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Abstract 
 

Commercially, Norway spruce (Picea abies (L.) Karst) is the most important tree species in 

Norway, representing 72% of the industrial timber volume sold in 2019. However, Norway 

spruce is particularly prone to infection of root and butt rot pathogens, degrading the value of 

the resource. Studies using National Forest Inventory Data (NFI) show that the nationwide rot 

frequency of Norway spruce is somewhere between 7.9-9.5%. Other studies have indicated that 

the presence of root and butt rots are in proportions of approximately 1 out of 5 Norway spruce 

trees. Root and butt rots cause substantial annual economic losses estimated at NOK 100 

millions. The losses are related to degradation of timber resources, per instance, culled by the 

harvester operator. However, the extent of which the root and butt rots develops up the stem is 

not known by the harvester operator. Therefore, developing a practical prediction model for rot 

heights in Norway spruce, to guide the operator in decision making, was addressed in this thesis.  

 

The data sampling was carried out on three different occasions. In the first sampling, root and 

butt rot infected spruce trees were identified. Secondly, the trees were cut to examine the extent 

of rot in the stems. At last, tree-specific measurements were gathered. 

 

The prediction model could explain approximately 21% of the variance in the dataset. 

Individually, the independent variables diameter at root, proportion of rot and tree height, 

showed a positive relationship to the prediction of rot height, with increasing values increasing 

the prediction of rot height. In the evaluation of the prediction model using optimal bucking, a 

total utilization grade of 76% was discovered. On tree level, the utilization grade was 74% with 

a standard error of 18%.  

 
 
 
 
 
 
 
 
 
 
 



 IV 

 
  



 V 

Sammendrag 

 
Gran (Picea abies (L.) Karst) er det kommersielt viktigste treslaget i Norge, med en andel på 

72 % av det industrielle tømmervolumet som ble solgt i 2019. Imidlertid er gran spesielt utsatt 

for rotråtesopper, som reduserer verdien av virket. Studier basert på data fra 

Landsskogtakseringer viser at den nasjonale råtefrekvensen i gran i Norge ligger et sted mellom 

7.9-9.5 %. Andre studier har vist at omtrent 1 av 5 grantrær er infisert med rotråte. Uavhengig 

av hvor stor andelen faktisk er, forårsaker råte et estimert verditap på omkring 100 millioner 

norske kroner årlig. Disse tapene kommer som en følge av reduksjon av virkesverdier, blant 

annet når en hogstmaskinfører må bulte deler av en stamme. Når hogstmaskinføreren bulter, er 

det uvisst hvor langt rotråten strekker seg oppover i stammen. Derfor er det behov for en 

praktisk prediksjonsmodell som kan hjelpe til i prosessen med å håndtere gran med rotkjuke 

eller honningsopp. Å utvikle denne modellen var hovedmålsettingen med denne studien.  

 

Data ble samlet i tre omganger. I første omgang ble grantrær med rotråte lokalisert. Deretter 

ble trærne kappet for å undersøke omfanget av råte i stammene. Til slutt ble tre-spesifikk 

informasjon samlet inn. 

 

Prediksjonsmodellen forklarte 21 % av variansen i datasettet. Hver for seg viste de individuelle 

variablene rotdiameter, råteandel og trehøyde en positiv korrelasjon med råtehøyden, hvor økte 

verdier i de individuelle variablene resulterte i økte prediksjoner for råtehøyden. Under 

vurderingen av prediksjonsmodellen basert på optimal aptering, viste det seg at den totale 

apteringsgraden den oppnådde var på 76 %. På trenivå, var apteringsgraden 74 % med et 

standardavvik på 18 %.  
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1. Introduction 

 

1.1 Background 
 

In an everchanging debate on climate changes, the forest industry has been enumerated as 

having a key role in Norway. The industry has potential in developing and accomplishing a 

more sustainable and climate friendly society, underlining the importance of increased 

utilization of forest resources (Ministry of Agriculture and Food, 2015). Its key role is through 

storage and absorption of carbon dioxide (CO2) from the atmosphere, thereby contributing to 

the global carbon cycle. Nationally, net absorption of greenhouse gasses in forests is 54% of all 

emissions from other sectors (Tomter & Dalen, 2018). 

 

In Norway, 37.4% of the land area is covered by forests, representing a total standing volume 

under bark of 974 million m3 (Statistisk Sentralbyrå, 2019). The total industrial timber volume 

sold in 2019 was 11.017 million m3, resulting in a gross income of NOK 4.800 billion. 

Approximately 72% of the volume consisted of Norway spruce (Picea abies (L.) Karst), 

emphasizing its significant economic importance (Statistisk Sentralbyrå, 2020). Among other 

products, the specie is of economic importance in solid wood for timber construction and 

pulpwood for paper (Cadullo et al., 2016). However, the maximum economic potential of the 

good is absent due to biotic factors such as rot, for which it is particularly prone. Forest owners 

and the forest industry in general experience annual estimated losses of approximately NOK 

100 million due to rot (Solheim, 2010).  

 

1.2 Rot 
 

Rot is decomposition of organic material due to fungal decay. The fungi produce enzymes 

which attacks the components of the wood. Categorization of rot is dependent on the position 

of decay and the decomposition of the components in the wood. The three main components in 

wood is cellulose, hemicellulose and lignin. The main rot categories in living trees are white-

rot, which is most common in deciduous wood, and brown-rot, which is most common in 

coniferous wood (Bøhmer & Aarnes, 2017; Ryvarden, 2019; Solheim, 2010). White-rot 

decomposes all important components in the cellular wall. Normally, white-rot decomposes 
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lignin and hemicellulose firstly, and cellulose after that, resulting in a light-colored fibrous 

material. Brown-rot, which decomposes the cellulose and hemicellulose, is typically brown 

(Mester et al., 2004; Solheim, 2010). Furthermore, rot can also be categorized on the position 

of decay in living trees. Hereunder, the two types of rot are stem rot and root rot. Stem rot, as 

the name suggest, appears in the stem itself. Root rot on the other hand, can further be divided 

into two sub-categories: root rot and butt rot. Real root rots stay in the root system, whereas 

butt rot can develop further up the tree (Solheim, 2010).  

 

Rot is a substantial problem for the forest sector in Norway and specially for its most important 

specie, Norway spruce, hereafter referred to as spruce (Stamnes et al., 2000). Huse (1983) 

examined increment borer data from the Norwegian National Forest Inventory (NFI) from the 

period 1964-1976. The result indicated that 7.9% of the spruce trees were infected with rot. A 

similar study by Granhus and Hylen (2016) using NFI data from 1986-2004 showed a rot 

frequency of 9.5%. In 1992, a nation-wide stump study on spruce was performed in Norway. 

The results show that 26.8% of all the stumps were infected with root and butt rot. In this study, 

the two main root and butt rot pathogens were Heterobasidion parviporum Niemelä & 

Korhonen and fungi from the Armillaria spp. complex which individually and in combination 

appeared on 71% of the rotten stumps. Individually, H. parviporum was the most common 

pathogen approximately appearing on 16% of all stumps. Armillaria spp. was the second most 

common which appeared on approximately 5% of all stumps. Other rot types only accounted 

for around 3% of the total number of stumps (Huse et al., 1994). In his publication, Solheim 

(2010) supported the importance of these two root and butt rots in Norway. Thor et al. (2005) 

also informed that the main cause for economic losses due to root rot pathogens in the northern 

temperate zone are Heterobasidion spp. (Heterobasidion annosum (Fr.) Bref. s. Lato) and 

Armillaria spp.  

  

1.2.1 Heterobasidion spp.  

 

The Heterobasidion spp. complex are white rots. There is two types of root rot pathogens from 

this complex in Norway, Heterobasidion Parviporum and Heterobasidion Annosum 

(Heterobasidion Annosum sensu stricto) (Granhus & Hylen, 2016; Solheim, 2010). 

