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Summary 

With the rise of modern wind turbines, wind energy has grown to become a major source 

of generated electricity, alongside other renewable and conventional energy sources. The 

geographical and time dependent nature of wind warrants detailed assessments to judge the 

feasibility of power projects. Pre-feasibility studies play crucial roles in this assessment process and 

include the performing of large area screening of feasible wind power project sites, designing of 

effective mast measurement campaigns and feasibility assessments of projects. A source of data 

for such assessments that has increasingly become popular over the years, is downscaled 

meteorological datasets which are sometimes produced with Numerical Weather Prediction 

(NWP) models. Due to uncertainties (from several sources) associated with the outputs of NWP 

models, their validation is an important step towards their optimization and application for desired 

purposes. Wind varies geographically. Therefore, the validation of NWP models is an important 

step towards their application for wind data downscaling for a geographic location.  

Though studies have suggested that wind projects are feasible in Ghana, development of 

the resource still suffers from several challenges, including inadequate resource assessments. This 

thesis focuses on the application-oriented use of the Mesoscale Weather Research and Forecasting 

(WRF) model for wind prediction applications in the coast of Ghana and neighboring countries in 

the West African sub-region.  

A local sensitivity assessment of selected numerical options (simulation length or run time 

and methods of applying the WRF model’s Four-Dimensional Data Assimilation (FDDA) nudging 

technique), as well as selected terrestrial and meteorological datasets on downscaled wind data for 

coastal Ghana were conducted. Validation of the simulations was done with statistical error metrics 

from prediction-observation comparisons. The error metrics were compared with performance 

benchmarks for wind prediction by NWP models that have been reported in scientific literature. 

In addition, Weibull distribution parameters, as well as probability and cumulative density functions 

of measured and predicted data were also compared.  

Results of this thesis were communicated in four Papers. Paper I sought to deepen the 

understanding of the impacts of combining varying simulation run time and selected options in 

the method of applying the WRF model’s FDDA nudging technique for wind simulations. It was 

found that the method of applying nudging above levels automatically determined by the WRF 

model has a more consistent impact on model predictions. Paper II and Paper III assessed the 

impacts of Planetary Boundary Layer (PBL) and Surface Layer (SL) parameterization schemes on 

predictions from the model. It was concluded that the Turbulent Kinetic Energy (TKE) Mellor–

Yamada Nakanishi Niino Level 3 (MYNN3) PBL scheme often had relatively better impact on 

downscaled data, when paired with the Eta SL scheme for simulations. On the terrestrial datasets, 

it was found that the two global Land Use and Land Cover (LULC) datasets available in the WRF 
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Geographical Data did not differ significantly in their impact on downscaled data. In addition, 

among the Gridded Binary (GRIB) meteorological datasets available in the National Center for 

Atmospheric Research Data Archives, it was realized that the data assimilation systems used in 

producing these datasets is probably a good criterion for their selection for downscaling for the 

study area. The findings of this study were reported in Paper IV. 

Results of a simulation covering a year with a model configuration based on the findings 

of the four papers showed that the model is capable of downscaling wind data with error metrics 

that can meet most of the performance benchmarks that have been reported in literature. The 

results from this final evaluation also suggest that the configuration established from the studies is 

probably suitable for offshore assessments in the area but will require further verification.   
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INTRODUCTION 

This chapter introduces wind and how wind characteristics affect power production from 

the resource. The need for wind resource assessment and the role that Numerical Weather 

Prediction models play in this process is briefly explained. This is followed by the motivation, aim 

and objectives of the thesis. Thereafter the structure of the rest of the thesis is presented.  

1.1 Background  

Global energy consumption has been on the rise over the years. This has been in response 

to factors such as increasing population and industrialization, and better living standards. The 

increase in energy consumption, coupled with concerns about the greenhouse gases emissions 

from the utilization of fossil fuels for energy generation, in addition to other reasons, has also 

increased the global demand for renewable energy over the years. Wind, or the kinetic energy of 

air flow, has been used in transport, industry and agriculture for thousands of years, and has 

become one of the three major renewable energy resources that is exploited on a large scale for 

global power generation [1]. The other two are hydro power, which uses potential energy of flowing 

river or stored water to generate electricity and solar Photovoltaic (PV) that converts solar radiation 

directly to electricity. The rise of modern wind turbines, which harness this energy and turn it into 

electricity has placed the resource as a major power source alongside other renewables and 

conventional energy sources. As of 2018, global installations of wind power stood at 591 GW, 

having quadrupled in the past decade [2]. 

Extractable wind energy depends on wind characteristics such as its speed, density, and 

prevailing directions. These characteristics play important roles in several aspects of wind energy 

exploitation (such as the prediction of the economic viability of projects). Wind speed, in particular, 

is of key interest, as wind power depends on the cube of this characteristic. However, like most 

renewable energy resources, wind characteristics that can support economical wind energy 

exploitation exhibit spatial and temporal dependencies. Therefore, understanding the 

characteristics of the resource in an area is an important step towards the exploitation of the 

resource. This requires good quality data on wind characteristics, which are best acquired through 

actual ground-based measurement campaigns. However, owing to the costly nature of these 

measurement campaigns, data from other sources have increasingly been used in resource 

assessments activities such as site selection, prefeasibility studies of projects and designing of 

measurement campaigns.  

This thesis focuses on the application-oriented use of the meteorological Mesoscale 

Numerical Weather Prediction (NWP) Weather Research and Forecasting (WRF) model, as a tool 

for generating such alternative data by the dynamical downscaling of meteorological datasets.  
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1.2 Nature of Wind  

Wind is the movement of large volumes of air masses. It is generated by pressure 

differences arising from unequal heating of the earth’s surface and are driven by several forces 

(such as pressure gradient, Coriolis, and turbulent drag among others) which are also sources of 

variabilities in the wind [3]. As a result of these variations, like other atmospheric phenomena, wind 

occurs on a wide range of atmospheric scales, as illustrated in Figure 1. Global winds are primarily 

due to pressure gradients from unequal heating of the earth’s surface and the influence of the 

Coriolis force and exhibit relatively less variation. However, within lowest 1 to 2 km of the earth’s 

atmosphere, referred to as the atmospheric or planetary boundary layer (PBL), factors such as 

friction at the ground, the orography and the vertical distribution of temperature and pressure give 

rise to local winds and other wind phenomena (such as turbulence), which vary more significantly, 

on smaller scales (see Figure 1).  Pressure and temperature differences interact with variations in 

local topography and surface conditions to create circulation systems such as land-sea, cross-valley 

and along-valley circulations. These result in local winds, common examples of which are land, sea 

and mountain valley breezes [4, 5]. In addition, synoptically windy conditions can result in winds 

being modified by mountains producing gap winds, mountain waves, among others [4]. These 

phenomena are well explained in several textbooks [3-6].  

 

Figure 1: Typical time and spatial scales of meteorological phenomena [3]. The phenomena can be 
classified according to horizontal scale as; Macroscale (700 – 40000 km), Mesoscale (3 – 700 km), 

microscale (3 mm- 3 km) [3]. 

 

Vertically, wind also varies in the PBL. Wind turbines operate at heights within the PBL, 

which makes the understanding of vertical variation of wind characteristics within the layer 

important. A key determinant of the vertical wind speed profile (in addition to terrain, surface 
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roughness, and topography) is the stability of the atmospheric boundary layer. Atmospheric 

stability can be defined as the tendency to remain in hydrostatic equilibrium with respect to vertical 

displacements [7].  It is usually explained by the air parcel concept [7] and expressed in terms of 

the rates at which the temperature of the environment and a parcel of air decrease with increasing 

height (the environmental and adiabatic lapse rates respectively). In terms of the environmental 

lapse rate, the atmosphere can be unstable, stable, or neutral. These are well explained in textbooks 

such as [3, 4, 6, 8, 9]. The vertical wind profile under the three stability conditions is shown in 

Figure 2.   

 

Figure 2: Typical wind speed profiles in the Surface Layer (bottom 5% of the ABL) [3] 

1.3 The Role of Numerical Weather Prediction in Wind Resource Assessments 

The speed characteristic of wind is of key interest in Wind Resource Assessments (WRA) 

as the amount of wind energy that can be generated depends on the cube of this characteristic. 

Due to this relationship, variabilities, uncertainties and errors in wind speeds tend to be amplified, 

with implications for wind power generation. Therefore, the optimal design of wind projects 

depends on an accurate and detailed understanding of the distribution of the wind speeds and 

other characteristics in the project area. This helps in a robust estimation of the energy production 

over the lifetime of a wind project. WRA involves the use of both existing measurements and 

modeling approaches to identify potential wind farm sites and determine the optimum siting of 

wind turbines (micro-siting) in wind farms to estimate the long-term energy production of a 

project. Though this can be done with relatively easy to acquire data from sources such as nearby 

meteorological stations, the best source of data for these purposes is measurements of the wind 

characteristics. However, owing to the expensive and time-consuming nature of wind mast 

measurement campaigns, it has increasingly become popular over the years to perform preliminary 

resource assessments with wind data that is downscaled from meteorological datasets.  

Mesoscale Numerical Weather Prediction (NWP) models are popular dynamical 

downscaling tools in this regard. They belong to a category of meteorological models that are used 

for process studies and weather predictions [10]. They have increasingly been adapted for wind 

flow prediction over limited areas over the years. They make predictions of the wind speed for 
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locations (that correspond to the model grid) in an area by numerically downscaling meteorological 

datasets and can be coupled to microscale models for these purposes. They have traditionally been 

applied in the generation of wind maps for large area screening of feasible wind power project 

sites. However, in recent times, downscaled data are also being used in the design of mast 

measurement campaigns and to conduct pre-feasibility assessments of wind power projects.  

Model validation (or reliability assessments) assesses uncertainties in the predictions of 

NWP models. The process plays a key role in the optimization of these models for desired 

purposes. Uncertainties (, as explained by [10]) are primarily due to; 

(a) an imperfect understanding of atmospheric processes, especially at the sub-grid scale,  

(b) insufficient simulation of these processes because of the models’ grid resolutions, and  

(c) errors associated with the numerical assumptions. 

The validation process of NWP models involves several techniques (as described by [10]), 

which may be applied separately to address specific needs. Sensitivity analyses are one such 

validation techniques. The Sensitivity analyses of NWP models involves verifications of model 

predictions made with different model options or inputs to establish the extent to which an option 

performs better than another, and the possible explanations for the difference in performance [10]. 

Wind sensitivity studies that have been reported in scientific literature have been found to adopt 

the local approach, which, as explained by [10], examines the impact of a limited range of inputs 

and options on the estimation of specific events or output parameters by NWP models. A challenge 

with sensitivity analyses for wind prediction applications is that, due to the influence of local factors 

(such as terrain features and atmospheric conditions which vary geographically) on the 

performance of some of the options (such as parameterization schemes) in NWP models [1, 2],  it 

is often difficult to generalize the results of such studies for different geographic areas.  

1.4 Motivation 

With an Energy use per capita that is equivalent to one-third that of the world, the problem 

of low and unreliable access to electricity is one of Sub-Saharan Africa’s greatest obstacles to social 

and economic development [11]. Power crises stemming from low and unreliable access to 

electricity is an issue all over the region.  

Ghana has experienced not less than four of such crises since the turn of the century, 

costing the nation about US$680 million in 2014 alone [12]. Electricity supply challenges in Ghana 

have stemmed from several factors over the years. These include over-dependence on electricity 

from thermal and hydro sources (which together constitute over 99% of the country’s electricity 

mix).  Demand for electricity in Ghana increased by over 50 percent between 2006 and 2016 [12] 

and currently, electricity from thermal plants that run on fossil fuels alone constitutes over 60% of 

the total generation capacity of the country. Solving the country’s electricity challenges requires 
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measures that include diversifying the electricity generation mix through the development of other 

energy sources, including renewable sources such as wind and solar energy [12].  Several studies 

have reported the feasibility of the large-scale generation of electricity from wind in Ghana [13-

19]. And though some efforts (such as a wind mapping activity in 2004, and ground-based mast 

measurements in selected areas along the coast) have been made towards the exploitation of the 

resource, development of the sector is still facing several challenges. These include limited or non-

availability of reliable data for pre-feasibility or feasibility studies of projects [20].  

Numerical Weather Prediction (NWP) models have increasingly been adapted for limited 

area mesoscale (and even microscale) downscaling of wind data from meteorological datasets for 

the purpose of mapping wind resources and providing data for pre-feasibility studies. Indeed, the 

wind mapping (at 50 m) for Ghana was conducted with one such Mesoscale-Microscale coupled 

models; the MESOMAP system from AWS Truepower (which comprises the Mesoscale 

Atmospheric Simulation System (MASS) and WindMap Microscale models). However, in addition 

to being a propriety model, limited verifications and adjustments were done during that exercise, 

due to a lack of adequate mast measurements at the time [21]. In addition, with the increasing hub 

heights of modern wind turbines, assessments at higher heights (other than the 50 m of the 2004 

mapping), and the availability of time-series to enable the effective designing of mast measurements 

and pre-feasibility studies on power projects, are increasingly warranted. Furthermore, due to 

climate change and change in land use in Ghana over the past years, there is the need to update 

wind maps for Ghana using reliable and easily accessible tools. 

The NWP Weather Research and Forecasting (WRF) model [22] is a widely used 

operational and research mesoscale model. Owing to diverse physics and dynamics options, several 

model-validation studies towards the application of the model for different purposes have been 

reported in the literature. However, no known studies have been reported on the validation of the 

model towards wind resource assessments in Ghana and the West African sub-region. 

Furthermore, sensitivity tests (of the WRF model for wind energy applications) in the international 

literature, have often been limited to high wind speed periods. In addition, they have often not 

considered all PBL schemes (which have been found to significantly affect model wind outputs) 

with all compatible surface layer physics options, and have often used decision making criteria that 

in our opinion, leaves room for potentially misleading conclusions to be drawn from these studies.  

1.5 Aim and Objectives 

Against this background, this thesis sought to verify the capability of the WRF model to 

dynamically downscale wind data from large-scale global meteorological datasets for resource 

assessments in Coastal Ghana. The aim was to identify and suggest possible ways of optimization 

of the WRF model (in terms of selected options) for applications such as wind mapping and 
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generation of time series data for pre-feasibility wind assessments primarily along the coast of 

Ghana.  

The thesis involved a local sensitivity study (as explained earlier) of selected numerical and 

input data options of the model, to wind predictions at three heights. The options, (which are 

explained in Chapter two of this thesis) are;  

i. Simulation length and options in the WRF’s Analysis Nudging technique (Paper I), 

ii. Planetary Boundary and surface layer Parameterization options (Paper II and Paper III), and  

iii. Input Land Use and Land Cover (LULC) and meteorological Gridded Binary (GRIB) datasets 

(Paper IV). 

