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Abstract

Photovoltaics is one of the most important sources of renewable energy. Solar
cells with thin absorbing layers can be more cost-effective and leave a smaller
environmental footprint than the current commercial technology. Light trapping
is a key component for improving the absorption efficiency in thin solar cells. The
longer the incoming light is trapped inside the solar cell, the greater is the chance
of absorption. There are many approaches on how to trap light to achieve efficient
management of light. The goals of the PhD project has been to perform ray and
wave simulations on optically thin solar cell model systems to study their dynamics
for improved absorption efficiency. The effect of chaotic scattering dynamics on
absorption efficiency has been the central theme in this work. The dynamics
of both classical ray chaos and quantum (wave) chaos have been studied in the
context of improving light trapping in optically thin solar cells.

An exact ray formalism for stacks of one-dimensional absorbing planar films was
developed. The formalism is equivalent with Maxwell’s equations when phases
are attached to each of the rays. Analytic expressions were derived for single
film systems, and a hierarchical summation scheme was invented to correctly sum
the truncated conditionally convergent sums necessary for multilayer film stacks.
Some rays proved to be contributing more to absorption than others depending
on the system. A Fourier transform of the reflection amplitude revealed the path
length of the more contributing rays, from which their trajectories were deduced.

The classical ray dynamics in a surface structured solar cell model, the film+dome
system, were studied using a tailor-made ray tracer code. The film+dome system
was found to undergo a transition from regular to chaotic scattering dynamics as
the index of refraction in the dome surface structure was increased past a certain
value. The dynamics were characterized by the fractal dimension of its invariant set
of long-lived trajectories. The transition to chaos was systematically accompanied
with a rapid increase in the absorption efficiency, modeled with Beer-Lambert’s
law. This correlation was found to be structurally stable with respect to the film
thickness.

The results from classical ray dynamics were confirmed in wave film+dome sys-
tems. Chaotic scattering dynamics were found in film+dome systems at refractive
indices comparable to what classical ray simulations showed. Analogously to clas-
sical calculations, a structurally stable correlation between the absorption cross
section and onset of chaotic behavior was demonstrated. In addition, the dwell
time of rays were extracted from the scattering matrix, and was shown to cor-
respond to increased ray lifetime, thus improved light trapping, at the onset of
chaos.
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Samandrag

Fotovoltaiske solceller er ei av dei viktigaste kjeldene til fornybar energi. Sol-
celler med tynne absorberande lag kan vera meir kostnadseffektive og ha eit
mindre miljøavtrykk enn gjeldande kommersiell teknologi. Ljosfanging er ein
nøkkelkomponent for å forbetra absorpsjonseffektiviteten til tynne solceller. Jo
lengre det innkomande ljoset er fanga inni solcella, jo større er sjansen for absorp-
sjon. Det finst mange tilnærmingar for å fanga ljos for å oppn̊a effektiv ljosstyring.
Måla med PhD-prosjektet har vore å gjera str̊ale- og bylgjesimuleringar p̊a mod-
ellsystem for optisk tynne solceller for å studera dynamikken deira for auka ab-
sorpsjonseffektivitet. Effekten av kaotisk spreiingsdynamikk p̊a absorpsjonseffek-
tiviteten har vore eit sentralt tema i dette arbeidet. Dynamikken til b̊ade klassisk
str̊alekaos og kvantekaos (bylgjekaos) har blitt studert i kontekst av å forbetra
ljosfanginga i optisk tynne solceller.

Ein eksakt str̊aleformalisme for stablar av eindimensjonale absorberande flate fil-
mar vart utvikla. Formalismen er ekvivalent med Maxwells likningar n̊ar fasar er
festa til kvar av str̊alane. Analytiske uttrykk vart utleia for enkeltfilmsystem, og
ein hierarkisk summasjonsmetode vart laga for å summera avkorta summar som er
konvergente p̊a vilk̊ar p̊a korrekt m̊ate, naudsynt for multilagsystem. Avhenging
av systemet, s̊a synte nokre str̊alar seg å bidra meir til absorpsjon enn andre. Ein
Fouriertransformasjon av refleksjonsamplituden avdekte veglengda til dei str̊alane
som bidrog mest, og fr̊a dette blei str̊alebanane deira dedusert.

Den klassiske dynamikken i ein solcellemodell med overflatestruktur, film+kuppel-
systemet, vart studert med ein skreddarsydd kode for str̊alesporing. Det vart
funne at film+kuppel-systemet g̊ar over fr̊a regulær til kaotisk spreiingsdynamikk
n̊ar brytingsindeksen i den kuppelforma overflatestrukturen vert auka over ein viss
verdi. Dynamikken vart karakterisert med fraktaldimensjonen til det invariante
settet av str̊alar med lang levetid. Overgangen til kaos var systematisk etterfylgd
av ei rask auke i absorpsjonseffektiviteten, som var modellert med Beer-Lamberts
lov. Denne korrelasjonen vart funnen til å vera strukturstabil med hensyn til
tjukkleiken til filmen.

Resultata fr̊a klassisk str̊aledynamikk vart stadfesta i bylgje film+kuppel-system.
Kaotisk spreiingsdynamikk vart funnen i film+kuppel-system ved brytingsindeksar
samanliknbare med det som vart funne i klassiske str̊alesimuleringar. Analogt
til klassiske utrekningar, s̊a vart det demonstrert ein strukturstabil korrelasjon
mellom absorpsjonstverrsnittet og byrjinga av kaotisk oppførsel. I tillegg vart
opphaldstida til str̊alane funnen fr̊a spreiingsmatrisa, og vart synt til å korrelera
med auka levetid for str̊alane, og dermed forbetra ljosfanging ved byrjinga av kaos.
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E. Olsen, and A. Kohler. Optimized solar cells based on changes in
resonance structure as a function of the refractive index and the
thickness. Presented at: SPIE Photonics West 2019-02-01–2019-02-06

x



Poster Presentations

�

M.A. Brandsrud, E. Seim, J.H. Solheim, R. Blümel, and A. Kohler.
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M.A. Brandsrud, A. Kohler, R. Blümel, E. Seim, and R. Lukacs. The
importance of coupling between spheres for the efficiency
enhancement of periodically structured solar cells. Presented at:
Norwegian Solar Cell Conference 2017-05-09–2017-05-10

xi



xii



List of Abbreviations

E&M Electromagnetic

FDTD Finite-difference time-domain

GFM Green’s function method

GOE Gaussian orthogonal ensemble

HSS Hierarchical Summation Scheme
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Introduction

1.1 Motivation

Improving upon existing renewable energy technologies is considered to be of great
importance in order to deal with ongoing climate change. In the European Union’s
2030 climate and energy framework it is stated that the renewable energy target is
at least 32% of the final energy consumption [15]. In 2017 the share of renewable
energy was 17.5% in the EU energy mix, i.e. the share needs to almost double
in the span of 13 years in order to reach the 2030 target. Photovoltaic solar cells
(PV) are a renewable source of energy that has become increasingly popular. With
efforts to decrease the PV production costs over the last decade, the average price
of solar modules decreased from 2013 to 2018 by 61%, 50% and 34% in China,
USA, and Germany, respectively [16]. The total installed PV energy production
capacity increased from 40 GWp in 2010 to over 500 GWp in 2018 [17]. Today the
share of PV is 4.3% of the total electricity demand in Europe and 2.6% globally.

1.1.1 Light trapping for photovoltaics

A plethora of different solar cell technologies and designs are being actively re-
searched today. Solar cell technologies are often divided into three generations [18].
The first generation constitutes solar cells based on single-junction silicon technol-
ogy. The second generation introduced the thin film solar cell concept which aims
to lower the material costs [19]. The third generation aims to lower costs and to
improve the conversion efficiency using advanced solar cell concepts such as multi-
junction cells [20–23], hot-carrier solar cells [24], quantum dot solar cells [25], and
intermediate band solar cells [26]. One especially interesting technology, which
might not fit the usual generation classification, is solar cells based on perovskite
materials [27]. Single-junction silicon photovoltaics is the most used technology to-
day. The current record holding single-junction lab cell has a conversion efficiency
of 26.7% [28, 29], which is close to the theoretical maximum of 29% determined
by the Shockley-Queisser limit for single-junction silicon solar cells [30, 31]. It is
therefore natural to look at cheaper alternatives or alternatives with higher poten-
tial efficiency. Both are necessary to reach the 2030 EU goal of having 32% PV in
the energy mix. If solar cells are to become cheaper, more efficient and faster to
produce, new technology needs to be developed. One interesting approach, which
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Chapter 1. Introduction

is based upon existing silicon wafer technology, is the combination of a silicon solar
cell with an additional, often thin, film structure on top to form a multijunction
cell [32–34].

Making optically thin solar cells, including thin films, is an attractive approach
to producing cheaper and more efficient solar cells. For starters, thin solar cells
require less materials. A reduction of material is important, even for solar cells
based on silicon, which is the second most abundant element in the Earth’s crust.
Before being used in solar cells, silicon needs to go through an extensive purify-
ing process. Solar cell grade silicon needs of be of at least “4N” purity, which
means 10−4% or less impurities. All contaminants present in the silicon crystals
contribute to a lower conversion efficiency. Producing such high-purity silicon re-
quires a large amount of energy. Thus, lower material usage is an advantage of thin
solar cells. There are also performance advantages to thin solar cells. Less bulk
volume mean less bulk recombination of electron-hole pairs. Lower recombination
rates yield in return higher open-circuit voltages [35]. Thin films are also in many
cases flexible which potentially enables greater design freedom and creativity for
engineers and designers when it comes to implementing solar modules in curved
structures, building facades and roof tiles.

However, there are considerable challenges of thin film technology that need to
be overcome. In general, the absorption of light in a solar cell is a function of its
thickness. Rays of light incident on a solar cell need to enter and stay inside long
enough to be absorbed. By reducing the thickness of the cell, the average path
length, i.e. lifetime, of the rays is reduced, thus the ability to absorb photons is
also reduced. This is especially important for crystalline silicon PV and other PV
materials with an indirect bandgap, which has lower absorption coefficients [36]
than materials with a direct band gap. Smart light management is therefore needed
to keep the conversion efficiency high. Conventional “thick” solar cells may also
benefit from improved light management, since reflection of rays from the front
side is known to cause a loss of efficiency.

The idea of trapping light to enhance absorption in solar cells dates back to the
1970s [37] by taking advantage of the fact that light can be totally reflected when
it strikes an interface at an angle greater than some critical angle. The escape cone
is twice the critical angle which is dependent on the relative index of refraction
across the interface. Light rays with long path lengths, thus long lifetimes, are
desired. If the likelihood of total reflection is maximized, the average path length
of the light rays is increased. This can be achieved by shaping the geometry of the
front, back or both surfaces of the solar cell. Light trapping has been treated in
the ray optics paradigm or “ray picture” in many publications [38–44]. However,
ray optics is only a valid approximation in the short wavelength limit where the
geometry is much larger than the wavelength of the light. Therefore, different
methods are used in the light trapping literature depending on the size scale. For
extremely thin solar cells on the nanoscale, or when nanoscale structures are used,
full-field electromagnetic simulations are used [45]. Using thin films that are on
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efficiency decreases together with the film thickness. However, it has been shown
that by increasing the local density of optical states in the absorber material, the
ray optics trapping limit can be exceeded, even with ultrathin absorbers [46–48].
Nanoscale structures, usually called nanostructures, are a key factor to realize
this potential [49]. Nanostructures have been subjected to numerous experimental
and computational studies. Grandidier [50, 51] et al. have shown how whispering
gallery modes can be employed to significantly increase absorption in a-Si thin
film solar cells by placing resonant SiO2 spheres on top of a solar cell. Garnett et
al. has demonstrated large-area fabrication of silicon nanowire arrays with radial
p-n junctions [52].

Creating random, or irregular, surface structures is a common approach for en-
hancing light trapping. Solar cells based on commercial technologies use chemical
etching techniques to produce irregular pyramid textures for light trapping and
anti-reflection [53]. Irregular needle structures have seen great success in reducing
reflectance with “black silicon” being a prime example [54, 55]. The name lends
itself to the excellent anti-reflectance capabilities which makes silicon look pitch
black. Reflectance values as low as 0.1% have been reported using silicon nanowires
arranged in a random fractal geometry for specific wavelengths and under 1% in
the 200 nm to 700 nm range [56]. However, even though the world record holding
solar cells use random structures, some reports claim that periodic structures may
outperform random structures [38,57].

Let us return to the ray optics regime and consider light impinging orthogonally
on the surface of a planar slab material with index of refraction n. Yablonovitch
showed in 1982 that the incoming light intensity is increased by a factor 2n2 on
the inside if the planar slab is replaced by an ideally textured optical medium [58].
Inside such an ideally textured slab of material the directions of the light rays will
be fully randomized and the system is called ergodic. However, a rigorous proof
that certain solar cell geometries are ergodic has not been given in the PV litera-
ture. Recently, initial experimental and computational results have been reported
which claim that intermittent chaotic rays lead to optically ergodic systems. The
systems were cylindric and half-cylindric photonic plates [59,60].

1.1.2 Chaotic dynamics

The discovery of the modern chaos theory is usually credited to Edward Lorenz.
In his quest to predict the weather, Lorenz found that the behavior of his mathe-
matical models is strongly dependent on the initial conditions of his calculations.
This is the essential ingredient of chaos in dynamical systems. In 1972, Lorenz
gave a talk titled “Predictability: does the flap of a butterfly’s wings in Brazil set
off a tornado in Texas?”. Lorenz’s discovery has famously become known as the
butterfly effect and is cited frequently in many contexts from popular science to
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Chapter 1. Introduction

popular culture, including the movie Jurassic Park from 1993. The development of
what we today refer to as chaos, or chaotic dynamics was lead by three important
problems: The three-body problem, studied by Henri Poincaré for his winning en-
try in the 1890s prize competition in honor of Swedish King Oscar II [61, 62], the
ergodic hypothesis from Ludwig Boltzmann’s work on statistical mechanics which
was later proved by Von Neumann [63], and Lord Rayleigh’s nonlinear oscillators
for modeling musical instruments [64].

The ergodic hypothesis lead the scientists at the time to look for ergodic mechanical
systems. In 1898 Jacques Hadamard showed that the dynamics of balls on a
Hadamard billiard, a surface of constant negative curvature, is everywhere unstable
[65]. Later, in 1963, Yakov Sinai introduced dynamical billiards. The Sinai billiard
is a square box with hard walls with a circular hard wall in the middle. The
dynamics of the system is described by the movement of a frictionless particle
which bounces around while obeying the reflection law. Sinai proved that the
Sinai billiard is ergodic for most initial conditions, becoming the first to ever show
the ergodicity of a dynamical billiard [66]. Leonid Bunimovich, who completed his
PhD under Sinai’s supervision, studied a special dynamical billiard which bears
his name, the Bunimovich stadium. He proved that its dynamics is chaotic [67–69].
We shall later see the relevance that the Bunimovich stadium has to light trapping
and absorption enhancement in solar cells.

The trajectories of classical dynamics, often called orbits, are deeply linked to
quantum mechanics. The old “planetary” quantum mechanics of Bohr, which was
so successful for the spectrum of the hydrogen atom, failed when applied to the
helium atom. However, when Wintgen et al. incorporated the semiclassical ideas
developed by Gutzwiller in the 1960s, the helium atom was correctly quantized
without the use of the new quantum mechanics of Heisenberg, Schrödinger, Born,
and others [70, 71]. Gutzwiller was able to show that quantum systems whose
classical counterparts are chaotic, can be quantized by a sum over classical periodic
orbits [72–76]. This is known as the Gutzwiller trace formula. It has had a big
impact on the development of periodic orbit theory.

Quantum chaos is the study of chaos in dynamical systems which are governed
by wave equations. For that reason it is also referred to as wave chaos. Random
matrix theory is a central tool in the field developed by Dyson, Metha, and oth-
ers including Wigner who applied it to his studies on the chaotic energy spectra
of heavy atomic nuclei [77–80]. It has been shown that the statistics of nearest
neighbor eigenvalues of a certain class of random matrices known as the Gaussian
orthogonal ensemble (GOE) follows the same distribution [81, 82]. This distribu-
tion is often called the Wigner surmise. Bohigas, Giannoni, and Schmit conjec-
tured that all chaotic systems follow the Wigner surmise [83]. This conjecture has
become a very important diagnostic tool in quantum chaos, and plenty of evidence
in support of the conjecture exist [79, 80, 84]. The conjecture is therefore widely
accepted by the community. Using these tools provided by random matrix theory,
the phenomena of quantum chaos have been studied in a variety of physical sys-
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resonators [87], and micro disk lasers [88].

Classical chaotic scattering is defined by the existence of a chaotic repeller, also
called the invariant set, the set of all trajectories with infinitely long lifetime
[89,90]. In scattering systems described by rays, such as scattering in geometrical
optics, these trajectories represent rays that never exit the system. Due to time-
reversal symmetry, such rays can not enter the system either. However, rays which
come close to the chaotic repeller tend to stick to it, and may spend a long time
to escape [91, 92]. Moreover, it has been found that the geometry of the chaotic
repeller is fractal [93–95]. Chaotic scattering systems have been studied in the
context of both classical and wave chaos [84, 96–99]. Semiclassical methods have
also been applied to scattering systems [100,101].

Scattering systems which involve layered materials, have boundaries between me-
dia with different refractive indices. Rays incident on such boundaries, or inter-
faces, can split into two or more rays [102, 103]. Ray splitting systems have been
discussed extensively for stepped billiards and been important to the discussion
in quantum chaos [104–106]. It has been found that the effects of ray splitting
need to be taken into account in Gutzwiller’s trace formula [102]. Experimental
studies have shown how classical ray splitting trajectories manifest themselves in
wave systems [103]. Ray splitting affects the nearest neighbor level statistics in
wave systems [107]. It was shown for a certain system that the inclusion of ray
splitting shifts the spectral statistics towards GOE statistics, conjectured to be
present in chaotic systems. In the absence of ray splitting, the statistics was found
to be between GOE and the Poisson distribution.

1.1.3 Open questions

It is integral to have knowledge about the relevant physical principles and mech-
anisms to produce and optimize highly advanced devices such as solar cells. One
route of optimization is creating light trapping structures. Gaining new under-
standing on how to exploit known physical principles to improve light trapping
is highly beneficial to guide the design process that is necessary to do optimiza-
tions. The fields of light trapping in solar cells and chaotic dynamics have clear
overlapping areas, with perhaps the most obvious overlapping concept being the
dynamics of scattering rays.

Solar cells are essentially a type of scattering systems where the goal is to maximize
the conversion of incident energy to electrical current. Light trapping is paramount
to achieve this, especially for optically thin solar cells. Existing literature shows
that the presence of long-lived rays which disperse exponentially fast away from
each other is a property of chaotic scattering systems. The nature of such rays are
therefore very interesting for improving the light management of solar cells. Rays
are fast to compute and intuitive to analyze, whereas wave calculations are often
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Chapter 1. Introduction

slow and sometimes completely unfeasible, e.g. for structures with simultaneously
small and large features. It would be of great interest to see what the trajectories
of the most important rays with respect to energy conversion in solar cells look
like. Moreover, can ray splitting rays be used to calculate optical properties for
size scales below the geometrical optics limit? Can ray models be exact regardless
of the scale of the problem at hand? Ergodicity is a central concept in the theory
of chaos in dynamical systems, making a link between the importance of ergodic
scattering for light trapping and chaos theory. This link begs the question which is
also the central theme of this PhD project: does the presence of chaotic scattering
enhance the light trapping properties in solar cells? To answer this question, the
dynamics of both rays and waves needs to be investigated.

1.2 Objective

The objective of this thesis is to demonstrate that chaotic scattering is important
for the absorption efficiency in solar cells, using both ray and wave dynamics.
This effort is broken up into three smaller tasks. The results of these tasks are
reported in the format of research papers, two of which are already published in
the scientific literature. Each task corresponds to a paper (two published, one
submitted for publication) which is referred to by a roman numeral according to
Sec. List of Papers.

I Develop an exact ray theory for solar cell models consisting of a stack of pla-
nar absorbing films to gain insight about the importance of the different rays
in such systems. An exact ray theory for absorption in solar cells, i.e. ab-
sorbing dielectric films, does not exist. Such a theory can be developed using
ideas from semiclassics and can be validated by comparison with Maxwell’s
equations for electrodynamics.

II Demonstrate classical chaos in a model solar cell with surface structure and
prove that the absorption efficiency is enhanced and correlated with the onset
of chaotic scattering. A model system is needed where the dynamics can be
changed with a system parameter from regular to chaotic.

III Demonstrate presence of wave chaos, enhancement of absorption efficiency,
and the correlation between the two. Classical chaos in a dynamical system
does not necessarily imply wave chaos in an equivalent system for waves.
This requires investigation of the same solar cell model system with the
same surface structure as in the previous task.

6
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Chapter 2

Theory and Methods

This chapter introduces the theoretical concepts and methodology central to the
papers of this thesis. It serves as an introduction without going into the results
and details which are presented in the papers. It is also meant to help the reader
see the connection between the topics and give the reader some basic knowledge
of how current is generated in a solar cell. For a complete introduction to solar
cells, see Nelson’s book [108].

2.1 The photovoltaic effect and solar cells

The photovoltaic effect was first discovered by Edmond Becquerel in 1839. When
light shines on solar cells, electrical current is generated through the photovoltaic
effect. There are three essential mechanisms taking place in the generation of
current in a solar cell. These are the generation, separation, and collection of
electron-hole pairs. The electronic band structure of solids can include a range
of energy called the energy gap, Eg, where the valence and conduction bands
are separated. Under ideal conditions no electron states exist in the energy gap,
although impurities and certain material configurations, such as in intermediate-
band solar cells [109], introduce intentional electron states in the energy gap region.
The energy gap is central to the current generation in solar cells.

E
ne

rg
y

Insulator Metal Semiconductor

Available states in
the valence band

Filled states in the
conduction band

Empty energy band

Eg

Figure 2.1: Schematic of the filling of the electron band structure in insulators, metals and
semiconductors. Figure adapted from Kittel [110].
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Figure 2.1 shows a schematic presentation of the electron structure of insulators,
metals and semiconducting materials. The band structure of available electron
states explains some of the properties of solids. The filled bands and large Eg of
insulators make them poor conductors, and vice versa the partially filled bands
make metals excellent conductors. Semiconductors suitable for solar cell appli-
cations, such as silicon, have an energy gap small enough for light in the visible
spectrum to excite electrons from the valence band to the conduction band. As-
sume a monocrystalline slice of silicon where the individual Si atoms form covalent
bonds with each of their four neighbors, see Fig. 2.2a. These covalent bonds can
be broken by photons with energy larger than Eg. An electron-hole pair, which is
free to move about in the crystal lattice, is generated when a bond is broken.

Si Si Si Si

Si Si Si Si

Si Si Si Si

Si Si Si Si

(a)

Si Si Si Si

Si P Si Si

Si Si Si Si

Si Si Si Si

(b)

Si Si Si Si

Si B
+

Si Si

Si Si Si Si

Si Si Si Si

(c)

Figure 2.2: a) A two-dimensional projection of monocrystalline silicon. The black lines represent
the sharing of electrons in covalent bonds between the atoms. b) Phosphorus atoms bring an
extra electron to the silicon crystal. c) Boron atoms have one electron less than the surrounding
silicon crystal, thus they bring an electron vacancy.

To generate current, the electron-hole pair must be separated and collected. The
separation mechanism is made possible by introducing dopant elements in the Si
crystal. Phosphorous and boron are popular choices for silicon solar cells. Phos-
phorous has an extra valence electron compared to silicon, see Fig. 2.2b, while
boron lacks an electron, see Fig. 2.2c. The “lack” of an electron is an electron va-
cancy called a “hole”. For all practical purposes holes are pictured to move around
in the silicon lattice as a positively charged particle would do. When a phospho-
rous doped (N-type) slice of silicon is joined together with a boron doped (P-type)
slice of silicon to form a P-N junction, the extra electrons and holes recombine as
shown in Fig. 2.3. The recombination depletes a region in the middle of the P-N
junction of charge carriers, hence the name depletion region. Since the dopant
cores are fixed to the lattice, the depletion region is unevenly charged and an elec-
tric field is formed across it. The electron-hole pair is separated by the electric
field which sends electrons to the N side and holes to the P side of the junction.
If contacts are not attached, i.e. the cell is an open circuit, a charge gradient is
built up over the P-N junction. The electrons and holes seek to recombine, but
recombination is prevented by the electric field over the depletion region. When
contacts are then attached, charges have a new route to each other and electrical
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current flows through the circuit system.

e− e− e−

e− e− e−

e− e− e−

e− e− e−

h+ h+ h+

h+ h+ h+

h+ h+ h+

h+ h+ h+

P N

Electric field due to
depletion region

Depletion region

Incoming photon

h+ e−

e−h+

Figure 2.3: Schematic of how a simple photovoltaic device works under illumination. An incoming
photon is absorbed and creates an electron, e−, and a hole, h+, in the depletion region between
a p-doped and n-doped semiconductor. The two particles are separated and electrical current
can be extracted from the device.