Differentiation is based on the host tree and distribution area. H. Parviporum is mainly detected 

on spruce, whereas H. Annosum primarily infects Scots pine (Pinus sylvestris L.), but can be 

found on spruce as well as deciduous trees (Hanssen et al., 2019). The primary channel for 
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spreading is through the air, where propagules (mainly basidiospores) attach to freshly exposed 

wood surfaces. For instance, on damaged roots or stumps. After the pathogen has infected trees 

in an area or stand, a secondary source of infection can take place in healthy trees. Because the 

pathogen is not able to grow freely in the soil, this is through physical contact of the mycelium, 

through root contact or grafts (Garbelotto & Gonthier, 2013). As part of the primary infection 

channel, fruit bodies can originate on the lower part of stumps or in the root systems. Fruit 

bodies, which can exist for years, can produce spores when the temperature is above 0 degrees 

Celsius. In the root system of stumps, Heterobasidion spp. can live as long as 30-40 years, 

thereby inflicting danger of infection for the new generation of plants. The speed and rate of 

infection will vary with the spatial distribution of trees (Hanssen et al., 2019). The pattern and 

course of the disease in the tree relies on its age. Trees with ages up to 35 years can experience 

acute and critical infection resulting in death. Due to less resistant ability through lesser volume, 

the pathogen will more easily conquer smaller trees. On the other hand, older trees can 

experience a chronical disease cycle over a longer period of time. Generally, the rot will spread 

from the roots and upwards to the stem (Solheim, 2010). In Norway, H. Parviporum exists from 

Agder county to Saltfjellet in Nordland county. H. Annosum is most common in the western 

parts of the country to the north-western parts, however, it is discovered in the southern parts 

of the country as well as the eastern part (Hanssen et al., 2019). Hereafter, fungi from this 

complex will be referred to as Heterobasidion spp.  

 

1.2.2 Armillaria spp.  

 

There are four types of root rot pathogens from the Armillaria spp. complex in Norway, where 

Armillaria borealis and Armillaria cepistipes are the most common (Keča & Solheim, 2011). 

Armillaria spp. can be found on all tree species, and the two most common in Norway have the 

same behavioral pattern in forests. They are not considered as acting aggressively, however, 

they can establish on stressed trees (Hanssen et al., 2019). Risbeth (1985) states that the 

infection cycle starts with spore dispersal. Armillaria spp. are saprogenic and the main channel 

for infection is through rhizomorphs (mycelial cords) which develop in the ground. 

Rhizomorphs spread throughout dead and damaged roots (Solheim, 2010). In Hanssen et al. 

(2019) it is stated that smaller trees may die from infection. Solheim (2010) confirms and adds 

that the process is longer for larger trees. A. borealis is discovered throughout the country up 

to the county of Troms and Finnmark, whereas A. cepistipes is most common in the southern 
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and central parts of the country (Keča & Solheim, 2011). Hereafter, fungi from this complex 

will be referred to as Armillaria spp.  

     

1.2.3 Root and butt rot characteristics and implications for harvester operators 

 

Symptoms of Heterobasidion spp. in living trees are in most cases not possible to distinguish 

from other root and butt rot pathogens (Asiegbu et al., 2005). However, in the cross-section of 

stumps, the characteristics may appear more distinctly. In the center, brown-toned color appears 

before turning brighter. In the decay, black spots of millimeter length embraced by white zones 

of cellulose appears. On the outside of the decay, a reaction zone of olive or green color against 

healthy wood is created (Solheim, 2010). Armillaria spp. can exist inside trees for years without 

observable symptoms. Symptoms are first identifiable after felling, and may appear with the 

same characteristics as Heterobasidion spp. Due to bacteria and other fungi interplaying in the 

process, the decay can appear with a more thorough blackness. Characteristics may also include 

a hollow space in the center of the stem, after the dissipation of lignin and cellulose (Solheim, 

2010). In living trees, visual detection of root and butt rot may be indicated by needle loss or 

fruit bodies of the fungi. In addition, resin extrusion on severely infected trees can occur. The 

symptoms may be challenging or impossible to detect visually (Vollbrecht & Agestam, 1995). 

A study from Estonia on visual detection of root and butt rot discussed that a notable portion of 

visually categorized healthy trees in fact were affected. As a conclusion, it was stated that the 

visual inspection was not reliable (Allikmäe et al., 2017). In their study, Giordano et al. (2015) 

found an underestimation of rot (including Heterobasidion spp. and Armillaria spp.) from 

visual assessment compared to molecular methods of more than 90%. Axmon et al. (2004) 

argue that the difficulty of the visual inspection of root or butt rot in spruce is because of 

similarities in characteristics between rot and other factors, per instance cracks or dead spots of 

inner bark. As inspection through field registrations in the aforementioned studies is classified 

as challenging, a harvest machine operator is working in a stressing environment with managing 

controls and reduced view from the cab (Gellerstedt, 2002). The study found that harvester 

operators are managing as much as 4,000 control inputs per hour. In addition, the operator has 

trouble detecting root and butt rot. In Ostovar et al. (2019), it is stated that the current practice 

for harvester operators is to detect the presence of root and butt rot at the first felling cut of a 

tree. The detection is based on the changing color of the sawdust that originates from the cut. 

Thereby, the operator handles the boom to enable a visual examination of the stem, and to assess 

the extension of rot before cutting the stem to different assortments. With more handling of 
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stems due to rot, economic losses through increased harvesting costs may appear (Hylen & 

Granhus, 2018; Seifert, 2007).  

 

1.3 Evaluation of rot in Norway and implications for assortments 
 

In Norway, a legislation determines that all marketable wood has to be measured 

(Skogbrukslova, 2005). The impartial and objective section of the measurement is conducted 

by Norsk Virkesmåling, which creates a neutral settlement between buyer and seller (Norsk 

Virkesmåling, n.d.-a). Norsk Virkesmåling is operating with different protocols for measuring 

wood. Hereunder are automatic measurement of length and diameter in assistance of manual 

sorting of qualities and dimensions, load measurement where length, width and height are used 

for estimation of the volume and quality, and photo-web measurement which does not require 

an employee to be present (Norsk Virkesmåling, n.d.-b). In addition to handling wood that is 

inbound between buyer and seller, control measurements are also conducted. Here proportions 

of the delivery are set aside for extensive examination by an employee. There are guidelines for 

handling of rot in sawn timber and pulpwood, and the latest publicly available were published 

in 2015 (Norsk Virkesmåling, 2015a; Norsk Virkesmåling, 2015b). In the guidelines for sawn 

timber, rot is not tolerated in any assortment. However, a maximum shortening of 60 cm is 

allowed on the log for clearing of rot, although, this reduces it to the second ranked grade (Norsk 

Virkesmåling, 2015b). In pulpwood, bright rot with approximately the same color as healthy 

wood is not considered as a fault. However, for darker decays, first grade pulpwood accepts up 

to 50% of the diameter or 25% of the surface area. For second grade pulpwood, up to 70% of 

the diameter and 50% of the surface area is accepted (Norsk Virkesmåling, 2015a).      

 

Stems are cut into logs according to price lists. The price itself is calculated per cubic meter, 

dependent upon log quality, length and diameter (Øvrum & Vestøl, 2009). In accordance with 

the aforementioned standards from Norsk Virkesmåling for sawn timber, the presence of rot 

will enable shortening or declassification of the logs, and thereby reduce the value. Decay 

caused by Heterobasidion spp. will reduce the proportion of sawn timber and cause economical 

losses due to decay in the most valuable part of the stem, the butt end (Seifert, 2007). As the 

rot colonize, it will move upwards in the stem (Stamnes et al., 2000). Degradation of sawn 

timber can occur, where significant parts of the stem may be categorized as lower grade 

pulpwood or bioenergy (Hylen & Granhus, 2018). Rot height of Heterobasidion spp. in Norway 
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spruce has been recorded as high as 10-12 meters up the stem, whereas Armillaria spp. seldom 

is over 2 meters (Hanssen et al., 2019; Stamnes et al., 2000; Stenlid & Redfern, 1998). A study 

by Tamminen (1985) recorded an average height of Heterobasidion spp. of 8.5 meters in 

Southern Finland. Although the height of Armillaria spp. may be shorter, culling of the most 

significant part of the stem may also occur at final harvest for these fungi (Hylen & Granhus, 

2018). In addition, root and butt rot may also lead to reduction in diameter growth. Bendz 

Hellgren and Stenlid (1995) studied NFI in Sweden and found that the relative diameter growth 

between healthy and infected trees was increasing over time. Over the period of the last 10 

years, the infected trees grew 10.1% slower.  

