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Sammendrag  
Mikroorganismene i tarmen etablerer komplekse mutualistiske forhold til verten og spiller en 

viktig rolle i modningen av vertens immunsystem. Modningsprosessen påvirkes enten direkte 

av bakterielle komponenter eller indirekte gjennom bakterienes fermenteringsprodukter slik 

som korkjedede fettsyrer. Med dette som grunnlag utforsker denne studien den langsgående 

utviklingen av tarmmikrobiotaen og nivået av kortkjedede fettsyrer hos barn gjennom deres 

første leveår, og ser det i sammenheng med barnas immuncelleprofiler ved ett års stadiet. 

 

Fekale prøver fra 180 12 måneder gamle barn ble hentet fra studien Prevent Atopic Dermatitis 

and Allergies (PreventADALL). Immuncellekomposisjonsdata ble mottatt for 67 av barna og 

disse barna ble studert langsgående ved analyse av fekale prøver hentet fra barnas mødre i 

svangerskapets 18. uke, og fra barna ved 0-, 3-, 6- og 12 måneder. Bakterie- og kortkjedet 

fettsyresammensetning ble bestemt ved henholdsvis nestegenerasjonssekvensering og 

gasskromatografi. Informasjonen om immuncellesammensettingen ved 12 måneder ble brukt 

videre i den statistiske analysen. Bakteriedataene ble behandlet gjennom QIIME-pipeline. 

Videre dataanalyse ble utført ved paret t-tester og Spearman korrelasjonsanalyse justert for 

multippel testing. 

 

Studien avdekket sammenhenger mellom immuncelleprofiler og miljøassosierte bakterier. 

Funnene viste at både Methylophiliales og Methylococcales påvirket vertens 

immuncellekomposisjon, på en henholdsvis pro- og anti-inflammatorisk måte. Det ble ikke 

avdekket korrelasjoner mellom kortkjedede fettsyrer og immunceller, noe som hadde vært 

forventet utfra dyrestudier. Som i tidligere studier, viste den mikrobielle sammensetningen at 

Enterobacteriales dominerte i barnas første avføring, mens Clostridiales dominerte i mødrenes 

tarmer. Mengden eddiksyre endret seg i samsvar med mengde eddiksyre-produserende 

Bifidobactierales ved alle aldere. Positive korrelasjoner ble påvist mellom Lactobacillales og 

smørsyre ved 3-, 6- og 12 måneder, noe som kan skyldes bakterielle kryssfôringsmekanismer. 

 

Oppsummert avdekket denne eksplorative studien korrelasjoner mellom enkelte immunceller 

og tarmbakterier. Miljøassosierte bakterier påvirket vertens immunsystem på ulike pro- og anti-

inflammatoriske måter. Det er et behov for videre forskning på forbindelsen mellom 

tarmmikrobiotaen og immunsystemet i friske mennesker, og denne studien taler for at 

miljømikroorganismer i større grad bør vektlegges i slik forskning. 
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Abstract 
The microorganisms in the gut establish complex mutualistic relationships with their human 

host and serve important functions in the maturation of the host’s immune system. The immune 

system maturation process is affected both by bacterial components directly and through their 

fermentative products, such as the short-chain fatty acids. This thesis aimed to explore the 

longitudinal development of the infant gut microbiota and short-chain fatty acid (SCFAs) 

concentrations in relation to the immune cell status at 12 months.  

 

Fecal samples from 180 12 months-old infants were retrieved from the Prevent Atopic 

Dermatitis and Allergies (PreventADALL) study cohort. Data on immune cell profiles were 

obtained for 67 of the infants, and these infants were studied longitudinally with fecal samples 

from the mothers 18-weeks pregnant, and the infants at 0-, 3-,6- and 12 months were analyzed. 

The bacterial and SCFA composition was determined by next-generation sequencing, and gas 

chromatography, respectively. The immune cell data was used in statistical analysis. The 

bacterial data was processed using the QIIME pipeline, and further statistical analysis was 

conducted using paired t-tests and Spearman rank’s correlation adjusted for false discoveries. 

 

This study revealed interesting correlations between immune cell profiles and environmental 

associated bacteria. The orders of Methylophiliales and Methylococcales both affected the 

immune cell profiles in pro- and anti-inflammatory manner, respectively. No correlations 

between SCFAs and immune cells were detected, which would have been expected based on 

animal studies. With respect to the general age-related development of the microbiota did the 

findings of this study correspond to previous studies. Enterobacteriales dominated the 

meconium samples and Clostridiales dominated in the mothers. Acetate levels coincided with 

the abundance of the acetogenic Bifodobacteriales in all age groups. Positive correlations were 

detected between Lactobacilliales and butyric acid at 3-, 6- and 12 months, which was likely 

caused by bacterial cross-feeding mechanisms.  

 

This exploratory study reviled correlations between immune cells and gut bacteria. 

Environmental associated bacteria affected the immune system and influenced both pro- and 

anti-inflammatory associated responses. There is a need for further research on the connection 

between the gut microbiota and the host’s immune system in healthy humans, and this study 

notes the importance of including environmental associated bacteria in this research. 
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1. Introduction  

1.1 Human Gut Microbiota 

 

The gut harbors the largest collection of microorganisms that lives inside or on humans with 

1011 – 1012 microbes/ml luminal content (Palmer, Bik, DiGiulio, Relman, & Brown, 2007; 

Riviere, Selak, Lantin, Leroy, & De Vuyst, 2016). The microorganisms establish complex 

relationships with their human host as well as with each other, and the relationships are ranging 

from symbiotic to parasitic (Milani et al., 2017). The intestinal habitat of an individual is 

estimated to contain at least 150 bacterial species (Qin et al., 2010). However, representatives 

from all three domains of life are found in the lumen, not to mention viruses (Milani et al., 

2017). Collectively, all these microorganisms are defined as the human gut microbiota. The 

microbiota plays a significant role in human metabolism, contributing to 100-fold more genes 

than the human genome (Rook, Raison, & Lowry, 2014). The early colonized microbiota plays 

a vital role in the maturation of metabolic and development pathways, and emerging evidence 

states that disruptions in obtaining an optimal microbiota may lead to an increased lifelong risk 

of various diseases and disorders (S. Wang et al., 2020).  

 

1.1.1 Developmental stages of the gut microbiota 

The gut microbiome in early life is characterized by massive changes in microbial richness, 

diversity, and functions. However, there is no current general standard for the development 

patterns in the gut microbiota, despite the development being highly stage-specific (de Muinck 

& Trosvik, 2018; S. Wang et al., 2020). Historically, the gut microbiota has been studied and 

described based on culture-depended methods (Cooperstock, 1983), and in 1983 four stages of 

the infant gut microbiota development were described. The first phase begins with the initial 

colonization, followed by the second stage – the period of exclusive breastfeeding. The third 

stage occurs as the infant starts receiving dietary supplements, called weaning, and lasts until 

the cessation of breastfeeding. The fourth and final stage extends from the completion of 

weaning until the conversion of an adult-like microbiota community (Cooperstock, 1983; S. 

Wang et al., 2020), which is generally around 2.5 to 3 years of age (Milani et al., 2017). In later 

years, with the accessibility of culture-independent methods, next-generation sequencing, and 

more extensive study cohorts, predictable patterns are beginning to emerge. A study by Stewart 

et al. observed three distinct phases in the microbiome development in children sampled from 
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the age of 3 months to 46 months (Stewart et al., 2018). The first phase (months 3 to 14), called 

the developmental phase, was characterized by five phyla, Actinobacterium, Firmicutes, 

Verrucomicrobia, Proteobacteria, and Bacteroidetes, significantly changing. During the 

transitional phase (months 15 to 30), experienced the phyla of Proteobacteria and Bacteroidetes 

significant changes. From 31 months onward, reached the microbiota a stable phase where all 

phyla were unchanged. Most microbiome profiles at this stage were characterized by high alpha 

diversity and dominated by the Firmicutes phyla (Stewart et al., 2018).  

 

1.1.2 The initial colonization of the neonatal gut 

The exact timing when the colonization process starts remains a controversial topic. The 

consensus has been that the gut is sterile until the rupture of the amniotic membrane (Perez-

Munoz, Arrieta, Ramer-Tait, & Walter, 2017; Rehbinder et al., 2018; Rodriguez et al., 2015). 

However, in recent years this consensus has been challenged by studies suggesting that the 

placenta (Aagaard et al., 2014) and amniotic fluid have a microbiota of their own (Collado, 

Rautava, Aakko, Isolauri, & Salminen, 2016). Most evidence supporting the sterile womb 

hypothesis was generated with traditional methods like microscopy and culture-based 

techniques, which today are not considered efficient for assessing a microbiome (Perez-Munoz 

et al., 2017). There are also few studies conducted with the sole purpose of assessing the 

microbiology of the amniotic fluid from healthy pregnancies delivered at term. However, the 

findings of in utero microbiota using polymerase chain reactions and next-generation 

sequencing methods have been criticized as those approaches do not have the detection limits 

necessary to study low-density bacterial populations, and the methods are susceptible to 

contamination (Perez-Munoz et al., 2017). There is currently no clear consensus on when the 

colonization process starts, and studies with larger sample sizes are needed (S. Wang et al., 

2020). 

 

The discussion of the first colonization aside, the neonates’ first major exposure to microbes 

happens as the amniotic membrane ruptures. The complexity of the microbial community in 

the gut is low and typically dominated by one phylum. Because the gut is at first an aerobic 

environment, it is inhabited by facultative anaerobic bacteria such as Escherichia, 

Streptococcus, Enterococcus, and Klebsiella. These facultative anaerobic microbes are 

responsible for creating a reduced and oxygen-depleted environment that is favorable for the 

strict anaerobic microbes (Backhed et al., 2015; S. Wang et al., 2020). During a normal vaginal 

birth, the infant is in contact with the maternal vaginal and fecal microbiota, and the first 
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colonizers derive from vagina-associated microbes, e.g., Lactobacillus and Prevotella (Milani 

et al., 2017; Rodriguez et al., 2015). The maternal vaginal species are only detected during the 

first few days before they eventually are lost or undetectable by one-week post-birth (S. Wang 

et al., 2020).  

 

By the time the gut lumen is depleted of oxygen, the obligate anaerobic species start their 

colonization process, leading to a decrease in facultative anaerobes (Avershina et al., 2016). 

How these late obligate anaerobic colonizers are recruited is a debated subject, but there are 

two main hypotheses. The first one states that bacteria are vertically transmitted from mother 

to child during early life and kept in low abundant populations waiting for the right condition 

(Avershina et al., 2016). The second recruitment hypothesis states that the obligate anaerobic 

bacteria are acquired later in life through spores or other forms that survive in the aerobic 

environment outside the gut lumen (Avershina et al., 2016).  

 

1.1.3 Stabilization of the fluctuating infant microbiota 

Following the recruitment of the first anaerobic species, the fluctuating gut microbiota goes 

through bacterial shifts before stabilizing with an adult-like microbiome at 2 to 3.5 years of age 

(Milani et al., 2017). By one month of life, the strict anaerobic species are fully emerged, 

especially Bifidobacterium and Bacteroides. The phylum Actinobacteria continues to be 

dominating during the next few months, together with representatives from Firmicutes phylum 

(Azad et al., 2013; Backhed et al., 2015; S. Wang et al., 2020), while Bacteroides loses some 

of its prevalence. The bacterial shift is due to the pro- and antimicrobial agents in breast milk 

that favors a so-called milk-oriented microbiota. Particularly, the human milk oligosaccharides 

(HMOs) have been found to selectively shape the growth and function of the gut microbiota, 

as well as to modulate the intestinal epithelial cells’ immune response. Bifidobacterium and 

Lactobacillus are especially associated with the milk-oriented microbiota as they utilize the 

complex oligosaccharides (Milani et al., 2017; S. Wang et al., 2020). There is a reduction in the 

abundance of Bifidobacterium, Clostridium, and Enterobacter after 6 months, corresponding to 

the cessation of breastfeeding and the increase of solid food in the infant’s diet. At the same 

time starts representatives from the Bacteroides phylum to reemerge. With the introduction of 

solid food, access to novel substrates leads to a shift of the dominating phyla in the gut from 

Proteobacteria and Actinobacteria to Firmicutes and Bacteroidetes, as well as an increase in 

alpha diversity (Milani et al., 2017). The observed increase in alpha diversity and a 

simultaneous decrease of beta diversity suggest that the microbiota becomes more complex and 
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less dissimilar with the microbiota of other infants at the same age (Backhed et al., 2015). The 

increase of microbial diversity contributes to an increase in functional capacity as the gut 

microbiota is able to degrade polysaccharides, and an increase in production of short-chain fatty 

acids (SCFAs) is observed (Backhed et al., 2015; Milani et al., 2017). However, the functional 

changes are not very apparent until the infant stops breastfeeding, coinciding with the reduction 

of the heavily dominating Bifidobacteria class (Avershina et al., 2016). At 12 months, species 

belonging to the phyla Firmicutes and the class of Clostridia, like the Ruminococcus and 

Roseburia genera, are dominating (Backhed et al., 2015; S. Wang et al., 2020).  

 

1.1.4 Factors influencing the microbiome development 

Several factors interfere with the development of the gut microbiota, including gestational age 

at birth, mode of delivery, infant’s diet, and medical interventions. Premature infants, born prior 

to 37 full weeks of gestation, tend to exhibit delayed gut colonization of commensal anaerobic 

microbes. Their feces contain higher levels of opportunistic pathogenic such as 

Enterobacteriaceae and Enterococcus, than fecal samples from full-term neonates (Milani et 

al., 2017). Premature infants are often born with immune, respiratory and neurological issues 

that need medical treatment (Milani et al., 2017). For cesarean section (C-section) delivered 

infants may deviations in the microbiome development occur, as they are not directly presented 

the same maternal microbial niches as vaginally delivered infants. Instead, they are more likely 

to be colonized by microorganisms from the surrounding environment, such as microbes from 

the maternal skin and hospital environment. While the diversity of the microbiota increases 

over the first month of a vaginally delivered infants life, the changes in the microbiota of a C-

section delivered infant are limited. Infants delivered through C-section hold a microbial 

signature characterized the phyla Firmicutes, Proteobacteria, and Actinobacteria (Milani et al., 

2017; Rodriguez et al., 2015), as well as delayed Bacteroides levels and low intra-individual 

diversity when compared to vaginally delivered infants (S. Wang et al., 2020). C-section 

delivery has been associated with an increased risk of immune disorders such as asthma, 

allergy, and type 1 diabetes (Milani et al., 2017).  

 

Formula-fed infants are exposed to different nutrients and carbohydrates than breastfed infants, 

which causes different colonization patterns (Milani et al., 2017). Formula-fed infants have a 

more diverse microbiota dominated by Staphylococcus, Bacteroides, Clostridia, and 

Enterobacteria, compared to infants receiving breast milk. Formula-fed infants also have a 

microbiota with higher potential pathogens (Milani et al., 2017).  
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Lastly, medical interventions may interfere with the natural development and cause deviations 

in the establishment of the infant gut microbiota (Milani et al., 2017). Infants born preterm, by 

C-section, or with a low birth weight are at high risk for antibiotic-associated perturbations, as 

they receive antibiotic therapy at birth (Milani et al., 2017). Antibiotics are widely used to 

remove or prevent bacterial colonization in the human body, without targeting specific types of 

bacteria, and board-spectrum antibiotics may have substantial effects on the gut microbiota 

composition (Angelucci, Cechova, Amlerova, & Hort, 2019). This bacterial removal reduces 

biodiversity, delays the colonization process for a long time after administration, and disrupts 

the infant’s metabolic and immune development (Angelucci et al., 2019; Gibson, Crofts, & 

Dantas, 2015). In addition to diversity decrease, there is a decline of Bifidobacterial and 

Bacteroidetes sp., increasing the relative abundance of Enterobacteria and Enterococci. The 

use of antibiotics further leads to a potential enrichment of the reservoir of antibiotic resistance 

genes available for pathogens, the so-called resistome (Gibson et al., 2015). 