A solar cell is a complex device with numerous material interfaces, contacts for
extracting electricity, and antireflection coatings to protect the cell from the envi-
ronment. To model solar cells in full is therefore a very challenging undertaking.
There are also a great number of relevant solar cell designs and architectures.
Choosing a particular one for this study could be interesting, albeit somewhat
arbitrary. For the task at hand, namely to investigate the absorption and light
trapping properties of solar cells with surface structure, it is instructive to create
a general and simplified model. By collapsing the layers in Fig. 2.3 and adding
an ideal backside mirror to completely remove transmission losses, we get a more
manageable model with one layer that is characterized by its complex index of
refraction. Section 2.2 presents such flat models without surface structure in one
dimension, and section 2.4 presents two-dimensional models with a light trapping
surface structure.

2.2 Absorbing films in one dimension

Maxwell’s equations of electrodynamics can be used to calculate the optical scat-
tering of a wave traveling through a given system or give expressions for optical
properties such as reflectance. In one-dimensional systems the same expressions
can be achieved using one-dimensional scalar waves, i.e. waves without polariza-
tion. Quantum mechanics is one of the most important areas of application of
scalar waves. In other words, there is an equivalence between Maxwell and quan-
tum mechanics in one-dimensional wave systems. Assuming a film made of a light
absorbing material, its absorption efficiency can be expressed in the following way:
the total incident intensity, normalized to unity, minus the fraction of reflected and
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transmitted intensity
σ = 1−R− T. (2.1)

The transmission loss T can be eliminated by equipping the film with a perfect
backside mirror

σ = 1−R. (2.2)

The reflectance R can be calculated for a single film with a perfectly reflecting
back-mirror by considering a wave eikx with wave number k, coming in from the
left and the quantum mechanical continuity conditions

ψ1(0) = ψ2(0), (2.3a)
∂

∂x
ψ1(0) = ∂

∂x
ψ2(0), (2.3b)

where x = 0 is at the air-film interface, i.e., between region I and region II as seen
in Fig. 2.4. In addition,

ψ2(m) = 0, (2.4)

is imposed at the location of the back-mirror, x = m, making it a perfectly reflect-
ing mirror.

x

I

eikx

re−ikx

II

A sin(nk(x − m))

x = 0 x = m

Figure 2.4: A model of an absorbing film with an air-film interface at x = 0 and a perfectly
reflecting mirror at x = m.

Consequently, the wave functions in region I and II are

ψI = eikx + re−ikx, x ≤ 0 (2.5a)
ψII = A sin(nk(x−m)), 0 ≤ x ≤ m (2.5b)

where n is the complex index of refraction in region II. Region I is air, with index
of refraction equal to 1. The reflection amplitude r and factor A are found by
applying the continuity and back-mirror conditions:

r = n cos(nkm) + i sin(nkm)
n cos(nkm)− i sin(nkm) , (2.6)

A = 2n
sin(nkm)[i tan(nkm)− n] . (2.7)
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The fraction of reflected intensity is obtained from the reflection amplitude,

R = |r|2 =
∣∣∣∣
n cos(nkm) + i sin(nkm)
n cos(nkm)− i sin(nkm)

∣∣∣∣
2
. (2.8)

In this model, Eq. (2.8) takes absorption into account via the imaginary part of
the complex index of refraction, n. In the case of a system with a real index of
refraction, R would naturally be equal to 1 due to no absorption in the material
model. The imaginary part of the index of refraction models the total absorp-
tion. There is no discrimination between where the energy goes after it has been
absorbed. This is an important note to make in the context of solar cells as not
all absorbed energy contributes to the electrical output. However, the absorption
efficiency is still an important figure of merit that should be optimized.

2.3 Ray splitting in one dimension

The absorption efficiency σ can also be derived analytically by considering rays
carrying phase information. Contrary to the rays used in geometric optics, which
are an approximation where the wavelength is short compared to its surround-
ings, the rays presented here are fundamentally different. By attaching phases to
the rays, interference effects are included in the model and the analytic expres-
sion in Eq. (2.6) is recovered. Consider a single absorbing film with a perfect
back-mirror. Incident rays partially transmit and partially reflect at the air-film
interface at x = 0, and totally reflect at the mirror. At the interface, the ray
can get reflection amplitudes rl and rr, and transmission amplitudes tl and tr
depending on the direction of travel (subscript r to the right and subscript l to
the left). At the mirror, the ray acquires a 180◦ phase shift. The reflection and
transmission amplitudes are derived by using the continuity of the wave function
which describes the wave dynamics inside and outside of the film. The procedure
of deriving these amplitudes is described in detail in Appendix A of Paper I. The
phenomenon of partial transmission and reflection of light is also called ray split-
ting. The ray dynamics literature refers to rays which split as non-Newtonian and
their non-splitting counterparts as Newtonian [111].

The three simplest rays in a system consisting of a single film with thickness a,
index of refraction n, and a reflecting backside mirror are shown in Fig. 2.5.

Their contributions yield a crude approximation to the total reflection amplitude

r ≈ rl + tle
2inkaeiπtr + tle

4inkae2iπrrtr, (2.9)

where the first, second and third term correspond to the ray in Fig. 2.5a, 2.5b and
2.5c respectively. Adding more rays improves the quality of the approximation. It
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(a) (b) (c)

Figure 2.5: The three shortest rays in the system consisting of a single film with a backside
mirror.

is straightforward to sum all possible rays in single film systems to get the exact
reflection amplitude

r = rl + tltre
iπe2inka

∞∑

ν=0
(eiπrre2inka)ν . (2.10)

After evaluating the geometric series, the expression equates to the analytic ex-
pression in Eq. (2.6). It means that if all rays are accounted for, and present in
the sum, the result is no longer only an approximation, but is exact.

For multilayer structures, it is not so easy to count all rays in this manner. One
might be tempted to think that a possible solution would be to organize “families”
of rays to help counting them. Each family could contain all combinations of rays
with N hits on the back-mirror, and then the procedure would be to sum all fami-
lies, thus all possible rays. This approach would be successful if the sums required
to sum all rays within a family were not conditionally convergent. Approximating
conditionally convergent sums by truncating them is a strategy that is prone to
large errors. Thus, to approximate r, with arbitrary precision, in a multilayer
where conditionally convergent sums appear, rays must be added to the sum with
gradually increasing length. This method is the hierarchical summation scheme
and it is described in detail in Paper I.

2.4 Absorbing films with surface structures in two
dimensions

Ray splitting with phase-carrying rays is also a valid approach for calculating the
absorption efficiency in infinitely long two-dimensional planar film structures. It is
valid with both orthogonal incident light, which is effectively the one-dimensional
problem, and oblique incident light assuming the polarization remains perpendicu-
lar to the plane of incidence [4]. For non-planar films, a theory with phase-carrying
rays has not yet been developed. However, in sufficiently large structures com-
pared to the wavelength of interest, one can opt to use geometric optics which
excludes semiclassical phases.
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2.4.1 The film+dome model system

To study the effect of chaotic dynamics of rays and waves on the absorption effi-
ciency, a suitable model system is needed that exhibits a transition from regular
to chaotic dynamics as a function of some system parameter. The Bunimovich
stadium is one of the most well studied chaotic billiards in the literature. It is
constructed by placing semicircles with radius r at both short sides of a 2r × l
rectangle, see Fig. 2.6a. This basic idea of this shape is, with a few modifications,
used to construct a surface structured solar cell model. The Bunimovich stadium
is cut across its straight middle section and the dome mirror is removed and a new
mirror is placed along the cut. Hence, this system consists of a smaller rectangle
attached to a dome. This system is called film+dome, and is shown in Fig. 2.6b.
The side mirrors confine the system to a single unit cell. Because of the presence
of the side mirrors, the system has a mirror symmetry along the middle of the
“bucket shaped” mirror configuration. The “bucket” unit cell can be repeated pe-
riodically to result in a laterally extended solar cell. In an experimental realization
of this system, the structure could be a periodic structure with thin reflecting walls
defining the unit “bucket” cell, and periodically repeating domes on top of a con-
ventional solar cell without surface structure. Since realization of the side mirrors
in the extended system is experimentally difficult to do, and perhaps even unnec-
essary, one might instead simulate a system where the side mirrors are eliminated
in favor of periodic boundary conditions. This, perhaps more realistic system, has
not been investigated within the framework of this thesis and is subject to further
investigation. However, it is expected that the bucket model with side mirrors and
a model with periodic boundary conditions will yield qualitatively similar results.

l

r

(a)

Film

Dome

Air

Incoming
wave or rays

x

y

z

(b)

Figure 2.6: a) The closed Bunimovich billiard system. b) The open film+dome system.
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1 µm to 3 µm

3.46 µm

5.0 µm

Figure 2.7: The measurements of the film+dome system. Several film thicknesses from 1 µm to
3 µm were used.

The exact shape of the dome in the film+dome system differs from the semicircular
domes in the Bunimovich stadium. Instead an ellipse was tuned to find the maxi-
mum absorption efficiency given a film thickness of 2 µm. The exact measurements
of the film+dome systems that have been investigated are given in Fig. 2.7.

2.5 Classical ray dynamics in two dimensions

The dynamics of classical rays are governed by the laws of geometrical optics,
namely the laws of refraction and reflection. The reflection law is simple - the
angle of the reflected ray is equal to the angle of the incident ray with respect
to the normal of the reflecting surface. This law is applied to all mirror surfaces
in the film+dome system, i.e. specular reflection is assumed at the mirrors. The
refraction law describes the refraction of light across the interface of two isotropic
media described by their index of refraction n1 and n2. The angle of incidence,
θ1, is related to the angle of refraction, θ2, with Snell’s simple expression

n1 sin(θ1) = n2 sin(θ2). (2.11)

The interface between media with different index of refraction is a ray splitting
surface. Most of the time, light is not fully refracted into the adjacent medium,
but splits into a refracted ray, often called transmitted as it represents the ray
that transmits from one medium to another, and a ray specularly reflected off the
interface between the two media. Fig. 2.8a illustrates this phenomenon. This type
of ray splitting is in principle the same as the ray splitting presented for the one-
dimensional films in Sec. 2.3. Fig. 2.9 shows an example of how a single incoming
ray splits into several ray branches.
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The fraction of energy carried by the transmitted and the reflected ray is described
by the Fresnel equations [112]. This is different from the one-dimensional films
where the transmission and reflection amplitudes were derived from the continu-
ity properties of the quantum mechanical wave function. The Fresnel equations
depend on the direction of the polarization with respect to the plane of incidence.
For s-polarized light, i.e. polarization perpendicular to the plane of incidence, the
Fresnel equations are

rs = cos θ1 −
√
n′2 − sin2 θ1

cos θ1 +
√
n′2 + sin2 θ1

, (2.12)

ts = 2 cos θ1

cos θ1 +
√
n′2 − sin2 θ1

, (2.13)

For p-polarized light, when the polarization is parallel to the plane of incidence,
the Fresnel equations are

rp = −n
′2 cos θ +

√
n′2 − sin2 θ

n′2 cos θ +
√
n′2 − sin2 θ

(2.14)

tp = 2n′ cos θ
n′2 cos θ +

√
n′2 − sin2 θ

. (2.15)

For both sets of equations n′ = n2/n1 is introduced. If the film+dome system
is imagined to be a two-dimensional structure with a third cylinder symmetric
dimension sticking out of the paper plane (Fig. 2.6b), it is then necessary to assume
s-polarized Fresnel equations, i.e. polarization along the cylindric dimension, to
obtain the same result in each “slice” of the cylinder. The exception to partial
transmission and reflection is if the incident ray is coming towards an interface
from an optically denser material with θ greater than some critical angle

θc = sin−1
(
n1
n2

)
. (2.16)

This phenomenon is called total internal reflection, see Fig. 2.8b. The ray is not
split into a transmitted and reflected ray, only a specular reflected ray, hence the
name.

2.5.1 Absorption efficiency

The absorption efficiency is defined the same way as for the one-dimensional films,
1 − R, and given the symbol σ. The hierarchical summations scheme introduced
in Sec. 2.3 gives the correct summation order of rays for a finite set of rays to
yield an approximation of the exact reflectance R. Since there is no hierarchical
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Figure 2.8: a) Schematic showing the refraction and reflection of an incoming ray. b) Total
internal reflection when the incoming angle θ is larger than θc. n2 > n1 in both a) and b).
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Figure 2.9: A simulation of an incoming ray which splits, reflects and transmits as it moves inside
the film+dome with ndome = nfilm = 2. Each branch is artificially terminated prematurely to
make it easier to see the ray splitting into reflected and transmitted branches. The direction of
the incoming and outgoing rays are indicated with arrows.
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summation scheme for counting rays known for two-dimensional film structures
with non-flat surfaces, the reflectance R is instead calculated using Beer-Lambert’s
law of absorption [112]. It can be used to calculate the average absorption of an
ensemble of rays sent toward the film+dome system. The number of rays in the
ensemble must be large enough to give a good approximation for the absorption
efficiency. In Fig. 2.10a the absorption efficiency is plotted against the number of
rays incident on a film+dome system with ndome = nfilm = 2. The intensity of a
ray is attenuated exponentially as it travels through an absorbing medium by an
attenuation factor

e−4πnix/λ, (2.17)

where ni is the imaginary part of the index of refraction which provides absorption
to the medium and the distance x is the length of the ray through the absorbing
medium. Each incident ray is given an initial intensity of 1 which decays pro-
portionally to x. Classical rays do not have a wavelength, but the wavelength,
denoted by λ, appears through Beer-Lambert’s law.

Truncating the lifetime of rays

Non-Newtonian ray simulations could in theory last forever. There is always a part
of any incident ray which will never return from the scattering system. Note that
in the event of ray splitting, the incident “mother” ray carries intensity a ≤ 1. The
intensities of the reflected and transmitted ray “branches” b and c, respectively,
add to the intensity of their mother ray, a = b + c. Ray splitting generates an
increasing number of non-escaping rays as the simulation goes on. The simulation
time of a given ray must therefore be truncated.

An incident ray starts with intensity 1 which dissipates through Beer-Lambert’s
law and splits into branches through the Fresnel equations at ray splitting surfaces.
The simulation of that particular incoming ray is terminated when the intensity of
each branch drops below a threshold value, or the ray escapes. Such a truncation
introduces an intensity loss called the truncation loss. If this threshold is set too
high, a lot of intensity is lost due to short simulation time. On the other hand, if
it is set too low, the simulation would continue for a long time. The truncation
loss is plotted versus the threshold in Fig. 2.10b for a film+dome system with
ndome = nfilm = 2 and 10000 incoming rays.

2.5.2 Fractal dimension of scattering fractals

The existence of a chaotic repeller is a signature of classical chaotic scattering [113].
A chaotic repeller has a non-integer fractal dimension d [93–95]. The concept of
fractal dimensions was introduced by Benôıt Mandelbrot [114] and can be defined
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Figure 2.10: a) The absorption efficiency σ as a function of the ensemble size of incident rays.
b) The truncation loss is the loss of intensity due to truncation of the simulation time, here
shown as a function of the truncation threshold. Both a) and b) for a film+dome system with
ndome = nfilm = 2.

in simple terms with a method know as the box counting method, explained be-
low. The repeller consists of Newtonian rays which neither enter nor leave the
film+dome system, thus having infinitely long lifetime. This set of rays can be
found by tracing rays starting from inside the film+dome system. The lifetime
of a given ray is measured by recording how many times it collides with a select
section of the total phase space, called the Poincaré surface of section (PSOS).
For solar cell applications it is important that the rays spend most of their time
in the absorbing film. The PSOS is therefore chosen to be the backside or bot-
tom mirror of the film+dome system. However, the absorption mechanisms are
disabled in these simulations to prevent rays from being terminated prematurely.
The only termination condition is escape from the system or exceeding a set limit
of collisions with the PSOS. The collision limit is put in place to respect that
the precision of the ray simulations degrade quickly when chaos is present in the
system due to the sensitivity to initial conditions.

A number of rays with initial conditions (xi, θi), see Fig. 2.11b are started from the
PSOS and their lifetimes are registered. The resulting image is called a scattering
fractal. The chaotic repeller is contained in the scattering fractal. An example of
a scattering fractal with a chaotic repeller is shown in Fig. 2.11a for a film+dome
system with ndome = nfilm = 2 where the lifetime of each initial point is color-
coded.
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Figure 2.11: a) A scattering fractal with non-integer geometry. b) Schematic showing a ray with
initial conditions (xi, θi). c) A log-log plot of the number of boxes N as a function of the box
scale M . The slope of the linear fit gives the fractal dimension d.
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Box counting method

The box counting method [115–118] is a procedure of calculating the fractal di-
mension of an object, for instance a scattering fractal, by covering it with gradually
smaller boxes while counting how many boxes are needed to cover the entire object.
The fractal dimension d of a scattering fractal is thus defined

d = lim
M→∞

logN
logM , (2.18)

where N is the number of boxes needed to cover the scattering fracal, and M is
the scale of the boxes. Since M can not be taken to ∞ in practice, it is therefore
common practice to perform linear regression on log(N) versus log(M). The slope
of the linear fit is the fractal dimension d, shown in Fig. 2.11c for a film+dome
system with ndome = nfilm = 2.

There are many ways to implement the box counting method. In the case of
scattering fractals, they are stored as images with P × P pixles where each pixel
corresponds to a ray with initial conditions (xi, θi). Because of this choice, the
number of integers P is divisible by determines the number of differently sized
boxes the scattering fractal is covered by. If the boxes are made smaller than
the pixels, the relationship between log(N) and log(M) behaves like a regular
two-dimension figure without fractal properties.

2.6 Wave dynamics in the film+dome system

Classical chaos has powerful tools of characterizing dynamics in scattering systems
which are intuitive and computationally cheap to perform. Since a solar cell is
inherently a wave system, it is therefore necessary to investigate the dynamics
of the wave-analog film+dome system. Assume a three-dimensional film+dome
system with cylindric symmetry along the z-axis sticking out of the paper plane,
as in Fig. 2.6b. Under the assumption that the polarization is perpendicular to
the plane of incidence, which lies in the xy plane, the wave problem is essentially
two-dimensional. The steady state electromagnetic (E&M) wave equation is then
equivalent to the 2D Helmholtz equation

[
∇2 + n(x, y)2K2]ψ(x, y) = 0, (2.19)

where n(x, y) is the index of refraction

n(x, y) =
{
nfilm (x, y) in film,
ndome (x, y) in dome,

(2.20)

and ψ is the wave function, equivalent to the electric field. Equation (2.19) can
be solved with the Green’s function method (GFM) using the Lippman-Schwinger
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formula

ψp(x, y) = φp(x, y) −
∫
G(K,x, x′, y, y′)K2[1 − n(x′, y′)2]ψp(x′, y′) dx′ dy′ , (2.21)

where G(K,x, x′, y, y′) is the Green’s function and φp(x, y) is a free solution with
n(x, y) = 1, also called a channel wave function. The full derivation of the Green’s
function is described in detail in the appendix of Paper III. Equation (2.21) is
discretized on a lattice shown in Fig. 2.12. The absorption cross section, equivalent
to the absorption efficiency 1 − R, is calculated directly from the scattered wave
function ψ.

σ = 4π
λw

∫
nr(x, y)ni(x, y)ψ(x, y) dx dy , (2.22)

where λ is the wavelength of the incident light, and nr and ni are the real and
imaginary parts of the index of refraction, respectively.

Dome

Film

20 40 60 80

20

40

60

80

x

y

Figure 2.12: The discretized film+dome system.

2.6.1 Exact wave solution for a planar film

An analytic expression for the wave function inside a film placed in a “mirror
bucket”, i.e. a film+dome system minus the dome (see Fig. 2.13), can be found by
the same procedure as the one used for the one-dimensional film in Sec. 2.2. The
film system is shown in Fig. 2.14. The wave function on the outside of the film is
the sum of the incoming and outgoing wave

ψ1 =
(
e−iky,1y − reiky,1y

)
sin
(pπx
w

)
, (2.23)

where r is the reflection amplitude. On the inside of the film the wave function
takes the form

ψ2 = A sin(ky,2y) sin
(pπx
w

)
. (2.24)
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The wave functions ψ1 and ψ2 are weighted by a sine function along the x-direction,
which is a consequence of the side mirrors. p determines the shape of the incoming
wave.

x

y
ψ1 =

(
e−iky,1y − reiky,1y

)
sin

(
pπx
w

)

ψ2 = A sin(ky,2y) sin
(
pπx
w

)
h

w

Figure 2.13: The single film system in a bucket shaped mirror configuration.

The total wavenumber in region i, Ki, changes because of the discontinuity of
the refractive index n(x, y). The parallel wavenumbers are unchanged across the
interface,

kx,1 = kx,2 = kx = pπ/w, (2.25)
and the perpendicular wavenumbers ky,i are discontinuous, thus the total wavenum-
ber, K2

i = k2
y,i + k2

x,i, is also discontinuous

K2 = nK1. (2.26)

Using this, the coefficients r and A are found by applying the continuity properties
of the wave function across the air-film interface. The absolute square of the wave
function inside the film is

|ψ2|2 = 4 sin(ky,2y)2 sin(kxx)

sin(ky,2h)2 +
(
ky,2
ky,1

)2
cos(ky,2h)2

. (2.27)

The precision of the GFM can be assessed by comparing |ψGFM|2 with (2.27). The
integral of |ψ2|2 inside a w × h film is

I(ky,1, ky,2, kx) =
h∫

0

w∫

0

|ψ2|2 dxdy

=

(
h
2 −

sin(2ky,2h)
4ky,2

)(
w
2 −

sin(2kxw)
4kx

)

sin(ky,2h)2 +
(
ky,2
ky,1

)2
cos(ky,2h)2

.

(2.28)

Fig. 2.14 shows rolling resonances that are expected from a planar film from both
GFM and the exact expression. The GFM curve is shifted a few nanometers to
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the right of the exact curve. This shift reduces as the resolution of the GFM mesh
is increased.
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Figure 2.14: Comparison of
∫

|ψ2|2 dxdy as a function of the wavelength λ calculated from the
exact expression and numerically from the GFM.

2.6.2 Nearest neighbor eigenangle statistics

Bohigas, Giannoni, and Schmit conjectured that generic time-reversal invariant
chaotic wave systems have level distributions fitting the Wigner surmise

P (s) = πs

2 e−πs
2/4. (2.29)

In the context of quantum chaotic scattering, P (s) is the probability density func-
tion of a sequence of nearest neighbor spacings between the eigenangles of the
scattering matrix S. The S matrix gives the probability amplitude of scattering
from an incoming channel wave function in channel p

ψp = e−ikyy sin
(pπx
w

)
, (2.30)

to an outgoing wave channel m. The total scattered wave from the incoming wave
in channel p is a mix of outgoing waves

ψp =
M∑

m=1
Sp→me

iBmy sin
(pπx
w

)
, (2.31)

where M is the number of available channel wave functions and Bm is the wave
number along the y-direction. M is determined by the energy of the incoming
wave and the width of the film+dome system. Sp→m is the scattering amplitude
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from channel p to m,

Sp→m = −δpm −
2K2

wBm

∫
sin
(
mπx′

w

)
sin(Bmy′)

×
[
1− n(x′, y′)2]ψp(x′, y′) dx′ dy′ .

(2.32)

A more detailed derivation of (2.32) can be found in Paper III. The S matrix
is unitary for Hamiltonian systems with eigenvalues on the unit circle, eiξ. The
distribution of spacings between the nearest neighbors of the scaled eigenangles,
ξs = ξM/2π, follow the Wigner surmise if the system is chaotic. The nearest
neighbor eigenangle distribution of a film+dome system is tested by taking a
collection of nearest neighbor spacings from a number of S matrices, sampled by
varying the energy of the incoming wave, and comparing it to the Wigner surmise.
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3.1 Paper I

Exact ray theory for the calculation of the optical generation
rate in optically thin solar cells

In Paper I, an exact ray theory was developed for solar cell models consisting of thin
layers. We looked at structures below the geometrical optics limit, i.e. beyond the
validity of geometrical ray optics. Summing rays with phases attached to them
perfectly reproduces the predictions of the quantum mechanical wave equation.
The paper presents a new ray formalism with ray splitting and phases to calculate
the absorption cross section (σ) of absorbing planar film stacks, showing the duality
between rays and waves. We found that all rays can be summed analytically for a
system consisting of a single film with or without a backside mirror. Figure 3.1a
shows that only a small number of rays are needed to obtain results in agreement
with those obtained from a full wave theory of such systems. The importance of
phases is seen clearly from Fig. 3.1b. The resonance structure in σ is only present
when phases are included. Summing all rays and leaving out the phases, yields
only an approximation of the lower modulation of σ.

