian beam can be described
by a Gaussian function [80]. The spot radius of the beam is defined as the distance
from the center of the beam with maximum value E0 to where the value of the
electric field has dropped to E0

e or ∼ 0.37E0 [67].

Figure 2.7 shows a Gaussian beam of spot size 5 µm propagating towards a film
of refractive index 1.84 and a thickness of 75 µm. The angle of incidence is 50◦.
The refractive index of the outer material (i.e. the triangles left and right of the
film) is 1.0. Figure 2.7 shows how the refracted beam changes direction and also
how the beam is reflected several times inside the film.

Figure 2.7: A Gaussian beam propagating towards a film of thickness 75 µm with an angle of
incidence equal to 50◦. The refractive index of the film is 1.84.

2.2 Quantification of scattering and absorption
by electromagnetic theory

2.2.1 Scattering and absorption in one-dimensional systems

An infinite film with normal incident light is an effectively one-dimensional system.
The incoming radiation is either back scattered by the film (reflected), absorbed
by the film or transmitted through the film as shown in Fig. 2.8. The reflected,
absorbed and transmitted electromagnetic radiation can be found analytically with
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I0 IIa

Is

Figure 2.8: Electromagnetic radiation of intensity I0 is propagating towards an infinite film.
Part of the radiation is scattered backwards described by the scattered intensity Is, part of the
radiation is absorbed by the film described by the absorbed radiation Ia, part of the radiation
is transmitted through the film described by the intensity I.

the help of the electromagnetic boundary conditions (Eqs. 2.11-2.14) or by scalar
wave theory.

In the case of a one-dimensional system as in Fig. 2.8, where a plane wave is prop-
agating with normal incidence, reflection, absorption and transmission properties
of the system can be described by scalar wave theory. The incoming wave (ψ0),
reflected wave (ψr) and transmitted wave (ψt) are given by

ψ0(x) = eikx, (2.21)
ψr(x) = re−ikx, (2.22)
ψ(x) = teikx. (2.23)

The incoming plane wave with wavelength λ and amplitude one is propagating in
positive x-direction. The angular wavenumber k is related to the wavelength by
k = 2π

λ . r and t are the reflection and transmission amplitude. The amount of
absorbed light, the absorption efficiency, is given by

σa = 1−R− T, (2.24)

where R = |r|2 is the reflection probability and T = |t|2 is the transmission
probability [48,70].

As shown in Paper I [1], The absorption efficiency for an arbitrary one-dimensional
system can also be given by

σa = 2k
∫
ni(x)nr(x)|ψ(x)|2 dx , (2.25)

where k is the angular wavenumber, nr and ni are the real and imaginary parts
of the refractive index, respectively. The product of the absorption efficiency and
the spectral weighting term gives the optical generation rate, Gopt [81]. Where the
spectral weighing describes the spectral radiance as a function of wavelength. [27].
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2.2.2 Scattering and absorption in two- and three-dimensional
systems

Arbitrary two- and three-dimensional systems cannot be solved analytically. The
two-dimensional systems considered in this thesis correspond to three dimensional
problems that are invariant in the third dimension. These systems can be evalu-
ated by numerical approaches as described in Sec. 2.1.2. In the case of a three-
dimensional system, the power Θ(λ) that is absorbed by a volume V is calculated
by performing the following integral over the volume V :

Θ(λ) = 1
2h̄

∫
Im{εr}|E|2dV, (2.26)

where h̄ is the reduced Planck constant, εr is the dielectric constant of the media
and E is the electric field in the scatterer [81,82].

For special situations, such as an infinite film, a cylindrical or spherical scatterer,
the electromagnetic problem can be solved analytically. The theory of light scat-
tering and absorption by a sphere was developed by Gustav Mie in 1908 [18,19].

Infinite film

In the case of a plane wave propagating towards an infinite film as shown in Fig. 2.9,
the field is invariant along the boundary [48,68]. The behavior of the a plane wave
propagating towards material is of considerable interest within both the field of
optically thin solar cells and IR spectroscopy. For layered optically thin solar cells
this knowledge can be used to decrease the surface reflection and increase the
field inside the absorptive film. The minimization of reflection, i.e. antireflection
coatings, are a widely explored field [51, 67, 83, 84]. Within spectroscopy this
knowledge is valuable when the scattering and absorption of radiation from layered
samples is considered [85].

For a thin film, we can derive Snell’s law from the boundary conditions. This is
illustrated in Fig. 2.9, where the boundary conditions require that the y-component
of wave vector ~k is equal on both sides of the boundary. At the boundary at x = 0,
this is expressed by

k sin θ0 = k sin θr = mk sin θ. (2.27)

The angular wavenumber k is the magnitude of ~k in vacuum and mk is the angular
wavenumber inside the film. θ0, θr and θ are the angles of incidence, reflection
and refraction as indicated in Fig. 2.9. Eq. 2.27 is Snell’s law.

With Snell’s law in Eq. 2.27 and the electromagnetic boundary conditions (Eqs. 2.11-
2.14) at hand, we can derive the exact expressions for the reflection and transmis-
sion amplitudes for both parallel and perpendicular polarized light.
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m0 = 1 m m0 = 1

θ0

θR = θ0
θ

θ

θR = θ0

θt = θ0

x
y

z

x = 0 x = a

Figure 2.9: The model system consists of a single film of thickness a and a refractive index m.
In front of the film, the refractive index is m0 = 1, i.e. the refractive index of vacuum. A plane
wave is propagating towards the film in the xy-plane with an angle of incidence θ0 . The angle
of reflection, θR, is equal to θ0 . The angle of refraction, θ, can be found by Snell’s law. For the
transmitted ray behind the film, the direction of the angle of the transmitted ray is θt = θ0.

The two-dimensional film system in Fig. 2.9, is as discussed above, invariant in
y-direction. Therefore, the resonances in the system are parallel to the film bound-
aries, i.e. the standing waves occur as parallel stripes in y-direction inside the film.
A resonance takes place in the case where an integer number of wavelengths fits
into the thickness of the film.

In the case of an absorptive material, the wave vector inside the film is complex

~kI = m~k = ~kI,r + i ~kI,i, (2.28)

where ~kI,r and ~kI,i are the real and imaginary parts of the wave vector. The wave
vector outside the film is, as before, real. In order to fulfil the requirement pre-
sented in Eq. 2.27, ~kI,r and ~kI,i need to have different directions and the resulting
electromagnetic wave is said to be inhomogeneous. The direction of ~kI,r can be
found by

~k · ~r = ~kI,r · ~r, (2.29)

at the boundary. ~k is the wave vector in the non-absorptive region and ~kI,r is the
real part of the wave vector inside the film. ~r is the position vector. Due to the
fact that the wave vector outside the film is real, the direction of ~kI,i is normal to
the boundary [68]. The reflection and transmission amplitudes can be found by
the electromagnetic boundary conditions, Eqs. 2.11-2.14.

In the case of an absorptive film, the absorption efficiency is found by using the
same expression as for the one-dimensional problem for an infinite film, Eq. 2.24.
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Infinite cylinder and sphere

In the case of an infinite cylinder or a sphere, the electromagnetic field can be
described by Mie theory [18, 19]. Mie type-scattering phenomena have great im-
portance both in the field of nano-structured optically thin solar cells and within
the field infrared spectroscopy of biological materials.

Figure 2.10, shows how an incident plane wave of intensity I0 is either absorbed
by a circular object, scattered off or transmitted through the circular object.

I0 IIa

Is

Is

Figure 2.10: Electromagnetic radiation of intensity I0 is propagating towards a cylinder-shaped
object. The incoming radiation is be either scattered off (Is), transmitted through (I) or ab-
sorbed by (Ia) the object.

A commonly, dimensionless quantity used to quantify the share of the electromag-
netic radiation that is extinguished from the forward direction, is the extinction
efficiency, Qext [18]. The extinction efficiency is defined by

Qext = 4π
k2

1
g

Re[S(0)], (2.30)

where k is the angular wavenumber, g is the geometrical cross section of the
scatterer and S(0) is the amplitude function in forward direction [18].

The extinction efficiency is related to the absorption efficiency (Qabs) and scatter-
ing efficiency (Qsca) by the following relation

Qext = Qabs +Qsca. (2.31)

Qext, Qabs and Qsca can be found directly from Mie Theory for a sphere and
for an infinite cylinder. For the situation where a cylinder is evaluated, we have
to take the polarization of the E-field into account [18]. Figure 2.11 shows Qext
as a function of wavenumber for a sphere (black line) and the two polarization
directions (green and red line). The radius of the sphere and the cylinder is 10 µm
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2.2 Quantification of scattering and absorption by electromagnetic theory

Figure 2.11: The extinction efficiency Qext for an infinite cylinder (green and red line) and for
a sphere (black line) with radius 10 µm and a refractive index of 1.3. The blue and red line
corresponds to the two polarization directions. [18]

and the refractive index is 1.3. The selected wavenumber interval corresponds to
wavelengths from 2 µm to 10 µm, i.e. the wavelengths and the size of the scatterer
are of the same magnitude and we would expect resonances.

For all the three situations described in Fig. 2.11, we observe that the lines oscillate
around two. This phenomenon is called the extinction paradox [18]. We observe
that Qext consists of long-range oscillations and sharp, narrow oscillations. The
long-range oscillations are called wiggles. The narrow, sharp oscillations are the
ripples. They are caused by standing waves, i.e., resonances, inside the sphere also
called whispering gallery modes [20].

In this thesis, we considered cylindrical objects where the electric field is parallel
to the cylinder axis and the propagation direction is perpendicular to the cylinder
axis (green line in Fig. 2.11). In this case, the extinction, scattering and absorption
efficiencies are given by

Qext = 2
ka

∞∑
n=−∞

Re(bn), (2.32)

Qsca = 2
ka

∞∑
n=−∞

|bn|2, (2.33)

and
Qabs = Qext −Qsca, (2.34)

where k is the angular wavenumber of the incoming plane wave and a is the radius
of the cylinder. The coefficients bn are given by

bn = tan βn
tan βn − i

, (2.35)
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and the tan βn are given by

tan βn = mJ ′n(mka)Jn(ka)− Jn(mka)J ′n(ka)
mJ ′n(mka)Nn(ka)− Jn(mka)N ′n(ka) , (2.36)

where m is the refractive index of the cylinder, Jn is the nth order Bessel function
of the first kind and Nn is the nth order Bessel function of second kind (Neumann
function).

In the case where the electric field is parallel to the cylinder axis, the situation
is equivalent to a two-dimensional scalar wave problem where a plane wave is
propagating towards a circular scatterer. An exact description of the field inside
and outside the scatterer can be given. Details are given in the appendix of Paper
IV [4].

Figure 2.12 shows an example of a whispering gallery mode for a cylinder. The
radius of the cylinder is 10 µm and the refractive index is 1.8.

Figure 2.12: The norm of the wave function is plotted for a whispering gallery mode. The ra-
dius of the disk is 10 µm and the index of refraction is 1.8. The incident radiation is a plane
wave with wavenumber 1643.5 cm−1, an amplitude equal to one, propagating from the left.
The wavenumber of the incident plane wave is chosen to coincide with the wavenumber of a
ripple, which corresponds to a whispering gallery mode.

2.2.3 Approximation of the extinction efficiency

Van de Hulst presents in his book ’Light scattering at small particles’ [18] an
approximation for the extinction efficiency, Qext, for spherical scatterers. The
approximation is found by evaluating the interference of undisturbed rays and
rays that experience a phase lag due to the distance the wave has travelled trough
the sphere with a refractive index m. The van de Hulst approximation for Qext
for a sphere of radius 10 µm and a refractive index of 1.3 is shown together with
the Mie solution in Fig. 2.13.

Figure 2.13 shows how the van de Hulst approximation explains the wiggle struc-
ture of the extinction efficiency. The ripples are not modelled by the van de Hulst
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Figure 2.13: The extinction efficiency for a sphere of radius 10 µm and a refractive index of
1.3. The green line indicates the exact extinction efficiency (described by Mie Theory) and the
red line is the van de Hulst approximation for Qext.

approximation. The approximation is found by evaluating Eq. 2.30, where the am-
plitude function S(0) is found by calculating the phase lag a ray experiences when
it penetrates a spherical scatterer. By use of the same procedure, approximation
formulas for the extinction efficiency of scatterers with other shapes can be found
as well. In Paper IV [4], the approximation of Qext is calculated for a circular and
a stadium-shaped scatterer. The approximation formulas have great importance
in the field of infrared spectroscopy of biological materials, as they provide handy
and computationally inexpensive tools for modelling Mie scattering in infrared
spectra of cells and tissues.

2.2.4 Quantifying absorption of radiation in infrared spec-
troscopy

A unit-free measure of the quantity of electromagnetic radiation absorbed is the
unit absorbance. This quantity is commonly used in absorption spectroscopy and
is given by

A = − log10( I
I0

), (2.37)

where I0 is the intensity of the incident radiation and I is the intensity of the
light that is transmitted through the sample. In the case where scattering can
be neglected, we often refer to A given by Eq. 2.37 as the pure absorbance. Pure
absorbance spectra in infrared spectroscopy can be obtained for example by thin
film measurements of biological materials in macroscopic infrared spectroscopic
measurements and where there is little backscattering from the film.

The absorption properties of a material can be modelled by including an imaginary
part ni in the refractive index, m = nr + ini, as decribed in Sec 2.1.1. nr is the
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real part and describes the refractive properties of the material. ni can be related
to the pure absorbance Apure by

Apure = 4πnideff ν̃

ln(10) , (2.38)

where deff is the effective thickness and ν̃ is the wavenumber [20, 44]. In the case
of an infinite cylinder where the light is propagating perpendicular to the cylinder
axis, deff = πa

2 , where a is the radius of the cylinder. Eq. 2.38 can be obtained
by considering the transmission of electromagnetic radiation through a thin film
with negligible backscattering. Eq. 2.38 has high importance, since it connects the
measured quantity absorbance with the imaginary part of the refractive index.

Figure 2.14: The absorbance, A, as a function of wavenumber for different choices of the imag-
inary part of the refractive index, ni. A is related to ni as indicated by Eq. 2.38. The effective
thickness of cylinder of radius 10 µm was used.

In order to estimate relevant levels of the imaginary part of the refractive index,
the relation between the imaginary part of the refractive index and the measured
absorbance needs to be considered. Fig. 2.14 shows how the absorbance A depends
on the imaginary part of the refractive index for a cylindrical scatterer of radius
10 µm. Absorbance values are usually obtained in a range between zero and 1.2
in infrared spectroscopy of cells and tissue. An absorbance value in the order of
one means that 90% of the incoming radiation is absorbed.

In many situations as in infrared spectroscopy of cells and tissues, strong scattering
signatures are visible in the measured spectra. This is illustrated in Fig. 2.1, where
the incident light is partly scattered off the object. In this case, the absorbance that
is calculated from the incoming and transmitted intensity according to Eq. 2.37 is
often called the apparent absorbance. The measured apparent absorbance can be
related to the calculated extinction efficiency by

A = − log10

(
1− g

G
Qext

)
≈ 1

ln(10)
g

G
Qext, (2.39)

where g is the geometrical cross section of the sample and G is the geometrical cross
section of the detector. The approximation is found by expanding the logarithm
and assuming G >> g [20].

24



2.2 Quantification of scattering and absorption by electromagnetic theory

2.2.5 The effect of the size of the numerical aperture on the
extinction efficiency

In a real FTIR measurement, the detector has a finite size G and the scattered
and transmitted radiation is collected over a numerical aperture. This needs to be
taken into account when the absorbance-spectra are evaluated. The size of this
detector is called the numerical aperture, NA, and is defined as

NA = sin(θNA), (2.40)

where θNA is the angle defined by the size of the detector as shown in Fig. 2.15 [86].
While Figure 2.15 is a simplified model of the Schwarzschild optics in the infrared
microscopic transmission measurements [55], it is sufficient for our discussion of
how the NA affects the measured absorbance spectra.

I0
a D

et
ec

to
r

θα

Figure 2.15: Infrared light of intensity I0 is propagating towards a sample with a shape of an
infinite cylinder of radius a in an FTIR spectrometer. The detector of the spectrometer is of
a finite size, defined by the numerical aperture given by NA = sin θ. The scattered light that
does not hit the detector is limited by the angle α on both sides of the center line.

The extinction efficiency, Qext, is the sum of the scattering efficiency and the
absorption efficiency. In the case of a non-absorptive scatterer, Qext = Qsca. For
an infinite cylinder and in the case where the E-field is parallel with the cylinder
axis, Qsca can be found as a sum of the bn’s as described in Eq. 2.33. The scattering
efficiency is calculated by evaluating the following integral

Qsca = 1
πka

∫ 2π

0
|T (θ)|2dθ = 2

πka

∫ π

0
|T (θ)|2dθ, (2.41)

where k is the angular wavenumber, a is the radius of the cylinder and θ is the
angle as shown in Fig. 2.15. The integral can be reduced due to symmetry. In the
case where the E-field is parallel to the cylinder axis, the function T is given by

T (θ) =
∞∑

n=−∞
bne

inθ, (2.42)
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where bn is given in Eq.2.35.

When radiation is collected over a numerical aperture, radiation which is scattered
into the NA is collected by the detector. In order to quantify the radiation lost
due to scattering, we need to evaluate the integral in Eq. 2.41 everywhere, except
in the range of the numerical aperture, and obtain

QNA
sca = 2

πka

∫ π

θNA

|T (θ)|2dθ, (2.43)

where θNA is defined by the NA by Eq. 2.40 and the scattered light escapes over
the angle α on both sides of the central line, as shown in Fig. 2.15

2.3 Description of electromagnetic radiation by
use of rays

In classical ray tracing or geometric ray tracing approaches, the wave nature of the
light is usually ignored. The light is assumed to travel along a straight path and
the behavior at the boundaries is described through Fresnel’s equations and Snell’s
law. Classical ray tracing is used in the field of structured thin-film solar cells to
evaluate how long rays stay in certain structures, in order to estimate the efficiency
of the structure to capture the rays. The absorption properties of such systems are
determined through Beer-Lambert’s law. The classical ray tracing approximation
is only valid in the small wavelength regime, i.e. when the size of the structures
are much larger than the wavelength of the light [63,67,86]. For situations, where
the wavelengths of the incoming light are of the same order as the size of the struc-
tures at which the incoming light scatters, wave phenomena such as interference
effects in films and whispering gallery mode resonances in spheres appear. The
classical ray tracing approach fails to describe these resonances. While electro-
magnetic and scalar wave theory exhibit resonance phenomena (see Sec. 2.2), a
semi-classical theory that connects resonances with specific rays is highly desired,
since it may enhance our understanding of the phenomena considerably. While
semi-classical approaches that attribute phases to rays are well established in the
field of quantum chaos [87–89], they are not commonly used in the fields dealing
with nano-structured solar cells or in spectroscopy of small particles. Paper I [1]
and Paper II [2] introduce exact ray models for different electromagnetic model
systems with planar boundaries between different materials.

Ray tracing is also commonly used to evaluate if systems show a chaotic behaviour
or not. In such ray investigations, ray splitting may be included or not. It has
been shown that ray splitting needs to be introduced to understand the wave-
related properties of quantum chaos systems [88,90]. Reflection and transmission
probabilities can be found by evaluating Fresnel’s equations, where only the real
part of the refractive index is taken into account. When the rays are evaluated
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without taking ray splitting into account, using only so-called Newtonian rays,
the rays are always transmitted through a boundary with the exception of total
internal reflection. In Paper IV [4], ray tracing of Newtonian rays has been used to
investigate the ray dynamics of a stadium-shaped billiard to decide if the system
is chaotic or not. For this purpose it was not necessary to consider ray splitting.
In the following we shortly introduce the methods used in this paper for applying
ray dynamics in ray-splitting systems in electrodynamics.

2.3.1 Use of semi-classical rays to describe scattering sys-
tems

By attaching the correct phase to the ray, Feynman proved that an infinite number
of rays can be used to solve the Schrödinger equation [91]. Since in this case, the
ray theory solves the Helmholtz equation exactly, the ray theory can also correctly
handle resonances caused by the wave nature of light. In Paper I [1] and Paper
II [2], we show how an infinitely number of rays can be used to describe reflection,
transmission and absorption properties of an infinite film exactly. Absorption
properties of the film were included in the formalism by adding an imaginary part
to the refractive index of the film.

2.3.2 Use of classical rays to determine the scattering prop-
erties

Classical rays can be used to evaluate the scattering properties of a system. Non-
integrable systems can exhibit chaotic scattering. A part of this work was to
evaluate how the extinction properties of a scatterer is affected by regular and
chaotic scattering. When a classical ray hits a boundary, the refraction angle
is decided by Fresnel’s equations. If ray splitting is considered, the fraction of
reflected and transmitted light is given by Fresnel’s equations. Absorption can be
included by use of Beer-Lambert’s law [48]. In an open scattering system, the life
time of the ray is defined as the time the ray stays in the system, i.e the length
of the ray, before it leaves. In a chaotic system, the length of the ray is very
sensitive to starting conditions, i.e. a small change of the start position may result
in a big change in the length of the ray. In a regular system, a slight change in
the start position is not related to a big change of the length of the ray. The
classical ray tracing performed in this work was related to the evaluation of a two-
dimensional system where Newtonian rays, i.e. non-ray-splitting rays, were sent
straight downwards towards the scatterer. Reflection of rays was only possible
when the condition for total internal reflection was fulfilled.

As a system that exhibits a chaotic ray dynamics, we investigated a stadium-
shaped scatterer as shown in Fig. 2.16. The system is adopted from the Bunimovich
billiard [92] which has been used as a model system for a chaotic resonator. The
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same system was investigated by Jensen as a scatter system [93]. For us, the main
interest in investigating the stadium billiard as a scatterer was to understand if
chaotic scattering is a mechanism that suppresses ripples in Mie scattering. Ripples
are not modelled by the van de Hulst approximation, which is the main model used
for Mie scattering in measured absorbance spectra in infrared spectroscopy. Below
we describe the tools used to manifest if the system is chaotic or not.

a d
m

Figure 2.16: Newtonian rays are sent straight down towards the stadium. The rays are re-
fracted according to Snell’s law. Only the rays that hit the left end-cap of the stadium are
investigated (solid line). Due to symmetry, the rays that hit the right end-cap behave in the
same way as the rays that hit the left end-cap. Rays that hit the straight sections of the sta-
dium are not long-lived: They transmit straight through the stadium.

In order to evaluate further if a system exhibits chaotic scattering or not, several
factors can be investigated. In this work we considered (i) the fractal structure of
the life time plot of rays in the system as a function of the start position, (ii) the
fractal dimension and (iii) the Lyapunov exponent of the system.

Investigation of the fractal structure

The path length or life time of a ray that is sent towards a scatterer can be plotted
as a function of the initial position. The path length or life time of the rays is
calculated as the length of the ray as long as it travels inside the system or the
time the ray stays inside the system before it escapes to infinity. By investigating
the path length plots of rays on different scales, a fractal structure may be discov-
ered. A fractal is a class of irregular structures that are not smooth. Fractals are
indicators of chaos. When the magnification of the fractal yields several identical
copies of the fractal itself, the fractal is self-similar. A well-known self-similar
fractal is the Cantor set. Several objects in nature emerge as fractal structures,
e.g., cumulus clouds, trees, and lungs [94].

Investigation of the fractal dimension by the box-counting method

Already in the 1930s, the concept of the box-counting method was introduced. In
order to evaluate the ray dynamics in the stadium-shaped scatterer, as introduced
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in Fig. 2.16, rays were sent straight downwards towards the left end-cap of the
stadium. We determined the number of intervals of a given size δ containing start
positions which result in long-lived trajectory. The box-counting dimension, i.e.
the fractal dimension, d, is found by

d = − lim
δ→0

logN(δ)
log(δ) (2.44)

where N(δ) is the number of intervals, which contain long-lived trajectories as a
function of the interval size δ. The interval size δ is given as the width of the
interval of start positions. The use of Eq. 2.44 is limited due to the limit δ → 0.
In order to find d, the slope of the plot of logN(δ) against − log(δ) was evaluated.
The slope needs to be determined in the linear region of the plot, i.e. before
δ is too small and the amount of the rays in the interval δ becomes to small.
The size of δ revealing useful data is therefore restricted by the resolution of the
simulations [95–97].

2.3.3 Investigation of the Lyapunov exponent

The Lyapunov exponent, γ, is a measure of the instability of the system. The
Lyapunov exponent γ indicates how quickly two rays, starting with a small distance
between each other, diverge. In the case of a chaotic system, the distance between
the two rays D grows exponentially with time t,

D(t) ∼ D(0)eγt. (2.45)

The Lyapunov exponent γ can be found by evaluating the slope of the plot of
log(D) against t [97].
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3.1 Paper I

Exact ray theory for the calculation of the optical generation
rate in optically thin solar cells

In Paper I, an exact ray theory was developed for one-dimensional systems con-
sisting of thin layers. The thicknesses of the layers were of the same order as
the wavelength of the light, i.e. the ray model needs to take the wave nature of
light into account. By summing up infinitely many rays with phases attached,
we were able to calculate the exact reflection amplitudes, transmission amplitudes
and absorption efficiencies. The rays are found by including ray splitting at the
boundaries.

Figure 3.1 shows the three simplest rays that are included in the ray model for a
single film with a reflecting backside mirror. The thickness of the film is a and
the refractive index of the film is m. The film may be an absorptive material, i.e.
the refractive index m is complex. The material in front of the film is air, i.e. the
refractive index n0 = 1.

a

mm0

(a)

a

mm0

(b)

a

mm0

(c)

Figure 3.1: The three simplest rays encountered in a system consisting of a film and a backside
reflecting mirror. The thickness of the film is a and the refractive index of the film is m. It is
air in front of the film with a refractive index of n0 = 1. Frame (a) show the simplest rays,
which directly reflects from the surface. The simplest ray that contributes to the absorption
efficiency is shown in frame (b). The ray enters into the film is reflected at the mirror and
exits. Frame (c) shows the ray with two reflections at the mirror and one internal reflection
from the film-air boundary.

By adding up the contributions from these three rays to the total reflection am-
plitude we obtain

r = rl + tle
imkaeiπeimkatr + tle

imkaeiπeimkarre
imkaeiπeimkatr, (3.1)

where the first term is the contribution of the ray illustrated in Fig. 3.1a, the
second term is the contribution from the ray illustrated in Fig. 3.1b, and the third
term is the contribution from the ray illustrated in Fig. 3.1c. rl, rr,tl and tr
are reflection and transmission amplitudes the ray collected when it reflects at or
transmits through the boundary between air and the film. The exact expressions
are given in Paper I. eimka is the phase the ray obtained by travelling a distance
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a in the material with refractive index m. k is the angular wavenumber and the
phase eiπ is obtained due to the 180◦ phase shift at the mirror.

If we include all contributing rays, their total, exact contribution to r is given by

r = rl + tltre
iπe2inka

∞∑
ν=0

(eiπrre2inka)ν . (3.2)

By evaluating this geometric series and using the expressions for rl, rr, tl and tr,
the exact expression found by electromagnetic theory for the reflection amplitude
for an incident plane wave is found.

As shown in Fig. 3.2, the ray model found by Eq. 3.2 converges fast even if only
a few of the shortest rays are included. The figure also shows that considering
only the five simplest rays in the system, the analytically calculated absorption
cross section can already be predicted nearly perfectly. Fig. 3.2 also illustrates
another important aspect, namely that our ray theory can describe absorption of
electromagnetic radiation by including a complex refractive index.

500 1,000 1,500

0.2

0.4

0.6

0.8
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λ [nm]

σa

Exact
Two rays

Three rays
Five rays

Figure 3.2: Absorption efficiency, σa, as a function of the wavelength, λ, for a system consist-
ing of a single film with a reflecting backside mirror. The black line is calculated analytically
with the exact expression for σa and the ray model with Eq. 3.2 is used when the two (green
dashed), three (blue dashed line) and five (red dashed line) simplest rays are included. The
refractive index of the film in this system is 1.8+0.05i and the thickness is 500 nm. The wave-
length ranges from 300 nm to 1500 nm.

More realistic solar cell devices consist of several layers of films. In the paper, the
absorption efficiency for a realistic solar cell device was evaluated with rays by the
hierarchical summation scheme (HSS). The HSS was developed for film stacks with
more than one layer. Since a numerical summation over all rays is not possible, a
hierarchical summation scheme (HSS) was developed to approximate σ.

We further show how the measured reflection amplitude (R = 1 − σa) can be
connected to rays by a Fourier transform. From the Fourier transform, the most
important rays could be recovered. This obtained knowledge about the relation
between rays and absorption efficiency of layered systems may in the future con-
tribute to optimizing the absorption efficiency of multilayered systems.
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3.2 Paper II

An Exact Ray Model for Oblique Incident Light on Planar
Films

In Paper II, we extend the one-dimensional ray theory from Paper I to treat three-
dimensional problems where a plane wave is propagating towards a film with an
arbitrary angle of incidence. The ray model describes the scattering problem with
oblique incidence at the absorptive films exactly. It further shows that it is essential
that the path length of the ray and the phase are calculated with respect to the
wave front as illustrated in Fig. 3.3. Basic physics text books often use ray models
to describe the resonance structures of thin films. We highlighted that several
basic text books do not calculate the contributions of the rays with respect to
the incoming wave front, which leads to an inaccurate description which predicts
wrong positions of the resonances.

m0 = 1 m m0 = 1

Ray 0

Ray 1

Ray 2

Transmitted
ray

Reflected
ray

l

l

∆w

∆w

∆w

x

y

z

x = 0 x = a

Figure 3.3: Three incoming rays (Ray 0, Ray 1 and Ray 2) that exit the system at the same
position and contribute to the reflected ray. The two rays, Ray 1 and Ray 2, bounces inside
the interior of the film, exit at the same position, and contribute to the transmitted ray. m0
and m are the refractive indexes of air and the material in the film, respectively. a is the film
thickness and l is the geometrical path length the rays travel from the front surface to the back
surface of the film. ∆w is the path length difference that Ray 0 and Ray 1 (Ray 1 and Ray 2,
respectively) travel outside of the film.

An intriguing aspect of the developed ray model for a plane wave with oblique
incidence to a boundary between air and an absorbing medium, is that it demon-
strates that absorption only happens with respect to the direction perpendicular to
the surface. By starting rays outside the film in the wave front and by taking into
account absorption inside the film only in the direction of the axis perpendicular
to the boundary we obtain the exact solutions for the electromagnetic problem.
Since it is counter-intuitive that absorption of rays could only happen perpen-
dicular to the boundary, we investigate the oblique incidence of a beam of finite
width onto an absorbing material. We show that the absorption of a Gaussian
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beam takes place along its path in case of a beam of finite width, i.e. according
to Beer-Lambert’s law. Calculations were done by evaluating a Gaussian beam in
Comsol for different angles of incidence.

In order to evaluate the different models, we make a comparison of the following
models and experiments: We compare (i) a ray model (ray model A) which includes
only the travelled length inside the film (only l in Fig. 3.3) (ii) the ray model (ray
model B) with rays started in the wave front (i.e. including the distance ∆w
and l in Fig. 3.3) and absorption of all rays only along the axis perpendicular to
the boundary, and (iii) the measured reflection amplitude of a SiNx film with a
backside mirror.

Figure 3.4: Frame (a) shows the measured reflection probability R for an optically thin SiNx

film. With increased angle of incidence, the resonances are shifted towards shorter wave-
lengths. In frame (b), the blue line shows R for an angle of incidence of 30◦ and as a func-
tion of wavelength for the measurements, the red dashed line shows R for ray model A and
the yellow dotted line shows R for a ray model B Frame (c) shows the position of an absorp-
tion resonance (dip in R) of the measured R between 500 and 600 nm [see frame (a)] (blue
line, squares) as a function of the angle of incidence in comparison for ray model A (red line,
circles) and for ray model B (yellow line, stars). The predictions of the ray model A (circles),
clearly deviate from the predictions of the correct ray model B (stars), which agrees with our
measurements (squares).

Figure 3.4 a shows the reflection probability R as a function of wavelength. The
figure shows how the resonances are shifted towards shorter wavelengths as the
angle of incidence increases. In Fig. 3.4b the measured data is compared with ray
model A and ray model B. Fig. 3.4b shows that the ray models B is predicting
the dips of R correctly. Figure. 3.4c follows the resonance between 500 and 600
nm from Fig. 3.4a for an increasing angle. We observe that the ray model B is
following the same trend as the measured data.
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3.3 Paper III

Investigation of resonance structures in optically thin solar
cells

In Paper III, the effect of resonances on the absorption efficiency is evaluated
for layered systems. This means that the systems could be evaluated by exact
theory. Both resonances in the surface structures and the absorptive materials
were investigated.

Intuitively, one would expect that a higher imaginary part of the refractive index
of the absorptive film would result in higher levels of absorption efficiency. How-
ever, this is not always the case. As the imaginary part of the refractive index
increases, the absolute value of the complex refractive index also increases, and
hence the reflection probability increases according to Fresnel’s equations. For
a given wavelength interval, the optimal imaginary part of the refractive index
is given when the absorptive layer absorbs the light for small wavelengths, while
for longer wavelengths standing waves in the absorptive materials can still be ob-
served. When evaluating a film with a thickness of 500 nm and a real part of the
refractive index of 4.3 (the real part of the refractive index of silicon for light of
wavelength 500 nm), the optimal imaginary part of the refractive index is found to
be 0.27. The wave function for this optimal value is plotted in Figure 3.5, where
the absolute square of the wave function in front of and inside a single film with
a backside reflecting mirror is shown. As the figure shows, all the incident light is
absorbed for the small wavelengths but not for the longer wavelengths.

Figure 3.5: The figure shows the absolute square of the wave function for a system consist-
ing of an absorptive film and a backside mirror. The thickness of the film is 500 nm and a
refractive index equal to 4.3 + 0.27i. A plane wave of amplitude 1 is propagating from the left
towards the film. The boundary of the film is at x = 0. The optimal imaginary part of the
refractive index of 0.27i was found to result in maximum absorption efficiency.