 

1.1.5 The functional adult gut microbiota  

The microbiota in the gut provides crucial functions in human health and affects the host via 

different host-microbiota pathways (von Martels et al., 2017). It is possible to divide the 

beneficial effects of the gut microbiome into three functional categories; metabolic, trophic, 

and protective (Guarner & Malagelada, 2003). The bacterial diversity provides a diverse set of 

genes, enriching the gut with bacterial pathways distinct from the hosts. The microbes take 

advantage of these pathways and can ferment complex non-digestible carbohydrates or other 

dietary residues that escape digestion and absorption in the small intestine. The anaerobic 

fermentation of carbohydrates leads to the production of host-beneficial compounds such as 

short-chain fatty acids and vitamins B and K (LeBlanc et al., 2017; von Martels et al., 2017). 

With the depletion of carbohydrates in the lumen, the gut microbiota switches to other 

substrates, notably proteins and amino acids, which in addition to the production of SCFA, also 

generates possibly toxic substrates as ammonia, amine, phenols, thiols, and indols (Marchesi et 

al., 2016). These toxic compounds play a role in diseases such as inflammatory bowel diseases 

(IBD) and colon cancer (Marchesi et al., 2016). The trophic effect of the microbes asserts itself 

in the stimulation factors that the bacterial fermentative products have on epithelial cell growth 

and differentiation (Guarner & Malagelada, 2003). Through the bacterial products, the healthy 

gut microbiome plays an essential role in the development of a balanced and competent immune 

system (von Martels et al., 2017). Lastly, the resident bacteria in the gut lumen provides a 
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protective line of resistance to exogenous colonizers by means of direct competition and 

competition over nutrients (Guarner & Malagelada, 2003; Modi, Collins, & Relman, 2014). 

 

The adult gut microbiota is seen as a two phyla system with a high abundance of Firmicutes 

and Bacteroidetes (Marchesi et al., 2016), followed by Actinobacteria (Rodriguez et al., 2015). 

Though, members of over 10 different phyla are found to hold important functional 

contributions (Marchesi et al., 2016). The gut microbiota is dynamic, nonetheless stable around 

an equilibrium state. The community is resilient to small changes in the environment, however 

larger environmental changes will lead to equilibrium shifts (Lozupone, Stombaugh, Gordon, 

Jansson, & Knight, 2012). In many cases, are shifts in the equilibrium state associated with 

dysbiosis, a term used to describe a disturbance in the balance between beneficial bacteria with 

anti-inflammatory properties and bacteria with proinflammatory properties. Alteration in the 

gut microbiota and dysbiosis is linked to gut-related disorders, such as IBD, Crohn’s disease, 

and ulcerative colitis (von Martels et al., 2017). Dysbiosis and a lower degree of diversity have 

been reported in individuals struggling with obesity (Turnbaugh et al., 2009).   

 

1.2 Short-chain fatty acids 

 

Short-chain fatty acids (SCFAs) are branched or unbranched organic fatty acids with backbones 

between 1 to 6 carbon atoms in length. As previously mentioned, the SCFAs are the principal 

anions that arise as byproducts from bacterial fermentation of carbohydrates, proteins, and 

glycoproteins that escapes digestion and absorption in the small intestine (Y. Sun & O'Riordan, 

2013; Wong, de Souza, Kendall, Emam, & Jenkins, 2006). The SCFAs are then absorbed by 

colonic epithelial cells, where they are oxidized for energy, and the SCFAs that escapes 

oxidation enter the hepatic portal blood (Barrett, 2014; Henningsson, Björck, & Nyman, 2001; 

Wong et al., 2006).  

 

1.2.1 Production of SCFAs  

Multiple pathways lead to the formation of SCFAs performed by the diverse members of the 

gut microbiota. Most of the microorganisms in the gut are saccharolytic, meaning they utilize 

carbohydrates as substrate, forming SCFAs and H2-, CO2- and CH4-gas as byproducts of their 

bacterial fermentation (Henningsson et al., 2001; Wong et al., 2006). Firstly, primary 

fermenters, e.g., Bacteroides, ferment mono- and oligosaccharides and generate SCFAs, such 
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as lactic acid and acetic acid, which are then released into the environment. These SCFAs are 

subsequently utilized by secondary fermenters to generate additional SCFAs. Besides, 

acetogenes deplete the hydrogen that is released from the reactions together with carbon dioxide 

to form acetate and thereby contributing to the intestinal SCFA content (Y. Sun & O'Riordan, 

2013). The most abundant SCFAs in the gut lumen are acetic acid, propionic acid, and butyric 

acid, and are typically found in the ratio 60:20:20 (Cummings, 1981). Acetate, being the most 

abundant, is produced by most enteric bacteria from acetyl-CoA derived from glycolysis 

(Parada Venegas et al., 2019). Bacteria belonging to the Bacteroidetes phyla are responsible for 

most intestinal propionate production, which is mainly produced through the carbohydrate 

metabolism in glycolysis, but also from the organic acid- and amino acid metabolism. Butyrate 

is predominantly produced by bacteria belonging to the phylum of Firmicutes. However, sugar 

and lactate-utilizing bacteria may produce butyrate from lactate and acetate, such as 

Eubacterium hallii and Anaerostipes spp. (Parada Venegas et al., 2019). 

 

1.2.2 Absorption and function of SCFAs  

About 90% of the SCFAs are absorbed in the colon, and the rest is excreted in the feces (Garcia-

Villalba et al., 2012; Henningsson et al., 2001). Two mechanisms for the absorption of the 

SCFAs have been proposed. The first is by passive diffusion of protonated SCFAs over the cell 

membrane, and the second is absorption by anion exchange, through the proton-coupled 

monocarboxylate-transporter 1 and sodium-coupled monocarboxylate-transporter 1 (Parada 

Venegas et al., 2019; Wong et al., 2006). Once absorbed, the SCFAs are sent to three different 

body sites for metabolization; the colonic epithelial cells, the liver cells, and periphery cells 

(Wong et al., 2006). Propionate and acetate found in peripheral blood are metabolized by the 

cells in the liver or by peripheral tissues, such as muscle tissues. They also play a role as 

modulators of glucose metabolism. In rats, propionate was found to inhibit gluconeogenesis 

and increase glycolysis in hepatocytes (Henningsson et al., 2001). Acetic acid is transferred 

into acetyl-CoA in the liver, further to act as a precursor for lipogenesis, and stimulates 

gluconeogenesis (Henningsson et al., 2001). Butyrate is, however, the preferred source of 

energy for the colonocytes (Pryde, Duncan, Hold, Stewart, & Flint, 2002), even favored over 

the glucose and glutamine supplied by the blood (Henningsson et al., 2001; Wong et al., 2006). 

In addition to fuel the colonocytes, butyrate has an effect on cell proliferation and 

differentiation, and has anti-inflammatory effects by inhibition of NFkB and reducing the 

formation of proinflammatory cytokines (Segain et al., 2000; Wong et al., 2006). 
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1.3 Immunology in the intestine 

 

The immune system is the body resistance mechanism against infection and toxins, and without 

a working immune system, even minor infections could be fatal. The immune system is divided 

into the innate and the adaptive immune system (Parham, 2014, pp. 1-25). The innate is a non-

specific defense mechanism and is the first to act when an intruder appears in the body. If the 

innate immune system cannot handle the infection by itself, it calls in the adaptive immune 

system. The adaptive immune system is antigen-specific and provides the immunological 

memory of the infectious agent (Parham, 2014, pp. 1-25).  

 

1.3.1 Mucosal immunity 

With an area between 250 and 400 m2, the gastrointestinal tract is the second largest surface 

area on the human body, following the skin (Bengmark, 1998). Being the most densely 

colonized site on the body, the gut is in constant contact with luminal microorganisms 

(Turnbaugh et al., 2007) as well as food particles, and must deal with the constant threat of 

infection. The immune system in the gut is highly specialized, and it separates what is harmless 

from harmful. Immunotolerance is key, a wrongly induced inflammatory response could do 

more harm than good, as an infection could utmostly disrupt the protective barriers and 

opportunistic bacteria would gain entrance into the body tissues (Parham, 2014, pp. 1-25). 

 

The adaptive immune system plays a vital role in maintaining tolerogenic responses towards 

symbionts and sustain barrier integrity, while the innate immune system regulates the adaptive 

immune response to the commensal bacteria in the gut (L. Wang, Zhu, & Qin, 2019). The lower 

part of the gastrointestinal tract is surrounded by the gut-associated lymphoid tissue (GALT). 

GALT is the largest organ of the immune system. It consists of both scattered and aggregated 

B-cell follicles, which all share common characteristics of being follicle-associated epithelium 

with membrane cells that samples luminal antigens into the lymphoid tissue bellow 

(Brandtzaeg, 1998). The sampling of luminal antigens enables immune cell differentiation 

towards the luminal content, even before there is a threat of invasion.  

 

The mucosal adaptive immune system has two main strategies; immune exclusion and 

immunosuppression. Immune exclusion is the strategic act of preventing pathogenic bacteria 

initial access to the body tissues. The first line of defense is the secretory immunoglobulin (Ig) 
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A, together with several non-specific protective innate factors. Secretory IgA is a class of 

antibodies secreted into the lumen in large amounts, where they bind to their antigen and 

neutralizes them without giving rise to an inflammatory response. The neutralization inhibits 

foreign materials to penetrate the epithelial barrier (Brandtzaeg, 1998; L. Wang et al., 2019). 

An important innate factor contributing to the exclusion of foreign material is mucus, which is 

produced by specialized epithelial cells named Goblet cells (Parham, 2014, pp. 1-25). In the 

large intestine, the mucus is found to be layered into a dense layer closer to the epithelial cells, 

followed by a looser layer further out in the luminal space. The dense layer creates a barrier for 

penetration, while the looser layer works as a habitat for luminal bacteria that metabolize the 

mucosal substrates (Parham, 2014, pp. 1-25). The mucus does, however, also contain 

antimicrobial compounds such as antimicrobial peptides and lysozymes, produced by other 

specialized epithelial cells (Parham, 2014, pp. 1-25). 

 

Oral tolerance is the act of avoiding or suppressing an inflammatory response that might come 

to harm the epithelial barrier. When soluble dietary antigens or the commensal bacteria 

penetrate the mucosal barriers, the immune system acts with several different mechanisms. 

Which mechanism that occurs depends on the amount of antigen introduced (Weiner, da Cunha, 

Quintana, & Wu, 2011). Low antigen concentrations call for immunoregulation, where 

regulatory T-cells in the GALT suppress the proinflammatory responses (Brandtzaeg, 1998). 

Higher doses of antigens favor the induction of clonal anergy or clonal deletion of the reactive 

immune cells (Weiner et al., 2011). Intestinal homeostasis is dependent on a balance between 

the gut microbiota and the adaptive immune cells, where both sides contribute towards a 

mutualistic relationship. Disturbances to this equilibrium might result in the host developing 

inflammatory or autoimmune disorders. 

 

1.3.2 The neonate immune system 

The gastrointestinal age at birth is important for the neonate immune competence level (Gleeson 

& Cripps, 2004). During gestation, the mother and fetus are interacting and there is evidence 

of transferal of maternal molecular components to the fetus. Most studied is the transfer of 

maternal antibodies to the newborn, called maternal immunization. The maternal immunization 

provides passive immunity against pathogens prevalent in the environment. Transfer of 

maternal antibodies starts in utero, mainly through the placenta, but also, to some degree 

through the amniotic fluid, and breast milk post-birth (Jennewein, Abu-Raya, Jiang, Alter, & 

Marchant, 2017). At birth, the infant’s immune system is biased towards tolerance and consists 
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mostly of cells with naïve phenotypes (Brodin & Davis, 2017). IgG dominates at birth, 

alongside low levels of IgM, IgE, or IgA found in serum samples (Jennewein et al., 2017). 

Lymphocytes in GALT migrate to the mammary glands during lactation, here they secrete 

primary IgA and IgM into the breast milk. The maternal antibodies hold an immunosuppressive 

role in the infant’s gut and prevent inflammation by the binding of toxins, bacteria, and 

macromolecules in the gut and aids in the shaping of the infant gut microbial community 

(Jennewein et al., 2017). The protective maternal antibodies, together with the innate immune 

factors of the neonate, lead to the rapid development of the mucosal immune system, which has 

been estimated fully mature during the first year of life, although inter-individual variations 

occur (Gleeson & Cripps, 2004). 

 

The gut microbiota provides specific signals for immune stimulation and development 

(Pennock et al., 2013). At the onset of the immune development, the immune system has muted 

proinflammatory responses, enabling a regulatory profile that favors microbiota establishment. 

The establishment of the early microbial colonizers gives repeated exposure to foreign 

microbial antigens and different bacterial products (Pennock et al., 2013). Further, the first 

colonizers influence the development onward by facilitating a favorable environment for further 

colonization, e.g., by depletion of oxygen. Since the immune system development is 

interconnected with gut development, will prenatal factors influencing microbial development, 

such as delivery mode and use of antibiotics and other medical interventions, affect the 

development of the immune system. However, how the infant gut tissue adapts to the 

continuous microbial exposure is not yet fully understood (Pennock et al., 2013).  

 

1.4 Methodology  

 
1.4.1 DNA markers for species identification 

In modern microbial and environmental research have amplicon sequencing allowed the 

profiling of entire bacterial communities and is a culture-free method for simultaneous multiple 

species detection (Knetsch, van der Veer, Henkel, & Taschner, 2019). The use of molecular 

target markers for amplicon sequencing is widespread due to their ease of use, stability, and 

broad application (Grover & Sharma, 2016). The molecular markers are retrieved from either a 

short sequence of DNA or protein (Chakraborty, Doss, Patra, & Bandyopadhyay, 2014). 

Different genes mutate at different rates, providing various molecular markers, yet which gene 

to use depends on the purpose of the study. Studies of closely related species require more 
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diverse genes to gain good taxonomic depth. Metabarcoding studies for simultaneous 

identification of many taxa, on the other hand, requires genes that are conserved across most 

species. Nonetheless, the sequence needs to be diverse enough for species separation. The genes 

used are often the highly conserved housekeeping genes that are important for basic cellular 

function (Chakraborty et al., 2014). Multiple genes are fulfilling the requirements for bacterial 

metabarcoding. To this day, the 16S ribosomal RNA (16S rRNA) genes are the most commonly 

used genomic fragment for taxonomic determination (Clarridge, 2004). However, the cpn60 

gene encoding the universal 60-kDa chaperonin protein, known as GroEl or Hsp60, (Hill et al., 

2010), and the COI gene encoding cytochrome c oxidase subunit I (Naseem & Tahir, 2018), 

have also been used as markers for species identification.  

 

Using ribosomal RNA genes as molecular markers for classification was proposed in 1977 by 

Carl Woese (Escobar-Zepeda, Vera-Ponce de Leon, & Sanchez-Flores, 2015). The fragment is 

useful as it makes a good model of the overall evolutionary rate as the sequence occurs in all 

organisms, and therefore can be compared not only among bacteria but also with the 16S rRNA 

gene of archaea and the 18S rRNA gene sequence of eukaryotes (Clarridge, 2004). The gene is 

highly conserved due to the fragment’s importance for cell function, as some regions’ 

specificity is essential in the interaction between mRNA and the tRNA/amino acid complex 

during translation. Different parts of the sequence mutate at different rates resulting in some 

regions being more variable than others. The more variable regions are used for taxonomic 

purposes, while the conserved regions make ideal binding sites for universal primers needed 

for fragment amplification. The fragment length of the 16S rRNA gene is about 1 550 bp 

(Clarridge, 2004).  

 

Different approaches are used for describing and comparing metagenomic data from complex 

communities, like the gut. One of the approaches is to look at bacterial diversity. The most used 

diversity metrics are termed alpha, gamma, and beta, describing the local community diversity, 

total regional diversity, and the differences in diversity between niches, respectively (Escobar-

Zepeda et al., 2015). Alpha diversity indices illustrate species richness and evenness in a given 

niche, where richness refers to the number of species, and evenness is the measure of relative 

abundance of different species. The Observed species index, the Shannon-Weaver index 

(Shannon & Weaver, 1949), and the inverted Simpson index (Simpson, 1949) are all used for 

alpha diversity assessment. Observed species consider the number of species in a given niche. 