In achieving the aim of this thesis, insights, other than what had been reported in the literature, 

were offered into optimum combinations of the simulation run time and nudging options for wind 

simulations (Paper I). An alternative experimental approach in sensitivity studies of PBL schemes 

that deviates from a common practice in past studies in that, it considers high and low wind periods 

(as against the common practice of considering only high wind periods), is explored in Paper II. 

In addition, another limitation in the scope of several sensitivity studies in the tropics (in not 

exploring all SL schemes that can be used with a PBL scheme) is explored in Paper III. Factors 

that should be considered in selecting meteorological datasets from the NCAR’s RDA archive for 

dynamical downloading to generate time series data for coastal Ghana were explored (Paper IV). 

The consistency in performance of the options, irrespective of evaluation criteria is used as a 

decision-making criterion to reduce the potential of drawing incidental test conclusions. 

1.6 Thesis outline 

Following this chapter, Chapter 2 of this thesis presents the verification data and criteria. 

The chapter begins with a brief description of the key features and options of the WRF model, 

with emphasis on the model options that were tested in this thesis. Details of the data that are used 

for the validation of model outputs are also presented in this chapter. The evaluation criteria on 

which the tested model options were inter-compared are also introduced. 

The main findings from the tests are summarized and briefly discussed in Chapter 3. The 

main conclusions of each test and their possible implications for model performance in predicting 

wind speeds for resource assessment purposes are also discussed. The overall conclusion drawn 

from the thesis is presented in chapter 4, with recommendations for future researches.  

An Appendix of Supplementary test results, as well as the 4 papers that were produced 

from the thesis follow the four chapters of this thesis. 
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DATA AND METHODOLOGY 

This chapter presents brief overview of the WRF model. The overview covers descriptions 

of key model components, and the options that were the focus of this study. This is followed by 

the general framework of the thesis, and brief descriptions of verification criteria and the 

verification (or reference) data. The postprocessing method for model output is also presented  

2.1 A Brief Overview of the Weather Research and Forecasting Model (WRF) 

The WRF model is the product of a multi-organizational effort  to build a mesoscale forecast 

and assimilation system that would be accurate, efficient, scalable to small atmospheric scales – 

primarily 1 to 10 km – and capable of operating on workstation-computer platforms [10]. As was 

the case in this thesis, all the simulations for this thesis were run on a workstation laptop with a 

quad-core (Xeon E3-1505M v6) processor. The model comprises the following principal 

programs, illustrated in Figure 3;  

a. The WRF Preprocessing System (WPS) which creates inputs for the ARW pre-processor (real) 

program for real-data simulations by using meteorological and terrestrial data 

b. the WRF software infrastructure (WSI) which accommodates key program components that 

includes the WRF the dynamics solvers; the Non-hydrostatic Mesoscale Model (NMM) core, 

and Advanced Research WRF (ARW) core, physics schemes and interface to interact with the 

dynamics, among other key programs.  

c. Postprocessors for analysis and verification of predictions.  

 

Figure 3: A Schematic of the main components of the WRF model [22] 

2.1.1 The WRF Software Infrastructure  

2.1.1.1 The ARW Dynamics and Numerics 

The Governing Equations 

The ARW core of the WRF model was used in this thesis.  It incorporates fully 

compressible, non-hydrostatic Euler equations (with a run-time hydrostatic option available). 
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Descriptions of how the Euler equations are derived and other details are provide by [22]. 

Simplified versions of these governing equations (neglecting the Coriolis effect) as presented by 

[10] in cartesian coordinates comprise;  

The equation of steady state given as; 

dp R T=
                                                              (1) 

The conservation law of mass; 

0
U V W

t x y z

   
+ + + =

                                                      (2) 

Conservation law of momentum; 

p x

U Uu Vu Wu
c F

t x x y z

    
+  = − − − +

                                      (3.1) 

p y

V Uv Vv Wv
c F

t y x y z

    
+  = − − − +

                                   (3.2) 

p z

W Uw Vw Ww
c g F

t z x y z




    
+  + = − − − +

                                (3.3) 

Conservation law of energy; 

0
U V W

t x y z

      
= − − − =

                                                  (4) 

In the above equations, ,  ,  ,  . U u V v W w   = = = = T is the absolute temperature, 

1 11004.5  and (2 7)p d pc JK kg R c− −= =  is the heat capacity and the gas constant for dry air 

respectively, ,   and y x zF F F  are friction terms.  denotes the Exner function which is given as 

( ) ( )^o d pp p R c , where op is the reference pressure.  

In formulating these equations, the Earth’s atmosphere over a geographic region is 

represented in the model by a three-dimensional (x, y, z) grid. The x and y dimensions are in equally 

spaced Cartesian coordinates, while the z dimension is over vertical levels in a terrain-following 

sigma or mass vertical coordinate system. For the flat (x, y) projection of the earth’s spherical 

surface, map projections are used. Several map projection schemes are supported by the solver. 

However, specific projections are recommended to keep the map-scale factor (a measure of 

distance distortions from the transformation) close to 1 for numerical stability [23].  The map scale 

factor is defined as the ratio of the distance in computational space (∆x, ∆y) to the corresponding 

distance on the earth’s surface [22].  

Denoted by  , the vertical coordinate varies in spacing and ranges in value from one at 

the surface of the earth to a value of zero at the top of the atmosphere in the model (defined as 

constant pressure surface). The    coordinate at each level is calculates as;  
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( ) ( )t s tp p p p = − −                                                               (5) 

where p  is the pressure at a particular level in the atmosphere, 
sp is the surface pressure, and 

tp  

is the pressure at the top of the atmosphere.  

Model discretization and other issues for Numerical stability 

Numerical solutions to the governing equations are solved using finite-difference 

approximations which requires the simulation domains to be discretized and the equations reduced 

to their finite difference equivalents [3]. For temporal discretization, the ARW solver uses the third 

order Runge-Kutta (RK3) time-split integration scheme [24]. An explanation of the scheme and 

how the ARW solver uses the scheme to advance a solution for prognostic equations at model 

time steps is provided by [10]. The model time step is limited by the advective Courant number, 

with implications for numerical stability, as explained by [10]. To ensure numerical stability in the 

WRF model, it is recommended that its value (in seconds) is maximum six times the horizontal 

grid distance in kilometers [22, 25].  

 The spatial discretization is performed on the staggered Arakawa C-grid, which allows for 

resolving gravity waves more accurately [7]. On the staggered C-grid the westerly (U) wind 

component is evaluated at the centres of the left and right grid faces and the southerly (V) and 

vertically (W) wind components at the centres of the upper and lower grid faces as illustrated in 

Figure 4. Further details of the grid system are provided by [7, 10].  

Other numerical issues as well representation of sub-grid scale processes such as turbulence 

mixing, that cannot be solved on the simulation grid are addressed by filter and damping options 

as well as other formulations in the ARW solver [7]. Detailed descriptions of these are provided by 

[10, 22]. Vertical mixing filtering is disabled when a PBL parameterization is applied in simulations, 

as it is parametrized within the PBL physics [10]. Selection of filter and damping options in this 

thesis followed recommendations from [25]. 

 

Figure 4: (a) Horizontal and (b) vertical grids of the ARW solver [7]. 
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2.1.1.2 The ARW Physics Parameterization Options 

Unresolved physical processes are approximated by physics parameterization schemes in 

the ARW solver. The physics parameterization schemes in WRF are divided into the following 

categories; Long-wave and Short-wave Radiation, Microphysics, Cumulus, Planetary Boundary 

Layer (PBL), and Surface (which comprises the Surface Layer (SL) as well as Land Surface Model 

(LSM) schemes) categories. A schematic of the interactions of the parameterization scheme 

categories is illustrated in Figure 5. Atmospheric temperature tendencies and surface radiative 

(downward longwave and shortwave) fluxes for the surface heat budget are provided by the 

radiation schemes [7]. Cumulus schemes parameterize vertical convective motions at sub-grid 

scales and provide atmospheric heat and moisture vertical profiles and sometimes cloud and rainfall 

tendency profiles in the atmospheric column [7].  The PBL and Surface (LSM and SL) schemes 

interact directly to parameterize the vertical sub-grid scale transport processes in the atmosphere.  

Turbulence (which produces vertical mixing) plays a key role in these processes and acts as 

a feedback mechanism in wind circulation [5, 29, 30]. In addition, several studies have reported 

significant impacts of the choice of PBL schemes in wind energy applications of the WRF model. 

Therefore Papers 1 and 2 examined the impacts of these options on the wind prediction capability 

of the WRF model. The choice of all the other parameterization options were based on practices 

from past studies (mostly in the tropics) [26-30] and recommendations from [25]. A more detailed 

overview of PBL and SL parameterization in WRF is provided in Paper III. Details and 

descriptions of the PBL, SL and LSM schemes available in the WRF model are available in several 

papers and textbooks [7, 8, 10, 31-33]. 

 

Figure 5: Interaction of parameterization schemes in WRF [34] 

2.1.1.3 WRF Nudging 

Nudging is a technique in the Four-Dimensional Assimilation (FDDA) [35-39] system of 

the WRF model, that helps keep the simulations close to the analyses or/and observations over a 
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simulation period (Skamarock et al., 2008). The available nudging techniques in the WRF model 

can be used for dynamical initialization, to create four-dimensional meteorological datasets and to 

improve the boundary conditions for the solver. However, the analysis or grid nudging technique 

attempts to bridge the gap between predictions of physical variables and time-interpolated large-

scale meteorological conditions from the input data [7] by adding an additional tendency term to 

the nudged variable’s equation, as explained by [40]. The technique has been used in several studies 

[20, 51, 52] on wind downscaling. Options in using the technique include; a choice of variables to 

nudge, the nudging strength or co-efficient, and the choice of whether to nudge variables in the 

PBL or not. Disabling nudging in the PBL is a common practice in simulations, followed with the 

aim of allowing mesoscale processes to freely develop (within the PBL) [29, 41, 42]. To achieve 

this in WRF, one can choose to apply nudging to variables above a fixed vertical level, or apply it 

to levels above a model-determined level (that corresponds to PBL height predictions) during the 

simulations [43, 44]. It has been reported that the two methods have different impacts on wind 

simulations [44]. Paper I investigated the impacts of combining these methods (in addition to a 

third method) of applying nudging with varying simulation lengths (run times) on model 

predictions of wind. 

2.1.2 Input Data and the WRF Preprocessing System (WPS)  

Input data for WRF model comprises terrestrial or static data (land-use, terrain, soil types) 

and time-varying meteorological fields (from forecast, analysis/re-analysis and climate model data) 

of different origins and different horizontal resolutions and projections. The program real in the 

ARW prepares the initial and lateral boundary conditions for the WRF solver with these datasets 

after they have been interpolated onto the projected simulation domains by the WRF 

Preprocessing System (WPS). The program components and data flow in and out of the WPS is 

shown in Figure 6. The model comes with several LULC datasets and two terrain datasets the 

USGS GTOPO30 [45], and the GMTED2010 [46]. It is possible to run the model with datasets 

apart from these.  

 

Figure 6: Schematic of the program components and data flow in and out of the WPS [22] 
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The impacts of selected input datasets on data downscaled with the WRF model were 

examined in Paper IV. The input datasets comprised the two global LULC datasets that are 

available on the WRF version 3 Geographical Static Data Downloads Page [47], as well as selected 

Gridded Binary (GRIB) datasets from the National Centre of Atmospheric Research (NCAR) 

Research Data Archive (RDA) [48]. Descriptions and characteristics of the datasets are 

summarized in Paper IV. Terrain datasets were not tested as we found little difference between the 

two global datasets that cover coastal Ghana in the results of a comparison presented by [49].  

2.2 Methodology 

2.2.1 Study Framework 

The general framework for the thesis (illustrated in Figure 7) is based on a proposed 

framework by [50] for exploring optimal model configurations of NWP models for different 

purposes. The reference data, evaluation criteria, and model options that were selected for testing 

are elaborated on in the sections that follow. 

 

Figure 7: Study Framework. 

2.2.2 Evaluation Criteria and Observational Data 

Several verification criteria can be used in sensitivity studies [10]. In this thesis, statistical 

verifications of the model predictions were done by prediction-observation comparisons, in which  

the following statistical error metrics (which were selected based on their use in similar wind 

sensitivity studies [30, 41, 51-53]) were calculated;  

i. Mean Error or Mean Bias (ME) which was used as a measure of the tendency of the options 

to underpredict or overpredict wind speeds,  

ii. Root Mean Squared Error, which was used as a measure of accuracy,  
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iii. Standard Deviation of the Error (STDE) which was used as a measure of error dispersion 

and consistency [41, 52], and  

iv. Correlation Coefficient (CC).  

The error metrics were calculated according to formulations (which are provided in the 

appendix) taken from past WRF wind sensitivity studies such as [30, 41, 51-53]. They were 

combined into a Skill Score which was calculated with the formulation from [54]. The skill score 

was used to rank the options. In addition, error metric benchmarks (RMSE < 2 m/s, ME <  +0.5 

m/s, CC > 0.7)  as used by [28, 55]) were also used to evaluate the impacts of the options on model 

performance.  

The Weibull distribution is widely used in many fields of the wind energy industry for modelling 

wind speed data [56]. Therefore, the model predictions were also verified in comparisons of the 

Weibull probability and cumulative density plots generated from predicted and observational data. 

Quantitative comparisons of the Weibull cumulative densities errors as well as mean wind power 

densities estimated from predictions and observations were also compared. Formulations of the 

Weibull parameter estimations and the functions of the distributions were as has been used in 

several past studies [14, 40].  

The observational data for evaluations were derived from mast measurements of wind data 

that were conducted by the Energy Commission of Ghana, in the year 2013. Selected details of the 

data and instrumentation are summarized in Table 1. In addition to these data, monthly average 

wind speeds of measurements at 60 m from [57] were also used for verification.  

Table 1: Selected Details of Observational data and instrumentation. 