Non-absorptive layers in front of the absorptive film act as surface structures in
a one-dimensional system. By taking the integral over the wave function in the
non-absorptive layer, the effect of resonance structures in the front layer can be
evaluated. Figure 3.6 shows the absorption cross section σa (blue line and left
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Figure 3.6: The absorption cross section σa (blue line, left y-axis) and the integral over the
first layer (red line, right y-axis) as function of wavelength for a two-film system with a back-
side mirror. The first layer has a refractive index of 1.9 and a thickness of 112 nm and the
second layer has a refractive index of 4.3+0.1i and a thickness of 5000 nm.

y-axis) and the integral over the absolute square of the wave function of the first
layer II (red line and right y-axis) as a function of wavelength of the incoming
light. II is evaluated in order to see whether resonances in the first layer lead
to absorption enhancement in the second non-absorptive layer. The thickness of
the absorptive layer is 5000 nm and the refractive index is 4.3+0.1i, i.e. all light
entering the absorptive layer is absorbed. The oscillations are therefore due to
resonances in the first layer which has a thickness of 112 nm and a refractive
index of 1.9. Both σa and II are following the same trend, demonstrating that an
enhanced field in the non-absorptive layer is associated with an enhanced field in
σa.

In the case where a non-absorptive layer is placed on both sides of an absorptive
film, the resonances in the first layer are mainly causing the absorption enhance-
ment in the absorptive layer. We investigated further if coupling of resonances
could enhance absorption in an absorptive layer which was located between to
absorbing layers and could not find any effect. Based on the obtained results, we
present a strategy for optimization of absorption enhancement by optimizing film
thicknesses for experimentally realizable solar cells.
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3.4 Paper IV

Potential pitfalls in interpretation of Mie-type signatures in
infrared microspectroscopy

In Paper IV, we evaluate how the extinction efficiency of circular scatteres are
affected by (i) deformation, (ii) absorption and (iii) the size of the numerical
aperture. The extinction efficiency for a circular scatterer is described by Mie
theory and displays wiggles and ripples, i.e. the broad and sharp oscillations.

By use of Comsol [74] we evaluated the electric near- and far field of a scatterer as
it transits from a disk to (a) a stadium-shaped scatterer and (b) an elliptical scat-
terer. We observe that wiggles are stable, but ripples disappear as the deformation
increases. The stadium-shaped scatterer is inspired by the Bunimovich stadium,
which is a chaotic system. Investigations of the extinction efficiency show that
the ripple structure of the two systems is suppressed for smaller deformation for
a stadium-shaped scatterer compared with the elliptical scatterer.

(a) (b)

Figure 3.7: The figure shows the extinction efficiency as a function of wavenumber for a scat-
terer which transits from a disk to (a) a stadium-shaped scatterer and (b) an elliptical scat-
terer. The refractive index of the scatterer is 1.8. For both cases, the radius of the disk is 10
µm. For the stadium shaped scatter, a straight section of length d is inserted between the
to circular end-caps of radius 10 µm. d is increased from 0 to 50 µm. For the elliptical scat-
terer, one of the semi-major axes is kept constant to 10 µm and the other semi-major axis is
increased up to 60 µm.

By evaluating the classical ray dynamics we show that the stadium-shaped scat-
terer exhibits chaotic scattering. Both the sensitivity to initial conditions, the
fractal structure, the fractal dimension and the Lyapunov exponent were evalu-
ated. The elliptical scatterer is an integrable system and does not exhibit chaotic
scattering. We demonstrate that ripples are suppressed more efficiently in the
chaotic scattering situation compared to the regular scattering situation at the
elliptic scatterer.

Further, we evaluate the effect of absorption on the Mie wiggles and ripples. Fig-
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ure 3.8 shows how the extinction efficiency for a circular scatterer is effected by
increased absorption. The figure shows that the wiggle structure remains. In ad-
dition, the ripple structure is still present at relative high absorbance values. The
exception are the sharp ripples which disappear as soon as the absorption is turned
on.

Figure 3.8: The extinction efficiency as a function of wavenumber for a circular scatterer for an
increased absorbance, A. The real part refractive index of the scatterer is 1.8 and the imagi-
nary part is found by use of Eq. 2.38. The radius of the disk is 10 µm.

The third part of the paper concerns the effect of the size of the numerical aperture
on the extinction efficiency. Figure 3.9 shows that the extinction efficiency is
reduced as the size of the numerical aperture increases. We further observe that
both the wiggle and the ripple structure are preserved.

Figure 3.9: The extinction efficiency as a function of wavenumber for a circular scatterer for an
increased numerical aperture, NA. The refractive index of the scatterer is 1.8 and the radius of
the disk is 10 µm.
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Chapter 4

Conclusion and Outlook

The overall goal for this thesis was to contribute to an increased understanding
of scattering and absorption of radiation for scattering at small particles, using
methods from the fields of semi-classical theory and electromagnetism.

In paper I, an exact ray model for a layered one-dimensional systems is presented,
which is further extended to layered systems with oblique incidence in paper II.
The ray models are motivated from ray models used in the field of semi-classics
that has used ray models for achieving a better understanding of quantum sys-
tems. The absorption properties of the scatterers considered in this thesis have
been incorporated by employing a complex index of refraction. While conven-
tional ray models used for understanding absorption properties of solar cells that
are employed in the short wavelength limit do not take into account phases, the
thesis points out that the phase need to be taken into account when resonance
structures are to be explained. Paper II shows further that the electromagnetic
ray model for a plane wave scattering at a layered film requires to start all rays in
the wave front and that resonant structures and absorption properties are solely
governed by the component of the rays that is perpendicular to the layers. This is
a remarkable result as it also shows that the enhancement related to the resonant
structure of the layered film is only dependent of the component of the plane wave
which is normal to the surface. Therefore all results of paper III, which deals
with the optimization of the absorption properties by the resonant structure of a
layered film with perpendicular incidence of light, are valid for oblique incidence,
only adjusted to the component normal to the surface. Paper III considers several
factors for enhancement of absorption of light due to resonances in optically thin
layered solar cells. The layered film systems can be described exactly and both
the refractive indices and thicknesses of layers were evaluated in order to optimize
the absorption efficiency. It is shown that resonance in the non-absorptive layer
is followed by an increased field inside the absorptive layer, hence an increased
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absorption is observed. The resulting absorption enhancement in the absorptive
layer is expected each time a resonance appears and we expect as well that the
absorption increases when anti-resonances appear. However, it could be shown
that by optimizing the film thickness over a whole wavelength range, the reso-
nant structure can be optimized for a whole wavelength range and absorption
enhancement could be achieved globally. A similar effect could not be observed
for coupling of resonances. The coupling of resonances did not show a global ab-
sorption enhancement, while absorption could be enhanced at certain wavelengths
by coupling specific resonances. If the conclusions can be transferred to the cou-
pling of resonances in spheres that are embedded in energy converting materials
needs to be evaluated in future work.

While the three first papers deal with electromagnetic radiation in the visible re-
gion of light, paper IV considers scattering at small particles in the infrared region
of the electromagnetic spectrum. Both the size of the scatterer and the wave-
length range are in the micrometer range, i.e. the condition of scattering at small
particles is fulfilled. We investigated how deformation of the scatterer affects the
appearance of ripples in the extinction efficiency and found that deformation of the
shape of a spherical scatterer results in suppression and disappearance of ripples,
i.e. resonances, of quasi-spherical scatterers in IR-spectra. Further, classical ray
dynamics was used to evaluate the scattering properties of the systems. We find
that the appearance of chaos accelerates the disappearance of ripples compared
with a non-chaotic scatterer. This has a direct implication for the scatter correc-
tion algorithms developed in the field of infrared microspectroscopy of single cells
and tissues [42–44, 46, 47]. Biological cells are normally not perfect spheres and
it is therefore not expected that their infrared spectra show ripples. The exact
Mie theory exhibits ripples, which may yield modelling artefacts when exact Mie
theory is use in the iterative algorithms developed for scattering corrections. For
instance, the exact Mie theory for cylinders has been implemented in a scattering
correction algorithm [47]. This algorithm is computationally expensive compared
with scattering correction algorithms which use the approximation formulae devel-
oped by van de Hulst [18] to model scattering and absorption [42–47] of spherical
and quasi-spherical scatterers. We recommend to use approximations that are
developed along the same lines as the van de Hulst approximation for a sphere.
Paper IV develops an approximation for a stadium-shaped scatterer. Similar ap-
proximations could be developed for other shapes and implemented in the Mie
scatter correction algorithms. We show in this thesis that the approximations are
sufficient for modelling the respective scatter and absorption signatures.

The work of this thesis was done in close collaboration with the thesis work of
Eivind Seim. The paper [5] connected to the thesis work of Seim introduces chaotic
scattering as a mechanism for enhancing absorption of light in surface-structured
solar cells. The thesis at hand shows that the onset of chaos removes ripples from
the extinction efficiency. Since the total number of resonances is expected to stay
constant when the volume of the scatterer does not change, it would be interesting
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to investigate further how the absorption enhancement that is connected with the
onset of chaos is related to the general field enhancement introduced through the
distribution of resonances in the case of chaos.
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Kohler. Recovery of absorbance spectra of micrometer-sized biological and
inanimate particles. Analyst, 140(9):3273–3284, 2015.

[55] Thomas Van Dijk, David Mayerich, P Scott Carney, and Rohit Bhargava. Re-
covery of absorption spectra from fourier transform infrared (ft-ir) microspec-
troscopic measurements of intact spheres. Applied Spectroscopy, 67(5):546–
552, 2013.

[56] Ilia L. Rasskazov, Nicolas Spegazzini, P. Scott Carney, and Rohit Bhar-
gava. Dielectric sphere clusters as a model to understand infrared spectro-
scopic imaging data recorded from complex samples. Analytical Chemistry,
89(20):10813–10818, 2017.

[57] Sebastian Berisha, Thomas van Dijk, Rohit Bhargava, P. Scott Carney, and
David Mayerich. Bim-sim: Interactive simulation of broadband imaging using
mie theory. Frontiers in physics, 5(5), 2017.

[58] Jonathan Grandidier, Raymond A Weitekamp, Michael G Deceglie, Dennis M
Callahan, Corsin Battaglia, Colton R Bukowsky, Christophe Ballif, Robert H
Grubbs, and Harry A Atwater. Solar cell efficiency enhancement via light
trapping in printable resonant dielectric nanosphere arrays. physica status
solidi (a), 210(2):255–260, 2013.

[59] P. Spinelli and A. Polman. Light trapping in thin crystalline si solar cells
using surface mie scatterers. IEEE Journal of Photovoltaics, 4(2):554–559,
2014.

[60] Brynmor J. Davis, P. Scott Carney, and Rohit Bhargava. Theory of mid-
infrared absorption microspectroscopy: Ii. heterogeneous samples. Analytical
Chemistry, 82(9):3487–3499, 2010.

[61] Eli Yablonovitch. Statistical ray optics. JOSA, 72(7):899–907, 1982.

[62] T Uematsu, M Ida, K Hane, Y Hayashi, and T Saitoh. A new light trapping
structure for very-thin, high-efficiency silicon solar cells. In Photovoltaic Spe-
cialists Conference, 1988., Conference Record of the Twentieth IEEE, pages
792–795. IEEE, 1988.

[63] J. Gjessing and E. S. Marstein. An optical model for predicting the quantum
efficiency of solar modules. Ieee Journal of Photovoltaics, 4(1):304–310, 2014.

[64] David Thorp and Stuart R. Wenham. Ray-tracing of arbitrary surface tex-
tures for light-trapping in thin silicon solar cells. Solar Energy Materials and
Solar Cells, 48(1):295–301, 1997.

[65] J. Gjessing, A. S. Sudbo, and E. S. Marstein. Comparison of periodic light-
trapping structures in thin crystalline silicon solar cells. Journal of Applied
Physics, 110(3):8, 2011.



[66] Hakan Engin Tureci and A Douglas Stone. Deviation from snell’s law for
beams transmitted near the critical angle: application to microcavity lasers.
Optics letters, 27(1):7–9, 2002.

[67] Eugene Hecht. Optics. Pearson, 2015.

[68] Grant R Fowles. Introduction to modern optics. Courier Corporation, 1989.

[69] Albert Einstein. Über einem die erzeugung und verwandlung des lichtes be-
treffenden heuristischen gesichtspunkt. Annalen der physik, 4, 1905.

[70] J.S. Townsend. Quantum Physics: A Fundamental Approach to Modern
Physics. University Science Books, 2010.
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A B S T R A C T

There is a profound duality between rays and waves. In fact, 70 years ago, in the context of quantum mechanics, Feynman showed that rays, properly equipped with
phases and correctly summed, provide exact solutions of the quantum mechanical wave equation. In this paper, constructing explicit, exact ray solutions of the one-
dimensional Helmholtz equation as a model for optically thin solar cells, we show that the ray-wave duality is also exact in the context of the electromagnetic wave
equations. We introduce a complex index of refraction in order to include absorption. This have so far not been treated in the quantum ray-splitting literature. We
show that inclusion of exact phases is mandatory and that a ray theory without phases may result in amplitude errors of up to 60%. We also show that in the case of
multi-layered solar cells the correct summation order of rays is important. Providing support for the notion that rays provide the “skeleton” of electromagnetic waves,
we perform a Fourier transform of the (experimentally measurable) solar cell reflection amplitude, which reveals the rays as peaks in the optical path length
spectrum. An application of our exact ray theory to a silicon solar cell is also provided. Treating the one-dimensional case exactly, our paper lays the foundation for
constructing exact ray theories for application to solar cell absorption cross section in two and three dimensions.

1. Introduction

In the quest for cheaper and cheaper solar cells, the solar cell
community is continuously on the lookout for ways to decrease material
costs. It is well known that in order to produce thinner solar cells with
the same absorption properties as their thicker counterparts, absorption
of optically thin solar cells may be enhanced by the use of nano-layering
or by nano-structuring [1,2]. In order to investigate the nature of the
absorption enhancement of optically thin solar cells by nano-layering or
structuring, full wave calculations have been employed [3,4]. Shape
resonances such as whispering gallery modes in spherical nanos-
tructures have been considered as one possible cause for the absorption
enhancement [5]. As another possible cause for the absorption en-
hancement, the coupling of modes in periodic nano-structures has been
considered [6]. While absorption enhancement by nano-layering and
nano-structuring has been demonstrated both experimentally [7] and
numerically [8], the origins of the absorption enhancement mechan-
isms are not completely understood. Handy tools for investigating wave
propagation and absorption properties of electromagnetic radiation in
complex nano-structures are required for achieving a deeper under-
standing.
In the short wavelength limit, i.e., when the wavelength is small

compared to the size of the structures used for absorption enhancement
(e.g in micro-structured materials), ray tracing has been employed as an
approach for investigating wave propagation and absorption enhance-
ment in solar cells since the 1980s [9–11], when the optical perfor-
mance of various solar cell designs was evaluated using ray-tracing
techniques for the computation of the reflectance, transmittance and
absorption. Since then, several numerical codes [12–19] and methods
were developed, such as the Monte Carlo ray tracing method [20], the
polarization ray tracing technique [21,22], the ray tracing combined
with transfer matrix theory [23] and ray tracing combined with image
processing [17]. Starting with one-dimensional modelling [24], these
methods were later extended to two and three dimensions [25–28].
Ray tracing methods have been shown to explain the trapping of

rays in solar cells. However, ray tracing fails to explain resonance ef-
fects in nano-structured materials such as whispering gallery modes.
The reason for this deficiency is obvious: In order to describe resonance
effects in layered thin films or films with nano-structures, the wave
nature of the electromagnetic radiation needs to be taken into account,
while the classical ray picture in electrodynamics is used to study the
propagation of electromagnetic waves in terms of rays for cases where
the wavelength of the electromagnetic radiation is short compared to
changes of the media in which the electromagnetic radiation is
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propagating. This is not the case for optically thin solar cells with nano-
layers and nano-structures, where the optical properties of the material
change on a scale which is comparable to the wavelength of light.
In the field of quantum theory, a ray theory that takes into account

the wave nature is readily available. In quantum mechanics, the ray-
wave duality leads to the important field of semiclassical methods
[29,30], which attempts to solve the quantum Schrödinger equation on
the basis of classical particle trajectories. Using rays to solve the wave
equations is tempting since it is usually much more straightforward to
solve the ordinary differential equations determining the dynamics and
geometry of rays, than solving the wave equations, which requires the
solution of partial differential equations of continuous media. In order
to obtain an exact result on the basis of rays, the rays need to be as-
sociated with phases; if for each ray the correct phases can be de-
termined, the wave-ray duality is exact and the wave equations may be
solved on the basis of rays. Since in this case, the ray theory solves the
Helmholtz equation exactly, the ray theory can also correctly handle
resonances caused by the wave nature of light. In addition, we in-
troduced a complex refractive index in the ray theory allowing to treat
absorption, which so far has not been introduced in quantum ray-
splitting literature.
Only recently, in the field of solar cells, attempts that include phases

have been reported [31].
In order to increase the understanding of the behavior of light in

nano-layered and nano-structured solar cells, we present a ray theory
that yields an exact description of the behavior of light in one-dimen-
sional systems and allows to explain absorption enhancement due to
nano-layering and nano-structuring.
In order to demonstrate the new theory, we study the optical gen-

eration rate of optically thin solar cells, modeled as vertical stacks of
thin (absorbing) dielectric films, under normal incidence of light. In
sections 2 and 3 we show that in this case, with or without a mirror
behind the stack, Maxwell's vector equations are equivalent with a one-
dimensional scalar Helmholtz equation, which we solve with our exact
ray theory. We will use the scalar theory throughout this paper. In order
to model absorption, we use a complex index of refraction. In section 4
we introduce a hierarchical scheme of summing rays as a convenient
method of keeping track of rays bouncing off of and transmitting
through different dielectric layers of the solar cell. We also show that
including only the simplest rays already yields an excellent approx-
imation of the exact solution of the wave equation. In Section 5 and 6
we show that both summation order and phases are important in our
ray theory. We show in section 7 that the signature of the most im-
portant rays appears as peaks in the Fourier transform of the reflection
amplitude of a flat solar cell. In section 8 we demonstrate how our ray
theory can be used for materials with practical importance within the
solar cell field. In Section 9 we discuss our results; we summarize and
conclude our paper in Section 10.
Our method can be extended for use in two and three dimensions.

The theory describes the optical properties of a device and is based on
the imperative that phases need to be included to arrive at a useful ray
theory.

2. The scalar wave model for a one-dimensional film

In order to develop a ray theory for studying absorption enhance-
ment in optically thin solar cells, we consider one-dimensional systems
in which electromagnetic radiation is propagating towards a region
consisting of one or more parallel layers of different materials. In this
section we will introduce one-dimensional model system that we will
use for illustration throughout the paper. In all cases, we consider the
propagation direction as normal to the surfaces of the materials. Since
we want to develop model systems for optically thin solar cells, we
study cases where one or more of the layers consist of energy-con-
verting materials. We describe the incoming electromagnetic wave by a
plane wave. Since we consider only normal incidence, the system can

be fully described by a scalar wave function, ψ [32].
The first and simplest system we will investigate is a system con-

sisting of a single film. By evaluating the scalar wave function for one
single film, where the material of the film is an energy-converting
material with complex refractive index n= nr+ ini, we can understand
the occurrence of interference maxima and investigate how these are
related to the enhancement of the absorption cross section. The inter-
ference maxima are resonances akin to the whispering gallery re-
sonances that occur in spherical particles used for nano-structuring
solar cells, which lead to an enhancement of the electric field and the
absorption properties of the solar cells.
The reflection probability R at the boundary between two materials

is calculated as Rb=|r|2, where r is the amplitude of the reflected wave
(see Fig. 1). By requiring a continuous scalar wave function and a
continuous first derivative of the scalar wave function at the boundary,
we can derive an expression for Rb for the case illustrated in Fig. 2 [33],
i.e.,

= +
+ +
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r i
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The probability for transmission at the boundary for the system in
Fig. 1, Tb, is given by Tb=|t|2= 1− Rb.
We start by evaluating two simple systems, namely a single film and

a single film with a mirror, as shown in Fig. 2a and b, respectively.
We require that the wave function and its first derivative are con-

tinuous at the boundaries and that the wave function is zero at the
surface of the mirror. We derive the transmission probability T=|t|2

and the reflection probability R=|r|2 for the systems, where t and r are
the amplitudes of the transmitted and reflected plane waves, respec-
tively. For the single-film case, shown in Fig. 2a, the reflection and
transmission amplitudes are given by
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Fig. 1. Schematic description of a half-space problem, where the left half space
is vacuum (n0= 1) and the right half space is material. A plane wave is pro-
pagating towards a boundary between vacuum (n0= 1) and an arbitrary di-
electric material with refractive index n= nr+ ini. The imaginary part ni of the
refractive index is set to zero if the dielectric material is non-absorptive. The
waves are propagating in x-direction, normal to the surface. ψ0 and ψI are the
scalar wave functions in the two regions, k=2π∕λ is the angular wave number
in vacuum, and λ is the vacuum wavelength. r and t are here the reflection and
transmission amplitudes for the plane wave in this system; the amplitude of the
incoming plane wave is set to one.

Fig. 2. Two simple single film systems. (a) A single film in vacuum and (b) a
single film in vacuum with a mirror. The refractive index of the film is given by
n= nr + ini. n0= 1 is the refractive index of vacuum, a is the thickness of the
film.
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where k=2π∕λ is the angular wave number in vacuum, λ is the va-
cuum wavelength, nk is the angular wave number in the film, n is the
complex refractive index of the film, and a is the thickness of the film. If
the film is non-absorptive, i.e., n is real, it is straightforward to show
that Eqs. 2.2a and 2.2b lead to R + T=|r|2 + |t|2= 1, i.e., all elec-
tromagnetic radiation entering the film is eventually leaving the film
again.
In the case a mirror is present (see Fig. 2b), there is no transmission.

Therefore the system can be characterized by the reflection amplitude
alone, which in this case is given by

= +r n nka i nka
n nka i nka

cos( ) sin( )
cos( ) sin( )

.
(2.3)

If the film is non-absorptive, i.e., n is real, it follows immediately from
Eq. (2.3) that R=|r|2= 1, i.e. again all electromagnetic radiation en-
tering the film is eventually leaving the film.
We define the absorption cross section as the fraction of light that is

absorbed and denote it by σ. In the two cases shown in Fig. 2, the film
with and without the mirror, the expressions for σ are respectively
given by

= R( ) 1 ( ), (2.4a)

= +R T( ) 1 ( ( ) ( )). (2.4b)

According to the definition of σ as the fraction of absorbed light, i.e.,
light that does not exit the solar cell, in addition to absorbed light that
leads to beneficial photo current, σ contains all parasitic absorption
processes, for instance the two-photon process [34,35].
The same procedure can be applied for film-systems without mirror.

For a non-absorptive film, σ is zero. For the rest of this paper, we will
focus exclusively on cases where a mirror is placed behind the film/
films in order to model a solar cell system.
In an equivalent solar cell system the absorption cross section is the

total amount of absorbed energy absorbed at a given wavelength λ. This
is the maximal amount of energy that can potentially create electron-
hole pairs at a given wavelength λ. Under normal operating conditions,
if the total amount of absorbed energy is increasing, the number of the
photo-electrons will also increase and this will lead to enhanced effi-
ciency. When the absorption cross section is weighted by the AM1.5
solar spectrum, we obtain the optical generation rate, Gopt. The optical
generation rate Gopt has been introduced to the solar cell field by Ferry
et al. [36]. Since then it is used as the measure of the optical perfor-
mance of various solar cell designs. In our case Gopt is given by

=G A( ) ( ) ( ) ,opt solar (2.5)

where Γsolar(λ) is the spectral weighting term and A is the surface area
of the solar cell. In this paper we will evaluate σ(λ) for our systems in
order to get a fundamental understanding of how the optical resonances
in the energy converting film increase the total amount of absorbed
energy.
For a single film, or a stack of films, with different refractive indices,

it is possible to analytically derive a formula for the absorption cross
section from the probability current. This depends only on the absolute

square of the scalar wave function inside of the film(s). To be specific,
we consider the case of an array of films, described by a space-depen-
dent complex refractive index n(x)= nr(x) + ini(x). The complex re-
fractive index n(x) when the optical or the absorption properties of a
material change. When a stack of films is illuminated from the front and
backed by a mirror, the absorption cross section is given by

= k n x n x x dx2 ( ) ( )| ( )| ,
w

i r0
2

(2.6)

where the stack of films is assumed to be located in the interval
0≤ x≤w and the mirror is located at x=w. The details of the deri-
vation are presented in Appendix B. Since for a single film with mirror
both r and ψ(x) are known explicitly (see Eq. (2.3) and Appendix B), it is
straightforward in this case to show by explicit calculations that Eq.
(2.6) holds (see Appendix C).

3. Exact ray theory for single films

In this section, we will show that it is possible to estimate the ab-
sorption cross section by considering and summing rays. Three ex-
amples of simple rays are shown in Fig. 3.
In order to calculate the total reflection amplitude r we need to sum

up all possible rays in the film [37,38]. Every ray contributes to the
total reflection amplitude and thereby to the absorption cross section
with an amplitude and a phase. The reflection and transmission am-
plitudes of the ray depending on the side of the boundary the ray is
hitting. Denoting by rl and tl the reflection and transmission amplitudes,
respectively, for a ray originating from outside in the vacuum and
transmitting into the film, and by rr and tr the reflection and trans-
mission amplitudes, respectively, for a ray originating from inside of
the film and traveling towards the vacuum, we obtain (see Appendix A):
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It is important to note that the amplitudes, eq. (3.1)–(3.4), remains
exact if the refractive index, n, is complex. We hereby established a ray
model that is able to describe absorption of electromagnetic radiation.
In addition to the amplitudes, we need to include the phase that the ray
collects when it transverses the film, i.e., each time it travels from the
vacuum-film interface to the mirror or from the mirror to the interface.
This phase collected when traveling through the distance a is given by
einka. Further we have to include the phase eiπ [39] caused by the mirror
each time a ray is reflected by the mirror.
To introduce our procedure, we state the contribution to r from the

three selected rays illustrated in Fig. 3. The result is

= + +r r t e e e t t e e e r e e e t ,l l
inka i inka

r l
inka i inka

r
inka i inka

r (3.5)

where the first term is the contribution of the ray illustrated in Fig. 3a,

Fig. 3. Three types of rays encountered in a film-
plus-mirror system. (a) The ray directly reflects from
the surface. This ray does not contribute to the ab-
sorption cross section. (b) The simplest ray that
contributes to the absorption cross section. The ray
enters into the film is reflected from the mirror and
exits. (c) A more complex ray contributing to the
absorption cross section. This ray has two reflections
from the mirror and one internal reflection from the

film-vacuum boundary.
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the second term is the contribution from the ray illustrated in Fig. 3b,
and the third term is the contribution from the ray illustrated in Fig. 3c.
If we include all contributing rays, their total, exact contribution to r is
given by

= +
=

r r t t e e e r e( ) .l l r
i inka i

r
inka2

0

2

(3.6)

By inserting the expressions for rl, tl, rr and tr, and with the help of the
elementary summation formula for the geometric series, it turns out
that r in Eq. (3.6) is equal to r in Eq. (2.3).
Whenever an energy-converting film is present, i.e., whenever

nr > 1, we have |rr| < 1 and the expression for r in Eq. (3.6) con-
verges absolutely. Fig. 4 shows σ for the single film system with a mirror
behind. The solid line is the exact expression for σ, the dashed line is σ
found by the ray model where only a few simple rays are included.
As shown in Fig. 4 very fast convergence is observed even if only a

few of the shortest rays are included. The figure also shows that con-
sidering only the five simplest rays in the system, the analytically cal-
culated absorption cross section can already be predicted near per-
fectly. Fig. 4 illustrates another important aspect, namely that our ray
theory can describe absorption of electromagnetic radiation by in-
cluding a complex refractive index.

4. Exact ray theory for multilayered films: hierarchical
summation scheme

When a system has more than one layer, each ray, upon en-
countering a vacuum-film boundary or a boundary between two layers,
will split into two rays, a reflected ray and a transmitted ray (except the
mirror in our model system). This is called ray splitting [40–42]. With
increasing geometric length, tracking splitting rays becomes an ever
more complex task since each split ray, subsequently, will undergo
splittings itself. Thus, the number of rays in the system increases ex-
ponentially with the number of splittings, i.e., with the geometric
lengths of the rays.
In order to keep track of all the rays, we present a convenient book-

keeping system, called symbolic dynamics [43]. This system is widely
used in the fields of non-linear dynamics and chaos. This symbolic
language consists of an alphabet and simple grammatical rules which
determine the path of a ray unambiguously. The symbolic dynamics of
two film layers with a backside mirror (Fig. 5) has an alphabet that
consists of the three letters (symbols) a, b, c. Each of the letters corre-
sponds to a boundary where the ray will either split or simply reflect.
The grammatical rules are:

1. A word must start with the letter a. If the ray exits the system, the
word must also end in the letter a.

2. Skipping letters is not allowed, i.e., unless the trajectory terminates,
the letter a is always followed by the letter b, the letter b is always
followed by letters a or c and the letter c is always followed by the
letter b, indicating reflection off of the mirror.

Illustrating these rules, we construct the two sample rays R1 and R2
shown in Fig. 5. R1 transmits at a and reflects at b before transmitting
out of the system through a. Thus, the word labeling R1 is aba. We may
be tempted to label R2 as aca, but this violates rule 2. The correct word,
abcbcba, contains information about every boundary crossed.
To define the symbolic dynamics of systems with more films, we

simply use a larger alphabet. If there is no mirror, i.e., transmission
through the system is possible, rule 1 would allow words to end with
the last letter of the alphabet.
The graph in Fig. 6 generates the part of the vocabulary that con-

tains words with seven or less symbols for the two-film system in Fig. 5.
The incoming ray will first hit node a. All a nodes are colored blue to
emphasize that they mark the end of a word. The edges that are con-
necting the nodes are either black or red. A black edge signifies a ray
traveling to the right and a red edge signifies a ray traveling to the left.
A word can easily be read off Fig. 6 by writing down the successive
letters starting from the first node to another blue node.
The computer implementation of this hierarchical summation

scheme uses the number of ray splittings at the boundaries as a measure
of the run time, not the number of rays explicitly. More splitting events
generate exponentially more rays to approximate the reflectance R.
About seven such splittings are needed to approximate the analytic
expression reasonably well as seen in Fig. 7. These seven splittings
generate a set of 64 contributing rays. Allowing more splittings, thus
adding more rays, improves the approximation further.
If photons were classical, Newtonian particles, ray-splitting would

not occur. The only ray allowed according to Newtonian mechanics
would be the ray labeled abcba. Accordingly, this ray is also known as
the “Newtonian ray” [44]. All other rays show ray splitting [40–42].
Since ray splitting is not allowed according to Newtonian mechanics,
these split rays are called “non-Newtonian” [44]. Non-Newtonian rays
have been proven theoretically [40,41,45,46] and experimentally
[42,47–49].
To assess the importance of the (Newtonian forbidden) non-

Newtonian rays compared with the (Newtonian allowed) non-split,
Newtonian ray, we also show the contribution of the Newtonian ray to
R(λ) in Fig. 7. We see that the Newtonian ray alone, although in the
vicinity of the exact result for R(λ), produces a result with very poor
accuracy. Conversely, Fig. 7 shows that the contribution of the split,
non-Newtonian rays is substantial, and that only the added contribution
of the split, non-Newtonian rays produces accurate results.

5. Importance of the correct summation order

As discussed in the previous section, in the case of a single film, the
sum in Eq. (3.6) for the reflection amplitude r is absolutely convergent,

Fig. 4. Absorption cross section σ as a function of the wavelength λ for the
system given in Fig. 2a. The blue line is calculated analytically with Eq. (2.3)
and the ray model with Eq. (3.6) is used when the two (red dashed), three
(green dashed line) and five (purple dashed line) simplest rays are included.
The refractive index of the film in this system is 1.8 + 0.05i and the thickness is
500 nm. The wavelength ranges from 300 nm to 1500 nm. (For interpretation of
the references to color in this figure legend, the reader is referred to the Web
version of this article.)

Fig. 5. Two rays, R1 and R2, in a system with a mirror and two film layers. R1
and R2 are labeled by the symbolic dynamics aba and abcbcba, respectively.
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and the summation order of the rays is irrelevant. Any summation
scheme, as long as all rays are included, will yield the exact value for r.
However, if there is more than one film, the order of summation does
matter. Let

=
=

r A
j

j
0 (5.1)

be the ray representation of the reflection amplitude. If Eq. (5.1) were a
finite sum, the order in which we sum the rays would clearly not
matter. However, this is not the case with infinite sums, such as Eq.
(5.1). Only if

<
=

A| |
j

j
0 (5.2)

is the summation order of the terms in Eq. (5.1) irrelevant and always
yields the correct reflection amplitude. In this case, as discussed in the
previous section, we call the sum in Eq. (5.1) absolutely convergent. If,
however,

=
=

A| | ,
j

j
0 (5.3)

it was shown by Riemann [50] that, depending on the summation order
of the terms in Eq. (5.1), the infinite sum in Eq. (5.1) can be made to
have any prescribed value. This is known as Riemann's Rearrangement
Theorem [51]. In this case the sum in Eq. (5.1) is called conditionally
convergent, and it is necessary to sum it in some prescribed way in

order to obtain correct results.
In Appendix D we show that for our two-film system, for a large

range of dielectric constants, Eq. (5.3) holds, i.e., in these cases our ray
sum in Eq. (5.1) is only conditionally convergent. The correct summa-
tion scheme in these cases is to sum the rays in the order of increasing
path length, where the path length of the ray may either be its geo-
metric length or its optical path length. This summation scheme is not
dictated by mathematics, which does not help us beyond the fact of
stating that in the case of conditional convergence different summation
prescriptions produce different results [51], but interestingly is dictated
by the physical situation. For actual realizations of solar cells there is
always some absorption present, which naturally suppresses the im-
portance of longer rays. Therefore, ordering the rays according to their
importance for r means ordering them according to their path lengths.
We can numerically corroborate the importance of the summation

order by testing for absolute convergence with the hierarchical sum-
mation scheme. We take the absolute value of each term, which is
equivalent to removing the phase completely. Fig. 8 compares the ab-
solute value of the difference between the analytical reflection prob-
ability RA and the reflection probability RHSS, computed according to
the hierarchical summation scheme. Without the absolute value of each
term, i.e., when phases are included, convergence is reached after a
small number of splittings. Without phases, we see that the difference
R R| |A HSS is diverging, numerically corroborating that the sum over
rays is not absolutely convergent.