 

1.4 Previous research and objectives for the thesis 

 
On the subject of rot in spruce in Norway, Granhus and Hylen (2016) and Huse (1983) studied 

the occurrence of rot on national level. On stand level, Stamnes et al. (2000) studied the rot 

frequency in older spruce forests, whereas Huse et al. (1994) did a root and butt rot inventory 

on spruce stumps. In addition, Hylen and Granhus (2018) published a probability model for 

root and butt rot in individual spruce. Similar to the objective of this thesis, Nilsen (1979) 

examined the extent of root and butt rots in stems of spruce. Internationally, some studies on 

the subject of rot height were found in the literary search. Seifert (2007) modelled the rot height 

by calculating decay cylinders, Honkaniemi et al. (2014) examined the fungal growth in stems 

with measures from previous studies on the horizontal and vertical spread of the decay, and 

Bendz Hellgren and Stenlid (1997) examined the extent of decay in relation to tree growth. In 

addition, Pukkala et al. (2005) examined the height of the decay column dependent on the time 

since the decay reached the stem base. However, models for practical implementation as for 

example in in the bucking predictions made by the harvesters has not been developed and 

assessed in previous studies according to the authors knowledge. 

 
 
The main objective for this thesis was to develop a practical prediction model for root and butt 

rot heights in spruce. Furthermore, it was desirable to examine the independent variables that 

were used in the model and calculate the performance of the model. The practical term of the 

prediction model is apparent in selection of available variables. The available variables need to 

be obtainable through stand or single tree characteristics, and to be available before the bucking 

of a stem into logs begin.  
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2. MATERIALS AND METHODS 
 

2.1 Study area 
 

The experimental site was located in the south-western part of Innlandet county. More 

precisely, the stands were located south-east in Etnedal municipality (459 km2). The production 

forest in Etnedal municipality is spanning over 233,053 da.  

 

 
Figure 1. Overview of the study area and respective stands. 

  

The experimental site consisted of three stands totaling 92.3 da (figure 1). The latest forest 

inventory data was from 2008, however, information on stand 1 was renewed in 2013. Site 

index for all stands were 11 with spruce as its main tree species. Stand 1 was 131 years old, 

spanning over 77 da with 95% spruce. Here, the total tree number was 4,258 trees. Stand 2 and 

3, respectively, was 4.6 da and 91 years old, and 10.3 da and 81 years old. The total tree number 

for stand 2 was 179, whereas it for stand 3 was 505. Tree species distributions for stand 2 and 

3 were 100% and 90% spruce, respectively. The minor tree species was Scots pine. All three 
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stands were included in the study, however, stand 1 was the main subject of data collection, 

because it was thought to be the focused for the harvest operation. The western road along stand 

1 was built during the stand cycle, whereas trees in the stand were not harvested. The soil 

structure at the site is categorized as being thin moraine with sandstone as the rock type (Norges 

Geologiske Undersøkelse, n.d.).     

  

2.2 Field work 

 
The field work and data collection were divided into two missions. The first part consisted of 

identifying spruce infected with root and butt rot by examining core samples in root-height. The 

infected trees were clearly marked with colored ribbons, for the purpose of being excluded 

during the final harvest which occurred about two weeks later. After final harvest, field work 

part II was initiated. The purpose was to examine the expand of root and butt rot in the preserved 

spruce which was marked during the first field work, and to examine the root and butt rot 

extension up the stem. Another thesis was using the same site for sampling (Iversen, 2020). The 

process and data collection, field work part III, from this thesis will be described in 2.2.3. Data 

were shared between the studies.   

 
2.2.1 Field work part I 

 

When deciding upon the total number of trees desired in the dataset, it was evident that there 

would be discrepancies between the number of marked trees and the number of trees available 

for examination during field work part II. It was suspected that the variation would be caused 

by damage to the ribbons during final harvest (by trees falling onto ribbon-bearing trees, thereby 

destroying the marks), insufficient marking of trees making them unobservable by the harvester 

operator, or marked trees being removed due to the need of roads for the harvester and 

forwarder during the operational harvest. Thus, for validity, the dataset needed to contain a 

sufficient number of trees. 

 

It was decided that the sampling would be executed using systematic parallel corridors 

throughout the stand. For practical reasons the width of the corridors was set to be 2 meters, 

and a stick of that length was used in the measuring process. The distance between the 

centerlines in each corridor (a) was adjusted to capture the desired 1,000 trees.  
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The distance between the centerlines was estimated by:  

 
𝐶𝑊

( 𝑛
𝑁 )

= 𝑎 

 

Where CW is the corridor width, n is the total desired number of trees in the sampling process, 

and N is the total number of trees in the stand. N was calculated using the latest forest inventory 

for stand 1 to 4,258 trees. By inserting the relevant values for CW, n, and N we get:  

 
2 𝑚

( 1000
4,258 )

= 8.5 𝑚 

 

If half or more of the tree stem was inside a corridor it was included. All trees in all corridors 

were drilled with an increment borer under the point of first cut to avoid damaging the logs. 

The core samples were examined for root and butt rot (figure 2). If a bore sample showed 

infection, the tree was marked with a colored ribbon.  

 

 
Figure 2. To the left, the point of the bore samples. To the right, examination and determination of a core sample. Photos: Ole 

Marius Tollefsen Moen. 

 

The first corridor was placed in the south west corner of the stand. The starting point was set to 

4 meters from the stand border which the corridor would follow, in which the stand border was 
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perpendicular to the direction of the corridor. The starting point for each corridor was marked 

with a bamboo stick, enabling easy positioning of neighboring corridors. While performing the 

sampling in the corridors, bamboo sticks were used enabling later control and parallel center 

lines. While performing the sampling, a compass of 400 degrees was used for directional 

guidance. The bore samples were collected using an electric drill with a custom made device 

for fitting the 5.15 mm inside of the increment borer to the drill.  

 
Table 1. Number of bore sampled trees and trees that were marked with ribbons during the first field work. 

 
 

A total of 809 spruce trees were drilled using an increment borer during the first field work. As 

a result, 215 trees were marked because of detection of rot. Over the course of the five days in 

the field, the percentages of rot in sampled trees were between 24.5% and 30.1%. The trend 

shows a decreasing proportion of rot throughout the field work, where the largest percentage 

was detected during the first day and the smallest the final day. In total, the rot average was 

26.6%.  

 

2.2.2 Field work part II 

 

The second field work was carried out with help from a harvester. During the preparation, a 

sheet for field registration was composed. The registration sheet was constructed to be time-

efficient with only necessary variables, due to the cost of hiring the harvester. Furthermore, it 

was decided to use harvester data in combination with the data collected by Iversen (2020), to 

reduce time spent in the field. It was essential that all three sources of tree-specific data could 

be linked to the same tree, therefore, the registration sheet contained a column for tree number, 

time of first cut and the number of logs with their respective lengths. Firstly, the tree number 

would the sprayed onto the root, resulting in a link with the data from the other project. 

Secondly, the time of cut would link the harvester data to the field data. Thirdly, the number of 

the logs and lengths would determine the expand of root rot. Typically, the position of 

registration was on the opposite side of the direction of which the tree would be cut. 
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Furthermore, a visual inspection of the rot was done after that, where the harvester operator 

moved the stem towards registration position. If the stem showed infection of root and butt rot, 

cautious bucking was performed to detect the point where the upper side of the log was healthy 

and the lower side of the log was infected (figure 3). Before the actual data collection started, 

the harvester operator and I, as the field crew, practiced on a few trees to minimize sources of 

error and to establish safe working conditions. 