300 550 800 1,050 1,300 1,550
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0.4
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1

λ (nm)

σ

Exact
Two rays
Three rays
Five rays

(a)

200 400 600 800 1,0001,2001,4001,600
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Ray of zeroth length
Two simplest rays (no phase)
All rays (no phase)
All rays (with phase)

(b)

Figure 3.1: a) The absorption cross section σ as a function of the wavelength λ for an absorbing
film with a backside mirror. The refractive index of the 500 nm thick film is 1.8+0.05i. b)
Comparison showing the importance of including phases. Both figures are adapted from Paper
I.

For film stacks with more than one layer, it was found that an analytic summation
of all rays is not possible. A hierarchical summation scheme (HSS) was developed
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to approximate σ. The HSS truncates the infinite sums by terminating the rays
after a predefined number of ray splitting events which determines the quality of
the approximation. The consequence is that only rays up to a certain length are
included in the approximation of σ. The lengths of the longest rays are always
comparable, and the approximation is more accurate when a large number of
splitting events is allowed.

A Fourier transform of the reflection amplitude (1− σ) revealed the path lengths
of the most important rays in a film stack with three layers, shown in Fig. 3.2. The
path of the most important rays is information that gives new insight about the
scattering dynamics in multilayered structures. It is possible to design systems to
force the most important rays to spend most of their time in the absorbing layer
for maximizing the absorption cross section. Systems can be tuned by changing
the number of layers, index of refraction and layer thicknesses. This could prove
to be an efficient tool for engineers to understand the ray dynamics in multilayer
structures for enhancing the absorption cross section.
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Figure 3.2: Top frame: Finite-range Fourier transform (approximate length spectrum) F̃ (L) of
the exact r(k) of a three-layer film system with a backside mirror. F̃ (L) shows distinct peaks,
labeled (a)–(f). The rays corresponding to these peaks, including their symbolic-dynamics labels,
are illustrated in the six frames (a)–(f), below the top frame, respectively. These six rays make
the most important contributions in the ray-representation of r(k) of this system. The figure is
adapted from Paper I.
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3.2 Paper II

Chaos: A new mechanism for enhancing the optical genera-
tion rate in optically thin solar cells

In Paper II, a correlation between the onset of chaotic dynamics and enhancement
of absorption efficiency was demonstrated in a classical ray system. It was shown
that the absorption efficiency is greater if chaotic ray dynamics is present, com-
pared to a similar system with regular ray dynamics. The film+dome model system
used in the study consists of an absorbing film with a non-absorbing elliptical dome
on top. The film+dome system has the ability to change from regular to chaotic
dynamics as a function of the index of refraction in the dome, ndome. The classi-
cal ray dynamics were investigated with a ray tracing code, written specifically for
this system, using ray splitting and absorption modeling with Beer-Lambert’s law.
The accuracy of the Beer-Lambert absorption efficiency using classical ray tracing
proved to be comparable to the average absorption cross section calculated with
a commercial full E&M FDTD solver, see Fig. 3.3a.
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Figure 3.3: (a) Absorption efficiency calculated with a commercial FDTD solver compared to the
Beer-Lambert absorption efficiency calculated by rays. b) Visualization of the fractal dimension
(orange) and the Beer-Lambert efficiency (blue). The onset of chaos is determined by the first
data point below a fractal dimension of 1.95, indicated by a horizontal dashed line. The rapid
increase of the Beer-Lambert efficiency is indicated by a vertical dotted line. Both figures are
adapted from Paper II.

Chaotic dynamics is associated with a non-integer fractal dimension of the invari-
ant set which is visualized as a scattering fractal. The onset of chaos was therefore
determined by measuring the fractal dimension of scattering fractal with a box
counting method, which was integrated into the ray tracing code. The fractal
dimension was calculated for film+dome systems with ndome from 1.0 to 2.5. A
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systematic correlation between the rapid increase in Beer-Lambert efficiency and
fractal dimension below a threshold value was observed. An example of this is
seen in Fig. 3.3b for a film+dome system with 2.0 µm film thickness.

The results were found to be structurally stable with respect to the film thick-
ness, i.e. the chaos ↔ efficiency correlation holds even if the film thickness is
changed. This was done by studying critical behavior in the fractal dimension,
Beer-Lambert efficiency, and incoming Newtonian rays (see Fig. 3.4), while vary-
ing the film thickness from 0.5 µm to 4.0 µm. The critical value, ncritical, was found
in each of the three cases. These critical values show the same trend as a function
of film thickness, and are visualized in Fig. 3.5. Because it is hard to recreate
microstructures down to the smallest details, structural stability is important for
experimentalists to perform studies on film+dome systems.
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Figure 3.4: Newtonian rays sent from the outside for different values of ndome. At the critical
value ndome = 1.7 the rays become sensitive to their initial condition.
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Figure 3.5: The ncritical is the value for when the Beer-Lambert efficiency (blue) starts to increase
more rapidly, the fractal dimension (orange) is below 1.95, and the Newtonian rays sent from the
outside directly downwards (green) visually start to behave sensitively on the initial conditions.
The figure is adapted from Paper II.
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3.3 Paper III

Wave chaos enhanced light trapping in optically thin solar
cells

In Paper III, the wave-analog to the classical film+dome system studied in Paper
II was investigated with techniques from quantum chaos. As in Paper II, the same
correlation was found between the rapid enhancement of absorption cross section
and the onset of chaotic dynamics. The onset of chaos was also linked to enhanced
light trapping. An increase in the average dwell time of rays in the system was
observed, making it a three-way correlation between dwell time, enhancement of
absorption and chaotic wave dynamics.

The Helmholtz equation was solved numerically in a discretized film+dome system
using the Green’s function method to carry out wave calculations. Figure 3.6 shows
typical behavior of the wave function with scarlets appearing as ndome is increased
and the system becomes chaotic. Some wave functions were also scarred by the
unstable periodic orbits present in the system.

(a) ndome = 1.8 (b) ndome = 2.0

Figure 3.6: Irregularities in the scattered wave function become more and more prevalent with
increasing ndome. This is a signature of chaos. The figures are adapted from Paper III.

To quantify the onset of chaos, the S matrix was derived. The eigenangle statistics
of nearest-neighbor spacings were numerically calculated for film+dome systems
with ndome ranging from 1.0 to 2.0. These statistics were compared with inter-
polating distributions between regular (Poisson distribution) and chaotic (Wigner
distribution) scattering dynamics. The Berry-Robnik and Brody distributions
were fitted to histograms of the statistics (see Fig. 3.7) using a χ2 test. Histograms
belonging to chaotic film+dome systems with ndome above a certain value were
found to pass the χ2 test. For film+dome systems with 1 µm, 2 µm and 3 µm thick
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films, the tests were passed at ndome equal to 1.9, 1.6 and 1.5, respectively. These
values are comparable with the ncritical values found in Paper II for the classical
film+dome systems.

0 1 2 3 4
0

0.25

0.5

0.75

1

s

P
(s

)

(a) No dome.

0 1 2 3
0

0.2
0.4
0.6
0.8

s

(b) ndome = 1.3

0 1 2 3
0

0.2
0.4
0.6
0.8

s

(c) ndome = 1.9

Figure 3.7: The histograms shows the level statistics of the different film+dome systems. The
dashed line is the Poisson distribution, P (s) = es and the solid line is the Wigner surmise. For
low values of ndome the film+dome system is pseudo-integrable. At ndome equal to 1.1 and 1.2
the distributions are between the pseudo-integrable and Wigner case. The smooth black line
is the best-fitting Berry-Robnik distribution and the red, dashed line is the best-fitting Brody
distribution.
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Figure 3.8: Average geometric path length calculated by ray-tracing 10000 non-Newtonian rays
(blue full line), derived from the width of the autocorrelation function, using S2,1 (orange open
circles), using an average over 16 off-diagonal S-matrix elements (green open circles), and aver-
aging over all diagonal S-matrix elements (red open circles). The figure is adapted from Paper
III.

An approximation of the average dwell time of rays, 〈LA〉, were extracted from the
autocorrelation function of the S matrix. It was revealed that the average dwell
time of rays increased for higher values of ndome and coincided with the onset of
chaos, meaning that chaos is a mechanism that improves light trapping. Moreover,
〈LA〉 showed remarkably good agreement with the geometric lengths of classical
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non-Newtonian rays, see Fig. 3.8. We highlighted that our results can be verified
experimentally by measuring the autocorrelation function. Hence, the three-way
correlation between chaos, absorption efficiency and light trapping can be shown
experimentally for a realization the film+dome system.
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Chapter 4

Conclusion

The overarching goal of this thesis is to test the chaos hypothesis, i.e., the state-
ment “chaotic scattering enhances the light trapping properties in optically thin
solar cells”. To this end, the effects of chaotic scattering dynamics were studied
with rays in the classical regime, and with scalar waves in the wave regime.

A new ray model for calculating the exact absorption cross section was developed
for one-dimensional stacks of absorbing planar films in Paper I. The ray formalism
presented yields the same results for reflection, transmission and absorption as
the solutions of Maxwell’s equations in one dimension. It was demonstrated how
the dynamics of rays can be used to evaluate the exact reflectance and absorption
properties of a given system when the correct phase, transmission and reflection
amplitudes are included for rays splitting at material interfaces. With this ray
model it is possible to identify the trajectories of the rays that affect the reflectance
the most, and to account for film interference effects neglected by simpler ray
models.

The ray model was the foundation of a more general ray model in two dimensions
using conventional ray optics in addition to ray splitting. This ray tracer was
presented in Paper II, and was used to study the ray dynamics of surface struc-
tured solar cell models where the scattering dynamics was changed from regular
to chaotic by tuning the refractive index of the dome in the film+dome system.
Chaotic dynamics were identified above a certain value of the index of refraction
by calculating the fractal dimension of scattering fractals. The behavior of in-
coming Newtonian rays at this critical value supported the findings. In addition,
it was found that the Beer-Lambert efficiency rapidly improved at the critical
value. A systematic correlation between absorption efficiency and onset of chaos
was demonstrated over a range of different film+dome systems with varying film
thicknesses, proving that the correlation is structurally stable.

In Paper III, a scalar wave solver for the Helmholtz equation based on the Green’s
function method was developed to analyze the wave functions and scattering matri-
ces of the film+dome system. The presence of classical chaos presented in Paper II
was verified on the wave level. The average dwell time of rays was extracted from
the scattering matrix and compared to the geometric length of non-Newtonian
rays. It was found that the chaos ↔ efficiency correlation is a three-way chaos ↔
efficiency ↔ dwell time correlation. The central topics in this thesis, i.e., chaotic
dynamics, improved absorption efficiency and light trapping, are linked together
by this result.
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Chapter 5

Further Research

With the framework for studying the dynamics of rays and waves in place, it is of
great interest to pursue the connection between chaos and light trapping further.
There are numerous papers available showing that surface structuring dramatically
enhances the efficiency of a solar cell. The parameter space is enormous and
impossible to explore experimentally. In addition, not all structures are feasible to
fabricate even on the lab scale. Therefore, numerical experiments are frequently
used as guides to find relevant systems to characterize experimentally. This job
is easier if one can make a good initial guess or look for something specific. As
this thesis and associated papers document, chaos can be the thing to be on the
look-out for, and ray tracing is one of the tools which fits the job.

If I were to make specific suggestions for topics for further research, I would propose
to characterize the film+dome system experimentally to verify the results. One
of the challenges would be to recreate the microscale morphology with materials
covering the range of refractive indices. On the simulation side, it would be very
interesting to investigate how the dynamics of existing high-performance light
trapping schemes compare to each other. Are such systems chaotic or regular?

In the course of my graduate studies some time was spent on investigating random
surface structures. Due to time constraints, this topic was not explored enough
to result in a publication. The scattering dynamics of ensembles of realizations
of random surface structures is therefore proposed as a topic for further research.
The general idea which was pursued by our group was the study and comparison
of random surface structures and the film+dome system. It is well known that
random surface structures can facilitate efficient light trapping. Chances are that
chaos plays a role in the dynamics of systems with random surface structures. How
do ordered structures compare with chaotic dynamics? A study of ordered and
disordered structures with and without chaotic dynamics would be an interesting
topic to pursue.
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and R. Blümel. Wave chaos enhanced light-trapping in optically thin solar
cells. Chaos: An Interdisciplinary Journal of Nonlinear Science, submitted
Oct 2019.
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A B S T R A C T

There is a profound duality between rays and waves. In fact, 70 years ago, in the context of quantum mechanics, Feynman showed that rays, properly equipped with
phases and correctly summed, provide exact solutions of the quantum mechanical wave equation. In this paper, constructing explicit, exact ray solutions of the one-
dimensional Helmholtz equation as a model for optically thin solar cells, we show that the ray-wave duality is also exact in the context of the electromagnetic wave
equations. We introduce a complex index of refraction in order to include absorption. This have so far not been treated in the quantum ray-splitting literature. We
show that inclusion of exact phases is mandatory and that a ray theory without phases may result in amplitude errors of up to 60%. We also show that in the case of
multi-layered solar cells the correct summation order of rays is important. Providing support for the notion that rays provide the “skeleton” of electromagnetic waves,
we perform a Fourier transform of the (experimentally measurable) solar cell reflection amplitude, which reveals the rays as peaks in the optical path length
spectrum. An application of our exact ray theory to a silicon solar cell is also provided. Treating the one-dimensional case exactly, our paper lays the foundation for
constructing exact ray theories for application to solar cell absorption cross section in two and three dimensions.

1. Introduction

In the quest for cheaper and cheaper solar cells, the solar cell
community is continuously on the lookout for ways to decrease material
costs. It is well known that in order to produce thinner solar cells with
the same absorption properties as their thicker counterparts, absorption
of optically thin solar cells may be enhanced by the use of nano-layering
or by nano-structuring [1,2]. In order to investigate the nature of the
absorption enhancement of optically thin solar cells by nano-layering or
structuring, full wave calculations have been employed [3,4]. Shape
resonances such as whispering gallery modes in spherical nanos-
tructures have been considered as one possible cause for the absorption
enhancement [5]. As another possible cause for the absorption en-
hancement, the coupling of modes in periodic nano-structures has been
considered [6]. While absorption enhancement by nano-layering and
nano-structuring has been demonstrated both experimentally [7] and
numerically [8], the origins of the absorption enhancement mechan-
isms are not completely understood. Handy tools for investigating wave
propagation and absorption properties of electromagnetic radiation in
complex nano-structures are required for achieving a deeper under-
standing.
In the short wavelength limit, i.e., when the wavelength is small

compared to the size of the structures used for absorption enhancement
(e.g in micro-structured materials), ray tracing has been employed as an
approach for investigating wave propagation and absorption enhance-
ment in solar cells since the 1980s [9–11], when the optical perfor-
mance of various solar cell designs was evaluated using ray-tracing
techniques for the computation of the reflectance, transmittance and
absorption. Since then, several numerical codes [12–19] and methods
were developed, such as the Monte Carlo ray tracing method [20], the
polarization ray tracing technique [21,22], the ray tracing combined
with transfer matrix theory [23] and ray tracing combined with image
processing [17]. Starting with one-dimensional modelling [24], these
methods were later extended to two and three dimensions [25–28].
Ray tracing methods have been shown to explain the trapping of

rays in solar cells. However, ray tracing fails to explain resonance ef-
fects in nano-structured materials such as whispering gallery modes.
The reason for this deficiency is obvious: In order to describe resonance
effects in layered thin films or films with nano-structures, the wave
nature of the electromagnetic radiation needs to be taken into account,
while the classical ray picture in electrodynamics is used to study the
propagation of electromagnetic waves in terms of rays for cases where
the wavelength of the electromagnetic radiation is short compared to
changes of the media in which the electromagnetic radiation is
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propagating. This is not the case for optically thin solar cells with nano-
layers and nano-structures, where the optical properties of the material
change on a scale which is comparable to the wavelength of light.
In the field of quantum theory, a ray theory that takes into account

the wave nature is readily available. In quantum mechanics, the ray-
wave duality leads to the important field of semiclassical methods
[29,30], which attempts to solve the quantum Schrödinger equation on
the basis of classical particle trajectories. Using rays to solve the wave
equations is tempting since it is usually much more straightforward to
solve the ordinary differential equations determining the dynamics and
geometry of rays, than solving the wave equations, which requires the
solution of partial differential equations of continuous media. In order
to obtain an exact result on the basis of rays, the rays need to be as-
sociated with phases; if for each ray the correct phases can be de-
termined, the wave-ray duality is exact and the wave equations may be
solved on the basis of rays. Since in this case, the ray theory solves the
Helmholtz equation exactly, the ray theory can also correctly handle
resonances caused by the wave nature of light. In addition, we in-
troduced a complex refractive index in the ray theory allowing to treat
absorption, which so far has not been introduced in quantum ray-
splitting literature.
Only recently, in the field of solar cells, attempts that include phases

have been reported [31].
In order to increase the understanding of the behavior of light in

nano-layered and nano-structured solar cells, we present a ray theory
that yields an exact description of the behavior of light in one-dimen-
sional systems and allows to explain absorption enhancement due to
nano-layering and nano-structuring.
In order to demonstrate the new theory, we study the optical gen-

eration rate of optically thin solar cells, modeled as vertical stacks of
thin (absorbing) dielectric films, under normal incidence of light. In
sections 2 and 3 we show that in this case, with or without a mirror
behind the stack, Maxwell's vector equations are equivalent with a one-
dimensional scalar Helmholtz equation, which we solve with our exact
ray theory. We will use the scalar theory throughout this paper. In order
to model absorption, we use a complex index of refraction. In section 4
we introduce a hierarchical scheme of summing rays as a convenient
method of keeping track of rays bouncing off of and transmitting
through different dielectric layers of the solar cell. We also show that
including only the simplest rays already yields an excellent approx-
imation of the exact solution of the wave equation. In Section 5 and 6
we show that both summation order and phases are important in our
ray theory. We show in section 7 that the signature of the most im-
portant rays appears as peaks in the Fourier transform of the reflection
amplitude of a flat solar cell. In section 8 we demonstrate how our ray
theory can be used for materials with practical importance within the
solar cell field. In Section 9 we discuss our results; we summarize and
conclude our paper in Section 10.
Our method can be extended for use in two and three dimensions.

The theory describes the optical properties of a device and is based on
the imperative that phases need to be included to arrive at a useful ray
theory.

2. The scalar wave model for a one-dimensional film

In order to develop a ray theory for studying absorption enhance-
ment in optically thin solar cells, we consider one-dimensional systems
in which electromagnetic radiation is propagating towards a region
consisting of one or more parallel layers of different materials. In this
section we will introduce one-dimensional model system that we will
use for illustration throughout the paper. In all cases, we consider the
propagation direction as normal to the surfaces of the materials. Since
we want to develop model systems for optically thin solar cells, we
study cases where one or more of the layers consist of energy-con-
verting materials. We describe the incoming electromagnetic wave by a
plane wave. Since we consider only normal incidence, the system can

be fully described by a scalar wave function, ψ [32].
The first and simplest system we will investigate is a system con-

sisting of a single film. By evaluating the scalar wave function for one
single film, where the material of the film is an energy-converting
material with complex refractive index n= nr+ ini, we can understand
the occurrence of interference maxima and investigate how these are
related to the enhancement of the absorption cross section. The inter-
ference maxima are resonances akin to the whispering gallery re-
sonances that occur in spherical particles used for nano-structuring
solar cells, which lead to an enhancement of the electric field and the
absorption properties of the solar cells.
The reflection probability R at the boundary between two materials

is calculated as Rb=|r|2, where r is the amplitude of the reflected wave
(see Fig. 1). By requiring a continuous scalar wave function and a
continuous first derivative of the scalar wave function at the boundary,
we can derive an expression for Rb for the case illustrated in Fig. 2 [33],
i.e.,

= +
+ +

R n n
n n

(1 )
(1 )

.b
r i

r i

2 2

2 2 (2.1)

The probability for transmission at the boundary for the system in
Fig. 1, Tb, is given by Tb=|t|2= 1− Rb.
We start by evaluating two simple systems, namely a single film and

a single film with a mirror, as shown in Fig. 2a and b, respectively.
We require that the wave function and its first derivative are con-

tinuous at the boundaries and that the wave function is zero at the
surface of the mirror. We derive the transmission probability T=|t|2

and the reflection probability R=|r|2 for the systems, where t and r are
the amplitudes of the transmitted and reflected plane waves, respec-
tively. For the single-film case, shown in Fig. 2a, the reflection and
transmission amplitudes are given by

=
+

r i nka nk k
nk nka i nka nk k

sin( )[( ) ]
2 cos( ) sin( )[( ) )]

,
2 2

2 2 2 (2.2a)

Fig. 1. Schematic description of a half-space problem, where the left half space
is vacuum (n0= 1) and the right half space is material. A plane wave is pro-
pagating towards a boundary between vacuum (n0= 1) and an arbitrary di-
electric material with refractive index n= nr+ ini. The imaginary part ni of the
refractive index is set to zero if the dielectric material is non-absorptive. The
waves are propagating in x-direction, normal to the surface. ψ0 and ψI are the
scalar wave functions in the two regions, k=2π∕λ is the angular wave number
in vacuum, and λ is the vacuum wavelength. r and t are here the reflection and
transmission amplitudes for the plane wave in this system; the amplitude of the
incoming plane wave is set to one.

Fig. 2. Two simple single film systems. (a) A single film in vacuum and (b) a
single film in vacuum with a mirror. The refractive index of the film is given by
n= nr + ini. n0= 1 is the refractive index of vacuum, a is the thickness of the
film.
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where k=2π∕λ is the angular wave number in vacuum, λ is the va-
cuum wavelength, nk is the angular wave number in the film, n is the
complex refractive index of the film, and a is the thickness of the film. If
the film is non-absorptive, i.e., n is real, it is straightforward to show
that Eqs. 2.2a and 2.2b lead to R + T=|r|2 + |t|2= 1, i.e., all elec-
tromagnetic radiation entering the film is eventually leaving the film
again.
In the case a mirror is present (see Fig. 2b), there is no transmission.

Therefore the system can be characterized by the reflection amplitude
alone, which in this case is given by

= +r n nka i nka
n nka i nka

cos( ) sin( )
cos( ) sin( )

.
(2.3)

If the film is non-absorptive, i.e., n is real, it follows immediately from
Eq. (2.3) that R=|r|2= 1, i.e. again all electromagnetic radiation en-
tering the film is eventually leaving the film.
We define the absorption cross section as the fraction of light that is

absorbed and denote it by σ. In the two cases shown in Fig. 2, the film
with and without the mirror, the expressions for σ are respectively
given by

= R( ) 1 ( ), (2.4a)

= +R T( ) 1 ( ( ) ( )). (2.4b)

According to the definition of σ as the fraction of absorbed light, i.e.,
light that does not exit the solar cell, in addition to absorbed light that
leads to beneficial photo current, σ contains all parasitic absorption
processes, for instance the two-photon process [34,35].
The same procedure can be applied for film-systems without mirror.