6. Importance of phases in the ray theory

In this section we emphasize the importance of phases, even in the
case of absorption (which was not included in Sec. 5), by computing
absorption cross sections, with and without phases included, using as an
example the single film with mirror introduced in Secs. 2 and 3.
Comparing the two cases, we show that the ray theory without phases
produces results that contain unacceptably large errors.
In order to demonstrate the importance of the phases, we introduce

the following ray model where phases are not included. Without
phases, instead of being associated with an amplitude, every ray is
associated with an intensity. We set the incoming intensity of the ray to
I0. The simplest ray model we consider retains only the directly re-
flected ray as illustrated in Fig. 3a. We call this ray the ray of zero length,
since it does not enter the energy-converting film, and its optical path
length inside of the film, therefore, is zero. We further assume that the
probability given in Eq. (2.1) describes the amount of light reflected at
the surface of the film. The rest of the light is absorbed in the film. In
this case the absorption depends on the wavelength of the incoming
light only through the wave number, k, as long as the refractive index of
the film is constant for all wavelengths. When we evaluate rays that
travel inside of the film, the intensity assigned to a particular ray de-
creases via Beer-Lambert's Law, and is expressed as

=I I e ,n kx
0 i (6.1)

where I0 is the incoming intensity of the light, which we set to 1, x is the
distance travelled in the film [39,52], k is the wave number and ni is the
imaginary part of the refractive index of the film.
To find the amount of absorbed light, i.e., the absorption cross

section, σ, we need to sum the contributions to the absorption from each
ray. When the ray hit a boundary, a part of it will reflect and a part of it
will transmit. The probability for reflection at a boundary, Rb is given in
eq. (2.1) and the probability of transmission is Tb=1− Rb. Evaluating
σ due to the rays in Fig. 3a and b, the result is

= +( )R T e1 ,b b
n ka2 2 i (6.2)

where a is the width of the film. The expression inside the brackets is
the sum of the intensities of these two reflected rays. When all possible
rays are included (infinitely many), σ is given by

Fig. 6. Schematic of the ray tree algorithm. The interfaces between the mate-
rials II and III are labeled a and b, respectively, and the mirror is labeled c. An
incoming ray always hits a first. At a the ray will split in two. One ray is re-
flected (ray labeled ‘a’) and the other will travel to the right (black edge) to-
wards b. At b it can either go to the left (red edge) and exit, or continue to travel
to the right to the mirror, c. The inset shows the two-layered system that is
considered in this example. (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)

Fig. 7. Absorption cross section σ as a function of the wavelength λ, including
various numbers of split rays, and the shortest non-splitting ray. The hier-
archical summation scheme approximates the analytical result for the film with
two layers (Fig. 5) almost perfectly with only 64 rays or, equivalently, seven
splittings. Including more rays yields an even more accurate result. The non-
splitting ray approximately defines the lower envelope of the exact result.
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We arrive at this formula by summing up all possible rays and by using
the elementary summation formula for the geometric series.
Fig. 9 shows a comparison of the absorption cross section evaluated

with ray models that include and neglect phases, respectively. For the
case in which phases are neglected, we present three different sce-
narios. (1) The horizontal blue line in Fig. 9 is σ computed by including
only the ray of zero length (see Fig. 3a). (2) The red line in Fig. 9 is σ
computed on the basis of the two rays in Fig. 3a and b (Eq. (6.2)). (3)
The green line in Fig. 9 is σ obtained by including infinitely many rays
(Eq. (6.3)). Contrasting these three cases, computed without including
phases, we also show the exact result for σ in Fig. 9, where we have
included infinitely many rays with phases (purple line). The exact result,
with phases included, shows oscillations (purple line), which are not
captured by either of the three cases that do not include phases. As seen
in Fig. 9, σ without phases is monotonically decreasing when the wa-
velength increases (green and red lines), without any oscillations ac-
cording to Eq. (6.1). The result without phases included underestimates
the exact result with phases included, and, according to Fig. 9, the re-
lative error can exceed 60% in the wavelength region shown in Fig. 9.
In the context of absorption cross sections of typical solar cells, an error
of this magnitude is not acceptable. We conclude that for accurate
modelling of solar-cell efficiencies in terms of rays, inclusion of phases
is absolutely essential. Any ray theory, whether applied in the elec-
tromagnetic, acoustic, or quantum domains, is exact only if phases are

included. Neglecting phases may have serious consequences, ranging
from incorrect results to divergent results as demonstrated in Fig. 8 of
Sec. 5.

7. Signatures of rays in the Fourier transform of the reflection
amplitude

A Fourier transform of the reflection amplitude r(k) allows us to
reveal the signatures of the rays whose combined contributions result in
the exact functional form of r(k). If the entire spectral range is acces-
sible to us, we obtain this information in the form of the length spectrum

=L r k e dk( ) 1
2

( ) .iLkF (7.1)

To illustrate, let us use the exact, explicit formula 3.6 for the reflection
amplitude r of a single film with mirror. We obtain
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where δ(x) is Dirac's delta function. We see that L( )F is a series of
sharp peaks at integer multiples of the optical path length 2na, where
each peak corresponds to the optical path length of a certain ray inside
of the film. Thus, every single ray that contributes to Eq. (3.6) is re-
presented as a sharp peak in L( )F . This even includes the “ray of zero
length”, which is the ray that reflects with amplitude rl off of the front
surface of the film. Since this ray does not enter the film, its optical path
length in L( )F , naturally, is zero. The weights of the δ terms in Eq.
(7.2) correspond to the amplitudes that the rays pick up when crossing
a boundary or being reflected from a boundary. Thus, the length
spectrum of r contains the complete optical information of the system
under consideration. This is not surprising, since the Fourier transform
in Eq. (7.1), a function in L space, is complementary to the ray re-
presentation, Eq. (3.6), of r in k space. Unfortunately, ray information
can be extracted so cleanly from r(k) with Eq. (7.1) only if the in-
tegration range is infinite. In actual applications in solar cells, we are
restricted to a finite spectral range, which turns the exact length spec-
trum L( )F into an approximate length spectrum
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Applied to our single-film example, this evaluates to
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where sinc(x)= sin(x)∕x is the “sinc-function”. We see that in the case
of a finite spectral range the sharp δ-function peaks are replaced by
smooth, oscillatory sinc-functions, which produces “Gibbs ringing” [53]
in L( )F that produces copious “extra peaks” in L( )F and may thus
obscure the peaks that correspond to rays. The ringing may be reduced
by the use of a window function [54], i.e., a function w(k) that softly
“switches on” and “switches off” the integration at k1 and k2 according
to w(k1)=w(k2)= 0, w′(k1)=w′(k2)= 0, w k k( )/ 11 1

2 ,
w k k( )/ 12 2

2 .
As an illustrative example we present the Fourier transform of the

reflection amplitude of a three-layered film with constant, non-dis-
persive indices of refraction, n1= 1.5, n2= 1.9, n3= 2.3, and film
widths a1= 500 nm, a2= 2000 nm, and a3= 1000 nm, respectively. In
this example we chose k1= 2π∕1200 nm and k2= 2π∕5 nm. We used
the window function

=w m
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2
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Fig. 8. Absolute value of the difference between the reflection calculated by the
analytical expression, RA, and the hierarchical summation scheme, RHSS, is
converging when the phase of the rays is included. The same calculation will
diverge if it is done without phases.

Fig. 9. Absorption cross section, σ, as a function of wavelength,λ, in the range
300 nm≤ λ≤1500 nm, for a single film with refractive index n= 1.8 + 0.05i,
a thickness of 500 nm, and a mirror on the backside of the film. The blue line is
σ, including only the reflected ray of zeroth length (see Fig. 3a). The red line is
σ, including only the two simplest rays (see Fig. 3a and b, calculated with Eq.
(6.2). The green line is σ, including infinitely many rays without phases, cal-
culated with Eq. (6.3), and the purple line is σ, including infinitely many rays
with phases. The purple line is calculated with the ray theory presented in Sec.
3. (For interpretation of the references to color in this figure legend, the reader
is referred to the Web version of this article.)
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called the Welch window function. Here m is an integer variable that
corresponds to the grid used in the calculations. If we are using M
different values of k, m takes the values 0≤m≤M−1. Using no
window (box window) shows Gibbs phenomenon very clearly. The re-
sulting length spectrum of this three-layer system is displayed in
Fig. 10. In general, a larger Fourier peak indicates a more important
component in a Fourier series. Hence, the heights of the peaks in Fig. 10
directly relate to the importance of the contributions of the corre-
sponding rays to r. The peaks labeled a-f in Fig. 10 correspond to the
rays illustrated in (a) - (f) of Fig. 10, respectively. The six tallest peaks
correspond to rays labeled by the words aba, abcba, abcdcba, abcbcba-
baba, abcdcdcbcba, and abcdcdcdcdcba, respectively. The peaks in
Fig. 10 are located at the optical path lengths of the rays, i.e., they are
located at the linear combinations 2ν1n1a1 + 2ν2n2a2 + 2ν3n3a3, where
νj, nj, and aj are the repetition number, index of refraction, and width of
layer number j, respectively.
As shown in this section, whenever we have r(k), either analytically

or numerically calculated, or experimentally determined, a Fourier
transform of r(k) reveals the peaks of the corresponding multi-layer
system, a technique we call ray spectroscopy. The peak heights will tell
us which of the rays are the most important in determining the re-
flection amplitude r, which, in turn, determines the absorption cross

section of the corresponding solar cell. As shown in Fig. 10, the peak
height is an exponentially decreasing function of optical path length,
which means that only a few of the shortest rays are necessary to de-
termine r(k) with sufficient accuracy to be useful for system optimiza-
tion. This, in turn, enables us to design and optimize solar cells in a
completely new way on the basis of a few important rays, which implies
a very small parameter space to be searched for system optimization.

8. Example with silicon

To provide an example of the ray-wave equivalence and the hier-
archical summation scheme, we analyzed a three-layer simplification of
a five-layer optically thin, epitaxial crystalline silicon solar cell using
experimentally determined indices of refraction [55–58]. Fig. 11 shows
the layer structure for these two models. The intent with the simple
three-layer design is to demonstrate the concepts described in this
paper applied to a system with material constants of practical im-
portance. However, it should be noted that solar cells with co-planar
structure are mainly used to provide an example. Commercial solar cells
usually have some kind of surface structure to lower the reflectivity.
Since both the two amorphous silicon (a-Si) layers and the two

crystalline silicon (c-Si) layers in the experimentally realized solar cell

Fig. 10. Top frame: Finite-range Fourier transform (approximate length spectrum) L( )F of the exact r(k) of a three-layer film system with mirror with parameters as
specified in the text. L( )F shows distinct peaks, labeled (a)–(f). The rays corresponding to these peaks, including their symbolic-dynamics labels, are illustrated in
the six frames (a)–(f), below the top frame, respectively. These six rays make the most important contributions in the ray-representation of r(k) of this system.

Fig. 11. Multilayer solar cells with mirror. (a) Experimentally realized thin epitaxial crystalline silicon solar cell consisting of five layers [55]. (b) Three-layer
simplified model of the experimental system shown in (a), obtained by replacing layers with different doping but approximately the same index of refraction by a
single layer. The three layers are, from top to bottom, 70 nm ITO, 21 nm amorphous silicon, and 2000 nm intrinsic silicon, respectively.
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differ only in their doping, and since we for now neglect the doping-
dependent free carrier absorption, we modeled this solar cell in terms of
a three-layer system by collapsing the two a-Si layers and the two c-Si
layers into a single layer, respectively.
Fig. 12a shows a comparison between the analytical result (red line)

for the absorption cross section σ and the result produced by the hier-
archical summation scheme (blue line). In the lower wavelength re-
gime, σ is perfectly approximated by the hierarchical summation
scheme including 18 splittings or 65,537 rays. Only from 750 nm on do
we start to see some deviations. This demonstrates the complexity of a
three-layer film in terms of its ray dynamics, and highlights the power
of the hierarchical summation scheme even in the case of dispersive
indices of refraction.
In order to obtain the optical generation rate [59], Eq. (2.5), we

multiply σ with the AM1.5 solar spectrum, Γ. The result is displayed in
Fig. 12b for both the analytical expression (red line) and the hier-
archical summation scheme (blue line), corresponding to the two cor-
responding cases shown in Fig. 12a, respectively.
Once more, we see excellent agreement between optical generation

rate obtained on the basis of the analytical and hierarchical summation
scheme results.

9. Discussion

As shown in section 3, there is a profound duality between waves
and rays. Rays are governed by ordinary differential equations, de-
scribing particle motion, while wave fronts are the solutions of con-
tinuous wave equations expressed in the language of partial differential
equations. This duality is exploited in many fields of physics that deal
with waves. In optics, e.g., it leads to the important field of geometric
optics [60] in which one attempts to obtain an accurate description of
the passage of light through various optical components by using a ray
picture, side-stepping the more involved solution of Maxwell's wave
equations [39,61]. There are many examples where the wave-ray
duality is exact (see, e.g., [30]) and may be exploited to advantage. The
most important example is Feynman's path integrals [62], which solve
the full wave-mechanical problem of quantum mechanics exactly by
summing over all possible classical rays. Another example of exact ray
solutions to the corresponding wave problem is quantum mechanics
with energy-scaling step potentials in one dimension [63–65]. Since the
quantum step-potential problem and the electromagnetic (E&M) opti-
cally thin solar-cell problem are formally identical problems, one of the
intentions of this paper is to transfer and adapt methodology from the
quantum chaos community in the field of one-dimensional energy-
scaling step potentials and dressed quantum graphs [64,65] to the solar-

Fig. 12. a) A comparison of the absorption cross section σ calculated from an analytic expression and with a finite number of rays, using the hierarchical summation
scheme (HSS). 18 splittings produce 65,537 rays and gives a good approximation to the analytic expression. b) When the AM1.5 solar spectrum [59] is taken into
account, we get the optical generation rate, Gopt.
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cell community, who is concerned with the solution of Maxwell's
equations for stacks of layers of anti-reflection coatings on top of en-
ergy-converting materials. We note that, so far, only the bound-state
problem has been studied extensively in the context of dressed, scaling
quantum graphs, which, in the optical case, would correspond to the
presence of two mirrors, one at the front and one at the back of the
stack of films. The scattering problem, as studied in this paper, has to
our knowledge not yet been studied in the context of dressed, scaling
quantum graphs.
For the one-dimensional case we derived the exact expression for

the absorption cross section, σ, of the energy-converting material. When σ
is weighed by the solar spectrum as the spectral weighting term, the
optical generation rate is obtained. This brings out the connection be-
tween the structure of the wave function ψ and the absorption. By
evaluating σ we can engineer our system to increase the absorption, and
thus the absorption cross section, of the system.
We showed the importance of including phases in our ray theory

with the help of the following two-step method. First, we include the
exact phases of the rays in our one-dimensional model, which we take
as consisting of a single film. In section 3 we demonstrate that this
yields the exact solution of the Helmholtz equation. Then, we evaluated
the ray sum for this one-dimensional systems setting all phases to 1. We
showed in Section 5 that the resulting, incorrect ray theory cannot
handle the resonances and in addition predicts a spectral optical gen-
eration rate that is up to 60% off. We are convinced that this ob-
servation carries over to any ray tracing in two and three dimensions,
which means that in order to be confident in the accuracy of a ray-
tracing result, phases must be included. Otherwise, as shown in our
paper in the one-dimensional case, one should be prepared for large
errors in the predictions of a ray theory that omits phases.
For several of our model systems, including our example of the lab

silicon cell discussed in section 8, we showed that including only a few
rays in the ray sum already gives a good approximation of the ab-
sorption cross section (see, e.g., Fig. 4. This observation is important
since, in principle, an infinity of rays needs to be summed over in order
to obtain exact results, and if the convergence were slow, this would
result in an enormous number of terms to be summed, partially, or
totally, cancelling out the advantage in computational speed of rays
over waves. That only a few dominant rays already determine the final
result with good accuracy is particularly important in two and three
dimensions, since, according to the increased dimension, the set of rays
that needs to be summed over is much larger.
Since our ray theory is exact, it works for all refractive indices, n.

This includes all n typically encountered in solar cells, where complex n
indicates an absorptive material. A strength of the ray theory is that the
refractive index can have any value and is not limited to only small
values of real and imaginary parts. Our ray theory is therefore applic-
able to any solar cell material. Including the temperature dependence of
its index of refraction. In linear approximation, as a function of tem-
perature T, we can write

= +n T n T T T( ) ( ) ( ),0 0 0 (9.1)

where n0 is the complex index of refraction at a reference temperature
T0 and β is the complex temperature coefficient, combining the two
temperature coefficients for the real and imaginary parts of the index of
refraction. Since our theory is exact for all indices of refraction, our
theory can accommodate exactly the temperature dependence of the
index of refraction, described by the temperature coefficients. In addi-
tion, since our complex index of refraction models the effects of the
band gap and any gain and loss mechanisms, their temperature de-
pendence, via the complex index of refraction, is included as well. We
would also like to point out here that complex indices of refraction have
so far not been treated in the quantum ray-splitting literature. Therefore
our paper is the first to show that a complex index of refraction does not
invalidate the exactness of the ray theory.
In our theory the boundary conditions between the vacuum and

dielectric films, and between different dielectric films, are treated ex-
actly, without any approximations. Only the boundary condition be-
tween the energy-converting dielectric film and the mirror is idealized,
assuming 100% reflection. This assumption is not necessary since the
mirror can be treated as another dielectric layer [39] for which our
theory is exact.
Two-dimensional materials are of great current interest (see, e.g.,

[66,67]). Since the dielectric properties of these materials have already
been measured [68], reflection and transmission amplitudes of these
two-dimensional materials can be computed. Once these amplitudes are
known, our theory is applicable to these materials and stays exact.
We do not hesitate to point out that for one-dimensional systems

wave calculations are cheaper than ray calculations. For one-dimen-
sional multi-layer systems, the transfer matrix method [69] can be used,
which is fast and includes absorption. Even in two dimensions, solving
the wave equation might still be cheaper and faster than applying the
ray theory. In three dimensions, however, supported by the fact that an
extensive literature on ray-tracing in three dimensions exists
[15,16,27,28], we believed that ray methods will have an edge, in
particular when constructed with phases included, which renders them
exact.
In addition to paving the way toward an exact and efficient ray

theory in three dimensions, the emphasis of this work is to present a ray
theory that can be used to understand the different mechanisms that
may be used to improve the absorption cross section. The fact that only
a few rays describe the absorption cross section, σ, of the system is
encouraging since only a few parameters (rays) need to be optimized
for optimizing the entire system. Consequently, there are two ways in
which classical ray calculations can be used in the context of solar cells:
(1) As a predictive tool used to predict the outcomes of wave calcula-
tions (predictive direction; forward model) and (2) as a means to un-
derstand the results of wave calculations, in particular to illuminate and
illustrate the mechanisms by which enhancement of the absorption
cross section is achieved (analysis direction).
In the case of a single film, we showed in section 5 that the ray sum

is absolutely convergent. Therefore, the terms in the sum may be
summed in any order. In the case of stacks of two or more films,
however, we showed in section 5 that the resulting ray sum is only
conditionally convergent. In this case the order of summation is im-
portant, since, according to Riemann [50,70], any result can be ob-
tained from a conditionally convergent sum by cleverly re-ordering the
terms. In section 4 we present a hierarchical scheme according to which
the rays in a multi-layer system can be summed in correct order.
The dominant rays describing the system can be found by per-

forming the Fourier transform of σ, Thus, the Fourier transform pro-
vides us with the possibility of extracting ray information from σ. It is
important to use a windowed Fourier transform (requiring a switching
function) to eliminate the Gibbs ringing, which produces spurious peaks
in the Fourier transform that do not correspond to rays. We found that
rays are connected to the absorption cross section. The longer the rays,
the larger the absorption cross section. The Fourier transform gives us
the ability to study the dominant rays. By increasing the dominance of
the long rays, which have the largest contribution to the absorption, it
is possible to design solar cells to have an increased absorption cross
section.
In section 8 we study a realistic system with a refractive index that

exhibits dispersion. We showed at even dispersion is no obstacle to our
theory; it still provides us with the correct absorption cross section.
Sunlight is incoherent and the question arises whether our results,

derived for coherent light, are relevant for illumination of solar cells
with incoherent light. We answer this question in the affirmative, since
what we evaluate is the absorption cross section, which is defined for a
sharp frequency, associated with an infinite coherence length. Another
way to see this is the following. On the microscopic level, it is in-
dividual photons that strike the solar cell and interact with it. While
different photons certainly have different frequencies, each individual

M.A. Brandsrud et al. Physica E: Low-dimensional Systems and Nanostructures 105 (2019) 125–138

133



photon has a sharp frequency and a corresponding wave function that is
the solution of the optical Helmholtz equation. Thus, at each individual
frequency, it is indeed the Helmholtz equation that governs the ab-
sorption of photons and thus determines the absorption cross section.
The total optical generation rate is then obtained by a simple integral
over the absorption cross sections weighted with the solar spectrum.
Thus, our theory, despite the fact that sun light is incoherent, works for
all film thicknesses.

10. Conclusions

In this paper we have shown that the ray theory is exact in one
dimension. Our results are important since they pave the way to the use
of exact ray tracing in three dimensions, which allows for both in-
cluding textures and other scattering surfaces, as well as oblique in-
cidences of sunlight.
We also showed several other facts that are important for the ex-

tension of the ray theory to three dimensions. We showed that the
summation order of the rays is important and that it is dangerous, al-
though tempting, to sum sub classes of rays to infinity, and then add the
sub classes results. We showed explicitly that this will yield incorrect
results.
An important result we obtained is that phases must be properly

computed and included with each ray that is used to compute reflection
probabilities and the absorption cross section. Without including the
phases, as is sometimes done in current three-dimensional Monte-Carlo
simulations of ray tracing in solar cells, we showed that an error of up
to 60% and larger can be incurred.

We also showed that including only a few rays in the sum over rays
gives quite accurate results, provided the phases are also correctly in-
cluded. This is of the utmost importance for three-dimensional appli-
cations since, as a consequence of ray splitting, as we showed in Section
5, the number of rays explodes exponentially in the lengths of the rays
that need to be included to obtain converged results with acceptable
accuracy. We also showed that the rays are “real” in the sense that their
signatures can readily be seen in the Fourier transform of the reflection
probability as peaks in the length spectrum.
Since our theory is exact, it works for all refractive indices n, even if

n is complex, which includes indices of refraction typical for solar cell
materials. We showed this explicitly in Section 8, where we discuss the
application of our exact ray theory to an example of a silicon solar cell.
Extension of our theory to two and three dimensions is straightforward
and provides the basis for future work on the application of exact ray
theories for the computation of the absorption cross section of solar
cells of practical importance.

Acknowledgement

This work was supported by the grant “Development of a new ray
model for understanding the coupling between dielectric spheres for
photovoltaics with higher efficiency” - No: 250678 financed by The
Research Council of Norway.
The contributions from Maren Anna Brandsrud and Eivind Seim are

considered to be equal, thus the first author and second author was
decided by alphabetical order.

Appendix A. Reflection and transmission amplitudes

In order derive the exact ray model, we need to include the phases. The phases are described as below:
To obtain the proper phases for reflection and transmission of a ray at the left edge of a material, we consider the potential shown in Fig. A.1.

Fig. A.1. When a ray is coming from the left and goes from region I (vacuum) to region II (material with refractive index n), the ray will split into a transmitted and a
reflected ray at the boundary. The amplitudes of this rays are given by the reflection and transmission amplitudes, rl and tl.
Coming from the left, out of region I (x < 0), a ray encounters the left edge of region II at x=0. It gets reflected back into region I with

reflection amplitude rl, and gets transmitted into region II with amplitude tl. The subscript l stands for “left”. In region I it is vacuum. In order to find
the correct phase of the amplitude, we need to use the wavenumber of the corresponding wave and k is given by 2 , where λ is the wavelength. In
region II, the wavenumber of the corresponding wave is given by kII= nk where n is the refractive index in region II. The wavefunction in region I
and II are:

= +e r e ,I
ikx

l
ikx (A.1)

= t e .II l
ik xII (A.2)

Using the continuity of the wavefunction and its first derivative at x=0, we obtain:
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When the wave is coming from the right, the ray will encounter the boundary as shown in Fig. A.2.

Fig. A.2. Reflection and transmission amplitudes, rr and tr, respectively, for a ray incident from the right (out of region II, i.e., x > 0).
The wavefunctions are
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Again using continuity and the continuity of the first derivative gives us
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Appendix B. Integral formula for the spectral optical generation rate

In the scalar one-dimensional theory, the radiative flux, up to a constant, is defined by

=j
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Since, according to Fig. 1, the incident radiation is described by the plane wave ψin= eikx, the flux of the incident radiation is
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Since, according to Fig. 1 the reflected radiation is described by ψrefl= re−ikx, a calculation analogous to Eq. (B.2) yields

= = <j r k Rk| | 0.refl
2 (B.3)

The total flux on the left-hand side of the boundary is thus

= + =j j j k Rk.in refl (B.4)

In terms of flux, the reflection probability R is defined as
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j
j

r| | ,refl

in

2

(B.5)

which is consistent with our earlier definition Eq. (2.1) of the reflection probability above. We now turn to the wave equation, i.e.,
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Taking the complex conjugate, we arrive at
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From Eqs. (B.6) and (B.7) we obtain
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We can also write the left-hand side of Eq. (B.8) as
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where we used equation Eq. (B.1).
We now specialize to the situation shown in Fig. 2b, i.e., the film with mirror. For this situation, we now integrate Eq. (B.9) with Eq. (B.8) over

the width of the film to obtain
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Therefore, we now obtain
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a

i r0
2

(B.11)

and

= =R k n n dx1 2 | | .
a

i r0
2

(B.12)
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Appendix C. Equivalence of the 1-R with the spectral optical generation rate

In this appendix we demonstrate that the two different approaches presented in section 2 lead to the same formula for the absorption cross
section σ. For a single film on a mirror (Fig. 2a) the wavefunction ψ inside the film is

=
+
nk x a

nka in nka
2 sin[ ( )]

sin( ) cos( )
,

(C.1)

where a is the film thickness, n is the complex refractive index and k is the wavenumber. The absorption cross section is

= k n n dx2 | | .
a
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This can also be written as
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where the prefactor contains
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Evaluation of the integral is straightforward and results in

+
n n ka n n ka2 [ sinh(2 ) sin(2 )].r i i r2 2 (C.5)

To complete our task, we have to show that r1 | |2 from the scalar wave model produces the same result. The reflectivity r| |2 is

= +r n nka i nka
n nka i nka

| | cos( ) sin( )
cos( ) sin( )

,2
2

(C.6)

which can be rewritten as

= + + +
+

r n n n n| | ( ) ( ) .r i i r2
2 2

2 2 (C.7)

Inserting this together with γ, δ, ε, and ζ into r1 | |2 yields exactly the same result as in Eq. (C.5).

Appendix D. Proof of importance of the summation order

In this Appendix we show that for our two-film system and for a large range of dielectric constants, Eq. (5.3) holds, i.e., in these cases our ray sum
in Eq. (5.1) is only conditionally convergent. We show this by observing that if the sum in Eq. (5.3) is already infinite for a subclass of rays, it is
certainly infinite when summing over all rays, since all the terms not taken into account are positive. The subclass we focus on consists of rays that
make p right reflections on the vacuum/film interface and make q right reflections on the film/film interface (see Fig. D.1). We also exclude any left
reflections on the film/film interface, which uniquely defines our subclass of rays. Three examples of rays in our subclass are shown in Fig. D.1. All
three rays have p=1 and q=2, and they contribute the same amplitude to r in Eq. (5.1). They differ only in their sequence of bounces. This induces
degeneracy in our ray sum. In fact, any class of rays, characterized by a given p and q, is +( )p q

p fold degenerate, where +( )p q
p is the binomial

coefficient [71]. The total contribution ρ of all of the rays of our subclass to the total reflection amplitude r is

= +

= =

+ + + + +p q
p

t t r r e ,
p q

p p q ik p n a p q n a

0 0
1
2

2
2 2

1 2
[2( 1) 2( 1) ]1 1 2 2

(D.1)

where t1 and r1 are transmission amplitude and right-reflection amplitude at the vacuum/film interface, t2 and r2 are transmission amplitude and
right-reflection amplitude at the film/film interface, a1 is the width of film 1, a2 is the width of film 2, and n1 and n2 are the refractive indices of films
1 and 2, respectively. To check whether the double sum in Eq. (D.1) is absolutely convergent, we need to check whether

= +

= =

+p q
p t t r r| | | | | | | |

p q

p p q

0 0
1

2
2

2 2
1 2

(D.2)

is finite or infinite. Defining x=|t2|2|r1| and y=|r2|, we may write Eq. (D.1) in the form

= +

= =
t t p q

p x y| | | | ,
p q

p q
1

2
2

2

0 0 (D.3)

and since t1 and t2 are constants, it is sufficient to check the double sum

= + > >
= = = =

p q
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p q

p q

p

p

p
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0 0 0 1 (D.4)
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For the first inequality we used the fact that all terms in the sum are positive, and that, therefore, including only the diagonal terms in the sum
provides a strict lower bound for the value of the sum, and for the second inequality we used the fact that >( ) m2 /p

p
m2 2 , which is straightforward to

show using the doubling formula for Euler's Γ function [71]. Analyzing the result in Eq. (D.4), we see that the sum over p converges for xy < 1∕4. In
this case, therefore, we cannot decide whether ρ″ is finite or infinite. For xy=1∕4, however, the last sum in Eq. (D.4) is the harmonic series, which
diverges [71]. Therefore, for xy=1∕4, we definitely have ρ″ =∞, which implies that in this case Eq. (5.1) is only conditionally convergent. Since for
all xy > 1∕4 the harmonic series provides a lower bound of the last sum in Eq. (D.4), we also have ρ″=∞ for all xy > 1∕4. It follows that the ray
sum in Eq. (5.1) is only conditionally convergent in all cases for which z=|t2|2|r1r2|≥ 1∕4. Finally, we have to answer the question whether
z≥1∕4 is possible at all. We note that |r1| may freely range between 0 and 1, while |t2|2|r2| can range only between 0 and 2/(3 3 ), which is
obtained by observing that |t2|2= 1− |r2|2 and subsequently determining the maximum of the function w=(1− |r2|2)|r2|. This implies that z may
range between 0 and >2/(3 3 ) 0.38, which overlaps with z > 1∕4. Thus, we have proved that an entire range of cases exists in which Eq. (5.1) is
only conditionally convergent. In these cases of conditional convergence we are not allowed to sum rays in arbitrary order. As discussed in Sect. 5, in
order to obtain correct results, we have to sum the rays in the order of increasing path length.

Fig. D.1. Three ray trajectories that belong to the same class, R1,2, and contribute with the same amplitude to the reflection amplitude of the film system. They differ
only in the order of right-reflections on the vacuum/film and film/film interfaces. (a) The ray reflects inside the second film, then reflects inside the first film and
reflects for the second time at the film/film interface and leaves the system. (b) The ray reflects once at the vacuum/film interface then enters the second film and
reflects twice on the film/film interface. (c) The ray enters the second film, reflects twice on the film/film interface, enters the first film and reflects once on the
vacuum/film interface.
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ABSTRACT
During recent years, ray tracing has frequently been used to study the absorption characteristics of
structured solar cells. However, wave properties such as absorption enhancement due to resonances
in optically thin solar films, cannot be explained by pure classical ray models. Here we present an
exact three-dimensional ray model for oblique incidence of a plane electromagnetic wave on a thin
film and show that the resonant structure of the absorption cross section calculated from our ray model
is identical to exact calculations by electromagnetic wave theory. Both parallel and perpendicular
polarized light are described exactly by the ray model presented. We validate the resonant structure
of the absorption cross section of our ray model by an experimentally realized layered film, where
we obtain perfect agreement between experiment and theory. We demonstrate further that for a beam
with a finite beam waist, in accordance with Beer-Lambert’s law, absorption occurs along the path
of the beam, while, in the case of a plane wave incident on an optically thin film, and contrary to
Beer-Lambert’s law, absorption occurs along the axis perpendicular to the surface of the film.

1. Introduction
In optical systems where the wavelength is smaller than

the structures applied to the surfaces, geometrical optics ap-
proaches have been successfully applied for evaluating and
understanding the absorption efficiency of materials. Geo-
metrical optics approaches take into account the path length
of optical rays, and absorption properties are estimated for a
large number of rays calculating the decay of the intensity of
the rays due to absorption. The intensity decay is achieved
by attenuating the rays according to the Beer-Lambert’s law.
Efficient absorption is an important feature for solar cells: an
efficiency increase is obtained when a large number of the
incoming light rays can be trapped in the solar cell and be
effectively absorbed by the cell before they leave it [1, 2, 3].

In systems with structures that are of the same size as the
wavelength of the incoming light, wave resonance phenom-
ena occur. Examples of such systems are optically thin solar
cells, such as thin film solar cells, as well as solar cells made
from epitaxially grown thin silicon foils. Since wave reso-
nance phenomena are due to the wave nature of light, a sim-
ple geometrical ray-optics approach is not sufficient tomodel
them. In the field of quantum chaos, an approach based on
classical trajectories and rays in the corresponding classical
systems has been used extensively to study and explain wave
properties of quantum systems. Especially in the area of
quantum chaos, where the phase space of the corresponding
classical systems shows chaotic behavior, ray models have
been used for understanding the inherent properties of the
systems. Remarkably, the ray models of quantum chaos sys-
tems can explain quantum (wave) properties of the systems

∗Corresponding author
maren.brandsrud@nmbu.no (M.A. Brandsrud)

ORCID(s):

[4, 5]. In order to include the wave properties of the system
in the ray model, each ray is assigned a phase in analogy
to the Feynman formulation of quantum physics [6]. One-
dimensional quantum problems can be described exactly by
such ray models [7, 8, 9]. For two- and three-dimensional
systems that show chaotic behavior, approximation formu-
las have been calculated based on semi-classical formulas
that take into account special trajectories and rays of the
systems including phase properties of the rays. For exam-
ple, for so-called quantum ray-splitting billiards, the density
of states can be calculated taking the phenomenon of ray-
splitting fully into account [10, 11, 12, 13, 14].