 

In field work part II the trees were harvested in the same order as registered in the first field 

work. With a desired average precision on the expand of root and butt rot of 25 cm, the last cut 

on each tree needed to be 50 cm. On trees which were clearly infected, longer cuts were allowed, 

as long as the last log did not exceed 50 cm.  

 

 

 
 

Figure 3. The work process of the second field work. First, visual inspection of trees (upper left), thereafter bucking with 

precision to determine the point of rot stop (upper right) and registration of the length of logs and time (lower left). Finally, 

marking of tree number on the stumps (lower right). The lower right photo also shows the clear-cut area with ribbon marked 

trees. Photos: Ole Marius Tollefsen Moen. 
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2.2.3 Field work part III 

 

Data were collected in the same area by Iversen (2020). For the sampling in his thesis, the trees 

which had been sampled during the field work part II were included. In his sampling, cross-

calipered diameter of the stumps and cross-calipered rot diameter was registered. In addition, 

photographs of stump surfaces were taken. The photographs were used for visual categorization 

of rot, and would ensure that the desired rot types were included in the dataset. 

 

Table 2. Overview of the visual categorization.  

 
a Stem rot: rot caused by injuries to the stem and removed from further studies. 

b Other: uncertain rot type and removed from further studies. 

 

The classification of rot was later verified by senior research scientist at the Norwegian Institute 

of Bioeconomy Research (NIBIO), Halvor Solheim. The visual categorization from field work 

part III (table 2) indicated that the combination of Heterobasidion spp. and Armillaria spp. was 

most common in the stand, represented in 41.2% of the cases. Individually, the presence of 

Armillaria spp. was found on 27% of stumps, whereas Heterobasidion spp. accounted for 

10.8%. The category of “other” was larger than for Heterobasidion spp. with a total of 14.2%. 

The least represented among the categories was stem rot, with a proportion of 6.8%. The root 

and butt rot fungi in question for this thesis accounts for 79.1% of rot incidences either 

individually or in combination. On the other side, stem rot and the category of “other” was 

represented in 20.9% of cases. 
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2.3 Data processing and validation 
 

Due to the size and context of the bore samples during field work part I, classification of rot 

was challenging. After the first field work, the total number of spruce with rot (marked spruce) 

was 215. However, the number reduced to 148 when field work part II was completed. The 

decline was caused by wrong classification of rot, or due to physical exclusion from final 

harvest (if a sampled tree was located outside the area of final harvest). Furthermore, there was 

additional reduction when recording of tree-specific data during field work part III, due to being 

unable to locate the stumps. This may be caused by damage from the harvester or forwarder, 

insufficient marking, dirt or the unclear surface in the terrain after final harvest.  

 

At this stage, the harvester tree number and rot heights for rotten energy wood and rotten 

pulpwood were denoted and linked to the dataset for trees which had harvester information. 

Based on the HPR file stem profiles, classification of assortments and lengths of logs for each 

tree were extracted from harvester data and figures describing each tree were made. 

Furthermore, harvester data contributed with diameter at breast-height, diameter at root and tree 

height. Measures of the diameter for every 10 cm on the stem up to the final cut were used. The 

total tree height for each individual tree was calculated using taper functions for spruce 

(Gjølberg, 1978). Differentiation between assortments of rot was based on the degree of rot on 

the surface of cut. Assumptions were made for rot assortments, implying that the rot tapered 

off upwards in the stem from Energy Wood (50% or more decay in the diameter) and ended in 

Rotten Pulpwood (less than 50% of rot in the diameter of the surface), thereby making Rotten 

Pulpwood the total rot height. Some trees, per instance double-stemmed trees, had missing 

values for one of the stems, and were therefore excluded. For the link between manual field 

registrations and the harvester registrations from field work part II, the time recordings were 

used in addition to the tree numbering.  
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Figure 4. Orange points are positions of trees with rot in the dataset after field work part III.  

Finally, dependent upon the visual categorization from field work part III, further processing 

of the dataset was done by excluding trees without rot. Trees with zero sign of decay, 

uncertainty of rot type or stem rot was excluded from the dataset. Trees infected with 

Heterobasidion spp., Armillaria spp. or a combination of the two were included. Stem rot was 

detected for some trees along the road in the western part of the area, however, the extension 

of stem rot within the stand was hard to measure. Based on the last validation, the final dataset 

contained 117 trees with root and butt rot.  

 

2.4 Statistical methods and data analysis 
 

2.4.1 Rot height prediction models 

 

Prediction models for rot heights was developed using R (R Team, 2019). The dependent 

variable “rot height” refers to the main prediction model which predicted the total extension of 

rot in each stem (in other words, the Rotten Pulpwood height). Moreover, the prediction of 

energy wood was implemented to the main prediction model through a loop.  

 

As mentioned in Kaplan et al. (2014), histograms are compatible in indicating data distributions 

and its shape, as well as detecting outlier data. Therefore, the examination of variables started 

visually using the generic built-in function in R for histograms. The dataset was divided into 

three subsets based on the visual categorization of rot (Heterobasidion spp., Armillaria spp. 
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and combination). No significant differentiation between the subsets was found, thus the dataset 

was handled in entirety. The dependent variable did not show any sign of being normally 

distributed, and the distribution was right-skewed (positively skewed) in accordance to the 

description made by Ho and Yu (2015). In fact, the skewness calculated using the e1071-

package was 1.06 indicating high skewness (Meyer, 2019). In addressing the skewness for the 

dependent variable, a log-transformation was performed because it can make skewed data more 

normally distributed (Feng et al., 2014). Tests for the distribution of the dependent variable, in 

its original form and as log-transformed, were performed with the descdist-function from the 

fitdistrplus-package (Delignette-Muller & Dutang, 2019). The descdist-function presents a 

skewness-kurtosis plot for the empirical distribution of the data, where the distribution is 

represented visually. Moreover, to account for uncertainty in the estimates of skewness and 

kurtosis, there is an option for bootstrapping (Delignette-Muller & Dutang, 2019). The 

dependent variable, in its original form, suggested a Beta-distribution. However, the Beta-

distribution follows a distribution from 0 to 1, which is in violation to the values of the 

dependent variable (Moitra, 1990). Therefore, a trial for the dependent variable where rot height 

was a percentage of the tree height was performed. The trial did not show any obvious answers 

to choosing a regression model, and the results from this test was not satisfactory. More 

secondary tests were conducted, however, the distribution of the dependent variable was not 

apparent. On the other hand, as regards to the skewness-kurtosis plot, the log-transformed 

dependent variable could indicate a fit for normal distribution (boot = 1,000). The output data 

from the regression was analyzed, in addition to the Shapiro-Wilk normality test.  

 

As for the independent variables, the flexibility in selection was reduced due to the model being 

a practical prediction model. Therefore, the independent variables needed to either be obtained 

from harvester data before bucking of the stem into logs started or from collectable data 

throughout the stand. An independent variable for the proportion of rot was used (the rot 

proportion is calculated by dividing cross-measured diameters of the rot by cross-measured 

stump diameter from field work part III). It was assumed that this variable could be assessed 

by operators or by sensors. Another independent variable, tree height, was also included. The 

total tree height is not available before bucking of the stem. However, as the taper and stem 

diameters are predicted by measuring diameters in the first part of the stem, total tree height 

could also be estimated by the harvester computer system. A taper function was also tested as 

a variable, with the tapering being the average between diameter at root and diameter at breast 

height. Initially, a linear model with the log-transformed dependent variable was used with the 
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regsubsets-function from the leaps-package. Regsubsets does an extensive search throughout 

the dataset for the best combination of predictor variables (Lumley, 2020). Moreover, the 

relationships between potential variables from the regsubsets results were plotted against the 

dependent variable to examine their relationship, using the ggplot2 package (Wickham, 2005). 