The Shannon-Weaver index emphasizes rare species, while the Simpson index gives higher 



 12 

weight to species that are more frequent and dominant in the niche (Escobar-Zepeda et al., 

2015). An increase in Shannon-Weaner and inverted Simpson index values are equal to an 

increase of sample diversity and evenness. Differences between bacterial niches are determined 

by beta diversity indices and are based on dissimilarity. Among the dissimilatory indices is the 

binary Jaccard index (Jaccard, 1901). This qualitative index recognizes the presence and 

absence of species in different niches and uses that information to calculate a distance matrix. 

Another metric for dissimilarity is the Bray-Curtis method (Bray & Curtis, 1957), which applies 

a quantitative measure of community dissimilarity by using species abundance in each niche.   

 
1.4.2 Sequencing technologies  

DNA sequencing is the process of determining the primary structure of DNA by resolving the 

order of the four bases, adenine, guanine, cytosine, and thymine. The knowledge about DNA 

sequences has become invaluable for basic biological research as it may be applied to individual 

genes, larger genetic regions, full chromosomes, or entire genomes of any organism. 

Dideoxynucleotide sequencing is an enzymatic sequencing method and was one of the first 

methods to sequence fragments of DNA (McCombie, McPherson, & Mardis, 2019). The 

method was introduced in 1977 by Sanger and is now better known as Sanger sequencing 

(Sanger, Nicklen, & Coulson, 1977). Sanger sequencing uses a mixture of template DNA, DNA 

polymerase, primer, native dNTPs, and one of the four 2’3’-dideoxynucleotide (ddNTP). The 

incorporation of ddNTP terminates elongation by preventing the addition of further nucleotides 

(McCombie et al., 2019). After sequencing, the sample contains a variety of fragments of 

different lengths. A subsequent application on a denaturing polyacrylamide gel produces a 

ladder of fragments across four lanes, one for each ddNTP. The nucleotide sequence is read 

from the smallest fragments to the largest, from the bottom to the top of the gel (McCombie et 

al., 2019).  

 

At the same time as the Sanger sequencing method arrived, other enzymatic sequencing 

methods were published. For instance, a couple of years prior, Sanger came out with the plus 

and minus method (1975), Maxam and Gilbert published the chemical cleavage method in 

1977, and in 1978, Barnes introduced the partial ribosubstitution method (McCombie et al., 

2019). However, these methods never became as popular as Sanger sequencing, and today is 

Sanger sequencing seen as the primary technology from the first-generation of sequencing (Liu 

et al., 2012).  
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The next-generation sequencing (NGS), or second-generation sequencing differs from Sanger 

sequencing as both enzymology and data acquisition are orchestrated in a stepwise fashion, 

enabling massive parallel sequencing. Massive parallel sequencing generates data from large 

amounts of templates simultaneously, ranging from tens of thousands to billions of templates 

(McCombie et al., 2019). NGS technologies have higher throughput and a reduced cost 

compared to Sanger sequencing and the other first-generation methods (Liu et al., 2012). The 

first commercially available NGS system was the Roche 454, using pyrosequencing 

technology. This technology relies on the detection of light emission from pyrophosphate that 

is released during the incorporation of nucleotides. Nevertheless, in later years the Illumina 

sequencing method has been almost synonymous with next-generation sequencing (Knetsch et 

al., 2019), as it has dominated the market after buying Solexa and their technology in 2006 (Liu 

et al., 2012).  

 

With the increased use of second-generation sequencing technologies and the addition of new 

modifications, the third generation of sequencing technologies has arisen. The new generation 

of sequencing brings new insights by removing the need for polymerase chain reaction (PCR) 

amplification, thereby removing the bias associated with amplification, as well as shortening 

preparation time (Knetsch et al., 2019; Liu et al., 2012). The Oxford Nanopore MinION 

sequencer is an example of this generation sequencing methods. Another example is the Pac 

Bio RS II sequencer by Pacific Biosciences. The first one measures change electrical 

conductance during nucleotide translocation of template DNA through a tiny biopore 

(McCombie et al., 2019), while the latter measures enzymatic incorporation of fluorescence-

marked nucleotides in real-time (Knetsch et al., 2019). 

 

Today Illumina is the dominating sequencing technology and accepts input generated by any 

method that gives adaptor-flanked fragments up to several hundred base-pairs in length 

(Knetsch et al., 2019; Shendure & Ji, 2008). Illumina sequencing by synthesis has two main 

factors, that is its flow cell technology and the reversible dye terminator sequencing chemistry 

(Knetsch et al., 2019). The sequencing procedure begins with the template DNA being 

separated into single strands. Adaptor sequences are ligated to both ends of the single-strand 

DNA (ssDNA) and hold a site complementary to the oligonucleotides (oligos) on the flow cell, 

allowing the strands to attach. The adapter is also equipped with a site for primer binding, as 

well as a barcode for recognition. Through PCR-based methods are the templates amplified, 

giving discrete clusters of copies of the same template DNA. The clusters are generated by 



 14 

bridge amplification where the ssDNA molecules, attached with one end to the flow cell, are 

forced to bind with their free end to a complementary nearby, forming a bridge. While in bridge 

formation, the DNA molecules are synthesized forming a double-stranded bridge, which then 

denatured into two single DNA strands anchored to the flow cell. This results in local clusters 

of around one thousand clonal molecules close to the original template-strand (Knetsch et al., 

2019). 

 

Illumina sequencing by synthesis starts with binding of a primer to the adapter sequence, 

followed by incorporation of fluorescent nucleoside triphosphate (dNTPs) that are blocked at 

the 3’-OH-end (Knetsch et al., 2019). The incorporation is done in several cycles, for every 

cycle all four dNTPs are pumped through the lanes and incorporated where possible. As the 

end is blocked, only a single nucleotide is added to the growing complementary DNA strand 

per cycle. The different dNTPs are labeled with a different fluorochrome, and the incorporation 

is monitored. After the incorporation of a dNTP the entire surface is imaged, illuminating the 

fluorescent coloring of the newly incorporated nucleotide. As the last step, the blocking of the 

strand is removed, and the clusters are ready for the next dNTP. The fluorescent signal of 

millions of individual clusters are captured by sensitive optics, and all signals are translated into 

nucleotide assignments (Knetsch et al., 2019). 

 

1.4.3 Gas Chromatography 

Analysis of SCFAs is predominantly performed using gas chromatography (GC) (Primec, 

Micetic-Turk, & Langerholc, 2017). Chromatography is a technique for chemical separation of 

molecular components in complex samples. Following separation, the compounds can be 

measured quantitatively or qualitatively (Poole, 2012, pp. 19-75). 

 

The injected sample vaporizes in contact with a hot glass liner in the injector site of the 

chromatograph. Further, the samples are led through a column that separates the sample 

components and ends in the detector site, where composition and concentrations of substances 

are determined (Poole, 2012, pp. 19-75). The method of gas chromatography separates the 

compounds by exploiting the chemical and physical properties of the molecules. The column 

contains a stationary phase and a mobile phase. The mobile phase flows through the column, 

while the stationary phase is fixed. The mobile phase in gas chromatography is usually an inert 

gas, e.g., helium or nitrogen, and is called the carrier gas. The carrier gas carries the components 

of the sample mixture along the column, while the stationary phase interacts with the sample 
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components retaining them in the column. Stronger interactions lead to longer retention time 

than weaker interactions, thus separating the sample components (Poole, 2012, pp. 19-75). As 

each compound uses a different amount of time to reach the detector site, the time becomes 

specific for each component under given pressure and temperature and is termed the retention 

time of the compound. After a chromatographic run, the data is presented as a chromatogram, 

a graph of detector response against retention time. The retention time is used for qualitative 

determination. The area under the peaks of the chromatogram is used for quantitative 

measurement of the compound, as the peak is assumed proportional to the amount of analyte 

present in the sample (Primec et al., 2017).  

 

SCFAs have been analyzed in various biological materials, such as blood plasma and serum, 

brain, and feces (Primec et al., 2017). The most popular biological material for SCFA analysis 

is fecal material, as it is accessible and non-invasive to collect. It should, however, be noted 

that 90-95% of the SCFAs are taken up in the gastrointestinal tract leaving only about 5% of 

the microbially produced SCFAs to the feces (Primec et al., 2017). The fecal material is 

complex, and as SCFAs are volatile, which poses a challenge in sample preparation and for fast 

and reliable determination of SCFAs content.  

 

To handle the complex fecal samples, a number of pretreatment methods have been proposed. 

The fastest and simplest are pretreatment methods that avoid extraction of the SCFAs from the 

samples. These are treatments involving dilution, filtration, ultrafiltration, or centrifugation 

(Primec et al., 2017). However, fast and simple, they have the problem of impurities 

overloading the column. Other preparation methods include simple acidification using several 

acidification agents (Weir et al., 2013), including formic acid (Primec et al., 2017).  

 

Separation of the SCFAs occurs in the column, where the sample components are separated 

based on interactions between analytes and the stationary phase. In GC, capillary columns are 

the most effective, and many contain silica coated with polyethylene glycol (PEG) as a 

stationary phase (Primec et al., 2017). As the stationary phase is highly polar, they are widely 

used for analyzing compounds with polar functional groups, like SCFAs, by hydrogen bonding 

and acid-base interaction (Hayward, Hua, Gras, & Luong, 2017).   
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The most conventional detector used in SCFA analysis is the flame ionizing detector (FID). 

This detector consists of a hydrogen flame that ionizes the sample molecules and holds a 

negatively biased collector that collects all the positively charged ions. The response is 

proportional to the mass of carbon that passes through in a unit of time (Primec et al., 2017). 

 

1.4.4 Cytometry by Time-Of-Flight (CyTOF) 

Cytometry by Time-Of-Flight (CyTOF) or mass cytometry is a novel technology for detailed 

phenotypic and functional analysis of single cells (Kay, Strauss-Albee, & Blish, 2016). The 

method was developed by Tanner and colleagues at the University of Toronto, with the aim of 

increasing the number of simultaneous protein measurements in individual cells, compared to 

what was possible using traditional flow cytometry (Lakshmikanth & Brodin, 2019). Mass 

cytometry has a variety of applications and has been used for describing human immune system 

variations (Brodin et al., 2015). CyTOF relies on antibodies conjugated with heavy metal 

isotopes, which are used to stain cells from biological samples before they are applied to the 

system (Kay et al., 2016). The antibodies bind to the target of interest, either on or within the 

cells. The metal isotopes act as reporters for expression levels of the targets, and more than 42 

isotopes can be applied simultaneously (Kay et al., 2016). The cells in the sample pass in a 

single-cell suspension trough a nebulizer, forming droplets for introduction to the mass 

cytometer. As the cells enter the instrument, they are exposed to argon plasma, which induces 

the covalent bonds to break, forming free, charged atoms. The cloud of ions is filtered to discard 

common biological elements, thereby enriching the heavy metal ions, which are then separated 

by their mass-to-charge ratio in a time-of-flight mass spectrometer. Electrical signals are 

obtained from the counted ions, integrated on a single-cell basis into single-cell events for 

downstream analysis (Bandura et al., 2009). 

 

1.5 PreventADALL cohort 

 

Allergic diseases and other immune-related noncommunicable diseases have become common 

in the Western world. Atopic dermatitis and food allergies are two of the earliest manifestations 

of this trend, affecting 20-30%, and 5-10% of infants, respectively (Lowe, Leung, Tang, Su, & 

Allen, 2018). The Preventing Atopic Dermatitis and ALLergies (PreventADALL) in Children 

cohort is a general population-based mother-child birth cohort. The main objectives of the 

cohort study are to determine whether primary prevention of allergic diseases is possible by 
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simple, low-cost strategies and to assess early life factors and exposures, including intrauterine 

environment, microbiota, and xenobiotics, involved in the development of asthma and allergic 

diseases or other noncommunicable diseases including cardiovascular diseases, obesity, and 

diabetes (Lodrup Carlsen et al., 2018).  

 

The cohort recruited mothers at 18-weeks of pregnancy, not discriminating based on the 

mother’s age, race, or medical history. The three main sites for recruitment were the Oslo 

University Hospital (Norway), Østfold Hospital Trust (Norway), and Karolinska Institute 

(Sweden). The first pregnant woman was enrolled in the study in 2014, and the last one was 

included in 2017, making it a total of 2697 mothers. The study would thereafter include their 

children from the day of birth until 36 months, with periodic controls at 3-, 6-, 12-, and 24 

months. The biological sampling included, among others, samples from urine, blood, saliva, 

breast milk, skin swabs, fecal samples (Lodrup Carlsen et al., 2018). 

 

1.6 Study aim 

 

The relationship between the gut microbiota and the human host is of importance for the host 

health status, and the bacterial products, such as SCFAs, have been shown to play a vital role 

in the development of our immune system. Most of the established associations between the 

gut microbiota and the host’s immune system are derived from studies of model organisms, and 

there is a lack of studies looking at these effects in healthy humans. The present study aims to 

explore the longitudinal development of the infant gut microbiota and short-chain fatty acid in 

relation to the immune cell status at 12 months. This was achieved by the following sub-goals:  

• Bacterial composition determination using the 16S rRNA gene and Illumina sequencing. 

• Short-chain fatty acid analysis through gas chromatography.  

• Correlation analysis of the bacterial composition, SCFAs, and immune cell profiles at 

12 months. 
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2. Materials and methods 
This study included the determination of bacterial composition by DNA extraction of the 16S 

rRNA gene from fecal samples, and next-generation sequencing using the Illumina MiSeq 

system. The short-chain fatty acid composition of the fecal samples was determined by gas 

chromatography on a Trace 1310 equipped with an autosampler (ThermoFisher Scientific). 

Immune cell composition determination using mass cytometry on CyTOF2 of serum samples 

was conducted by Alex Olin and Petter Brodin, at Karolinska Institute. The project setup is 

illustrated in Figure 2.1. 
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Figure 2.1: Flowchart illustrating the methodical setup. Analysis conducted in this thesis is marked 

in green, while yellow is done by other groups working within PreventADALL. A) represent the 

biological sampling which was done by the PreventADALL project. B) represents the analysis of fecal 

material analysis of bacterial and SCFA compositions conducted in the present sample. The fecal 

samples were prepared for DNA sequencing, sequenced on Illumina MiSeq, and analyzed for SCFAs 

on a Trace1310 gas chromatograph. The manuscript for immune cell analysis by CyTOF2 mass 

cytometry is listed in Appendix A. The bacterial data were processed using the QIIME pipeline for 

sequencing results, while the statistical analysis was done using RStudio and Microsoft Excel.  
* In total, fecal samples were obtained from 180 infants at 12 months of age, and as immune cell composition 

data was acquired for 67 of the 180 infants, fecal samples collected at 0(meconium), 3 and 6 months, and 

from their mothers (18-weeks pregnant) were obtained  as well, making 65 mother-child pairs. 

** Most of the 16S rRNA Illumina library preparation was conducted in this thesis, except for library 

quantification using qPCR and ddPCR, and loading onto the MiSeq v3 reagent cartridge, which was done by 

laboratory personnel.  

*** The QIIME run was performed by Ph.D. student Morten Nilsen. Nilsen helped in computing the RStudio 

scripts for Spearman rank correlations and false discovery rate adjustments. 

 

 

 



 20 

2.1 Sample collection and initial handling 

 
2.1.1 Sample collection 

The fecal samples analyzed in this study were collected at the infant and mother’s periodic 

controls and diluted 1:10 with a DNA/RNA shield buffer (Nordic Biolabs R1100-250). Before 

being immediately frozen at -80°C to prevent any degradation or bacterial growth. 

 

2.1.2 Initial handling 

The samples were transported from the University of Oslo Biobank to Norwegian University 

of Life Sciences. During transportation, the samples were kept cold using a cooler box with 

cooling elements. Initial outtakes from the samples were 1.2mL of fecal material, enough for 

DNA extraction and short-chain fatty acid analysis. 

 

2.2 DNA extraction 

 

The DNA extraction involved lysis of the cells, solubilizing DNA, followed by chemical and 

enzymatic treatment for removal of other cellular components, such as macromolecules, lipids, 

RNA, and proteins (Gupta, 2019). 