When an electromagnetic wave front of a plane wave
is perpendicularly incident on a plane ray-splitting surface,
such as the surface of a solar cell or a ray-splitting bound-
ary between layers in solar cells, we can consider the sys-
tem as an effectively one-dimensional system. We have re-
cently presented an exact ray model for the perpendicular
incidence of electromagnetic radiation on a system of ray-
splitting boundaries. Our ray model takes into account the
phases and describes exactly the wave properties of the light
in effectively one-dimensional systems, i.e. layered optically
thin solar cells with perpendicular incidence [15]. The ray
model describes the interference properties and the absorp-
tion efficiency of layered systems, such as layered solar cells,
exactly. We presented an approach for calculating the optical
generation rate of layered solar cells analytically and numer-
ically for any layered system with perpendicular incidence.

The description of three-dimensional electromagnetic
wave propagation in layered surfaces for the general case
of oblique incidence is of high interest. Planar optical
structures can be exactly described by electromagnetic
wave theory or by the transfer matrix (S-matrix) method
[15, 16, 17, 18, 19]. Ray simulations are frequently used
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to evaluate the efficiency of solar cells, and oblique inci-
dence is the generic case for most solar cells under most
operating conditions. In the paper at hand, we present a
ray model that describes exactly the absorption and res-
onance properties for the situation when a plane wave is
incident on a three-dimensional layered system with plane
surfaces and with an arbitrary angle of incidence. This
three-dimensional system is translationally invariant in one
dimension and can thus be simplified to a two-dimensional
problem. The proposed model is an extension of the ray the-
ory presented in [15], i.e., a ray theory for one-dimensional
systems, which is equivalent with a three-dimensional sys-
tem that is translationally invariant in two directions, with
absorption. The model presented in this paper is valid for
flat, three-dimensional, optically thin solar cells, where a
plane wave propagates toward the system from an arbitrary
incoming direction. Since the ray picture is frequently used
to describe interference properties in physics text books,
we take the opportunity to highlight general aspects related
to the derivation of resonance patterns in thin films with
oblique incidence that are often overlooked in physics text
books.

In Section 2, we briefly review our theory of normal inci-
dent light in order to set the stage for our main topic, the case
of oblique incident light. We discuss this case in two stages.
In Section 3, we treat the case of real index of refraction (no
absorption), followed by the case of complex index of re-
fraction (absorption included), discussed in Section 4. Sec-
tion 5 discusses absorption in the case of a Gaussian beam.
In Section 6, we validate our ray model by comparison with
measured data.

2. Ray theory for describing normal incident
light
In the following, we develop a ray model for the gen-

eral case of oblique incidence. To introduce the reader to
the concept of a ray model that can describe wave proper-
ties of an optical system, we start the discussion by consid-
ering perpendicular incidence. As model systems we use
the systems shown in Fig. 1. The model systems consist of
(a) a single film with a mirror on the backside of the film
and (b) a single film without a mirror. A ray model for per-
pendicular incidence is an effectively one-dimensional prob-
lem and can be described exactly by a scalar wave equation
[15]. The scalar wave equation is equivalent to exact three-
dimensional electromagnetic theory and independent of po-
larization since both polarization directions are equivalent
for normal incident light. For system (a) the reflection am-
plitude, r1dfm, can be calculated exactly as

r1dfm = −
n cos(nka) + i sin(nka)
n cos(nka) − i sin(nka)

, (1)
where n is the complex refractive index of the film, k is the
angular wave number of the incoming plane wave, and a is
the thickness of the film. Themirror is assumed to be perfect.

For the system in Fig. 1b, the reflection and transmission
amplitudes, r1df and t1df , respectively, can be calculated

n0 n
Mirror

(a)

n0 n n0

(b)
Figure 1: (a) When a plane wave is propagating towards a
single film with a mirror behind all of the light will be reflected
in case of a non-absorptive film. In the case of an absorptive
film, the light is partly absorbed and partly reflected. (b) In
the case where there is no mirror behind the film, the light is
partly reflected at the surface and partly transmitted. If the
film is absorptive, a part of the light is absorbed by the film as
well. For both situations, the refractive index outside of the
film is n0 and the refractive index of the film is n, where n > n0.

(a) (b)
Figure 2: Frame (a) shows the three simplest rays that con-
tribute to the reflection amplitude in Fig. 1a. Frame (b) shows
the three simplest rays that contribute to the transmission and
reflection amplitude for the system shown in Fig. 1b.

exactly as

r1df =
i(n2 − 1) sin nka

2n cos nka − i(n2 + 1) sin nka
, (2a)

t1df =
2ne−inka

2n cos nka − i(n2 + 1) sin nka
, (2b)

where n is the complex refractive index of the film, k is the
angular wave number of the incoming plane wave, and a is
the thickness of the film. We have previously shown that
the reflection amplitude, r, of Eq. (1), i.e., for a plane wave
propagating towards a system as shown in Fig. 1a with per-
pendicular incidence, can be evaluated exactly by a sum of
rays, taking into account all possible rays of the system as
shown in Fig. 2a, according to

r1dfm = rl + tltrei�e2inka
∞∑
�=0
(ei�rre2inka)� , (3)

where rl, tl, rr, and tr are the amplitudes of the respective
rays that are reflected or transmitted at the boundary between
air and film. The amplitudes depend only on the refractive
index of the film. The subscripts of the amplitudes indicate
if the respective rays are approaching the boundary from the
left (l) or from the right (r). The exact expressions for the
amplitudes are given in [15]. The factor ei� represents the
phase that a ray acquires by reflection at the mirror, n is the
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refractive index of the film, k is the angular wave number,
and a is the thickness of the film. Themodel shown in Eq. (3)
is called a ray model since it is built on the summation of
all possible rays in the system. While Eq. (3) is exact and
equivalent to Eq. (1), its analytical strength lies in the fact
that each ray contribution can be read directly from it.

In [15] we have shown that the inclusion of phases in the
ray model is essential for describing the interference prop-
erties of the material. Interference properties lead to ab-
sorption resonances in the material when the film thickness
matches multiples of the wavelength.

The same procedure can be used to establish a ray model
for a single film without mirror, as shown in Fig. 1b, by sum-
ming up all possible rays that contribute to the total reflected
and transmitted rays, respectively. The corresponding reflec-
tion and transmission amplitudes are given by

r1df = rl + tltrrre2inka
∞∑
�=0
(r2re

2inka)� , (4a)

t1df =
(
tltre

inka
∞∑
�=0
(r2re

2inka)�
)
e−ika, (4b)

where rl, tl, rr, and tr are the amplitudes as described above.
n is the complex refractive index of the film with thickness
a, and k is the wave number. The factor e−ika outside the
parentheses in Eq. 4b is included to remove the phase the ray
would have obtained if it had passed the filmwithout themir-
ror. The three simplest rays that contribute to the sums for
the reflection and transmission amplitudes given in Eq. (4b)
are shown in Fig. 2b.

Absorption properties of materials are taken into account
by the imaginary part of the complex refractive index n =
nr + ini. Thus n accounts for both the refraction and absorp-tion properties of the material. In [15] it is shown that only
a few rays are sufficient to describe system properties with
high accuracy.

3. Exact ray theory for oblique incidence
without absorption
Our ray model can be extended to a three-dimensional

model for planar films. We consider the situation illustrated
in Fig. 3, where a plane electromagnetic wave propagates to-
wards a planar film. Reflection and transmission amplitudes
can be obtained by solving the respective electromagnetic
problem [16], taking into account the polarization of the in-
cident radiation.
3.1. Exact electromagnetic description of the

system
Figure 4 illustrates how the coordinate system and angles

are chosen in order to evaluate the system by exact electro-
magnetic theory. The incoming wave is a plane wave with
wavelength �. The angular wave number of the wave outside
the material is given by k0 = 2�

� and can be decomposed into
x- and y-components according to

n0 = 1 n n0 = 1

Figure 3: A plane wave is propagating with an arbitrary angle
of incidence towards a single film. The wave is partly reflected
at the first surface and partly transmitted through the film.
The refractive index of the film is n and the refractive index of
the area outside is n0 = 1.

n0 = 1 n n0 = 1

�0

�R = �0
�

�

�R = �0

�t = �0

x
y

z

x = 0 x = a

Figure 4: The model system consists of a single film with
thickness a. The refractive index of the film is n. In front of
the film, the refractive index is n0 = 1, i.e. vacuum. A plane
wave is propagating towards the film in the xy-plane with an
angle of incidence �0. The angle of reflection, �R, is equal to
�0. The angle of refraction, �, can be found by Snell’s law.
For the transmitted ray behind the film, the direction of the
angle of the transmitted ray is �t = �0.

kx,0 = k0 cos �0, (5a)
ky,0 = k0 sin �0, (5b)

where �0 is the angle of incidence as shown in Fig. 4.
The absolute value of the angular wavenumber inside the

film is given by k = nk0, where n is the refractive index of
the film. Since the y-component of k is constant through
the boundary, the components of the angular wavenumbers
inside the film are given by

ky = ky,0 = k0 sin �0 = k sin � (6)
and

kx = k cos � =
√
k2 − k2y = k0

√
n2 − sin2 �0 (7)

for kx and ky, respectively, where � is the angle of refractionas shown in Fig. 4. Snell’s law can be derived from Eq. (6)
[16].

For a detailed presentation of the derivation of the ex-
pressions for the reflection amplitudes for oblique incidence
on a plane surface, we refer to textbooks on electromagnetic
theory such as [16]. By setting the surface charge to zero, the
expressions for the transmission and reflection amplitude for
the two polarizations for the system presented in Fig. 3 are
given in Tab. 1.
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Table 1
According to electromagnetic theory [16], the reflection and
transmission amplitudes can be found for parallel and perpen-
dicular polarized light for the system shown in Fig. 4. kx,0 and
kx are given in Eqs. 5a and 7. n is the refractive index of the
film and a is the thickness of the film.

Parallel polarization

r∥
(kx+n2kx,0)

[
(n2kx,0−kx)+e2ikxa(kx−n2kx,0)

]

(kx+n2kx,0)2−e2ikxa(kx−n2kx,0)2

t∥
4n2kx,0kxe

i(kx−kx,0 )a

(kx+n2kx,0)2−e2ikxa(kx−n2kx,0)2

Perpendicular polarization

r⟂
(kx+kx,0)

[
(kx,0−kx)+e2ikxa(kx−kx,0)

]

(kx+kx,0)2−e2ikxa(kx−kx,0)2

t⟂
4kx,0kxe

i(kx−kx,0 )a

(kx+kx,0)2−e2ikxa(kx−kx,0)2

Figure 5: The reflection and transmission probability, R = |r|2
((a) and (c)) and T = |t|2 ((b) and (d)), as a function of
wavelength, �, for a system as shown in Fig. 3. The angle
of incidence is set to 0◦, 30◦ and 45◦. The incoming light is
parallel polarized in (a) and (b) and perpendicular polarized in
(c) and (d). r and t are found by the equations in Tab. 1. The
thickness of the film is 500 nm and the refractive index of the
film is n = 1.84.

Fig. 5 shows how the reflection and transmission prob-
ability, R = |r|2 and T = |t|2, change as the angle of inci-
dence equal to 0◦, 30◦ and 45◦ for a film with thickness of
500 nm and a refractive index of 1.84. We chose the refrac-
tive index as n = 1.84 since it corresponds to the refractive
index of the SiNx-film at 630 nm used for the measurements
presented and discussed in Sec. 6.

We observe that the positions of the maxima depend on
the angle of incidence of the incoming plane wave. The de-
pendence on the angle of incidence can be seen in the ex-
pressions of the amplitudes for perpendicular and parallel
polarized light in Tab. 1. As shown in Eqs. 5a and 7, kx,0

n0 n n0

Ray 0

Ray 1

Ray 2

Ray 3

Reflected
ray Transmitted

ray
l

l

x
y
z

x = 0 x = a

Figure 6: Schematic illustration of the ray model for the thin-
film system of Fig. 3. By adding up the amplitudes from all
possible rays that contribute to the reflected and transmitted
ray, the reflection and reflection probability can be found. The
path length of contribution to the reflection probability from
Ray1 which transmitting through the front of the film and is
reflected at the backside of the film is d = 2l = 2a

cos �
. � is the

angle of refraction (see Fig. 3).

and kx depend on the angle of incidence.
3.2. Ray model for oblique incident light - started

inside the film
In order to build a ray model to describe the system, we

need to add up all possible rays that contribute to the re-
flected and transmitted rays as shown in Fig. 6. In order to
accomplish this, we study in this section a ray model that
is suggested in two well-known text books [20, 21]. Imple-
menting this model and comparing it with the results of ex-
act E&M calculations, we will show at the end of this section
that the model suggested in these two text books is not cor-
rect.

If we hypothesize that we can calculate the Eqs. (5a)
and (7) for the reflection coefficient for oblique incidence
based on a ray model, we would expect that not only the x-
components of the rays contribute. We would expect that
rays contribute according to their travelled path inside the
film as in the case described in Sec. 2.

To illustrate this, we consider Fig. 6. We start by evalu-
ating how the reflection amplitude can be described by rays.
The simplest ray that contributes to the reflected ray is the
one that only reflects at the first boundary between air and
the material. This ray is named Ray 0 in Fig. 6. The shortest
possible ray that contributes to the reflected ray that trans-
mits into the film and back travels a distance of d = 2l
through the film, where l = a

cos � and � is the angle of re-
fraction. The phase and attenuation collected inside the film
by this ray (called Ray 1 in Fig. 6), is given in Tab. 2 in the
table entry for Ray 1. In order to develop a ray formula for
oblique incidence, we have to take into account all possible
rays. The four simplest rays are shown in Fig. 6. All rays
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Table 2
The contribution to the reflected ray from the four simplest
rays as illustrated in Fig. 6. Assuming that the rays are atten-
uated according to the actual travelled distance inside of the
film turns out to give an incorrect description of the absorption
properties of the system. The amplitudes rl, rr, tl, and tr can
be found in Tab. 3, k is the angular wave number in the film,
and 2l is the path length the ray travels during one reflection
inside the film, as illustrated in Fig. 6.

Ray 0 rl

Ray 1 tltrrre2ikl

Ray 2 tltrr3re
4ikl

Ray 3 tltrr5re
6ikl

Ray N tltrr2N−1r e2Nikl

Sum of all rays rl + tltrrre2ikl
∑∞

�=0(r
2
re
2ikl)�

Table 3
In general, when light propagates towards the surface of a
material, part of the incoming radiation is transmitted and
part of the incoming radiation is reflected at the boundary
between the two materials. The transmitted amplitude, t, and
the reflected amplitude, r, are given by Fresnel’s equations [16,
22] and depend on the angle of incidence, �0, the angle of
refraction, �, and the polarization of the light. The amplitudes
also depend on the refractive index of the material, which, in
our case, is n0 = 1 for air and n for the film, as shown in Fig. 4.
The subscripts of the amplitudes indicate if the respective rays
are approaching the boundary from the left (l) or from the
right (r).

Parallel polarization Perpendicular polarization

rl
cos �−n cos �0
cos �+n cos �0

cos �0−n cos �
cos �0+n cos �

tl
2 cos �0

cos �+n cos �0

2 cos �0
cos �0+n cos �

rr
n cos �0−cos �
cos �+n cos �0

n cos �−cos �0
cos �0+n cos �

tr
2n cos �

n cos �0+cos �
2n cos �

n cos �+cos �0

are listed in Tab. 2. rl, rr, tl and tr are the amplitudes for
reflection and transmission at the boundary and are given by
Fresnel’s equations [16]. They are shown in Tab. 3 for par-
allel and perpendicular polarized electromagnetic radiation.

In analogy to how the amplitudes for the reflected rays
are found (see Tab. 2), the amplitudes of the transmitted rays
can be found. We need to include all possible rays that con-
tribute to the transmitted ray. It is important to notice that
we also need to multiply the sum with the phase e−ik0l. This
phase corresponds to the phase the ray would obtain by pass-
ing through the region of the film as if the filmwere not there.
The explicit expression is given by

t =

[
tltre

ikl
∞∑
�=0
(r2re

2ikl)�
]
e−ik0l. (8)

Figure 7: The reflection and transmission probabilities, R =
|r|2 and T = |t|2, found by exact electromagnetic theory (blue
solid lines) compared with R and T found by the incorrect ray
model presented in Sec. 3.2 (red dashed line). The positions
of the minima and maxima are not in agreement between the
two models. The refractive index of the film is 1.84, and the
thickness is 500 nm. The angle of incidence is 30◦. (a) and
(b) show R and T for parallel polarized light and (c) and (d)
for perpendicular polarized light.

With the help of the expressions for r and t, the reflection
and transmission probabilities can be found. Figure 7 shows
R and T for a system as in Fig. 3, where the angle of inci-
dence is 30◦ and the angle of refraction is 2.5. Frames 3a
and b show the results for R and T for parallel polarized
light, while Frames 3c and d show the results for perpen-
dicular polarized light. In all frames we compare the exact
E&M results (blue solid line) for the reflection and transmis-
sion probabilities with the results obtained by the ray model
suggested in [20, 21] (red solid line).

We observe that the results obtained from the exact cal-
culations (blue solid lines) do not agree with the results ob-
tained from the ray model suggested in [20, 21]. For in-
stance, the maxima and minima in all frames of Fig. 3 occur
at different wavelength locations. While Fig. 3 shows the
results for a specific incident angle of 30◦, additional cal-
culations show that the difference increases as the angle of
incidence increases. Another remarkable observation is that
for the exact E&Mcalculations themaxima andminima shift
towards shorter wavelengths as we increase the angle of inci-
dence. For the ray model implemented according to [20, 21]
the opposite happens: the maxima and minima shift towards
larger wavelengths. This shows that the ray theory suggested
in [20, 21] is not viable as a method for obtaining an exact
ray model. The correct procedure for obtaining an exact ray
model is presented in the following section.
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n0 n n0

Ray 0

Ray 1

Ray 2

Transmitted
ray

Reflected
ray

l

l

Δx

Δx

Δx

x
y

z

x = 0 x = a

Figure 8: Three incoming rays (Ray 0, Ray 1 and Ray 2)
that exit the system at the same position and contribute to
the reflected ray. Two rays (Ray 1 and Ray 2) zig-zag in the
interior of the film, exit at the same position, and contribute
to the transmitted ray. n0 and n are the refractive indexes
of air and the material in the film, respectively. a is the film
thickness and l is the geometrical path length the rays travel
from the front surface to the back surface of the film. Δx is
the path length difference that Ray 0 and Ray 1 (Ray 1 and
Ray 2, respectively) travel outside of the film.

3.3. Ray model for oblique incident light - started
according to the wave front

Correcting the ray model discussed in the previous sec-
tion, we demonstrate in this section that we need to consider
the phase difference of rays with respect to the wave front of
the incoming and outgoing plane waves in order to obtain an
exact ray model, i.e., a ray model that reproduces the exact
electromagnetic results for oblique incidence. This proce-
dure is in agreement with theory presented, e.g., by Fowles
[22] and Hecht [23].

Let us consider the wave front of a plane wave as illus-
trated by the red dashed line in Fig. 8. When comparing the
two incoming rays (Ray 1 and Ray 0) that merge into the
same outgoing ray in Fig. 8, we find the path difference Δx
due to the shorter propagation distance of ray 0 outside the
film. Therefore, the difference in optical path length between
Ray 1 and Ray 0, as shown in in Fig. 8, is

2nl − Δx, (9)
where n is the refractive index of the film and l is the

geometrical length the ray travels inside the film. Compared
to the ray model presented in the previous section, where we
only took into account the path length inside the film, we
obtain an additional term Δx by which the path difference is
reduced.

By evaluating the contribution to the phase and the atten-
uation of the radiation caused by the difference in the trav-

Table 4
The contribution to the reflected ray from the four simplest
rays as illustrated in Fig. 6. The phase collected according to
the travelled distance is found by Eq. 10, which starts the ray
at the wave front (see Fig. 8). rl, rr, tl and tr can be found in
Tab. 3, kx is the x-component of the angular wave number in
the film given by Eq. (7), and a is the thickness of the film.

Ray 0 rl

Ray 1 tltrrre2ikxa

Ray 2 tltrr3re
4ikxa

Ray 3 tltrr5re
6ikxa

Ray N tltrr2N−1r e2Nikxa

Sum of all rays rl + tltrrre2ikxa
∑∞

�=0(r
2
re
2ikxa)�

elled distance, simple geometrical considerations give an ad-
ditional phase to Ray 1 in Fig. 8 equal to

eik0(2nl−Δx) = e2ink0a cos � = e2ikxa, (10)
where k0 is the angular wave number in vacuum and kxis the x-component of the angular wave number in the film

described by Eq. (7). The quantities l, a, and � are illus-
trated in Fig. 8 and Fig. 4. They are the geometrical path
length inside the film, the thickness of the film, and the an-
gle of refraction, respectively. Equation (10) shows that by
evaluating the rays correctly, it turns out that the total reflec-
tion amplitude, as described by our ray theory, should only
depend on the x-component of the wave number.

Therefore, a ray model that takes into account the phase
difference collected by considering only the x-components
of rays inside the film is equivalent to the exact ray model
that uses the phase differences with respect to the incoming
and outgoing wave fronts. The expressions for the four sim-
plest rays and the N th ray of the exact ray model are listed
in Tab. 4.

The transmission amplitudes are found in analogy to the
reflection amplitudes (see Tab. 4). Multiplying the factors
in the ray sum by the phase e−ikx,0a, corrects for the phase
the ray would have gained in the absence of a film. The sum
of all possible rays that contribute to the transmission ampli-
tude is therefore given by

t =

[
tltre

ikxa
∞∑
�=0
(r2re

2ikax)�
]
e−ikx,0a. (11)

It can be shown that the sum of all possible rays in Tab. 4
and the sum given in Eq. 11 are in fact identical with the
expressions in Tab. 1. This equivalence is obtained by per-
forming the sum over the infinitely many rays using the sum-
mation formula for geometric series and by including the
correct expressions for rl, tl, rr, and tr.
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Figure 9: The reflection and transmission probabilities, R =
|r|2 and T = |t|2, found by exact electromagnetic theory (blue
solid line), compared with R and T found by the ray model
presented in Sec. 3.3 (red dotted line). Both models yield
identical spectra for R and T . The refractive index of the film
is 1.84, and the thickness is 500 nm. The angle of incidence
is 30◦. (a) and (b) show R and T for parallel polarized light,
and (c) and (d) for perpendicular polarized light.

Figure 9 shows that, contrary to the incorrect ray model
discussed in Sec. 3.2, the ray model presented in this section
agrees completely with the results of exact electromagnetic
theory and yields the same resonance structure. The system
underlying the results in Fig. 9 consists of a film of thickness
500 nm and a refractive index equal to 1.84. The angle of
incidence is 30◦. To produce the results in Fig. 9 it was nec-
essary to include only 10 rays in the ray sum. Based on this
fact, we conclude that, in general, only a few rays are needed
to describe the system with close to perfect accuracy. This is
in agreement with the observations for the one-dimensional
ray model [15].

4. Exact ray theory for oblique incidence with
absorption
When the film is absorptive, part of the light entering

the film is absorbed. In order to construct a ray model for
an absorptive film, a system as in Fig. 10 is considered. The
system consists of a film with a perfect mirror behind it. In
this case, no light is transmitted. In the absence of absorption
this system would have reflection probability equal to 1.

In order to evaluate how the system behaves in this case,
we consider how reflection and refraction are described at
a boundary of an absorptive medium. The approach pre-
sented by Fowles [22] describes how a plane wave behaves
at a boundary.

n0 = 1 n

Figure 10: Oblique incident radiation is propagating from air,
with refractive index n0 = 1, towards a material with refractive
index n. When the material is absorptive, i.e., n ∈ ℂ, a part
of the radiation is absorbed by the material, while the rest is
back-reflected.

For an absorptive material, the refractive index is a com-
plex number given by

n = nr + ini. (12)
In addition, the wave propagation vector inside the film

is also complex and given by

k⃗ = k⃗r + ik⃗i. (13)
The plane wave inside the material with amplitude A is

denoted by

Aeik⃗⋅r⃗ = Ae−k⃗i⋅r⃗eik⃗r⋅r⃗. (14)
For a film infinitely extended in the y direction, the field

needs to be translationally invariant along the boundary.
From this it follows that k⃗r and k⃗i have different directions.
The wave is said to be inhomogeneous. k⃗i is normal to the
boundary. From this it follows that the wave is attenuated in
the same direction.

From the argumentation in Fowles [22] it follows that the
components of the wave vector are given by

kx = k0
√
n2 − sin2 �0, (15a)

ky = ky,0 = k0 sin �0. (15b)
The equations stated above are identical to the expres-

sions for the components given in Sec. 3 (Eqs. 7 and 6, re-
spectively). When absorption is present, kx is complex.

The exact expression for the reflection amplitude can
be found by electromagnetic theory. By setting the surface
charge to zero, and the free surface current to zero, the re-
flection amplitude for a plane wave that is propagating with
an oblique angle of incidence is given by

rperp = −
kx + ikx,0 tan(kxa)
kx − ikx,0 tan(kxa)

, (16)

for perpendicular polarized light, and by

rpar = −
n2kx,0 + ikx tan(kxa)
n2kx,0 − ikx tan (kxa)

, (17)

Brandsrud et al.: Preprint submitted to Elsevier Page 7 of 13



An Exact Ray Model for Oblique Incident Light on Planar Films

n0 n

Ray 0

Ray 1

Ray 2

Ray 3
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ray

l

l

x
y
z

x = 0 x = a

Figure 11: Schematic illustration of the ray model for the
thin-film system of Fig. 4. By adding up the amplitudes from
all possible rays that contribute to the outgoing ray, the ab-
sorption cross section can be found. The path length of the
shortest ray that is transmitting through the front of the film
and is reflected at the mirror on the backside of the film is
d = 2l = 2a

cos �
. � is the angle of refraction as shown in Fig. 4.

for parallel polarized light, where n is the complex refractive
index of the film, a is the thickness of the film and kx,0 and
kx are the x-components of the angular wave numbers in air
and inside the material, respectively.

Naïvely, according to Beer-Lambert’s law, one would ex-
pect the rays to lose intensity along their trajectory. How-
ever, it turns out, by following the argumentation in Sec. 3.3,
that only the x-component of the wave vector is needed in
order to evaluate the system in terms of rays.

By summing over all rays that contribute to the reflected
ray, as shown in Fig. 11, we can build an exact ray model
that includes absorption in analogy to the way we built a ray
model without absorption in Sec. 3.3.

In Tab. 5 the expressions for the four simplest rays and
theN th ray of the exact ray model, including absorption, are
listed.

Summing over all rays, we obtain an expression for the
reflection amplitude as

r = rl + tltrei�e2ikxa
∞∑
�=0
(ei�rre2ikxa)� , (18)

where rl, tl, rr and tr are the amplitudes (computed ac-
cording to Fresnel’s equations given in Tab. 3) that the rays
incur along their paths due to reflection or transmission at the
boundary between air and film. The term ei� is the phase
caused by reflection at the mirror, and e2ikxa is the phase
collected according to the travelled distance for the different
rays.

It can be shown that Eq. (18) is in fact identical with
the expressions in Eqs. (16) and (17). This equivalence is
obtained by performing the sum over the infinitelymany rays

Table 5
The exact absorption cross section for oblique incidence can be
found by taking into account the phases and the attenuation
of rays that start in the incoming wave front and end in the
outgoing wave front. This is equivalent to considering only
the x-components of the rays inside the film. rl, rr, tl, and
tr are the amplitudes for reflection and transmission at the
boundary at x = 0 according to whether the ray is approaching
the boundary from the left or the right, respectively. The
amplitudes can be found by use of Fresnel equations [16] and
are shown in Tab. 3. ei� is the phase shift caused by reflection
at the mirror.

Ray 0 rl

Ray 1 tltre2ikxaei�

Ray 2 tltrrre4ikxae2i�

Ray 3 tltrr2re
6ikxae3i�

Ray N tltrrN−1r e2NikxaeNi�

Sum of all rays rl + tltre2ikxaei�
∑∞

�=0(rre
2ikxaei�)�

using the summation formula for geometric series and by
including the correct expressions for rl, tl, rr, and tr.

5. Beams absorb according to Beer-Lambert
law
In order to simulate a beam, we used the COMSOLMul-

tiphysics® software to perform the modelling [24]. A Gaus-
sian beam was sent towards a single film as in Fig. 3 with
different angles of incidence (0◦-50◦). The spot radius of
the beam is 5.0 �m, where the beam radius is defined as the
distance from the center of the beam with maximum value
E0 to where the value of the electric field has dropped to E0

eor ∼ 0.37E0 [23]. The beam has an energy corresponding
to a wavelength of 500 nm. We compared two film thick-
nesses for the same width of the beam spot: In the first case
the thickness of the film is chosen to be of the same size as
the film, in the second case the thickness of the film is much
larger than the width of the beam spot. The real part of re-
fractive index of the film is set to 1.84.

Figure 12 shows the Gaussian beam in case of a non-
absorptive film. In case of a thin film (5�m), the standing
waves that are created are parallel to the film boundary. For
the thicker film (75�m), we observe that the beam behaves
as we would expect for a classical ray, except for the inter-
ference pattern in front of boundaries where the waves cor-
responding to an incoming and a reflected ray interfere.

In order to evaluate how radiation is absorbed inside the
film as a function of the path, we evaluate the absorbance.
The absorbance is given by

A = − log10(Tf ), (19)
where Tf = I

I0
. I0 is the intensity of the beamwhen it enters

the film and I is the intensity after a given path length [25].
Brandsrud et al.: Preprint submitted to Elsevier Page 8 of 13
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(a)

(b)
Figure 12: A Gaussian beam of spot radius 5�m is sent from
the left towards a film of thickness (a) 5 �m and (b) 75 �m.
The angle of incidence is 50◦ in both cases. The film is non-
absorptive and has a refractive index of 1.84. Both frames, (a)
and (b), show the norm of the electric field. In case (a) (thin
film), the standing waves inside the film are parallel to the
film boundary. Frame (b) (thick film) shows that the beam
is reflected several times inside the film. We observe an in-
terference pattern in areas where an incoming beam meets a
reflected beam.

Tf can also be found by

Tf =
|E|2
|E0|2

= e−2knil, (20)

where E0 and E are the electric fields when the beam enters
the film and after a given path length, l, respectively; k is
the angular wave number and ni is the imaginary part of the
refractive index [16]. The absorbance can therefore be found
analytically by

A = 2knil log10(e). (21)
Therefore, the loss of energy is expected to follow Beer-
Lambert’s law (Fig. 13).

Let us first consider Beer-Lamberts law in the case of a
thick film. Figure 13 shows the intensity of the electric field
along the center of the beam as a function of path length.
Figure 13a shows that the intensity decreases exponentially
and Fig. 13b shows the trend by means of a logarithmic y-
axis.

Figure 13c shows the absorbance, computed according
to Eq. 19, for the five angles of incidence in Fig. 13a. The

(a) (b)

(c)
Figure 13: Intensity of the electric field |E|2 along the path
of the ray inside the film. The refractive index of the film
is 1.84 + 0.001i. The thickness of the film is 75 �m. Frame
(a) shows how the intensity decreases along the central line of
the beam inside the film from the point of entry into the film
to a distance l inside of the film, terminating at l ≈ 30 �m.
This termination point is chosen to avoid areas with strong
interference inside of the film. Frame (b) shows a log-plot of
the average intensity inside of the film. Frame (c) shows the
absorbance calculated by COMSOL for five different angles of
incidence as shown in (a) and (b). The dashed line is the
fitted line through the absorbance values for the five angles of
incidence, resulting in an imaginary part of the refractive index
of 0.00103, according to Eq. 21.

black, dashed line is the fitted line through the absorbance
values for the five angles of incidence, resulting in ni =
0.00103, according Eq. 21. Therefore, unlike in the case of
oblique plane-wave incidence, where we saw that absorp-
tion only happens in x-direction, the simulation of the beam
predicts that, in accordance with Beer-Lambert’s law, the ab-
sorption is along the path of the beam.

The situation is different for a thin film. The behavior of
the electric field in a thin film is shown in Fig. 12a. Locally,
in the center of the beam, the electric field behaves as a plane
wave and the standing waves are normal to the boundary. In
Fig. 14a the absolute square of the electric field is plotted in-
side of the film as a function of the distance along the normal
of the boundary at the center of the beam shown in Fig. 12a.

In Fig. 14b, the solid line is the trend of the absolute
square of the electric field, |E|2, in the center of the beam
as a function of the distance along the normal of the bound-
ary, plotted with a logarithmic y-axis. The dashed lines in
Fig. 14b indicate howwewould expect the absorption to take
place as described in Sec.4.

Figure 14c shows the trend (blue solid line) and the ex-
pected absorption (red dashed line) in the case of an angle
of incidence equal to 50◦. The yellow solid line indicates
how |E|2 decays if we assume that the absorption decreases
as a function of the full path length of the classical ray. For
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Figure 14: Frame (a) shows the absolute square of the elec-
tric field, |E|2, in the center of the beam along the normal of
the boundary of the film. In frame (b), the solid line shows
the trend of |E|2 (without the resonances) with a logarithmic
y-axis. The dashed lines in (b) indicates the expected absorp-
tion in the case of absorption along the normal of the film,
as described in Sec. 4. Frame (c) shows the trend of |E|2 in
the case of an angle of incidence equal to 50◦. The blue solid
line is the trend as shown in (b), the red dashed line is the
expected absorption as in frame (b). The yellow solid line is
the absorption along the classical path of the Gaussian beam
as a function of x. (x = l cos(�), where l is the travelled length
along the classical path and � is the refraction angle.) The blue
line in frame (d) shows |E|2 along the normal of the boundary
in the center of the beam. The red line indicates the exact
behavior of |E|2 for a plane wave with a wavelength of 500 nm
along the normal.

comparison this decrease is projected on the x-component.
We see that the absorption actually decreases along the x-
component for a thin film. We observe further that the devi-
ation increases as x increases.

In Fig 14d, |E|2 is plotted together with the exact de-
scription of |E|2 in the case where an infinite plane wave

hits the film. The angle of incidence is 50◦. We observe
that the resonances occur at the same x-positions for both
models.

It is straightforward to explain this result. In the case of
plane-wave incidence, the system, which includes the inci-
dent, reflected, and transmitted waves, as well as the film it-
self, is translationally invariant in the y-direction. Therefore,
there is no possibility of absorption in the y-direction, since
any exponential decay in y-direction would break transla-
tional invariance.