For a non-absorptive film, σ is zero. For the rest of this paper, we will
focus exclusively on cases where a mirror is placed behind the film/
films in order to model a solar cell system.
In an equivalent solar cell system the absorption cross section is the

total amount of absorbed energy absorbed at a given wavelength λ. This
is the maximal amount of energy that can potentially create electron-
hole pairs at a given wavelength λ. Under normal operating conditions,
if the total amount of absorbed energy is increasing, the number of the
photo-electrons will also increase and this will lead to enhanced effi-
ciency. When the absorption cross section is weighted by the AM1.5
solar spectrum, we obtain the optical generation rate, Gopt. The optical
generation rate Gopt has been introduced to the solar cell field by Ferry
et al. [36]. Since then it is used as the measure of the optical perfor-
mance of various solar cell designs. In our case Gopt is given by

=G A( ) ( ) ( ) ,opt solar (2.5)

where Γsolar(λ) is the spectral weighting term and A is the surface area
of the solar cell. In this paper we will evaluate σ(λ) for our systems in
order to get a fundamental understanding of how the optical resonances
in the energy converting film increase the total amount of absorbed
energy.
For a single film, or a stack of films, with different refractive indices,

it is possible to analytically derive a formula for the absorption cross
section from the probability current. This depends only on the absolute

square of the scalar wave function inside of the film(s). To be specific,
we consider the case of an array of films, described by a space-depen-
dent complex refractive index n(x)= nr(x) + ini(x). The complex re-
fractive index n(x) when the optical or the absorption properties of a
material change. When a stack of films is illuminated from the front and
backed by a mirror, the absorption cross section is given by

= k n x n x x dx2 ( ) ( )| ( )| ,
w

i r0
2

(2.6)

where the stack of films is assumed to be located in the interval
0≤ x≤w and the mirror is located at x=w. The details of the deri-
vation are presented in Appendix B. Since for a single film with mirror
both r and ψ(x) are known explicitly (see Eq. (2.3) and Appendix B), it is
straightforward in this case to show by explicit calculations that Eq.
(2.6) holds (see Appendix C).

3. Exact ray theory for single films

In this section, we will show that it is possible to estimate the ab-
sorption cross section by considering and summing rays. Three ex-
amples of simple rays are shown in Fig. 3.
In order to calculate the total reflection amplitude r we need to sum

up all possible rays in the film [37,38]. Every ray contributes to the
total reflection amplitude and thereby to the absorption cross section
with an amplitude and a phase. The reflection and transmission am-
plitudes of the ray depending on the side of the boundary the ray is
hitting. Denoting by rl and tl the reflection and transmission amplitudes,
respectively, for a ray originating from outside in the vacuum and
transmitting into the film, and by rr and tr the reflection and trans-
mission amplitudes, respectively, for a ray originating from inside of
the film and traveling towards the vacuum, we obtain (see Appendix A):
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It is important to note that the amplitudes, eq. (3.1)–(3.4), remains
exact if the refractive index, n, is complex. We hereby established a ray
model that is able to describe absorption of electromagnetic radiation.
In addition to the amplitudes, we need to include the phase that the ray
collects when it transverses the film, i.e., each time it travels from the
vacuum-film interface to the mirror or from the mirror to the interface.
This phase collected when traveling through the distance a is given by
einka. Further we have to include the phase eiπ [39] caused by the mirror
each time a ray is reflected by the mirror.
To introduce our procedure, we state the contribution to r from the

three selected rays illustrated in Fig. 3. The result is

= + +r r t e e e t t e e e r e e e t ,l l
inka i inka

r l
inka i inka

r
inka i inka

r (3.5)

where the first term is the contribution of the ray illustrated in Fig. 3a,

Fig. 3. Three types of rays encountered in a film-
plus-mirror system. (a) The ray directly reflects from
the surface. This ray does not contribute to the ab-
sorption cross section. (b) The simplest ray that
contributes to the absorption cross section. The ray
enters into the film is reflected from the mirror and
exits. (c) A more complex ray contributing to the
absorption cross section. This ray has two reflections
from the mirror and one internal reflection from the

film-vacuum boundary.
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the second term is the contribution from the ray illustrated in Fig. 3b,
and the third term is the contribution from the ray illustrated in Fig. 3c.
If we include all contributing rays, their total, exact contribution to r is
given by

= +
=

r r t t e e e r e( ) .l l r
i inka i

r
inka2

0

2

(3.6)

By inserting the expressions for rl, tl, rr and tr, and with the help of the
elementary summation formula for the geometric series, it turns out
that r in Eq. (3.6) is equal to r in Eq. (2.3).
Whenever an energy-converting film is present, i.e., whenever

nr > 1, we have |rr| < 1 and the expression for r in Eq. (3.6) con-
verges absolutely. Fig. 4 shows σ for the single film system with a mirror
behind. The solid line is the exact expression for σ, the dashed line is σ
found by the ray model where only a few simple rays are included.
As shown in Fig. 4 very fast convergence is observed even if only a

few of the shortest rays are included. The figure also shows that con-
sidering only the five simplest rays in the system, the analytically cal-
culated absorption cross section can already be predicted near per-
fectly. Fig. 4 illustrates another important aspect, namely that our ray
theory can describe absorption of electromagnetic radiation by in-
cluding a complex refractive index.

4. Exact ray theory for multilayered films: hierarchical
summation scheme

When a system has more than one layer, each ray, upon en-
countering a vacuum-film boundary or a boundary between two layers,
will split into two rays, a reflected ray and a transmitted ray (except the
mirror in our model system). This is called ray splitting [40–42]. With
increasing geometric length, tracking splitting rays becomes an ever
more complex task since each split ray, subsequently, will undergo
splittings itself. Thus, the number of rays in the system increases ex-
ponentially with the number of splittings, i.e., with the geometric
lengths of the rays.
In order to keep track of all the rays, we present a convenient book-

keeping system, called symbolic dynamics [43]. This system is widely
used in the fields of non-linear dynamics and chaos. This symbolic
language consists of an alphabet and simple grammatical rules which
determine the path of a ray unambiguously. The symbolic dynamics of
two film layers with a backside mirror (Fig. 5) has an alphabet that
consists of the three letters (symbols) a, b, c. Each of the letters corre-
sponds to a boundary where the ray will either split or simply reflect.
The grammatical rules are:

1. A word must start with the letter a. If the ray exits the system, the
word must also end in the letter a.

2. Skipping letters is not allowed, i.e., unless the trajectory terminates,
the letter a is always followed by the letter b, the letter b is always
followed by letters a or c and the letter c is always followed by the
letter b, indicating reflection off of the mirror.

Illustrating these rules, we construct the two sample rays R1 and R2
shown in Fig. 5. R1 transmits at a and reflects at b before transmitting
out of the system through a. Thus, the word labeling R1 is aba. We may
be tempted to label R2 as aca, but this violates rule 2. The correct word,
abcbcba, contains information about every boundary crossed.
To define the symbolic dynamics of systems with more films, we

simply use a larger alphabet. If there is no mirror, i.e., transmission
through the system is possible, rule 1 would allow words to end with
the last letter of the alphabet.
The graph in Fig. 6 generates the part of the vocabulary that con-

tains words with seven or less symbols for the two-film system in Fig. 5.
The incoming ray will first hit node a. All a nodes are colored blue to
emphasize that they mark the end of a word. The edges that are con-
necting the nodes are either black or red. A black edge signifies a ray
traveling to the right and a red edge signifies a ray traveling to the left.
A word can easily be read off Fig. 6 by writing down the successive
letters starting from the first node to another blue node.
The computer implementation of this hierarchical summation

scheme uses the number of ray splittings at the boundaries as a measure
of the run time, not the number of rays explicitly. More splitting events
generate exponentially more rays to approximate the reflectance R.
About seven such splittings are needed to approximate the analytic
expression reasonably well as seen in Fig. 7. These seven splittings
generate a set of 64 contributing rays. Allowing more splittings, thus
adding more rays, improves the approximation further.
If photons were classical, Newtonian particles, ray-splitting would

not occur. The only ray allowed according to Newtonian mechanics
would be the ray labeled abcba. Accordingly, this ray is also known as
the “Newtonian ray” [44]. All other rays show ray splitting [40–42].
Since ray splitting is not allowed according to Newtonian mechanics,
these split rays are called “non-Newtonian” [44]. Non-Newtonian rays
have been proven theoretically [40,41,45,46] and experimentally
[42,47–49].
To assess the importance of the (Newtonian forbidden) non-

Newtonian rays compared with the (Newtonian allowed) non-split,
Newtonian ray, we also show the contribution of the Newtonian ray to
R(λ) in Fig. 7. We see that the Newtonian ray alone, although in the
vicinity of the exact result for R(λ), produces a result with very poor
accuracy. Conversely, Fig. 7 shows that the contribution of the split,
non-Newtonian rays is substantial, and that only the added contribution
of the split, non-Newtonian rays produces accurate results.

5. Importance of the correct summation order

As discussed in the previous section, in the case of a single film, the
sum in Eq. (3.6) for the reflection amplitude r is absolutely convergent,

Fig. 4. Absorption cross section σ as a function of the wavelength λ for the
system given in Fig. 2a. The blue line is calculated analytically with Eq. (2.3)
and the ray model with Eq. (3.6) is used when the two (red dashed), three
(green dashed line) and five (purple dashed line) simplest rays are included.
The refractive index of the film in this system is 1.8 + 0.05i and the thickness is
500 nm. The wavelength ranges from 300 nm to 1500 nm. (For interpretation of
the references to color in this figure legend, the reader is referred to the Web
version of this article.)

Fig. 5. Two rays, R1 and R2, in a system with a mirror and two film layers. R1
and R2 are labeled by the symbolic dynamics aba and abcbcba, respectively.
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and the summation order of the rays is irrelevant. Any summation
scheme, as long as all rays are included, will yield the exact value for r.
However, if there is more than one film, the order of summation does
matter. Let

=
=

r A
j

j
0 (5.1)

be the ray representation of the reflection amplitude. If Eq. (5.1) were a
finite sum, the order in which we sum the rays would clearly not
matter. However, this is not the case with infinite sums, such as Eq.
(5.1). Only if

<
=

A| |
j

j
0 (5.2)

is the summation order of the terms in Eq. (5.1) irrelevant and always
yields the correct reflection amplitude. In this case, as discussed in the
previous section, we call the sum in Eq. (5.1) absolutely convergent. If,
however,

=
=

A| | ,
j

j
0 (5.3)

it was shown by Riemann [50] that, depending on the summation order
of the terms in Eq. (5.1), the infinite sum in Eq. (5.1) can be made to
have any prescribed value. This is known as Riemann's Rearrangement
Theorem [51]. In this case the sum in Eq. (5.1) is called conditionally
convergent, and it is necessary to sum it in some prescribed way in

order to obtain correct results.
In Appendix D we show that for our two-film system, for a large

range of dielectric constants, Eq. (5.3) holds, i.e., in these cases our ray
sum in Eq. (5.1) is only conditionally convergent. The correct summa-
tion scheme in these cases is to sum the rays in the order of increasing
path length, where the path length of the ray may either be its geo-
metric length or its optical path length. This summation scheme is not
dictated by mathematics, which does not help us beyond the fact of
stating that in the case of conditional convergence different summation
prescriptions produce different results [51], but interestingly is dictated
by the physical situation. For actual realizations of solar cells there is
always some absorption present, which naturally suppresses the im-
portance of longer rays. Therefore, ordering the rays according to their
importance for r means ordering them according to their path lengths.
We can numerically corroborate the importance of the summation

order by testing for absolute convergence with the hierarchical sum-
mation scheme. We take the absolute value of each term, which is
equivalent to removing the phase completely. Fig. 8 compares the ab-
solute value of the difference between the analytical reflection prob-
ability RA and the reflection probability RHSS, computed according to
the hierarchical summation scheme. Without the absolute value of each
term, i.e., when phases are included, convergence is reached after a
small number of splittings. Without phases, we see that the difference
R R| |A HSS is diverging, numerically corroborating that the sum over
rays is not absolutely convergent.

6. Importance of phases in the ray theory

In this section we emphasize the importance of phases, even in the
case of absorption (which was not included in Sec. 5), by computing
absorption cross sections, with and without phases included, using as an
example the single film with mirror introduced in Secs. 2 and 3.
Comparing the two cases, we show that the ray theory without phases
produces results that contain unacceptably large errors.
In order to demonstrate the importance of the phases, we introduce

the following ray model where phases are not included. Without
phases, instead of being associated with an amplitude, every ray is
associated with an intensity. We set the incoming intensity of the ray to
I0. The simplest ray model we consider retains only the directly re-
flected ray as illustrated in Fig. 3a. We call this ray the ray of zero length,
since it does not enter the energy-converting film, and its optical path
length inside of the film, therefore, is zero. We further assume that the
probability given in Eq. (2.1) describes the amount of light reflected at
the surface of the film. The rest of the light is absorbed in the film. In
this case the absorption depends on the wavelength of the incoming
light only through the wave number, k, as long as the refractive index of
the film is constant for all wavelengths. When we evaluate rays that
travel inside of the film, the intensity assigned to a particular ray de-
creases via Beer-Lambert's Law, and is expressed as

=I I e ,n kx
0 i (6.1)

where I0 is the incoming intensity of the light, which we set to 1, x is the
distance travelled in the film [39,52], k is the wave number and ni is the
imaginary part of the refractive index of the film.
To find the amount of absorbed light, i.e., the absorption cross

section, σ, we need to sum the contributions to the absorption from each
ray. When the ray hit a boundary, a part of it will reflect and a part of it
will transmit. The probability for reflection at a boundary, Rb is given in
eq. (2.1) and the probability of transmission is Tb=1− Rb. Evaluating
σ due to the rays in Fig. 3a and b, the result is

= +( )R T e1 ,b b
n ka2 2 i (6.2)

where a is the width of the film. The expression inside the brackets is
the sum of the intensities of these two reflected rays. When all possible
rays are included (infinitely many), σ is given by

Fig. 6. Schematic of the ray tree algorithm. The interfaces between the mate-
rials II and III are labeled a and b, respectively, and the mirror is labeled c. An
incoming ray always hits a first. At a the ray will split in two. One ray is re-
flected (ray labeled ‘a’) and the other will travel to the right (black edge) to-
wards b. At b it can either go to the left (red edge) and exit, or continue to travel
to the right to the mirror, c. The inset shows the two-layered system that is
considered in this example. (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)

Fig. 7. Absorption cross section σ as a function of the wavelength λ, including
various numbers of split rays, and the shortest non-splitting ray. The hier-
archical summation scheme approximates the analytical result for the film with
two layers (Fig. 5) almost perfectly with only 64 rays or, equivalently, seven
splittings. Including more rays yields an even more accurate result. The non-
splitting ray approximately defines the lower envelope of the exact result.
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We arrive at this formula by summing up all possible rays and by using
the elementary summation formula for the geometric series.
Fig. 9 shows a comparison of the absorption cross section evaluated

with ray models that include and neglect phases, respectively. For the
case in which phases are neglected, we present three different sce-
narios. (1) The horizontal blue line in Fig. 9 is σ computed by including
only the ray of zero length (see Fig. 3a). (2) The red line in Fig. 9 is σ
computed on the basis of the two rays in Fig. 3a and b (Eq. (6.2)). (3)
The green line in Fig. 9 is σ obtained by including infinitely many rays
(Eq. (6.3)). Contrasting these three cases, computed without including
phases, we also show the exact result for σ in Fig. 9, where we have
included infinitely many rays with phases (purple line). The exact result,
with phases included, shows oscillations (purple line), which are not
captured by either of the three cases that do not include phases. As seen
in Fig. 9, σ without phases is monotonically decreasing when the wa-
velength increases (green and red lines), without any oscillations ac-
cording to Eq. (6.1). The result without phases included underestimates
the exact result with phases included, and, according to Fig. 9, the re-
lative error can exceed 60% in the wavelength region shown in Fig. 9.
In the context of absorption cross sections of typical solar cells, an error
of this magnitude is not acceptable. We conclude that for accurate
modelling of solar-cell efficiencies in terms of rays, inclusion of phases
is absolutely essential. Any ray theory, whether applied in the elec-
tromagnetic, acoustic, or quantum domains, is exact only if phases are

included. Neglecting phases may have serious consequences, ranging
from incorrect results to divergent results as demonstrated in Fig. 8 of
Sec. 5.

7. Signatures of rays in the Fourier transform of the reflection
amplitude

A Fourier transform of the reflection amplitude r(k) allows us to
reveal the signatures of the rays whose combined contributions result in
the exact functional form of r(k). If the entire spectral range is acces-
sible to us, we obtain this information in the form of the length spectrum

=L r k e dk( ) 1
2

( ) .iLkF (7.1)

To illustrate, let us use the exact, explicit formula 3.6 for the reflection
amplitude r of a single film with mirror. We obtain
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where δ(x) is Dirac's delta function. We see that L( )F is a series of
sharp peaks at integer multiples of the optical path length 2na, where
each peak corresponds to the optical path length of a certain ray inside
of the film. Thus, every single ray that contributes to Eq. (3.6) is re-
presented as a sharp peak in L( )F . This even includes the “ray of zero
length”, which is the ray that reflects with amplitude rl off of the front
surface of the film. Since this ray does not enter the film, its optical path
length in L( )F , naturally, is zero. The weights of the δ terms in Eq.
(7.2) correspond to the amplitudes that the rays pick up when crossing
a boundary or being reflected from a boundary. Thus, the length
spectrum of r contains the complete optical information of the system
under consideration. This is not surprising, since the Fourier transform
in Eq. (7.1), a function in L space, is complementary to the ray re-
presentation, Eq. (3.6), of r in k space. Unfortunately, ray information
can be extracted so cleanly from r(k) with Eq. (7.1) only if the in-
tegration range is infinite. In actual applications in solar cells, we are
restricted to a finite spectral range, which turns the exact length spec-
trum L( )F into an approximate length spectrum
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Applied to our single-film example, this evaluates to
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where sinc(x)= sin(x)∕x is the “sinc-function”. We see that in the case
of a finite spectral range the sharp δ-function peaks are replaced by
smooth, oscillatory sinc-functions, which produces “Gibbs ringing” [53]
in L( )F that produces copious “extra peaks” in L( )F and may thus
obscure the peaks that correspond to rays. The ringing may be reduced
by the use of a window function [54], i.e., a function w(k) that softly
“switches on” and “switches off” the integration at k1 and k2 according
to w(k1)=w(k2)= 0, w′(k1)=w′(k2)= 0, w k k( )/ 11 1

2 ,
w k k( )/ 12 2

2 .
As an illustrative example we present the Fourier transform of the

reflection amplitude of a three-layered film with constant, non-dis-
persive indices of refraction, n1= 1.5, n2= 1.9, n3= 2.3, and film
widths a1= 500 nm, a2= 2000 nm, and a3= 1000 nm, respectively. In
this example we chose k1= 2π∕1200 nm and k2= 2π∕5 nm. We used
the window function

=w m
m

( ) 1 ,
N

N

1
2

1
2

2

(7.5)

Fig. 8. Absolute value of the difference between the reflection calculated by the
analytical expression, RA, and the hierarchical summation scheme, RHSS, is
converging when the phase of the rays is included. The same calculation will
diverge if it is done without phases.

Fig. 9. Absorption cross section, σ, as a function of wavelength,λ, in the range
300 nm≤ λ≤1500 nm, for a single film with refractive index n= 1.8 + 0.05i,
a thickness of 500 nm, and a mirror on the backside of the film. The blue line is
σ, including only the reflected ray of zeroth length (see Fig. 3a). The red line is
σ, including only the two simplest rays (see Fig. 3a and b, calculated with Eq.
(6.2). The green line is σ, including infinitely many rays without phases, cal-
culated with Eq. (6.3), and the purple line is σ, including infinitely many rays
with phases. The purple line is calculated with the ray theory presented in Sec.
3. (For interpretation of the references to color in this figure legend, the reader
is referred to the Web version of this article.)
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called the Welch window function. Here m is an integer variable that
corresponds to the grid used in the calculations. If we are using M
different values of k, m takes the values 0≤m≤M−1. Using no
window (box window) shows Gibbs phenomenon very clearly. The re-
sulting length spectrum of this three-layer system is displayed in
Fig. 10. In general, a larger Fourier peak indicates a more important
component in a Fourier series. Hence, the heights of the peaks in Fig. 10
directly relate to the importance of the contributions of the corre-
sponding rays to r. The peaks labeled a-f in Fig. 10 correspond to the
rays illustrated in (a) - (f) of Fig. 10, respectively. The six tallest peaks
correspond to rays labeled by the words aba, abcba, abcdcba, abcbcba-
baba, abcdcdcbcba, and abcdcdcdcdcba, respectively. The peaks in
Fig. 10 are located at the optical path lengths of the rays, i.e., they are
located at the linear combinations 2ν1n1a1 + 2ν2n2a2 + 2ν3n3a3, where
νj, nj, and aj are the repetition number, index of refraction, and width of
layer number j, respectively.
As shown in this section, whenever we have r(k), either analytically

or numerically calculated, or experimentally determined, a Fourier
transform of r(k) reveals the peaks of the corresponding multi-layer
system, a technique we call ray spectroscopy. The peak heights will tell
us which of the rays are the most important in determining the re-
flection amplitude r, which, in turn, determines the absorption cross

section of the corresponding solar cell. As shown in Fig. 10, the peak
height is an exponentially decreasing function of optical path length,
which means that only a few of the shortest rays are necessary to de-
termine r(k) with sufficient accuracy to be useful for system optimiza-
tion. This, in turn, enables us to design and optimize solar cells in a
completely new way on the basis of a few important rays, which implies
a very small parameter space to be searched for system optimization.

8. Example with silicon

To provide an example of the ray-wave equivalence and the hier-
archical summation scheme, we analyzed a three-layer simplification of
a five-layer optically thin, epitaxial crystalline silicon solar cell using
experimentally determined indices of refraction [55–58]. Fig. 11 shows
the layer structure for these two models. The intent with the simple
three-layer design is to demonstrate the concepts described in this
paper applied to a system with material constants of practical im-
portance. However, it should be noted that solar cells with co-planar
structure are mainly used to provide an example. Commercial solar cells
usually have some kind of surface structure to lower the reflectivity.
Since both the two amorphous silicon (a-Si) layers and the two

crystalline silicon (c-Si) layers in the experimentally realized solar cell

Fig. 10. Top frame: Finite-range Fourier transform (approximate length spectrum) L( )F of the exact r(k) of a three-layer film system with mirror with parameters as
specified in the text. L( )F shows distinct peaks, labeled (a)–(f). The rays corresponding to these peaks, including their symbolic-dynamics labels, are illustrated in
the six frames (a)–(f), below the top frame, respectively. These six rays make the most important contributions in the ray-representation of r(k) of this system.

Fig. 11. Multilayer solar cells with mirror. (a) Experimentally realized thin epitaxial crystalline silicon solar cell consisting of five layers [55]. (b) Three-layer
simplified model of the experimental system shown in (a), obtained by replacing layers with different doping but approximately the same index of refraction by a
single layer. The three layers are, from top to bottom, 70 nm ITO, 21 nm amorphous silicon, and 2000 nm intrinsic silicon, respectively.
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differ only in their doping, and since we for now neglect the doping-
dependent free carrier absorption, we modeled this solar cell in terms of
a three-layer system by collapsing the two a-Si layers and the two c-Si
layers into a single layer, respectively.
Fig. 12a shows a comparison between the analytical result (red line)

for the absorption cross section σ and the result produced by the hier-
archical summation scheme (blue line). In the lower wavelength re-
gime, σ is perfectly approximated by the hierarchical summation
scheme including 18 splittings or 65,537 rays. Only from 750 nm on do
we start to see some deviations. This demonstrates the complexity of a
three-layer film in terms of its ray dynamics, and highlights the power
of the hierarchical summation scheme even in the case of dispersive
indices of refraction.
In order to obtain the optical generation rate [59], Eq. (2.5), we

multiply σ with the AM1.5 solar spectrum, Γ. The result is displayed in
Fig. 12b for both the analytical expression (red line) and the hier-
archical summation scheme (blue line), corresponding to the two cor-
responding cases shown in Fig. 12a, respectively.
Once more, we see excellent agreement between optical generation

rate obtained on the basis of the analytical and hierarchical summation
scheme results.