 

2.2.1 Mechanical lysis 

To isolate the DNA from fecal samples the cells were first disrupted by mechanical lysis using 

0.2g acid-washed glass beads with the size <106µm, 450-600µm, and 2 beads of 2.5-3.5µm 

(Sigma Aldrich). Different sized beads were used as it resulted in better cell lysis compared to 

the use of one bead size only. The combination ensures higher diversity and less bias in 

mechanical disruption of the bacterial cells (Bakken & Frostegård, 2006). The glass beads and 

the samples were processed twice in FastPrep96 (MP Biomedicals, USA) at 1800 rpm for 40 

seconds. After mechanical disruption, the samples were centrifuged at 1300 rpm for 5 minutes 

at 4oC.  

 
2.2.2 Proteinase treatment and chemical lysis 

Chemical lysis treatment with elevated temperatures ensured the disruption of all cells before 

DNA extraction. From the centrifuge step, 50µL of the supernatant was transferred to a 

KingFisher96 well (KF96) plate, together with lysis buffer (Thermo Fisher Scientific, USA) 

and Proteinase K (Thermo Fisher Scientific, USA) for chemical lysis. Using a KingFisher Flex 
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Nucleic Acid Purification system (Thermo Fisher Scientific, USA), the samples were incubated 

for 10 minutes at 55°C. The lysis buffer uses high salt concentrations to lyse the cells, while 

the unspecific Proteinase K digest proteins in the sample (Ebeling et al., 1974).   

 

2.2.3 DNA purification 

The purification of DNA was conducted using paramagnetic beads, which in high saltine 

solutions, forms a bridge between the DNA and the bead particles (Boom et al., 1990). The 

particle-DNA complexes were precipitated by the addition of ethanol, and subsequently, in 

multiple wash steps, were alcohol- and salt-based buffers used to remove contaminations. To 

elute the extracted DNA, water was added leading to disruption of the salt bridges, and the 

DNA was extracted from the eluate. The extraction was done on the KingFisher Flex Robot 

using a MagMidi LGC kit (LGC Biosearch Technologies, United Kingdom), following the kit 

recommendations. The extracted DNA was later tested quantitatively by Cambrex-FLX 800 

CSE (Thermo Fischer Scientific, USA), Qubit Fluorometer (Life Technologies, USA), and 

qPCR (LightCycler 480 II, Roche, Germany).   

 

2.3 Polymerase chain reactions 

 

Polymerase chain reactions is a widely used method for amplification and detection of small 

amounts of specific nucleotide sequences. The principle behind PCR is a three-step process that 

is repeated in cycles. The first step is denaturation, during which an increase in temperature 

leads to the breakage of the hydrogen bonds that hold the complementary strands of the DNA 

together (Schochetman, Ou, & Jones, 1988). As the mixture cools down, the single strands 

associate with their complementary sequences. However, as there is an excess of primers in the 

solution, the ssDNA is more likely to anneal to the primers and not to their complimentary 

ssDNA sequences. Once annealed, the DNA polymerase starts extending the primers by adding 

free nucleotides on the 3’OH-end using the DNA strand as a template. These three steps make 

up a cycle, which is repeated between twenty to fifty times (Kubista et al., 2006; Schochetman 

et al., 1988).  
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2.3.1 Qualitative PCR  

Amplification of the 16S rRNA gene fragment was done using the primer combination of 

PRK341F and PRK806R, which permit amplification of the V3 -V4 region of the gene. More 

information about the primers is given in Table 2.1. The PCR was performed using a reaction 

cocktail with a final concentration of 1x HOT FIREPol® Blend Master Mix Ready to Load 

(Soils BioDyne, Estonia), 0.2µM of each primer and nuclease-free water (VWR, USA). The 

PCR master mix was distributed into a 96-well plate, and 2µL template DNA was added.  

 

The PCR cycle for amplification began with an initial denaturation for 15 minutes at 95oC, 

followed by 25-30 cycles of denaturation at 95oC for 30 seconds, annealing at 55oC for 30 

seconds and elongation at 72oC for 45 seconds. Final elongation lasted 7 minutes at 72oC, and 

the samples were subsequently stored at 10°C. The temperature cycles were conducted using 

the 2720 Thermal Cycler (Applied Biosystems, USA).  

 

Table 2.1: Description of primer sequences used in different PCR reaction.   

 Primer   Sequence (5’-3’) Annealing 
temperature 
(oC) 

Fragment 
size (bp) 

Reference 

Amplicon 
PCR and 
qPCR   

PRK341F Forward 5’-
CCRACGGGRBGC
ASCAG-3’ 

55 466 (Yu, Lee, Kim, 
& Hwang, 
2005) 

 PRK806R Reverse 5’-
GGACTACYVGGG
TATCTAAT-3’ 

Index PCR 1-16 Forward Table B.1 in 

Appendix B  

55 594  

 13-24 Reverse  

 

2.3.2 Index PCR  

Index PCR was performed to attach Illumina adapters to the ends of the 16S rRNA gene 

fragments. The flanking adaptors are essential for Illumina flow cell attachment, polymerase 

binding, and determination of sample origin after sequencing. A combination of 16 different 

forward primers and 24 reverse primers were used, resulting in 384 index combinations. Primer 

information is found in Table 2.1 and Table B.1 in Appendix B.  
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The PCR reaction cocktail was prepared to be 1x HOT FIREPol® Blend Master Mix Ready to 

Load with nuclease-free water and dispensed into each sample well of a 96-well plate. 

Eppendorf epMotion5070 (Eppendorf, Germany) robot distributed the specific combination of 

primers, to make a 0.2µM primer concentration. To this reaction mixture, 2µL of cleaned DNA 

was added.  

 

The PCR amplification was done by an initial denaturation at 95oC for 5 minutes. Then 10 

cycles of denaturation at 95oC for 30 seconds, annealing for 1 minute, and elongation at 72oC 

for 45 seconds follows. The final elongation lasted for 7 minutes at 72oC. The PCR was 

conducted using a 2720 Thermal Cycler.  

 

Samples which did not show satisfactory results after indexing were treated a second time to 

ensure that most samples had sufficient DNA quantity and quality for sequencing.  

 

2.3.3 Quantitative PCR 

Quantitative PCR (qPCR), also known as real-time PCR, is based on the same principles as 

conventional PCR. However, probes for fluorescent monitoring of PCR products are included 

(Kubista et al., 2006). qPCR was conducted by adding a master mix of 1x HOT FIREPol® 

EvaGreen® qPCR supermix (Solis BioDyne, Estonia), primers (PRK341F and PRK806R) to a 

concentration of 0.2µM, and nuclease-free water to 1µL of template DNA. The products were 

amplified using LightCycler480 II (Roche, Germany). Based on the fluorescence and the 

amplification efficiency, it was possible to calculate the original number of DNA molecules in 

each sample. The sample DNA was quantified by comparing the number of cycles needed to 

reach a set threshold of fluorescence, called the Ct-value (Kubista et al., 2006). 

 

The initial denaturation was done at 95°C for 15 minutes, followed by 40 cycles of denaturation 

on 95°C for 30 seconds, annealing at 55°C for 30 seconds and elongation 72°C for 45 seconds. 

 

2.3.4 PCR-product clean up 

Before further treatment of the DNA, the PCR products were cleaned to remove any 

nucleotides, polymerases, and primers. The clean-up was done using Sera-Mag beads (Thermo 

Fisher Scientific, USA). Sera-Mag beads are magnetic particles that bind to the negatively 

charged DNA. When put near magnets, the beads and the bound DNA form a pellet, separating 
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from the supernatant. The following wash steps use the beads’ magnetic properties to further 

clean the sample DNA from the rest of the sample contents. Lastly, in the elution step, the 

magnetic particles are suspended in the elution buffer, and the DNA will be freed from the 

magnetic particles. When put near magnets the DNA will stay suspended in the elution, but the 

magnetic particles will pelletize. The eluate containing the amplicons was transferred and stored 

in a 96-well storage plate.  

 

Clean-up of the qualitative PCR products was done using 0.1% Sera-Mag Speed beads solution, 

in a 1:1 ratio to DNA products using Beckman Biomek 3000 robot (Beckman Coulter, USA). 

In the case of the pooled library after PCR indexing, a 0.1% Sera-Mag Speed Beads solution, 

with a ratio of 0.8:1 Sera-Mag beads to sample was used. The Biomek 3000 followed a protocol 

for clean-up that included two washing steps with 80% EtOH (Antibac, Norway), and elution 

in nuclease-free water.  

 

All the cleaned PCR products and pooled libraries were measured qualitative using gel 

electrophoresis on 1.5% agarose (Invitrogen, USA). 

 

The cleaned pooled samples were frozen and saved for quantification using qPCR and ddPCR 

and loading onto the MiSeq v3 reagent cartridge (Illumina, USA), which was done by 

laboratory personnel according to the manufacturer’s recommendations. 

 

2.4 Quantitative and qualitative measurements of DNA 

 
2.4.1 Cambrex-FLX 800 CSE and Qubit fluorometer 

The DNA concentrations were measured using Cambrex-FLX 800 CSE. A Qubit working 

solution was prepared by diluting Qubit dsDNA HS Reagent (Invitrogen, USA) in Qubit 

dsDNA HS Buffer (Invitrogen, USA) in a ratio of 1:200. This solution was added to each well 

in a Nunc 96 well Nontreated Black Microwell plate (Thermo Fisher Scientific, USA), with 

2µL sample DNA, before the measured on Cambrex-FLX 800 CSE.  

 

From the concentrations measured on Cambrex, some samples at different parts of the 

concentration range were chosen to be used to make a standard curve. These samples were 

measured using the Qubit fluorometric quantification system, following the kit protocol, mixing 

198µL working solution (Quant-iT reagent diluted 1:200 in Quant-iT buffer) with 2µL sample 
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DNA. In addition, two Qubit standards were made to calibrate the fluorometer. A regression 

line was made by connecting the Qubit- and the Cambrex measurements of the samples. The 

regression line was used to estimate the Qubit value of all the other samples based on the 

Cambrex result. 

 

2.4.2 Gel electrophoresis  

The size and quality of PCR- and clean-up products were determined using gel electrophoresis 

on a 1.5% agarose with 4 % PeqGreen (PeqLab, Germany). 

 

To the clean-up products loading dye (NewEngland Biolabs, USA) was added in a ratio of 1:6. 

The quality assessment was determined based on fragment size, band density, and if there were 

other bands, due to either formation of by-products, mispriming, or damaged products (van 

Pelt-Verkuil & te Witt, 2019). The electrophoresis ran for 30 minutes, at 80V and 400A. A 100-

base pair DNA ladder (Soils BioDyne, Estonia) was used as a size marker for fragment length. 

The expected fragment size after each PCR run is listed in Table 2.1. The fragments were 

visualized using the Molecular Imager Gel Doc XR Imaging system with Quantity One 1-D 

analysis software v.4.6.7 (Bio-Rad, USA), using ultraviolet light.  

 

2.4.3 Normalization and library pooling 

After all samples were indexed, the DNA was measured using Qubit and Cambrex-FLX 800 

CSE. A regression line was made based on the Cambrex-Qubit measurements and used to 

estimate the Qubit-values for the remaining samples. The sample with the highest estimated 

concentration was set as a cut-off value. From this sample it was decided that 1-2µL was to be 

added to the pooled library. The volume to be added to the pooled library from all other samples 

was calculated so the concentration matched the cut-off value. Although, no larger volume than 

10µL was used. Pooling and normalization were done using Biomek 3000.   
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2.5 Gas chromatography 

 
2.5.1 The instrument  

The instrument used was the TRACE ™ 1310 Gas Chromatograph Autosampler (Thermo 

Fisher Scientific), with a split injector and using helium as a carrier gas. More details about the 

instrument are given in Table C.1 in Appendix C. 

 

2.5.2 Standards  

Calibration standards  

For calibration of the TRACE ™ 1310 Gas Chromatograph, three calibration standards were 

made, A, B, and C, with different acid concentrations. The acids used for calibration were acetic 

acid, propionic acid, butyric acid, isovaleric acid, valeric acid, and 2-methylvaleric acid. To all 

standards, formic acid was added in a fixed concentration of 0.2%. The acid concentrations are 

to be found in Table D.1 in Appendix D, and all acids are from Sigma Aldrich (USA). The 

calibration standards were made using a 10% stock of formic acid, and 100 mM stocks of the 

other acids.  

 

Internal standard 

A solution of 0.4% formic acid and 2000µM 2-methylvaleric acid added to the samples and 

acted as an internal standard. The internal standard was included to obtain absolute quantitative 

values of the SCFAs in the samples. As the samples are injected some differences in 

measurement might arise, however, the variations in short-chain fatty acid detection are 

assumed to change at the same rate as the detection of 2-methylvaleric acid. The differences in 

measured 2-methylvaleric acid and the true concentration in each sample were calculated to 

correction factors, which were used to correct the measured values of the other acids in the 

same sample.  

 

The internal standard was, for the fecal samples from meconium, 3-, 6 months, and mothers, 

changed to contain 500µM 2-methylvaleric acid. This change was applied to gain a better 

correspondence between the 2-methylvaleric acid concentration in the internal standard and the 

calibration standard. 
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2.5.3 Sample preparation 

The samples were first thawed on ice and vortexed to make a homogenized solution. A part of 

the sample was mixed with equal amounts of MilliQ water (Merck, USA), and to this, the 

internal standard was added to make a 1:1 ratio. This resulted in a total sample dilution of ¼.  

 

This mixture was centrifuged at 13 000 rpm for 10 minutes. The supernatant was then 

transferred to spin columns (VWR, Germany) with a 0.2µm filter and centrifuged down at 

10 000 rpm for 5 minutes. 300µL of the eluate was transferred into GC vials (Thermo Fisher 

Scientific, Norway), and Crimp caps (VWR, Germany) were put on before the vials were placed 

in the racks of the autosampler on the GC.  

 

2.5.4 GC runs  

All samples were run within 24 hours of preparation. To track any deviations in measurements 

made by the machine a calibration standard was run in between every 10th sample. The data 

were processed in the Chromeleon Chromatography Data System (CDS) Software (Thermo 

Scientific).  

 

2.6 Data processing  

 
2.6.1 QIIME – Quantitative Insights Into Microbial Ecology 

To analyze the 16S rRNA raw sequencing data, Quantitative Insights Into Microbial Ecology 

(QIIME), an open-source bioinformatics pipeline, was used. It is available at http://qiime.org/. 

The sequences were first preprocessed, which comprised of primers removal, demultiplexing 

according to barcodes, and served a function of quality filtering. Further, the data were clustered 

at 97% homology level, and the SILVA database (Quast et al., 2013) was used to create an 

operational taxonomic units (OTUs) database, and taxon-based analysis of diversity both within 

and between samples (Caporaso et al., 2010). QIIME generated graphical representations of the 

data, allowing for user interaction. 
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2.6.2 Statistical analysis  

Potential outliers after SCFA determination were examined by the rule of interquartile in 

Microsoft Excel. Samples determined as outliers were excluded in further SCFAs analysis.  

 

Paired T-tests were performed in RStudio to analyze statistically significant differences of 

SCFAs or bacterial composition between the different age groups. Additionally, a paired t-test 

was performed to find significant differences between thawed and frozen samples and how the 

gas chromatograph held over time. For all t-tests performed, a test level of 5% were used.  

 

Spearman rank correlations (Spearman, 1904), being nonparametric, were used to determine 

correlations between SCFAs and bacterial composition, immune cell and bacterial composition, 

and SCFAs and immune cell composition. Positive correlation values were given where there 

was co-occurrence of high or low levels of two elements, e.g., between a given bacterial order 

and a SCFA. Just the same, negative correlation values were given where a high value of one 

element was coinciding with low levels of another element in the same samples. The probability 

values from the Spearman correlations were then adjusted for false discovery using the 

Benjamini-Hochberg procedure (Benjamini & Hochberg, 1995). The procedure was conducted 

so the adjustment of p-values was done within each SCFA, for the correlations between 

bacterial and SCFAs composition, as well as for the correlation between SCFAs and immune 

cell composition. In the case of the correlation between immune cells and bacterial composition, 

the p-values were adjusted within each immune cell category. 