In addition to this mathematical explanation, there is a
physical explanation: In a situation with a plane incident
wave on an infinitely extended film in the y-direction, the
y direction is continuously fed by incoming radiation with
components in the y-direction, all along the boundary of
the film. Therefore, because of this continuous power input
along the boundary, decay in the direction of the boundary
cannot happen. This is very different for a beamwith a beam
spot that is small with respect to the film thickness. In this
case, from the perspective of the beam, the material looks
homogeneous, which means that absorption also happens in
the y-direction. Since the beam breaks the translational sym-
metry in the y-direction, there is also no formal symmetry
argument that would prevent dissipation in y-direction. In
other words, because of the localization of the beam, and un-
like in the incident plane-wave situation, energy dissipated
in the y-direction is not replenished. Therefore, absorption
happens in both x- and y-directions, i.e., along the path of
the beam, in accordance with Beer-Lambert’s law.

The above arguments also give rise to the prediction of
a transition from pure x-absorption in the case of incident
plane waves to pure Beer-Lambert’s law in the case of thin,
sharply localized beams: If the beam waist is much smaller
than the film thickness, then we expect Beer-Lambert’s law
to hold. In the opposite case, where the beam waist is much
larger than the film thickness, we expect the case of pure x-
absorption to hold. Since optically thin solar-cell structures
are typically of the order of the wavelengths of the incident
light, and since the widths, i.e., the illumination areas of so-
lar cells are typically much larger than a wavelength, we ex-
pect the case of pure x-absorption to be the relevant case for
optically thin solar cells in practical applications.

6. Resonances in an optically thin SiNx film
In order to demonstrate experimentally how the reso-

nance structures change as a function of the angle of oblique
incidence, we measured the reflection probability R as a
function of the angle of incidence for a thin, layered film.
We fabricated a sample consisting of a thin layer of SiNx ontop of a 270-nm-thick aluminum layer. The SiNx/Al stackwas prepared on top of a 273-�m-thick, mechanically pol-
ished (i.e. co-planar), single-crystalline Si substrate. SiNxcan be used as an anti-reflection coating layer for solar cells.
The thickness of the SiNx layer was ∼ 400 nm, as deter-
mined by ellipsometry measurements carried out on a SiNxfilm deposited on bare Si substrate using a VASE ellipsome-
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ter from J. A.WoollamCo., Inc. The SiNx filmwas prepared
by plasma-enhanced chemical vapor deposition (PECVD) in
an Oxford Plasmalab 133 system. The Al film was sputter-
deposited on Si substrate in an inline sputter-coating system
from Leybold Optics (model A550V7).

Although the complex index of refraction n of SiNxis wavelength dependent, for our purposes it can be as-
sumed to be constant. Moreover, since n was not specifi-
cally measured for our particular sample (SiNx/Al/Si), butto be able to compare the measured resonance structures
qualitatively with our theoretical ray models, we assume a
generic, constant value for the complex index of refraction
of n = 1.84 + 0.012i [26]. The reflection probability R
was measured using a home-built spectral response mea-
surement system consisting of a Newport Oriel Apex illu-
minator with a Cornerstone 260 monochromator, a set of
collimating and focusing lenses, and an integrating sphere
with center-mounted sample holder from Labsphere (model
RTC-060-SF). An achromatic depolarizer (Thorlabs model
DPU-25) was used to convert the beam of light from the
monochromator into a pseudo-random polarized beam of
light. The reflected beam from the sample was collected by
a silicon photodiode detector (Hamamatsu model S1336-
5BQ). The measurements were performed with an angle of
incidence equal to 10◦, 20◦, 30◦, 40◦, and 50◦. The sample
was illuminated by a partly coherent, monochromatic light.
The exact bandwidth (spectral resolution) of the monochro-
matic light in our experiment was not explicitly measured,
but according to the specifications for this monochroma-
tor with a slit width manually set at 1.002 mm in the Oriel
TracQ basic software, the bandwidth typically varies from
Δ� = 3.2 nm and 3.1 nm at blaze wavelengths of 350 nm and
750 nm, respectively, toΔ� = 6.4 nm at blaze wavelength of
1000 nm in the spectral range of interest in our experiment,
i.e., 350 to 1100 nm. Thus, the coherence length, lc , ofour light source/monochromator combination can be found
according to

lc =
�2

Δ�
, (22)

where � is the wavelength and Δ� is the bandwidth [22].
Thus, the coherence length in our experiments is at least
(350 nm)2∕3.2 nm ≈ 38�m, which, compared to the thick-
ness of our film, is large. Therefore, we can assume that our
sample is irradiated by a coherent light source that allows us
to see resonance structures in the reflection probability R as
a function of �.

Figure 15(a) shows the measured reflection probability
R as a function of the wavelength. In Fig. 15(c) we trace the
position of an absorption resonance , i.e., a dip in the R, in
our measured data (squares in Fig. 15(c)) as a function of the
angle of incidence. At 10◦ this resonance occurs at approx-
imately 600 nm and, as shown in Fig. 15(c), shifts toward
lower wavelengths as a function of increasing angle of inci-
dence. The predictions of our correct ray theory (presented
in Seg. 3.3), stars in Fig. 15(c), follow this trend. The predic-
tions of the incorrect ray theory, discussed in Sec. 3.2, show

Figure 15: Frame (a) shows the measured reflection probability
R for an optically thin SiNx film. With increasing wavelength,
the resonances are shifted towards shorter wavelengths as ex-
pected from Fig. 5. In frame (b) R is plotted as a function of
wavelength for the measurements and the two ray models for
an angle of incidence of 30◦. Frame (c) shows the position of
an absorption resonance (dip in R) of the measured R between
500 and 600 nm [see frame (a)] (squares) as a function of the
angle of incidence in comparison with the positions predicted
by our exact ray model of Sec. 3.3 (stars) and by the incorrect
ray model of Sec. 3.2 (circles). The predictions of the incor-
rect ray model (circles) clearly deviate from the predictions of
the correct ray model (stars), which, in turn, agree with our
measurements (squares).

an incorrect upward trend and strongly disagree with both
our measured results and our exact ray model. Thus, from
this three-way comparison, we conclude that a ray model
built on only considering rays inside the film, gives wrong
predictions of the wavelengths at which film resonances will
occur. As shown in Fig. 15(c)), the error increases as the
angle of incidence increases.

There are many instances where a resonance structure
such as the one illustrated in Figure 15(a), can be observed
directly in nature. An example is the colorful pattern that
can be seen in thin oil films floating on top of water puddles
or on the surface of soap bubbles. If the angle of illumina-
tion changes, the color changes. The color change is caused
by the change in the position of the resonances as illustrated
in Figure 15(a). In summary, as we showed in this section,
constructing a ray model that describes the positions of res-
onances quantitatively and accurately needs to be build on
rays that are started in the wave front.

7. Discussion
Basic physics textbooks (see, e.g. [20, 21]) describe and

evaluate the resonance structures of thin-film wave systems
on the basis of rays. We have earlier showed the importance
of associating phases with the rays [15]. If this is done cor-
rectly, the rays will also describe the resonances caused by
the wave nature of light. Several basic textbooks base their
ray models on evaluating the path differences inside the film
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only (see, e.g., [20, 21]). A ray model which is based on
this set-up is presented in Sec. 3.2. As Fig. 7 shows, this ap-
proach gives an incorrect description of the system. The ray
model presented in Sec. 3.3 shows how we also have to in-
clude the travelled distance outside the film when we evalu-
ate how different rays contribute to an outgoing ray. We need
to evaluate the rays from one common ray front as shown in
Fig. 8. In the present paper we have shown that an exact
description of the absorption cross section can be obtained
by summing all possible rays in a wave front that are propa-
gating with oblique incidence through boundaries. We have
shown that it is important to compute the phases of contribut-
ing rays with respect to the incoming wave front.

The raymodel for the general case of oblique incidence is
expected to be valid for any situation where the ray splitting
surfaces are planar; they do not need to be parallel. Corners
and edges are expected to introduce small errors. The strat-
egy for a general situation where the ray model is used is
to consider an incoming wave front and a defined outgoing
direction. The Fresnel equations are used to calculate the
reflection and transmission amplitudes each time rays hit a
boundary between two materials and are split into a trans-
mitting and reflecting ray. Additional phases collected by
the rays along their paths need to be taken into account and
the phases collected by reflection at a mirror.

Ray tracing is a frequently used approach for estimating
the absorption efficiency of solar cells. Ray models that de-
scribe solar cells are often used to investigate systems where
the system dimensions are much larger than the wavelength
of the incident radiation [2, 27, 28, 29, 30, 31]. In these cases
the phases are not included in the models at all. However,
somemodels have already been presented that use the phases
of rays, but they are not taking the wave front into account
[32].

Only a few simple rays are necessary to describe the ab-
sorption properties of the investigated system. This is an
advantage of our ray theory compared with time consuming
numerical calculations of the electric field of the systems.
As the complexity of the system increases, it is expected that
more rays need to be included [15]. The system investigated
is a single film with mirror. This system can be extended to
a system consisting of several layers using the hierarchical
summation scheme (HSS) [15]. HSS needs to be applied in
conjunction with the angle-dependent Fresnel equations and
the x-components of the angular wave number. HSS is sum-
ming up the contributing rays in the correct order. A further
adjustment of the presented ray theory and the HSS method
makes it possible to use the ray theory to include the inves-
tigation of surface-structured systems.

In the way of additional support for our exact ray model,
we presented experimental measurements of R for a SiNx-layer with a thickness of 400 nm. We obtained excellent
agreement between our exact ray theory and the experi-
ments, but noted a marked deviation of the results of the
incorrect ray theory presented in some text books. This
shows that the phase corrections that distinguish our exact
theory from alternative, inexact theories are not small ef-

fects, but are sizable effects that can easily be observed in
practice. Since ray methods are frequently used for design-
ing better solar-cell geometries for improved light trapping,
using an incorrect ray method may result in a failed solar-
cell design and thus has practical consequences. Thus, in
summary, we conclude that both in view of theoretical and
practical considerations, it is important for the construction
of exact ray models to evaluate the optical path lengths of
rays starting from the wave front in order to obtain a cor-
rect results that agree with exact electromagnetic theory, in
particular to obtain the correct positions of resonances in
optically thin solar cells.

8. Conclusion
In this paper we presented an extension of the ray theory

that is capable of describing the exact absorption properties
for a film system where a plane wave is propagating towards
the system with an arbitrary angle of incidence. This is done
by summing up all possible rays that are contributing to an
outgoing ray. Fresnel’s equations are used to determine the
reflection and transmission amplitudes for each ray splitting.
The extended ray theory works for both perpendicular and
parallel polarized light. We showed that it is important to
carefully include the phases of the rays based on their trav-
elled distances, and to include both travelled distance inside
and outside of the film. If this is not done correctly, one
obtains incorrect results for solar-cell properties, such as re-
flection probabilities and resonance structures. On the other
hand, a correct ray description, as shown in this paper, pro-
vides a powerful ray-based tool that in some applications,
for instance in solar-cell design, may rival equivalent E&M-
based wave simulations in computational efficiency.

Acknowledgement
This work was supported by the grant Development of a

new ray model for understanding the coupling between di-
electric spheres for photovoltaics with higher efficiency - No:
250678 financed by The Research Council of Norway.

References
[1] C. Ulbrich, M. Peters, B. Bläsi, T. Kirchartz, A. Gerber, U. Rau, En-

hanced light trapping in thin-film solar cells by a directionally selec-
tive filter, Optics Express 18 (2010) A133–A138.

[2] E. Seim, A. Kohler, R. Lukacs, M. A. Brandsrud, E. S. Marstein,
E. Olsen, R. Blümel, Chaos: a new mechanism for enhancing the
optical generation rate in optically thin solar cells, in: Physics, Sim-
ulation, and Photonic Engineering of Photovoltaic Devices VIII, vol-
ume 10913, International Society for Optics and Photonics, 2019, p.
109131O.

[3] E. Seim, A. Kohler, R. Lukacs, M. A. Brandsrud, E. S. Marstein,
E. Olsen, R. Blümel, Chaos: A new mechanism for en-
hancing the optical generation rate in optically thin solar cells,
Chaos: An Interdisciplinary Journal of Nonlinear Science 29 (2019)
093132. URL: https://doi.org/10.1063/1.5111042. doi:10.1063/1.
5111042. arXiv:https://doi.org/10.1063/1.5111042.

[4] F. Haake, Quantum Signatures of Chaos, 4th ed., Springer Berlin Hei-
delberg, Cham, Switzerland, 2018.

[5] H.-J. Stöckmann, Quantum chaos: an introduction, 2000.

Brandsrud et al.: Preprint submitted to Elsevier Page 12 of 13



An Exact Ray Model for Oblique Incident Light on Planar Films

[6] R. P. Feynman, QED : the strange theory of light and matter, volume
[1] of Alix G. Mautner memorial lectures, Princeton University Press,
Princeton, N.J, 1985.

[7] R. Blümel, Y. Dabaghian, R. V. Jensen, Explicitly solvable cases of
one-dimensional quantum chaos, Phys.Rev.Lett. 88 (2002) 044101.

[8] Y. Dabaghian, R. Blümel, Explicit spectral formulas for scaling quan-
tum graphs, Phys.Rev.E 70 (2004) 046206.

[9] A. S. Bhullar, R. Blümel, P. M. Koch, Ray splitting with ghost orbits:
explicit, analytical and exact solution for spectra of scaling step po-
tentials with tunneling, J. Phys. A: Math. Gen. 38 (2005) L563–L569.

[10] R. Blümel, J. T. M. Antonsen, B. Georgeot, E. Ott, R. E. Prange,
Ray splitting and quantum chaos, Physical Review Letters 76 (1996)
2476–2479. doi:10.1103/PhysRevLett.76.2476.

[11] A. Kohler, G. Killesreiter, R. Blümel, Ray splitting in a class of
chaotic triangular step billiards, Physical Review E 56 (1997) 2691.

[12] A. Kohler, R. Blümel, Annular ray-splitting billiard, Physics Letters
A 238 (1998) 271–277.

[13] A. Kohler, R. Blümel, Weyl formulas for quantum ray-splitting bil-
liards, Annals of Physics 267 (1998) 249–280.

[14] A. Kohler, R. Blümel, Signature of periodic lateral-ray orbits in a
rectangular ray-splitting billiard, Physics Letters A 247 (1998) 87–
92.

[15] M. Brandsrud, E. Seim, R. Lukacs, A. Kohler, E. Marstein, E. Olsen,
R. Blümel, Exact ray theory for the calculation of the optical gener-
ation rate in optically thin solar cells, Physica E: Low-dimensional
Systems and Nanostructures 105 (2019) 125–138.

[16] D. J. Griffiths, Introduction to Electrodynamics, 3rd ed., Prentice Hall,
Upper Saddle River, N.J, 1999.

[17] D. Cozza, C. M. Ruiz, D. Duché, S. Giraldo, E. Saucedo, J. J. Si-
mon, L. Escoubas, Optical modeling and optimizations of cu2znsnse4
solar cells using the modified transfer matrix method, Opt. Ex-
press 24 (2016) A1201–A1209. URL: http://www.opticsexpress.org/
abstract.cfm?URI=oe-24-18-A1201. doi:10.1364/OE.24.0A1201.

[18] L. L. SÃąnchez-Soto, J. J. MonzÃşn, A. G. Barriuso, J. F. CariÃśena,
The transfer matrix: A geometrical perspective, Physics Reports 513
(2012) 191–227. doi:10.1016/j.physrep.2011.10.002.

[19] B. LipovsÌŇek, J. KrcÌŇ, M. TopicÌŇ, Optical model for thin-film
photovoltaic devices with large surface textures at the front side =
opticÌŇni model za tankoplastne fotonapetostne strukture z velikimi
povrsÌŇinskimi teksturami na sprednji strani, Informacije MIDEM
(2011) 264–271.

[20] P. A. Tipler, G. Mosca, Physics for scientists and engineers : with
modern physics, 6th ed. ed., Freeman, New York, 2008.

[21] M. Alonso, E. J. Finn, Fundamental university physics, Reading,
Mass. : Addison-Wesley Publishing Company, 1967.

[22] G. R. Fowles, Introduction to modern optics, Courier Corporation,
1989.

[23] E. Hecht, Optics, Pearson, 2015.
[24] S. COMSOL AB, Stockholm, COMSOL Multiphysics v. 5.4.

www.comsol.com., 2020.
[25] R. Blümel, M. Bağcioğlu, R. Lukacs, A. Kohler, Infrared refractive

index dispersion of polymethyl methacrylate spheres frommie ripples
in fourier-transform infrared microscopy extinction spectra, Journal
of the Optical Society of America A 33 (2016) 1687–1696.

[26] D. N. Wright, E. S. Marstein, A. Rognmo, A. Holt, Plasma-enhanced
chemical vapour-deposited silicon nitride films; the effect of anneal-
ing on optical properties and etch rates, Solar energy materials and
solar cells 92 (2008) 1091–1098.

[27] S.-J. Byun, S. Y. Byun, J. Lee, J. W. Kim, T. S. Lee, K. Cho, D. Sheen,
S. J. Tark, D. Kim, W. M. Kim, Analysis of light trapping effects in Si
solar cells with a textured surface by ray tracing simulation, Current
Applied Physics 11 (2011) S23–S25. doi:10.1016/j.cap.2011.01.048.

[28] J. Gjessing, A. S. Sudbo, E. S. Marstein, Comparison of peri-
odic light-trapping structures in thin crystalline silicon solar cells,
Journal of Applied Physics 110 (2011) 8. URL: <GotoISI>://WOS:

000293956600005. doi:10.1063/1.3611425.
[29] T. Uematsu, M. Ida, K. Hane, Y. Hayashi, T. Saitoh, A new light

trapping structure for very-thin, high-efficiency silicon solar cells, in:

Conference Record of the Twentieth IEEE Photovoltaic Specialists
Conference, IEEE, 1988, pp. 792–795.

[30] H. Holst, M. Winter, M. R. Vogt, K. Bothe, M. Köntges, R. Brendel,
P. P. Altermatt, Application of a new ray tracing framework to the
analysis of extended regions in Si solar cell modules, Energy Procedia
38 (2013) 86–93.

[31] E. Yablonovitch, Statistical ray optics, Journal of the Optical Society
of America A 72 (1982) 899–907.

[32] B. Lipovšek, J. Krč, M. Topič, Optical model for thin-film photo-
voltaic devices with large surface textures at the front side, Informa-
cije Midem 41 (2011) 264–271.

Brandsrud et al.: Preprint submitted to Elsevier Page 13 of 13



Chapter B. Paper II

84



Appendix C

Paper III

85





Highlights
Investigation of resonance structures in optically thin solar cells
Maren Anna Brandsrud,Reinhold Blümel,Rozalia Lukacs,Eivind Seim,Erik Stensrud Marstein,Espen Olsen,Achim
Kohler

• Resonance enhancement of conversion efficiency in thin-film solar cells.
• Optimization of film thicknesses of layered optically thin solar cells optimizes the resonances structure and

absorption efficiency.
• Contrary to intuition, coupling of resonances does not always lead to increased conversion efficiency.
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ABSTRACT
In order to reduce costs, the solar cell industry is aiming at producing ever thinner solar
cells. Structuring the surfaces of optically thin solar cells is important for avoiding excessive
transmission-related losses and, hence, to maintain or increase their efficiency. Light trapping
leading to longer optical path lengths within the solar cells is a well established field of research.
In addition to this, other possible benefits of structured surfaces have been proposed. It has been
suggested that nanostructures on the surface of thin solar cells function as resonators, inducing
electric-field resonances that enhance absorption in the the energy-converting material. Further,
coupling of electric field resonances in periodically structured solar cells may couple with each
other thereby increasing the absorption of energy. A deeper understanding of the nature of the
energy-conversion enhancement in surface-structured and thin solar cells would allow to design
more targeted structures.

Generally, efficiency enhancement may be evaluated by investigating the electric field and
optimizing the optical generation rate. Here, we establish a model system consisting of multi-
layered solar cells in order to study resonances and coupling of resonances in a one-dimensional
system. We show that resonances in energy-converting and non-energy converting layers exist.
The coupling of resonances in the non-energy convertingmaterial and the energy-convertingma-
terial is only possible for certain parameter ranges of thickness of the energy converting material
and the imaginary part of the refractive index. We evaluate the resonances and the coupling of
resonances in different thin-film systems and show how they affect the total absorption of energy
in the energy converting layer. We show how resonances in non-absorbing layers can contribute
to increasing the resonances in the absorbing layers. We optimize the parameters of the mul-
tilayered thin-film systems to achieve an increase in the amount of the absorbed energy. The
optimization is also evaluated for an experimentally realizable thin-film solar cell.

1. Introduction
The solar-cell industry is continuously on the lookout for ways to reduce material usage in the production of solar

cells while maintaining conversion efficiency in order to increase the cost-efficiency of solar-cell devices [1, 2]. While
thin, crystalline silicon solar cells exhibit lower absorption than thicker, traditionally crystalline silicon wafer cells [1],
absorption in optically thin solar cells can be enhanced by surface structuring, e.g., by adding surface structures to the
top layer of thin solar cells [3, 4]. The most established approach is light trapping, wherein the path length of light in
the absorber is increased because of the surface structures. Light trapping is common in surface-structure solar cells
where the surface structures are larger than the wavelength employed, i.e. in the short wavelength limit. It has also
been shown that nano-structured surfaces cause resonances in the electric field which increase the absorption in the
absorptive material below [3]. Coupling of resonances into the nano-structures has also be discussed as a mechanism
for absorption enhancement in structured thin-film solar cells [5, 6]. A different mechanisms that has been used to
address enhancement of absorption efficiency of thin solar cells is to minimize the energy losses due to reflection [7].
A possible way to achieve this is to add one or more thin dielectric layers on the top of the solar cell as anti-reflection
coatings (ARC). While single layer ARCs are standard in the industry today, many studies have been carried out to
optimize thin-film solar cells consisting of two different layers in order to find an optimal combination of the refractive
indexes and thicknesses of the materials [8].
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The aim of the current study is to study absorption efficiency in the energy converting layer of a solar cell as a
function of the appearance of resonances in the absorbing and non-absorbing layers of a thin-film solar cell. For this
purpose we developed a simple model system that exhibits resonances and allows to investigate the implication of
these resonances on absorption in the energy-converting material. A simple system that can exhibit resonances is a
multilayered film system. A multilayered film system can be set up by absorbing and non-absorbing layers. It can be
used to investigate how resonances in the non-absorbing layers affect the absorption in the absorbing layers. It can be
further used to investigate how absorption can be enhanced by tuning the refractive index and the thicknesses of the
absorbing and non-absorbing layers involved. Therefore, our work is strongly related to optimization of anti-reflection
coatings [7], but it focuses on a different aspect, namely the effect of resonances in layered films on the absorption in
the energy-converting film.

In order to study the effectiveness of the device, we evaluate the absorption efficiency, �a [9, 10, 11]. In order to takeinto account the characteristics of the solar spectrum, absorption efficiency can be weighted by the solar spectrum. The
resulting quantity is called the optical generation rate [12]. The systems evaluated in this study are three-dimensional
systemswhere the incoming light is a planewave propagating towards the system andwhere the propagation direction is
perpendicular to the surfaces. Because of normal incidence, the systems are invariant in two dimensions and effectively
one-dimensional systems.

The paper is organized as follows: In Sec. 2, we present the systems that we evaluate and relevant theory. The first
part of Sec. 3 (Sec. 3.1-Sec. 3.3), evaluates systems with wavelength-independent refractive indices. We investigate
how the absorption efficiency and the resonance structure in the layered films depend on the size of the imaginary part
of the refractive index. We show that our results agree with the Fresnel equations [13] for non-magnetic dielectric
materials. We investigate further if the thickness of the layers can be optimized with respect to absorption efficiency
and material usage. We show how resonances in the non-absorptive material enhance the absorption of light in the
energy converting film. Section 3.3 evaluates how two non-absorptive layers can be used to increase the absorption
efficiency. We evaluate the effect of coupling of resonances between non-absorptive layers, when the absorptive layer
is between two non-absorptive films. We evaluate how the coupled resonances of the two non-absorptive layers and
resonances in the absorptive layer can affect the absorption efficiency. In Sec. 3.4, we further demonstrate that our
approach can be useful in the optimization of real solar-cell material by optimizing the thickness of the layers of an
experimentally realizable solar cell in Sec. 3.4.

2. Theory
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Figure 1: The systems evaluated are one-dimensional systems. The incident light is a plane wave of amplitude equal to
1 propagating from the left where the refractive index is n0 = 1. In (a) the system consisting of a boundary between n0
and the absorptive material with an refractive index of na and an infinite thickness. The system in (b) consist of a finite
absorptive film with refractive index na and a thickness aa. System (c) is identical to system (b) except that a perfect
mirror i placed behind the film. The systems (d) and (e) have the absorptive film placed behind one or two non-absorptive
layers. A mirror i placed behind the absorptive film. The thicknesses of the non-absorptive films are aI and aII and
refractive indices of nI and nII . System (f) has the non-absorptive layer between to non-absorptive layers with thicknesses
aI and aIII and refractive indices nI and nIII . System (g) is equivalent with system (f) but has a backside mirror behind
the third layer.
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Optically thin solar cells consisting of layers with normal incidence light can be treated as one-dimensional systems
and are therefore simple to handle numerically. The model system chosen in the current paper represents a one-
dimensional system consisting of several thin layers with different absorbing and non-absorbing materials. Both the
non-absorbing and the absorbing materials can function as resonators as we will see later. The systems that will be
investigated are shown in Fig. 1. For all the systems, a plane wave with an amplitude equal to one is propagating
towards the layers from the left. Figure 1a shows the simplest system, only consisting of a boundary between air and
the absorptive material of refractive index na. The absorption properties of the absorptive film is described by the
imaginary part of na. In Fig. 1a, the thickness of the absorptive material is assumed to be infinitely thick. In the
system presented in Fig 1b, a single absorptive film of thickness aa and refractive index na is shown. For Figs. 1c-1e, we assume a backside mirror behind the layers, reflecting back all the radiation perfectly. The thickness of the
absorptive layer is aa and has a refractive index of na. The refractive indices of the non-absorptive layers are nI and
nII with a thickness of aI and aII . The system presented in Fig. 1f is the system used to evaluate coupling between a
non-absorptive layer on each side of the absorptive layer. Figure 1g show an identical system to the one presented in
Fig. 1f, but with a backside mirror behind the third layer.

Since we only consider normal incidence and thus treat the model system in one dimension, we do not need to
consider the polarization. The model system can therefore be described by scalar wave theory, which provides an
exact description of the wave mechanics in the film structures. The one-dimensional model is completely equivalent
to the three-dimensional film system with normal incident light.

We set the first boundary from the left for the systems shown in Fig. 1 at x = 0 and obtain the wave functions given
in Tab. 1. The amplitudes of the wave functions in Tab. 1 can be found by requiring that the wave functions and their
first derivatives are continuous across the boundary [14].

For layered systems, the amount of absorbed light can be calculated via the absorption efficiency �a, given by
�a = 1 − |r|2 − |t|2, (1)

where r is the amplitude of the reflected plane wave and t is the amplitude of the transmitted wave [9, 10, 15]. The
reflection probability of the system is given by |r|2 = R and the transmission probability is given by T = |t|2. When
the refractive index is real for all films involved, |r|2 + |t|2 = 1 and the absorption efficiency �a = 0. If a mirror is
placed behind the system, there is no transmitted wave, i.e. t = 0, and the absorption efficiency is given by

�a = 1 − |r|2 (2)
The amplitude of the reflected wave can be found by requiring a continuous scalar wave function and a continuous

first derivative of the scalar wave function at all interfaces [14, 15]. For simple systems with a few layers of materials,
the calculation of �a is straightforward. For systems consisting of several layers, the transfer matrix method [16] may
be used. Alternatively, a hierarchical summation scheme suggested by Brandsrud et. al. [9] can be employed.

The absorption efficiency is also related to the absolute value of the scalar wave function, (x), in a one dimensional
system by

�a = 2k∫ nr(x)ni(x)| (x)|2dx, (3)

where k is the angular wave number in vacuum of the incoming wave and the refractive index of the system is given
by n(x) = nr(x) + ini(x) [9]. When the wave function has higher absolute values, we expect that the absorption
efficiency increases. Since resonances appear locally and lead therefore locally to increased absorption efficiencies, it
is interesting to evaluate if the absorption efficiency increases over the whole solar spectral range for a given system
as well. In order to evaluate if the absorption properties of a layered system are enhances, the averaged absorption
efficiency, �̄a, needs to be considered for whole wave length interval. In order to take into account the characteristics
of the solar spectrum, the integral in Eq. 3 can be weighted by the solar spectrum.

The refractive index n is in general wavelength dependent [17]. In the first part of the paper, we consider thin-
film systems with an index of refraction that is independent of the wavelength. In the second part of the paper, we
evaluate an experimentally realizable solar cell. The refractive indices of the materials is found experimentally and are
wavelength dependent.
Brandsrud et al.: Preprint submitted to Elsevier Page 3 of 16
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Table 1
The wave functions for the systems shown in Fig. 1. The first boundary from the left is assumed to be at x = 0. The
amplitude of the incoming plane wave is 1, r is the amplitude of the reflected wave and t is the amplitude of the transmitted
wave. A, B, C, D, E and F are amplitudes of of the wave functions inside the films. k is the angular wave number given
by k = 2�

�
. nI , nII , nIII and na are the refractive indeces and aI , aII , aIII and aa are the thicknesses of the films as

indicated in the figure.

System a
(Fig. 1a)

 a(x) =

{
eikx + re−ikx for x < 0
Aeinakx for x > 0

System b
(Fig. 1b)

 b(x) =
⎧
⎪⎨⎪⎩

eikx + re−ikx for x < 0
Aeinakx + Be−inakx for 0 < x < aa
teikx for x > aa

System c
(Fig. 1c)

 c(x) =

{
eikx + re−ikx for x < 0
A sin(nak(x − aa)) for 0 < x < aa

System d
(Fig. 1d)

 d(x) =
⎧⎪⎨⎪⎩

eikx + re−ikx for x < 0
AeinIkx + Be−inIkx for 0 < x < aI
C sin(nak(x − (aI + aa))) for aI < x < (aI + aa)

System e
(Fig. 1e)

 e(x) =

⎧
⎪⎪⎨⎪⎪⎩

eikx + re−ikx for x < 0
AeinIkx + Be−inIkx for 0 < x < aI
CeinIIkx +De−inIIkx for aI < x < (aI + aII )
E sin(nak(x − (aI + aII + aa))) for (aI + aII ) < x < (aI + aII + aa)

System f
(Fig. 1f)

 f (x) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

eikx + re−ikx for x < 0
AeinIkx + Be−inIkx for 0 < x < aI
Ceinakx +De−inakx for aI < x < (aI + aa)
EeinIIkx + Fe−inIIIkx for (aI + aa) < x < (aI + aa + aIII )
teikx for x > (aI + aa + aIII )

System g
(Fig. 1g)

 g(x) =

⎧
⎪⎪⎨⎪⎪⎩

eikx + re−ikx for x < 0
AeinIkx + Be−inIkx for 0 < x < aI
Ceinakx +De−inakx for aI < x < (aI + aa)
E sin(nIIk(x − (aI + aa + aII ))) for (aI + aa) < x < (aI + aa + aII )

3. Results
In this section we evaluate the different systems presented in Fig. 1.

3.1. Single film
We start with the system in Fig.1a which consists of an infinitely thick absorptive material with a wavelength-

independent refractive index. The system is shown in Fig.1a. The real part of the refractive index of the absorptive
layer na is set to 4.3. This is the real part of refractive index of silicon at a wavelength equal to 500 nm. We consider a
range for the imaginary part of the refractive index, which we vary between 0 and 5. The wavelength interval evaluated
is from 250 to 1000 nm. Since the absorptive layer is infinitely deep, all light that is entering the absorptive material
will be absorbed. �a(�) is shown in Fig. 2a. For the system containing only one single boundary, the reflection
and transmission coefficient r and t do not depend on the wavelength [9]. Figure 2a indicates that �a(�) decrease as
ni increases. This is expected since the absolute value of n increases, which results in an increased probability for
reflection [9, 15]. In Fig. 2b, the averaged absorption efficiency, �̄a is showed as a function of ni. As in Fig. 2a, we
observe that an increased ni is followed by a reduced �̄aWhen the absorptive material has a finite thickness which is in the order of the wavelength, standing waves can
occur in the film. Figure 2c shows �a(�) for a single absorptive film as shown in Fig. 1b. The different graphs of
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(a) (b) (c) (d)

(e) (f)
Figure 2: Frame (a) shows �a as a function of wavelength for an infinitely thick film for increasing ℑ(na). In frame (b)
the averaged absorption efficiency, �̄a, as a function of ℑ(na) is evaluated. Frame (c) �a as a function of wavelength of a
absorptive film without mirror behind and frame (d) shows �̄a as a function of ℑ(na). Frame (e) and (f) show �a(�) and
�̄a(ℑ(na)) for a system consisting of a single film with mirror. For all the systems the real part of the refractive index is
set to 4.3, which is the real part of the refractive index of silicon at � = 500 nm. The investigated wavelength interval is
from 250 nm to 1000 nm. For frame (c)-(f) the thickness of the absorptive film is set to 500 nm.

�a(�) correspond to increasing values for ni. We observe that resonances are present when ni is sufficiently low. As
ni increases, the resonances are damped and, finally when ni is large enough all light is absorbed before reaches the
second boundary and no standing waves can be observed. Figure 2d shows how the absorption efficiency averaged
over the wavelength range �̄a(ni) increases before it reaches a maximum at ni = 0.57.