9. Discussion

As shown in section 3, there is a profound duality between waves
and rays. Rays are governed by ordinary differential equations, de-
scribing particle motion, while wave fronts are the solutions of con-
tinuous wave equations expressed in the language of partial differential
equations. This duality is exploited in many fields of physics that deal
with waves. In optics, e.g., it leads to the important field of geometric
optics [60] in which one attempts to obtain an accurate description of
the passage of light through various optical components by using a ray
picture, side-stepping the more involved solution of Maxwell's wave
equations [39,61]. There are many examples where the wave-ray
duality is exact (see, e.g., [30]) and may be exploited to advantage. The
most important example is Feynman's path integrals [62], which solve
the full wave-mechanical problem of quantum mechanics exactly by
summing over all possible classical rays. Another example of exact ray
solutions to the corresponding wave problem is quantum mechanics
with energy-scaling step potentials in one dimension [63–65]. Since the
quantum step-potential problem and the electromagnetic (E&M) opti-
cally thin solar-cell problem are formally identical problems, one of the
intentions of this paper is to transfer and adapt methodology from the
quantum chaos community in the field of one-dimensional energy-
scaling step potentials and dressed quantum graphs [64,65] to the solar-

Fig. 12. a) A comparison of the absorption cross section σ calculated from an analytic expression and with a finite number of rays, using the hierarchical summation
scheme (HSS). 18 splittings produce 65,537 rays and gives a good approximation to the analytic expression. b) When the AM1.5 solar spectrum [59] is taken into
account, we get the optical generation rate, Gopt.
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cell community, who is concerned with the solution of Maxwell's
equations for stacks of layers of anti-reflection coatings on top of en-
ergy-converting materials. We note that, so far, only the bound-state
problem has been studied extensively in the context of dressed, scaling
quantum graphs, which, in the optical case, would correspond to the
presence of two mirrors, one at the front and one at the back of the
stack of films. The scattering problem, as studied in this paper, has to
our knowledge not yet been studied in the context of dressed, scaling
quantum graphs.
For the one-dimensional case we derived the exact expression for

the absorption cross section, σ, of the energy-converting material. When σ
is weighed by the solar spectrum as the spectral weighting term, the
optical generation rate is obtained. This brings out the connection be-
tween the structure of the wave function ψ and the absorption. By
evaluating σ we can engineer our system to increase the absorption, and
thus the absorption cross section, of the system.
We showed the importance of including phases in our ray theory

with the help of the following two-step method. First, we include the
exact phases of the rays in our one-dimensional model, which we take
as consisting of a single film. In section 3 we demonstrate that this
yields the exact solution of the Helmholtz equation. Then, we evaluated
the ray sum for this one-dimensional systems setting all phases to 1. We
showed in Section 5 that the resulting, incorrect ray theory cannot
handle the resonances and in addition predicts a spectral optical gen-
eration rate that is up to 60% off. We are convinced that this ob-
servation carries over to any ray tracing in two and three dimensions,
which means that in order to be confident in the accuracy of a ray-
tracing result, phases must be included. Otherwise, as shown in our
paper in the one-dimensional case, one should be prepared for large
errors in the predictions of a ray theory that omits phases.
For several of our model systems, including our example of the lab

silicon cell discussed in section 8, we showed that including only a few
rays in the ray sum already gives a good approximation of the ab-
sorption cross section (see, e.g., Fig. 4. This observation is important
since, in principle, an infinity of rays needs to be summed over in order
to obtain exact results, and if the convergence were slow, this would
result in an enormous number of terms to be summed, partially, or
totally, cancelling out the advantage in computational speed of rays
over waves. That only a few dominant rays already determine the final
result with good accuracy is particularly important in two and three
dimensions, since, according to the increased dimension, the set of rays
that needs to be summed over is much larger.
Since our ray theory is exact, it works for all refractive indices, n.

This includes all n typically encountered in solar cells, where complex n
indicates an absorptive material. A strength of the ray theory is that the
refractive index can have any value and is not limited to only small
values of real and imaginary parts. Our ray theory is therefore applic-
able to any solar cell material. Including the temperature dependence of
its index of refraction. In linear approximation, as a function of tem-
perature T, we can write

= +n T n T T T( ) ( ) ( ),0 0 0 (9.1)

where n0 is the complex index of refraction at a reference temperature
T0 and β is the complex temperature coefficient, combining the two
temperature coefficients for the real and imaginary parts of the index of
refraction. Since our theory is exact for all indices of refraction, our
theory can accommodate exactly the temperature dependence of the
index of refraction, described by the temperature coefficients. In addi-
tion, since our complex index of refraction models the effects of the
band gap and any gain and loss mechanisms, their temperature de-
pendence, via the complex index of refraction, is included as well. We
would also like to point out here that complex indices of refraction have
so far not been treated in the quantum ray-splitting literature. Therefore
our paper is the first to show that a complex index of refraction does not
invalidate the exactness of the ray theory.
In our theory the boundary conditions between the vacuum and

dielectric films, and between different dielectric films, are treated ex-
actly, without any approximations. Only the boundary condition be-
tween the energy-converting dielectric film and the mirror is idealized,
assuming 100% reflection. This assumption is not necessary since the
mirror can be treated as another dielectric layer [39] for which our
theory is exact.
Two-dimensional materials are of great current interest (see, e.g.,

[66,67]). Since the dielectric properties of these materials have already
been measured [68], reflection and transmission amplitudes of these
two-dimensional materials can be computed. Once these amplitudes are
known, our theory is applicable to these materials and stays exact.
We do not hesitate to point out that for one-dimensional systems

wave calculations are cheaper than ray calculations. For one-dimen-
sional multi-layer systems, the transfer matrix method [69] can be used,
which is fast and includes absorption. Even in two dimensions, solving
the wave equation might still be cheaper and faster than applying the
ray theory. In three dimensions, however, supported by the fact that an
extensive literature on ray-tracing in three dimensions exists
[15,16,27,28], we believed that ray methods will have an edge, in
particular when constructed with phases included, which renders them
exact.
In addition to paving the way toward an exact and efficient ray

theory in three dimensions, the emphasis of this work is to present a ray
theory that can be used to understand the different mechanisms that
may be used to improve the absorption cross section. The fact that only
a few rays describe the absorption cross section, σ, of the system is
encouraging since only a few parameters (rays) need to be optimized
for optimizing the entire system. Consequently, there are two ways in
which classical ray calculations can be used in the context of solar cells:
(1) As a predictive tool used to predict the outcomes of wave calcula-
tions (predictive direction; forward model) and (2) as a means to un-
derstand the results of wave calculations, in particular to illuminate and
illustrate the mechanisms by which enhancement of the absorption
cross section is achieved (analysis direction).
In the case of a single film, we showed in section 5 that the ray sum

is absolutely convergent. Therefore, the terms in the sum may be
summed in any order. In the case of stacks of two or more films,
however, we showed in section 5 that the resulting ray sum is only
conditionally convergent. In this case the order of summation is im-
portant, since, according to Riemann [50,70], any result can be ob-
tained from a conditionally convergent sum by cleverly re-ordering the
terms. In section 4 we present a hierarchical scheme according to which
the rays in a multi-layer system can be summed in correct order.
The dominant rays describing the system can be found by per-

forming the Fourier transform of σ, Thus, the Fourier transform pro-
vides us with the possibility of extracting ray information from σ. It is
important to use a windowed Fourier transform (requiring a switching
function) to eliminate the Gibbs ringing, which produces spurious peaks
in the Fourier transform that do not correspond to rays. We found that
rays are connected to the absorption cross section. The longer the rays,
the larger the absorption cross section. The Fourier transform gives us
the ability to study the dominant rays. By increasing the dominance of
the long rays, which have the largest contribution to the absorption, it
is possible to design solar cells to have an increased absorption cross
section.
In section 8 we study a realistic system with a refractive index that

exhibits dispersion. We showed at even dispersion is no obstacle to our
theory; it still provides us with the correct absorption cross section.
Sunlight is incoherent and the question arises whether our results,

derived for coherent light, are relevant for illumination of solar cells
with incoherent light. We answer this question in the affirmative, since
what we evaluate is the absorption cross section, which is defined for a
sharp frequency, associated with an infinite coherence length. Another
way to see this is the following. On the microscopic level, it is in-
dividual photons that strike the solar cell and interact with it. While
different photons certainly have different frequencies, each individual
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photon has a sharp frequency and a corresponding wave function that is
the solution of the optical Helmholtz equation. Thus, at each individual
frequency, it is indeed the Helmholtz equation that governs the ab-
sorption of photons and thus determines the absorption cross section.
The total optical generation rate is then obtained by a simple integral
over the absorption cross sections weighted with the solar spectrum.
Thus, our theory, despite the fact that sun light is incoherent, works for
all film thicknesses.

10. Conclusions

In this paper we have shown that the ray theory is exact in one
dimension. Our results are important since they pave the way to the use
of exact ray tracing in three dimensions, which allows for both in-
cluding textures and other scattering surfaces, as well as oblique in-
cidences of sunlight.
We also showed several other facts that are important for the ex-

tension of the ray theory to three dimensions. We showed that the
summation order of the rays is important and that it is dangerous, al-
though tempting, to sum sub classes of rays to infinity, and then add the
sub classes results. We showed explicitly that this will yield incorrect
results.
An important result we obtained is that phases must be properly

computed and included with each ray that is used to compute reflection
probabilities and the absorption cross section. Without including the
phases, as is sometimes done in current three-dimensional Monte-Carlo
simulations of ray tracing in solar cells, we showed that an error of up
to 60% and larger can be incurred.

We also showed that including only a few rays in the sum over rays
gives quite accurate results, provided the phases are also correctly in-
cluded. This is of the utmost importance for three-dimensional appli-
cations since, as a consequence of ray splitting, as we showed in Section
5, the number of rays explodes exponentially in the lengths of the rays
that need to be included to obtain converged results with acceptable
accuracy. We also showed that the rays are “real” in the sense that their
signatures can readily be seen in the Fourier transform of the reflection
probability as peaks in the length spectrum.
Since our theory is exact, it works for all refractive indices n, even if

n is complex, which includes indices of refraction typical for solar cell
materials. We showed this explicitly in Section 8, where we discuss the
application of our exact ray theory to an example of a silicon solar cell.
Extension of our theory to two and three dimensions is straightforward
and provides the basis for future work on the application of exact ray
theories for the computation of the absorption cross section of solar
cells of practical importance.
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Appendix A. Reflection and transmission amplitudes

In order derive the exact ray model, we need to include the phases. The phases are described as below:
To obtain the proper phases for reflection and transmission of a ray at the left edge of a material, we consider the potential shown in Fig. A.1.

Fig. A.1. When a ray is coming from the left and goes from region I (vacuum) to region II (material with refractive index n), the ray will split into a transmitted and a
reflected ray at the boundary. The amplitudes of this rays are given by the reflection and transmission amplitudes, rl and tl.
Coming from the left, out of region I (x < 0), a ray encounters the left edge of region II at x=0. It gets reflected back into region I with

reflection amplitude rl, and gets transmitted into region II with amplitude tl. The subscript l stands for “left”. In region I it is vacuum. In order to find
the correct phase of the amplitude, we need to use the wavenumber of the corresponding wave and k is given by 2 , where λ is the wavelength. In
region II, the wavenumber of the corresponding wave is given by kII= nk where n is the refractive index in region II. The wavefunction in region I
and II are:

= +e r e ,I
ikx

l
ikx (A.1)

= t e .II l
ik xII (A.2)

Using the continuity of the wavefunction and its first derivative at x=0, we obtain:

=
+
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t
n

2
1

.l (A.4)

When the wave is coming from the right, the ray will encounter the boundary as shown in Fig. A.2.

Fig. A.2. Reflection and transmission amplitudes, rr and tr, respectively, for a ray incident from the right (out of region II, i.e., x > 0).
The wavefunctions are
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Again using continuity and the continuity of the first derivative gives us
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Appendix B. Integral formula for the spectral optical generation rate

In the scalar one-dimensional theory, the radiative flux, up to a constant, is defined by

=j
i

d
dx

d
dx

1
2

.
(B.1)

Since, according to Fig. 1, the incident radiation is described by the plane wave ψin= eikx, the flux of the incident radiation is

= = >j
i

e d
dx

e e d
dx

e k1
2

0.in
ikx ikx ikx ikx

(B.2)

Since, according to Fig. 1 the reflected radiation is described by ψrefl= re−ikx, a calculation analogous to Eq. (B.2) yields

= = <j r k Rk| | 0.refl
2 (B.3)

The total flux on the left-hand side of the boundary is thus

= + =j j j k Rk.in refl (B.4)

In terms of flux, the reflection probability R is defined as

= =R
j
j

r| | ,refl

in

2

(B.5)

which is consistent with our earlier definition Eq. (2.1) of the reflection probability above. We now turn to the wave equation, i.e.,

=d
dx
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Taking the complex conjugate, we arrive at
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dx
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From Eqs. (B.6) and (B.7) we obtain
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We can also write the left-hand side of Eq. (B.8) as
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where we used equation Eq. (B.1).
We now specialize to the situation shown in Fig. 2b, i.e., the film with mirror. For this situation, we now integrate Eq. (B.9) with Eq. (B.8) over

the width of the film to obtain
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Therefore, we now obtain

=R k n n dx1 2 | |
a
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and

= =R k n n dx1 2 | | .
a
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(B.12)
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Appendix C. Equivalence of the 1-R with the spectral optical generation rate

In this appendix we demonstrate that the two different approaches presented in section 2 lead to the same formula for the absorption cross
section σ. For a single film on a mirror (Fig. 2a) the wavefunction ψ inside the film is

=
+
nk x a

nka in nka
2 sin[ ( )]

sin( ) cos( )
,

(C.1)

where a is the film thickness, n is the complex refractive index and k is the wavenumber. The absorption cross section is

= k n n dx2 | | .
a

i r0
2

(C.2)

This can also be written as

=
+

kn n n k x a n k x a dx2 2 cosh[2 ( )] cos[2 ( )] ,r i
a

i r2 2 0 (C.3)

where the prefactor contains
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Evaluation of the integral is straightforward and results in

+
n n ka n n ka2 [ sinh(2 ) sin(2 )].r i i r2 2 (C.5)

To complete our task, we have to show that r1 | |2 from the scalar wave model produces the same result. The reflectivity r| |2 is

= +r n nka i nka
n nka i nka

| | cos( ) sin( )
cos( ) sin( )

,2
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which can be rewritten as

= + + +
+
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2 2
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Inserting this together with γ, δ, ε, and ζ into r1 | |2 yields exactly the same result as in Eq. (C.5).

Appendix D. Proof of importance of the summation order

In this Appendix we show that for our two-film system and for a large range of dielectric constants, Eq. (5.3) holds, i.e., in these cases our ray sum
in Eq. (5.1) is only conditionally convergent. We show this by observing that if the sum in Eq. (5.3) is already infinite for a subclass of rays, it is
certainly infinite when summing over all rays, since all the terms not taken into account are positive. The subclass we focus on consists of rays that
make p right reflections on the vacuum/film interface and make q right reflections on the film/film interface (see Fig. D.1). We also exclude any left
reflections on the film/film interface, which uniquely defines our subclass of rays. Three examples of rays in our subclass are shown in Fig. D.1. All
three rays have p=1 and q=2, and they contribute the same amplitude to r in Eq. (5.1). They differ only in their sequence of bounces. This induces
degeneracy in our ray sum. In fact, any class of rays, characterized by a given p and q, is +( )p q

p fold degenerate, where +( )p q
p is the binomial

coefficient [71]. The total contribution ρ of all of the rays of our subclass to the total reflection amplitude r is
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where t1 and r1 are transmission amplitude and right-reflection amplitude at the vacuum/film interface, t2 and r2 are transmission amplitude and
right-reflection amplitude at the film/film interface, a1 is the width of film 1, a2 is the width of film 2, and n1 and n2 are the refractive indices of films
1 and 2, respectively. To check whether the double sum in Eq. (D.1) is absolutely convergent, we need to check whether
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is finite or infinite. Defining x=|t2|2|r1| and y=|r2|, we may write Eq. (D.1) in the form
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and since t1 and t2 are constants, it is sufficient to check the double sum
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For the first inequality we used the fact that all terms in the sum are positive, and that, therefore, including only the diagonal terms in the sum
provides a strict lower bound for the value of the sum, and for the second inequality we used the fact that >( ) m2 /p

p
m2 2 , which is straightforward to

show using the doubling formula for Euler's Γ function [71]. Analyzing the result in Eq. (D.4), we see that the sum over p converges for xy < 1∕4. In
this case, therefore, we cannot decide whether ρ″ is finite or infinite. For xy=1∕4, however, the last sum in Eq. (D.4) is the harmonic series, which
diverges [71]. Therefore, for xy=1∕4, we definitely have ρ″ =∞, which implies that in this case Eq. (5.1) is only conditionally convergent. Since for
all xy > 1∕4 the harmonic series provides a lower bound of the last sum in Eq. (D.4), we also have ρ″=∞ for all xy > 1∕4. It follows that the ray
sum in Eq. (5.1) is only conditionally convergent in all cases for which z=|t2|2|r1r2|≥ 1∕4. Finally, we have to answer the question whether
z≥1∕4 is possible at all. We note that |r1| may freely range between 0 and 1, while |t2|2|r2| can range only between 0 and 2/(3 3 ), which is
obtained by observing that |t2|2= 1− |r2|2 and subsequently determining the maximum of the function w=(1− |r2|2)|r2|. This implies that z may
range between 0 and >2/(3 3 ) 0.38, which overlaps with z > 1∕4. Thus, we have proved that an entire range of cases exists in which Eq. (5.1) is
only conditionally convergent. In these cases of conditional convergence we are not allowed to sum rays in arbitrary order. As discussed in Sect. 5, in
order to obtain correct results, we have to sum the rays in the order of increasing path length.

Fig. D.1. Three ray trajectories that belong to the same class, R1,2, and contribute with the same amplitude to the reflection amplitude of the film system. They differ
only in the order of right-reflections on the vacuum/film and film/film interfaces. (a) The ray reflects inside the second film, then reflects inside the first film and
reflects for the second time at the film/film interface and leaves the system. (b) The ray reflects once at the vacuum/film interface then enters the second film and
reflects twice on the film/film interface. (c) The ray enters the second film, reflects twice on the film/film interface, enters the first film and reflects once on the
vacuum/film interface.
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ABSTRACT

The photogenerated current of solar cells can be enhanced by light management with surface structures. For solar cells with optically thin
absorbing layers, it is especially important to take advantage of this fact through light trapping. The general idea behind light trapping is to
use structures, either on the front surface or on the back, to scatter light rays to maximize their path length in the absorber. In this paper,
we investigate the potential of chaotic scattering for light trapping. It is well known that the trajectories close to the invariant set of a chaotic
scatterer spend a very long time inside of the scatterer before they leave. The invariant set, also called the chaotic repeller, contains all rays of
in�nite length that never enter or leave the region of the scatterer. If chaotic repellers exist in a system, a chaotic dynamics is present in the
scatterer. As a model system, we investigate an elliptical dome structure placed on top of an optically thin absorbing �lm, a system inspired
by the chaotic Bunimovich stadium. A classical ray-tracing program has been developed to classify the scattering dynamics and to evaluate
the absorption e�ciency, modeled with Beer-Lambert’s law. We �nd that there is a strong correlation between the enhancement of absorption
e�ciency and the onset of chaotic scattering in such systems. The dynamics of the systems was shown to be chaotic by their positive Lyapunov
exponents and the noninteger fractal dimension of their scattering fractals.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5111042

Chaotic scattering of light rays is a feature of many types of
surface-structured solar cells. Scattering structures that lead to
chaotic scattering have an invariant set of in�nitely long-lived tra-
jectories. In this paper, we illustrate how concepts and methods
from the �eld of chaos can provide valuable insights for fur-
ther developments in a vastly di�erent �eld: light management in
optically thin solar cells.

I. INTRODUCTION

Photovoltaic solar cells (PV) are an increasingly important
source of renewable energy. In order to increase the competitive-
ness of solar electricity, it is desirable to reduce the material costs
of solar cells and modules further. Thin solar cells are less prone
to bulk recombination and can exhibit larger voltages than their

thicker counterparts. In addition, they require less absorber mate-
rials, which can reduce cost and environmental footprint further.
Reducing the thickness of solar cells requires low surface recombi-
nation, as well as an e�cient light-trapping scheme to avoid exces-
sive transmission and/or re�ection losses. Silicon-based solar cells
represent by far the most widespread solar cell technology today.
However, silicon exhibits an indirect electronic band gap, which
results in weak absorption. This makes the development of surface
structures with e�cient light-trapping properties even more impor-
tant for thin silicon solar cells. Additionally, commercial silicon-
based PV production has become so re�ned that the theoretical
maximal e�ciency of 29.8%1 might soon be a limiting factor. This
further motivates to look to more e�cient alternatives like thin
�lm PV.

A number of di�erent mechanisms for absorption e�ciency
enhancement are discussed in the scienti�c literature and some
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of them are already implemented in solar cell technology. These
e�orts range from plasmonics2 to surface-structured light-trapping
designswith either ordered structures or random surfaces.3–9 In light-
trapping designs, the aim is to establish surface structures that keep
as many of the incoming light rays as long as possible in the absorber.
Thismaximizes the chance of absorption before the rays can leave the
solar cell. Themaximal enhancement factor for intensity with respect
to the incident intensity is 4n2, wheren is the index of refraction of the
solar cell, a limit shown by Yablonovitch in 1982, commonly called
the Yablonovitch limit.10 To show this, Yablonovitch theorized that a
truly random surface texture applied to both sides of a �lm would
randomize the direction of the rays interacting with the surface, thus
e�ectively trapping the light rays by maximizing the chance of total
internal re�ection to occur.

Ray trapping is a phenomenon that has been extensively investi-
gated in the context of chaotic scattering systems. Chaotic scattering
systems have been studied for quantum wave systems and the cor-
responding classical ray systems, and several textbooks have been
published in this �eld.11–13 Chaos is a mature �eld of research with
a rich set of tools to study dynamics both classically, using rays, and
quantummechanically, using waves. Chaotic systems were originally
studied by Henri Poincaré, who investigated the three-body prob-
lem in the 1890s.14 In the 1960s, Lorenz modeled the atmosphere
for weather prediction using three coupled nonlinear ordinary dif-
ferential equations.15 The famous butter�y e�ect originates from this
work. Both Poincaré and Lorenz found systems that exhibit extreme
sensitivity to the initial conditions. The study of dynamical billiards
started in 1898 when Hadamard showed that all trajectories in a
Hadamard billiard diverge exponentially, thus proving for the �rst
time the existence of what nowadays is called “deterministic chaos”
in a dynamical system.16 Later, in the 1970s and 1980s, Bunimovich
also studied dynamical billiards and proved that the dynamics of the
“Bunimovich stadium,” a special dynamical billiard [Fig. 1(a)],17–19

is chaotic. The class of dynamical billiards that is important for this
work are those where we consider a frictionless particle (a model
photon) moving on a �at surface in the presence of some addi-
tional structures that re�ect, transmit, and refract the particle, akin
to the dynamics in a dielectric cavity,20,21 such as the dielectric-loaded
Bunimovich stadium.22 Chaotic scattering systems were for the �rst
time studied in the late 1980s. By the early 1990s, many di�erent
chaotic scattering systems had been studied;23 three-disk scattering,24

celestial mechanics,25,26 charged-particle trajectories in electric and
magnetic �elds,27 and scattering in atomic and nuclear physics,28–30

to name only a few. A review of new developments was written by
Seoane and Sanjuán.31

In this study, we investigate if chaotic scattering can be con-
sidered as a mechanism for absorption enhancement and eventually
used as a guide for designing e�cient solar cell surfaces for thin
solar cells. As a model system, we use a dome structure consisting
of half an ellipse and a rectangular slab mimicking the solar cell
absorber. The shape chosen is similar to the dielectric-loaded Buni-
movich stadium,22 which is a stadium that is cut in half along the
middle of the long side. We call our model system �lm + dome.
The �lm + dome system has mirrors at the bottom and on the sides.
The model system we have chosen is thus a model for dome-shaped
surface-structured solar cells. This is a two-dimensional model, but
we imagine a third dimension, orthogonal to the two-dimensional

FIG. 1. (a) The Bunimovich stadium is a dynamical billiard extensively studied in
the context of chaos. (b) The open system is comprised of three mirrors arranged
in a bucketlike shape. The energy converting material in a solar cell can be mod-
eled by a complex refractive index. (c) A 3.46µm tall dome on top of a 2µm thick
film. The width of the film and dome is 5µm. The arrows show how incident rays
are sent toward the surface.

plane of our model, in which our two-dimensional model is contin-
ued with cylindrical symmetry. Thus, our two-dimensional model
re�ects the dynamics of the three-dimensional cylindrically symmet-
ric system on a cut orthogonal to its cylinder axis. There are two
ray-splitting surfaces present; the elliptical air-dome interface and the
�at dome-�lm interface.

Outside of the �lm+ dome, the refractive index is equal to one.
Ray-splitting systems have been extensively studied in the �eld of
quantum chaos.32–38 In ray-splitting systems, rays impinging on the
surface of the �lm+ dome are transmitted and re�ected according to
probabilities, which in electrodynamics are calculated by the Fresnel
equations.