Period 12 months (January - December 2013) 
Data time step 10 minutes 
Mast location 5.7861 °N and 0.9188 °E 

Mast type NRG 60m XHD 
Measurement heights 40 m, 50 m, 60 m 

Anemometer type NRG #40C 

 

2.2.3 Postprocessing of Model Outputs 

As the WRF model predicts wind speed components on vertical levels, (not heights in 

meters at which observational data were measured), and given the staggered nature of the wind 

components, postprocessing of model outputs were necessary to determine actual wind speeds at 

the heights (in m) at which observational data were measured and at the mast location for direct 

comparison. In this thesis, all such postprocessing calculations were done with a script written in 

the R programming software.  The script generally followed the steps outlined in the flowchart 

shown in Figure 8.  
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Figure 8: Flowchart for postprocessing of model outputs. Conversion of the vertical levels to heights in 
meters used formulations from [58, 59], and rotation of winds was according to [60].  
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SUMMARY OF MAIN FINDINGS 

Results and findings were communicated in four papers, which are summarized and 

discussed here. In addition, supplementary results from an evaluation run of the model with a 

configuration based on the finding of the four papers is also discussed. 

3.1 Overview 

In achieving the aim of this thesis, the relative impacts on wind predictions of the choices 

of model simulation run times, vertical levels above which predictions should be nudged, planetary 

boundary and surface layer parameterization schemes, as well as input (terrestrial and GRIB 

meteorological) datasets were investigated.  

NWP models diverge and accumulate approximation errors with increasing simulation run 

times [30, 52]. Carvalho et al. [52] reported that, relatively short run times of 2 days, combined with 

grid nudging reduces this error. Ohsawa et al. [1] reported that, applying nudging above PBL 

heights predicted by the Mellor-Yamada-Janjic (MYJ) PBL scheme produces better results as 

compared to disabling it below a fixed height. Paper I was aimed at deepening the understanding 

of the impact of several combinations of these two options on wind simulations. It combined five 

run times that had commonly been used in other studies [29, 30, 32, 33, 41, 52, 61-63], with three 

methods of applying nudging. On the choice of PBL schemes to use in simulations, it was also 

realized from studies in the literature that most sensitivity studies on wind predictions do not test 

PBL schemes with all their compatible SL schemes. These issues (comparative performance of 

different PBL schemes, and they affected when paired with different SL schemes) were investigated 

in Paper II and Paper III. A potentially more effective (and more novice friendly) approach to 

sensitivity studies of PBL options (and possibly other options) was used in Paper II. Paper IV 

explored impacts of selected terrestrial datasets from [47], and available Gridded Binary (GriB) 

datasets available from [48] on model performance. The main findings from the four papers are 

summarized in the sections that follow. 

3.2 Impact of Simulation Run times and vertical levels for nudging.  

Graphical comparisons of the error metrics of the options tested in Paper I are presented 

in Figure 9.  As can be seen, a combination of simulations of shorter runs with the grid nudging 

technique did improve most of the speed prediction error metrics from the WRF model as reported 

by [52]. However, it was found that the margin varied with choice of method of applying (disabling) 

nudging. In short simulations (lasting 1 or 2 days at a time), nudging above the default 10 vertical 

levels (N-10-L) resulted in predictions with relatively better bias (lower ME) and accuracy (lower 

RMSE), but relatively worse consistency (higher STDE) and prediction-observation correlation 

(CC). However, with increasing run times, all error metrics deteriorated at a relatively faster rate, 
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as compared to an alternative approach of nudging (above a model determined level (N-PBLH). 

In addition, the latter approach exhibited relatively better consistency (lower STDE) and acceptable 

prediction-observation correlation (CC > 0.7), irrespective of the run times it was tested with. 

Results of the third method and the first (N-10-L) were very similar, so they are not presented 

here. 

 
Figure 9: Comparative performance (at 60 m) of two methods of applying nudging in terms of; 

(a) RMSE (b) STDE (c) CC (d) Absolute ME 

Based on results on speed prediction from Paper I, it was concluded that, consistent with 

the findings of  [52], running simulations of relatively shorter run times does reduce prediction 

error metrics in wind data that that is downscaled with the WRF model. The analysis nudging 

option of disabling nudging variables above a model determined vertical level offers more 

consistent and better observation-correlated predictions. Furthermore, consistent with the reports 

of [44], with relatively longer run times it was also more accurate, as compared to its alternative 

option (of nudging above the default 10 levels). Based on these, it was concluded that it is probably 

the more reliable method for applying nudging during downscaling of wind data with the WRF 

model. 

3.3 Impact of PBL and SL parameterization schemes on predictions. 

Given the importance of PBL-SL pairs in modelling wind flow in the PBL, their impact 

was also examined in Paper II and Paper III. A limitation that was realized in several of the past 

studies in the tropics [26-30] that were consulted during this study was that, they often did not test 

PBL schemes with multiple compatible SL schemes. In addition, it was realized it is common 

practice in studies for studies to be conducted in periods with high wind speed conditions only. 

Furthermore, few studies have examined the relative performance of all the available PBL schemes 

in WRF over a period comprising a wide range of wind conditions.  In Paper II, a preliminary 

assessment of almost all the PBL schemes with their most commonly paired SL schemes (in the 

literature) was conducted. This preliminary assessment aimed at reducing the number of PBL 

schemes to be examined with all their compatible SL schemes. A second aim was to see how the 

results of a novel approach for conducting these sensitivity tests (illustrated in Figure 10) would 

compare with findings that have been reported in the literature. The approach differs from what 

has been used in previous published studies in that, it relies on the criterion of consistency in 
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performance (in terms of several error metrics) of assessing the relative performance of the PBL 

schemes being tested. In addition, it considers a wider range of wind conditions (high and low 

wind speed conditions as against the common practice of only high wind conditions for tests as 

observed in the literature) and uses fewer simulations to draw a conclusion on the relative 

performance of the schemes. Based on the results of this preliminary assessment (which was found 

to be largely consistent with what had been reported in other studies in the tropics), five PBL 

schemes were selected for further testing with all their compatible SL schemes. Findings of this 

second test are reported in Paper III.  

 
Figure 10: Flowchart of test approach used in Paper II. 

(d = number of test days for each sensitivity test (2 was used in Paper II); D = Total number of test days; 
P = total number of days in entire test period; *Larger D/d means more points to assess trend.) 

Based on results of the two tests, it was concluded that the second order Mellor–Yamada 

Nakanishi Niino Level 3 (MYNN3) Turbulent Kinetic Energy (TKE) PBL scheme is probably 

best for wind predictions at this site and perhaps coastal Ghana. The MYNN3 often predicted 

wind speeds with the best, (or one of the best) combination of error metrics when it was paired 

with the Eta SL scheme. In addition, Wind Power Densities (WPD) and cumulative probability 

estimates of the scheme often compared relatively better to estimates from the mast data. 

Furthermore, predictions of the MYNN3-Eta PBL-SL pair for 4 other locations in the regions 

were mostly found to be within the benchmarks for error metrics. Based on these, it was concluded 

that the MYNN3-Eta PBL-SL pair is probably good for wind speed downscaling with the WRF 

model for coastal Ghana and perhaps other coastal areas in the West-African sub-region.  

3.4 Possible impact of different Input Datasets.  

The possible impact of five Gridded Binary (GriB) datasets available from [48] and the two 

LULC datasets available for version of the WRF model from [47] were investigated in Paper IV. 

Available static terrain datasets (, also from [47])  were not included in this study as, based on 
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results of a comparison from [49], it was concluded that concluded there is little difference between 

them for coastal Ghana. Results suggested that the Moderate Resolution Imaging 

Spectroradiometer (MODIS) LULC generally produced downscaled data with better error metrics 

and more accurate Mean Wind Power Densities (WPD), probably because it is relatively newer 

than the United States Geological Survey (USGS) LULC. However, the difference between the 

error metrics and Mean WPD of the two were not so large. On the Gridded Binary (GRIB) 

meteorological datasets that were tested, it was realized that data assimilation techniques that were 

used during the analysis/reanalysis process of preparing these datasets often correlated well with 

how well they performed in terms of verification. It was therefore concluded that this characteristic 

of the datasets could probably be a good criterion for selection of datasets for downscaling wind 

data. The Japan Meteorological Agency Reanalysis (JRA-55) and the National Centre for 

Environmental Prediction Final Operational Global Analysis (NCEP GFS-FNL) performed 

relatively better than the 3 other datasets that were tested in this study.  

3.5 Performance assessment of based on the sensitivity tests. 

Following the findings reported above, a configuration based on the findings of the four 

papers was tested in an evaluation run spanning the entire year of 2013. This configuration is 

presented in Table A1 in the Appendix. Results for the site at which we had full data, (presented 

in Table A2 in the Appendix) indicate that the proposed configuration could predict annual wind 

speeds for coastal Ghana, with most error metrics within the benchmarks. However, the 

predictions for the two locations further inland (i.e., SEG, and DEN) exhibited larger bias 

compared to the two locations nearer to the coast (See Table A3 in the Appendix). This suggests 

that predictions of the configuration tend deteriorate further inland, when the annual mean 

prevailing wind direction in the area (shown in Figure A1 in the appendix) is considered in addition 

to this trend. They also suggest that the configuration is probably good for downscaling data for 

offshore areas near Ghana. 
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CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK 

4.1 Conclusions 

The focus of this thesis was on the sensitivity analyses of the Weather Research and 

Forecasting (WRF) model towards its application for the dynamical downscaling of wind data for 

wind resource assessment in Coastal Ghana. Wind data that were downscaled with selected 

numerical options and input data options were compared with observations to assess the relative 

capabilities and limitations of the options, so that informed decisions can be made on how to apply 

them for wind resource assessment purposes in coastal Ghana. It is concluded from the results of 

the study that;  

➢ The method of disabling analysis nudging below a model-determined level is probably more 

reliable for wind predictions, especially in simulations with relatively longer run times (more 

than 2 days in our tests). And the choosing of simulation run times should for wind data 

downscaling should probably be done taking nudging options into consideration. 

➢ A test approach that considers the consistency in performance of candidate model options 

when assessed with several criteria, is worth considering as a decision-making criterion in 

sensitivity tests, especially by novices and people without the requisite background in 

Meteorology who want to apply the WRF model. In addition, future sensitivity tests (for wind 

energy applications) should be over a wider range of wind conditions and should consider PBL 

schemes with all their compatible SL schemes. 

➢ The Higher order TKE closure Mellor–Yamada Nakanishi Niino Level 3 (MYNN3) Planetary 

Boundary Layer (PBL) scheme is probably better for wind simulations at this site (and probably 

Coastal Ghana and perhaps west Africa, given the similarity in climate), when combined with 

the Eta Surface Layer scheme. The prevailing annual mean wind directions and the mast 

locations suggest that, these schemes are probably also good for predicting offshore wind in 

Ghana. However, verification is needed on this. Other PBL schemes that show promise include 

the University of Washington-TKE (UW-TKE), and the Yonsei University (YSU) schemes.  

➢ The two global Land Use Land Cover datasets from WRF Geographical Static Data probably 

do not differ significantly, in their impacts on wind data that is downscaled for Coastal Ghana 

with the WRF model. The impacts of different Gridded Binary (GRIB) meteorological datasets 

vary more significantly. And the data assimilations techniques that are used in the 

reanalysis/analysis process of preparing these datasets is worth considering as a criterion for 

their selection for downscaling with the WRF model.  

➢ When correctly configured, the WRF model is capable of downscaling time series wind data 

that can meet the benchmarks used in this study for this site (and probably other areas in coastal 

Ghana, and the West African sub-region).  
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4.2 Recommendations for Future Work 

The following are recommended for consideration in future works; 

➢ Given the limited amount of mast measurement data that was used in this study, future studies 

should focus on the verification of the promising configurations with data from other locations 

and preferably at greater heights and over longer study periods. Verifications of the offshore 

wind prediction capability of the model along the Ghanaian and West-African Coast should 

also investigated.  

➢ Future tests of the input meteorological datasets at better temporal resolutions. In addition, 

given the nature of the local wind, the test of different Sea Surface Temperature (SST) data is 

also recommended.  

➢ Ensemble prediction systems incorporating multiple relatively good options to reduce 

uncertainty should also be investigated.  
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APPENDIX 

Configuration and results of evaluation run. 

Table A1: Configuration for one-year evaluation test 

 

Table A2: Wind speed comparisons at 60 m for mast and WRF downscaled data at site ANL 

 
 

Table A3: Comparisons of error metrics (from monthly averages of data) for three other sites. 

 ME RMSE STDE CC 

SEG (5.872° N, 0.345° E  ) -0.80 1.00 0.60 0.73 

DEN (6.112° N, 1.141° E) -1.19 1.31 0.56 0.66 

DZI (5.774° N, 0.714° E) -0.20 0.53 0.50 0.84 

 

 

 

 

 

 

 

 

Initial and boundary conditions NCEP Final Analysis (GFS-FNL): 1O x 1O and 6 hrs resolution. 
Land Use data  MODIS (with lakes) + WRF defaults (Paper IV) 

Topographical data 30-arc-second USGS GMTED2010 
Map Projection  Mercator 

Vertical Resolution  45 terrain following eta levels (automatically set) 
Horizontal resolution (km) 25 5 1 
Domain size (grid points) 121 x 120 141 x 186 181 x 121 
Model timestep (seconds) 120   

Simulation length and Nudging options Monthly runs with Nudging above model determined levels (Paper I) 
Parameterization Schemes:    
Cloud Microphysics (MP) Eta microphysics (ETA) [64] 

Long-wave Radiation (LW-Rad) Rapid Radiative Transfer Model (RRTMG) [65] 
Short-wave Radiation (SW-Rad)   Dudhia [66] 

Surface Layer (SL) Eta Similarity (Eta) [67-69] (Paper III) 
Land Surface Model (LSM) Unified Noah [70] 

Planetary Boundary Layer (PBL)   MYNN3 (Paper II and Paper III) 
Cumulus Kain-Fritsch [71] (for domain 3 only [22, 52]) 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

Mast Mean 5.14 6.33 6.57 5.42 4.68 6.79 6.95 7.10 7.43 6.35 5.98 5.92 6.21 

WRF Mean 5.28 6.67 7.41 6.11 5.51 7.87 7.18 7.26 7.04 6.23 6.06 5.54 6.51 

Mean Error 0.14 0.33 0.84 0.70 0.84 1.08 0.24 0.17 -0.39 -0.12 0.08 -0.37 0.29 

RMSE 1.67 1.42 1.71 1.96 2.25 2.78 1.55 1.53 1.20 1.22 1.21 1.38 1.72 

STDE 1.66 1.38 1.48 1.83 2.08 2.57 1.53 1.52 1.14 1.21 1.21 1.33 1.69 

CC 0.63 0.76 0.55 0.56 0.42 0.27 0.50 0.42 0.73 0.73 0.69 0.74 0.61 
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Figure A1: Annual mean wind fields for Ghana and neighboring countries  

(at 60 m a.s.l on 5 km x 5 km grid) 
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Selected Formulas that were applied in the evaluation of options 