The system in (Fig. 1c) can be considered as a simplified model of a solar cell as it considers one absorptive layer
and a mirror on the backside. Figure 2e shows the corresponding absorption efficiency �a(�) for a range of constantimaginary parts of the refractive index. We observe that the resonance structure of �a(�) is changing as we increase theimaginary part of the refractive index. The real part of the refractive index is kept constant, nr = 4.3. As ni increaseswe observe the same tendency as for the single film without mirror. The amplitudes of the resonances are reduced and
at one point, all the light is absorbed before it reach the mirror and no standing waves are created. Figure 2e shows
how the averaged absorption efficiency changes as ni increases.Since the absorption efficiency is expected to increase when the absolute value of the wave function increases
(see Eq. 3), it is interesting to consider the wave function for maxima and minima of the absorption efficiency. The
system consisting of a single filmwith a reflecting backside mirror (Fig. 1c), exhibits several maxima for the absorption
efficiency in Fig. 2e, e.g. for the imaginary part of the refractive index of 0.1i. We consider the maximum that appears
at 662 nm and the minimum that appears at 717 nm. The corresponding wave functions  c (Tab. 1) are plotted in Fig. 3outside and inside the film for two selected wavelengths, 662 nm (red line) and 717 nm (blue line). The refractive index
for the film is 4.3 + 0.1i and the thickness is 500 nm.

We see that the red line in Fig. 3, corresponds to a peak, a resonance, in �a(�) Fig. 2c. We observe that the absolute
square of | |2 is larger in the case where the wavelength corresponds to a maximum in �a(�).We turn now back to the averaged absorption efficiency shown in Fig. 2f. We observed that we obtained amaximum
for an imaginary part of the refractive index ofℑ(na) = 0.27. The thickness of the film was 500 nm, the real part of the
refractive index wasℜ(na) = 4.3 and there was a mirror behind the absorptive layer (see Fig. 1c). We want to consider
wave functions for this maximum in the absorption efficiency at ℑ(na) = 0.27. Since the maximum corresponds to a
spectral range, we selected wave functions from this range: at 250 nm, at 500 nm and at 750 nm. Figure 4 shows the
wave functions in front of and inside the absorptive film for the case where na = 4.3 + 0.27i. The thickness of the
absorptive film is 500 nm. The wave functions in Fig. 4 indicate that the optimum of ℑna is found for the case where
the wave is completely absorbed for small wavelengths and where standing waves are present for lager wavelengths.

Up to now we considered absorption enhancement for an absorptive layer of thickness 500nm, both for different
wavelengths and for a total wavelength range. We want to consider now the absorption properties of layered systems
Brandsrud et al.: Preprint submitted to Elsevier Page 5 of 16
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Figure 3: The figure shows the wave function in front of and inside the film where a plane wave is propagating from the
left towards a single film of thickness 500 nm and refractive index 4.3 + 0.1i. A perfect mirror is placed behind the film.
The system is shown in Fig. 1c. The wavelength of the plane wave is 717 nm (blue line) and corresponds to a dip and the
wavelength 662 nm (red line) corresponds to a peak in Fig. 2c for the case where the refractive index of the film is 4.3 +
0.1i.

Figure 4: The figure shows the absolute square of the wave function for a system consisting of an absorptive film with a
thickness of 500 nm and a refractive index equal to 4.3 + 0.27i. This value of the imaginary part of the refractive index
was to be the optimum in the average absorption efficiency in Fig. 2d. At the optimum value no resonant structure is
visible in the wave functions at lower wavelengths, while it is present in the wave functions for higher wavelengths.

for a changing film thickness. For the film thickness of 500nm, we found an optimal refractive index of 4.3 + 0.27i.
Figure 5 shows how the absorption efficiency is affected by changing the thickness of the film. The pattern of the
absorption efficiency as a function of the wavelength is shown for several film thicknesses in Fig. 5a. It changes
strongly when the film thickness is changed. The strong changes occur, since the standing waves occur only when a
multiple wavelength matches the thickness of the film. This creates oscillations in the average absorption efficiency
�̄a(aa) which is plotted as a function of the wavelength (Fig. 5b).

(a) (b)
Figure 5: Frame (a) shows the absorption efficiency, �a, as a function of the wavelength, �, for a system consisting of a
single film with a mirror behind (Fig. 1c). The thickness of the film, aa, is increased from 50 nm (dark blue line) to 1500
nm (dark red line). The refractive index of the film is n = 4.3 + 0.27. Frame (b) shows the averaged absorption efficiency
for the same system as a function of film width.
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We now want to investigate how the peaks and dips in the average absorption efficiency in Fig. 5b are related to
the appearance and disappearance of standing waves in the film as a function of the film thickness. We consider two
peaks and two dips in the average absorption efficiency in Fig. 5b, namely the peaks a = 162 nm and a = 273 nm and
the dips at a = 199 nm and a = 316 nm. In Fig. 6 the corresponding absorption efficiencies are shown for the whole
wavelength region. We observe that at thicknesses that correspond to peaks, a = 162 nm (blue line) and a = 273 nm
(yellow line), correspond to the cases where the thicknesses is just large enough that a new resonance is included into
the �a(�) range considered. The thicknesses which corresponds to dips, a = 199 nm and a = 316 nm (red and purple
line), correspond to the cases where the thickness is just large enough that an anti-resonance is included.

Figure 6: The absorption efficiency as a function of wavelength for a single film with refractive index n = 4.3 + 0.27i. The
thickness of the film is changed and corresponds to the two first peaks (a = 162 nm and a = 273 nm) and two first dips
(a = 199 nm and a = 316 nm) from the left in �̄a(a) in Fig. 5b.

3.2. Two films with mirror
In order to come closer to a real solar cell device, a system consisting of two films and a mirror as shown in Fig. 1d

was investigated. The first film is a non-absorptive layer with a refractive index nI and a thickness aI . The refractiveindex nI is in this layer was set to 1.9 which is the refractive index of ITO at 500 nm, as presented in [18].
In order to evaluate how the resonances in the front layer affect the absorption efficiency, two cases were evaluated:

(i) A two-film systemwhere the absorptive film has a thickness that is small enough that light is not completely absorbed
in this layer and that resonances can occur and (ii) a two-film system where all the light is absorbed in the second layer
before it reaches the mirror. The refractive index of the second layer is chosen to be 4.3 + 0.1i and the thicknesses are
chosen to be (i) 500 nm and (ii) 5000 nm.

In order to evaluate the resonance structure of the first layer, we will consider the integral of the absolute square of
the wave function (| I (x)|2) in the first film according to

II = 1
aI ∫

aI

0
| I (x)|2dx, (4)

where aI is the thickness of the first film and  I is given in Tab. 1. We refer to the integral over II as the total intensityof the wave function ĪI . We start by evaluating case (i), i.e. where the absorbing layer has a thickness of 500 nm and
where light is not completely absorbed by the absorbing layer such that resonances can occur in the absorbing layer. The
absorption efficiency as a function of the wavelength �a(�) for this system is shown in Fig. 7a for different thicknesses
of the first layer. The averaged absorption efficiency �̄a for the same system as a function of the thickness of the first
layer is shown as the blue line in Fig. 7b. We compare now the averaged absorption efficiency �̄a in the absorbing
layer with the total intensity of the wave function in the non-absorbing layer in order to understand if resonances in the
non-absorbing layer have an effect on the absorption efficiency of the absorbing layer. The red line in Fig. 7b, shows
the integral of the absolute square of the wave function (| I (x)|2) (see Eq. 4) averaged with respect to the wavelength,i.e. the total intensity of the wave function in the non-absorbing layer. The units are shown as the right y-axis which is
labeled by ĪI (aI ). Both the red and the blue line follows the same trend showing that resonances in the non-absorbing
layer lead to an increase of the absorption efficiency in the absorbing layer.

In the case of a thick totally absorbing second layer with aa = 5000 nm we observe the same tendency as for the
thin absorbing layer: Figure 7c and Fig. 7d are the plots that correspond to Fig. 7a and Fig. 7b, respectively but this
time for case (ii), i.e. a thick absorbing layer with aa = 5000 nm: Figure 7c shows the absorption efficiency �a(�) for
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the case where all the light entering the absorptive film is absorbed. The absorption efficiency �a(�) is less oscillatorycompared to the corresponding graphs for the thin absorbing film in Fig. 7a. The reason for this is that in the case of
total absorption in the second layer, resonances are only generated in the non-absorbing layer. Figure 7d shows the
average absorption efficiency �̄a(aI ) in the non-absorbing layer as before as the blue line with units on the left y-axis)and the total intensity of the wave function ĪI (aI ) as the red line and units on the right y-axis. Again it is obvious thatthe increased field in the non-absorbing layer is leaking into the absorbing layer and creating an enhanced absorption
efficiency.

(a) (b) (c) (d)
Figure 7: In frame (a) is the absorption efficiency is plotted as a function of the wavelength for a system consisting of
two films with a mirror behind. The thickness of the first film is increased from 50 nm to 500 nm and has a refractive
index of 1.9. The second film has a thickness of 500 nm and has a refractive index equal to 4.3 + 0.1i. Frame (b) shows
the averaged absorption efficiency as a function of aI for the same system. Frame (c) and (d) shows the same plots for a
system where the thickness of the absorptive layer is 5000 nm.

(a) (b)
Figure 8: Frame (a) shows the absorption efficiency (�a) and the integral over the absolute square of the wave function
(| I (x)|2) in the first film (II) as a function of wavelength for a system consisting of two films and a mirror behind. The
refractive index of the second film is 4.3 + 0.1i and the thickness is 5000 nm, i.e. all the light is absorbed before it reaches
the mirror. The first film has a refractive index of 1.9 and a thickness of 83 nm. This thickness corresponds to a maximum
in �̄a(aI ) in Fig. 7d. A maximum in �̄a(aI ) is associated with an enhancement of the absorption in the absorbing layer.
Frame (b) shows the absolute square of the wave function for the system for a wavelength corresponding to a top and a
dip in frame (a), respectively. The wave function is shown for the non-absorbing layer and for the first 1000 nm of the
absorbing layer which is in total 5000nm thick.

We now want to have a closer look at the system with two layers and a mirror with the totally absorbing layer for
the situation where the absorption in the absorbing layer is enhanced by the resonances in the first layer. Inspecting the
graph of �̄a in Figure 7d (blue line), we see that the absorption properties are enhanced for low thicknesses of the non-
absorbing layer. We select the thickness of aI = 83 nmwhich leads to enhancement. In Fig. 8 the absorption efficiency
�a(�) is plotted as a function of the wavelength for the maximum of �̄a at aI = 83 nm as the blue line with units on the
left y-axis. The corresponding intensity of the wave function II is plotted as a function of the wavelength � as the redline with units on the right y-axis. We see that the absorption efficiency �a(�) and and the intensity of the wave function
II (�) have a minimum and a maximum in the wavelength range considered which can be further investigated. The
absolute squares | |2 of the wave functions that correspond to the maximum and minimum, respectively, are shown in
Fig. 8b for the non-absorbing film and the first 1000nm of the absorbing film. The wavelengths of the wave function
corresponding to the minimum and the maximum were selected to be (i) 305 nm showing a dip in �a(�) in Fig. 8a
(blue line), and (ii) 610 nm showing a peak in in �a(�) (red line). We observe that for the case where the wavelength
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corresponds to a dip �a(�) in Fig. 8a (blue line), | |2 has lower values in the absorptive film than for the case where
the wavelength which corresponds to a peak in �a(�).
3.3. Coupling of resonances of non-absorptive layers

When the systems consist of three layers, two non-absorptive layers and an absorptive layer, we can investigate
coupling of resonances in two non-absorbing layers. This is the one-dimensional equivalent to a thin film solar cell
with coupling of e.g. nano-spheres on its surface. The coupling of resonances in spherical nano-structures on thin-film
solar cells has been discussed in the literature as a cause for enhancement of absorption in the absorbing layers below
[6, 5]. We start by evaluating how the thicknesses and refractive indices of two non-absorbing front layers of different
materials affect the absorption in the third, absorptive layer. The system is shown in Fig. 1e. As for the two-film
systems, we assume that the refractive indices of the films are constant for all wavelengths. This is to highlight the
effect of the thickness of the first two layers on the average of the absorption efficiency, �a. The thickness of the third,absorptive film is chosen such that the wave function in this film is totally absorbed.
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Figure 9: The average absorption efficiency, �̄a, for a three layer system as shown in Fig. 1e is displayed as a heat map for
varying thicknesses of the two first non-absorbing layers. The thicknesses of the two first layers were varied between 50
nm and 1000 nm. The thickness of the third layer is kept constant at 5000 nm. The refractive indices of the layers are for
frame (a) nI = 1.5 (refractive index of SiO2 at 500 nm), nII = 1.9 (refractive index of ITO at 500 nm) and nIII = 4.3+0.01i
(where the real part of nIII is the real part of the refractive index of Si at 500 nm and the imaginary part of nIII is chosen
so that all light which enters the absorptive film is absorbed). For frame (b) the refractive indices are given as nI = 1.5,
nII = 2.5 (selected to be substantially above nI ) and nIII = 4.3 + 0.01i. The wavelength range that is investigated is 250
nm - 1000 nm.

In Fig. 9a, the average absorption efficiency is shown for the three film system, where the refractive indices of layer
I, II and III in Fig. 1e are set to 1.5 (refractive index of SiO2 at 500 nm), 1.9 (refractive index of ITO at 500 nm) and
4.3 + 0.01i, respectively. The thickness of the third layer is set to 5000 nm, i.e. all light which enters the third layer
is absorbed. The thicknesses of the two first layers in the system were varied between 50 nm and 1000 nm in order to
optimize the thicknesses of the two films with respect to the absorption efficiency of the third film. Figure 9a shows
�̄a for different combinations of the thicknesses of the two first layers. We consider the wavelength range from 250 nm
to 1000 nm. In Fig. 9b corresponding results for the same system with an increased refractive indices of the second
layer are shown. The refractive indices of the layers I, II and III are now set to 1.5, 2.5 and 4.3 + 0.01i, respectively.
As before, the wavelength range is evaluated in the region 250-1000 nm. The thicknesses of the two first layers are
changed between 50 nm and 1000 nm and the thickness of the third layer is 5000 nm. A comparison between Fig. 9a
and Fig. 9b shows that in the case where the two first layers have relatively close refractive indices, the pattern in the
heat map is a skewed grid pattern while in Fig. 9b a non-skewed grid pattern is obtained. When the refractive indices
of the two first layers are at a similar level, the resonances couple and the grid pattern is skewed. In the case where the
difference between the refractive indices in the two layers is large, the resonances in the layers are independent of each
other and the grid pattern of �̄a is not skewed.In order to evaluate coupling of the resonances further, we consider the three-layer system shown in Fig. 1f where
the first and third layer are the non-absorptive layers and the second layer is the absorptive layer. The backside mirror
is removed in order to avoid the effect of an increased �a caused by the fact that all light is forced to travel back and
forth in the third film.

In Fig. 10a and Fig. 10b, the averaged absorption efficiency, �̄a, is shown as a heat map as a function of the thickness
of the non-absorptive layers, aI and aIII . For the system in Fig. 10a, the refractive indices of the layers I, II and III
are wavelength independent as before and set to 1.9, 4.3+0.1i and 1.5, respectively. The thickness of the absorptive
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layer is 500 nm.
In Fig. 10b, the system parameters are identical to the situation shown in Fig. 10a, except that the refractive index

of the third layer is set to 1.9, i.e. the refractive index of the two non-absorptive layers are identical. It is therefore
expected that the resonance in the two non-absorptive layers occur at the same thicknesses and wavelengths.

The grid patterns observed in Fig. 10a and Fig. 10b indicate that both of the two layers affect �̄a. But the differencesare more distinguished for changes of thicknesses of the first layer that of the third.
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Figure 10: Frame (a) and (b) show a heat map of the averaged absorption efficiency �̄a for a three-film system (see Fig. 1f).
The averaged absorption efficiency �̄a is shown as a function of the thicknesses of the first and third layer aI and aIII . The
refractive index of the layers are for (a) nI = 1.9, nII = 4.3 + 0.01i and nIII = 1.5 and (b) nI = 1.9, nII = 4.3 + 0.01i and
nIII = 1.9, respectively. The thickness of the second layer is 500 nm. Frame (c) shows the average absorption efficiency
�̄a as a function of aI for a two- (blue line) and a three-film (red line) system. For both systems, the refractive index of
the first layer are set to 1.9 and for the second layer to 4.3 + 0.1. The thickness of the second layer is 500 nm. For the
three-film system, the third film has a refractive index of 1.9 and a thickness 350 nm. Frame (d) shows �a(�) for the same
systems as in frame (c) when the thickness of the first layer is 350 nm.

The blue line in Fig. 10c shows the averaged absorption efficiency �̄a as a function of the thickness of the first layerin a two-film system (without a backside mirror), i.e. nIII = 1 in the system shown in Fig. 1f. The refractive index
of the first layer is 1.5, the refractive index of the second layer is na = 4.3 + 0.1i and the thickness of the second layer
is 500 nm. The red line shows the averaged absorption efficiency �̄a as a function of aI for an equivalent three-film
system where the refractive index of the third layer is nIII = 1.9 and the thickness of the third film is aIII = 350 nm.
In Fig. 10d, the absorption efficiencies �a(�) for the two- and three-film systems are compared as a function of �. For
both systems, the first two layers are identical with thicknesses and refractive indices of the two first layers set to 350
nm and 500 nm and nI = 1.9 and na = 4.3 + 0.1i, respectively. For the three-film systems, the refractive index and
the thickness of third film are nIII = 1.9 and 350 nm, respectively. Both Fig. 10c and Fig. 10d show that a two-film
system has a higher absorption efficiency than a corresponding three-layer system, where a third layer is added. This
indicates that the coupling of resonances in this case does not have any enhancement effect.

In order to return to a systemwhich is closer to a real solar cell device, the system in Fig. 1g was evaluated to further
describe the effect of coupling in the case where a backside mirror is present. The refractive indices were selected as
above and the three-layer system was compared with an equivalent two-layer system where the third layer is removed
as in Fig. 1d. Figure 11a and Fig. 11b show the averaged absorption cross section as a function of the thickness of the
non-absorptive layers, aI and aIII . The thickness of the absorptive mid layer is 500 nm. The refractive indices are
chosen as nI = 1.9, nII = 4.3+0.1i and nIII = 1.5 for the results shown in Fig. 11a and as nI = 1.9, nII = 4.3+0.1i
and nIII = 1.9 for the results shown in Fig. 11b. We observe that the maximum �̄a is higher than for the systemwithout
mirror (Fig. 10). This is due to the fact that light was reflected at the mirror on the backside which was effectively
doubling the effective thickness of the absorbing layer. Further, we observe the same trend that we discussed for
Fig. 10: adding a third layer with an identical refractive index, which is expected to lead to coupling of resonances,
does not enhance �̄a.The blue line in Fig. 11c shows the averaged absorption efficiency �̄a as a function of the thickness of the first
layer in the two-film system (shown in Fig. 1d). The refractive index of the first layer is 1.5, the refractive index of
the second layer is na = 4.3 + 0.1i and the thickness of the second layer is 500 nm. The red line shows the averaged
absorption efficiency �̄a as a function of aI for an equivalent three-film system where the refractive index of the third
layer is nIII = 1.9 and the thickness of the third film is aIII = 350 nm. We observe that with the backside mirror
present, the third film reduces �̄a. The same trend as what we observed for the case without a mirror. Compared to the
system without a mirror on the backside in Fig. 10c, �̄a is less reduced in the system with a mirror on the backside.
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Figure 11: Frame (a) and (b) show a heat map of the averaged absorption efficiency �̄a for a three-film system with a
backside mirror (see Fig. 1g). The averaged absorption efficiency �̄a is shown as a function of the thicknesses of the first
and third layer aI and aIII . The refractive index of the layers are for (a) nI = 1.9, nII = 4.3 + 0.01i and nIII = 1.5 and (b)
nI = 1.9, nII = 4.3 + 0.01i and nIII = 1.9, respectively. The thickness of the second layer is 500 nm. Frame (c) shows the
average absorption efficiency �̄a as a function of aI for a two-film system (blue line) and a three-film system (red line).
For both systems, the refractive index of the first layer are set to 1.9 and for the second layer to 4.3 + 0.1. The thickness
of the second layer is 500 nm. For the three-film system, the third film has a refractive index of 1.9 and a thickness 350
nm. Frame (d) shows �a(�) for the same systems as in frame (c) when the thickness of the first layer is 350 nm.

In Fig. 11d, the absorption efficiencies �a(�) as a function of � are compared for the two- and three-film systems.
The thicknesses and refractive indices of the two first layers are set to 350 nm and 500 nm and nI = 1.9 and na =
4.3+0.1i, respectively for both systems. For the three-film systems, the refractive index and the thickness of third film
are nIII = 1.9 and 350 nm.

As predicted by Eq. 3, the absorption efficiency is enhanced, when the field in the absorptive material is increased.
From Fig. 11c we learn that a two-film yields a higher average absorption efficiency. However, as Fig. 11d indicates,
the absorption efficiency is this wavelength dependent. In Fig. 12, the absolute square of two selected wave functions
is shown for the two- and three-film system. For the two-film system with the mirror on the backside(see Fig. 1d), the
wave function is plotted as a blue line in Fig. 12. As for the case without mirror, we chose aI = 350 nm and aa = 500
nm. For the three-film systems with the mirror placed behind the third film (see Fig. 1g), is aI = 350 nm, aa = 500 nm
and aIII = 350 nm. The refractive indices are selected to be nI = 1.9, nII = 4.3+0.01i and nIII = 1.9, respectively.
The parameters are again chosen analog to the system without mirror. The wavelength of the incoming plane wave
is selected to be 732 nm in Fig. 12a. This wavelength corresponds to the second peak from right in Fig. 11d for the
three-film system. In Fig. 12b the wavelength is selected to be 769 nm. This corresponds to the second peak from right
in Fig. 11d for the two-film system.

(a) (b)
Figure 12: The figure shows the absolute square of the wave functions (given in Tab. 1) as a function of position. The
thicknesses is selected to be aI = 350 nm, aa = 500 nm and aIII = 350 nm and the refractive indices are nI = 1.9,
nII = 4.3 + 0.01i and nIII = 1.9. The blue line shows | |2 for the two-film system (Fig. 1d), where the backside mirror
is placed behind the absorptive film of thickness aa. The red line shows| |2 for a three-film system (Fig. 1g), where the
backside mirror is placed behind the third, non-absorptive layer of thickness aIII . Frame (a) shows the behavior of the
wave function in the case where the wavelength of the incoming light is 732 nm (corresponding to second peak from right
in Fig. 11d for the three-film system). Frame (b) shows the behavior of the wave function in the case where the wavelength
of the incoming light is 769nm (corresponding to second peak from right in Fig. 11d for the two-film system).

The wave functions in Fig. 12 confirm Eq. 3 that when the wave function has increased absolute values in the
absorptive film, increased absorption efficiency is obtained.
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However, the striking result is that coupling of resonances in thin films does not overall increase the absorption
efficiency. This can be seen both for two and three-layer systems with an without mirror in Fig. 10 and Fig. 11,
respectively.
3.4. Optimization of absorption of thin-film solar cells

In this section we will demonstrate how considering resonances in thin-film systems can help to optimize exper-
imentally realizable solar cells. We consider the system shown in Fig 13b, which is a simplification of a five-layer
epitaxial crystalline silicon solar cell, which is optically thin as shown in Fig. 13a [18]. The experimentally realized
system consists of three different materials: ITO, amorphous silicon and crystalline silicon. The two silicon layers
consist of p-doped and one n-doped layers as shown in the figure. In order to simplify the system, we treat the amor-
phous silicon as one layer with the same wavelength-dependent refractive index. The same assumption is used for
the crystalline silicon. The absorption efficiency is calculated by Eq. 2. The refractive index of the three layers that
are used are experimentally determined [19, 20, 21]. By evaluating the absorption efficiency for different choices of
thickness for the three layers, the system can be optimized to absorb as much radiation as possible.
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Figure 13: A multi-layer thin-film solar cell, consisting of five thin layers and a mirror, are shown in (a). This solar cell has
been experimentally realized [18] and consists of ITO, n- and p-doped amorphous and crystalline silicon. The thicknesses of
the layers of the experimentally realized system are shown in the model. The system has been simplified into a three-layered
system with mirror (b) [9]. The system has been simplified by replacing the layers with different doping with one single
layer with experimentally determined refractive index [19, 20, 21]. n0 indicates the refractive index of vacuum and is given
by n0 = 1. Behind the layers of the different materials, a perfect mirror is placed. In order to optimize the system, the
thicknesses of the three layers are changed. The result is shown in Fig. 14.

The system in Fig. 13b is evaluated for several thicknesses of the layers. The average absorption efficiency �̄a isshown for systems with c-Si film thickness equal to 0.5 µm, 2 µm, 8 µm, 32 µm, 100 µm and 200 µm in Fig. 14. The
thicknesses of the two first layers are varied between 20 nm and 500 nm. As Fig. 14 indicates, certain combinations
of thicknesses of the two first layers give higher �̄a values than others.As Fig. 14 indicates, 60 nm and 150 nm are optimal thicknesses for the first and the second layer, respectively.
We therefore set the thicknesses of the first and second layers to 60 nm and 150 nm, and vary now the thickness of the
third layer. By continuously increasing the thickness of the third layer from 0.5 µm to 200 µm, the findings of Sec. 3.2
are confirmed: When the thickness of the energy converting layer is increased, the average absorption efficiency �̄astabilizes at a certain value. This is shown in Fig. 15, where the average absorption efficiency �̄a is shown as a functionof the thickness of the third layer. We observe that the �̄a stabilizes at a maximum value of approximately �̄a = 0.8.
The stabilization takes place when the thickness of the third layer is approximately 50 µm. For larger thicknesses no
further enhancement of the absorption of the c-Si layer can be obtained. A further investigation of the material cost
versus the absorption efficiency is needed in order to decide if a thickness of 50 µm is an optimum, since already a
thickness of the c-Si layer of around 20 µm is close to the optimum value for the average absorption efficiency �̄a .

4. Discussion
The results presented in Sec. 3.1 show that when the imaginary part of the refractive index of the absorptive

material is changed, the resonance structure of the absorption efficiency and the absorption properties of the material
change. For a large imaginary part of the refractive index, all radiation entering the absorptive material is absorbed
before it reaches the backside boundary or mirror. Therefore, standing waves do not occur in the absorptive material
for a large imaginary part of the refractive index. One might assume an increasing imaginary part of the refractive
index results in an increased absorption efficiency. However, as confirmed by the Fresnel equations [13], the reflection
from the absorbing film’s surface increases when the imaginary part of the refractive index increases. Therefore, less
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Figure 14: The average absorption efficiency �̄a for a three film system with the same materials as shown in Fig. 13b with
experimentally determined refractive indices [19, 20, 21]. The thicknesses of the two first layers are varied between 20 nm
and 500 nm. The thickness of the c-Si layer is set to 0.5 µm, 2 µm, 8 µm, 32 µm, 100 µm and 200 µm respectively. The
wavelength range that is investigated is from 250 nm to 1000 nm.
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Figure 15: The average absorption efficiency, �̄a, as function of the thickness of the c-Si layer. The system is equivalent
to the system shown in Fig. 13b where the thicknesses of ITO and a-Si are set to 60 nm and 150 nm, respectively.
Further, the thickness of the c-Si layer, dc−Si, is increased from 0.5 µm to 200 µm. The refractive indices of the layers are
experimentally determined [19, 20, 21].

radiation is transmitted into the absorptive material, which results in lower absorption. As Figs. 2d and 2f show, there
is an optimal size of the imaginary part of the refractive index of the absorptive material, where the wave function
is just totally absorbed before it reaches the mirror. Since we consider the average absorption efficiency for a whole
wavelength region, this condition of optimal imaginary part of the refractive index is achieved, when the standing wave
in the absorbingmaterial has just disappeared for small wavelengths, while it is present for large wavelengths as showed
in Fig. 4. When investigating the absorption properties of the film system as a function of the thickness of the absorbing
film, we observe that the absorption increases with increasing thickness of the absorbing layer until a maximum is
reached and stays constant for larger thicknesses. Before we reach this point, the average absorption efficiency �̄aoscillates as shown in Fig. 5. The peaks of the oscillatory pattern correspond to a thickness of the absorptive material
which includes a new resonance, while the dips correspond to a thickness of the absorptive material which includes
a new anti-resonance. This mechanism can be potentially used as a mechanisms to enhance absorption efficiency of
thin-film solar cells within a desired wavelength range. In general we see that absorption in the absorbing layer is
enhanced by resonances in the non-absorptive material, which lead to a field enhancement in the absorbing material.
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This is shown in Sec. 3.2. In this section we also learn that the resonance in the absorption efficiency follows the same
trend as the averaged integral over the non-absorptive film. An increase in the integral over the absolute square of the
wave function is followed by an increased �a(�).When considering a system consisting of three layers, we find that it is important to investigate first all combinations
of thicknesses of the first two layers in order to optimize the thicknesses of the first two layers. The optimal thickness
of the third layer is then found, where the wave function is just totally adsorbed.

A three-film system without a mirror is also considered in order to evaluate the effect of coupling between two
non-absorptive films on each side of the absorptive film. From Fig. 10a and Fig. 10b, we conclude that mainly the
resonances in the front layer affect the averaged absorption efficiency �̄a. When we compare a two- and three-film
system without a backside mirror in Fig. 10c and Fig. 10d, we observed that the absorption efficiency was lower for
the three-film system. This can be understood, when considering the refractive index changes at the boundary: The
refractive index in the third film is closer to the refractive index of air at the outside, which results in more light being
transmitted out of the system. This is expected from Fresnel’s equations. We further investigated a three-layer system
with the absorbing layer in the middle and a mirror on the backside in order to avoid more leakage of radiation from the
third film to the outside. Strikingly, also in the case of a three-film system with a mirror on the backside the absorption
efficiency was not increased compared to the corresponding two layer-system without the third non-absorbing layer.
The results are shown in Fig. 11. This indicates that the coupling of resonances itself is not a mechanism that increases
the absorption efficiency of solar cells in layered system. Coupling of resonances has been suggested as a mechanism
for resonance enhancement in surface structured thin film solar cells [5, 6]. We would therefore expect that when
spheres are embedded into the energy converting material [22], it is rather the field enhancement due to resonances in
each sphere than the coupling of the resonances that would lead to an absorption enhancement.

In section 3.4, the absorption efficiencies for experimentally realizable thin-film solar cells are investigated. An
experimentally realized solar cell was used as a template, and wavelength-dependent, experimentally determined re-
fractive indices were used in the system. The observations were comparable to the results found in Sec. 3.1 where
systems with wavelength-independent refractive indices are investigated.

In all systems considered, we were studying the average absorption efficiency, �̄a. It is important to notice that �̄achanges if we change the wavelength range. It is therefore essential to optimize the system according to the proper
wavelength range. In our study, the results presented were not weighted with the solar spectrum. If the absorption
efficiency is weighted with the solar spectrum, the optical generation rate [12] is obtained. In order to further evaluate
a thin-film solar cell system, the average optical generation rate should be evaluated.

Our model is exact for situations with coherent light, which is a common assumption for simulations of thin-
film solar cells where the thickness of the films is smaller then the coherence wavelength [23]. Sunlight, however,
is incoherent, so the assumption of coherent light in our model is not strictly applicable to the case of incoherent
sunlight. Indeed, it is known that there is a difference in conversion efficiency between illumination with coherent
and incoherent light [24]. Since the spatial coherence area of sunlight is about 60 µm × 60 µm [25], and resonant
solar-cell surface structures are of the order of a micron, the effects of spatial coherence may be neglected. However,
since the temporal coherence length of sunlight is about 600 nm [26], and the thicknesses of our films are about of
this order of magnitude, the temporal incoherence of sunlight cannot be neglected. Therefore, while our results are
rigorous for coherent incident light, we have to be careful when using these results to make predictions for the case
of incoherent sunlight. On the upside, a two-step method exists that takes the results of coherent calculations as input
for a folding step that then obtains conversion efficiencies for incoherent illumination directly from the coherent input
[24, 27]. Therefore, our results presented here are the first step in this two-step process. The investigation of the our
systems for the use of incoherent light is beyond the scope of this study and will be addressed in a follow up work.

For monochromatic light, our results indicate that the optimum in conversion efficiency is reached when the layers
in front of the energy-converting material are around the same size as the coherence length of the light [26]. We could
therefore expect resonances in the first layers. Further, we show that it is optimal that the energy converting material
should have a thickness so that the wave function is totally absorbed before it reaches the mirror. In this cases we
will not have resonances in the layer closest to the mirror. We expect that these predictions, based on a coherent,
monochromatic model are robust and will also hold in the case of illumination with incoherent light.

Our model only evaluates the optical properties of the system. Effects linked to losses other than reflection are not
included in our models.
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5. Conclusion
In this paper we have shown that simple calculations of the absorption efficiency can give an indication of a proper

choice of thickness of the layers in a thin-film solar cell. We find that a resonance in the front layers can result in an
increased absorption efficiency. This is caused by the enhanced wave function in the front layers. Due to the continuity
of the wave function this also results in an enhanced absorption of radiation in the absorptive material. In the case of
a non-absorptive layer on both sides of the absorptive layer, the resonances in the first layer are the most important.
We investigated further if coupling of resonances could enhance absorption in an absorptive layer which was located
between to absorbing layers and could not find any effect.

We have also shown that the absorption efficiency decreases when the imaginary part of the refractive index of
the absorptive material increases. This is because the reflection probability increases according to Fresnel’s equations.
An optimal imaginary part of the refractive index is therefore obtained when the absorption is high enough such that
standing waves just disappear in the absorbing material for a large part of the wavelength region considered, but not
too high so that not a too large part of the radiation is reflected in the energy-converting material. We have applied our
findings with success to the optimization of an experimentally realizable solar-cell system.
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ABSTRACT

Mie-type scattering features such as ripples and wiggles are frequently observed scattering phenomena in infrared microspec-
troscopy of cells and tissues. They appear in general when the wavelength of electromagnetic radiation is of the same order as
the size of the scatterer. By use of approximations to the Mie solutions, iterative algorithms have been developed to retrieve pure
absorbance spectra. However, the question remains to what extent the Mie solutions, and approximations thereof, describe the
extinction efficiency in practical situations where the shapes deviate considerably from spheres. The aim of the current study is
to investigate how deviations from a spherical scatterer, can change the extinction properties of the scatterer in the context of
chaos in wave systems. For this purpose, we investigate a scatterer that is shaped like a Bunimovich billiard, which is shown to
be chaotic. An elliptically shaped scatterer, which exhibits only regular scattering is compared with a stadium-shaped chaotic
scatterer. We find that chaotic scattering has an accelerating effect on the disappearance of Mie ripples. We further show that
the presence of absorption alone does not explain the absence of ripples in most measurements of biological samples.