In ggplot2, the function geom_smooth was used for illustration with linear regression 

predictions on the relationship between the individual independent variables and the dependent 

variable before transformation (Prabhakaran, 2016). The linear regression predicted the 

dependent variable with the data available for each individual independent variable. The 

predictions were illustrated in graphs for easier visualization. In addition, a variable for tapering 

of the stems was included in the analysis.  

 

Four multiple linear regression models with the log-transformed dependent variable were 

developed. The dependent variable y with multiple regressors k can be described as in 

Montgomery et al. (2012) at the general form of:  

 

𝒴 =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ +  𝛽𝑘 𝑥𝑘 +  ℰ   1 

 

 

 
(1) log (𝑟𝑜𝑡 ℎ𝑒𝑖𝑔ℎ𝑡) = 𝛽0 +  𝛽1u 𝑅𝑜𝑜𝑡 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 +  𝛽2u 𝑅𝑜𝑡 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 +  ℰ  

 
(2) log (𝑟𝑜𝑡 ℎ𝑒𝑖𝑔ℎ𝑡) = 𝛽0 +  𝛽1u 𝑅𝑜𝑜𝑡 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 +  𝛽2u 𝑇𝑟𝑒𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 +  ℰ  

 
(3) log (𝑟𝑜𝑡 ℎ𝑒𝑖𝑔ℎ𝑡) = 𝛽0 +  𝛽1u 𝑅𝑜𝑜𝑡 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 +  𝛽2u 𝑅𝑜𝑡 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 + 𝛽3u 𝑇𝑎𝑝𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  +  ℰ 

 
(4) log (𝑟𝑜𝑡 ℎ𝑒𝑖𝑔ℎ𝑡) = 𝛽0 +  𝛽1u 𝑅𝑜𝑜𝑡 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 +  𝛽2u 𝑅𝑜𝑡 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 + 𝛽3u 𝑇𝑟𝑒𝑒 ℎ𝑒𝑖𝑔ℎ𝑡  +  ℰ 

 

Model selection was based on the estimated coefficients for each model, as well as QQ-plots 

(quantile-quantile plots) and a Shapiro-Wilk test. The estimated coefficients generated in R 

were the coefficient estimate, its standard error, t-value and their level of significance. In 

addition, multiple R-squared and adjusted R-squared were used. Multiple R-squared can be 

 
1 In Montgomery et al. (2012), 𝛽0 is the value of the dependent variable when all other parameters are set to 0 
(the intercept). 𝛽𝑘  are estimated coefficients for the independent variables 𝑥𝑘 , where changes in 𝑥𝑘  has 𝛽𝑘   
impact on the dependent variable (𝒴).   
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described as the amount of variance in the dependent variable that is explained by the 

independent variables. The adjusted R-squared is an estimate of how the R-squared would be 

in a population, rather than in the sample. Therefore, it can be used in variable selection because 

the R-squared will increase when independent variables are included due to correlation, 

whereas the adjusted R-square will tone this effect down (Miles & Shevlin, 2001). QQ-plots 

were used with the generic built-in function in R, qqnorm. For the QQ-plots, the residuals of 

each model were plotted against the normal distribution to examine normality (R 

Documentation, n.d.-a). The Shapiro-Wilks test has a null-hypothesis that the data come from 

a normal distribution. Therefore, it was used in evaluating the models (R Documentation, n.d.-

b). Finally, on further investigation of the variables, log-transformations of the independent 

variables “root diameter” and “rot proportion” were performed due to higher scoring parameter 

estimates. Due to log-transformations, the models needed to be corrected for logarithmic bias 

before predictions were made. The correction was done by exponentiating and adding half of 

the mean square error to the intercept-estimate. In addition, as two of the three independent 

variables were log-transformed, these values were converted back to their original form as 

described in Flewelling and Pienaar (1981). In the regression, the coefficient estimates were 

interpreted according to their relationship with the dependent variable, either by log-linear or 

log-log interpretation (Benoit, 2011; Welham et al., 2014).  

  

As for root and butt rot, Heterobasidion spp. and Armillaria spp. are the species that was 

examined and predicted for. For simplicity in calculations, root and butt rot profiles were 

presumed as having the shape of a cone. Due to differentiation of rot in the assortments (Energy 

Wood and Rotten Pulpwood), values for predicted height of Energy Wood was also needed for 

further analysis. A loop was constructed to calculate the value from the prediction model. For 

the loop, harvester data of every 10 cm of the stem was used. The data contained tree number 

and stem positions with respective diameters. First, a for-loop exploited the whole dataset. 

Inside the for-loop, another for-loop was made to run upwards on each stem to the point where 

an if-test was accepted. Within the inner for-loop, there is a diameter, a rot diameter and a 

prediction for total rot height. It starts at stem height = 0, and continuous upwards until the 

proportion of rot is 50%. The rot height for Energy Wood is set to the point of the advancement 

in the loop, and extracts a value for Energy Wood where more than 50% of the surface is of 

decay. The result was a table consisting of the total rot height (Rotten Pulpwood) and the height 

of Energy Wood.  
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2.4.2 Evaluation of the prediction model in OptApt 2.0.1 

 

To make an optimal bucking of trees into logs OptApt 2.0.1 was used. OptApt is a bucking 

simulator that produces the most valuable bucking of a stem into logs, using dynamic 

programming. The pattern of bucking is dependent on quality, dimensions and available prices, 

thus resulting in the optimal bucking on the available and underlaying information (Gobakken, 

2000). OptApt was programmed to perform bucking-to-value. Bucking-to-value is bucking 

performed solely on price matrices. The optimal solution for cutting a stem is the most valuable 

among all possible alternatives, for the underlaying price matrices (Kivinen, 2004).  

 

The main objectives for OptApt were to (1) analyze qualities from field registrations and (2) 

analyze effects of applying the optimal bucking pattern based on predicted rot-heights for rotten 

pulpwood and rotten energy wood on the field registered quality. The obtained log distributions 

were compared to distributions based on field registrations. In other words, a comparative study 

of value on field registered data and data from the prediction model. 

 

To accomplish the objectives, price matrices for spruce assortments were collected and used in 

OptApt. The following assortments were used: sawn timber, pulpwood, rotten pulpwood, culled 

rotten pulpwood, energy wood and culled energy wood. The stem profiles and the quality 

registrations from the harvester data collection were the foundation for tree-specific 

information. Each individual tree contained records of information for every 10 cm on the stem 

(as described in 2.3). Furthermore, the positions on the stem had respective information on 

diameters, denotation for place of bucking, denotation for forced bucking due to discrepancies, 

and a quality grade. The quality grade is essential in the optimization process and in allocating 

parts of the stem to correct assortments (table 3). On tree-specific data, quality grade 1 was used 

for sawn timber, quality 2 was used for rotten pulpwood and quality 4 for energy wood. 
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Table 3. Overview of assortments (left), minimum and maximum allowed lengths (mid-left), minimum and maximum allowed 

diameters (mid-right) and necessary quality grade (right). The quality grade of assortments is excluding in hierarchal order, 

meaning only logs of relevant quality or better is included. 