➢ Root Mean  Squared Error 

( )
0.5

21
sim obs

N

i

vRM
N

vSE
 

=  
 

−  

N – number of data points, vsim – downscaled wind speed, vobs – observed wind speed 

➢ Mean Error (Mean  Bias) 

( )
1

sim ob

N

i

sv vME
N

−=   

➢ Standard Deviation of the Error 

( )
0.5

2 2STDE RMSE ME= −  

➢ Correlation Coefficient  

( )( )

( ) ( )
2 2

X X Y Y
CC

X X Y Y

− −
=

− −



 

 

where X and Y are the simulated and observed wind speeds respectively 

➢ Combined Error Metrics (Skill Score) 

( ) ( ) ( )Skill Score 1 1 1NORMALIZED NORMALIZED NORMALIZEDNORMALIZED
RMSE ME STDE CC= − + − + − +  

 

➢ Empirical method of calculating dimensionless Weibull parameters  

1.086

k
v


−

 
=  
 

 

( )11
k

v
c =

 +
 

k – shape parameter, c – scale parameter, v – average wind speed, Г – gamma.function 

➢ Weibull Cumulative Distribution Function 

F(v) 1 exp

k
v

c

  
= − −  

     

 

➢ Maximum absolute Cumulative Density Function  Error 

obsMax CDF Error max ( ) ( )i i simF v F v= −
 

 

➢ Mean  Wind Power Density 



- 24 - 

 

31 3
Mean WPD 1

2
c

k


  
=  +  

  
 

 

ρ  - density.
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Abstract

Over the years, the Weather Research and Forecasting Model (WRF) has been

gaining popularity as a low-cost alternative source of data for wind resource

assessments. This paper investigates the impact of selected time control, and

nudging options on wind simulations in WRF. We conducted 15 numerical

experiments, combining 5 simulation run-times and 3 options for disabling

nudging in the Planetary Boundary Layer (PBL) in WRF. Hourly wind speed

and direction predictions were compared with actual measurements at 40 m, 50

m and 60 m a.g.l. From our results, we recommend that, for optimum

performance, the method of disabling nudging in the PBL should be chosen with

simulation run times in mind. For wind simulations in our study area, up to 2

days run-times with nudging disabled below 1600 m in model configurations
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gives the best wind speed predictions. However, disabling nudging below the

model-calculated PBL height offers more consistent results and produces

relatively less prediction error with longer run times.

Keywords: Atmospheric science, Environmental science

1. Introduction

Assessments of wind resources is key to the successful development of wind power

on a commercial scale. Data for such assessments have traditionally been from mast-

mounted instruments. However, in recent times, Numerical Weather Prediction

Models (NWPs) such as the Weather Research and Forecasting Model (WRF)

have been gaining popularity as low-cost alternative sources of data for these assess-

ments. Like most numerical models, WRF offers a wide range of options that must

be put together to form model configurations with which the model can be run.

Model configurations are key contributors to model performance.

Among the options that have been found to significantly affect model performance in

wind simulations with WRF; are the Time Control and Nudging options [1, 2]. The

Time Control options are used to specify among other things, the simulation integra-

tion time or run time (which is basically the length of the period that is simulated by

the model), as well as time intervals between the lateral boundary condition inputs

and simulation output files. Nudging (Newtonian relaxation) is one of the options in

the Four-Dimensional Data Assimilation (FDDA) system of WRF. The FDDA sys-

tem comprises options for keeping simulations close to gridded analyses values and/

or observed values (actual measurements) over the simulation run time. The former

is often referred to as grid or analyses nudging, while the latter is termed observa-

tional nudging. Analysis nudging options in WRF include the nudging coefficients

for the variables to be nudged, whether nudging should be applied for all vertical

levels in the simulation domain, and if not, which levels it should be disabled for,

and how. In this paper, we focus on the options of integration or run time, and

the vertical levels for which nudging should be disabled. The combined effect of

these two parameters has been found to improve model performance in wind simu-

lations by reducing model divergence and error accumulation [2].

NWP models tend to diverge and accumulate approximation errors after running for

some time. These situations get worse with increasing simulation run times [2, 3].

With the Time Control options alone, these errors can be reduced for simulations

covering long periods. This can be achieved by performing relatively shorter

segmented simulations, that together cover the desired (longer) period. However, us-

ing this option (of shorter segmented runs) requires more time and computing re-

sources for simulations. This is because, in line with best practices, simulations

run times in WRF must incorporate a model “spin-up” time (the average time it takes
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for the model to adequately develop mesoscale processes). However, model outputs

from this spin-up time are not considered as true representations of the state of the

atmosphere and so, are often discarded [3, 4, 5, 6, 7, 8, 9]. Using shorter run times

for simulations in studies covering longer periods, requires more of such model spin-

up times, which in turn requires that, extra time and computing resources be spent on

running simulations. For example, for a study that covers a period of one year, and

uses 12 hours spin-up time per simulation, the total number of extra days that must

be run and discarded as model spin-up are presented in Table 1. Therefore, though

using shorter run times might improve wind predictions by WRF, it also increases

the time and computational needs for studies and assessments. In addition, for study

designs that are computationally expensive and span long study periods, the use of a

short run times might not necessarily be worth the improvements in model perfor-

mance. Nonetheless, the option has been used, often in combination with grid

nudging in model configurations for sensitivity studies and model performance as-

sessments of WRF for wind simulations [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13].

Some of the run times (excluding model spin-up times) that have been used in

wind simulation studies include, 12 hours [11], 1 day [3, 14], 2 days [2, 8], 7

days [7], 9 days [6], and 30 or 31 days [5, 12].

It is common practice in sensitivity studies of WRF for wind simulations, to apply

nudging at heights above the Planetary Boundary Layer (PBL) only (in other words,

disable nudging within the PBL). This is done with the intention of allowing meso-

scale processes in the PBL to develop freely [11, 12, 13]. There are 3 ways by which

analyses nudging within the PBL can be disabled in WRF [1, 15];

i. by specifying the height (in model vertical levels) above which nudging should

be applied (or below which nudging should be disabled).

ii. by letting the model apply nudging above the model-calculated height of the

PBL (The accuracy of this model-calculated PBL height depends on the PBL

parameterisation scheme used in the model configuration).

Table 1. Effect of different run times on a study covering 1 year (assuming 12

hours model spin up time).

Run time (excluding
model spin-up time)

Number of simulations
required to cover
study period

Total number of
extra days required
as spin up time

Extra time required
for simulations

1 day 365 182.5 days 50%

2 days 183 91.5 days 25%

7 days 53 26.5 days 8%

31 days 12 6 days 2%
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iii. by letting the model choose the higher of a specified height, and the model-

calculated PBL height, and applying Nudging above whichever is chosen

(i.e. the highest).

The diversity in options available in the WRF model has always presented the chal-

lenge of identifying an optimum configuration for simulations, as model perfor-

mance has been found to depend on many factors including, availability of

computing resources, variables of interest, model configuration and prevailing cli-

matic conditions. In addition, interaction between different options in WRF can

sometimes be non-linear, and this calls for different possible combinations of options

to be tested to determine an optimum configuration. It has been the practice to deter-

mine the optimum configuration for a variable of interest with sensitivity studies,

which assess comparatively, the effects of different model configurations on model

performance.

Carvalho et al. [2] found that, wind speed predictions by WRF are better, with a

model configuration that includes the grid nudging option combined, with a run

time of 2 days instead of 30 days. However, this study did not examine the possible

effects of other integration times, nor the different methods of applying nudging or

the possible interaction of the two options, on model performance. Ohsawa et al. [1]

found that, applying nudging above PBL heights calculated by the Mellor-Yamada-

Janjic (MYJ) PBL scheme produces better results as compared to applying nudging

above a fixed height (of 1000 m) for offshore wind simulations in Japan. However,

these options were not tested with different run times, nor the third option of

disabling nudging in the PBL, tested. In addition, given the strong sensitivity PBL

schemes often exhibit to different climatic conditions that pertain in different seasons

and at different locations, the generalisability of the findings of Ohsawa et al., might

be limited.

Against this background, in this study, we investigate sensitivity of winds (in an area

of good wind energy potential in Ghana [16]), to different combinations of five simu-

lation run times and three methods of disabling nudging in WRF. The accuracies of

these different combinations are compared with actual field (ground) measurements

at a selected location in the south-eastern part of Ghana (Section 2.1). The aim of this

study is to recommend combinations of run time and nudging options that are suit-

able for model configurations for wind simulations with WRF in Ghana.

2. Methods

2.1. Study area and measured data

The study area, as depicted in Fig. 1, stretches approximately between longitudes

0� and 1� East, and latitudes 4.5� and 6� North, and covers the eastern coastal plains
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of Ghana. This area was identified to have some of the best wind energy potential in

Ghana in a study conducted in 2002 [16]. The Energy Commission of Ghana (EC)

has conducted mast measurement exercises at selected sites in the area in the past.

The observational (measured) data for this study, is from one of the masts in one

such measurement exercise, at Anloga (Lat 5.79 �N and Long. 0.91 �E), a town

along the coast in the study area. The data comprises hourly averages of wind speeds

for December 2013, measured at heights of 40, 50, and 60 m above ground level, and

wind directions, measured at 50 and 60 m.

2.2. Model and domain configuration

The simulation domains comprised three (3) one-way nested domains of resolutions

27 km, 9 km, and 3 km. The horizontal resolutions were chosen to achieve a recom-

mended nesting ratio of 3 [17, 18]. The final horizontal resolution of 3 km was cho-

sen because it has been found to be optimum for wind simulations in WRF.

Increasing the final resolution beyond this value was found not to significantly

improve model performance, despite being more computationally expensive [2,

5]. The outermost domain covers Ghana and its neighbouring countries as well as

parts of the Sahel deserts to the north and the sea to the south of the country. Domain

2 covers the lower half of the country, and parts of its neighbouring countries to the

east. Domain 3 covers the high wind energy potential coastal plains of South-East

Ghana. Most of the EC’s wind energy measurement masts as well as the sites of

some planned wind farms in Ghana, are located in this domain (Domain 3). These

domains are depicted in Fig. 2.

Fig. 1. Map of Ghana showing its international borders and the study area (in yellow and red

respectively).
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The model configuration is summarised in Table 2. The Mercator Geographical Pro-

jection scheme was used as recommended by Wei Wang et al. [19]. The Mellor-

Yamada Nakanishi and Nino Level 3 (MYNN3) PBL scheme was chosen for this

study based on results of a preliminary evaluation of PBL parameterisation schemes

for this area. Following recommendations on vertical level references for tests [19],

and nested simulations in WRF [20], 40 vertical levels, (automatically set for a pres-

sure of 5000 Pa at the top of the model) were chosen for all domains. Cumulus pa-

rameterisation was turned off for domain 3 as the horizontal resolution in this domain

Fig. 2. Simulation domains.
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is considered fine enough for adequate resolving of cumulus processes [2, 21]. All

simulations were initialised with the NCEP FNL Operational Model Global Tropo-

spheric Analyses (NCEP GFS-FNL) dataset at 1� horizontal, 26 mandatory pressure

levels, and 6-hours temporal resolutions [22]. The same dataset was used for the

analysis nudging.

2.3. Experimental design

Fifteen (15) numerical experiments were performed, testing all possible combina-

tions of the five selected run times (1 day, 2 days, 7 days, 14 days, 31 days) and

all the three methods of disabling nudging in the PBL. Except for 14 days integration

time, all the other integration times tested in this study have been used in previous

sensitivity studies on wind simulations in WRF; 1 day [3, 14], 2 days [2, 8], 7 days

[7], 9 days [6], and 30 or 31 days [5, 12]. Each experiment involved the simulation of

the entire month of December, 2013. For the five experiments in which the height

below which nudging must be disabled had to be specified, 10 model vertical levels

(corresponding to approximately 1600 m above sea level (asl) in our vertical grid

configuration, which has lowest level at approximately 56 m asl) was specified.

This number of levels is specified in model configurations similar to the one used

in this study (i.e. pressure at the top of the model ¼ 5000 Pa, vertical levels

Table 2. Model configuration for all experiments.

Model version Advanced research WRF v3.8.1

Driving data NCEP FNL Operational Model Global Tropospheric
Analyses at 1-degree spatial, 26 pressure levels, and 6
hourly temporal resolutions

Land use data 24-category USGS

Geographical projection scheme Mercator

Vertical resolution 40 levels

Horizontal resolution (km) 27 9 3

Domain size (grid points) 91 � 103 82 � 94 64 � 55

Parameterization schemes:

Cloud microphysics (MP) Eta microphysics (ETA) scheme

Long-wave radiation (LW-Rad) Rapid Radiative Transfer Model scheme (RRTMG
version)

Short-wave radiation (SW-Rad) Dudhia scheme

Surface layer (SL) Nakanishi and Nino PBL’s surface layer scheme
(MYNN)

Land surface model (LSM) Noah Land Surface Model

Planetary boundary layer (PBL) The Mellor Yamada Nakanishi Nino Level 3
(MYNN3.)

Cumulus Kain-Fritsch scheme (turned off for domain 3)
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automatically set) [15, 19]. The number of simulations and other details of each

experiment are presented in Table 3. All simulations were run with a spin-up time

of 12 hours.

2.4. Post-processing of wind data from WRF output files

A position (specified as latitude (i), longitude (j), and vertical level(k)) on the WRF

grid corresponds to a cell [23]. Surface wind speeds and directions for a position in

WRF were calculated from the U (x-component) and V (y-component) winds. As

illustrated in Fig. 3, U winds are on at the centres of the left and right faces of the

cell, while the V winds are on the middles of the front and back faces [23]. The

observation data for verification comprises only surface winds (winds in the horizon-

tal plane). Therefore, hourly simulated surface winds for a cell were calculated (for

every hour) as:

WS¼
"�

Ui;j;k þUiþ1;j;k

2

�2

þ
�
Vi;j;k þVi;jþ1;k

2

�2
#0:5

ð1Þ

Table 3. Experimental Design (the run times specified exclude the spin-up time).