 

The statistical analysis and graphical visualization were done in Microsoft Excel for Mac 

version 16.35, and RStudio version 1.1.423, and the R-packages used were ggplot2 version 

3.2.1, tidyverse version 1.3.0, dplyr version 0.8.01, tibble version 2.1.1.  
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3. Results 
3.1 16S rRNA gene sequencing  

 

Two sequencing runs were performed; the first run sequenced the 12-month samples, and the 

second sequenced the meconium, 3 months, 6 months, and mother samples. The data from the 

two runs were separately processed in the QIIME pipeline. The quality filtering in QIIME 

resulted in a total of 167 samples from 12 months and 225 samples from the longitudinal 

samples, distributed as 55 meconium samples, 56 samples at 3 months, 56 samples at 6 months 

and 58 of the samples from the mothers. The taxa plots retrieved from the 12 months OTU 

binning and longitudinal OTU binning in QIIME were merged together in RStudio. For details 

concerning processing in QIIME and other technical aspects see Appendix E. 

 

3.1.1 Taxonomic distribution with age 

The average taxonomic OTUs from QIIME, are presented as a bar graph of bacterial order 

abundance at different ages in Figure 3.1. The average distribution of bacterial phyla and genera 

are respectively given in Figure F.1, Figure F.2, and Table F.1 in Appendix F.  Enterobacteriales 

appeared as the most dominant order in the meconium gut making up an average of 22.2% of 

the bacteria present in the gut. However, the order decreased significantly towards the 3-month 

samples (p = 0.043, paired t-test, unadjusted). Within the Eneterobacteriales order was the 

Escherichia/Shigella genus most prominent and constituted 19.9% of the gut composition 

(Figure F.2 in Appendix F). The relative abundance of Escherichia/Shigella decreased towards 

the 12-month samples and the mothers, with the constituting 1.3% and 0.6%, respectively. 

Contrarily to the Enterobaceriales order, Bifidobacteriales experienced a significant increase 

from 11.8% in meconium and peaked at 40.4% at 3 months (p = 2.20*10-10, paired t-test, 

unadjusted), followed by a subsequent decrease in relative abundance towards gut of the 

mothers. The order of Clostridiales had a consequent significant increase as of 3 months and 

was dominating in the mothers’ gut with a relative abundance of 66.4% (3 to 6 months, p = 

0.009; 6 to 12 months, p = 6.79*10-06; 12 months to mothers; p = 2.11*10-11; paired t-test, 

unadjusted). In the mothers, Faecalibacterium (9.3%) and [Eubacterium] rectale group (6.6%) 

were the most dominating genera within the Clostridiales order (Figure F.2 in Appendix F).  
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Figure F.1 (Appendix F) showed that the Proteobacteria and Firmicutes were the most abundant 

phyla in the meconium samples, with a respective prevalence percentage of 44.3% and 28.0%. 

Proteobacteria showed a decrease throughout the sampling points, while the relative abundance 

of Firmicutes increased. Firmicutes constituted 70.0% of the gut microbiota of the mothers on 

average. The phyla Bacteroidetes followed as the second largest with a prevalence of 21.7% in 

the mother samples.  

  

 

Figure 3.1: Distribution of bacterial orders within each age group. The bacterial orders are 

acquired from sequencing and processing using the QIIME pipeline, and the average of the dominant 

bacterial orders in each age group are displayed. The stars represent significant differences in average 

bacterial order abundance between the age groups computed by a paired t-test in RStudio using a test 

level of 0.05. 
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3.1.2 Alpha diversity 

Observed species, Shannon-Weaver and inverted Simpson indices are presented in Figure 3.2. 

The lowest amount of detected species was at 3 months, with an average of 53.8 OTUs in each 

sample. However, the group difference was non-significant from the 6 months age group. From 

there on, there was an increase of OTUs towards the samples from the mothers, with the 

increase being significant between 6 and 12 months (p = 9.25*10-32, paired t-test, unadjusted), 

and 12 months and mothers (p = 3.89*10-24, paired t-test, unadjusted). The meconium samples 

had an average of 85.6 OTUs per sample, higher than both 3 and 6 months.  

 

The samples from the mothers scored the highest values when using both the Shannon-Weaver 

and the inverted Simpson indices. When considering the median score for each age group, the 

meconium samples followed as a close second for the most diverse and even age group. Taking 

the average score into account, the 12-month samples (Shannon-Weaver = 4.11, Inverted 

Simpson = 0.89) expressed a higher diversity than the meconium samples (Shannon-Weaver 

index = 3.94, Inverted Simpson index = 0.79). All indices identified the 3-month samples as 

the age group with the least sample diversity and evenness. 
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Figure 3.2: Alpha diversity index plots illustrating the diversity within each age group (Meconium 

(n= 55), 3 months (n = 56), 6 months (n = 56), 12 months (n = 167), mothers (n = 58)). A) illustrates the 

observed species richness, B) shows the distribution of the Shannon-Weaver index, while C) represents 

the inverted Simpson index. The index results were acquired using the QIIME pipeline and plotted in 

RStudio. The red lines represent the median value of the index within the groups, and the stars mark 

significant differences, with a p-value below 0.05, computed by running a paired t-test between the age 

groups. The average scores, standard deviation, and median values for all alpha indices are listed in 

Table G.1 in Appendix G. 

A 

B 

C 
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3.1.3 Beta diversity 

Binary Jaccard and Bray-Curtis beta diversity indices presented as principal coordinate analysis 

(PCoA) plots in Figure 3.3. PCoA plot using the Euclidian distance matrix is given in Figure 

H.1 in Appendix H. In the binary Jaccard plot, the mother samples clustered alone, indicating 

that they share a common set of OTUs that also differ from the rest of the age groups. The 12-

month samples are separated into two clusters along both PCoA-axis. One of the 12 months 

clusters clustered with 6-month samples, implying that these 12-month samples have more 

OTUs common with 6 months than the other 12 months. The meconium and 3-month samples 

are dispersed in the plot, showing variations between samples in which OTUs that were present.  

 

The Bray-Curtis dissimilarity also showed the meconium samples being dispersed, which 

illustrates dissimilarity between OTU abundance in the meconium samples. The 3-month 

samples were also dispersed in the plot. The two clusters of the 12-month samples observed in 

the binary Jaccard plot are not observed in the Bray-Curtis plot, and the 12-month samples 

cluster together with samples from the mothers, indicating a similar abundance of species. 

However, the 12-month samples are more dispersed than the mother samples. The samples from 

6 months cluster together in the middle of the plot.  
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Figure 3.3: Beta diversity plots made using A) the binary Jaccard distance matrix, and B) Bray-Curtis 

dissimilatory matrices. The data was acquired from the sequencing results on an order level using the 

QIIME pipeline and further processed using RStudio. The meconium, 3-, 6-, 12 months, and mother 

samples were respectively colored in the yellow, red, green, blue, and gray. Circles colored with the 

corresponding age color, are used to mark clusters of samples. The number of samples from each age group 

used in these plots were 55 meconium samples, 56 samples from both 3 and 6 months, 167 samples from 

12 months, and 58 mother samples. 

A 

B 
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3.2 Short-chain fatty acids 

 

3.2.1 Short-chain fatty acid profiles  

The average SCFA composition in each age group was calculated and presented in Figure 3.4. 

Acetic acid dominated at all ages, however, decreasing significantly as of 3 months (3 to 6 

months, p = 3.39*10-09; 6 to 12 months, p = 2.05*10-13; 12 months to mothers; p = 2.99*10-10; 

paired t-test, unadjusted).  Propionic acid was most abundant in the meconium samples with 

13.9%, followed by a significant decrease to 4.9% in the 3 months samples (p = 1.21*10−09, 

paired t-test, unadjusted), before increasing in abundance towards the mothers, being significant 

from 3 to 6 months (p = 1.19*10-05, paired t-test, unadjusted) and 6 to 12 months (p = 0.022, 

paired t-test, unadjusted). The prevalence of butyrate was constantly increasing throughout the 

age groups from 0.8% in the meconium samples to 22.2% in the samples of the mothers, being 

significant between every age group (meconium to 3 months, p = 7.79*10-06; 3 to 6 months, p 

= 2.85*10-05; 6 to 12 months, p = 2.03*10-13; 12 months to mothers, p = 0.003; paired t-test, 

unadjusted). For the less abundant isobutyric, isovaleric and valeric acid, an increase of acid 

abundance was observed as the infant grew older and were at large in the mother group. 

Technical issues of the SCFA analysis, such as the description of the calibration process, are 

given in Appendix I. 
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Figure 3.4: Average percentage of SCFA at different ages. In total were 60 samples form 

meconium, 58 samples from months, 59 samples from 6 months, 179 samples from 12 months, and 60 

samples from the mothers included. Two samples, one from 3- and one from the 12-month group, were 

considered outliers and excluded from the statically SCFAs analysis. Significant differences between 

age groups, marked with a star, was determined using paired t-test in RStudio.  

 

3.2.2 The ratio between butyrate and propionate 

Logarithmic values of the butyrate/propionate-ratios were calculated and presented as boxplots 

for each age group in Figure 3.5. Significant differences were found between all ages, except 

between 3 to 6 months (meconium to 3 months, p = 6.22*10-07; 3 to 6 months, p = 0.59; 6 to 12 

months, p = 2.03*10-04; 12 months to mothers; p = 2.48*10-03; paired t-test, unadjusted). In the 

meconium samples, there was a predominance of samples with higher levels of propionate than 

butyrate, only 6.3% (3/48) of the samples showed a higher ratio of butyrate. The percentage of 

samples with higher levels of butyrate increased throughout the sampling times, and out of the 

3 months samples, 34.2% (13/38) had a higher level of butyrate than propionate. The higher 

levels of butyrate increased further, however insignificantly, to comprise 37.2% (19/51) of the 

samples from 6 months. By 12 months, 63.7% (114/179) of the samples had higher levels of 
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butyrate compared to propionate, and the same applied to 91.5% (54/59) of samples from the 

mothers.  

  

 
 

Figure 3.5: Log values of the butyrate/propionate-ratios for samples in the different age groups. 

Samples, where either propionic-, butyric acid, or both were undetectable by the GC, were excluded. 

The plot was based on 48 meconium samples, 38 samples from 3 months, 51 samples from 6 months, 

179 samples from 12 months, and 59 samples from the mother group. The red line represents the 

median value of the age group. The green line, going through zero, illustrates the critical value of 

equal amounts butyric and propionic acid in the samples. Above the critical line, with positive values, 

are the samples with higher proportions of butyric than propionic acid, whereas underneath the green 

line, with negative values, are the samples with higher propionic acid concentrations compared to 

butyric. The stars mark significant differences in average group values, where the is p-value below 

0.05, computed by running a paired t-test in RStudio. 

 

3.3 Immune cells  

 
3.3.1 Immune cell profile at 12-months 

The immune data were categorized into 28 groups of immune cells. In total, 67 infants of the 

12 months group were analyzed, and the average percentage distribution of immune cells is 

presented in Figure 3.6. The neutrophils dominated the samples, and on average did 30.8% of 

the analyzed immune cells belong to this group. Following the neutrophils, were the naïve cells 
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dominating, where the naïve CD4+ T-cells, naïve B-cells, and naïve CD8+ T-cell spoke for 

20.9%, 12.4% and 7.7% of the total immune cell composition, respectively. 

 

 

Figure 3.6: Overview of the average immune cell composition at 12 months. The cells analyzed 

by CyTOF2 were categorized into 28 groups of immune cells and summed to 100%. The groups with 

the highest average percentages are presented, and a table that lists the average values and standard 

deviation of all groups are given in Table J.1 in Appendix J. 

 

3.4 Correlation analysis 

 
3.4.1 Correlation between bacterial and short-chain fatty acid composition  

Correlation between bacterial orders and short-chain fatty acid composition at different ages is 

presented as a heatmap in Figure 3.7. At 3 months there was a significant positive correlation 

between butyric acid and Lactobacillales (p = 0.02, Spearman, BH-adjusted). The same positive 

correlation was observed at 6 months (p = 0.001, Spearman, BH-adjusted) and 12 months (p = 

0.00, Spearman, BH-adjusted). At 12 months there was also a significant negative correlation 

between Lactobacillales and propionic acid (p = 2.63*10-10, Spearman, BH-adjusted). For 

Erysipelotrichales, another order of the Firmicutes phylum, significant positive correlation with 

propionic acid (p = 0.001, Spearman, BH-adjusted), and negative correlation with butyric acid 

(p = 0.004, Spearman, BH-adjusted) were observed in samples from infants 12 months of age.  

 

Actinomycetales were shown to have significant negative correlations with butyric acid at 3 

months (p = 2.3*10-04, Spearman, BH-adjusted) and 6 months (p = 0.009, Spearman, BH-

adjusted), as well as being positively correlated with acetic acid at 12 months (0.008, Spearman, 

BH-adjusted). Solirubrobacteriales was positively associated with propionic acid in both 6 
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months (p = 0.0002, Spearman, BH-adjusted) and 12 months (p = 0.00, Spearman, BH-

adjusted). In the 12 months samples, Solirubrobacteriales are also found to correlate negatively 

with butyric acid (p = 0.0006, Spearman, BH-adjusted).  

 

Mycoplasmatales, order within the phylum of Tenericutes, were found to have significant 

correlations with acetic acid (p = 0.035, Spearman, BH-adjusted), butyric acid (p = 0.02, 

Spearman, BH-adjusted) and isovaleric acid (p = 0.036, Spearman, BH-adjusted). Both acetic 

acid and isovaleric being positive associations, while butyric was negative. 
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Figure 3.7: Spearman correlation between bacterial order composition and tested SCFAs. Positive 

correlations are marked in green and negative in red. White represents no correlation. Bacterial orders 

retrieved from the QIIME pipeline are listed along the y-axis, while the x-axis is divided into age groups 

each with a set of SCFAs. The plot is based on 55 samples from the meconium group and the 3 months 

group, 56 samples from 6 months, 166 samples from 12 months, and 58 samples from the mother-group.  
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3.4.2 Correlation between bacterial composition and immune cells at 12 months of age 

The Spearman correlation between bacterial composition and immune cells at 12 months of age 

are visualized in Figure 3.8. Xanthomonadales are significantly positively correlated with 

proinflammatory monocytes (p = 0.045, Spearman, BH-adjusted). Methylophiliales and 

classical monocytes are significantly positively correlated, with a BH-adjusted p-value of 

0.049. In addition, Methylophiliales significant negatively correlated with naïve CD4+ T-cells 

(p = 0.004, Spearman, BH-adjusted) and naïve regulatory T-cells (p = 0.018, Spearman, BH-

adjusted). Although non-significant, the order Methylococcales showed a strong trend towards 

being negatively correlated with proinflammatory monocytes (p = 0.061, Spearman, BH-

adjusted) at 12 months. 
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Figure 3.8: Spearman correlation between bacterial composition and immune cells at 12 months 

of age. Positive correlations are marked in green and negative correlations in red. White represents no 

correlation. Bacterial orders retrieved from the QIIME pipeline are listed along the y-axis, while the 28 

groupings of immune cells are present along the x-axis. The plot is based on 63 samples.  
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It was finally assessed whether or not the 67 infants with immune data were representative of 

the taxonomic microbiota distribution for all 12 months samples. In the Euclidean distance plot 

of 12-month samples, Figure K.1 in Appendix K, no patterns were detected between the 

samples with or without immune cell data, and the 67 infants distributed evenly across the two 

clusters that were observed in the plot. 

 

Spearman rank correlation between SCFA and immune cells was also conducted, however as 

there were no significant correlations the plot was not included. A description of trends is found 

in Appendix L. 
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4. Discussion 
4.1. Bacteria and SCFA in relation to immune cells at 12-months of age 

 

In the present study, correlations between types of immune cells and bacterial taxa and SCFAs 

were explored. No statistically significant correlations were found between the immune cell 

profiles and SCFAs, nor between any immune cells and the most dominant bacterial taxa. 

However, interesting significant correlations were reviled between smaller bacterial taxa, such 

as Methylophiliales and Xanthomonadales.   