Since the mechanisms of chaos have to our knowledge so
far attracted very little attention in the context of absorption
enhancement,39 we start this paper with a brief account of classical
chaos, highlighting aspects of chaos of relevance for the understand-
ing of this paper. We then introduce our classical ray-tracing model
for studying dynamical scattering systems. We demonstrate and dis-
cuss the relevance of chaos in the context of absorption enhancement
due to surface structuring of solar cells. Finally, we compare our
classical ray-tracing simulations with �nite di�erence time domain
(FDTD) electromagnetic (E&M) wave calculations.
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II. CLASSICAL CHAOS

Chaotic dynamical systems are extremely sensitive to initial
conditions. In practice, this means that although chaotic systems are
governed by purely deterministic laws, they do not have closed-form
solutions. Lorenz puts it this way: “Chaos: When the present deter-
mines the future, but the approximate present does not approximately
determine the future,” which expresses the fact that while the classi-
cal dynamics of deterministic chaos is in principle predictable, small
deviations lead to a completely di�erent dynamics. The sensitivity
to initial conditions can be quanti�ed by the Lyapunov exponent.
Consider two rays started from almost the same initial conditions
in phase space. If the rays are started from and evolve in a chaotic
region in phase space, they will, after some point in time, evolve on
dramatically di�erent trajectories. Before this happens, the two rays
will diverge exponentially fast away from each other. The Lyapunov
exponent is a measure of the rate of this divergence. It is given as

s(t) = eλts(0), (1)

where λ is the Lyapunov exponent, s(0) is the initial separation dis-
tance in phase space, and s(t) is the separation at a time t. A positive
Lyapunov exponent means that the divergence is exponentially fast.
Thus, a positive Lyapunov exponent is a signature of classical chaos.
The separation at t 6= 0 can be measured in a Poincaré surface of
section (PSOS), which is a section of the total phase space. A PSOS
may be used as a way to visualize a trajectory via an intersection
surface in physical space.

In dynamical billiards and scattering systems, rays can follow
periodic trajectories, also called periodic orbits. However, in scatter-
ing systems, periodic orbits can never escape the system; otherwise,
they would not be periodic. These rays make up a part of the invari-
ant set of in�nitely long-lived trajectories; the other part is made
up of nonescaping, nonperiodic trajectories.40,41 The geometry of the
invariant set can be visualized in phase space. If the invariant set has
a fractal geometric structure in phase space, it is a sign of sensitiv-
ity with respect to initial conditions, thus a sign of chaos. Fractal
invariant sets in scattering systems are also called chaotic repellers.
It is known that when a trajectory is started near a chaotic repeller, it
takes a very long time to move away from the chaotic repeller when
the phase space is a mix of chaotic and regular regions.42

The notion of fractals and fractal dimensions was �rst discussed
by Mandelbrot in 1967, although the actual terms were introduced
later, in 1975.43 The fractal dimension of the invariant set can be
foundusing a standardmethod called box counting,44,45whichwewill
also use in our paper to estimate the fractal dimension of the phase
space. The procedure is to cover the phase spacewith boxes and count
how many boxes contain parts of the invariant set at di�erent scales.
We de�ne the fractal dimension d as

d = lim
M→∞

logN

logM
, (2)

where N is the number of boxes that contain a part of the invari-
ant set at a scaleM. In a numerical approximation of d, however, M
is �nite.

III. A MODEL FOR STUDYING CHAOS

A solar cell is a scattering system. Electromagnetic radiation
enters the system and may be completely or partially absorbed. We
may describe the electromagnetic radiation and its interaction with
a solar cell by a ray model in the following way. Light rays enter the
solar cell through the front surface. Light that is not absorbed may
be re�ected from the metallic back contacts and eventually leave the
solar cell. The absorption of electromagnetic radiation by the solar
cell can be taken into account by associating the rays with ampli-
tudes that are decreasing according to the attenuation described by
the Beer-Lambert law. In this paper, we simulate a solar cell by intro-
ducing a model system with a de�ned geometry and enclosing it
in a “bucket” of perfect mirrors, see Fig. 1(b). With this constraint,
the rays can only leave through the front side. Although real mir-
rors have some degree of absorption and transmission, we neglect
these e�ects in our simulations and, for the sake of simplicity, treat
all mirrors in our simulations as perfect mirrors. In our open bucket,
we study chaotic and regular ray dynamics with the help of classical
ray tracing and use our simulations to compare systems exhibiting
chaotic phase-space structures with systems exhibiting more regular
phase-space structures.

It is known that circular, rectangular, and triangular billiards
are regular systems with no chaotic dynamics. However, introduc-
ing a stepped potential inside such billiards produces chaos.46,47 This
is analogous to placing a material with an index of refraction larger
than 1 in our mirror bucket. Our model system, which we place in
the bucket, is a structure comprised of a �at �lm with a dome placed
on top as seen in Fig. 1(c). The dome structure is half an ellipse and
the �lm is a rectangular slab. The shape is similar to a Bunimovich
stadium cut in half along the middle of the long side, which, simi-
lar to our ellipses, has semicircles attached to its rectangular middle
section. We name our model system �lm + dome. We explore �lm
+ dome systems, where we keep the refractive index in the �lm at a
constant value of n�lm = 2 + 0.0054i and vary the refractive index in
the dome ndome to look for a transition from regular to chaotic scat-
tering dynamics. The imaginary part of n�lm is chosen to be the same
value as for silicon at 800 nm,48 truncated to four decimals. Silicon is
not a very good light absorber at this wavelength. Thus, the value is
a good choice when looking to improve absorption properties.

A. Classical ray tracing

In principle, if properly equipped with phases, Maxwell’s equa-
tions may be solved exactly using classical rays. We illustrated this
wave-ray equivalence recently by solving the wave equation of a
one-dimensional, dissipative, and layered solar cell exactly with the
help of classical rays that were properly equipped with phases.49 An
equivalently exact ray-tracing theory for two-dimensional dissipative
systems has not yet been described. However, in the geometric-optic
limit, where thewavelength is small compared to the scattering struc-
tures, it is common practice in the literature to consider optical rays.
Following this practice, we will use a classical ray-tracing approach,
neglecting proper inclusion of phases. Since we know that the inclu-
sion of phases is essential to obtain a one-to-one correspondencewith
Maxwell’s equations, we accept that our results are approximations.
However, quantities computed as averages over ensembles of rays
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may still be quite accurate, since statistical averaging tends to cancel
out phases.

We wrote a numerical ray-tracing code to study classical chaos
where Snell’s law is the physical principle used to determine the
evolution of a ray, i.e.,

n1 sin(θ1) = n2 sin(θ2). (3)

Here, n1 and n2 are the real parts of the index of the refraction of
either side of an interface and θ1 and θ2 are the incident and refracted
angles, respectively. Each ray is given an initial “intensity,” I0 = 1.
There are three mechanisms that a�ect the intensity: re�ection at
and transmission through a boundary between two materials and
absorption along the path of the ray, which we will model with the
Beer-Lambert law. To calculate the intensity I, when a ray crosses an
interface between di�erent materials, we need re�ection and trans-
mission coe�cients. The transverse electric (TE) Fresnel equations
correspond to the case where the polarization of the electric �eld
is perpendicular to the plane of incidence. For the one-dimensional
case, there are no separate Fresnel equations for TE and transverse
magnetic (TM). This is because the incoming ray vector coincides
with the interface normal, and thus there is no plane of incidence.
For the exact one-dimensional case,49 there are no separate Fresnel
equations for TE and TM. This is because the incoming ray vector
coincideswith the interface normal, and thus there is no plane of inci-
dence. The re�ection and transmission amplitudes of the transverse
electric (TE) case are given by

rTE =
cos θ1 −

√

n′2 − sin2 θ1

cos θ1 +
√

n′2 + sin2 θ1
, (4)

tTE =
2 cos θ1

cos θ1 +
√

n′2 − sin2 θ1
, (5)

where n′ = n2/n1. The choice of using the TE Fresnel equations
ensures that a scalar wave equation is exact when evaluating elec-
tromagnetic systems in two dimensions, or equivalently, three-
dimensional systems with cylinder symmetry. The polarization of
light does not change when it moves across an interface if the polar-
ization is perpendicular to the plane of incidence. For later com-
parisons, our ray model was equipped with these speci�c Fresnel
equations. These equations govern how much of the intensity is
re�ected and howmuch is transmitted. The corresponding re�ection
and transmission coe�cients are

R = |rTE|
2 , (6)

T =

√

n′2 − sin2 θ1

cos θ1
|tTE|

2 . (7)

We consider materials with a small absorption coe�cient ni and,
therefore, neglect the fact that absorption turns homogeneous into
inhomogeneous plane waves in absorptive media.50,51 Whenever
Snell’s law is referred to, it is the familiar law stated in Eq. (3).

Whenever a ray crosses an interface between two materials, it
splits into a re�ected ray and a transmitted ray. The practical impli-
cation of this is that calculations must be truncated because of run
time. As long as we have splitting rays, there will be branches of the
original ray that are inside the scatterer forever. We implemented a

FIG. 2. A plane wave enters an absorbing material with a complex index of refrac-
tion n = nr + ini . The intensity of the wave decays exponentially with a factor of
e−4πni x/λ.

truncation condition that stops the simulation of a particular branch
when Ib < 10−5, where Ib is the intensity in that branch. The e�ect of
the truncation threshold was thoroughly investigated by calculating
the average intensity lost due to terminating the rays early, i.e., the
truncation loss. For ndome ≤ 2, this value never exceeded 0.037% of
the total average intensity. When ndome > 2, the truncation loss was
higher, but it never exceeded 0.74% of the total average intensity.

Whenever a ray splits, the intensity in the resulting two branches
is determined according to the Fresnel coe�cients stated in Eqs. (4)
and (5). The subsequent absorption in thematerial is governed by the
Beer-Lambert law explained in Sec. III B.

B. Beer-Lambert law of absorption

We use the Beer-Lambert law of absorption to provide an
approximate measure of the absorption e�ciency of our model,
which we call the Beer-Lambert e�ciency. It is an approximation
because the classical ray model does not take di�raction into account
as an electromagnetic simulation would do. The extinction coe�-
cient in the Beer-Lambert law determines how fast the intensity of
incoming radiation is decaying. Consider a plane wave eikx, incident
on a slab of absorbing materials (see Fig. 2). Inside the material, the
index of refraction, n = nr + ini, is complex, and the wave is

einkx = ei(nr+ini)kx = e−nikxeinrkx, (8)

where k = 2π/λ denotes the wave vector and x is the penetration-
depth into the material. To obtain the intensity of the wave, we must
take the absolute square value

∣

∣e−nikxeinrkx
∣

∣

2
= e−4πnix/λ. (9)

We now see that the intensity is decaying exponentially as a function
of the path length inside of the absorbing material and the imaginary
part of the refractive index of the material. In order to use our clas-
sical ray tracing approach, a transition from waves to rays is needed.
We have chosen to assign each incoming ray an initial intensity of 1,
which is reduced as a function of the path length only, since ni is kept
constant in the absorbing material.

IV. THE TRANSITION FROM REGULAR TO CHAOTIC

DYNAMICS ENHANCES ABSORPTION EFFICIENCY

In this section, we discuss how the �lm + dome system transi-
tions from regular to chaotic scattering dynamics and establish our
central result, the correlation between the onset of chaos and the
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rapid increase in the Beer-Lambert e�ciency that systematically fol-
lows. We present results that show the transition from regular to
chaotic dynamics in three di�erent ways as a function of ndome:

1. computation of the fractal dimension of the invariant set of
in�nitely long-lived trajectories;

2. the chaotic nature of Newtonian rays entering the system from
the outside;

3. calculation of the absorption cross section, averaged over the
wavelength in an electromagnetic simulation using a commercial
�nite-di�erence time-domain (FDTD) solver.52

To corroborate and con�rm that the correlation between the onset of
chaos and the enhancement of the Beer-Lambert e�ciency is not spe-
ci�c to a certain special �lm thickness but a structurally stable phe-
nomenon, we repeated the three routes we use to show the transition
to chaos �ve times for varying �lm thicknesses. The only exceptions
to this procedure are the electromagnetic simulations, which were
studied only in the case of the 2µm �lm. We start by showing the
onset of chaos and its signatures for the system in Fig. 1(c), which
has a 3.46µm tall elliptical dome on top of a 2µm thick �lm as an
example, and end the section by showing the structural stability of the
connection between the onset of chaos and the onset of absorption
enhancement.

A. Scattering fractals and periodic orbits

A signature of chaos is the existence of chaotic repellers.53 We,
therefore, look for chaotic repellers in the invariant set of in�nitely
long-lived trajectories. We choose the bottom mirror of the bucket-
shaped system as our PSOS and send nonabsorbing Newtonian rays
from 10 080 equispaced positions in the spatial interval x ∈ (0, 5),
spanning the full width of the system, and from 10 080 equispaced
angles in the interval θ ∈ (−π ,π). The lifetime of these Newto-
nian rays is characterized by the number of collisions they make
with the PSOS. This characterization ensures that a trapped ray may
not simply live a long time in the scatterer, but has to return to the
back mirror, thus spending a portion of its lifetime in the absorb-
ing �lm, in order to be trapped. Rays with the initial angle π or −π

are omitted since they would bounce back and forth between the
right and left mirrors forever. Figure 3 shows a visualization of the
initial conditions of the rays, color-coded according to their life-
times, ranging from deep blue for short lifetimes to yellow for long
lifetimes, for four di�erent indices of refraction of the dome. Since
many subsets of these visualizations have fractal dimensions, we
refer to these visualizations as scattering fractals. The horizontal axis
of the scattering fractals corresponds to x, while the vertical axis
corresponds to θ .

The lifetime of each ray is measured by the number of bounces
it makes with the PSOS, in this case the rear mirror. The fractal
dimension of each scattering fractal for ndome between 1 and 2.5 in
steps of 0.1 is found by the box counting method, see Fig. 7. In gen-
eral, the transition to chaos may or may not be abrupt. In the case
where it is not abrupt but gradual, more and more of the phase
space will be chaotic during the transition. The �lm + dome sys-
tem has a gradual transition to chaos. We have opted to de�ne the
onset of chaos in terms of ndome as the cases where the calculated

FIG. 3. Scattering fractals for four different film+ dome systems for four different
values of ndome, respectively. In the case of (a), where ndome = 1.4, the fractal
dimension is ' 2. Hence, it is essentially a regular system. In (b) (ndome = 1.8),
(c) (ndome = 1.9), and (d) (ndome = 2.3), the fractal dimensions are less than the
threshold value of 1.95. The scattering fractals show the lifetime in terms of the
number of collisions with the PSOS. The initial angles, θi , and the initial positions,
xi , of the rays, cover the PSOS.

fractal dimension dropped below 1.95. In general, the scattering frac-
tals will not behave as self-similar monofractals with simple scaling
rules. The box-counting method was, therefore, used carefully and
only on scattering fractals which did not exhibit multiple scaling
rules. When computing scattering fractals for chaotic systems, one
must also respect that the extreme sensitivity of chaos means that
calculation precision can degrade quickly. The rays used for calcu-
lating fractal dimensions are cut o� at 20 bounces on the PSOS to
prevent this problem. This limit is the only truncation of the life-
time of the rays since absorption was turned o� for the calculation
of the scattering fractals. The example of the 2µm thick �lm shows
a fractal dimension below 1.95 when ndome ≈ 1.5, as indicated by the
horizontal dashed line in Fig. 7(c).

When ndome is exactly 1, it is equivalent to no dome at all, only
the �at �lm,whichmust have fully regular dynamics. As expected, the
fractal dimension is integer, d = 2. This is because rays started from
the inside at shallow angles will be trapped forever due to the total
internal re�ection. There is a sharp transition frombeing trapped for-
ever and escaping immediately in this case. When ndome is increased,
the geometry of the scattering fractal changes [Fig. 3(a)]. No longer
is there a sharp transition between the trapped and the escaping rays.
The border exhibits a fractal geometry and the lifetime of rays is

Chaos 29, 093132 (2019); doi: 10.1063/1.5111042 29, 093132-5

© Author(s) 2019



Chaos ARTICLE scitation.org/journal/cha

sensitive to the initial coordinate and angle. Further increase in ndome

yields an even more complex border where the lifetime of the rays is
very sensitive to their initial conditions [Figs. 3(b) and 3(c)]. These
complex borders are fractal, meaning that rays which enter the region
near them might stay for a very long time in the system.42

When ndome is increased beyond the index of refraction of the
�lm, the invariant set gets drastically smaller [Fig. 3(d)]. The total
internal re�ection is now a possibility at the dome-�lm interface and
thus rays are ejected from the chaotic repellermuch earlier.Moreover,
triangularlike regions of trapped rays start to appear in the scattering
fractals for values of ndome around 2 near the center of the scatter-
ing fractal. This can be seen as the small yellow regions in Figs. 3(c),
3(d), and 4(a), which shows an enlargement of the upper small yel-
low region in Fig. 3(c). To more clearly bring out the ray dynamics in
the vicinity of the regular island shown in Fig. 4(a), Fig. 4(b) shows
the phase-space portrait of rays that were sent out from the initial
conditions of Fig. 4(a) and, to accurately represent the relatively long
trajectories that linger in the vicinity of the regular island, the cut-
o� is now at 200 bounces instead of 20. The phase-space portrait in
Fig. 4(b) shows a stable island surrounded by hyperbolas that close
in on the three corners of the stable island. The orbit correspond-
ing to the center of the stable island is shown in Fig. 4(c). This orbit
is totally re�ected at the air-dome interface. In the case of the total
internal re�ection, the full intensity of the ray is re�ected, which
is very bene�cial from a light-trapping perspective. The fact that
we are not looking to calculate the fractal dimension, but periodic
orbits at this point, justi�es the cut-o� limit of 200 bounces on the
bottom mirror. A ray launched from the initial condition pinched
by the hyperbolas produces an orbit with period three, as seen in
Figs. 4(d) and 4(e).

B. Newtonian rays sent in from the outside

The onset of chaos can also be inferred from Newtonian rays
sent in from the outside. When we model surface-structured solar
cells with rays, we send the rays in straight down from the out-
side. Such rays behave very predictably for values of ndome up to
1.65 as seen in Figs. 5(a) and 5(b). There is no sign of sensitivity
with respect to the initial position above the �lm + dome system.
In Figs. 5(c) and 5(d), we let ndome = 1.70 and ndome = 1.75, respec-
tively, and we see that some of the rays start to take wildly di�erent
paths compared to their neighboring rays. This indicates the onset
of chaos.

It is important to note that Fig. 5 shows Newtonian rays.
Figure 5(a) does not show the trajectories of non-Newtonian rays,
which are used for calculating the Beer-Lambert e�ciency. The rays
shown in Fig. 5(a) are Newtonian rays sent in from the outside.
Despite the simplicity of this visualization, it captures the emergence
of sensitivity to the initial positions of the rays.

Chaos in dynamical ray systems is often de�ned by a positive
Lyapunov exponent. We calculated the Lyapunov exponent of New-
tonian rays sent normally toward the dome-�lm interface from the
outside. Figure 6 shows the Lyapunov exponents as a function of the
initial starting positions, xi, of the rays above the �lm+ dome (2µm
thick �lm) system. Like in Fig. 5, we see a change when increas-
ing ndome beyond 1.65. At ndome = 1.7, some of the rays exhibit a
positive Lyapunov exponent. The number of rays with a positive

FIG. 4. (a) A chaotic repeller in the scattering fractal of the film + dome system
for ndome = 1.9. (b) The phase-space portrait generated by rays started for initial
conditions in (a). (c) An orbit started near a fixed point. (d) An orbit started near
a period three orbit. (e) A crop of the dashed area in (d) showing that the orbit is
indeed a period three orbit.

Lyapunov exponent increases with ndome. This result is consistent
with the behavior of the scattering fractals and the results shown in
Fig. 5.

C. Beer-Lambert efficiency

Wesimulate incoming sunlight by sending 5000non-Newtonian
rays in from the top as shown in Fig. 1(c) and average over the
e�ciency of each individual initial ray in order to calculate the
Beer-Lambert e�ciency. We chose to use λ = 500 nm in Eq. (9)
for comparison with FDTD calculations, which will be presented in
Sec. IV D. The initial conditions of the 5000 rays are evenly spread
over the interval x ∈ (0, 5). Since only the �lm is absorbing, the
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FIG. 5. Newtonian rays sent from the outside for different values of ndome. At the
breakpoint value ndome = 1.7, the rays become sensitive to their initial condition.

trajectories will have to spend a long time inside of it, not only in
the dome structure, in order to deposit their intensity. This moti-
vates the desire for long-lived trajectories, which could be provided
by chaotic ray dynamics. Figure 7 shows that the Beer-Lambert e�-
ciency increasesmonotonically as a function of ndome before it falls o�
for ndome > 2.1. Using the 2µm thick �lm in Fig. 7(c) as an example,
the increase in the Beer-Lambert e�ciency starts slowly for ndome <

1.6 and then increases rapidly after a critical value ndome = 1.6. There
is a systematic tendency of a slow increase for small values of ndome,
followed by a rapid increase at a critical value for all �lm thick-
nesses, although it is not so pronounced in the 0.5µm thick �lm
example, Fig. 7(a). The reason why the Beer-Lambert e�ciency falls
o� at about ndome > 2.1 is due to the total internal re�ection at the
dome-�lm interface, which prevents rays from coming back into the
absorbing �lm. This e�ect starts at ndome & 2, but the real impact on
the Beer-Lambert e�ciency is when ndome > 2.1. This e�ect is more
dramatic for the thicker �lm examples because the path-length di�er-
ence between a ray going straight down into the �lm and one coming
in at an angle is greater than for a very thin �lm layer. At this point, the
box counting method loses its usefulness. The invariant set is small
and sparse, so the fractal dimension of the scattering fractal looks to
be dependent on the scale. This is why there are no data points for
the fractal dimension in Fig. 7 for ndome > 2.1.

Both the fractal dimension and the Beer-Lambert e�ciency
are shown in Fig. 7. We see a striking correlation between the
onset of chaos and the start of the rapid increase in the Beer-
Lambert e�ciency. The proposed explanation of this correlation is

FIG. 6. Lyapunov exponents of Newtonian rays sent from the outside perpendic-
ular with respect to the dome-film interface.

that the properties of chaotic scattering dynamics are bene�cial for
absorption e�ciency modeled with the Beer-Lambert law because
chaotic scattering, in conjunctionwith sticking to the chaotic repeller,
leads to long trajectories inside of the absorbing �lm, which enhances
the absorption. In addition, we demonstrated that chaos in the sys-
tem leads to the spreading out of rays entering from the outside, a
bene�cial feature, which, again, leads to long trajectories with accom-
panying enhanced absorption, complex fractal boundaries in the
invariant set as seen in the scattering fractals, which are “sticky,”
and the existence of stable periodic orbits. Themost notable periodic
orbit that was found is the period-three orbit, as shown in Fig. 4(b).
It leads to “slow hyperbolic corners” in which the movement of the
trajectories in the PSOS slows down tremendously [as seen from the
closeness of successive points in Fig. 4(b)] as they approach, and
ultimately round, the period-three corners of the stable islands.

It must be noted that the sole purpose of plotting the fractal
dimension together with the Beer-Lambert e�ciency in Fig. 7 is to
show that the fractal dimension drops below the threshold value 1.95
for the same ndome as the Beer-Lambert e�ciency starts to increase
more rapidly. There is no one-to-one relationship between the two
quantities.

D. FDTD simulations of the electric field

The classical ray model that we presented provides us with an
approximation of the amount of absorbed energy in a dielectricmate-
rial. A real solar cell has complex physical processes that are not taken
into account and take place starting from when light �rst enters the
device, to the point when electric power is produced. Our model
aims to predict and explain the e�ciency enhancement due to light
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FIG. 7. Visualization of the fractal dimension (red) and the Beer-Lambert efficiency (blue). The onset of chaos is determined by the first data point below a fractal dimension
of 1.95, indicated by a horizontal dashed line. The rapid increase of the Beer-Lambert efficiency is indicated by a vertical dotted line.

trapping, i.e., the increase in 1 − R, on the basis of classical trajec-
tory simulations. To prove that our ray-based results are relevant, we
show here that full electromagnetic wave calculations, in the form of
FDTD simulations of the �lm + dome system, corroborate what we
have found in our classical simulations.