No. Experiment
designation

Simulation
run time

Levels above which grid
nudging should be applied
(or below which nudging
should be disabled)

Number of
simulations

1 1 day_N-10l 1 day 10 model vertical levels 31

2 2 days_N-10l 2 days 10 model vertical levels 16

3 7 days_N-10l 7 days 10 model vertical levels 5

4 14 days_N-10l 14 days 10 model vertical levels 3

5 31 days_N-10l 31 days 10 model vertical levels 1

6 1 day_N-pblh 1 day Model-calculated PBL height 31

7 2 days_N-pblh 2 days Model-calculated PBL height 16

8 7 days_N-pblh 7 days Model-calculated PBL height 5

9 14 days_N-pblh 14 days Model-calculated PBL height 3

10 31 days_N-pblh 31 days Model-calculated PBL height 1

11 1 day_N-a 1 day The higher of 10 model vertical levels
and PBL height

31

12 2 days_N-a 2 days The higher of 10 model vertical levels
and PBL height

16

13 7 days_N-a 7 days The higher of 10 model vertical levels
and PBL height

5

14 14 days_N-a 14 days The higher of 10 model vertical levels
and PBL height

3

15 31 days_N-a 31 days The higher of 10 model vertical levels and
PBL height

1
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Direction was determined from the same U and V averages for each timestep using

the four-quadrant inverse tangent function. Winds were not rotated in this study as

with the Mercator projection (which was used in this study), the model grid aligns

with earth coordinates and so rotation of the winds is not needed [24].

The wind speeds at heights of analysis (40 m, 50 m, and 60 m) were linearly inter-

polated from wind speeds for the levels immediately below and above them. While

linear interpolation might not be the best approach to obtain the wind speeds for the

heights of analysis, we believe this should not significantly affect the relative perfor-

mance of the options being tested, once the same approach is used in processing the

data for all the options tested in the study.

For the interpolation, the vertical levels in WRF were converted to height above

ground level (in m) as [19];

Heightða:g:lÞ ¼
�ðPH þPHBÞi;j;k þ ðPH þPHBÞi;j;kþ1

2g

�
�HGT ð2Þ

where PH is the perturbation geopotential height (m2/s2), PHB is the base-state geo-

potential height (m2/s2), g is acceleration due to gravity (m/s2), and HGT represents

the terrain height (m) [19]. Values for PH, PHB and HGT were all WRF simulation

outputs.

Fig. 3. Grid cell in WRF.
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2.5. Statistical metrics for validation

Hourly predictions of wind speeds and directions were compared with ground data

measured hourly, at heights of 40, 50, and 60 m above ground level. The relative

performances of the configuration options were evaluated using the comparative Pre-

diction Skill Score measure [25], calculated from the sum of scaled (unity normal-

ised) values of the following statistical metrics of simulated wind speeds and

directions:

i. the Root Mean Square Error (RMSE),

ii. the Mean Error (ME),

iii. Standard Error (STDE) and the

iv. Correlation Coefficient (CC) between simulated and measured data.

The RMSE is a measure of the difference between simulated and measured values

and is calculated as:

RMSE ¼
 
1
N

XN
i

ðDÞ2
!0:5

ð3Þ

where D ¼ WSsim �WSobs and N is the number of data points.

The ME, like the RMSE, is a measure of error, but most importantly, helps determine

whether the model was over-predicting or under-predicting winds. It was calculated

as:

ME ¼ 1
N

XN
i

ðDÞ ð4Þ

The STDE gives an indication of how spread out predictions are from the predicted

mean. A smaller standard error is preferred. STDE is calculated from the RMSE and

ME as:

STDE ¼ �RMSE2 �ME2
�0:5 ð5Þ

The linear dependence of simulated and measured wind speeds was assessed with

the Pearson Correlation Coefficient (CC). It was calculated as [26].

CC ¼
P�

X �X
��
Y � Y

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP�

X �X
�2P�

Y � Y
�2q ð6Þ

where X and Y are the simulated and observed wind speeds respectively.

For angles, D was calculated as [11];
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D¼

8><
>:

qsim � qobs when jqsim � qobsj< 180
�

ðqsim � qobsÞ
�
1� 360

jqsim � qobsj
�

when jqsim � qobsj> 180
�

9>=
>; ð7Þ

Angular mean was calculated according the circular statistics principles [27], and

correlation between simulated and measured angles was determined with a Circular

Correlation Coefficient [27].

Metrics were scaled (normalised) according to [25] as:

XSCALED ¼ Xi �Xmin

Xmax �Xmin

ð10Þ

where Xmax and Xmin refer to maximum and minimum values of the Metric

(RMSE, STDE, ME, or CC) being scaled. Scaling is such that 0 � XSCALED � 1.

The Prediction Skill Score was then calculated as:

Skill Score¼ ð1�RMSESCALEDÞ þ
�
1� jMEjSCALED

�þ ð1� STDESCALEDÞ
þCCSCALED ð9Þ

Such that 0 � Skill Score � 4.

The scheme with the highest Skill Score was ranked as the best scheme and vice

versa.

The fitted Weibull probability curves for measured and predicted data from the tested

configurations were also compared. The Weibull distribution is widely used to repre-

sent wind speed distributions for wind energy applications, primarily because it

accurately fits wind data well. Its probability function is [28];

f ðWSÞ ¼
�
k
c

��
WS
c

�k�1

exp
�
�
�
WS
c

�k �
ð11Þ

where f(WS) is the probability of observing wind speed (WS), k is dimensionless

Weibull shape parameter, and c is the Weibull scale parameter. The two parameters

can be determined as follows [28];

k ¼
�

s

WSm

��1:086

ð12Þ

c¼ WSmk2:6674

0:184þ 0:816k2:73855
ð13Þ

where s and WSm(m/s), are the standard deviation and the average respectively, of

the wind speed data.
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Effects of the tested model configurations on wind power estimation were evaluated

by comparing the Average Wind Power Flux, estimated with measured and pre-

dicted data. The Average Wind Power Flux, assuming a rotor swept area of unity

was estimated as [12].

WPflux ¼ 1
N

XN
i¼1

0:5� r�WS3i ð14Þ

where WSi is the wind speed, and r, the air density. Due to a lack of access to local

air density measurements, a value of 1.156 kg m�3, based on findings of a study in

the Caribbean was assumed [29] (based on the assumption that the Caribbean

should have a similar climate as Ghana). In addition, estimates of local air density

with data (Average Temperature, Relative Humidity and Pressure) from selected

online sources [30, 31, 32], was found to average approximately 1.160 kg m�3, pro-

ducing less than 1% difference in the Average Power Flux estimated with the air

density value from the Caribbean study.

3. Results and discussion

Fig. 4 shows the observed and predicted average wind speeds at 60 m for December

2013. It can be observed from the figure that, generally, the shorter run times gave

better predictions, with 1 day runs giving the best predictions. We also see that,

average wind speed predictions for experiments that were conducted with Nudging

above 10 model vertical levels (the N-10l group) and those conducted with Nudging

above the higher of 10 vertical levels or the model-calculated PBL height (the N-a

group) are approximately the same. However, in contrast to the trend in the N-10l

and N-a groups of experiments; average wind speed predictions for experiments

from the N-pblh group, (in which nudging was below the model-calculated height

of the PBL), though better with 1 day and 2 days run times, become almost constant

with run times of 7 days or more. The better performance of this approach of

disabling nudging (disabling it below the model calculated PBL height) for longer

run times (7 days or more in this case) can also be seen from the figure.

Fig. 4. Average wind speeds at 60 m a.g.l from experiments grouped by Nudging options tested.

12 https://doi.org/10.1016/j.heliyon.2019.e01385

2405-8440/� 2019 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Article Nowe01385



The better predictions with the smaller run times can be attributed to the relatively

lower model divergence and error accumulation that shorter run times achieve [2].

We observe this in Fig. 5, which shows the plots of daily average wind speeds (in

December, 2013) for the 5 run times tested. We also observe that, the deviations

of the predicted wind speeds from the observed wind speeds appear to be more pro-

nounced in the plots for run times of 7, 14, and 31 days in Fig. 5(c), (d), and (e)

respectively, pointing to relatively larger model divergence and error accumulation

by experiments with these run times.

The similarity in results between the N-10l and N-a groups of experiments

mentioned earlier, can again be seen in the plots in Fig. 5. There is little deviation

between the lines for the daily average wind speeds plots for experiments from

Fig. 5. Average wind speeds at 60 m a.g.l from experiments conducted with run times of; (a) 1 day, (b) 2

days, (c) 7 days, (d) 14 days, (e) 31 days.
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the two groups, irrespective of simulation run time. This similarity suggests that, the

calculated PBL height was either often close to, or less than the height at vertical

level 10 (approximately 1600 m for our experimental setup). From Fig. 6, which de-

picts a plot of the daily maximum PBL heights at the location where our observa-

tional data was taken, we find this to be the latter. This means that, in the N-a

group experiments, nudging was basically being disabled in the same manner as

in the N-10l experiments; for the lower 10 vertical levels.

The more or less constant predictions of average wind speeds in experiments with 7,

14 and 31 days run times from the N-pblh group, can be explained by the relatively

little deviation between the predicted wind speeds from the 3 experiments. This can

be seen in Fig. 7(b). This result can also be taken as an indication of the consistency

of this method of disabling nudging in the PBL in simulations with run times of 7

days or more. A possible contributing factor to the better performance of the exper-

iments from the (N-pblh) group, might be the ability of that method (of disabling

nudging) to determine more appropriately, the levels to nudge. With the N-10l ex-

periments, levels above an assumed constant PBL height (of 1600 m) are nudged.

However, this might not be best as, the PBL height tends to vary (as can be seen

in Fig. 6), falling within the lowest 1000 me3000 m of the atmosphere depending

on the amount of ground friction and turbulent mixing present [14, 33].

3.1. Statistical metrics and prediction skill

The trends observed above are confirmed by the statistical metrics presented in Table

4. Generally, experiments with shorter run times had better RMSE, ME, and STDE

than those with longer run times from the same experimental groups. The better con-

sistency of disabling nudging below the model-calculated PBL height is seen in the

fact that, there is comparatively less variation in RMSEs and MEs, for experiments

from the N-pblh group. In addition, experiments from this group record some of the

lowest STDEs. Low STDEs can be taken as an indication of consistency in model

performance [2, 12]. The greater model divergence and error accumulation associ-

ated with longer run times is also seen in the greater RMSEs and MEs for experi-

ments with run times of 7 days or more.

Fig. 6. Daily average PBL heights from N-pblh group of experiments.
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Fig. 7. Average wind speeds at 60 m a.g.l from experiments conducted with Nudging disabled; (a) below

10 vertical levels, (b) below the model-calculated PBL height, (c) below the higher of 10 vertical levels

or PBL height.

Table 4. Statistical metrics for wind speed predictions at 60 m.

Average
wind speeds
(m/s)

RMSE
(m/s)

ME
(m/s)

STDE
(m/s)

CC Prediction
skill score

Observation 5.9

1 day_N-10l 5.7 1.23 �0.22 1.21 0.7 3.5

1 day_N-pblh 5.3 1.25 �0.61 1.10 0.8 3.4

1 day_N-a 5.7 1.25 �0.25 1.22 0.7 3.4

2 days_N-10l 5.4 1.40 �0.52 1.30 0.7 2.8

2 days_N-pblh 5.2 1.30 �0.67 1.12 0.8 3.3

2 days_N-a 5.4 1.40 �0.55 1.29 0.7 2.8

7 days_N-10l 4.8 1.86 �1.10 1.49 0.6 1.2

7 days_N-pblh 5.1 1.38 �0.76 1.15 0.8 3.0

7 days_N-a 4.8 1.89 �1.16 1.49 0.6 1.1

14 days_N-10l 4.6 1.98 �1.29 1.50 0.6 0.8

14 days_N-pblh 5.1 1.42 �0.82 1.16 0.8 2.9

14 days_N-a 4.6 2.01 �1.31 1.52 0.6 0.7

31 days_N-10l 4.5 1.98 �1.44 1.37 0.7 1.1

31 days_N-pblh 5.1 1.48 �0.81 1.24 0.7 2.6

31 days_N-a 4.5 2.04 �1.45 1.43 0.6 0.8
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Combining the metrics into prediction skill scores, we find that configurations with

the shorter run times generally record the highest skill scores as depicted in Fig. 8. In

addition, disabling nudging below 1600 m (model vertical level 10), is best for 1 day

and 2 days runs only. For the other run times tested, disabling nudging below the

model-calculated PBL height offers better performance. Generally, nudging below

the model-calculated PBL height offers the most consistent performance. Full results

on the metrics and Skill Scores are presented in Annex-I.

3.2. Effect on wind power estimates

Fig. 9 depicts the Weibull probability distribution plots for observed data and data

predicted with seven of the configuration options tested. Plots for the N-a group

of experiments are not included because they are very similar to those of the N-

10l group of experiments. Moreover, for the 7, 14, and 31 days run times, only ex-

periments from the N-pblh group are plotted because they ranked better than those

from the other groups. It can be seen from the figure that, apart from the 1day_N-10l

configuration, all the other configurations overestimate and underestimate lower and

Fig. 8. Speed prediction skill scores at 60 m for configurations tested.

Fig. 9. Weibull P.D.F plots for data at 60 m from observations and seven of the options tested.
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higher speeds respectively; with deviation for lower speeds greatest for configura-

tions with higher run times. Therefore, as can be observed in Fig. 10, the shorter

run times generally gave better estimations of the power flux. Though there are de-

viations with the 1day_N-10l configuration as well, they are relatively less, and this

configuration predicts the higher speeds better. The more accurate estimations by the

1day_N-10l resulted in a relatively better average wind speed prediction error of 4%,

and a wind power estimation error of 16%, as can be seen from Table 5.

For the nudging options tested, disabling nudging below the model-calculated PBL

height (experiments from the N-pblh group), produced more consistent results, pro-

ducing errors ranging from approximately 10 to 13.7% of observed average wind

Fig. 10. Wind power estimates from observed and predicted data at 60 m.

Table 5. Percentage error of estimated average wind speed and energy estimates at 60 m.

Average wind
speeds (m/s)

Wind speed
prediction
error (%)

Shape
factor, k

Scale
factor, c

Estimated power
flux (W/m2)

Power flux
estimation
error (%)

Observation 5.9 3.68 6.56 152

1 day_N-10l 5.7 3.7 4.50 6.25 127 16

1 day_N-pblh 5.3 10.3 4.15 5.85 105 31

1 day_N-a 5.7 4.3 4.39 6.22 125 17

2 days_N-10l 5.4 8.9 4.09 5.95 111 27

2 days_N-pblh 5.2 11.3 4.07 5.79 102 33

2 days_N-a 5.4 9.3 3.98 5.93 110 27

7 days_N-10l 4.8 18.6 3.78 5.33 81 46

7 days_N-pblh 5.1 12.9 3.80 5.70 99 35

7 days_N-a 4.8 19.6 3.62 5.28 80 48

14 days_N-10l 4.6 21.9 3.45 5.14 74 51

14 days_N-pblh 5.1 13.8 3.67 5.66 97 36

14 days_N-a 4.6 22.2 3.42 5.13 74 51

31 days_N-10l 4.5 24.3 3.30 4.99 69 54

31 days_N-pblh 5.1 13.7 3.45 5.68 100 34

31 days_N-a 4.5 24.5 3.20 4.99 70 54
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speeds, and 31e34% of power flux estimates from observed data (See Table 5). In

contrast, though disabling nudging below 1600 m (model vertical level 10) gave the

best result with the 1 day run time, it produced a wider error range when the run time

is increased to 30 days; from approximately 4 to 24% of observed average wind

speeds, and 16e54% of energy estimates from observed data. The same trend is

found for experiments from the N-a group.