 

4.1.1 Environmental bacteria and the immune system  

Despite the lack of significant immune correlations to the most dominant commensal bacterial 

orders, one interesting finding was that Methylophiliales was positively correlated to classical 

monocytes and had negative correlations to both naïve CD4+ T-cells and naïve regulatory T-

cells (Figure 3.8). Hence, Methylophilales might have an inflammatory effect on the immune 

system of the host. The information on this bacterial taxon in the human gastrointestinal tract 

is limited, as the bacterium is primarily associated with aquatic environments, sludge and plants 

(Doronina, Kaparullina, & Trotsenko, 2014), however its presence in the gut has been reported 

in several studies (Michels et al., 2019; Stearns et al., 2011). The presence of Methylophilaceae 

on human skin was, in a study by Song et al. (Song et al., 2013), linked to dog-owning 

households, and a transfer route of oral-skin transmission was proposed, as the 

Methylphiliaceae was derived from canine oral bacterial communities. A study on effects of 

dog ownership on immune genotype development has linked exposure to a dog with increased 

IL-10 and IL-13 cytokine levels at one year of age, compared to infants not exposed to dogs 

(Gern et al., 2004). Both IL-10 and IL-13 are derived from T-cells, with anti-inflammatory 

properties. However, the anti-inflammatory effects of IL-13 are circumstantial as IL-13 has 

been linked to allergic inflammation (Wynn, 2003). The present finding of the correlation 

between Methylophilales and proinflammatory monocytes might be associated with allergic 

reactions to environmental factors, such as dog-keeping. More studies are needed to confirm 

this correlation, in addition to more studies on Methylophilales in general to develop the full 

picture of its role in the gut microbiota. 
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Further, the Methylococcales order showed a strong trend towards being negatively correlated 

with proinflammatory monocytes at 12-months. This was an interesting correlation as 

Methylococcus capsulatus Bath is a non-commensal soil bacterium found to adhere to human 

monocyte-derived dendritic cells, affecting their maturation and cytokine profile and the 

subsequent T-cell polarization (Indrelid, Kleiveland, Holst, Jacobsen, & Lea, 2017). In murine 

colitis models, M. capsulatus have exhibited anti-inflammatory effects (Kleiveland et al., 

2013), which might explain lower levels of proinflammatory monocytes in the infants of the 

present study that constituted higher gut levels of Methylococcales.  

 

The bacterial orders described in this section, Methylophiliales and Methylococcales, are 

environmental-associated bacteria and highlight the importance of assessing non-commensal 

environmental bacteria when considering the gut microbiota’s impact on the host’s immune 

responses, immunoregulation, and immune development.  

 

4.1.2 Xanthomonadales and the immune system  

The order Xanthomonadales was found to have a statistically significant positive correlation 

with proinflammatory monocytes (Figure 3.8). The genus Stenotrophomonas of 

Xanthomonadales was present in all age groups (Table F.1 in Appendix F) and is a known 

multidrug-resistant opportunistic pathogen associated with respiratory infections in 

immunocompromised humans (Brooke, 2012). A study of Stenotrophomonas maltophia 

infected mice showed indications of a proinflammatory cytokine response, and recruitment of 

monocytes (Brooke, 2012). Another study displayed an immature immune response to the same 

bacterial specie and reported of proinflammatory cytokine responses in neonatal monocytes 

(Hartel et al., 2013). The findings of these two studies both align with the correlation that was 

revealed in the present study. However, both underline that bacterial infection of S. maltophia 

primarily occurs in immunocompromised patients, such as neonates. Nevertheless, by 12-

months the infants are no longer regarded as immunocompromised as the immune system is 

generally fully developed (Gleeson & Cripps, 2004). The taxon’s prevalence in the gut does 

not necessarily implicate an infection of a Xanthomonadales sp. and opportunistic pathogens 

are known to be important contributors to the gut microbiota. Therefore, it can be questioned 

whether the immune response to Xanthomonadales sp. under non-infectious circumstances 

corresponds to the immune response during an infection. However, from the correlation 

discovered in the present study, it seems reasonable to hypothesize that the prevalence of 

Xanthomonadales sp. in the gut might be linked to a higher relative abundance of 
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proinflammatory monocytes, thus introducing a proinflammatory immunological response in 

the host. 

 

4.1.3 Lack of correlations to immune cell profiles 

Noteworthy was the lack of significant correlations between the most dominant bacterial taxa 

at 12 months and the immune cell profiles. Members of the commensal microbiota, such as 

Clostridia, Bacteroidetes, and Bifidobacterium, were found to affect the function and numbers 

of regulatory T-cells (Hart et al., 2004; Kelly, Conway, & Aminov, 2005). One example is the 

effect of Clostridia on activation of naïve T-cells where Clostridial species through direct or 

indirect measures, affect naïve CD4+ T-cells to differentiate to either effector- or regulatory T-

cells depending on whether or not the gut is in a state of inflammation (Nagano, Itoh, & Honda, 

2012). Another example is the Bacteroides fragilis, where its capsular Polysaccharide A has 

been shown to facilitate functional maturation of regulatory T-cells in mice, and to possess a 

suppressive effect of the proinflammatory cellular responses, allowing B. fragilis’ intimate 

colonization on the intestinal epithelium (Jiang et al., 2017).  

 

This particular study did not reveal any significant correlations between the groups of immune 

cells and SCFAs, which was surprising as SCFAs have been found to regulate the functions of 

almost every type of immune cell by altering gene expression, differentiation, proliferation, 

chemotaxis, and apoptosis (M. Sun, Wu, Liu, & Cong, 2017). SCFAs were found to facilitate 

T-cell differentiation through the regulation of dendritic cell functions. Exposed to butyrate, 

can the dendritic cells facilitate naïve CD4+ T-cell differentiation to produce regulatory T-cells 

and suppress differentiation to effector CD4+ T-cells (Gurav et al., 2015). Propionate (Vinolo 

et al., 2011) and butyrate (Chang, Hao, Offermanns, & Medzhitov, 2014) have both been 

connected to impairment of lipopolysaccharide-induced proinflammatory mediators (Li et al., 

2018; M. Sun et al., 2017), and acetate may inhibit the secretion of inflammatory cytokines 

from cells such as B-cells, monocytes, natural killer cells and T-cells (Masui et al., 2013; M. 

Sun et al., 2017). All the above-mentioned connections of bacterial fermentation products and 

immune cells give an indication of the importance of SCFAs for maintaining gut homeostasis, 

and it would, therefore, have been expected to observe correlations between regulatory T-cells 

and SCFAs in the present study as well.  

 

 



  47 

Nevertheless, all the studies mentioned were conducted using cell cultures, murine-, or rat 

models. These systems are more enclosed, where it is possible to control more of the factors 

interfering with immune expression (Nguyen, Vieira-Silva, Liston, & Raes, 2015). The present 

study was, on the other hand, conducted by analysis of material from free-living humans, with 

uncontrollable numbers of confounding elements and inter-individual variations, all acting on 

the host’s immune system profiles. The system’s complexity might hide correlations between 

SCFAs and specific immune cells and be the reason for the high p-values observed in the 

present study.   

 

4.2. Bacteria and SCFAs  

 
4.2.1 Enterobacteriales, the most dominant bacterial order in meconium  

Enterobacteriales was observed to dominate the meconium samples (Figure 3.1). Contradictory 

to the findings of the present study, Moles and colleagues found Firmicutes to be the dominating 

phyla in preterm neonates, with most representatives belonging to the class of Bacilli (Moles et 

al., 2013). However, they observed that Enterobacteriaceae become the dominating family the 

following week after birth. Consequently, the high prevalence of Enterobacteriales in the 

present study might be connected to the meconium samples collection time, as samples 

collected later may have a higher prevalence of Enterobacteriales. Another possible explanation 

is that the high prevalence of Enterobacteriales could be the result of its route of transmission. 

Escherichia/Shigella was in the present study the most prominent genera in the meconium 

samples (19.9%, Figure F.2 in Appendix F), and previous studies have found Escherichia to 

enter the mother’s genital tract by the perineum (Asnicar et al., 2017; Tameliene et al., 2012), 

thereby allowing for its early colonization and relatively high prevalence in neonatal gut.   

 

As a consequence of the high prevalence of Escherichia and other members of 

Enterobacteriales, the gut lumen is depleted of oxygen, thus, constructing an anaerobic and 

reduced environment that favors the growth of the strictly anaerobic bacteria such as 

Bifidobacterium, Clostridium, and, Bacteroides. (Backhed et al., 2015; Matamoros, Gras-

Leguen, Le Vacon, Potel, & de La Cochetiere, 2013; S. Wang et al., 2020). 

 

Moles et al. (Moles et al., 2013) reported a larger prevalence of Bacilli than what was found in 

the present study, as Bacilliales and Lactobacilliales only constituted up 2.2% and 4.5% of the 

microbiome in the meconium samples, respectively (Figure 3.1). Instead, Clostridiales was in 
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the present study, reported as the second to largest bacterial order (19.4%) and the largest order 

within Firmicutes. The high abundance of Clostridiales might be a result of the mode of delivery 

and the hospital environment, as the Clostridium sp. such as Clostridium difficile is found to be 

higher in caesarian delivered infants than infants born vaginally (Penders et al., 2006). C. 

difficile is considered a bacterium of the hospital environment, and have been found on the 

hands and in the stool of healthy hospital personnel (Penders et al., 2006). 

 

4.2.2 Increase of Bifidobacteriales to 3 months 

Bifidobacteriales was demonstrated to dominate the gut at 3 months, constituting 40.4% of the 

microbiota on average (Figure 3.1). Bifidobacterium’s high prevalence is likely connected to 

breastfeeding as an overrepresentation of Bifidobacterium has been observed in breastfed 

infants compared to adults (Sela & Mills, 2010). This is connected to the Bifidobacterial ability 

to utilize non-digestible oligosaccharides from the breast milk, where the HMOs of the breast 

milk works as a growth factor and becomes a core element of the microbial niche (Sela & Mills, 

2010). The prevalence pattern of Bifidobacteriales is accompanied by the pattern of acetic acid 

ratio at all ages (Figure 3.1, Figure 3.4), although no statistically significant correlations were 

detected in any of the age groups. One reason for the coinciding developmental pattern might 

be Bifidobacterial acetogenesis, as Bifidobacteria produce acetic acid in addition to lactic acid 

as a fermentative end product. Statistically significant correlations between Bifidobacterium 

and acetic acid have previously been described by Nagpal et al. (Nagpal et al., 2017). 

Bifidobacteirales aids in the development of the microbial niches of the gut, as the fermentative 

products are further metabolized by other bacteria in the gut (Moens, Verce, & De Vuyst, 2017). 
 

4.2.3 Correlation of Lactobacilliales and butyric acid  

Together with Bifidobacteriales, Lactobacilliales is also essential for the fermentation of non-

digestible carbohydrates in the infant gut. Neither of the bacterial orders is found to be 

producers of butyrate. However, they are major producers of lactic acid (Moens et al., 2017). 

In the present study, members of Lactobacilliales order was found to be positively correlated 

with butyrate at 3-, 6- and 12 months (Figure 3.7). The correlation of Lactobacilliales and 

butyrate might stem from cross-feeding interactions between Lactobacilli and lactate-utilizing 

butyrate-producing bacteria in the gut, as described in a study by Moens et al. (Moens et al., 

2017). Lactobacillus acidophilus first degrades oligofructose to free fructose and metabolizes 

this further, leaving lactate as a metabolic end-product. In the study of Moens et al., 

Anaerostipes caccae was found to utilize both the fructose and lactate as a source of energy, 
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thereby being an example of both substrate and metabolite cross-feeding (Moens et al., 2017; 

Smith, Shorten, Altermann, Roy, & McNabb, 2019). There has also been reported of cross-

feeding mechanisms between lactate-producing bacteria and the butyrate-producing 

Eubacterium hallii (Duncan, Louis, & Flint, 2004). Both the genera Anaerostipes and E. hallii 

have been detected in all age groups in the present study with the respective prevalence range 

of [0.08-1.54]% and [0.003–0.74]% (Table F.1 in Appendix F). The metabolic cross-feeding 

could have substantial effects on the SCFA balance, as it occurs mostly to form butyric acid 

from acetate or lactate. More seldom is butyrate converted to propionate, and in very few cases 

are propionate converted to acetate (Rios-Covian, Salazar, Gueimonde, & de los Reyes-

Gavilan, 2017).  

 

4.2.4 Clostridiales and Bacteriodetes and SCFAs  

Together with the statistically significant increase of Firmicutes from 3 months, and the order 

Clostridiales in particular, a simultaneous statistically significant increase of butyric acid was 

observed (Figure 3.1, Figure 3.4). The corresponding increase was reasonable as the main 

butyrate-producers belong to the Clostridium cluster IV and Clostridium cluster XIVa (Parada 

Venegas et al., 2019). Clostridiales was, in the present study, observed to have a steady increase 

throughout the first year of the infant’s life and to be at large in the adult-gut of the mothers. 

According to literature, the shift from infant to an adult-like microbiota is represented by a shift 

from a gut dominated by Proteobacteria and Actinobacteria, to a gut dominated by Firmicutes 

and Bacteroidetes (Milani et al., 2017). The same was observed in the present study, as 

Proteobacteria heavily dominated the gut of the neonates, and Actinobacteria the gut of the 3 

months old. Both taxa were reduced to collectively constitute only about 7% of the gut 

microbiota in the mothers, where the major bacterial share belonged to the phyla of Firmicutes, 

followed by Bacteroides (Figure F.1 in Appendix F).  

 

In the same manner as Clostridiales, fractions of Bacteriodetes followed the fraction-pattern of 

propionate at all ages (Figure 3.1, Figure 3.4). The corresponding patterns are likely as 

Bacteroidetes is able to produce both acetic acid and propionic acid depending on the available 

substrate. Propionate is, however, preferred, and for that reason is Bacteroidetes considered to 

be the largest propionate-producing group in the gut microbiota (Rios-Covian et al., 2017). 

However, in the present study, no statistically significant correlations between Bacteroidales 

and propionate were detected at any age.  
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The increase of the butyrate-producing Clostridia, and Firmicutes as a whole, might be the basis 

for the observed increased proportions of butyrate against propionate (Figure 3.5) during the 

first year of life and to the samples of the mothers. The relative abundance of both SCFAs 

increased throughout the sampling ages. However, the increase was more profound for butyrate 

than propionate, reflecting the larger increase in the relative abundance of Clostridiales than 

Bacteroidales (Figure 3.1).  

 

4.3 Methodological considerations  

 
4.3.1 Strengths and limitations of study design 

The present study has the strength of including a large number of sample pairs. This study is 

involved in the larger PreventADALL cohort, which has collected extensive biological and 

lifestyle information on all the infants and their families. The information gathered enables 

further studies of different factors in the same infants that later can be linked to generate an 

overall picture of infants’ health in the general population. The present study is an example of 

this type of study collaboration, where data on 67 infants’ immunological profiles were 

obtained to see in connection to the bacterial composition and SCFAs profiles that were 

analyzed.  

 

Due to the timing and the expenses connected to immune cell profiling were not the immune 

profiles of all the 180 12-month infants analyzed accessible. However, the 67 infants where the 

immune profiles were accessible were studied longitudinally. Ideally, a complete set for all 

infants would have strengthened the study design with an equal number of samples of all ages. 

Although making the sample numbers uneven, all the 180 12-month samples were included in 

the statistical analysis where it was fit, as a larger number of samples results in a more 

representative dataset for the general age group. 

 

4.3.2 Gas chromatographical challenges 

There was no information on the exact wet weight of the fecal material before the samples were 

diluted in DNA/RNA shield buffer. As the initial concentration of fecal material is unknown, 

extraction of a given volume from each sample leads to different amounts of fecal material 

being analyzes. The initial concentration of the fecal sample would affect the detection rates of 

SCFAs, as a larger amount of inserted sample results in higher levels of detected SCFAs. It 

would, therefore, be inaccurate to calculate the absolute concentration of SCFAs per gram wet 
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weight fecal material, as all samples contained different input concentrations of fecal material. 