Infrared microspectroscopy is a technique that is well established in the biological sciences1, 2. It allows investigating for
example cells, tissues and bio-fluids in their native forms. When combining infrared microscopy with synchrotron radiation,
a spatial resolution close to the diffraction limit can be achieved3. In infrared transmission microscopy of cells and tissues,
purpose-built microscopes are used that allow to operate with radiation in the mid-infrared region. These systems are operated
in two main modes. In one type of systems, infrared radiation is transmitted through cells and thin tissues, and the transmitted
radiation is collected by a single-element detector after passing, e.g., through a Schwarzschild optics. Alternatively, imaging
systems are used, where the transmitted radiation is mapped onto an imaging detector in forward direction. Since the size of the
cell structures is of the same order as the wavelength of the infrared radiation, i.e., typically in the range of 2.5µm to 25µm,
infrared spectra of cells and tissues exhibit a variety of scattering phenomena. The most intriguing scattering phenomena that
have been observed are so-called Mie-type scattering phenomena4–6 and studied intensively in the literature during recent
years4–11.

Mie-type scattering occurs in spherical- and nearly spherical-shaped scatterers. When the size of the scatterer is of the same
order as the wavelength employed, neither the long-wavelength Rayleigh limit nor the geometric-optics, short-wavelength limit
yield accurate results. The scattering of electromagnetic radiation at an ideal dielectric sphere was solved analytically by Gustav
Mie already in 190812. In Mie scattering, two main scatter contributions appear in the infrared spectra of spherically-shaped
particles. (i) Broad oscillatory structures, so-called wiggles, which are due to the interference of the undisturbed, incoming
radiation with the scattered radiation. (ii) Sharp scattering features, which are due to standing waves, for instance, whispering
gallery modes that are resonances in the spherical scatterer. These sharp features are called ripples. The broad oscillatory
structures are well described by an approximation formula developed by van de Hulst13, which has been used extensively to
establish algorithms that allow retrieving pure absorbance spectra5, 7, 11.

The broad Mie wiggles are observed in more or less any type of infrared microscopy of cells and tissues. Pre-processing
approaches have been developed to remove Mie wiggles from infrared spectra with the goal of obtaining pure chemical
absorbance spectra5. Newer and more advanced approaches deal even with cases where strong dispersive effects due to
absorption resonances are present in spectra11. While wiggles are omni-present in infrared spectra of cells and tissues, sharp
ripples are rarely observed. They are observed mainly in cases where the scatterers represent perfect spheres such as PMMA
spheres6, 14, or shapes that are close to perfect spheres, such as pollen15, 16. In most other infrared spectra of cells and tissues,
the ripples are absent, while the wiggles are present.

Both ripples and wiggles are related to shape characteristics17. However, while wiggles are due to a robust interference
process that does not rely on the intricacies of resonances, ripples, due to delicate resonance processes, were shown to be
affected by absorption16, 18. Ripples, if present, and wiggles are both strongly influencing the apparent absorbance spectra. It



is known that they can lead to non-Beer-Lambert absorption behavior in the infrared spectroscopy of cells and tissues. For
instance, chemical absorption lines may be affected by ripples, since ripples are caused by resonant enhancement of the electric
field in the sphere. It is also clear that, because they are resonances, the strengths of the ripples may depend strongly on the
actual shape of the scatterer. In the context of chaos in wave systems, it was shown that chaotic scattering behaviour may
enhance absorption properties of a scatterer considerably19. Small deviations from perfect spherical scatterers that involve
changes in the shape or the refractive index, may easily lead to a transition between regular and chaotic scattering19. The aim
of the current study is to investigate how ripples and wiggles, observed in the scattering of cells and tissues, are influenced
by the shape of the scatterer and the actual absorption properties of the scatterer. A deeper understanding of these properties
may help to improve Mie-scatter correction algorithms. For this purpose, we investigate a scatterer that is shaped like a
Bunimovich billiard20. A Bunimovich-billiard shaped scatterer has been shown to be chaotic21, and it allows to study the
gradual transition between a regular scatterer (sphere) and a chaotic scatterer (billiard). The Bunimovich-billiard shaped
scatterer20 is a ray-splitting system. Chaotic ray-splitting billiard systems have been investigated in the field of quantum
chaos22–25. They provide model systems for investigating implications of interfaces between two dielectric media on the wave
and ray dynamics of such systems. For completeness we also investigated in addition to the chaotic Bunimovich-billiard
shaped scatterer the effects of deformation into an integrable scatterer, i.e., a scatterer which does not show a transition to
chaotic scattering as a function of deformation. We find that under increased deformation chaotic scattering accelerates the
destruction of shape-resonance phenomena, such as, e.g., Mie ripples in absorbance spectra, while resonance phenomena tend
to be more robust under deformation in the case of integrable deformations, such as deformation into ellipsoids. This has
important consequences, e.g., for infrared microspectroscopy: The effects of shape resonances, such as Mie ripples, may be
important in the analysis of absorbance spectra of quasi-spherical/ellipsoidal samples, such as pollen and PMMA spheres, and
may lead to serious errors in the analysis of spectra if not properly taken into account. However, in general, biological cells and
tissues have structures that are very different from perfect spheres and ellipsoids, and in these cases, in addition to absorption,
the effects of shape resonances are suppressed due to chaotic scattering.

Methods
Figure 1 illustrates a typical infrared transmission measurement. Infrared radiation of intensity I0 is directed towards a sample
and the transmitted radiation I hits the detector. The background intensity, I0, is measured by moving the sample out of the
beam. The absorbance A is obtained by

A =− log10

(
I
I0

)
. (1)

In an ideal measurement, the measured absorbance A consists solely of absorption bands caused by chemical bonds that absorb
in the sample. The infrared spectrum is known to be a highly reproducible fingerprint of the biochemical composition of cells
and tissues that are under investigation. However, often scattering phenomena lead to scattering signatures in the absorbance
spectrum A in addition to the chemical absorption signatures. When scattering signatures are mixed with chemical absorption
features in the measured absorbance spectrum, we call the measured absorbance, apparent absorbance11, 16. In the case of
a perfectly spherical scatterer, the scattering can be described exactly by Mie Theory13, 16. Examples of such samples are
some biological samples and PMMA spheres15, 16. In order to retrieve and estimate pure absorbance spectra from highly
scatter-disturbed measured infrared microspectroscopic measurements of single cells and tissues, the Mie extinction extended
multiplicative signal correction (ME-EMSC) algorithm can be applied11.

The apparent absorbance can be related to the extinction efficiency, Qext , by

A =− log10

(
1− g

G
Qext

)
≈ 1

ln(10)
g
G

Qext , (2)

where G is the geometrical cross section of the detector and g is the geometrical cross section of the sample as shown in Fig.
1. Qext is a commonly, dimensionless quantity used to describe the amount of light which is extinguished from the forward
direction (I)13. The approximation is found by expanding the logarithm and assuming that G >> g15.

The expression for Qext for a sphere is given exactly by Mie Theory. Qext for a sphere with refractive index 1.3 and a radius
of 10 µm is shown in Fig. 2. A refractive index of 1.3 is approximately the same as for water, and the refractive indexes of
biological samples are often in the vicinity of this value.

We observe that Qext consists of long-range oscillations and sharp, narrow resonance structures. The long-range oscillations
are called wiggles and are well described by the van de Hulst approximation, shown as the red line in Fig. 2. The van de Hulst
approximation is based on the phase difference a ray experiences, as it travels in a straight line through the scatterer, compared
to the undisturbed ray13. The narrow, sharp resonance structures are the ripples. They are caused by standing waves, i.e.,
resonances, inside the scatterer and are further described below.
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Figure 1. Infrared radiation of intensity I0 is sent towards a sample with a geometrical cross section of g. Part of the radiation
is scattered off or absorbed by the sample. The radiation that is transmitted through the sample has an intensity of I and hits a
detector with a geometrical cross section equal to G.

Figure 2. The extinction efficiency for a sphere of radius 10 µm and a refractive index of 1.3. The blue line indicates the
exact extinction efficiency (described by Mie Theory) and the red line is the van de Hulst approximation for Qext .

While real cells are not perfectly spherically shaped, Mie extinction extended multiplicative scattering correction (ME-
EMSC) has been proven useful for scatter corrections in many practical situations. The ME-EMSC algorithm uses the van de
Hulst approximation for scattering off spheres. The van de Hulst approximation predicts the wiggle structure of the scattering,
but not the ripples.

In order to evaluate what causes the disappearance of ripples, three mechanisms are investigated. First, we investigate how
the wiggle and ripple structures are affected by a transition into a non-spherical shape. Then, we investigate how absorption is
affecting the ripples and wiggles.We also evaluate how the numerical aperture and its size affects the extinction efficiency. The
investigations are carried out for effectively two-dimensional systems.

The effect of a distortion of shape on Qext

In order to investigate the effect of shapes different from spheres and the validity of the van de Hulst formula, we investigate a
model system that allows to perform the transition from a sphere to a system that shows irregular scattering features.

For this purpose, we study the transition from a circular scatterer to a stadium-shaped scatterer. The stadium-shaped
scatterer is inspired by the Bunimovich stadium, which is an irregular, chaotic system20, 21. In this work we investigate this
model system by (1) deriving an approximation formula for the extinction efficiency for the stadium-shaped scatterer based on
the van de Hulst approach, i.e., the approximation for the extinction efficiency for a sphere, (2) evaluating numerically exact
electromagnetic calculations and (3) classical ray tracing. For calculating the electromagnetic near- and far-field, COMSOL
Multiphysics R© software was used26. The model system allows the transition from a disk to a stadium-shaped scatterer by
changing a parameter d as shown in Fig. 3. We were especially interested in how the transition from a regular to a chaotic
system affects the extinction efficiency, Qext , and the apparent absorbance spectra.

The effect of absorption on Qext

Samples investigated by FTIR spectroscopy are often highly absorptive in several wavenumber intervals. Therefore, the second
step is to evaluate how Qext is affected by an increasing absorbance of the scatterer.
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Figure 3. We are evaluating a system that transforms from a disk with a radius a, as shown in frame (a), into a stadium, as
shown in frame (b), by increasing d. a is kept constant. The refractive index of the scatterer is m and the refractive index of the
surroundings is m0 = 1. The system is an open system, i.e., light can enter the system from the outside and can leave the system
to the outside.

Extinction efficiency
The quantity Qext is dimensionless and related to the scattering efficiency Qsca and the absorption efficiency Qabs according to

Qext = Qsca +Qabs. (3)

For perfectly spherical scatterers, Qext , Qabs and Qsca are described exactly by the Mie Theory12, 13.
In this work we are evaluating two-dimensional systems, or systems which are translationally invariant in the third

dimension. We are therefore evaluating infinitely long cylinders. The infinitely long cylinders can also be described exactly by
electromagnetic theory13. Figure 4 shows the extinction efficiency Qext for a sphere (black line) and an infinite cylinder with
the E-field parallel to the cylinder axis (blue line) and the E-field perpendicular to the cylinder axis (red line). The radius of the
sphere and cylinder is 10µm and the refractive index is 1.3.

Figure 4. The extinction efficiency Qext for an infinite cylinder (red and blue line) and for a sphere (black line) with radius 10
µm and a refractive index of 1.3.13

We have further restricted our work to the case where the propagation direction of the incoming plane wave is perpendicular
to the cylinder axis, and the electric field is parallel to the cylinder axis (blue line in Fig. 4). In this case, the extinction,
scattering and absorption efficiencies are given by

Qext =
2
ka

∞

∑
n=−∞

ℜ(bn), (4)

Qsca =
2
ka

∞

∑
n=−∞

|bn|2, (5)

and

Qabs = Qext −Qsca. (6)
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k is the angular wavenumber of the incoming plane wave and a is the radius of the cylinder. The coefficient bn is given by

bn =
tanβn

tanβn− i
, (7)

and tanβn is given by

tanβn =
mJ′n(mka)Jn(ka)− Jn(mka)J′n(ka)
mJ′n(mka)Nn(ka)− Jn(mka)N′n(ka)

. (8)

m is the refractive index of the cylinder, Jn is the nth order Bessel function of the first kind and Nn is the nth order Bessel
function of second kind (Neumann function).

In the case where the electric field is parallel to the cylinder axis the situation is equivalent to a two-dimensional scalar
wave problem where a plane wave is propagating towards a circular scatterer and an exact description of the field inside and
outside the scatterer can be found. Details are given in the supplementary materials Sec. A. The electric field of arbitrary shaped
scatterers can be computed numerically. In this work we use Comsol Mulitiphysics and the wave optics module, which uses the
finite element method to compute the electric near- and far-field of non-circular scatterers26.

Figure 5. The norm of the wavefunction, equivalent with the norm of the electric field, for a disk of radius 10 µm and index
of refraction 1.8. The incident radiation is a plane wave with wavenumber 1643.5 cm−1, amplitude equal to one, and
propagating from the left. The wavenumber of the incident plane wave is chosen to coincide with the wavenumber of a ripple.

Figure. 5 shows the norm of the wavefunction at a resonance at 1643.5 cm−1. In this case the refractive index is 1.8 and the
radius is 10 µm. As the figure shows, the resonance is caused by a standing wave around the circumference of the cylinder.
The standing wave is called a whispering gallery mode. It can be associated with a classical ray that bounces around the
circumference of the cylinder due to total internal reflection. It is noteworthy that the ray cannot leave the cylinder since it
always bounces off the circumference from the inside of the cylinder with an incident angle larger than the critical angle for
total internal reflection. Therefore the ray cannot be reached from the outside of the cylinder. The whispering gallery modes, i.e.
the ripples, can also be found in the cases of a lower refractive index as indicated in Fig. 4. But the well recognizable patterns
as shown in Fig. 5 are more distinct in the case of a lager ratio between the refractive indices inside and outside the circular
scatterer.

Ray Tracing and classical chaotic scattering
In order to decide if the system is chaotic or not, we study the behavior of classical rays. Chaotic scattering systems have
been studied for quantum wave systems and the corresponding classical ray systems19, 21. Using the theory from this field, we
evaluate if the system is chaotic or regular. The shape of the scatterer in this study is inspired by the Bunimovich stadium, which
is a chaotic system. However, this system is a closed system, i.e., the rays cannot leave the system19, 20. A chaotic scattering
system is extremely sensitive to initial conditions. In a regular scattering system, a slight change in initial conditions of the rays,
i.e., their starting positions, will be followed by only small differences in the paths of the corresponding rays. In the case of a
chaotic system, small changes in starting conditions will be followed by large differences in the paths of the corresponding rays.

In our case of an open scattering system, rays are sent in from the top of the scatterer and are refracted into the system. The
rays are treated as Newtonian rays, so when a ray hits a boundary it will either be transmitted or stay in the system due to total
internal reflection. We can qualitatively show the occurrence of chaos by evaluating the lengths of the rays inside the scatterer.
When the lengths are rapidly changing for a slight change in starting conditions, this is an indication of chaos.
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In this work we evaluate the behavior of the classical rays for a system where the ripples have disappeared, i.e. we do not
observe the standing waves in the scatterer. This system corresponds to systems without ripples in the absorbance spectra that
we observe in FTIR experiments.

Several factors may be considered in order to decide whether the scattering behavior of the system is chaotic. In this work
we consider (1) the fractal structure of path-length plots, (2) the fractal dimension, and (3) the Lyapunov exponent of the system.

By magnifying the path length plots several times, fractal structure may emerge. A fractal is a class of irregular structures
that are not smooth. In our case if the starting position of a ray coincides with the fractal, a slight change in this starting position
results in a considerable change in path length of the ray. The presence of a fractal indicates the presence of chaos. In the case
where a magnification of the fractal yields several identical copies of the fractal itself, the fractal is self-similar. A well-known
self-similar fractal is the Cantor set. Several objects in nature have a fractal structure, e.g., cumulus clouds, trees, and lungs27.

In order to evaluate the fractal dimension of the system, the box-counting method is applied. By dividing the set of rays into
smaller and smaller subsets and counting the number of sets that contain long-lived rays, the fractal dimension can be obtained
as the slope of a logarithmic plot of the number of subsets with at least one long-lived trajectory and minus the width of the
subset28. A non-integer fractal dimension is an indication of chaos29–32.

The Lyapunov exponent can be found by evaluating the distance between two neighboring long-lived rays as a function of
time. A positive Lyapunov exponent is an indication of chaos29–32.

Relation between the imaginary part of the refractive index and absorbance

Figure 6. The absorbance, A, as a function of wavenumber for different choices of the imaginary part of the refractive index,
ni. A is related to ni as indicated by Eq. 9. The effective thickness if found for a cylinder of radius 10 µm.

The absorption properties of a material can be modelled by including an imaginary part ni in the refractive index, m= nr+ ini.
nr is the real part and describes the refractive properties of the material. ni can be related to the pure absorbance Apure by

Apure =
4πnideffν̃

ln(10)
, (9)

where deff is the effective thickness and ν̃ is the wavenumber9, 16. In the case of an infinite cylinder where the light is propagating
perpendicular to the cylinder axis, deff =

πa
2 where a is the radius of the cylinder. Figure 6 shows how the absorbance is related

to different choices of the imaginary part of the refractive index, ni, within the wavenumber interval 5000-1000 cm−1.

Relation between the size of the numerical aperture and the extinction efficiency
In FTIR measurements the detector has a finite size, G, as indicated in Fig. 1. The size of this detector is related to the numerical
aperture, NA, which is defined as

NA = sin(θ), (10)

where θ is the angle defined by the size of the detector as showed in Fig. 733. Figure 7 is a simplified model of, e.g., a
Schwarzschild optics for transmission IR measurements8, that illustrates the general principle of how θ is related to NA.

The extinction efficiency, Qext , is the sum of the scattering efficiency and the absorption efficiency. In the case of a
non-absorptive scatterer we have Qext = Qsca. In the case where the E-field is parallel with the cylinder axis, Qsca can be found
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Figure 7. Infrared light of intensity I0 is propagating towards a sample with a shape of an infinite cylinder of radius a in a
FTIR spectrometer. The detector of the spectrometer is of a finite size, defined by the numerical aperture given by NA = sinθ .
The scattered light that does not hit the detector is limited within the angle α on both sides of the center line.

as a sum of bn’s as described in Eq. 5. This expression is found by evaluating the following integral

Qsca =
1

πka

∫ 2π

0
|T (θ)|2dθ =

2
πka

∫ π

0
|T (θ)|2dθ , (11)

where k is the angular wavenumber, a is the radius of the cylinder and θ is the angle as shown in Fig. 7. The integral can be
reduced as showed above due to symmetry. The function T in the case where the E-field is parallel to the cylinder axis is given
by

T (θ) =
∞

∑
n=−∞

bneinθ , (12)

where bn is given in Eq.7.
When a numerical aperture is present, some of the scattered light is scattered in forward direction and hits the detector.

In order to evaluate the amount of light which does not hit the detector, we need to evaluate how the Qsca is affected by an
increased θ . The scattering efficiency (Eq. 11) is then evaluated over the angle α on both sides of the center line.

Results
In order to corroborate the theoretical results presented in this paper, FTIR raw spectra of PMMA-spheres, pollen, and human
cells were measured and analyzed. Three of the spectra are shown in Fig. 8.

(a) (b) (c)

Figure 8. Absorbance spectra of (a) a PMMA-sphere15 (b) a Juniperus Excelsa pollen grain15 and (c) a human lung cancer
cell5. In order not to introduce spurious features into the spectra that may result from using a correction algorithm, and in order
to highlight the original appearance of the spectra, all three spectra shown are uncorrected, raw spectra. The tiny, sharp features
seen in the spectrum in frame (c) are mostly due to noise and counting statistics; they are not reproducible ripples.

The absorbance spectrum for a PMMA-sphere (Fig. 8a) shows both ripples and wiggles, which confirms the fact that
perfectly spherical scatterers are well described by Mie theory. The spectrum of the Juniperus Excelsa pollen grain (Fig. 8b)
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also shows both wiggles and ripples. This is expected since the shape of the pollen grains whose spectrum is shown in Fig. 8b,
is close to spherical. In the case where the scatterer has a non-spherical shape, e.g., a biological cell (Fig. 8c), the corresponding
spectrum only shows the wiggles, i.e., the broad oscillations, but not the ripples.

The PMMA (polymethylmatecrylate) spectrum shown in Fig. 8a was recorded at the SMIS infrared beamline at the SOLEIL
synchrotron in France. Microspheres of PMMA with a diameter of approximately 15 µm, deposited on ZnSe slides, were
measured in transmission mode. A Nicolet 5700 FTIR spectrometer with a Nicolet Continuum XL IR microscope, coupled
with the synchrotron infrared beam, was used for the measurements. The Juniperus Excelsa pollen samples were collected at
the Botanical Garden of the Faculty of Science of the University of Zagreb in 2012, and were measured at the same infrared
beamline, with the same instrumental setup. The diameter of the pollen grains was estimated to be between 10 to 40 µm. More
detailed information about measurement and analysis of the PMMA and pollen spectra can be found in reference15. The human
lung cancer cell spectrum shown in Fig. 8c was recorded at the European Synchrotron Radiation Facility (ESRF) in Grenoble,
at the ID 21 beamline. For these measurements, a Nicolet Nexus 870 spectrometer coupled with a Continuum-Thermo Nicolet
microscope was used. More details of the experimental setup can be found in reference5.

Distortion of the circular shape
Developement of an approximation for Qext for stadium-shaped scatterers
As presented above, the van de Hulst approximation for Qext for a sphere is used in the ME-EMSC algorithm. In order to derive
an analytical van-de-Hulst-type extinction formula for our stadium system, we start by looking at an approximation for a disk
and follow the same procedure as presented by van de Hulst for a sphere13. For a sphere, the extinction efficiency is given by13

Qext =
4π
k2

1
g

ℜ[S(0)], (13)

where k is the angular wavenumber, g = πa2 is the geometrical cross section of the sphere (see Fig. 1) and S(0) is the amplitude
function in forward direction.

x0−a a

τ

x0

Figure 9. System investigated for the evaluation of the extinction efficiency of a disk.

In order to derive the approximation for a circular disk, we evaluate how the rays, assumed to propagate straight through
the scatterer, affect the wave in the geometrical shadow of the disk (the shaded area in Fig. 9). The disk has a radius a and a
refractive index m. The blue ray at x = x0 has a phase lag equal to 2asin(τ)(m−1)k, where k is the angular wavenumber and
2asin(τ) is the length of the ray inside the disk.

In the case of the two-dimensional system shown in Fig. 9, S(0) is given by

S(0) =
k2

2π

∫ a

−a
[1− e−iρ sin(τ)]dx, (14)

where k is the angular wavenumber, a is the radius of the disk, τ is the angle as indicated in Fig. 9 and ρ = 2ka(m−1).
In the geometrical shadow below the disk, the field that is added to the original plane wave is the expression inside the

brackets of Eq. 14. The integral of S(0) can be written in terms of Bessel functions, which then results in

Qext(ρ) = 2−2J0(ρ)+4
∞

∑
n=1

J2n(ρ)
1

4n2−1
, (15)

where J0 is the 0th order Bessel function of the first kind and J2n are Bessel functions of the first kind and order 2n.
Figure 10 shows the result of Eq. 15 together with the exact Mie solutions for an infinite cylinder (Eq. 4). As for the

sphere in Fig. 2, the approximation predicts the positions of the wiggles, but not the ripples. The graph of the approximation
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Figure 10. The blue line is the exact expression for Qext in the case where the E-field is parallel to the axis of the cylinder. The
radius of the cylinder is 10µm and the refractive index is 1.3. The red dashed line is the approximation of Qext given by Eq. 15.

formula of Eq. 15 is scaled with respect to the exact result. This is not a problem for state of the art Mie scatter corrections in
infrared spectroscopy, since the Mie scatter correction is scaling invariant with respect to the theoretical model used for the
correction5, 7, 9, 11.

When we extend our circular scatterer to a stadium-shaped scatterer, as in Fig. 11, we also need to include rays that are
propagating through the rectangular mid-section of the stadium. The phase lag in this case is given by 2a(m− 1)k. The
amplitude function in forward direction is given by

Sstadium(0) =
k2

2π

(∫ 0

−a
[1− e−iρ sin(τ)]dx+

∫ d

0
[1− e−iρ ]dx+

∫ d+a

d
[1− e−iρ sin(τ)]dx

)
, (16)

where k is the angular wavenumber and a and d are the radius of the stadium’s end caps and the lengths of the straight sections
as indicated in Fig. 11.

x0 d−a ax0

Figure 11. System investigated for the evaluation of the van de Hulst approximation of the extinction efficiency
of a stadium.

With the result in Eq. 16, we arrive at the following explicit formula for the extinction efficiency

Qext(ρ) =
2a

2a+d

(
2−2J0(ρ)+4

∞

∑
n=1

J2n(ρ)
1

4n2−1

)
+

2d
2a+d

(1− cos(ρ)) . (17)

In Fig. 12, we compare the results of Eq. 17 with electromagnetic COMSOL simulations. The figure shows that both the
van de Hulst formula in Eq. 17 and the COMSOL simulations predict that for a stadium the positions of the wiggles are shifted
to the right as d increases.

Investigation of the electromagnetic field for stadium-shaped scatterers
To evaluate the scattering properties of a stadium further, the extinction coefficient and the electric field were calculated using
COMSOL26. Figure 12 shows the results of these simulations. The refractive index was set to 1.3 and the radius of the half
disks at the end of the stadium was set to 10 µm.
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Figure 12. Qext of a stadium with a refractive index of 1.3 and a radius of the circular end caps equal to 10 µm. The length of
the straight sections is changed from 0 µm (dark blue line and dark red line) to 15 µm (turquoise line and orange line). The
figure shows that the wiggles are shifted to the right both according to the COMSOL simulations of the electromagnetic field
(reddish, thick lines) and according to the approximation of Qext (bluish, thin lines) given by Eq. 17.

Figure 12 shows the extinction efficiency Qext as a function of the wavenumber found by COMSOL (reddish, thick lines)
together with the approximation for Qext according to Eq. 17 (bluish, thin lines), where the darkest blue and red curves show
the respective extinction efficiencies for a disk. In the exact result for a disk (darkest red color in Fig. 12), the familiar patterns
of wiggles and ripples are present. As we increase d, the sharp ripples disappear. However, we still observe some remnants of
ripples at the smallest wavenumbers.

(a) d = 0µm. (b) d = 5µm. (c) d = 10µm. (d) d = 15µm.

Figure 13. For all the frames, the radius of the circular end caps is 10 µm and the refractive index of the scatterer is 1.3.
Frames (a)-(d) show the norm of the E-field in the case where a plane wave is incident from the left with wavenumber
ν̃ = 2600 cm−1.

In Fig. 13a-13d, the norm of the E-field is shown for wavenumber ν̃ = 2600 cm−1. In the case of a circular scatterer
(Fig. 13a), we clearly see the focusing effect and the photonic jet behind the scatterer. As d increases, we observe that the
photonic jet behind the scatterer divides into two. These two jets emerge from the scatterer at the points where the straight
sections of the stadium meet the circular end caps of the stadium. This observation is well-known from the field of micro-disk
lasers34.

In order to further evaluate how the transition to chaos affects the system, the refractive index of the scatterer was increased to
1.8. An increased refractive index results in sharper ripples. Figure 14 shows Qext , found from simulations of the electromagnetic
field (by Comsol), for this case. The wavenumber interval is between 4200 and 3700 cm−1. The colors indicate the size of d,
which ranges from 0.001 µm (dark blue line) to 50 µm (dark red line).

For the cases where d is equal to 2 µm or less, the ripple structure is present. Investigating the near field at wavenumbers
that correspond to sharp peaks in Qext(ν̃), we observe that they correspond to standing waves. Figure 15 shows some selected
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Figure 14. Extinction efficiency as a function of wavenumber. Illustrated is the change in Qext as a function of the length d of
the straight sections of the stadium as we change d from 0.001 (dark blue), which is close to a disk, to a stadium with
d = 50 µm (dark red). The radius of each of the endcaps is 10 µm and the refractive index of the stadium is 1.8. The
simulations are done by Comsol.

plots of the norm of the E-field. Supplementary materials Sec. B shows additional field plots. On the way to a fully developed
stadium we observe that for a weakly deformed disk the circular standing-wave pattern transforms into a diamond-shaped
pattern (see Figs. 15b and 15c).

At d = 5 µm, nearly all the ripples have disappeared. Some small peaks are still observed; they correspond to the wave
functions equal and similar to the ones shown in Fig. 15d.

As the figure indicates, the sharp ripples disappear when d is 10 µm and larger. For the cases where the sharp resonances
have disappeared, we observe scarlets35, 36, which are an indication of chaos. The scarlets are rigde-structures that show how
the waves are locally guided.

The ratio between the wavelength and the size of the scatterer is important in order to observe wave chaos. It is therefore
possible to observe classical chaos in cases where we still have standing waves in the wave picture. On the other hand, in cases
where d = 10 µm and larger, this ratio is so small that the simulations of the electromagnetic field indicate chaotic behavior.

Behavior of classical rays for a stadium-shaped scatterer
In order to evaluate if the system is chaotic or not, a ray tracing code was written. The code simulates the evolution of rays sent
straight down towards the scatterer as shown in Fig. 16. In order to look for an indication of chaos, the path lengths of the rays
are evaluated for systems with different lengths of the straight sections d and different refractive indices. Only rays sent towards
the left half disk of the stadium are considered. The reason is that (i) rays incident on the straight sections of the stadium pass
straight through and are therefore uninteresting in the context of chaos, and (ii) because of symmetry, rays incident on the right
end cap behave exactly the same as rays incident on the left end cap.

In Fig. 14 we observe that in the case where the length of the straight sections of the stadium, d, is 5 times larger than the
radius, a (see Fig. 16), the ripples disappear and we observe scarlets in the corresponding electric-field plots. In this case, the
refractive index of the scatterer is 1.8. Since classical rays are independent of wavelength, a was set to 1 and d was set to 5.
Figure 17a shows the resulting behavior of the simulated rays and Fig. 17b shows the lengths of the rays inside the scatterer as
a function of starting position. For rays incident on the very left of the stadium, long-lived trajectories are observed. This is an
indication of chaos.

In order to investigate whether the life-time plot of the rays exhibits fractal structure, one tenth of the range of starting
positions in Fig. 17b was magnified. This was repeated seven times. The resulting path length plots are shown in Fig. 18.
Fractal structure is present in all seven stages of magnification. The magnifications also show that new structure appears at each
stage of magnification. This indicates that the life-time fractal is not self-similar. Additional magnifications are displayed in the
supplementary materials Sec. C.
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(a) d = 0.001µm,
ν̃ = 4186 1

cm

(b) d = 2.0µm,
ν̃ = 4057 1

cm

(c) d = 2.0µm,
ν̃ = 4024 1

cm

(d) d = 5.0µm,
ν̃ = 3943 1

cm

(e) d = 20.0µm,
ν̃ = 3797 1

cm

(f) d = 50.0µm,
ν̃ = 4048 1

cm

Figure 15. The plots show the norm of the electric field for selected wavenumbers. The incoming wave is a plane wave
entering from the left. The stadium shaped scatterer has a radius of the end-caps equal to 10 µm and a refractive index of 1.8.
The lengths of the straight sections of the stadium, d, and the corresponding selected wavenumbers are stated below each of the
different panels

The fractal dimension of the system was found by evaluating a system where 10 million rays were sent straight downwards
and incident on the left end-cap. A long-lived ray was defined as a ray with a length longer that 1 000 000. This set of starting
positions was divided into subsets of length equal to δ . The blue line in Fig. 19 shows a plot of ln(N) as a function of − ln(δ ),
where N is the number of subsets that contain at least one long-lived ray at resolution δ . The fractal dimension is then found as
the slope of ln(N) as a function of − ln(δ ).

Figure. 19 shows ln(N) in the case where in total 10 million (blue line) and 100 million (red line) rays are started in the
interval from x0 = −3.5 and x0 = −3.4. The yellow line is a straight-line fit to the data and shows that the slope, i.e., the
fractal dimension, is approximately 0.65. As the figure shows, ln(N) deviates from a straight line when δ becomes too small.
This is due to the fact that the resolution of the life-times (i.e., 10 million rays or 100 million rays) is still not enough for the
corresponding δ where the bending-over of ln(N) vs. − ln(δ ) occurs.

In order to find the Lyapunov exponent, the distance between two long-lived rays was evaluated. The starting positions
of the two rays are given as "Pair 1" in Tab. 2. The Lyapunov exponent was found by evaluating the distance between these
two rays as a function of travelled path length. The logarithm of distance between the two rays, D, was plotted against the
distance travelled. The result is shown in Fig. 20a as the blue line. The slope of the blue line is indicated by the red line, and
indicates a Lyapunov exponent equal to 0.36. In order to evaluate the Lyapunov exponent in another region of starting positions
we evaluated the average of the Lyapunov exponent for 10 rays. This is shown in Fig. 20c. This is the mean of the 10 rays in
Fig. 20b and the starting positions of these ten rays are given in Tab. 2. The slope of this averaged line is also found to be 0.36.

The dips in the blue line in Fig 20 correspond to the fact that the rays are crossing each other. The slope of the blue line in
Fig 20 (ignoring the dips) is the Lyapunov exponent. The red line indicates that the slope is approximately 0.36.

Elliptic deformation
The following question arises: Is the disappearance of the ripples of the system caused by the chaotic behavior or is the reason
for the disappearance of the ripples primarily caused by the deformation into a stadium, and the chaotic scattering is merely
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Figure 16. Newtonian rays are sent straight down towards the stadium-shaped scatterer. The rays are refracted according to
Snell’s law. Only the rays that hit the left end-cap of the scatterer are investigated (solid line). Due to symmetry, the rays that
hit the right end-cap behave the same as the rays that hit the left end-cap. Rays that hit the straight sections of the stadium are
not long-lived: They transmit straight through the scatterer.