The trends discussed above are also observed in the shape and scale parameters for

the fitted data, also presented in Table 5.

3.3. Wind direction predictions

We found no significant difference in the direction predictions of the various config-

uration options tested. Observed wind directions for this period was mostly from the

Fig. 11. Wind roses of observation data and scheme predictions at a height of 60 m.
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North-East and the East. All the model configurations tested predicted the dominant

direction to North-East. This can be seen in Fig. 11, which shows wind roses for

observed and predicted wind directions at a height of 60 m. From the statistical met-

rics for direction prediction at 60 m, presented in Table 6, our analysis suggests the

1day_N-pblh as the best ranked configuration. We also observe some of the trends in

speed predictions being repeated in the direction predictions as well; the shorter run

time options generally give better direction prediction skill scores. In addition, the N-

pblh group of experiments exhibit the most consistent performance as compared to

other groups. This can be explained by the fact that wind directions were calculated

from the wind speed predictions. However, all the options tested predict the same

direction (North-East), as the dominant wind direction for this site in December

2013.

3.4. Effect of elevation (height) on findings

We found no significant changes in ranking of the configurations tested in this study

when the analysis was repeated for the other heights at which we had observational

data (i.e. 50 m and 40 m). Configuration rankings remained the same, albeit with

marginal drops in prediction skill sores for direction prediction, as can be seen

from Fig. 12(b).

Table 6. Statistical metrics for wind speed predictions at 60 m.

Average wind direction
(degrees)

RMSE
(degrees)

ME
(degrees)

STDE
(degrees)

CircC Prediction skill
score

Observation 55.8

1 day_N-10l 39.6 47.3 �25.9 39.6 0.4 2.6

1 day_N-pblh 37.5 46.7 �27.6 37.7 0.5 3.2

1 day_N-a 39.4 47.2 �26.9 38.8 0.4 2.9

2 days_N-10l 37.7 47.6 �25.1 40.5 0.5 2.4

2 days_N-pblh 39.7 48.9 �27.0 40.7 0.4 2.6

2 days_N-a 38.9 47.1 �25.5 39.6 0.5 2.6

7 days_N-10l 41.0 56.6 �26.9 49.8 0.5 1.7

7 days_N-pblh 42.7 47.8 �26.0 40.1 0.4 2.5

7 days_N-a 38.7 56.2 �27.4 49.1 0.5 1.9

14 days_N-10l 40.4 61.0 �27.5 54.4 0.5 1.2

14 days_N-pblh 42.8 48.1 �25.6 40.8 0.4 2.3

14 days_N-a 37.0 59.8 �28.0 52.9 0.5 1.5

31 days_N-10l 44.2 62.0 �29.0 54.8 0.5 1.5

31 days_N-pblh 43.3 47.8 �24.9 40.8 0.4 2.3

31 days_N-a 50.5 59.0 �24.6 53.6 0.4 0.7

19 https://doi.org/10.1016/j.heliyon.2019.e01385

2405-8440/� 2019 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Article Nowe01385



We also found no changes in the trends that were observed in the estimated power

with data from the configurations. There were drops in estimated power at the lower

heights, due to lower wind speeds at these heights. Full results on the estimated po-

wer for the lower heights can be found in the Annex-I.

4. Conclusion

This study investigated the effects of combining simulation run times of varying

lengths with 3 different methods of disabling nudging in the PBL, on wind speed

and direction predictions by WRF model. Effects of the configuration options on po-

wer estimated from the data they predicted was also examined. Five selected run

times were each combined with three methods of disabling grid nudging within

the PBL in WRF simulations.

We found that, shorter simulation run times generally offer better model perfor-

mance over longer simulation run times. Consistent with findings of Carvalho

et al. [2], 2 day runs offered better model performance over 30 day runs, when com-

bined with an appropriate method of disabling grid nudging in the PBL. In this study,

it was found that the 2 days runs reduced the average wind speed prediction error for

the study area from 24% of observed wind speeds, to less than 10%. The error in

wind power flux estimated with predicted data, reduced from 54% of estimates

with observed data, to 27%. The simulated results were found to further improve,

when simulation run time was reduced to 1 day; average wind speed prediction error

dropped to less than 4% of the observed average, and error in power estimated with

predicted data dropped to 16% of estimates from observed data. Furthermore, results

Fig. 12. Skill scores for; (a) Speed prediction (b) Direction prediction (Values are scores at 60 m height).
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suggest that, where longer run times must be used for simulations (due to time

constraint or computing constraints that the shorter run times require), the error

from predictions can be reduced by choosing an appropriate method of applying

grid nudging. In line with the findings of Ohsawa et al. [1], when nudging is disabled

below the model-calculated PBL height instead of a fixed height, average prediction

error is reduced, possibly because of the ability this approach of disabling nudging to

better determine the appropriate levels at which winds should be nudged. In this

study, this approach reduced speed prediction error from 24% to 14%. The error

in power flux estimated with the predicted data also reduced from 54% to 34%. It

must be noted that performance margins for this approach (disabling below

model-calculated PBL height) might differ with different PBL schemes, as model

estimation of the PBL height depends on the PBL scheme used for the simulations

[14, 33]. In addition, this study does not examine the sensitivity of the options to sea-

sonal variations conditions, which often affects model performance.

Based on our results, we recommend that, for optimum model performance, grid

nudging options should be chosen with run times in mind. For our study area

(and perhaps other areas with similar terrain and climatic conditions in Ghana and

the West African sub-region), model configurations with shorter run times of 1 or

2 days, combined with grid nudging above a height of 1600 m give the best average

wind speed predictions, and are therefore recommended for wind simulations. How-

ever, for longer run times (of 7 days or more), the more consistently performing

approach of disabling nudging below the model-calculated PBL height, gives better

results and is therefore recommended.
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a b s t r a c t

There is growing interest in the use of Weather Researching and Forecasting (WRF) model for assessment
of wind energy potential. The influence of parameterisation schemes in these models depends on
meteorological processes, which tend to differ with geographic regions. In this paper, we test the
sensitivity of surface winds in an area in Ghana, to 11 of the Planetary Boundary Layer schemes available
in WRF. Thirty-six days were simulated with the schemes. Hourly simulated wind speeds and directions
were compared with measurements taken at 40, 50, and 60m above ground level, and the schemes
ranked according to a prediction skill score calculated according to how well their predictions compared
to observations. The local closure MYNN schemes offered consistently good performance; often pre-
dicting the average wind speed with a Root Mean Square Error of less than <2m/s, indicating good
performance. However, the GBM and UW schemes produced relatively better results for days selected
from a period in which monthly average winds at this location are highest. Based on our results, we
recommend the MYNN3 (and the GBM, depending on the season of the year) for wind simulations in this
area, and areas with similar topography and climate in Ghana.
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

1.1. Background

Ranking of potential wind farm sites based on wind energy
potential is an important step toward the development of the wind
resources on a national scale. This involves the assessment of the
wind energy potential at the candidate sites, with local wind speed
and direction measurements, often taken over at least, one year, so
that the local wind climatology can be realistically represented
[1,2]. However, mast measurements can be expensive and time-
consuming. As a result, there is growing interest in wind simula-
tions with Numerical Weather Prediction (NWP) models, which
offer a relatively low-cost alternative source of data for assessments
of wind resources. The Weather Research and Forecasting Model
(WRF), is one such model which has proven to be a reference in

research and operational regional wind resource assessment over
the years [3,4].

NWP models rely on parameterisation schemes to adequately
represent processes that cannot be explicitly resolved by the
models. In WRF, these schemes fall into the Microphysics (MP),
Cumulus, Long-wave Radiation (Rad-L), Short-wave Radiation
(Rad-S), Land Surface Model (LSM), Surface Layer (SL), and Plane-
tary Boundary Layer (PBL) categories [3]. Studies have reported
significant sensitivities of WRF surface wind simulations, to PBL
schemes in particular [1,2,4e13].

1.2. Turbulence parameterisation

The influence of the earth's surface is transferred to the free
atmosphere through several processes that take place in the lower
atmosphere (turbulent or boundary layer). Atmospheric

* Corresponding author.
E-mail addresses: dekdzebre.coe@knust.edu.gh (D.E.K. Dzebre), muyiwa.adaramola@nmbu.no (M.S. Adaramola).
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turbulence, caused by irregular swirls of fluids and heat energy in
the atmosphere, is responsible for the vertical and horizontal
dispersion of substances such as water vapour, smoke and energy
in the atmosphere, and plays a very important role in these pro-
cesses occurring in the turbulent layer. Atmospheric turbulence is a
mix of mechanical and thermal turbulence. Mechanical turbulence
comesmainly fromwind shear, which is causedmainly by frictional
drag from the earth's surface, resulting in slower winds near the
surface than aloft. It can also be caused by wind swirls behind
obstacles such as trees, buildings and islands (wake turbulence).
Thermal or convective turbulence on the other hand, results from
plumes of warm, more buoyant air rising and cold, denser air
descending to replace it when solar radiation heats the earth's
surface. When the vertical movement of air, combines with flow
disturbances due to mechanical turbulence, surface wind flow be-
comes irregular, deviating from mean flow [14].

Turbulence can often not be completely resolved by NWP
models. Therefore, turbulence parameterisation in NWP models,
approximates (parameterizes) unresolved turbulence, so that time
derivatives of variables (such as three-dimensional wind velocity
components; u, v, and w) can be predicted using the models. To
achieve this, finite numbers of (lower order) unknowns in prog-
nostic (prediction) equations are predicted or solved for, while the
remaining (higher order) unknowns are approximated. Closure
orders are named after the highest order unknowns that are pre-
dicted. Therefore, a first order closure for instance, predicts mo-
ments (or means) of up to the first order, and approximates the
second moments (which are covariance terms that are basically
averages of products of two departures (variability due to turbu-
lence) from the mean (e.g., u0v0)). Similarly, second order closure
predicts all moments up to the secondmoments, and approximates
the third and higher moments, and so on and so forth. Sometimes,
some higher order moments may be predicted while others, of the
same order, are approximated, in which case the order of closure is
a non-integer. For instance, a closure that predicts all first moments
and some second moments, while approximating other second
moments will be a 1.5 order closure [15]. Second-order or higher
order closures of wind components can be used to quantify the
Turbulent Kinetic Energy (TKE) associated with the transfer pro-
cesses that occur the in boundary layer [16,17]. Higher-order clo-
sures have often been found to be more accurate, as they are able
solve for higher moments [16]. However, they are more computa-
tionally expensive.

Regardless of the order of closure, two main approaches are
used for closure approximations; the local and non-local (mixed
layer) approaches. Local closure parameterizes unknown quantities
in terms of values of known quantities, or close vertical derivatives
of these quantities at the same grid point. Non-local closure on the
other hand, parameterizes in terms of quantities at other grid
points in the vertical grid. A common closure approximation
technique is the K-theory or gradient-transport theory, in which
the second moments are approximated in terms of turbulent flux.
With this theory, if the approximation term in the general prog-
nostic equation for a variable x is

v

vz
x¼ :::� v

vxj

�
x0u0j

�
(1)

then a closure approximation of the flux, x0u0j, is given by

x0u0j ¼ � K
v

vxj
ðxÞ (2)

where K is a scalar associated with the transfer process of the
variable [16]. Its polarity indicates whether the turbulent flux is

down or up the local gradient of x, and it can be expressed in
terms of the TKE and length-scale (mixing length) or specified
from a profile. The different methods for getting K, gives rise to
different TKE closure schemes [9,18]. The schemes can also differ
in how the TKE is obtained, with some schemes solving addi-
tional prognostic equations to predict the TKE [19]. Local closures
work best in stable climatic conditions, where turbulent eddies
(departures from the local variable mean) are small and locally
generated [16].

Non-local closure approaches recognise the presence of non-
localised and large eddies whose vertical dimension is approxi-
mately that of the entire boundary-layer depth, and assume that
these eddies are generated from turbulence that is not localised,
but spans the entire boundary layer [16]. Diagnostic non-local
schemes in WRF account for non-local transport by large eddies
with the inclusion of either a mass-flux profile, MDT , or a non-
gradient term, G, in the prognostic equation of a variable [19].
The closure approximation term in the prognostic equation there-
fore becomes (with the counter gradient term);

v

vz
K
� v
vz

xþ G
�

(3)

and with the mass-flux term;

v

vz

�
K

v

vz
xþMDT

�
(4)

where DT represents the difference in temperatures at some ver-
tical level in the boundary layer, and at the top of the surface layer,
and M, a function of the surface heat flux [16,19].

Turbulence is parameterised in WRF by PBL parameterisation
schemes with direct inputs from SL and LSM parameterisation
schemes.The twelve (12) PBL parameterisation schemes available
in the Advanced Research WRF (ARW) v3.8.1 are presented in
Table 1. The YSU is an improved version of the MRF scheme [9]. It
can be run with two wind-bias correction methods for terrain
effects. The methods are set with the “topo_wind” option
(topo_wind¼ 1 or 2 in the “bl_pbl_physics” section of the WRF
namelist. input file). All these schemes, except the SH scheme are
recommended for horizontal grid resolutions greater than 1 km.
For horizontal grid resolutions between 200m and 1 km, the SH
scheme is recommended. And for horizontal grid resolutions less
than 100m, Large Eddy Simulations (without a PBL parameter-
isation) are recommended [19]. It should be noted that simula-
tions with finer resolutions in WRF are more computationally
expensive, and the improvement in results this achieves in wind
simulations, has not always been found to be worth the extra
computational power [2,5]. Descriptions of the schemes, (their
pros and cons) and appropriate references are available in
number of studies [20, 21] and on the physics section of the WRF
Users page.