 
   

The data were used in an optimal bucking-for-value process, where the bucking pattern was 

extracted for future use (1). Secondly, predicted rot heights from the prediction model were 

uploaded in OptApt and an optimal bucking-for-value was extracted from this dataset as well 

(2). Finally, the aforementioned files containing the observed field qualities with the bucking 

pattern from the predictive data (3) were uploaded and processed. The optimal bucking-for-

value on the observed field qualities with the predicted bucking pattern was to resemble the 

situation a harvester operator would encounter using the developed prediction model as 

decision support.       
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3. Results 
 

3.1 The prediction model 

 
The best scoring prediction model (Multiple R-squared and adjusted R-squared were 0.2104 

and 0.1894 respectively and a p-value=0.00845 from the Shapiro-Wilk normality test on the 

residuals) that was used for further examination in this thesis was the model with log-

transformed dependent variable and independent variables “root diameter” and “rot 

proportion”. The independent variable “tree height” was not transformed: 

    
log(𝑅𝑜𝑡 ℎ𝑒𝑖𝑔ℎ𝑡) = 𝛽0 + 𝛽1u log(𝑅𝑜𝑜𝑡 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟) + 𝛽3u 𝑇𝑟𝑒𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 + 𝛽2u log (𝑅𝑜𝑡 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛)   +  ℰ        

 
Table 4. Coefficient estimates, standard error, t-value and order of significance for the prediction model that was used for this 

thesis. 

 
 

As for the coefficient estimates, the tree height estimate was negative. The interpretations of 

the estimates have to be performed differently (2.4.1). The log-linear interpretation indicates, 

with all other values unchanged, that a one-unit increase in “tree height” will result in about -

10.2% change in “rot height”. On the other side, a one-unit decrease in “tree height” will result 

in about 11.3% change in “rot height”. The standard error, however, was relatively small 

compared to the other coefficients. The independent variables “log(root diameter)” and “log(rot 

proportion)” was interpreted as a in log-log regression. For a 1% increase in “root diameter”, 

an increase of 2.23% in “rot height” is the result, when all other coefficients are held at the 

same level. Moreover, a 10% increase in “root diameter” results in an increase of “rot height” 

of 23.5%. Here, the interpretations for “log(rot proportion)” were that a 1% increase in the 
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independent variable resulted in an increase of 0.62% in “rot height”, with all other coefficients 

held at the same level. A 10% increase, however, resulted in an increased “rot height” of 6.14%. 

All coefficients except tree height were significant at p-value=0.001. For “tree height”, the 

value was larger (p-value=0.01). However, all coefficients were significant at the desired level 

of p-value=0.05. As for the residuals, the minimum and maximum values were -2.17 and 1.72 

m, respectively, and with a median of 0.085 m. With a mean of 0 m, the median is located on 

the smaller positive side of the mean (see appendix 2, figure 1 for QQ-plots of the residuals and 

appendix 1, table 1 for estimates on the other models). 

  

The comparison between the predicted rot heights and the field registered rot heights (figure 5, 

complete list in appendix 1 table 2) showed that the predicted values were more even throughout 

the dataset. In fact, the minimum value among the predicted was 63.8 cm, whereas it for field 

registered data was 26 cm. The maximum predicted value was 754.4 cm, here, the maximum 

field registered rot height was 1,080 cm. The average predicted value was 292.2 cm, with a 

median of 280.9 cm, whereas respective field registered values were 272.2 cm and 152 cm. 

 

 
Figure 5. A comparison of rot heights for field registrations (blue line) and predicted rot heights (red line) throughout the 

dataset of trees. Each individual tree is represented in the graph. 
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3.1.1 Variables 

 

The transformation of the dependent variable “rot height” is illustrated using a histogram plot 

(figure 6). For the examination of the relationship between each individual independent variable 

and the dependent variable, linear regression was used. In the linear regression, the predictive 

powers of the independent variables on the dependent variable were illustrated (figure 7). The 

variables are illustrated in their natural form, before log-transformation was performed. 

 

“Root diameter” (figure 7) is increasing over the plot. In general, rot height predictions were 

higher for higher values of “root diameter”. The confidence interval around the plotted 

predictions were decreasing to the value around 0.35, where it further increased to settle at a 

higher level. “Tree height” (figure 7) showed the flattest impact on “rot height”, with starting 

point on the x-axis of around 2.4 meters and ending at around 4 meters. The respective 

confidence interval was relatively high. “Rot proportion” (figure 7) showed a positive effect on 

prediction of rot height. The starting point on the x-axis was about 1.75 meters for the lowest 

proportions of rot, and ending at the level of 3.75 meters.   

 

 

 
Figure 6. Histogram of the dependent variable before (left) and after log-transformation (right). The dependent variable 

conformed more to a normal distribution, as implied by the Cullen Frey graph. 
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Figure 7. Linear regression with prediction line for the height of rot on the y-axis plotted against independent variables "root 
diameter" (top), "tree height" (mid) and "rot proportion" (bottom). The shaded area is the 95% confidence interval around the 
predictions.  
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3.2 OptApt  
 

In OptApt, a valuation of the optimal bucking based on field registered qualities (table 5, 

“optimal”) and the optimal bucking pattern from predicted qualities applied on field registered 

qualities (table 5, “predicted”) were computed. In that way, the results simulated the value of 

the prediction model and could be compared to the optimal solution.  

 

 

 

 
 

Figure 8. Bucking of example tree no. 41 in the dataset. Predicted bucking on the field observed qualities (top) and optimal 

bucking of field observed qualities (bottom). RPC=Rotten Pulpwood Culled, RP=Rotten Pulpwood, S=Sawn Timber, 

P=Pulpwood. Height of the tree (cm) on the x-axis and radius (mm) on the y-axis. The red at the base of the stem is the field 

registered rot length of 26.5 cm. The predicted rot length is 134.4 cm. 
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Table 5. Values and volumes for the different assortments when comparing the results of the simulated use of the prediction 

model and the optimal solution achievable. When added, the volumes for each assortment are less than the total. The differences 

are due to outlays.     

  
 

The optimal bucking for the field registered qualities of the trees in the dataset performed NOK 

5,881 better than the predicted bucking. Based on the prediction model the average NOK/𝑚3 

was 348. For the optimal solution the value was higher, with NOK/𝑚3 of 446. The difference 

in performance was NOK/𝑚3 98. For the optimal bucking (table 5), larger volumes are 

classified as sawn timber, thereby creating larger values. The optimal bucking also distinctly 

allocates higher volumes in Energy wood, whereas the prediction model on average divides 

more volume in the lesser valuable assortments. In fact, the prediction model showed larger 

volumes in the assortment for pulpwood than allocated by the optimal bucking procedure. In 

addition, the total exploited volume was larger for the optimal bucking. For the predicted 

bucking, the overall value utilization compared to the optimal was 76%. On tree level, this 

utilization was 74% with a standard error of 18%. 
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4. Discussion 
 

4.1 Data sampling 
 

Rot inventories on NFI data from the periods 1964-1976 and 1986-2004 indicated a nationwide 

rot frequency between 7.9%-9.5% (Granhus & Hylen, 2016; Huse, 1983). Nonetheless, in their 

nationwide study on stump surfaced of spruce, Huse et al. (1994) discovered a root and butt rot 

proportion of 26.8%. In this particular thesis, it was found that the extent of root and butt rot 

was 26.6% from increment borer samples, which is in accordance with the latter study. This 

proportion, approximately 1 out of 4, is also supported by studies in the mid-parts of the country 

(Næsvold, 1989). However, the sampling technique of using an increment borer in detection of 

rot has been discussed in previous studies. Stenlid and Wästerlund (1986) found that when 

sampling at breast height, 80% of all rot was detected and that the percentage increased when 

sampling at root height. In misjudging of the core samples at stump height, it was emphasized 

that one reason may be the fact that the decay possesses a lateral expansion, which was harder 

to detect at that point. This may have led to consequences for this thesis during the sampling of 

trees, where lateral decay could have been excluded from the dataset. In addition, throughout 

field work part I, observation of rot in the core samples was acquainted with some degree of 

doubt due to the small size of the column of wood from the increment borer, as pointed out in 

Thor et al. (2005). Furthermore, samples may have missed the point of decay, which is likely 

to have happened for spruce with smaller decay. Therefore, it is possible that the dataset was 

overrepresented with cases of more advanced decay, and thereby affected the prediction model. 

Challenges of detecting rot in core samples became evident as the second field work progressed. 