Even though the accurate absolute values of SCFAs were inaccessible, an internal standard was 

included during sample preparation. The internal standard of 2-methylvaleric acid was used for 

sample validation. However, complications occurred when an unknown compound was 

observed having the exact retention time as the internal standard (Appendix I). No extensive 

analyses of the overlapping peak were preformed, but ideally, mass spectroscopy should have 

been conducted for compound identification. 

 

4.3.3 Fecal material as a proxy for bacterial and SCFAs gut composition 

Fecal samples were in the present study and have frequently been used as an approximation for 

the luminal microbiome samples. This proxy might be inconvenient as there are significant 

differences in the mucosal and the fecal microbiome, and the fecal samples give an imprecise 

reflection of the bacterial mucosal niches across different sites in the intestine (Tang et al., 

2020). Fecal material implements the need for sample preservation, as it is impossible to 

analyze the fresh fecal sample immediately after collection. The same challenges of using fecal 

material as a proxy for bacterial microbiome follows when it is used as a proxy for luminal 

SCFAs levels. As the SCFAs are volatile, there is a need for good sample preservation until the 

time of analysis to avoid sample deterioration (Primec et al., 2017). The complexity of the 

biological material presents a challenge in sample preparation, and different methods for 

pretreatment methods have been proposed, as described in 1.4.3. Lastly, only 5-10% of the 

SCFAs produced is estimated to be in fecal secrete, while the rest is absorbed by the colonic 

epithelial cells or further metabolized in bacterial cross-feeding (Garcia-Villalba et al., 2012; 

Henningsson et al., 2001; Primec et al., 2017; Rios-Covian et al., 2017).  

 

The use of fecal material is, however, the best alternative for human studies, as it is cost-

efficient, allows for repeated sampling, and other methods for sampling, such as biopsies, are 

generally considered invasive (Tang et al., 2020). Other alternatives to human fecal studies are 

gut microbiome studies using animal models, such as mice, where biopsies are possible. 

Although the murine models share anatomical similarities to humans, it cannot fully 

recapitulate the human systems, and differences in the gut microbiota composition have been 

described between murine models and humans (Nguyen et al., 2015). Besides, animal studies 

will never reflect the variations that occur in a human life which contributes to shaping the 

microbiota, since multiple factors, such as genetic background, delivery mode, diet, and social 

activities, are absent in these models  (Nguyen et al., 2015).  
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The present study has presented the bacterial, SCFAs, and immune cell data as percentages 

representing the total sample variation. Unfortunately, were the total amount of bacterial taxa, 

SCFAs, or immune cell type not taken into consideration. Although it is possible to discuss the 

relative abundance, such an oversimplification will hamper the opportunity to investigate 

absolute abundance in the samples. When considering relative abundance, it is of importance 

to note that the decrease or increase of one SCFA or bacterial specie does not necessarily reflect 

the actual change in true abundance. Instead, the change in relative abundance might be caused 

by other SCFA or bacterial taxon becoming more or less prevalent. The different levels of 

biomass and SCFAs levels between age groups are also neglected. Both the biomass and the 

SCFA levels increase through the first period of life, which is not reflected when the data are 

presented by percentage. Anyhow, by doing this simplification, it facilitates a simple method 

for comparison of shifts in relative abundance across the age groups. 

 

4.3.4 Bias as result of uneven 16S library preparation 

The extraction of the 12-month samples was conducted using two plates, treated separately of 

each other, both during extraction and the PCR treatments that followed. The distribution of the 

samples between the two plates was later rediscovered as two clusters in the Euclidean distance 

plot (Figure H.1 in Appendix H) of the 12 months infants, as well as in the binary Jaccard plot 

(Figure 3.3.A). As the sample clustering coincided with the distribution of samples on the 

plates, no further statistical investigations were performed for pattern determination. Whether 

the bias stem from the extraction of DNA or PCR is uncertain, as both sample plates were 

processed independently of each other. Extraction of genomic DNA from complex samples is 

prone for bias. The wide variety of cellular membrane structures of the different taxa challenges 

a representative extraction of the microbial community (Teng et al., 2018). Nevertheless, a 

study by Teng and colleagues found the reproducibility of parallel DNA extraction on oral 

microbiota-samples to be of general agreement (Teng et al., 2018). The potential bias from the 

extraction process could be further amplified during the PCR reactions, as PCR is known to 

introduce artifacts such as sequencing errors and bias from unequal amplification (Acinas, 

Sarma-Rupavtarm, Klepac-Ceraj, & Polz, 2005). Despite the two clusters observed, is the 

taxonomic composition of the 12-month samples deemed trustworthy and representative for the 

age group in the correlation analysis with immune cell profiles. The data was considered 

trustworthy due to the samples with immune cell composition being evenly distrusted between 

the two clusters of the Euclidean distance plot (Figure K.1 in Appendix K). The differences 

might thereby not have had substantial effects on the output of the correlation analysis. 
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However, these laboratory artifacts need to be further investigated, to avoid introducing any 

bias from the extraction or the PCR procedures in future sample preparation.  

 

4.3.5 Implications of contamination as a result of uneven amplification of low biomass 

samples 

The lowest intra-individual diversity was observed at 3 months, and not in the meconium 

samples (Figure 3.2), as expected since meconium are generally seen to have limited diversity 

(Avershina et al., 2014; Milani et al., 2017). Studies have demonstrated a steady increase in 

alpha diversity throughout infancy (Avershina et al., 2014; Backhed et al., 2015; Hua, Goedert, 

Pu, Yu, & Shi, 2016). The large alpha diversity observed in the meconium samples in this study 

might be a result of methodical deviation, as the meconium samples were run for 5 more PCR 

cycles than the remainder. Thereby opening the possibility for greater amplification of bacterial 

contaminants in meconium samples than in the other age groups. The problem of exogenous 

DNA contamination in niches with low biomass is well-known (Karstens et al., 2019).  Cross-

contamination of simultaneous processed high biomass samples, and bacterial DNA that 

contaminates the reagents and components of DNA extraction kits, are both possible sources 

of contaminating exogenous DNA (Eisenhofer et al., 2019; Perez-Munoz et al., 2017). Because 

of the initially low biomass, the contaminating DNA constitutes a larger proportion of the 

bacterial taxa present in the meconium samples. A normal contaminant, Bradyrhizobium, were 

found to be significantly more prevalent in the meconium samples than in the other age groups 

(Order of Rhizobiales; meconium to 3 months; p = 9.70*10-07; paired t-test, unadjusted), 

constituting of 0.50% of the meconium samples on average, while the average for the other 

groups is in the range of [0.002-0.08]% (Table F.1 in Appendix F). Bradyrhizobium is a soil-

associated nitrogen fixator that is reported to contaminate laboratory PCR reagents and kits 

(Salter et al., 2014). It is therefore likely that the large alpha diversity observed in the meconium 

samples stems from a more considerable amplification of contaminants connected to the 

increased number of PCR cycles. 
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5. Conclusions and further research 
The present study showed that environmental bacteria might have a considerable impact on the 

immune cell profile at 12 months. It reviled interesting correlations between environmental 

bacteria, Methylophiliales and Methylococcales, and the host’s immune cells, possibly 

resulting in inflammatory and anti-inflammatory effects, respectively. More research should be 

undertaken to further investigate the effect of the non-commensal environmental bacteria on 

the immune system in humans. Additionally, as a continuation of this study, it would be 

interesting to look at the bacterial correlations at a deeper taxonomic level. Due to time 

limitations, this was not conducted in the present study. However, it would be advantageous as 

bacterial orders are heterogeneous and contain both opportunistic pathogenic, pathogenic or 

commensal species and strains, which may have contradicting effects on the host immune 

system. 
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Appendices 
Appendix A – CyTOF methods_MECFS manuscript by Petter Brodin  

“Immune cell phenotyping by Mass Cytometry  

Cryopreserved and stabilized whole blood (blood mixed with ‘Stabilizer’ component of Whole blood 
processing kit; Cytodelics AB, Sweden) collected from …. patients sampled during the study period 
were thawed, and cells were fixed and RBCs lysed using Wash # 1 and # 2 buffers (Whole blood 
processing kit; Cytodelics AB, Sweden) as per the manufacturer’s recommendations. This was 
performed a few days prior to barcoding and staining of cells. Post fix/lysis of cells, ~1x106 cells/sample 
were plated onto a 96 well ‘U’ bottom plate using standard cryoprotective solution (10% DMSO and 
90% FBS) and cryopreserved at -80oC.  

On the day of barcoding and staining of cells, cells were thawed at 37oC using RPMI medium 
supplemented with 10% fetal bovine serum (FBS), 1% penicillin-streptomycin and benzonase (Sigma-
Aldrich, Sweden). Briefly, cells were barcoded using automated liquid handling robotic system (Agilent 
technologies, Santa Clara, CA, USA (REF Mikes et al, Methods Mol Biol, 2019) using the Cell-ID 20-
plex Barcoding kit (Fluidigm Inc.) as per the manufacturer’s recommendations. Following cell pooling 
batch wise (with samples from placebo and treatment groups equally represented in each batch), cells 
were washed, FcR blocked using blocking buffer (in-house developed recipe) for 10min at room 
temperature, following which cells were incubated for another 30 min at 4°C after addition of a cocktail 
of metal conjugated antibodies targeting the surface antigens. Following two washes with CyFACS 
buffer, cells were fixed overnight using 4% formaldehyde made in PBS (VWR, Sweden). The broad 
extended panel of antibodies used for staining are listed in Supplementary Table X. For acquisition by 
CyTOF (within 2 days after staining), cells were stained with DNA intercalator (0.125 μM Iridium-
191/193 or MaxPar® Intercalator-Ir, Fluidigm) in 4% formaldehyde made in PBS for 20 min at room 
temperature. After multiple washes with  

CyFACS, PBS and milliQ water, cells were filtered through a 35µm nylon mesh and diluted to 750,000 
cells/ml. Cells were acquired at a rate of 300-500 cells/s using a super sampler (Victorian Airship, USA) 
connected to a CyTOF2 (Fluidigm) mass cytometer, CyTOF software version 6.0.626 with noise 
reduction, a lower convolution threshold of 200, event length limits of 10-150 pushes and a sigma value 
of 3 and flow rate of 0.045 ml/min.  

Antibodies and reagents  

Purified antibodies for mass cytometry were obtained in carrier/protein-free buffer and then coupled to 
lanthanide metals using the MaxPar antibody conjugation kit (Fluidigm Inc.) as per the manufacturer’s 
recommendations. Following the protein concentration determination by measurement of absorbance at 
280 nm on a nanodrop, the metal-labeled antibodies were diluted in Candor PBS Antibody Stabilization 
solution (Candor Bioscience, Germany) for long-term storage at 4°C. Antibodies used are listed in 
Supplementary Table X.” 
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Appendix B – PRK Illumina primer sequences for Index PCR  

Table B.1: PCR index primer information. Listed is the name of the primer, sequence and target region, 

together with primer direction.  

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Primer name Sequence, 5' -> 3' Target region/gene Direction
F1 aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctagtcaaCCTACGGGRBGCASCAG 16S rRNA (V3-V4) Forward
F2 aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctagttccCCTACGGGRBGCASCAG 16S rRNA (V3-V4) Forward
F3 aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctatgtcaCCTACGGGRBGCASCAG 16S rRNA (V3-V4) Forward
F4 aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctccgtccCCTACGGGRBGCASCAG 16S rRNA (V3-V4) Forward
F5 aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctgtagagCCTACGGGRBGCASCAG 16S rRNA (V3-V4) Forward
F6 aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctgtccgcCCTACGGGRBGCASCAG 16S rRNA (V3-V4) Forward
F7 aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctgtgaaaCCTACGGGRBGCASCAG 16S rRNA (V3-V4) Forward
F8 aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctgtggccCCTACGGGRBGCASCAG 16S rRNA (V3-V4) Forward
F9 aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctgtttcgCCTACGGGRBGCASCAG 16S rRNA (V3-V4) Forward
F10 aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctcgtacgCCTACGGGRBGCASCAG 16S rRNA (V3-V4) Forward
F11 aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctgagtggCCTACGGGRBGCASCAG 16S rRNA (V3-V4) Forward
F12 aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctggtagcCCTACGGGRBGCASCAG 16S rRNA (V3-V4) Forward
F13 aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctactgatCCTACGGGRBGCASCAG 16S rRNA (V3-V4) Forward
F14 aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctatgagcCCTACGGGRBGCASCAG 16S rRNA (V3-V4) Forward
F15 aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctattcctCCTACGGGRBGCASCAG 16S rRNA (V3-V4) Forward
F16 aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctcaaaagCCTACGGGRBGCASCAG 16S rRNA (V3-V4) Forward
R1 caagcagaagacggcatacgagatCGTGATgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 16S rRNA (V3-V4) Reverse
R2 caagcagaagacggcatacgagatACATCGgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 16S rRNA (V3-V4) Reverse
R3 caagcagaagacggcatacgagatGCCTAAgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 16S rRNA (V3-V4) Reverse
R4 caagcagaagacggcatacgagatTGGTCAgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 16S rRNA (V3-V4) Reverse
R5 caagcagaagacggcatacgagatCACTCTgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 16S rRNA (V3-V4) Reverse
R6 caagcagaagacggcatacgagatATTGGCgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 16S rRNA (V3-V4) Reverse
R7 caagcagaagacggcatacgagatGATCTGgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 16S rRNA (V3-V4) Reverse
R8 caagcagaagacggcatacgagatTCAAGTgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 16S rRNA (V3-V4) Reverse
R9 caagcagaagacggcatacgagatCTGATCgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 16S rRNA (V3-V4) Reverse
R10 caagcagaagacggcatacgagatAAGCTAgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 16S rRNA (V3-V4) Reverse
R11 caagcagaagacggcatacgagatGTAGCCgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 16S rRNA (V3-V4) Reverse
R12 caagcagaagacggcatacgagatTACAAGgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 16S rRNA (V3-V4) Reverse
R13 caagcagaagacggcatacgagatTTGACTgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 16S rRNA (V3-V4) Reverse
R14 caagcagaagacggcatacgagatGGAACTgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 16S rRNA (V3-V4) Reverse
R15 caagcagaagacggcatacgagatTGACATgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 16S rRNA (V3-V4) Reverse
R16 caagcagaagacggcatacgagatGGACGGgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 16S rRNA (V3-V4) Reverse
R17 caagcagaagacggcatacgagatCTCTACgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 16S rRNA (V3-V4) Reverse
R18 caagcagaagacggcatacgagatGCGGACgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 16S rRNA (V3-V4) Reverse
R19 caagcagaagacggcatacgagatTTTCACgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 16S rRNA (V3-V4) Reverse
R20 caagcagaagacggcatacgagatGGCCACgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 16S rRNA (V3-V4) Reverse
R21 caagcagaagacggcatacgagatCGAAACgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 16S rRNA (V3-V4) Reverse
R22 caagcagaagacggcatacgagatCGTACGgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 16S rRNA (V3-V4) Reverse
R23 caagcagaagacggcatacgagatCCACTCgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 16S rRNA (V3-V4) Reverse
R24 caagcagaagacggcatacgagatGCTACCgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 16S rRNA (V3-V4) Reverse
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Appendix C – Information on the Gas Chromatograph 

Table C.1: Technical information on the Trace 1310 with Autosampler gas chromatograph.  

Instrument Trace 1310 with Autosampler (Thermo Fisher Scientific, Norway) 
Injector    
Mode: Split 
Temperature:  250*C 
Carrier gas:  Helium 
Column flow:  2.5 mL/min 
Split flow:  200 mL/min 
Purge flow:  3 mL/min 
Injector volume:  0.2 uL 
Liner:  4mm x 6.3mm x 78.5mm (Restek, USA) 
Syringe:  10 μl syr FN 50 mm C, Ga 23, cone tip (Thermo Fisher Scientific, 

Norway) 
Column    
  Stabilwax DA 30m, 0.25 mm ID, 0.25 μm (Restek, USA) 
Temperature 
program: 

90 °C to 150 °C (6 min), 150 °C to 245 °C (1.9 min). 