Performance of parameterisation schemes often depends
significantly on the meteorological processes that prevail in a
specific geographic region [16]. So, sensitivity studies of parame-
terisation schemes are recommended to determine the optimum
schemes to use in a climatic region. Studies examining the sensi-
tivity of wind simulations by WRF for wind energy assessment
purposes to PBL schemes in the tropics are few. We came across
only one such study for sub-Saharan Africa in open literature. In
that study, which was over a site with complex terrain in East Af-
rica, the YSU scheme was found to be the better scheme, when it
was tested against the ACM2 scheme for wind speeds and di-
rections at heights of 38, 39, and 46m [8]. In other sensitivity
studies aimed at wind energy assessments in other areas in the
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turbulence, caused by irregular swirls of fluids and heat energy in
the atmosphere, is responsible for the vertical and horizontal
dispersion of substances such as water vapour, smoke and energy
in the atmosphere, and plays a very important role in these pro-
cesses occurring in the turbulent layer. Atmospheric turbulence is a
mix of mechanical and thermal turbulence. Mechanical turbulence
comesmainly fromwind shear, which is causedmainly by frictional
drag from the earth's surface, resulting in slower winds near the
surface than aloft. It can also be caused by wind swirls behind
obstacles such as trees, buildings and islands (wake turbulence).
Thermal or convective turbulence on the other hand, results from
plumes of warm, more buoyant air rising and cold, denser air
descending to replace it when solar radiation heats the earth's
surface. When the vertical movement of air, combines with flow
disturbances due to mechanical turbulence, surface wind flow be-
comes irregular, deviating from mean flow [14].

Turbulence can often not be completely resolved by NWP
models. Therefore, turbulence parameterisation in NWP models,
approximates (parameterizes) unresolved turbulence, so that time
derivatives of variables (such as three-dimensional wind velocity
components; u, v, and w) can be predicted using the models. To
achieve this, finite numbers of (lower order) unknowns in prog-
nostic (prediction) equations are predicted or solved for, while the
remaining (higher order) unknowns are approximated. Closure
orders are named after the highest order unknowns that are pre-
dicted. Therefore, a first order closure for instance, predicts mo-
ments (or means) of up to the first order, and approximates the
second moments (which are covariance terms that are basically
averages of products of two departures (variability due to turbu-
lence) from the mean (e.g., u0v0)). Similarly, second order closure
predicts all moments up to the secondmoments, and approximates
the third and higher moments, and so on and so forth. Sometimes,
some higher order moments may be predicted while others, of the
same order, are approximated, in which case the order of closure is
a non-integer. For instance, a closure that predicts all first moments
and some second moments, while approximating other second
moments will be a 1.5 order closure [15]. Second-order or higher
order closures of wind components can be used to quantify the
Turbulent Kinetic Energy (TKE) associated with the transfer pro-
cesses that occur the in boundary layer [16,17]. Higher-order clo-
sures have often been found to be more accurate, as they are able
solve for higher moments [16]. However, they are more computa-
tionally expensive.

Regardless of the order of closure, two main approaches are
used for closure approximations; the local and non-local (mixed
layer) approaches. Local closure parameterizes unknown quantities
in terms of values of known quantities, or close vertical derivatives
of these quantities at the same grid point. Non-local closure on the
other hand, parameterizes in terms of quantities at other grid
points in the vertical grid. A common closure approximation
technique is the K-theory or gradient-transport theory, in which
the second moments are approximated in terms of turbulent flux.
With this theory, if the approximation term in the general prog-
nostic equation for a variable x is

v

vz
x¼ :::� v

vxj

�
x0u0j

�
(1)

then a closure approximation of the flux, x0u0j, is given by

x0u0j ¼ � K
v

vxj
ðxÞ (2)

where K is a scalar associated with the transfer process of the
variable [16]. Its polarity indicates whether the turbulent flux is

down or up the local gradient of x, and it can be expressed in
terms of the TKE and length-scale (mixing length) or specified
from a profile. The different methods for getting K, gives rise to
different TKE closure schemes [9,18]. The schemes can also differ
in how the TKE is obtained, with some schemes solving addi-
tional prognostic equations to predict the TKE [19]. Local closures
work best in stable climatic conditions, where turbulent eddies
(departures from the local variable mean) are small and locally
generated [16].

Non-local closure approaches recognise the presence of non-
localised and large eddies whose vertical dimension is approxi-
mately that of the entire boundary-layer depth, and assume that
these eddies are generated from turbulence that is not localised,
but spans the entire boundary layer [16]. Diagnostic non-local
schemes in WRF account for non-local transport by large eddies
with the inclusion of either a mass-flux profile, MDT , or a non-
gradient term, G, in the prognostic equation of a variable [19].
The closure approximation term in the prognostic equation there-
fore becomes (with the counter gradient term);

v

vz
K
� v
vz

xþ G
�

(3)

and with the mass-flux term;

v

vz

�
K

v

vz
xþMDT

�
(4)

where DT represents the difference in temperatures at some ver-
tical level in the boundary layer, and at the top of the surface layer,
and M, a function of the surface heat flux [16,19].

Turbulence is parameterised in WRF by PBL parameterisation
schemes with direct inputs from SL and LSM parameterisation
schemes.The twelve (12) PBL parameterisation schemes available
in the Advanced Research WRF (ARW) v3.8.1 are presented in
Table 1. The YSU is an improved version of the MRF scheme [9]. It
can be run with two wind-bias correction methods for terrain
effects. The methods are set with the “topo_wind” option
(topo_wind¼ 1 or 2 in the “bl_pbl_physics” section of the WRF
namelist. input file). All these schemes, except the SH scheme are
recommended for horizontal grid resolutions greater than 1 km.
For horizontal grid resolutions between 200m and 1 km, the SH
scheme is recommended. And for horizontal grid resolutions less
than 100m, Large Eddy Simulations (without a PBL parameter-
isation) are recommended [19]. It should be noted that simula-
tions with finer resolutions in WRF are more computationally
expensive, and the improvement in results this achieves in wind
simulations, has not always been found to be worth the extra
computational power [2,5]. Descriptions of the schemes, (their
pros and cons) and appropriate references are available in
number of studies [20, 21] and on the physics section of the WRF
Users page.

Performance of parameterisation schemes often depends
significantly on the meteorological processes that prevail in a
specific geographic region [16]. So, sensitivity studies of parame-
terisation schemes are recommended to determine the optimum
schemes to use in a climatic region. Studies examining the sensi-
tivity of wind simulations by WRF for wind energy assessment
purposes to PBL schemes in the tropics are few. We came across
only one such study for sub-Saharan Africa in open literature. In
that study, which was over a site with complex terrain in East Af-
rica, the YSU scheme was found to be the better scheme, when it
was tested against the ACM2 scheme for wind speeds and di-
rections at heights of 38, 39, and 46m [8]. In other sensitivity
studies aimed at wind energy assessments in other areas in the
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tropics, the YSU scheme was again found to produce the best
simulations in a test of six (6) other schemes (MYJ, ACM2, UW,
TEMF, MYNN2, and QNSE) over Trinidad and Tobago [18]. However,
in simulations of wind speeds and directions at 65 and 90m over
North-Eastern Thailand, the UW and GBM schemes were found to
produce the best results, while the QNSE, YSU andMYNN3were the
worst among 9 schemes tested in one study [7]. In addition, in
another study for winds at the same heights (at 65 and 90m), the
YSU, andMYNN3 performedwell for speeds above 2 m/s, while the
ACM2 and GMB were the worst among the 7 schemes that were
tested [6]. Other studies in other tropical areas for other applica-
tions have tested all the schemes except the sub-grid SH scheme,
with the MYJ, MYNN, QNSE, YSU and ACM2 schemes being tested
more often. The ACM2, YSU and MYNN2 have often been found to
produce better simulations of wind speeds and directions at 10m
height, while the MYJ and QNSE schemes tended to often produce
the worst results, considerably overestimating wind speeds
[9,13,24e26]. Some studies also found all these schemes to be
sensitive to seasons, with the MYNN2 and ACM2 schemes being
best in the winter and summer periods respectively [26](Gunwani
& Mohan, 2017).

Ghana's Renewable Energy (RE) Policy targets 10% of total
electricity consumption from (non-large hydro) RE sources by
2020. As at the end of 2017, the country's RE electricity genera-
tion is mainly from solar PV generation, and stood at less than
the 10% target [27]. The country has potential for utility wind
power [28], but development is currently faced with various
challenges, including limited data for resource assessments. This
lack of wind data can be mitigated with numerical simulations of
surface winds with NWP models such as WRF. Towards this, this
study investigates the sensitivity of surface winds at a potential
wind farm site in the country to simulations with all applicable
PBL schemes in the AR-WRF. The aim of this study is to determine
comparatively, the performance of the schemes and make rec-
ommendations on which schemes are likely to be suitable for
wind simulations over this area and other areas with similar
climate and topographic conditions in the country.

2. Data and method

2.1. Study area and measured data

The study area covers the eastern coastal plains of Ghana. The
area stretches, approximately, between longitudes 0� and 1oE as
well as latitudes 4.5oN and 6oN. According to a wind map of
Ghana (shown in Fig. 2) that was developed as part of the Solar

and Wind Energy Resource Assessment (SWERA) [29], and based
on measurement campaigns by the Energy Commission of Ghana
(EC), the study area has wind resources good enough to make a
wind power project viable. The Energy Commission of Ghana
(EC), based on this study, has been conducting mast measure-
ments at selected sites, mostly along the coast of the area. The
observational (measured) data for this study, which comprise
hourly averages of wind speeds for 2013, were measured at
heights of 40, 50, and 60m above ground level, and wind di-
rections, at 50 and 60m only, are from one of such EC masts,
located at Anloga. Anloga is in the coastal strip between the Keta
Lagoon and the sea, in the Keta Municipality of Volta Region in
Ghana (see Fig. 1(b)). Most of the areas in the study area have
low-lying coastal plains covered in savanna grass vegetation (see
Fig. 1(c)). As can be seen from the terrain map in Fig. 1(a), the
study area generally has a smooth terrain. The highest point in
the Keta municipality is about 53m above sea level [30].

The southern parts of Ghana experience two main seasons in a
year; a relatively dry Harmattan season and a bimodal Rainy season
that ends in November. The Harmattan season is dominated by dry
and dusty desert winds from the North-East, between December
and March, while Monsoon winds from the south, over the sea,
dominate the Rainy season [31].

2.2. Model and domain configuration

The simulation domain comprised three (3) one-way nested
domains of resolutions 27 km, 9 km, and 3 km. Fig. 3 illustrates the
domains. The horizontal resolutions were chosen to achieve a
recommended nesting ratio of less than 5 [20]. The final horizontal
resolution of 3 km was chosen because it has been found to be
optimum for wind simulations in (earlier versions of) WRF.
Increasing the resolution beyond this was found not to significantly
improve model performance, despite being more computationally
expensive [2,5]. The outermost domain covers Ghana and its im-
mediate neighbouring countries as well as parts of the Sahel de-
serts to the north and the sea to the south of the country. Domain 2
covers the part of the country, and parts of its immediate neigh-
bouring countries to the east. Domain 3 covers the high wind en-
ergy potential coastal plains of Southeast Ghana. Most of the EC's
wind energy measurement masts, as well as the sites of some
planned wind farms in Ghana, are in the area captured by this
domain. Based on recommended vertical level references for tests
[20], a vertical resolution of 40 levels was used for all domains. The
levels were automatically set by the model. The model configura-
tion is summarised in Table 2.

Table 1
Summary of PBL schemes available in the AR-WRF v3.8.1 [19e23].

Scheme Order Closure Method Year Added

Mellor-Yamada-Janjic (MYJ) 1.5 Local 2000
Medium Range Forecast (MRF) 1 Non-local 2000
Yonsei University (YSU) 1 Non-local 2004
Asymmetric Convective Model (ACM2) 1 Local þ Non-local 2008
Mellor-Yamada Nakanishi and Niino Level 2.5 (MYNN2) 1.5 Local 2009
Mellor-Yamada Nakanishi and Niino Level 3 (MYNN3) 2 Local 2009
Bougeault-Lacarr�ere (BL) 1.5 Local 2009
University of Washington - TKE (UW) 1.5 Local 2011
Total Energy - Mass Flux (TEMF) 1.5 Local þ Non-local 2011
Quasi-Normal Scale Elimination (QNSE) 1.5 Local 2012
Grenier-Bretherton-McCaa (GBM) 1.5 Local 2013
Shin-Hong (SH) Non-local 2015
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2.2.1. Scheme configurations
Eleven (11) scheme configurations, which are presented in

Table 3, were tested. The Shin-Hong (SH) scheme was not tested as
it is not recommended for the final horizontal resolution chosen for
this study [19]. The Medium Range Forecast (MRF) schemewas also
not tested, as the YSU is considered an improved version of it [20].
The YSU scheme was run in two configurations; based on the two
wind-bias correction methods for terrain effects [20]. SL, LSM and
other parameterisation schemes (apart from the PBL schemes)
were selected based on recommendations of [3,20] and similar
researches in the tropics (mentioned earlier). Cumulus parame-
terisation was turned off for domain 3 as the horizontal resolution
in this domain is considered fine enough for adequate resolving of
cumulus processes [2,3].

2.3. Experimental approach

The experimental approach in this study is slightly different
from what has been used in other studies, where a whole year or
several months are simulated in order to choose the best scheme
for an area. In the approach used for this study, we assume that the
parameterisation scheme configuration that best predicts extreme
(the highest and lowest) wind events consistently, should be able to
predict other wind events well. Against this assumption, the
scheme configurations were tested on “sets” of test days, selected
for their relatively high or low daily average wind speeds, and their
representativeness of the two main seasons in this part of Ghana;
the Rainy season (spanning April to November), and the Harmattan

Fig. 1. (a): Map of Ghana showing study area (in broken red borders).
(b): Study area
(c): Typical vegetation cover in the study; grassland dotted with date palms and trees.

Fig. 2. Ghana wind power classification map (at 50m) [29].
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Fig. 3. Simulation domains.
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Season (spanning December to March). A three month “High
Winds” season (spanning July to September) within the Rainy
Season was also considered, because the highest monthly average
wind speeds at this site are usually recorded during this (High
Winds) period [32]. Each set of test days comprised six (6) selected
days; from each season. The first set of test day comprises the day

with the lowest daily wind speed average, and that with the highest
dailywind speed average from each of the 3 seasons. The second set
of test days comprised the days with the second highest and second
lowest average wind speeds from each of the seasons, and so on.