A smaller number of spruce marked for rot did not show any sign of decay at felling, and on 

the other side, sampled spruce that was classified as healthy did in fact show decay. Thus, the 

observed percentage of rot during the first field work is somewhat misguiding and may not be 

correct, although, these cases were not that common. On another subject, discrimination 

between fungi, Huse et al. (1994) pointed out that bore samples at breast height leads to 

underrepresentation of Armillaria spp. This may be caused by the fact that the extension of 

decay up the stem is shorter for this pathogen than for Heterobasidion spp. (Solheim, 2010). 

However, as the samples in this thesis was below the point of first cut, no discrimination 

between the two species should be present. 
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The visual categorization during the field work part III (table 2) showed Armillaria spp. as the 

most prominent fungus in that particular stand (27% of all decayed spruce). Heterobasidion 

spp. on the other side, occurred in 10.8% of instances. This is in contrast to previous 

publications highlighting Heterobasidion spp. as the most important root and butt rot fungus in 

Norway (Hanssen et al., 2019; Stamnes et al., 2000). However, a Norwegian thesis on older 

spruce on similar altitude conforms with the discovery from the visual categorization, and the 

importance of Armillaria spp. under these conditions (Bjørbæk, 2016). Moreover, the results in 

this thesis showed that a combination of the two was most common with 41.2% and that the 

category of “other” was 14.2%. The reason for obscurity in the numbers with large share of 

combinatory appearances and undefinable rot types can be traced back to the classification 

itself, where it was stated that a single photograph was not sufficient in cases where the 

characteristics of the fungi was not distinct. This is also mentioned in Schulze et al. (1997), in 

addition to the positive side of visual inspection being its effectiveness, whereas the methods 

of DNA and other molecular analysis is pointed out as time-consuming but accurate. In some 

cases, lighting and resolution in photographs or dirt on the stumps were hindering factors. In 

other cases, the decay itself was challenging to interpret. Therefore, the classification was vague 

and later set aside as it was not a priority for further examination. As the classification was 

deemed questionable, it is also possible to believe that spruce with unwanted rot types may 

have been included in the dataset, and on the other side, spruce with the correct rot types may 

also have been excluded. In addition, smaller decay that was not developed to being distinct 

could have been left out of the dataset, thereby, inflicting on the prediction model. As the 

prediction model was made to be of practical functioning, similar root and butt rots to 

Heterobasidion spp. and Armillaria spp. may not have added any disturbance if included in the 

dataset. But, in cases where rot types which differ substantially in characteristics could have 

been included and might cause errors. 

 

During field work part II, in company with the harvester, some challenges occurred. The 

challenges were related to handling the small sized logs in regard to the determined precision 

of 50 cm. In cases where the rot was presumed to extend further up the tree than it actually did, 

thereby making the first cut above the rot height, the harvester machine operator was able to 

grab the log, and cut it into smaller logs. The competent operator made the results reliable, as 

there were uncertain aspects in regard to the execution.     
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4.2 Data analysis  
 
4.2.1 Sample size 
 
The dataset started out consisting of 215 infected spruce and ended up with a total of 117 (for 

reasons mentioned in part 2.2.1 and 2.3). The desired amount of 1,000 sampled spruce trees 

were an optimistic estimate and ended up consisting of 809. In Heckmann et al. (2014), it is 

mentioned that small sample sizes have consequences for population parameters and regression 

parameters. The population parameters can obtain large standard errors and wide confidence 

intervals, in other words, it may have influenced the dependent variable “rot height”. Smaller 

sample size may also affect the regression parameters, causing the estimates to be uncertain. 

Moreover, the sample can elude from capturing all variability, thus leaving the model to be 

insufficient in prediction for different phenomenon. As expected, when the number of 

observations increases, the associated uncertainty will decrease (Welham et al., 2014). In his 

study on modelling of rot heights, Seifert (2007) used two different datasets consisting 956 and 

863 spruce with the number of stands being 17 and 9 respectively. Although not on the subject 

of rot, Malinen et al. (2003) predicted the internal quality by using 240 sawn spruce. In his 

thesis on the extent of root and butt rots in older spruce, Nilsen (1979) examined 130 trees. In 

this thesis, the reduction in sample size from the original 215 spruce trees after field work part 

I to the final dataset of 117 was not expected. In general, larger datasets have been used in 

previous studies. Knofczynski and Mundfrom (2008) states that the sample size for multiple 

linear regression models are dependent upon objectives of the study and the type of model that 

is being used. In addition, it is stated that few researchers agree on the minimum sample size. 

In this thesis, the dependent variable was “rot height”. Root and butt rots (Heterobasidion spp. 

and Armillaria spp.) have different characteristics and in respect to the visual categorization, 

they can also appear different individually. Therefore, when modeling this varying biological 

phenomenon, a more complete dataset could have captured the variability in its appearance. 

However, for multiple linear regression models, the Power and Precision in Ryan (2013) 

suggests a sample size between 36 and 77 for R-squared values between 0.13 and 0.26 (the 

obtained R-squared in this thesis was 0.21), meaning that the sample size in fact was sufficient 

to that measure. 
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4.2.2 Model selection  
 
The dependent variable was left-skewed (figure 6) and did not portray as belonging to any 

regression model type visually through histograms. The skewness-kurtosis plot of the 

dependent variable before transformation (appendix 2, figure 2) suggested a Beta-distribution. 

As the Beta-distribution was abandoned (Materials and methods 2.4.1), the log-transformed 

dependent variable indicated a fit for linear regression (appendix 2, figure 3). As there was no 

obvious solution to the distribution of the dependent variable, the suggested multiple linear 

regression model was chosen. To check assumptions for normality, the output of the regression 

model was used in evaluation (table 4), in addition to the plotted residuals against the fitted 

values (appendix 2, figure 4) and the Shapiro-Wilk normality test on the residuals (p-

value=0.00845). The Shapiro-Wilk test did not show that the data was normally distributed (p-

value<0.05), whereas the somewhat horizontal distribution in the residuals plot could indicate 

it. However, as stated by Ayinde et al. (2012), the assumptions of the linear regression models 

are hardly met in real life, and when modeling rot heights, one might think that the uncertainty 

in the characteristics is a hindering factor. In addition, the assumption of multicollinearity, 

possible between the independent variables “root diameter” and “rot proportion”, could also 

have been violated. However, in the lack of finding another option, it was deemed as adequate.            

 

4.3 The prediction model 
 

4.3.1 Independent variables 
 
The three independent variables in the model “root diameter”, “tree height” and “rot 

proportion” were assumed as being qualified for a practical prediction model, however, the 

input data for “tree height” and “rot proportion” would need to come from additional technical 

gear. The diameter at the root could be extracted at first cut, therefore, the use of this variable 

was valid. The height of the tree, on the other side, is calculated further up on the stem, and the 

information on that point in time would be useless for the prediction model. However, the 

assumption stated that the calculation of tree height could be performed through the predicted 

taper and stem diameters in the harvester computer system. Another possibility is the 

combination of single tree based inventory. Here, a combination with airborne laser scanning 

as in Ene et al. (2012) or by using LIDAR and aerial images as in (Korpela et al., 2007) is a 

possibility for gathering information on tree heights. The last independent variable is “rot 

proportion”. The current situation is that it is assessed by the harvester operator for determining 
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log quality. For automatic measurement, additional technical gear at the harvester machine 

would be needed. In their study Ostovar et al. (2019) tested the classification of root and butt 

rot using computer vision techniques. It is stated that the use of this in operational environments 

is a relatively new topic. 