Our FDTD simulations are conducted in the following way.
First, we chose our system, consisting of a dome of height 3.5µm
and an absorbing �lm of width 5µm, a thickness of 2µm, and a
�xed index of refraction of n�lm = 2 + 0.0054i. For this �lm+ dome
system, for each value of ndome of a relatively dense set of ndome

FIG. 8. (a) Absorption efficiency calculated with a commercial FDTD solver compared to the Beer-Lambert absorption efficiency calculated by rays. (b) Absorption efficiency
as a function of wavelength calculated with FDTD for a range of ndome. The number of resonances increases as ndome increases.
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values, ranging from ndome = 1 in steps of 1ndome = 0.05 to ndome

= 2.5, we computed the FDTD absorption value 1 − R, and aver-
aged 1 − R over wavelengths ranging from 480 nm in steps of 0.3 nm
to 510 nm. The averaging mimics the fact that in practice solar cells
are never irradiated with monochromatic light of a speci�c wave-
length, but are irradiated with solar radiation, which is spread out
over a range of wavelengths. As an additional, welcome bene�t, the
averaging smoothes over accidental wave resonances in our system,
wave features that are clearly not present in our classical simula-
tions. The result of our averaged FDTD simulations is shown in
Fig. 8(a). We see that our classical simulations are very close to
the full FDTD wave calculations, which shows that our classical ray
simulations capture most of the (average) wave phenomena in our
model solar cell. In addition, our FDTD simulations con�rm the
existence of the roughly three regions already presented and dis-
cussed in connection with Fig. 7, i.e., a slowly increasing region
for ndome < 1.6, a rapidly increasing region for 1.6 < ndome < 2.1,
and a decreasing region for ndome > 2.1. We explain the good agree-
ment between the full-E&M FDTD calculations and our classical
simulations on the basis that the wavelength of the incoming light

FIG. 9. FDTD simulations of the electric field inside the film + dome system for
several values of ndome. The black-line overlays show the shape of the film +

dome system. The colors are chosen for the sole purpose of making clear visuals
and to bring out the patterns in the electric field. Thus, the assignment of colors
to electric field intensities is not necessarily the same for all four frames. Since
only the structure of the field is of interest here, not the specifics of the intensities,
color bars that would reflect the assignments of electric field intensities to colors
are omitted.

is much smaller than the system size. Therefore, the classical ray
model approximates the full E&M wave solution very well, as seen
in Fig. 8(a). While, as mentioned in Sec. III A, complete agreement
between classical and wave calculations can be expected only if the
classical rays are properly equipped with phases, which are neglected
in our classical simulations, the averaging of our FDTD results over
di�erent wavelengths clearly contributes to de-emphasize the impor-
tance of phases, an expected result according to our discussion
in Sec. III A.

For some selected values of ndome, Fig. 8(b) shows the FDTD-
computed resonance structures in the absorption 1 − R as a function
of wavelength that we averaged over in Fig. 8(a). As the value of ndome

increases, the number of resonances in the selected frequency inter-
val is seen to increase. This is easily understood on the basis that, for
increasing ndome, the e�ective wavelength inside of the domematerial
becomes shorter (λdome = λvacuum/ndome), allowing more resonances
to exist inside the �xed dome geometry.

An additional corroboration for the chaos transition at ndome ∼

1.5 can be obtained by directly inspecting the wavefunctions in the
�lm + dome system. To this end, we used the FDTD solver to com-
pute the absolute square value, |E|2, of the electric �eld, for four dif-
ferent values of ndome (see Fig. 9). For small values of ndome [Figs. 9(a)
and 9(b)], the electric �eld behaves predictably. We see that, reminis-
cent of the behavior of the rays shown in Fig. 5, the dome is focusing
the incoming light into the absorbing �lm, where a plane-wavelike
resonance forms. For larger values of ndome [see Figs. 9(c) and 9(d)],
we see a distinct qualitative di�erence in the structure of |E|2, show-
ing complexwave patterns and so-called scarlets54 that are a signature
of chaos. In addition, whenever there is a transition from regular to
chaotic dynamics, it is expected that at the transition to chaos the
electric �eld starts to spread out over the entire available scattering
volume. This phenomenon can, to some degree, also be seen directly
in the |E|2 patterns in Fig. 9.

FIG. 10. The ncritical is the value for when the Beer-Lambert efficiency (blue) starts
to increase more rapidly, the fractal dimension (red) is below 1.95, and the Newto-
nian rays sent from the outside directly downwards (green) visually start to behave
sensitively on the initial condition. ncritical can be directly read off from Figs. 5 and 7.
The lines between the dots are there to guide the eyes.
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E. Structural stability

In Fig. 10, we summarize our results across the �ve �lm+ dome
systems we investigated, where �lm thickness was the independent
parameter. The onset of chaos has been determined from the frac-
tal dimension of the scattering fractals (see Fig. 7) and from visually
inspecting the sensitivity of Newtonian rays to their initial condi-
tions (see Fig. 5). There is a clear trend that shows that the onset
of chaos correlates with the onset of the rapid enhancement of the
Beer-Lambert e�ciency.

V. CONCLUSION

We have evaluated absorption enhancement in a scattering sys-
tem exhibiting a transition between regular and chaotic classical
dynamics. The model system mimics a structured solar cell and was
obtained by placing an elliptical dome structure on top of a �at
absorbing �lm. A classical ray-tracing code was developed for mod-
eling surface-structured optically thin solar cells. The Beer-Lambert
law was used to model the absorption of light in the dielectric
material.

We found that increasing the index of refraction inside the dome
structure leads to a transition of the system from one that scatters
regularly, to one with chaotic scattering dynamics. The scattering
dynamics was investigated by calculating Lyapunov exponents and
the fractal dimension of scattering fractals. We demonstrate that
this transition from regular to chaotic dynamics goes along with
an enhancement of the absorption e�ciency in the �lm. Enhancing
absorption e�ciency by surface structuring is not new and is already
well documented. However, in this paper, we have demonstrated that
the onset of chaotic scattering dynamics is clearly correlated with
absorption enhancement.

We, therefore, suggest to actively use the mechanism of chaos
in the design of surface structures for solar cells. The classical ray
model approximation presented in this paper represents one strategy
for the establishment of a connection between chaotic scattering and
absorption enhancement. It allows one to exploit this connection as
a powerful guide for designing surface structures with a very high
light-trapping e�ciency for use in optically thin solar cells.
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Enhancing the energy output of solar cells increases their competitiveness as a source of energy. Producing
thinner solar cells is attractive, but a thin absorbing layer demands excellent light management in order to
keep transmission related losses of incoming photons at a minimum. We maximize absorption by trapping
light rays to make the mean average path length in the absorber as long as possible. In chaotic scattering
systems there are ray trajectories with very long lifetimes. In this paper we investigate the scattering dynamics
of waves in a model system using principles from the field of quantum chaotic scattering. We quantitatively
find that the transition from regular to chaotic scattering dynamics correlates with the enhancement of the
absorption cross section, and propose the use of an autocorrelation function to assess the average path length
of rays as a possible way to verify the light-trapping efficiency experimentally.

Classical chaotic scattering lead to trapped rays
with long lifetimes which are of importance in im-
proving light management for more efficient solar
cells. In this paper we study the wave dynamics in
solar cell models with proven chaotic dynamics on
the classical level. We show a connection between
the emergence of wave chaos and enhancement of
absorption efficiency due to light trapping.

I. INTRODUCTION

The demand for renewable energy is driven by the need
for producing clean energy to meet climate and sustain-
ability goals. Photovoltaic solar cells is a rapidly growing
technology which has resulted in a tremendous increase
in photovoltaics (PV) energy production over the last
decade. From 2010 to 2018 the world-wide total installed
capacity increased more than tenfold from 40 GWp to
over 500 GWp

1. The share of PV is now 2.6% of the to-
tal electricity generated globally and covers 4.3% of Euro-
pean energy demand. To become even more competitive,
the price per GWp needs to be lowered. The efficiency
of solar cells is the most important metric to improve in
this regard. Single-junction silicon-based technology is
by far the most commonly used technology today. This
technology has matured to the point that the theoreti-
cal Shockley–Queisser limit of 29% is almost realized2,3
as shown by the current demonstrated PV cell record
for crystalline Si of 26.7%4,5. However, producing thin
solar cells reduces the cost and environmental footprint
at the expense of efficiency, since the absorbing layer is
less likely to absorb light than a thicker cell would, and,
in the case of silicon, the indirect band gap makes the

a)eivind.seim@nmbu.no

material a weak absorber. To mitigate the losses from
creating thinner solar cells, smart management of light
is required. If the incoming light is effectively trapped
within a solar cell, the transmission and reflection losses
are minimized, thus maximizing the efficiency. Moreover,
thinner solar cells entail additional benefits by being less
prone to bulk recombination and having better voltage
characteristics.
The concept of light-trapping is often analyzed from

the perspective of geometric optics. The goal is to force
photons from the incoming sunlight into rays that stay
long enough in the absorbing layer of the solar cell to
excite electrons and holes. To achieve long-lived ray tra-
jectories, one must control the dynamics of the incom-
ing light rays. In general, improved light trapping is
engineered by creating or adding structures or textures.
They can be on the surface, on the back side of the so-
lar cell or they may be realized as advanced plasmonic
structures6–13.
Solar cells are ray-splitting systems since the surface

of the solar cells acts as a ray-splitting boundary where
rays are reflected or transmitted according to probabili-
ties given by the Fresnel equations14. Ray-splitting dy-
namics has been studied extensively in the context of
chaotic scattering15–18, in which ray splitting19–25 and
ray trapping26,27 play a major role. Both concepts are of
central relevance to light trapping in solar cell applica-
tions. Ray trapping is connected to the defining property
of a system exhibiting chaotic dynamics, which is the
hypersensitivity to initial conditions. The presence of
chaotic dynamics has interesting implications in the con-
text of absorption in solar cells. Bunimovich showed that
dynamics in a Bunimovich billiard, a bounded dynamical
system, is ergodic28,29, meaning that the whole energet-
ically accessible phase space of the system is visited by
a generic ray, i.e., a ray started with initial conditions
that are not too special. If ergodic rays are present in a
solar cell, it means that incoming rays are deflected away
from the vertical direction, resulting in a longer average
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path lengths30. There are few reports of the benefits
of chaotic scattering dynamics in solar cells. Mariano
et al.31 report experimental and computational findings
that a solar cell integrated on a special photonic fiber
plate leads to an optically ergodic system and a greatly
enhanced light absorption. Using classical ray tracing
calculations and verifying the results with a commer-
cial finite-difference time-domain (FDTD) solver, Seim et
al.32 recently showed that the transition from regular to
chaotic scattering dynamics correlates with the enhance-
ment of the absorption efficiency. The result was proven
for a model system with a shape akin to a Bunimovich
billiard, where the transition from regular to chaotic scat-
tering was controlled by a single parameter. It was also
shown that the result was structurally stable, i.e., it was
not sensitive with respect to the system parameters cho-
sen. This is a very important property for the successful
technical realization of such a system: If the phenomenon
was only valid for a special, exactly realized shape, one
could never expect to be able to reproduce the shape in
the lab, let alone in a large-scale industrial process.

While in systems of any dimension geometrical ray op-
tics and electromagnetic (E&M) wave simulations pro-
duce comparable results in the short wavelength limit,
in two or more dimensions there is not a general ray
theory known to the authors that is exact for systems
that cannot be considered to be within the geometrical
optics limit. However, in effectively one-dimensional sys-
tems, for instance a stack of planar films, an exact ray
theory exists33. In higher-dimensional systems we are
therefore in need of E&M wave calculations for simulat-
ing optical systems and obtaining their optical properties
accurately. A solar cell is an inherently wave-mechanical
scattering system. In terms of scattering dynamics, the
dynamics on the wave level “feel” the underlying clas-
sical dynamics17, but chaos on the classical level does
not necessarily imply chaos on the wave level, more com-
monly called wave chaos. The aim of this paper is to con-
firm the findings of Seim et al.32 by applying techniques
from the fields of quantum and wave chaos to extend our
knowledge of how chaos can improve the light-trapping
properties in surface-structured solar cells.

We start out by presenting a very brief account of the
aspects of classical and quantum chaos that are relevant
in the context of this paper, enhancing the light trap-
ping in solar cells. The next section explains the model
system and the numerical methods used. Then the re-
sults are presented in two parts, the first highlights the
appearance of chaotic signatures and the enhancement
of the absorption efficiency as an effect of varying a sys-
tem parameter. The second part shows that these effects
are tied to the transition from the regular to the chaotic
scattering regime. The results and usefulness to light
trapping are summarized in the conclusions at the end of
the paper.

II. CLASSICAL AND QUANTUM CHAOS

Chaos is a phenomenon that is seen in certain dynami-
cal systems. The defining trait of chaotic systems is that
the dynamical motion is strongly dependent on the ini-
tial conditions. Chaos is divided into two separate, but
connected fields, classical chaos and wave chaos.

A. Classical chaos

Classical chaos started with Jacques Hadamard in 1898
with his study of exponential divergence of rays in a dy-
namical billiard. The rays in dynamical billiards are the
trajectories they trace out as particles move on a sur-
face bounded by reflecting walls. Dynamical billiards are
therefore closed systems. Various closed systems with
chaotic dynamics have been studied in great detail, with
the perhaps most extensively studied being the Sinai
and Bunimovich billiards34,35. The open counterpart to
bounded billiard systems are called scattering systems16.
Classical chaos in ray systems is often characterized by
how two rays with very similar initial conditions separate
from each other in phase space as a function of time. In
regular systems without chaos, the separation is linear in
time, while in irregular chaotic systems the separation is
exponential. The Lyapunov exponent λ gives the rate of
divergence

s(t) = eλts(0), (1)

where s(0) is the initial separation distance, and s(t) is
the separation at a time t. A positive Lyapunov exponent
is needed for exponential divergence and is therefore used
as a tool to diagnose chaos in a system.

B. Quantum chaos

Quantum chaos, or more generally wave chaos, is a dy-
namical phenomenon that may occur quite generally in
all wave systems. Wave chaos can appear in real, com-
plex, as well as vector fields, and the governing wave
equations can be linear equations such as the Schrödinger
equation or Maxwell’s equations, or they can be non-
linear such as the Gross-Pitaevskii equation36.
In 1955 Wigner introduced random matrices to model

the spectra of heavy atomic nuclei37,38. Together with
Dyson, Mehta, and others, random matrix theory was
developed36,39. One of the central results is the Wigner
surmise. It postulates the probability density function,
P (s), of a sequence of nearest neighbor spacings between
energy levels in heavy nuclei. It is given by

P (s) = πs

2 e−πs
2/4, (2)

where s = s′/D with s′ being a particular nearest neigh-
bor spacing and D being the mean distance between
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neighboring energy levels. Eq. (2) is commonly referred
to as the Wigner surmise or the Wigner distribution.
The class of random matrices that this particular ver-
sion of the Wigner distribution is universal for is called
the Gaussian orthogonal ensemble (GOE)40,41. Later, it
was conjectured by Bohigas, Giannoni, and Schmit that
all chaotic systems have the universality of the Wigner
distribution predicted by random matrix theory42. Con-
fidence in the conjecture was built over the years by a
large amount of evidence36,39,43. It is generally agreed
upon that (generic) regular systems have Poissonian level
distributions44–46, and that (generic, time-reversal invari-
ant) chaotic systems have level distributions fitting the
Wigner surmise42,47,48.

The transition from regular to chaotic dynamics has
been studied in the context of universality in the S matrix
fluctuations44,49. Berry and Robnik50, and Brody51,52
have developed models to make quantitative predictions
for the level statistics as a system gradually becomes
more irregular. These models are interpolations between
the Poisson and Wigner distributions. The Berry-Robnik
distribution is

PBR(S, ρ) = ρ2e−ρS erfc(
√
πρ̄S/2)+

(2ρρ̄+ πρ̄3S/2)e−ρS−πρ̄
2S2/4,

(3)

where ρ̄ = 1 − ρ is the fraction of chaos in the available
phase space. Brody’s distribution is

PB(S, ω) = α(ω + 1)Sωe−αS
ω+1

, (4)

where

α =
[
Γ
(
ω + 2
ω + 1

)]ω+1
, (5)

and ω is a measure of the level repulsion. Thus, ω = 0
yields the Poisson distribution and ω = 1 yields the
Wigner surmise. However, the ω in the Brody distri-
bution does not have a rigorous physical interpretation
like the ρ has in the Berry-Robnik distribution. We use
these distributions later on as tools to quantify the on-
set of chaos in a model system by comparing them to
histograms of level statistics.

III. THE FILM+DOME SYSTEM

The model system shown in Fig. 1a is a scattering sys-
tem. It is comprised of three mirrors arranged like a
bucket (left, bottom, and right), while the system is open
at the top, where it has a non-absorbing dome structure
placed on top of a light-absorbing film. Both structures,
i.e., film and dome, are characterized by their index of
refraction, nfilm ∈ C and ndome ∈ R respectively. We call
this the film+dome system. Because our aim is to study
the effects of wave chaos in an optically thin surface-
structured solar cell, we model the absorption capabili-
ties of the solar cell by the imaginary part of the index

of refraction alone, without any additional device mod-
eling. Thus, the approach chosen is well suited to study
scattering phenomena. The aim is not to predict the I-V
characteristics of an experimental realization of the same
system. We have previously investigated the classical dy-
namics of the same system32.

Film

Dome

Air

ψ = 0

Incoming wave

x

y

z

(a)

Dome

Film

x

y

(b)

FIG. 1: (a) The film+dome scattering system is
enclosed in a mirror-shaped bucket. (b) The discretized

film+dome system.

The scattering problem depicted in Fig. 1a is two-
dimensional, but equivalent to the three-dimensional
problem where the structure is extended out of the two-
dimensional plane of the picture, i.e., we assume cylin-
drical symmetry along the z-axis. In this geometry it is
convenient to assume that the polarization of the incom-
ing radiation is pointing along the z direction of the ex-
tended structure, since this allows for a two-dimensional
description of the associated E&M wave problem. As
a consequence of this assumption, the polarization is al-
ways perpendicular to the plane of incidence. In this case
the E&M wave equation is the Helmholtz equation. It is
interesting to note that the problem is completely analo-
gous to the time-independent Schrödinger equation if the
solutions are assumed to be separable in time and space.
We solve the Helmholtz equation to get the steady state
solutions of the scattering problem

(∇2 + n2K2)ψ = 0, (6)

where n is the complex index of refraction in the two-
dimensional region enclosed by the mirrors, x ∈ [0, w]
and y ∈ [0,∞]. We opt to solve the Helmholtz equation
by using the Green’s function method. The Green’s func-
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tion, G(x, x′, y, y′;K), obeys the boundary conditions

ψ(x, 0) = 0, (7a)
ψ(0, y) = ψ(w, y) = 0, (7b)

and is thus constructed by the normalized eigenfunctions

φmk(x, y) = 2√
πw

sin
(mπx

w

)
sin(ky), (8)

where k ∈ R and m ∈ N. G(x, x′, y, y′;K) is now con-
structed according to

G(x, x′, y, y′;K) =
∞∑

m=−∞

∞∫

0

φmk(x, y)φmk(x′, y′) dk
K2 − π2m2

w2 − k2
.

(9)
The full derivation of G(x, x′, y, y′;K) can be found in
Appendix VI. Depending on whether K is real or com-
plex, we split G(x, x′, y, y′;K) into two branches, the
open and closed channels

K2 − π2m2

w2 > 0, Open channels, (10)

K2 − π2m2

w2 < 0, Closed channels, (11)

respectively. The complete Green’s function is divided
into two expressions

Gopen =
M∑

m=1

i

wBm
sin
(mπx

w

)
sin
(
mπx′

w

)

×
[
eiBm(y+y′) − eiBm|y−y′|],

(12)

Gclosed =
∞∑

m=M+1

1
wAm

sin
(mπx

w

)
sin
(
mπx′

w

)

×
[
e−Am(y+y′) − e−Am|y−y′|],

(13)

with Am =
√

π2m2

w2 −K2, Bm =
√
K2 − π2m2

w2 , andM is
the number of open channels available given by the floor
function

M =
⌊
Kw

π

⌋
. (14)

The allowed incoming waves are plane waves traveling
along the y-axis in the negative direction, weighted by a
sine function in the x-direction. They are of the form

ψin = e−ikyy sin(kxx), (15)

where kx = pπ/w, and p is a positive integer. For each
value of p there is an open channel associated with an
incoming wave. The wavelength λ of the incoming wave
is given by ky = 2π/λ, and K is defined in relation to ky
and kx in the following way:

K2 = k2
y + k2

x. (16)

Three film+dome systems were evaluated in order
to ensure that the results are not dependent on spe-
cial system parameters, i.e., to ensure structural stabil-
ity. All three film+dome systems investigated consist
of a 5 µm wide absorbing film with index of refraction
nfilm = 2 + 0.0054i. The three films are 1 µm, 2 µm, and
3 µm thick, while the dome is 3.46 µm tall and 5 µm wide.
The index of refraction in the dome, ndome, is the vari-
able parameter. Silicon is not a very good light absorber
at 800 nm, the imaginary part of nfilm was therefore set
to the refractive index of silicon at 800 nm, truncated
to four decimals. The value should therefore be a good
choice when looking to improve absorption properties.

A. Absorption cross section

The solution of the non-free Helmholtz equation can
be found using the Lippmann-Schwinger formula

ψp(x, y) = φp(x, y)−
∫
G(K,x, x′, y, y′)K2

×
[
1− n(x′, y′)2]ψp(x′, y′) dx′ dy′ ,

(17)

where φ(x, y) is one of the M free solutions, meaning no
dielectric material in the bucket-shaped mirror configu-
ration. The free solution for each open channel available
to the system is differing only in the sine envelope, which
is controlled by the parameter p; hence the subscript in
Eq (17). This formula can be reformulated into a ma-
trix problem of the form Ax = b for obtaining a quick
numerical solution. The absorption cross section, which
previously has been shown to be 1−R, with R being the
reflectivity33, is calculated directly from the wave func-
tion ψ according to

σ = 4π
λw

∫
nr(x, y)ni(x, y)ψ(x, y) dx dy , (18)

where nr and ni are the real and imaginary parts of the
complex index of refraction, respectively. In addition to
the Green’s function method, the absorption cross section
was also calculated using a commerical FDTD solver53.
The wave function in Eq. 18 is then substituted with
the electrical field obtained from the FDTD solver when
the system reaches the steady state. Note that these
programs differ in how the calculation is performed. In
the Green’s function method incoming waves with correct
shape according to ((15)) are injected into the bucket,
while in the FDTD solver a plane wave is sent towards
a bucket with an infinite height. These two methods,
however, are equivalent to a high degree of accuracy since
the incoming plane wave in the FDTD solver, once hits
the mirrors of the bucket, very quickly adjusts to the
correct mirror boundary conditions.
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B. Computing the scattering matrix

For an incoming wave in channel p, the solution of the
free problem is

φp = (e−ikyy − eikyy) sin
(pπx
w

)
(19)

and we expect the scattered wave function to be a mix-
ture of all possible waves allowed in the system, which is
of the form

ψp =
M∑

m=1
Sp→me

iBmy sin
(pπx
w

)
(20)

in the asymptotic limit, i.e. y → ∞. Sp→m denotes the
scattering amplitude from the initial channel p to the
final channel m. In this limit the open-channel Green’s
function is

lim
y→∞

Gopen = G(y→∞)
open =

M∑

m=1

−2
wBm

sin
(mπx

w

)

× sin
(
mπx′

w

)
eiBmy sin(Bmy′).

(21)

Now, inserting G
(y→∞)
open into the Lippmann-Schwinger

equation yields

ψp = φ(y→∞)
p +

∫
G(y→∞)
open (x, x′, y, y′)K2

×
[
1− n(x′, y′)2]Ψp(x′, y′) dx′ dy′ ,

(22)

from which, by comparing with (20), we can read off the
scattering matrix elements

Sp→q = −δpq −
2K2

wBq

∫
sin
(
qπx′

w

)
sin(Bqy′)

×
[
1− n(x′, y′)2]ψp(x′, y′) dx′ dy′ .

(23)

IV. RESULTS AND DISCUSSION

A. Enhancement of the absorption cross section

We calculated the absorption cross section according
to Eq. (18) for the film+dome system as a function
of the index of refraction, ndome, for three film+dome
systems. Figure 2 shows a comparison of the aver-
age absorption cross section 〈σ〉λ, resulting from an av-
erage over a wavelength range spanning from 480 nm
to 510 nm, between FDTD, 〈σFDTD〉, and the Green’s
function method, 〈σGF〉. The Beer-Lambert efficiency,
obtained from classical ray calculations is also shown.
These classical ray calculations were carried out using a
ray-tracer software written specifically for the purpose of
classical ray simulations. The details of the calculations
can be found in32. The FDTD and ray results agree very

well. We expect this since the systems are close to the ge-
ometrical optics limit with the wavelengths being about
ten times smaller than the total width of the systems.
The 〈σGF〉 data are computed using the first channel
wave function, which has the form e−ikyy sin(kxx). The
agreement with 〈σFDTD〉 is therefore not expected to be
one-to-one since the incoming wave forms used in the two
wave calculations (FDTD and Green’s function method)
are different. A plane wave is used in the FDTD calcu-
lation. However, the point here is not to make a direct
comparison between the FDTD solver and the Green’s
function calculations, but to qualitatively search for the
same behavior in 〈σ〉λ as a function of ndome using rays,
FDTD, and the Green’s function approach. The agree-
ment between the full wave FDTD and the first-channel
Green’s function calculation is good, despite the differ-
ence mentioned previously between the two programs.