Time per sample:  14.9 min 
Detector   
Type FID Temperature: 275°C 
Hydrogen:  30 mL/min 
Air:  300 mL/min 
Makeup gas:  30mL/min 

 
Appendix D – Calibration standards  

Table D.1: Calibration standards concentrations 

Standard No. Standard A Standard B Standard C 

Acetic acid 3000 µM 1500 µM 300 µM 

Propionic acid 120 µM 60 µM 12 µM 

Isobutyric acid 80 µM 40 µM 8 µM 

Butyric acid 120 µM 60 µM 12 µM 

Isovaleric acid 80 µM 40 µM 8 µM 

Valeric avid 80 µM 40 µM 8 µM 

2-methylvaleric acid 250 µM 125 µM 25 µM 

Formic acid 0.2% 0.2% 0.2% 
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Appendix E – Technical aspects of 16S rRNA gene sequencing 

Sequence results generated from the QIIME pipeline 

For the sequencing of the 12 months samples the total number of sequences was 6,163,507, and 

the sequencing depth was set to 10500 dsDNA fragments per sample. The total OTU count was 

724. The longitudinal samples (meconium, 3-, 6 months, and mothers) the total sequence 

number was 10,672,069, and the cut-off was 5000 dsDNA fragments per sample. In total 1286 

OTUs were counted.  

 

Technical considerations concerning PCR   

For the first qualitative PCR amplification all samples were run for 25 cycles, except from 

meconium samples that were run for 30 cycles to ensure sufficient amounts of amplicons. 

 

Positive and negative controls were included in all PCR reactions. These controls followed the 

same treatment as all other samples, and showed sufficient results, meaning they did not report 

any methodical errors or major contaminations. 

 

Normalization and library pooling 

After all the samples had been indexed, the sample DNA concentrations were measured by 

Qubit and Cambrex-FLX 800 CSE. In the first sequencing run the samples were measured using 

different Qubit working solutions, and two separate standard curves were made for each 

solution. One having a regression line with the formula y = 0.0257x - 9.3475 and a R2 = 0.9108, 

the other y = 0.0171x - 2.3537 and a R2 = 0.9189. The regression lines were used to estimate 

the Qubit-values for all samples on the sample plate. Based on the estimated Qubit values the 

sample with the highest concentration was used as a cut off value. From this sample it was 

decided that 2µL was to be added to the pooled library. The added volume to the pooled library 

from all other samples was calculated so the concentration matched the cut off value. Although, 

no larger volume than 10µL was used. Pooling and normalization were done using the Beckman 

Biomek 3000 robot. In total, 188 samples, including positive and negative controls, were pooled 

and prepared for sequencing. 110 of the samples used the first regression line for Qubit 

estimation and 78 samples used the second regression line.  
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As the two libraries had different concentrations of DNA, they had to be normalized. The DNA 

concentrations of the two pooled libraries were measured using Qubit. The library with the 

highest concentration was then diluted to equal concentrations in the two libraries, and the 

libraries were pooled together, taking the number of samples in each library into account. 

 

For the second sequencing run all samples were measured using the same Qubit working 

solution using Cambrex-FLX 800 CSE, and a regression line with the formula y = 0.0107x - 

0.9652 and an R² = 0.872. The highest estimated Qubit concentration was set as a cut-off value. 

As more samples were pooled together before this sequencing run, the total volume of the 

pooled sample would exceed what one 1.5mL Eppendorf tube would allow. To account for this, 

the cut off value was set to 1µL instead of 2µL, and no volume larger than 10µL was used in 

the pooling. Pooling and normalization were done using the Beckman Biomek 3000 robot. In 

total, 245 samples, including positive and negative controls were pooled.  

 
Appendix F – Bacterial phyla and genera 

Bacterial OTUs are taxonomically defined by QIIME using the SILVA database. The average 

percentage abundance of phyla and genera for the different ages are illustrated in Figure F.1 

and Figure F.2, respectively. The average bacterial genera abundance in percentage are listed 

in Table F.1. 
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Figure F.1: Distribution of bacterial phyla within each age group. The bacterial phyla are acquired 

from sequencing and processing using the QIIME pipeline, and the average of the most dominant 

bacterial phyla in each age group are displayed. 

 
Figure F.2: Distribution of bacterial genera within each age group. The bacterial genera are acquired 

from sequencing and processing using the QIIME pipeline, and the average of the most dominant 

bacterial genera in each age group are displayed. More detailed information on the labeled bacterial 

genera is listed in Table F.1.  

 

 

 

 

 

 

 

 

 

 

 

12.0% 7.4%
11.3%

19.5%
11.5%

11.4%

9.3%
11.8%

40.4%
25.1%

10.9%

2.7%

19.9%

10.1% 6.1%

6.6%

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

meconium 3_months 6_months 12_months mothers

Average Bacterial Genera

[Eubacterium] rectale group

Pseudoalteromonas

Halomonas

Streptococcus

Escherichia/Shigella

Veillonella

[Ruminococcus] torques group

Clostridium sensu stricto 1

[Ruminococcus] gnavus group

Roseburia

Bifidobacterium

Faecalibacterium

Bacteroides



  69 

Table F.1: The average distribution of selected bacterial genera within each age group. The bacterial 

orders are acquired from sequencing and processing using the QIIME pipeline and given as average 

abundance in percentages (%) in each age group.  

Order Genera Meconium 3 months 6 months 12 months mothers 
Alteromonadales Pseudoalteromonas 5. 50 0.16 0.071 0.15 0.034 

Bacteroidales Bacteroides 12.00 7.39 11.35 19.53 11.54 

Bifidobacteriales Bifidobacterium 11.75 40.38 25.11 10.92 2.72 

Clostridiales 

Anaerostipes 0.11 0.08 0.68 1.54 1.02 

[Eubacterium] hallii group 0.06 0.003 0.28 0.40 0.74 

[Eubacterium] rectale group 1.90 0.70 3.04 0 6.63 

Faecalibacterium 1.23 0.05 1.36 11.41 9.31 

[Ruminococcus] torques 
group 0.15 0.33 0.10 1.61 0.78 

[Ruminococcus] gnavus 
group 2.70 5.09 6.32 7.11 0.15 

Clostridium sensu stricto 1 6.40 12.18 14.41 1.73 1.58 

Roseburia 0.11 0.005 0.27 7.28 0.66 

Enterobacteriales Escherichia/Shigella 19.90 10.16 6.15 1.25 0.59 

Lactobacillales Streptococcus 3.09 3.05 1.21 1.15 0.38 

Oceanospirillales Halomonas 6.88 0.28 0.10 0.27 0.056 

Rhizobiales Bradyrhizobium 0.50 0.08 0.08 0.002 0.005 

Selenomonadales Veillonella 1.61 2.71 5.22 1.453 0.073 

Xanthomonadales Stenotrophomonas 0.03 0.001 0.0002 0.11 0.0001 
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Appendix G – Alpha diversity index table 

Table G.1: The average values, standard deviation, and median alpha diversity indices for the different 

age groups. 

  Average Standard deviation Median  
Observed Species meconium 85.5836364 26.1754275 96.4 
 3 months 53.7910714 13.987549 53.3 
 6 months 55 15.0072245 51.8 
 12 months 95.5808383 20.5601846 92.4 
 mothers 186.958621 42.1144951 187.55 
Shannon-Weaver meconium 3.93949052 1.64953372 4.9535917 
 3 months 2.40592105 0.73460843 2.4856818 
 6 months 2.93694019 0.8629056 3.06735965 
 12 months 4.11437733 0.60884415 4.130469 
 mothers 5.62528243 0.41636544 5.700417 
Inverted Simpson meconium 0.78749771 0.26795548 0.94716043 
 3 months 0.66399969 0.17071985 0.7082703 
 6 months 0.7476758 0.17918895 0.8194322 
 12 months 0.88512025 0.0584986 0.8983061 
 mothers 0.9538194 0.019396 0.9580333 

 
Appendix H – Euclidian distance plot of all age groups 

 
Figure H.1: Principal coordinate analysis plot using the Euclidian distance matrix. The mother samples 

cluster together with the 12-month samples, indicating similarity in the samples. The 6-month samples 

cluster in the middle of the plot, while the 3-month and meconium samples are dispersed.  
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Appendix I – Technical issues of SCFA analysis  

95% confidence interval between thawed and frozen 12 months samples 

When retrieving the samples from Oslo University Hospital (OUS) some of the 12 months 

samples were found to be stored in a wrecked freezer. As the SCFAs are volatile, a paired t-test 

was performed to determine if there were any significant differences in the SCFA composition 

of the samples that were thawed and the samples that had stayed frozen the entire time. No 

significant effects were detected, and the samples that had been thawed were included in the 

study. The 95% confidence intervals for all SCFA analyzed are visualized in Figure I.1. 

 
Figure I.1: 95% confidence interval illustrating the differences in SCFA composition between the 12 

months samples that had thawed and the ones that had stayed frozen the whole time. The paired t-tests 

were computed in RStudio. All confidence intervals include zero, therefore the difference between the 

thawed and frozen samples is seen as statistically non-significant.  
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Calibration and optimization 

The first set calibration standards consisted of five standards, 1 to 5, with the acids in equal 

concentrations of 250μM, 500μM, 1000μM, 2000μM and 4000μM, to the respective standard. 

The acids used were acetic acid, propionic acid, butyric acid, isovaleric acid, valeric acid, and 

2-methylvaleric acid. To all these standards formic acid was added in a fixed concentration of 

0.2%.  

 

Ten samples from mothers that had dropped out of the study were prepared and analyzed.  

The SCFAs distribution of the ten samples are listed in Figure I.2 below, together with their 

calculated average.  
 

The ratios in the samples did not correspond to the ratios listed in the literature, with acetic acid, 

propionic acid, and butyric acid in a 60:20:20 ratio (Cummings, 1981). Seemingly, there was 

an overestimation of isobutyric, isovaleric, and valeric acid concentration and underestimation 

of acetic acid. As the ratios did not comply with the literature, a new set of standards was made. 

This time the calibration standards were made with different concentrations of the acids, listed 

in Table D.1 in Appendix D. After the calibration was computed, it was applied to the ten 

mother samples run previously, and the distribution of SCFAs is visualized in Figure I.2. With 

this calibration, the ratios of the sample corresponded to the ratios given in the literature, 

60:20:20 (Cummings, 1981). As the ratio was correct for the mothers, we assume that the gas 

chromatograph will detect the correct ratios in the infant samples as well. 

 
Figure I.2: Comparison of the two sets of calibration standards based on 10 mother samples, and their 

average.  
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To see how the concentration measurements varied over time, three runs of the 10 mother 

samples were conducted, with a standard in-between every set. From these values the average 

ratios of the short-chain fatty acids for each run were calculated, and presented in Figure I.3, 

bellow. In addition, a paired t-test was performed and showed no significant differences in 

SCFAs composition in between runs, using a test level of 0.05. 

 

 
Figure I.3: A set of ten samples from mothers has been analyzed for SCFA composition through gas 

chromatography three times. The average concentration of all ten samples from one run was calculated, 

with no significant changes between runs as determined by a paired t-test with a test level of 0.05.  

 

After a few samples had been run, it was noticed that the internal 2-methylvaleric acid standard 

was measured to be higher than the concentration injected in the sample, however 2-

methylvaleric acid was measured precisely in the standards that were run in-between. As the 

concentration of 2-methylvaleric acid injected in the sample is higher than in the highest of the 

standards, two new standards were prepared to investigate any extrapolation of the standard 

curve. Without including the two new standards into the calibration, the GC detected almost 

the exact concentration of the acids in the newly made standards, thereby removing any 

suspicion of extrapolation.  
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This calibration was used throughout the analysis of the 12-month samples, anyhow the column 

was replaced before analyzing the longitudinal samples of meconium, 3- and 6 months, and the 

mothers. As the column was replaced it needed to be calibrated, and standards with equivalent 

concentration to A, B, and C were used, as was an internal standard with the same concentration 

(1000µM) as previously. After a few of the longitudinal samples had been analyzed an 

overestimation of 2-methylvaleric acid in the samples was observed. As the highest value of 2-

methylvaleric acid in samples was 250µM, extrapolation was again suspected, and a new 

internal standard with 500µM 2-methylvaleric acid was prepared. The 2-methylvaleric acid in 

the new internal standard would in the samples coincide with the concentration of 2-

methylvaleric acid in standard A. Despite the new standard, high levels of 2-methylvaleric acid 

were still observed in the samples. A suspicion that there may be another compound with the 

same retention time as the 2-methylvaleric acid arose. A sample that had been run previously 

was prepared again. However, this time, the sample was diluted ¼ and had a 0.2% formic acid 

concentration, and the 2-methylvaleric acid was not included in the preparation. The analysis 

of this sample showed a top at the same retention time as where the 2-methylvaleric acid should 

have been and thereby implying that the high 2-methylvaleric acid concentrations are a result 

of overlapping peaks with an unknown compound. 
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Appendix J – Average immune cell  

Table J.1: Average immune cell compositions, and standard deviations of 67 infants at 12 months of 

age.  

Immune cells  Average (%)   Standard deviation (%)  
neutrophils 30.79 8.33 
naivecd4t 20.88 5.69 
naiveb 12.40 3.47 
naivecd8t 7.73 2.43 
classicalmono 6.15 1.98 
others 4.34 1.77 
effectormemorycd4t 2.75 0.85 
eosinophils 2.37 1.63 
cd56dimnk 2.20 1.04 
effectormemorycd8t 1.73 1.35 
naivetregs 1.60 0.50 
centralmemorycd4t 1.00 0.35 
igdnegmemoryb 1.00 0.38 
cd161posgdt 0.86 0.49 
cd161neggdt1 0.72 0.35 
nonclassicalmono 0.65 0.63 
memorytregs 0.55 0.16 
cd56brightnk 0.47 0.20 
basophils  0.44 0.19 
centralmemorycd8t 0.32 0.20 
mait 0.28 0.14 
activatedcd8t 0.27 0.45 
igdposememoryb  0.19 0.16 
pdc 0.17 0.07 
dptcells 0.05 0.02 
proinflammatorymono 0.05 0.03 
transitionalb 0.02 0.02 
plasmablasts 8.96*10-4 4.2*10-3 
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Appendix K – Euclidean distance PCoA plot illustrating the diversity of bacterial orders 

of 12-month samples 

In Figure K.1 two clusters of 12-month samples were observed. By analyzes of the two clusters 

it became apparent that the sample distribution between the clusters was coinciding with the 

distribution of samples on the extraction- and PCR-plates, and therefore no further 

investigations of the two clusters were performed. Figure K.1 showed that the infants with 

immune cell data connected were representative of the taxonomic microbiota distribution for 

all 12 months samples. The samples with immune data were represented in both clusters and 

no pattern was detected between them and the rest of the 12-month samples.  

 
Figure K.1: Euclidean distance PCoA plot illustrating the diversity of bacterial orders of 12 months 

samples. Samples marked in red, represent the 12 months samples from infants used in the determination 

of immune cells, while samples marked in blue are the additional infants, making up a total of 167 

infants. In total there are 63 infants with taxonomic information on bacterial order at 12 months and 

immune cell profiles, and 104 infants without immune cell profiles. 
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Appendix L - Correlation between short-chain fatty acid and immune cell composition at 

12 months of age 

The Spearman correlation between bacterial composition and immune cells at 12 months was 

conducted, however after BH adjustments were there no statistically significant correlations. 

By looking at the unadjusted p-values several trends were revealed. There was an indication of 

acetic acid being positively correlated with naïve B-cells (p = 0.035, Spearman, unadjusted). 

Butyric acid showed a trend of being negatively correlated with naïve B-cells (p = 0.044, 

Spearman, unadjusted). Isobutyric acid tended to correlate negatively with memory regulatory 

T-cells (p = 0.028, Spearman, unadjusted), and mucosal-associated invariant T-cells (Mait) (p 

= 0.048, Spearman, unadjusted). Valeric acid showed a trend towards being positively 

correlated with eosinophils (p = 0.044, Spearman, unadjusted) and IgD positive memory B-

cells (p = 0.033, Spearman, unadjusted). However, after the FDR correction the smallest p-

value was 0.62, implying that all the above-mentioned trends were weak, and it is difficult to 

state that these weak trends are consistent for all 12 months old or just coincidental in this set 

of samples.  

 



 



 



  