 

Individually, the independent variables showed a positive impact on the extent of root and butt 

rot height (figure 7). “Tree height” made the least impact, however, there was some impact 

showing that increased height predicted higher values for “rot height”. Increase in “root 

diameter” and “rot proportion” predicted higher levels of “rot height”. The result for “rot 

proportion” is in line with the results in Nilsen (1979) for the relationship between the height 

of rot and diameter of the rot. The positive relationship between “rot proportion” and the height 

of rot is also shown in Seifert (2007) for spruce infected with Heterobasidion spp., where the 

proportion of rot is referred to as “relative rot area”. Žemaitis and Stakenas (2016) found that 

increasing stump diameter resulted in significantly larger risk of rot. This is not comparable to 

the results in this thesis, as they observed rot frequency on stand level, however, the trend may 

be comparable to the result for “root diameter” as the trees were sampled individually. Mattila 

and Nuutinen (2007) examined the reduction of sawn-timber volume due to decay of 

Heterobasidion spp., and found that increasing diameter at breast height reduced the sawn-

timber percentage. Diameter at breast height is measured above the diameter at root, however, 

similarities for the measures can be expected. As to the reduction of sawn timber, it can be 

compared to the extent of the rot as measured in this thesis. Seifert (2007) found a positive 

relationship between the diameter of the stump on increasing rot height prediction in his two 

models, for Heterobasidion spp. in spruce trees.                 

 

The regression estimates for the model (table 4 with accompanying interpretations) showed that 

“root diameter” had the largest impact on the prediction of “rot height”. This is in contrast to 

the results in Seifert (2007), where his estimate on the proportion of rot were the most 

influential. However, as the dynamics of the two models is completely different, caution when 

comparing the two must be taken. In this thesis, the regression estimate “tree height” was 

negative, whereas it individually showed minimally positive effect on the prediction of “rot 

height”. One reason for the independent variable being negative might be for a reason stated in 

Tranmer et al. (2020), that the independent variables are fitted together in a linear combination 

to express the dependent variable. Therefore, as a condition for the assumptions in multiple 
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linear regression, the fitted value becomes negative in combination to the values of the other 

independent variables.  

 

4.3.2 Prediction model performance        
 

The performance of the prediction model is visualized in table 4 and figure 5. The average 

predicted root and butt rot height was 292.2 cm, where the average field registered root and butt 

rot height was 272.2 cm. The two values are relatively close, however, as the medians are 280.9 

cm and 152 cm, respectively, the two sources of rot heights differ substantially. For the 

prediction model, the median indicates that the distributions of values over and under the mean 

are relatively similar. On the other side, the field registered values indicate that there are more 

recordings of lower rot heights, making the median substantially lower. In addition, there are 

some extreme values that is making the mean larger than the median. Visually, this 

phenomenon is apparent in figure 5, where the predicted values are more even throughout the 

dataset, and do not cover the variability that was observed during the field work. In addition, 

this is supported by the minimum and maximum values of 63.8 cm and 754.4 cm for the 

predictions, whereas the values in the field were 26 cm and 1,080 cm.       

 

The prediction model performance was also evaluated using OptApt. Field registered qualities 

with the bucking-pattern from the prediction model (the optimal bucking of the predicted rot 

heights) was compared to the optimal bucking of the field registrations (table 5). Although this 

is similar to a complete evaluation of the prediction model, some problems occur in the 

execution. The major difference is that the harvester machine operator, when cutting a tree, will 

do continuing evaluations of the stem and check for rot. Throughout the process of cutting, the 

operator will address the situation further and make decisions based on how the root and butt 

rot is appearing and developing. The model, however, will not be able to address this dynamic 

and continuing evaluation. It will give predictions for the total extent of rot, and any further 

evaluation must be performed by the operator. If the bucking of a stem were done according to 

either the prediction model or the optimal bucking, the result would be as in figure 8. In this 

example, the prediction model predicts the rot length to be further up the stem than it actually 

is, thereby creating volume losses with the high first cut. In light of the acquired values for the 

prediction model and the field registered data, with larger minimum value for the prediction 

model (63.8 cm) than was registered in the field (26 cm), one might think that for smaller extent 

of decay around the minimum values, the prediction model would make the cut above the point 
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of rot stop. On the other side, for spruce with larger extent of root and butt rot, it is possible that 

the cut would be below the actual height of the root and butt rot. 

 

The optimal bucking is based on complete information for the tree stem. In practice, the 

harvester machine operator will not have that kind of information available. However, reports 

from Sweden on the utilization grade in a bucking-for-value system show a utilization of 

approximately 98% for different types of systems (Arlinger & Möller, 2006; Möller et al., 

2013). Although this is not completely comparable due to being at different locations under 

different conditions, the numbers can indicate that it is possible to obtain very high values. As 

for the utilization for the prediction model it was 76%. At tree level the utilization was 74% 

with a standard error of 18%. This is significantly smaller than in the aforementioned reports, 

however, hopefully that the model could have a positive impact on the decisions for harvester 

operators, as a source for guiding. To truly measure the performance of the model, one would 

have to cut the stand twice, one time without the model and one time with the model. As this is 

not possible to do, two near identical stands might have been used. The optimal solution for the 

stand performed NOK/m3 98 better than when the prediction model was used, and allocated 

more volumes to the most valuable of sawn timber (table 5). The reason for this may be that 

when computing the best bucking of a stem, with all information available, sawn timber is the 

priority. Therefore, the bucking is executed in a manner that creates the most sawn timber logs. 

On the other side, the prediction model is basing the quality of the stem on the input at first cut, 

thereby, further bucking becomes the result of a prediction. Another reason for the better 

performance can be that when using the prediction model, larger volumes are left in the forest 

as culled wood. The reason for culling may be that the prediction is wrong, and therefore, the 

need of culling is present. Whereas the optimal bucking is aware of the qualities, thereby, do 

not make mistakes on that point.   
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5. Conclusion 

 
The main objective for this thesis was to develop a practical prediction model for the extent of 

Heterobasidion spp. and Armillaria spp. root and butt rot in spruce trees. The results from the 

model showed that 21.04% of the variance could be explained by the model. Furthermore, the 

independent variables “root diameter”, “tree height” and “rot proportion” were examined for 

their predictive powers on the dependent variable “rot height”. The results from the examination 

of the independent variables were in accordance to previous publications on the subject. 

Furthermore, the performance of the model was also evaluated using OptApt, which showed 

that the prediction model had a utilization grade of 76%. The prediction model in this thesis 

performed NOK/𝑚3 98 poorer than the optimal bucking. However, as it is hard to find relevant 

objects to compare the utilization grade of 76% with, it is concluded that the model can be used 

for assisting the harvester operator in decision making. In practice, the harvester operator will 

override predicted bucking when it is discovered that the real quality differs from the 

predictions.   

 

Addressing the somewhat poor results from the prediction model, the sample size may be 

emphasized. Other factors may be that root and butt rots are behaving in non-uniform ways, 

which makes them hard to predict using a multiple linear regression model. However, as this 

was a practical prediction model, the number of available independent variables when 

predicting rot height was constrained.  

 

In future research, similar prediction models should be developed using a larger number of 

observations and implemented in the computer system in the harvesters to evaluate how much 

the predictions could help guiding the bucking. That improvement in bucking decisions is the 

payoff of further developing the model.  
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Appendix 1 – Tables 
 
Appendix, table 1. Coefficient estimates, multiple R-squared, adjusted R-squared and Shapiro-Wilk test for all models in this 

thesis. The highlighted values are the best scoring. Model 4 was further developed and used in the thesis. 

 
 
Appendix, table 2. List of tree number with values for: predicted energy wood, predicted rotten pulpwood, field registered 

energy wood and field registered rotten pulpwood, respectively. 
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Appendix 2 – Figures 
 

 

 
Appendix, figure 1. Quantile-Quantile plot of the sample quantiles against the theoretical straight quantiles. The sample 

quantiles are derailing from the line in some degree. 

 

 
Appendix, figure 2. Cullen Frey Graph with theoretical distribution for the dependent variable before transformation. The 

observation is located in the Beta-distribution. 
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Appendix, figure 3. Cullen Frey Graph of the dependent variable after transformation. The formula included a bootstrap of 

1,000. With the bootstrapped values, a linear regression could be suggested. 

 

 
 

Appendix, figure 4. Residuals vs. Fitted. The line is somewhat horizontal. This figure was used in addressing the normality of 

the model. 
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