1 1.5 2 2.5

0.2

0.3

0.4

ndome

〈σ
〉 λ

(a) Film thickness 1 µm

1 1.5 2 2.5
0.4

0.5

0.6

ndome

〈σ
〉 λ

(b) Film thickness 2 µm

1 1.5 2 2.5

0.5

0.6

0.7

ndome

〈σ
〉 λ

(c) Film thickness 3 µm

FIG. 2: Average absorption cross section 〈σ〉λ, obtained
by averaging σ(λ) over a wavelength interval from
480 nm to 510 nm, calculated using FDTD (black

circles) and a Green’s function approach (blue dots).
For all three film thicknesses a rapid increase in 〈σ〉λ is
seen when ndome is sufficiently large. The orange curve

shows the efficiency calculated by geometric rays,
including ray splitting, using Beer-Lambert’s law to

model absorption32.

All three models show an increase in the average ab-
sorption efficiency, 〈σ〉λ, as ndome is increased, with a
maximum between 2.0 and 2.3. This holds true for all
the systems with different film thicknesses. More impor-
tantly, at a certain ndome, 〈σ〉λ rapidly increases, hint-
ing at a change of the dynamical behavior. This critical
point is seen at about ndome = 1.85, ndome = 1.6 and
ndome = 1.5 for the systems with film thicknesses 1 µm,
2 µm, and 3 µm, respectively, with respect to the classi-
cal ray data (orange curve in Fig. 2). In other words,
the phenomenon of the critical point with increasingly
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rapid enhancement of 〈σ〉λ is structurally stable, i.e., it
does not depend on a strict choice of system parameters.
However, the value of ndome for which the critical point
occurs does depend on the relative size difference of the
film and dome. For instance, in the 1 µm thick film, the
effect appears at a higher ndome compared to the 3 µm
thick film and is also stronger.

This specific wavelength range, 480 nm to 510 nm, was
chosen because it contains a large part of the solar spec-
trum while keeping the number of open channels avail-
able, dictated by Eq. (14), in the system as large as possi-
ble. Care must be taken when calculating 〈σ〉λ over finite
wavelength intervals. The rule of thumb is that the inter-
val must be broad enough to cover the average of σ to get
a good agreement between the FDTD and classical ray
calculations, which are not dependent on the wavelength
in the same way as in FDTD. Using the 2 µm thick film as
an example, we see, in Fig. 3a, that roughly one “period”
of σ is included in the chosen interval. Generally, σ is not
expected to look periodic, but for small values of ndome,
the system is essentially just a film, which shows smooth,
rolling fluctuations. One “period” of these fluctuations
captures the average of σ. In Fig. 3d, where ndome is
larger, and σ is more packed with resonances, the calcu-
lated values are not so sensitive to the choice of interval.
There is a transition from slow (Fig. 3a and Fig. 3b) to
rapid fluctuations (Fig. 3c and Fig. 3c), which hints at
a change of the dynamics present in the scatterer. The
high density of resonances we observe is also a feature
of a Ericson fluctuations, which are frequently associated
with quantum chaotic scattering54,55. To prove that we
are in the Ericson regime falls outside the scope of this
paper. However, such an investigation would be of inter-
est to the topic.

B. Signatures of chaos in the scattered wave function

In this section we present evidence of chaos by inspect-
ing the scattered wave functions visually. We look for two
signatures of chaos in the distribution of the wave func-
tion field strength: scars56, and scarlets57. These signa-
tures provide straightforward and intuitive “litmus tests”
for whether chaos is present in a dynamical wave system
or not. Scarlets are highly irregular patterns which mani-
fests themselves as wrinkly filaments in the wave function
field distribution arising in chaotic systems. Originally
scarlets were discussed in the context of quantum chaos,
but since then experimental studies have shown the pres-
ence of scarlets in other wave systems such as acoustic
resonators58, and in water waves59. Thus, scarlets and
scars are believed to be general wave phenomena. As we
have come to expect for a chaotic system, Fig. 4c and
Fig. 4d show scarlets in the wave function, while Fig. 4a
and Fig. 4b show ordered patterns. This indicates that
the scattering dynamics in the two latter cases are more
regular than chaotic. These are strong indications that
the film+dome system undergoes a transition from reg-

480 490 500 510
0.3

0.4

0.5

0.6

Wavelength (nm)

σ
(λ

)

(a) ndome = 1.2.

480 490 500 510
0.3

0.4

0.5

Wavelength (nm)

σ
(λ

)

(b) ndome = 1.4.

480 490 500 510
0.4

0.5

0.6

Wavelength (nm)

σ
(λ

)

(c) ndome = 1.8.

480 490 500 510
0.5

0.6

0.7

Wavelength (nm)

σ
(λ

)

(d) ndome = 2.0.

FIG. 3: Comparison of the spectral absorption cross
section as calculated by FDTD (blue) and the first
channel wave function from the Green’s function

approach (orange).

ular to chaotic scattering dynamics, and is in agreement
with the findings in Sec. IVA.

Related to the work on eigenvalues and periodic-orbit
theory by Gutzwiller60, Berry and Tabor48,61, and Balian
and Bloch62, Heller56 found that unstable periodic orbits
have a very visible effect on the eigenfunctions of classi-
cally chaotic systems. In some wave functions the clas-
sical path of the periodic orbits can be seen directly in
cases where the fluctuations in the wave function have
higher density along the path. Figure 5 shows two wave
functions that are scarred by periodic orbits. In Fig. 5b
a triangular orbit is scarring the wave function. This
scarring surrounds a periodic orbit of similar shape. Ad-
ditionally, the phase space contains periodic orbits that
zig-zag across the x-axis, such as the one shown in Fig 5d.
From a ray-trapping perspective, the existence of such
orbits can be very important. The rays move in an al-
most horizontal fashion, resulting in a long path length
in the absorbing film. This motion is very desirable in
light-trapping schemes. However, the periodic rays of
a scattering system cannot be reached by rays coming
from outside of the scatterer, but they can get arbitrar-
ily close, thus being effectively trapped considering their
finite lifetimes due to absorption.

An arrow-shaped pattern can be seen in Fig. 4b, which
resembles a scar. An orbit undergoing a total internal
reflection at that angle is not possible for ndome = 1.2.
These scar-like patterns are due to ray splitting, i.e. rays
that split into a reflected and transmitted component at
the boundary at the air-dome interface.
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(a) ndome = 1.1 (b) ndome = 1.2

(c) ndome = 1.8 (d) ndome = 2.0

FIG. 4: Irregularities in the scattered wave function
become more and more prevalent with increasing ndome.

This is a signature of chaos.

C. Transition to chaotic scattering dynamics

Assuming the Bohigas-Giannoni-Schimit conjecture,
the distribution of the nearest-neighbor spacings, P (s),
of the eigenangles of the eigenvalues eiξ of the S matrix,
are universal. We will now look closely at these distribu-
tions for the film+dome system as a function of ndome.

When the dome is completely removed from the
film+dome model, the system is fully integrable and an
analytic closed-form solution can easily be found. An in-
tegrable scattering system has fully regular scattering dy-
namics with uncorrelated levels which follow Poissonian
statistics, see Fig. 6a. In Fig. 6b we see that a depres-
sion at small s appears. Placing the dome structure on
top of the film destroys the integrability of the system,
even with a very low index of refraction ndome = 1.01.
For values of ndome close to 1, the system is said to be
pseudo-integrable. In this case, the system has no clas-
sically chaotic counterpart and there is no global univer-
sality for P (s) to explain the shape of the distribution63.
At ndome = 1.1 and ndome = 1.2 the level distribution
is clearly not a Poissonian, but has not fully developed
into a Wigner distribution either. There is level repulsion
shown in the distributions, but the peak is skewed to the
left of what the Wigner surmise predicts.

In the event where an integrable system is perturbed, a
smooth transition to mixed dynamics is expected44,64,65.
This is contrary to the abrupt transition to chaos of an

(a) (b)

(c) (d)

FIG. 5: a) and c) show scars in the scattered wave
function, which trace the path of a periodic orbit. In b)

and d) the scarred orbits are superposed. The two
examples are from the film+dome system with a 1 µm

thick film and ndome = 2.0.

0 1 2 3 4
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0.25
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0.75
1

s
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)

(a) No dome.

0 1 2 3
0

0.25
0.5

0.75
1

s

P
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)

(b) ndome = 1.01

0 1 2 3
0

0.25
0.5

0.75
1

s

P
(s

)

(c) ndome = 1.1

0 1 2 3
0

0.25
0.5

0.75
1

s

P
(s

)

(d) ndome = 1.2

FIG. 6: The dashed line is the Poisson distribution,
P (s) = es and the solid line is the Wigner surmise. For

low values of ndome the film+dome system is
pseudo-integrable. At ndome equal to 1.1 and 1.2 the
distributions are between the pseudo-integrable and

Wigner case.
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integrable Hamiltonian that is made ergodic63. We ex-
pect our system to be the former. It is therefore difficult
to see the onset of chaos by visually comparing the distri-
butions with the Wigner surmise. We apply an objective
statistical test to quantify exactly where the transition
from regular to chaotic dynamics occurs. The χ2 good-
ness of fit test, which we used, is described in more detail
in Sec. VII.

The χ2 test shows the probability of obtaining a his-
togram that gives a higher χ2 value when compared to
a certain distribution. Lower χ2 values are better. Both
the Berry-Robnik distribution and the Brody distribu-
tion were used in the χ2 test against the histograms of
the level statistics. By varying the “chaoticity param-
eters”, ρ̄ and ω, for the Berry-Robnik and Brody dis-
tributions respectively, in the interval [0, 1], we find the
best fitting distributions. Fig. 7 shows histograms of level
spacing distributions as ndome is increased in steps of 0.1.
The best fitting Berry-Robnik and Brody distributions
are plotted on top of the histograms. The level statistics
were gathered for wavelengths in the intervals 457 nm to
474 nm and 477 nm to 497 nm for a total of 3129 nearest-
neighbor level spacings for the film thickness 2 µm. For
the 1 µm and 3 µm thick films, only the interval 477 nm
to 497 nm with 1620 nearest-neighbor level spacings were
used.

First, by visually inspecting Fig. 7, we see that the
Berry-Robnik and Brody distributions start to fit better
to the histograms for ndome = 1.6 and higher, indicating
that the onset of chaos starts around this value. There
are statistical fluctuations present in the level statistics
histograms due to the sample size and the size of the S
matrices. We assume, that a histogram agrees well with
the distribution it is compared to, if the probability is
higher than some limit. If the probability is lower than
the limit, the deviation from the distribution is said to be
statistically significant. We chose to use 5% as the limit
in our statistical tests. Figure 8 shows the probabilities
obtained from the χ2 test for each value of ndome. The
smooth transition of the level statistics from an integrable
system (no dome), to the pseudo-integrable, to chaotic,
makes it difficult for the histograms to pass strictly the
statistical test we apply. We therefore expect only the
cases with well-developed chaos to pass the test. The test
is passed for ndome values 1.9, 1.6, 1.5 (passing values)
and above for the film+dome systems with 1 µm, 2 µm
and 3 µm thick films, respectively. However, due to the
statistical fluctuations present, there are some outliers.
The passing values match closely with the critical points
1.85, 1.6, 1.5 for the 1 µm, 2 µm and 3 µm thick films,
respectively, which are the ndome values where a rapid
enhancement of the absorption cross section is observed.
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FIG. 7: The histograms shows the level statistics of the
different film+dome systems. The smooth black line is
the best-fitting Berry-Robnik distribution and the red,

dashed line is the best-fitting Brody distribution.

D. Chaos-enhanced light trapping

The autocorrelation function of an S matrix element is
defined as

A(λ) =
∫
S̃∗i,j(λ)S̃i,j(λ+ ∆λ) dλ∫

S̃∗i,j(λ)S̃i,j(λ) dλ
, (24)

where S̃i,j(λ) is the fluctuating part of the S matrix el-
ement Si,j , i.e., the mean background is removed. It
measures the correlation of the S matrix elements as a
function of the wavelength of the incoming wave, λ. The
half-width at half-maximum of the autocorrelation func-
tion in energy is inversely proportional to the classical
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FIG. 8: Pd is the probability of finding a χ̃2 higher than
χ̃2

0, which corresponds to the best fit. The 5% limit is
shown as a horizontal line. The best-fitting

Berry-Robnik and Brody distributions are found by
maximizing Pd.

lifetime τ of rays54,

τ = 1
v∆k , (25)

where v is the speed and

∆k = 2π
λ2 ∆λ. (26)

Thus, from (25) we get an approximation of the lifetime
of the rays, 〈LA〉, in the classically analog systems to
the quantum film+dome system. Using the 2 µm thick
film+dome system as an example, we subtract the mean
background from the scattering matrix. Then, (24) can
be used to calculate the autocorrelation function A as a
function of ∆λ. This analysis was done in three differ-
ent ways, 1) using the S2,1 element of the even-parity S
matrix of the film+dome system, 2) averaging over 16
off-diagonal S-matrix elements, and 3), averaging over
all diagonal S-matrix elements (see open orange, green,
and blue circles in Fig. 9a, respectively). The analy-
sis was done for each value of ndome. The autocorrela-
tion functions are shown in Fig. 9b. By tracing 10000
non-Newtonian rays (NNR), the average geometric path
length for the classical rays, 〈Lgeo

NNR〉, was also computed
(see solid blue line in Fig. 9b). Non-Newtonian rays
can split into a transmitted and reflected ray for each
encounter with a ray-splitting boundary with the ap-
propriate probability weights according to the Fresnel
equations. As a consequence, the trajectories propa-
gate through the film+dome scatterer, and split such
that their probability goes towards zero. The average

path lengths computed from the autocorrelation func-
tions, 〈LA〉, and classical rays, 〈Lgeo

NNR〉, are increasing as
a function of ndome, they are shown in Fig. 9a. There
is remarkably good agreement between the classical ray
calculations and the quantum wave calculations.
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〈LA〉S,diagonal
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FIG. 9: a) Average geometric path length calculated by
ray-tracing 10000 Non-Newtonian rays (blue full line),
derived from the width of the autocorrelation function,
using S2,1 (orange open circles), using an average over
16 off-diagonal S-matrix elements (green open circles),
and averaging over all diagonal S-matrix elements (red
open circles). b) Autocorrelation function, |A(λ)|2, of
S̃2,4. The half-width at half-maximum decreases as
ndome increases. This correlates the transition to

chaotic dynamics with longer classical path lengths
present in the system.

The connection between experimentally optimizing
light-trapping by surface structures and the results pre-
sented here, is the average path length of rays. Knowing
how the average path length of rays depends on various
system parameters is very useful, but the average path
length can not be measured directly. However, as we have
seen, it can be extracted from the autocorrelation func-
tion, which can be measured. Thus, the fact that the au-
tocorrelation function can be measured experimentally25
makes it a powerful diagnostic tool that can be used to
optimize the light-trapping capabilities of new surface
structure designs.
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V. CONCLUSION

We have observed the existence of a critical region in
ndome where the absorption cross section starts to in-
crease rapidly in a solar cell model with a light-trapping
surface structure. By changing the index of refraction in
the light-trapping structure, the scattering dynamics of
the system makes a transition from regular scattering to
the irregular, chaotic scattering regime at a critical value
of ndome. We show that there is a three-way correlation
between the onset of chaotic scattering, the increase of
the average path length of rays in the scatterer, and the
increase of the absorption cross section.

The implications are of substantial importance. Re-
searchers are already making thinner solar cells to im-
prove voltage characteristics and lowering the cost, but
the lowered efficiency that comes with thin solar cells is
a major obstacle, which, to be overcome, demands smart
management of light. The three-way correlation shows
that chaos can be used as a design guide for computation-
ally prototyping surface structures. All the tools needed
to evaluate a given structure and the degree of chaos it
induces in a system are readily available. By measuring
the autocorrelation function presented, the increase in
the average path length can be verified experimentally.
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VI. APPENDIX A: GREEN’S FUNCTION APPROACH
TO SOLVING THE HELMHOLTZ EQUATION

We solve the Helmholtz equation

(∇2 + n2K2)ψ = 0 (27)

by using the Green’s function method. To construct the
Green’s function we choose eigenfunctions that satisfy
the boundary conditions which are defined by our model
system. The model is defines a 2D region where x ∈ [0, w]
and y ∈ [0,∞] such that

ψ(x, 0) = 0, (28a)
ψ(0, y) = ψ(w, y). (28b)

We choose eigenfunctions on the form

φmk(x, y) = Nmk sin
(mπx

w

)
sin(ky), (29)

where k ∈ R, m ∈ I and Nmk is the normalization con-
stant.
The eigenfunctions are normalized:

w∫

0

∞∫

0

φmk(x, y)φm′k′(x, y)∗ dxdy = 1, (30)

NmkNm′k′

w∫

0

∞∫

0

sin
(mπx

w

)
sin
(
m′πx
w

)

× sin(ky) sin(k′y) dx dy = 1.

(31)

We can do the integrals separately
∞∫

0

sin(ky) sin(k′y) dy = π

2 δ(k − k
′). (32)

The integral
w∫

0

sin
(mπx

w

)
sin
(
m′πx
w

)
dx , (33)

or equivalently

−1
2

w∫

0

[
cos
(

(m+m′)πx
w

)
− cos

(
(m−m′)πx

w

)]
dx ,

(34)
can be split into two cases:

1
2

w∫

0

1 dx = w

2 , m = m′, (35)

−1
2

w∫

0

[
cos
(

(m+m′)πx
w

)
− cos

(
(m−m′)πx

w

)]
dx = 0,

m 6= m′.
(36)

With m = m′ and k = k′ the two normalization integrals
gives

Nmk = 2√
πw

, (37)

thus the eigenfunctions are

φmk(x, y) = 2√
πw

sin
(mπx

w

)
sin(ky). (38)

The Green’s function is defined as

DxyG(x, x′, y, y′;K) = δ(x− x′)δ(y − y′), (39)
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where the 2D operator Dxy is

Dxy = ∂2

∂x2 + ∂2

∂y2 +K2. (40)

We can expand the Green’s function in terms of the eigen-
functions φmk(x, y)

G(x, x′, y, y′;K) =
∞∑

m=−∞

∞∫

0

cmk(x′, y′)φmk(x, y) dk ,

(41)
and find the expansion coefficients cmk(x′, y′) by doing

DxyG(x, x′, y, y′;K) = δ(x− x′)δ(y − y′), (42)

Dxy
∞∑

m=−∞

∞∫

0

cmk(x′, y′)φmk(x, y) dk = δ(x−x′)δ(y−y′).

(43)
Dxy only operates on φmk so we get

Dxyφmk(x, y) = φmk(x, y)
(
K2 − π2m2

w2 − k2
)
. (44)

Before we insert into (43), we rewrite the delta functions

δ(x− x′) = 2
w

∞∑

m=1
sin
(mπx

w

)
sin
(
mπx′

w

)
, (45)

δ(y − y′) = 2
π

∞∫

0

sin(ky) sin(ky′) dk . (46)

Now (43) has the form

∞∑

m=−∞

∞∫

0

cmk(x′, y′)φmk(x, y)
(
K2 − π2m2

w2 − k2
)

dk =

4
πw

∞∑

m=−∞
sin
(mπx

w

)
sin
(
mπx′

w

) ∞∫

0

sin(ky) sin(ky′) dk ,

(47)

and we see directly the that

cmk(x′, y′) = φmk(x′, y′)
K2 − π2m2

w2 − k2
. (48)

We arrive at the bilinear form of G

G(x, x′, y, y′;K) =
∞∑

m=−∞

∞∫

0

φmk(x, y)φmk(x′, y′) dk
K2 − π2m2

w2 − k2
.

(49)
Next, we carry out the integral where only the y-
dependent part of G contains k, thus the integral we need
to consider is

∞∫

0

sin(ky) sin(ky′) dk
K2 − π2m2

w2 − k2 + iε
, (50)

where the iε is an infinitesimal size added to do the com-
plex integration. Two cases must be considered;

K2 − π2m2

w2 > 0, for open channels, (51)

K2 − π2m2

w2 < 0, for closed channels. (52)

We let

Am =
√
π2m2

w2 −K2, (53)

Bm =
√
K2 − π2m2

w2 . (54)

Since 2 sin(ky) sin(ky′) = cos[k(y−y′)]−cos[k(y+y′)] we
only consider the following integrals for the open channel
case:

∞∫

0

cos[k(y − y′)] dk
B2
m − k2 + iε

= − πi

2Bm
eiBm|y−y′|, (55)

−
∞∫

0

cos[k(y + y′)] dk
B2
m − k2 + iε

= − πi

2Bm
eiBm(y+y′), (56)

and the following for the closed channel case:

∞∫

0

cos[k(y − y′)] dk
−A2

m − k2 = − π

2Am
e−Am|y−y′|, (57)

−
∞∫

0

cos[k(y + y′)] dk
−A2

m − k2 + iε
= − π

2Am
e−Am(y+y′). (58)

The number of open channels, M , is decided by the sum-
mation index m. From Eq. (51) we get

M =
⌊
Kw

π

⌋
. (59)

Now we can write down the complete expression for the



12

Green’s function

Gopen =
M∑

m=1

i

wBm
sin
(mπx

w

)
sin
(
mπx′

w

)

×
[
eiBm(y+y′) − eiBm|y−y′|],

Gclosed =
∞∑

m=M+1

1
wAm

sin
(mπx

w

)
sin
(
mπx′

w

)

×
[
e−Am(y+y′) − e−Am|y−y′|].

(60)

VII. APPENDIX B: BINNING AND χ2 GOODNESS OF
FIT TEST

The χ2 goodness of fit test was performed as described
in Taylor’s book An Introduction to Error Analysis66.
For our purposes, eigenangles were extracted from the S
matrix samples and then binned before applying the χ2

test. The bin width was determined using the Freedman-
Diaconis rule67, i.e. the bin width is dependent on N , the
size of the data set. The Freedman-Diaconis bin width
bw is defined as

bw = 2IQR
3
√
N

, (61)

where IQR is the interquartile range of the data set.
χ2 is a measure of the agreement between an observed

distribution Ok and an expected distribution Ek. It is
defined as

χ2 =
N∑

k=1

(Ok − Ek)2

Ek
. (62)

In the unlikely event that there is a perfect agreement,
χ2 will be 0. However, if the fit is good, it is expected
that χ2 will be on the same order as N or smaller. If
the fit is bad, χ2 will be much larger than N . In order
to say something about the quality of the fit, we look at
how likely it is to find some value χ2

0 for a given data set
and expected distribution. Specifically, We calculate the
probability for finding a χ2 greater than the χ2

0 found
from the data. This probability is given as

Probd(χ̃2 ≥ χ̃2
0) = 2

2d/2Γ(d/2)

∫ ∞

χ0

xd−1e−x
2/2 dx ,

(63)

where d is the number of degrees of freedom, d = N − c,
the number of observations minus the number of con-
straints. χ̃2 = χ2/d, is called the reduced chi squared.
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Errata

Page Location on page Correction
6 Sec. 1.2, line 3 four smaller tasks. to three smaller tasks.
8 Line 15 see Fig 2.2c to see Fig. 2.2b
8 Line 16 see Fig 2.2b to see Fig. 2.2c
8 Line 21 in Fig 2.3 to in Fig. 2.3
9 Line 13 Sec. 2.4 to section 2.4
10-11 Eq. (2.6), (2.7), (2.8) Film thickness a was corrected to m
11 Eq. (2.9) tle

4inkae2iπtr to tle
4inkae2iπrrtr

18 Line 10 simulation to simulations
18 Line 16 lifetime is to lifetimes are
19 Caption of Fig. 2.11 Captions for a) and b) have been exchanged
22 Line 4 κi to Ki

22 Line 8 K2 to K2
i

30 Line 10 in Fig 3.5 to in Fig. 3.5
32 Caption of Fig. 3.8 blue to blue
32 Caption of Fig. 3.8 orange to orange
32 Caption of Fig. 3.8 green to green
32 Caption of Fig. 3.8 red to red
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