(a)
(b)

Figure 17. Frame (a) shows how rays sent straight downwards toward the left end cap refract when hitting the scatterer.
Frame (b) indicates the length of the each ray, l, inside the scatterer as a function of start position x0 with a logarithmic y-axis.
The refractive index of the scatterer is 1.8. Classical ray tracing investigations are wavelength independent and the length of
straight part of the stadium is 5 times the radius of the end caps. This corresponds to a system as in Fig. 15f where d = 50µm
and r = 10µm.

a by-product of deformation, i.e., the disappearance of the ripples is correlated with the onset of chaotic scattering, but not
caused by chaotic scattering. In order to conclusively answer this question, we also considered the deformation of the disk into
an ellipse, which is an integrable system that has no chaotic scattering at any deformation. Therefore, if the ripples disappear
under deformation into an ellipse, we have conclusively shown that the cause for the disappearance of the ripples is deformation,
and that chaotic scattering, a consequence of deformation, is merely correlated with the disappearance of the ripples, but not the
cause. To investigate this point, we studied how the ripple structure is changing as we deform our disk-shaped scatterer into an
elliptical scatterer as shown in Fig. 21.

An ellipse is described by the two semi-major axes a and b as shown in Fig. 21. In our deformation studies, we increase
the width of the ellipse in x-direction, i.e., we increase the semi-major axis b; the incident light illuminates the scatterer from
above. The semi-major axis, a, is selected to be 10 µm, and b is increased from 10 µm (i.e. a disk-shaped scatterer) to 60 µm.
Figure 22 shows how the extinction efficiency changes as we increase b. We observe that the ripple structure disappears when b
becomes large enough. However, we also see that compared to the stadium, the ripples are more resilient in the case of the
ellipse, i.e., an integrable system, and disappear only at a much larger deformation compared to the stadium, which exhibits
chaotic scattering. This shows conclusively that the deformation is the reason for the disappearance of the ripples. However, we
also see that chaotic scattering has an accelerating effect on the disappearance of the ripples, i.e., the ripples disappear more
quickly in the presence of chaotic scattering. The calculations were done with COMSOL26. Contrary to the sensitivity of the
ripples we observe that the wiggle structure is robust with respect to deformation. This is analogous to our observations in the
case of the stadium-shaped scatterer (Fig 12).

Figure 23 shows the norm of the electric field for the selected wavenumbers for the systems evaluated in Fig. 22. The
wavenumbers correspond to peaks (ripples) in the Qext .

Absorption properties of the scatterer
As mentioned above, the extinction, scattering, and absorption efficiency for an infinite cylinder can be described exactly by
Mie theory.

13/23



(a) (b) (c) (d)

(e) (f) (g)

Figure 18. The figures indicate the length of each ray as a function of start position. In frame (a) the start position is chosen to
be a magnification of one tenth of the very left of Fig. 17b. Then the system is magnified as indicated by the two red lines seven
times. For each magnification, 100 000 rays are started. All the figures have a logarithmic y-axis. The refractive index of the
stadium shaped scatterer is 1.8. Classical ray tracing investigations are wavelength independent and the length of the straight
sections of the stadium is 5 times the radius of the end caps. This corresponds to a system as in Fig. 15f where d = 50µm and
r = 10µm. The magnification factor for each generation is given in Tab. 1

Table 1. The table indicates the magnification factor for the generation plots in Fig. 18.

Generation Magnification factor
1 10
2 9.5
3 12.8
4 23.9
5 26.2
6 25.0
7 15.1

Figure 24 shows how Qext changes as the absorbance of the sample is increased. The absorbance is kept constant for all
wavenumbers and is related to the imaginary part of the refractive index by Eq. 9. The real part of the refractive index in
Fig. 24a is 1.3, and in Fig. 24b it is 1.8. For both cases, the wiggle structure remains when increasing A, but the amplitudes of
the wiggles decrease as A increases. In Fig. 24b, the very sharp ripples disappear immediately when the absorbance is turned
on. But the broader ripples are present until the the absorbance is equal to 0.5 for both cases.

Equation 4 shows how Qext and Qsca are composed of a sum of bn’s. The bn are given in Eq. 7, and by evaluating ℜ(bn(ν̃)),
how the ripples in Qext correspond to peaks ℜ(bn(ν̃)). The figures in supplementary materials Sec. D. show how b15 and the
corresponding ripple in Qext are attenuated as the absorbance of the sample increases. The figures further shows how the wave
function for two of the ripples changes as A increases.

The effect of the numerical aperture
As mentioned above, the size of the numerical aperture decides the amount of scatted light that hits the detector. In order to
evaluate how much of the light is extinguished from the forward direction, we evaluate the scattering efficiency of an infinite
cylinder, where a plane wave is propagating perpendicular to the cylinder axis and the E-field is parallel to the cylinder axis.
The investigation is done for a non-absorptive scatterer, i.e. Qext = Qsca.

The extinction efficiency in the case where a numerical aperture is present is found by Eq. 11, where the integral is taken
over the angle α as described in Fig. 7. The numerical apertures NA selected are NA= 0 (which corresponds to the exact
expression for Qext (Eq. 4)), NA= 0.325, and NA= 0.658, 37. The value of NA= 0.325 was chosen to lie midway between 0
and 0.65. Figure 25 shows the result. The system investigated has a radius of 10 µm and a refractive index of 1.3 (Fig. 25a) and
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Figure 19. Determination of the fractal dimension of the set of long-lived rays based on the box-counting method. The blue
line shows ln(N) as a function of − ln(δ ) where N is the number of intervals that contain at least one long-lived trajectory and
δ is the width of the interval. The slope of the blue line is indicating the fractal dimension. The yellow line indicates that the
slope is 0.65. N10M indicates N for the case where 10 million rays were started in the interval and N100M where 100 million
rays were started in the same interval.

(a) (b) (c)

Figure 20. Frame (a) The blue line is ln(D) where D is the distance between the two rays as a function of path length, l. The
start position of the two rays is given as pair 1 in Tab. 2. The red line indicates a straight line with the same trend as ln(D). The
slope of this line, 0.41, is the Lyapunov exponent. Frame (b) shows ln(D) for 10 pairs of rays from Fig. 18g. The start positions
of the rays are given in Tab. 2. Frame (c) shows the average of ln(D) for the 10 pairs of rays and the line which indicates the
slope, i.e. the Lyapunov exponent, which in this case 0.36.

1.8 (Fig. 25b).
As NA is increased, Qext decreases. This is expected, due to the reduced angle, α , that the integral is taken over. We see

that both the ripples and their positions are preserved as NA increases.

Discussion
The aim of this study has been to evaluate (i) how the extinction efficiency changes as we deform our circular-shaped scatterer
into an elliptical- or stadium-shaped scatterer, (ii) how the absorbance of the scatterer affects the extinction efficiency and (iii)
how the extinction efficiency is affected by the size of the numerical aperture. Figure 8 shows how the ripples are present in
measurements of perfectly spherical scatterers (PMMA-spheres) and nearly perfectly spherical scatteres (pollen). In the case of
a non-spherical scatterer (biological cell) we observed that the ripples completely disappeared, even in non-absorptive spectral
regions.

For our study of the influence of sample shape on FTIR spectra, the choice of our system is natural, since it allows us to
study the transition between regular scattering on a system whose scattering properties are known analytically, to a chaotic
scattering system, which is no longer accessible analytically, i.e., its scattering properties have to be investigated numerically.

15/23



Table 2. The start position of the ten pairs of rays shown in Fig. 20b. The ten pairs of rays are selected as neighbouring
long-lived rays (l ≈ 105) in Fig. 18g.

x0,1 x0,2
Pair 1 -3.495736105547581 -3.495736105546853
Pair 2 -3.495736105540718 -3.495736105530007
Pair 3 -3.495736105420616 -3.495736105420269
Pair 4 -3.495736105409732 -3.495736105409420
Pair 5 -3.495736105399923 -3.495736105399680
Pair 6 -3.495736105399368 -3.495736105399264
Pair 7 -3.495736105398918 -3.495736105398814
Pair 8 -3.495736105045579 -3.495736105043326
Pair 9 -3.495736105041593 -3.495736105041246

Pair 10 -3.495736104905339 -3.495736104904680

a
m

m0

(a)

a
bm

m0

(b)

Figure 21. We are evaluating a system that transforms from a disk with radius a, as shown in (a), into an ellipse, as shown in
(b). The parameter that describes the height of the ellipse is its semi-major axis, a, which is kept constant and equal to the
radius of the disk. We deform the scatterer by increasing the semi-major axis, b, of the ellipse. The refractive index of the
scatterer is m and the refractive index of the surroundings is m0 = 1. The light is entering the system from above.

(a) (b)

Figure 22. The figure shows how Qext changes as the deformation of the ellipse increases. The semi-major axis, a, of the
ellipse (see Fig. 21b) is kept constant at a = 10 µm, and b is selected to be 10 µm (blue line, i.e., a disk-shaped scatterer), 30
µm (red line) and 60 µm (yellow line). The refractive index is (a) 1.3 and (b) 1.8.

The commercially available software package COMSOL Wave Optics allows us to extend previous knowledge accumulated in
the domain of regular Mie scattering into the domains of regular scattering on an elliptic cylinder and chaotic scattering on
a stadium-shaped cylinder. In both systems, the smooth transition from the disk system to the ellipse and stadium systems
allows us to follow the evolution of the known Mie features, such as wiggles and ripples, into the domains of deformed, regular
scattering in the case of elliptic deformations and chaotic scattering in the case of stadium-shaped deformations. In both cases
we also looked at the dependence on the index of refraction. As one of our main observations we found that the ripples present
in the scattering from a disk are suppressed by deformation, and faster in the presence of chaotic scattering (see Figs. 12 and
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(a) b = 10µm,
ν̃ = 4181 1

cm

(b) b = 30µm,
ν̃ = 4133 1

cm

(c) b = 60µm,
ν̃ = 4144 1

cm

(d) b = 10µm,
ν̃ = 4086 1

cm

(e) b = 30µm,
ν̃ = 4115 1

cm

(f) b = 60µm,
ν̃ = 4052 1

cm

Figure 23. The plots show the norm of the electric field for selected wavenumbers. The incoming wave is a plane wave
entering from the left. The ellipse-shaped scatterer as showed in Fig. 21, a is equal to 10.0µm and a refractive index of 1.3
(panel a-c) and 1.8 (panel d-f). The parameter b is shown in the sub-caption. The selected wavenumber is also shown in the
sub-caption, the wavenumber corresponds to ripples/peaks in Fig. 22.

(a) (b)

Figure 24. The figure shows how Qext (Eq. 4) changes as the absorbance of the sample increases. The radius of the sample is
10 µm and the real part of the refractive index is (a) 1.3 and (b) 1.8. The imaginary part of the refractive index is found by Eq. 9.

14) compared to the case of regular scattering (see Fig. 22).
Despite the fact that the real world is three-dimensional, in order to keep our systems simple, allowing us to focus on
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(a) (b)

Figure 25. The extinction efficiency, which is equivalent with the scattering efficiency in the case of a non-absorptive circular
scatterer as found by Eq. 11. The refractive index of the scatterer is (a) 1.3 and (b) 1.8, and the radius is 10 µm. As described in
Fig. 7, Qext is evaluated for the light that does not hit the detector with an angle larger than α . Qext is found for different sizes
of the numerical aperture (NA). NA is related to θ in Fig. 7 by Eq. 10.

the essential mechanisms without cumbersome numerical ballast, we focused in this study on effectively two-dimensional
(cylindrical) systems. This is justified since, as shown in Fig. 4 for a circular scatterer, qualitatively, and to some approximation
even quantitatively, the same phenomena can be observed in two- and three-dimensional systems. Furthermore, a two-
dimensional system is equivalent to a cylindrical three-dimensional system, i.e., a system which is translationally invariant in
the third dimension.

Figure 10 shows how the van de Hulst approximation, derived in Eq. 15, compares with the exact Mie solution of the system.
In the case of a disk, our approximation of the extinction efficiency of a disk reproduces the positions of the wiggles, but
misses the ripples. When we use this approximation, we need to have in mind that the amplitudes of the resulting, approximate
wiggles are too large. As the length of the straight sections of the stadium, d, increases, the COMSOL calculations show (see
Fig. 12) that the positions of the wiggles are shifted towards the right. The same shift to the right is observed if we evaluate the
extinction efficiency using our approximation of the extinction efficiency according to Eq. 17. This is also illustrated in Fig. 12.

We also observed some interesting structures in the electric field itself. A plot of the norm of the electric field shows how
the photonic jet splits into two as the length of the straight sections of the stadium increases (see Fig. 13). The two jets emanate
from points in the circumference of the stadium where the end caps merge with the straight sections. Similar effects have first
been observed in the field of micro-disk lasers34 and are used technically for coupling radiation in and out of these lasers. We
also saw whispering gallery modes of higher than first order forming concentric rings in the E-field patterns located close to the
perimeter. We also saw the manifestation of a "scar"38, i.e., the local enhancement of the electric field in the vicinity of the
diamond orbit of the Bunimovich stadium. Lastly, we also observed the phenomenon of "scarlets"35, 36 in the region of deeply
chaotic scattering.

In order to further evaluate the stadium-shaped system we evaluated the behavior of the classical rays in the system. For the
system where we observe scarlets in the electric field, we also observe that the length of the rays are very sensitive to their
initial positions, which is an indication of chaos. In order to further evaluate the classical scattering properties of the system
we found indications of chaos in terms of (i) the emergence of a fractal structure, which we traced through seven generations
of magnification (see Fig. 18), (ii) a non-integer fractal dimension (see Fig. 19), and (iii) a positive Lyapunov exponent (see
Fig. 20). Figure 18 also indicates that the fractal structure of the system is not self-similar. This contrasts with the self-similar
structure found in21. However, we were able to reproduce the self-similar fractal structure in21. So, we are sure that our
numerical codes are correct and the different fractal structure is a consequence of vertical versus horizontal incidence of rays
and an increased refractive index.

Deformation is a new mechanism of ripple suppression that is now added to the mechanism of ripple suppression in the
presence of damping16. We found that ripples are suppressed for deformations that lead to either integrable or non-integrable,
chaotic systems. We also found that in integrable systems, the ripples are more resilient to deformation compared with systems
that exhibit chaotic scattering. Intuitively it is clear why the ripples are suppressed more efficiently in the chaotic scattering
situation. As shown in Fig. 15, whispering gallery modes, the origins of ripples, are not well, if at all, supported in the chaotic
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scattering situation, accounting for their fast disappearance. It has been shown (see, e.g.,16) that the sharp ripples, i.e., the
needle-shaped resonances in the spectrum, start to disappear as soon as we turn on absorbance. But as Fig. 24 shows, the
broader ripples, which correspond to higher-order Mie resonances16, are still present until A = 0.5 is reached. Figure 25
indicates that the ripples are present also when we take the numerical aperture into account. Due to this fact, we would expect
to observe the broader-type ripples in the non-absorptive regions in FTIR measurements. This is indeed confirmed by Fig. 8a
and Fig. 8b, which are the spectra of spherical and quasi-spherical systems. However, the absorbance spectrum of the biological
cell, shown in Fig. 8c, does not show a ripple-structure in the non-absorptive regions. This supports our hypothesis that the
non-spherical shape of this scatterer results in a suppression of ripples combined with, possibly, chaotic scattering behavior.

The result of this study also supports the ME-EMSC method of analysis, which uses the van de Hulst approximation in
order to Mie-correct FTIR spectra. Although ME-EMSC is based on the Mie-wiggle structure and does not take the Mie
ripples into account, neglecting the ripple structure is justified in most cases of biological significance, since the shape of most
biological samples is non-spherical, resulting in an absence of ripples. This follows from the fact that integrable deformations,
which would support the manifestation of ripples even for relatively large deformations (see Fig. 22) are rare analytical oddities,
while generic deformations result in chaotic scatterers with high probability30–32 and consequently fast destruction of ripples
for relatively small deformations (see Figs. 12 and 14). Still, it is important to be aware of the occurrence of ripples in the case
of near-spherical samples, which definitely also occur in FTIR spectroscopic applications, as shown, e.g., in Figs. 8a and 8b.

Conclusion
In this paper, studying scattering on a disk that can be smoothly transformed into either an integrable elliptic scatterer or
a Bunimovich stadium scatterer, we showed that deformation of the scatterer has a profound influence on the extinction
efficiency. While regular scattering on a disk is accompanied by sharp resonances, i.e., whispering gallery modes that manifest
themselves as “ripples” in the extinction efficiency, and integrable elliptical deformed scatterer support the ripples up to
relatively large deformations, the ripples are nearly completely destroyed, even for relatively modes deformations in the
presence of chaotic scattering. This is an important observation, since ripples may change both the locations and amplitudes of
chemical absorption bands. While it is known that ripples are eliminated from FTIR spectra by sufficiently large absorption16,
the fast end efficient destruction of ripples by chaotic scattering is both a new result and of immense practical importance for
spectroscopic applications such as FTIR spectroscopy of biological cells and tissues. While ripples are certainly eliminated in
the presence of both chaotic scattering and sufficiently large absorption, we observed that even in the absence of absorption, for
instance in chemically inert spectral regions, the presence of chaotic scattering caused by sample deformation, is sufficient to
suppress Mie ripples in FTIR spectra. While this validates current correction methods for Infrared absorbance spectra, such
as ME-EMSC in most situations of practical spectroscopic interest, in particular as applied to the correction and analysis of
biological samples, great care has to be exercised when investigating quasi-spherically or quasi-elliptically deformed samples
in which case Mie ripples may interfere with chemical absorption bands and may cause large errors in the analysis of spectra if
Mie ripples are not properly taken into account.
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Figure Legends
1 Infrared radiation of intensity I0 is sent towards a sample with a geometrical cross section of g. Part of the

radiation is scattered off or absorbed by the sample. The radiation that is transmitted through the sample has an
intensity of I and hits a detector with a geometrical cross section equal to G. . . . . . . . . . . . . . . . . . . . . 3

2 The extinction efficiency for a sphere of radius 10 µm and a refractive index of 1.3. The blue line indicates the
exact extinction efficiency (described by Mie Theory) and the red line is the van de Hulst approximation for Qext . 3

3 We are evaluating a system that transforms from a disk with a radius a, as shown in frame (a), into a stadium,
as shown in frame (b), by increasing d. a is kept constant. The refractive index of the scatterer is m and the
refractive index of the surroundings is m0 = 1. The system is an open system, i.e., light can enter the system
from the outside and can leave the system to the outside. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 The extinction efficiency Qext for an infinite cylinder (red and blue line) and for a sphere (black line) with
radius 10 µm and a refractive index of 1.3.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

5 The norm of the wavefunction, equivalent with the norm of the electric field, for a disk of radius 10 µm and
index of refraction 1.8. The incident radiation is a plane wave with wavenumber 1643.5 cm−1, amplitude equal
to one, and propagating from the left. The wavenumber of the incident plane wave is chosen to coincide with
the wavenumber of a ripple. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

6 The absorbance, A, as a function of wavenumber for different choices of the imaginary part of the refractive
index, ni. A is related to ni as indicated by Eq. 9. The effective thickness if found for a cylinder of radius 10 µm. 6

7 Infrared light of intensity I0 is propagating towards a sample with a shape of an infinite cylinder of radius a in a
FTIR spectrometer. The detector of the spectrometer is of a finite size, defined by the numerical aperture given
by NA = sinθ . The scattered light that does not hit the detector is limited within the angle α on both sides of
the center line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

8 Absorbance spectra of (a) a PMMA-sphere15 (b) a Juniperus Excelsa pollen grain15 and (c) a human lung
cancer cell5. In order not to introduce spurious features into the spectra that may result from using a correction
algorithm, and in order to highlight the original appearance of the spectra, all three spectra shown are uncor-
rected, raw spectra. The tiny, sharp features seen in the spectrum in frame (c) are mostly due to noise and
counting statistics; they are not reproducible ripples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

9 System investigated for the evaluation of the extinction efficiency of a disk. . . . . . . . . . . . . . . . . . . . . 8
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10 The blue line is the exact expression for Qext in the case where the E-field is parallel to the axis of the cylinder.
The radius of the cylinder is 10µm and the refractive index is 1.3. The red dashed line is the approximation of
Qext given by Eq. 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

11 System investigated for the evaluation of the van de Hulst approximation of the extinction efficiency of a stadium. 9
12 Qext of a stadium with a refractive index of 1.3 and a radius of the circular end caps equal to 10 µm. The

length of the straight sections is changed from 0 µm (dark blue line and dark red line) to 15 µm (turquoise line
and orange line). The figure shows that the wiggles are shifted to the right both according to the COMSOL
simulations of the electromagnetic field (reddish, thick lines) and according to the approximation of Qext (bluish,
thin lines) given by Eq. 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

13 For all the frames, the radius of the circular end caps is 10 µm and the refractive index of the scatterer is 1.3.
Frames (a)-(d) show the norm of the E-field in the case where a plane wave is incident from the left with
wavenumber ν̃ = 2600 cm−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

14 Extinction efficiency as a function of wavenumber. Illustrated is the change in Qext as a function of the length d
of the straight sections of the stadium as we change d from 0.001 (dark blue), which is close to a disk, to a
stadium with d = 50 µm (dark red). The radius of each of the endcaps is 10 µm and the refractive index of the
stadium is 1.8. The simulations are done by Comsol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

15 The plots show the norm of the electric field for selected wavenumbers. The incoming wave is a plane wave
entering from the left. The stadium shaped scatterer has a radius of the end-caps equal to 10 µm and a refractive
index of 1.8. The lengths of the straight sections of the stadium, d, and the corresponding selected wavenumbers
are stated below each of the different panels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

16 Newtonian rays are sent straight down towards the stadium-shaped scatterer. The rays are refracted according to
Snell’s law. Only the rays that hit the left end-cap of the scatterer are investigated (solid line). Due to symmetry,
the rays that hit the right end-cap behave the same as the rays that hit the left end-cap. Rays that hit the straight
sections of the stadium are not long-lived: They transmit straight through the scatterer. . . . . . . . . . . . . . . 13

17 Frame (a) shows how rays sent straight downwards toward the left end cap refract when hitting the scatterer.
Frame (b) indicates the length of the each ray, l, inside the scatterer as a function of start position x0 with
a logarithmic y-axis. The refractive index of the scatterer is 1.8. Classical ray tracing investigations are
wavelength independent and the length of straight part of the stadium is 5 times the radius of the end caps. This
corresponds to a system as in Fig. 15f where d = 50µm and r = 10µm. . . . . . . . . . . . . . . . . . . . . . . 13

18 The figures indicate the length of each ray as a function of start position. In frame (a) the start position is chosen
to be a magnification of one tenth of the very left of Fig. 17b. Then the system is magnified as indicated by the
two red lines seven times. For each magnification, 100 000 rays are started. All the figures have a logarithmic
y-axis. The refractive index of the stadium shaped scatterer is 1.8. Classical ray tracing investigations are
wavelength independent and the length of the straight sections of the stadium is 5 times the radius of the end
caps. This corresponds to a system as in Fig. 15f where d = 50µm and r = 10µm. The magnification factor for
each generation is given in Tab. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

19 Determination of the fractal dimension of the set of long-lived rays based on the box-counting method. The
blue line shows ln(N) as a function of − ln(δ ) where N is the number of intervals that contain at least one
long-lived trajectory and δ is the width of the interval. The slope of the blue line is indicating the fractal
dimension. The yellow line indicates that the slope is 0.65. N10M indicates N for the case where 10 million rays
were started in the interval and N100M where 100 million rays were started in the same interval. . . . . . . . . . . 15

20 Frame (a) The blue line is ln(D) where D is the distance between the two rays as a function of path length, l.
The start position of the two rays is given as pair 1 in Tab. 2. The red line indicates a straight line with the same
trend as ln(D). The slope of this line, 0.41, is the Lyapunov exponent. Frame (b) shows ln(D) for 10 pairs of
rays from Fig. 18g. The start positions of the rays are given in Tab. 2. Frame (c) shows the average of ln(D) for
the 10 pairs of rays and the line which indicates the slope, i.e. the Lyapunov exponent, which in this case 0.36. . 15

21 We are evaluating a system that transforms from a disk with radius a, as shown in (a), into an ellipse, as shown
in (b). The parameter that describes the height of the ellipse is its semi-major axis, a, which is kept constant
and equal to the radius of the disk. We deform the scatterer by increasing the semi-major axis, b, of the ellipse.
The refractive index of the scatterer is m and the refractive index of the surroundings is m0 = 1. The light is
entering the system from above. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

22 The figure shows how Qext changes as the deformation of the ellipse increases. The semi-major axis, a, of the
ellipse (see Fig. 21b) is kept constant at a = 10 µm, and b is selected to be 10 µm (blue line, i.e., a disk-shaped
scatterer), 30 µm (red line) and 60 µm (yellow line). The refractive index is (a) 1.3 and (b) 1.8. . . . . . . . . . 16
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23 The plots show the norm of the electric field for selected wavenumbers. The incoming wave is a plane wave
entering from the left. The ellipse-shaped scatterer as showed in Fig. 21, a is equal to 10.0µm and a refractive
index of 1.3 (panel a-c) and 1.8 (panel d-f). The parameter b is shown in the sub-caption. The selected
wavenumber is also shown in the sub-caption, the wavenumber corresponds to ripples/peaks in Fig. 22. . . . . . 17

24 The figure shows how Qext (Eq. 4) changes as the absorbance of the sample increases. The radius of the sample
is 10 µm and the real part of the refractive index is (a) 1.3 and (b) 1.8. The imaginary part of the refractive
index is found by Eq. 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

25 The extinction efficiency, which is equivalent with the scattering efficiency in the case of a non-absorptive
circular scatterer as found by Eq. 11. The refractive index of the scatterer is (a) 1.3 and (b) 1.8, and the radius is
10 µm. As described in Fig. 7, Qext is evaluated for the light that does not hit the detector with an angle larger
than α . Qext is found for different sizes of the numerical aperture (NA). NA is related to θ in Fig. 7 by Eq. 10. . 18

*
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Supplementary Material
Potential pitfalls in interpretation of Mie-type signatures in infrared microspectroscopy

A Scattering from a soft disk
A plane wave with a wavelength equal to λ is propagating from the left towards a circular scatterer as shown in Fig. A.1. The
wave function of the incoming wave is given by ψ0,

ψ0 = eikx = eikr cosθ , (1)

where k is the angluar wavenumber of the incoming plane wave, given by 2π
λ . The x-position can be re-written in polar

coordinates. ψ0 can be written in terms for Bessel functions

ψ0 =
∞

∑
l=−∞

ilJl(kr)eilθ , (2)

where Jl is the Bessel function of the first kind and order l.

y

x
θ

m

r

λ

Figure A.1. The model circular scatterer with refractive index n. A plane wave is incident from the left with a wavelength
equal to λ .

The scattered wave, ψs, can be written in terms of outgoing Hankel functions

ψs(r,θ) =
∞

∑
l=−∞

AlH
(+)
l (kr)eilθ , (3)

where H(+) is the Hankel function of the first kind and order l, and Al is the scattering amplitude. The wave function outside
the scatterer is therefore given by

ψout(r,θ) = ψ0 +ψs =
∞

∑
l=−∞

ilJl(kr)eilθ +
∞

∑
l=−∞

AlH
(+)
l (kr)eilθ , for r > R . (4)

The wavefunction inside the scatterer is given by ψin and can be written as

ψin(r,θ) =
∞

∑
l=−∞

BlJl(κr)eilθ , for r < R , (5)

where κ is the angular wave number inside the scatterer, given by κ = kn, where n is the refractive index of the scatterer.
By requiring a continuous ψ and ψ ′ for ψin and ψout at the boundary of the scatterer, we can derive an expression for the

coefficients Al and Bl :

Al =
−il
[
κJ′l (κr)Jl(kr)− kJ′l (kr)Jl(κr)

]

κJ′l (κr)H(+)
l (kr)− kJ′l (κr)H ′(+)

l (kr)
, (6)

Bl =
il
[
kH(+)

l (kr)J′l (kr)− kH ′(+)
l Jl(kr)

]

κJ′l (κr)H(+)
l (kr)− kJl(κr)H ′(+)

l (kr)
. (7)
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B Electric near field of a stadium shaped scatterer
Figure B.2 shows how the norm of the electric field inside a stadium-shaped scatterer changes as we increase the length, d, of
the straight sections of the stadium. The extinction efficiency Qext is given in Fig. 14.For d less or equal to 2µm, the selected
wave numbers correspond to peaks in Qext(ν̃).

(a) d = 0.001µm,
ν̃ = 4186 1

cm

(b) d = 0.2µm,
ν̃ = 4159 1

cm

(c) d = 0.4µm,
ν̃ = 4139 1

cm

(d) d = 0.4µm,
ν̃ = 4132 1

cm

(e) d = 0.6µm,
ν̃ = 4115 1

cm

(f) d = 0.6µm,
ν̃ = 4104 1

cm

(g) d = 0.8µm,
ν̃ = 4091 1

cm

(h) d = 0.8µm,
ν̃ = 4077 1

cm

(i) d = 1.0µm,
ν̃ = 4068 1

cm

(j) d = 1.0µm,
ν̃ = 4051 1

cm

(k) d = 2.0µm,
ν̃ = 4057 1

cm

(l) d = 2.0µm,
ν̃ = 4024 1

cm

(m) d = 5.0µm,
ν̃ = 4103 1

cm

(n) d = 5.0µm,
ν̃ = 3943 1

cm

(o) d = 5.0µm,
ν̃ = 3780 1

cm

(p) d = 10.0µm,
ν̃ = 4115 1

cm

(q) d = 15.0µm,
ν̃ = 4028 1

cm

(r) d = 15.0µm,
ν̃ = 3807 1

cm

(s) d = 20.0µm,
ν̃ = 4086 1

cm

(t) d = 50.0µm,
ν̃ = 4048 1

cm

Figure B.2. The frames show the norm of the electric field for selected wave numbers. The stadium-shaped scatterer has a
radius of the end-caps equal to 10.0 µm and a refractive index of 1.8. The length, d, of the straight sections of the stadium and
the associated selected wave number are stated below each of the frames.
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C Generation plots
In order to further evaluate the fractal structure of the system, more subsets of the set of long-lived trajectories of the stadium
system were magnified. In Fig. 18only the very left of the brushes was magnified in each generation. In the figures below
all fractals in the two first generations are evaluated. As the figures below indicate, we have a spectrum of different fractal
structures appearing at the different levels.

(a)

(b) 1 (c) 2

Figure C.3. Frame (a) is identical to Fig. 18 and consists of two brushes, numbered from the left, 1 and 2. Then each of these
two brushes is magnified. Frame (b) shows the magnification of 1, and frame (c) shows the magnification of 2. As the figures
show, the next generation of brushes is numbered from the left.

(a) 1.1 (b) 1.2 (c) 1.3 (d) 1.4

(e) 1.5 (f) 1.6 (g) 1.7 (h) 1.8

Figure C.4. Magnification of all fractal structures in Fig. C.3b. The sub-captions indicate which of the brushes in the previous
generation a particular frame is associated with.
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(a) 2.1 (b) 2.2

Figure C.5. Magnification of both fractal structures in Fig. C.3c. The sub-captions indicate which of the brushes in the
previous generation a particular frame is associated with.
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D How bn’s are connected to Qext

Figure D.6 shows Qext (Eq. 4) and b15 (Eq. 7) for an increasing absorbance. The first sharp peak from the right in b15 in
Fig D.6a at ν̃ = 1643.5 1

cm corresponds to a sharp ripple in Qext . The peak corresponds to a whispering gallery mode of first
order. The second peak in b15 from the right is at ν̃ = 2003.3 1

cm and corresponds to a broader peak in Qext . This peak is a
whispering gallery mode of second order. The wave function of the two ripples are shown in Fig. D.7. Notice the scale on the
color bar.

(a) A = 0 (b) A = 0.01 (c) A = 0.1

(d) A = 0.2 (e) A = 0.5 (f) A = 1

Figure D.6. The frames show how Qext (Eq.4) and b15 (Eq. 7) are changing as the absorbance (A) is increased. The radius of
the cylinder is 10 µm, and the refractive index is given by m = nr + ini, where nr = 1.8, and ni is related to A (given in the
respective sub-captions) by Eq. 9
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(a) A = 0,
ν̃ = 1643.5 1

cm

(b) A = 0.01,
ν̃ = 1643.5 1

cm

(c) A = 0.1,
ν̃ = 1643.5 1

cm

(d) A = 0.5,
ν̃ = 1643.5 1

cm

(e) A = 1,
ν̃ = 1643.5 1

cm

(f) A = 0,
ν̃ = 2003.3 1

cm

(g) A = 0.01,
ν̃ = 2003.3 1

cm

(h) A = 0.1,
ν̃ = 2003.3 1

cm

(i) A = 0.5,
ν̃ = 2003.3 1

cm

(j) A = 1,
ν̃ = 2003.3 1

cm

Figure D.7. The frames show the norm of the wave function, i.e., the electric field, for the first two ripple structures contained
in b15. The wave function is calculated as described in Appendix A. The incident plane wave is propagating from the left with a
wavelength corresponding to the wave number in the respective sub-captions of each frame. The real part of the refractive index
of the circular scatterer is 1.8 and the imaginary part is found by Eq. 9from the absorbance given in the respective sub-captions.
The radius of the scatterer is 10 µm. The color bar is not kept constant.

(a) A = 0 (b) A = 0 and δ ν̃ = 0.0001cm−1 (c) A = 0.01

(d) A = 0.1 (e) A = 0.5 (f) A = 1

Figure D.8. The frames show how Qext (Eq. 4) and b15 (Eq. 7) are changing as the absorbance (A) is increased. The radius of
the cylinder is 10 µm, and the refractive index is given by m = nr + ini where nr = 1.3 and ni is related to A (given in the
respective sub-captions) by Eq. 9. Frame (b) shows the behavior of Qext in a smaller wavenumber interval with a very fine
resolution. We observe that there is no needle-sharp resonance to the right of the resonance at ν̃ = 2865.1 1

cm .
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(a) A = 0,
ν̃ = 2865.1 1

cm

(b) A = 0.01,
ν̃ = 2865.1 1

cm

(c) A = 0.1,
ν̃ = 2865.1 1

cm

(d) A = 0.1,
ν̃ = 2865.1 1

cm

(e) A = 1,
ν̃ = 2865.1 1

cm

Figure D.9. The frames show the norm of the wave function, i.e., the electric field, for the first ripple structure contained in
b20. The wave function is calculated as described in Appendix A. The plane wave is incident from the left with wave number
ν̃ = 2865.1 1

cm . The real part of the refractive index of the circular scatterer is 1.3 and the imaginary part is found by Eq. 9from
the absorbance given in the respective sub-captions. The radius of the scatterer is 10µm. The color bar is not kept constant.
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