All the scheme configurations were used to simulate the first
and second sets of test days. Scheme configurations that consis-
tently ranked worst after simulations of the first twelve test days,
were dropped from subsequent tests, in which the remaining
schemes were tested with simulations of more selected days.
Consistently poorly ranked schemes continued to be eliminated
after each subsequent test, until a consistently best-ranked scheme
was identified and selected as the best scheme for the simulations.
The advantage of this approach is that, it enabled us to test seasonal
sensitivity of the scheme configurations without having to run a full
year of simulations, as has been the practice in some previous
studies. In all, a total of 36 days (i.e. six sets of six days) were used in
this study. A successful simulation for each of the test days covered
a period of 36 h. The first 12 h (from noon of the previous day) was
considered as spool up time for the model and discarded as per
recommendations of [1,2,18]. A plot of the daily wind speed aver-
ages for this site in the year 2013 and the selected days used in this
study are available in Appendix 1.

2.4. Post-processing of wind data from WRF result files

A position (specified as latitude (i), longitude (j), and vertical
level (k)) on the WRF grid corresponds to a cell. Surface wind
speeds and directions for a position in WRF were calculated from
the U (x-component) and V (y-component) winds. The U winds are

Table 2
Model Configuration.

Model Version: ARW 3.8.1

Nudging Grid Nudging; turned off for lower 10 model levels.
Initial and boundary conditions NCEP Final Analysis (GFS-FNL): 1-degree spatial and 6 hourly temporal resolutions.
Land Use data 30-arc-second USGS
Geographical Projection scheme Mercator
Vertical Resolution 40 levels (automatically set)
Horizontal resolution (km) 27 9 3
Domain size (grid points) 91� 103 82� 94 64� 55
Parameterisation Schemes:
Cloud Microphysics (MP) Eta microphysics (ETA) scheme
Long-wave Radiation (LW-Rad) Rapid Radiative Transfer Model scheme (RRTMG)
Short-wave Radiation (SW-Rad) Dudhia scheme
Surface Layer (SL) Revised MM5 similarity scheme (R-MM5), Eta similarity scheme (ETA),

Quasi-Normal Scale Elimination PBL's surface layer scheme (QNSE),
Nakanishi and Nino PBL's surface layer scheme (MYNN),
Pleim-Xiu surface layer scheme (PX),
Total Energy e Mass Flux surface layer scheme (TEMF).

Land Surface Model (LSM) Noah Land Surface Model, Pleim-Xiu Land Surface Model.
Planetary Boundary Layer (PBL) YSU, MYJ, ACM2, QNSE, MYNN2, MYNN3, BL, UW, TEMF, GBM.
Cumulus Kain-Fritsch scheme e turned off for domain 3

Table 3
Parameterisation Scheme configurations that were tested.

Designation MP LW - Rad SW - Rad SL LSM PBL Cumulus

YSU(1) ETA RRTMG Dudhia R-MM5 Noah YSU (topo_wind¼ 1) Kain-Fritsch
YSU(2) ETA RRTMG Dudhia R-MM5 Noah YSU (topo_wind¼ 2) Kain-Fritsch
MYJ ETA RRTMG Dudhia ETA Noah MYJ Kain-Fritsch
QNSE ETA RRTMG Dudhia QNSE Noah QNSE Kain-Fritsch
MYNN2 ETA RRTMG Dudhia MYNN Noah MYNN2 Kain-Fritsch
MYNN3 ETA RRTMG Dudhia MYNN Noah MYNN3 Kain-Fritsch
ACM2 ETA RRTMG Dudhia PX PX ACM2 Kain-Fritsch
UW ETA RRTMG Dudhia R-MM5 Noah UW Kain-Fritsch
GBM ETA RRTMG Dudhia R-MM5 Noah GBM Kain-Fritsch
BL ETA RRTMG Dudhia R-MM5 Noah BL Kain-Fritsch
TEMF ETA RRTMG Dudhia TEMF Noah TEMF Kain-Fritsch

Fig. 4. Grid cell in WRF.
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on at the centres of the left and right faces of the cell, while the V
winds are on themiddles of the front and back faces as illustrated in
Fig. 4. The simulated winds that were used for analysis was calcu-
lated (on an hourly basis) using a vector approach as:

Speed ¼
"�

Ui;j;k þ Uiþ1;j;k

2

�2

þ
�
Vi;j;k þ Vi;jþ1;k

2

�2
#0:5

(5)

Direction was determined from the same hourly U and V aver-
ages using the four-quadrant inverse tangent formular.

The wind speeds at heights of analysis (40m, 50m, 60m) were
interpolated from wind speeds for the levels immediately below
and above them. For this, the vertical levels in WRF had to be
converted to height above ground level (in m). These were calcu-
lated hourly according to Ref. [20] as;

Heightða:g:lÞ¼
�ðPH þ PHBÞi;j;k þ ðPH þ PHBÞi;j;kþ1

2g

�
� HGT

(6)

where PH is the perturbation geopotential height, PHB the base-
state geopotential height, and HGT, the terrain height [20]. Values
for PH, PHB and HGT were all obtained from the simulation results.

2.5. Statistical metrics for validation

WRF predictions of wind speeds at heights of 40, 50, and 60m
above ground level, and direction predictions at 50 and 60m were
evaluatedwith the comparative Prediction Skill Scoremeasure [33].
This was calculated from the sum of scaled (unity normalised)
values of the following Statistical Metrics of evaluated simulated
wind speeds and directions:

(i) Root Mean Square Error (RMSE),
(ii) Mean Error (ME),
(iii) Standard Error (STDE) and
(iv) Correlation Co-efficient between simulated and measured

speeds and directions.

The RMSE is a measure of the difference between simulated and
measured values. However, it is often criticised for “punishing”
small errors by exaggerating them and making bad predictions
appear worse than they are; something we consider to be conser-
vative in this case. It is calculated as:

RMSE ¼
�
1
N

XN

i

ðDÞ2
�0:5

(7)

where D¼ Speedsimulated � Speedmeaured and N, the number of data
points.

The Mean Error (ME), like the RMSE, is a measure of error, but
more importantly, helps determine whether the model was over-
predicting or under-predicting winds. It is calculated as:

ME ¼ 1
N

XN

i

ðDÞ (8)

The Standard Error (STDE) gives an indication of how spread out
predictions are from the predicted mean. A smaller standard error
is preferred. It is calculated from the RMSE and ME as;

STDE ¼
�
RMSE2 �ME2

�0:5
(9)

The linear dependence of simulated and measured wind speeds

was assessed with the Pearson Correlation Coefficient given as [34].

CC ¼
P�

X � X
��
Y � Y

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP�

X � X
�2 P�

Y � Y
�2q (10)

where X and Y are the simulated and observed wind speeds
respectively.

For angles (wind directions), D was calculated as follows [7];

D¼

8>>><
>>>:

qsim�qobs when jqsim�qobsj<180o

ðqsim�qobsÞ
�
1� 360

jqsim�qobsj
�

when jqsim�qobsj>180o

9>>>=
>>>;

(11)

Angular mean was calculated using vector notation approach
[35], and correlation between simulated and measured angles was
determined with a Circular Correlation Coefficient, calculated as
[35]:

CircC ¼
P

sinða� aÞsinðb� bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
sin2ða� aÞsin2ðb� bÞ

q (12)

where a and b are the simulated and observed wind direction an-
gles respectively.

The Prediction Skill Score was calculated as [33]:

Skill Score¼ð1� RMSESCALEDÞ þ ð1� jMEjSCALEDÞ þ ð1
� STDESCALEDÞ þ CCSCALED (13)

Such that. 0� Skill Score � 4
Metrics were scaled according to Ref. [33] as;

XSCALED ¼ Xi � Xmin
Xmax � Xmin

(14)

Such that. 0� XSCALED � 1
The scheme with the highest Skill Score was ranked as the best

scheme and vice versa.

3. Results

We exclude the TEMF scheme configuration from this initial
analysis as we could not simulate all the first twelve test days, with
that scheme. The model kept crashing when we attempted to
simulate four of those days (February 17th, June 20th, March 15th,
and April 10th) with this configuration (using the same model
timestep as had been used in all the other simulations).
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Fig. 5. Average wind speeds for all schemes for first six (6) test days at 60m height.
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3.1. Wind speed prediction for first 6 test days

Fig. 5 shows the average simulated wind speed for the first 6
days for all but the TEMF scheme configuration. As can be observed
from this figure, the ACM2, MYNN3, and MYNN2 scheme configu-
rations give the best three estimations of average wind speeds for
the first 6 selected test days. Among the worst predictors are the
YSU(2), MYJ and GBM schemes.

Statistical metrics at 60m are presented in Table 4. All the
scheme configurations overestimated the wind speeds. The ACM2
scheme configuration exhibited the least estimation bias while the
YSU(2), the least Standard Error. Most of the schemes exhibited and
good prediction-observation correlation. However, only the
MYNN3 scheme exhibited good prediction with RMSE �2m/s, as
recommended by Refs. [8,36], for this period. Combining the met-
rics into Prediction Skill Scores and ranking the schemes with the
scores, the MYNN3, MYNN2 and ACM2 rank as the top 3 scheme
configurations for this period. This can be observed from Fig. 6,
which illustrates the wind speed prediction skill scores of the
scheme configurations tested. Despite not having the worst pre-
diction of the average wind speed for the first 6 test days, the QNSE
scheme configuration scores lowest in prediction skill score, and
therefore ranks worst. This is because it performs relatively poorly
in in almost all the metrics, except for the ME. The YSU(2) scheme,
despite having one of the worst average speed predictions ranks 5,
above the QNSE scheme, which had a better prediction. And this is
because the YSU(2) is relatively better than the QNSE in terms of
almost all the metrics. It can also be observed from Fig. 6 that the
performance of the scheme configurations remained consistent,
even when they were analysed for the two other heights at which
we hadmeasured data. Full results of the analyses at 50m and 40m
are available in Appendix 2.

3.2. Direction prediction for first six (6) test days

All the schemes predicted North-East to be the dominant wind

direction, as can be observed in Fig. 7, which comprises wind roses
for measured and predicted wind directions at a height of 60m.
Direction predictionwas almost the same by all schemes. Measured
wind directions for this period was mostly from the north-east and
the east. Since the predicted angles were calculated from the pre-
dicted wind speeds, differences in the angle predictions can be
attributed to differences in the wind speed predictions by the
different scheme configurations. Similarly, we found no significant
differences in angle predictions by the scheme configurations when
the analysis was conducted at 50m. Details of average measured
and predicted directions, statistical metrics and skill scores are
available in Appendix 2.

3.3. Sensitivity to seasons

The best scheme configurations for the entire 6 days test period
largely remained the best in the two main seasons: the Harmattan
season, and Rainy season. However, this changed for the “High
Winds” season, where the two YSU schemes and GBM scheme
configurations were now the best 3 schemes. It however must be
noted that, for the entire rainy season (which includes this High
Winds season) the MYNN schemes remained two of the top three
schemes. This can be observed from Table 5, which comprises
measured and predicted average wind speeds (from the days in the
various seasons), as well prediction skill scores for scheme con-
figurations at a height of 60m.

3.4. Consistency of scheme predictions

We increased the number of test days to 36 in increments of 6,
eliminating the consistently poorly ranked schemes with each
increment. After the first increment to 12 test days, the BL, MYJ and
QNSE schemes, having consistently ranked poor among the
schemes, as illustrated in Fig. 7, were dropped. The GBM, YSU(1)
and UWwere also dropped after 18 test days, for similar reasons. As
can be observed from Fig. 8, the top 3 scheme configurations for up

Table 4
Statistical metrics at 60m for 6 test days for all schemes.

PBL Scheme RMSE (m/s) ME (m/s) STDE (m/s) CC

ACM2 2.2 0.1 2.2 0.8
YSU(1) 2.1 0.7 2.0 0.9
YSU(2) 2.1 0.8 1.9 0.9
MYNN2 2.1 0.4 2.0 0.9
MYNN3 2.0 0.2 2.0 0.9
MYJ 2.3 0.8 2.1 0.8
QNSE 2.4 0.6 2.3 0.8
GBM 2.2 0.8 2.0 0.9
UW 2.1 0.7 2.0 0.9
BL 2.2 0.6 2.1 0.8
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Fig. 6. Speed prediction Skill Scores at all heights for first 6 test days (Values are Scores at 60m).
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to 24 test days consistently remained MYNN3, MYNN2 and ACM2
schemes, and the MYNN2 scheme always ranked after the MYNN3
scheme. However, neither the MYNN3 nor ACM2 scheme was
consistently ranking best, for which reason the two (ACM2 and
MYNN3) were tested further for 12 extra test days, bringing the
total number of test days (for the two) to 36. The MYNN3 scheme
emerged the most consistently best scheme of the two after the
extra testing. Full results are available in Appendix 2.

The seasonal test after increasing the number of test days to 12,

produced similar trends as the seasonal test for the first 6 test days,
in that the best schemes again for the whole period dominated the
two main seasons, but different schemes dominated predictions in
the “High Winds” season. This can be observed in Table 6, which
presents seasonal sensitivity results for the schemes for 12 days of
simulations. Therefore, subsequently, we analysed scheme perfor-
mance in the High Winds season only, with increasing test days, to
determine the best scheme for this season. Fig. 9 illustrates the
ranking of the schemes in the (High Winds) season with increasing

Fig. 7. Wind roses of observation data and scheme predictions at a height of 60m.

Table 5
Seasonal average Wind speeds and speed prediction skill scores at 60m for first 6 test days.

Harmattan Entire Rainy Season High Winds

Average Wind Speed (m/s) Skill Score Average Wind Speed (m/s) Skill Score Average Wind Speed (m/s) Skill Score

Measurements 6.59 7.05 8.06
ACM2 7.30 3.3 6.79 1.9 7.52 1.8
YSU(1) 7.89 1.9 7.49 2.6 7.94 3.5
YSU(2) 8.07 2.5 7.59 2.6 8.01 3.8
MYNN2 7.43 2.9 7.18 3.1 7.59 2.4
MYNN3 7.10 3.5 7.09 3.7 7.51 2.0
MYJ 8.13 1.0 7.50 2.2 7.93 3.5
QNSE 8.13 1.3 7.20 1.5 7.57 1.0
GBM 8.09 1.8 7.47 2.7 7.92 3.8
UW 7.96 2.2 7.39 3.3 7.73 2.9
BL 7.80 1.7 7.41 2.3 7.72 2.1
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Table 6
Seasonal average wind speeds and speed prediction skill for first 12 test days.

Harmattan Entire Rainy Season High Winds

Average Wind Speed (m/s) Skill Score Average Wind Speed (m/s) Skill Score Average Wind Speed (m/s) Skill Score

Measurements 6.26 6.80 7.58
ACM2 6.59 3.2 6.83 3.5 7.18 2.4
YSU(1) 7.15 2.1 7.53 2.7 7.74 3.2
YSU(2) 7.30 2.7 7.64 2.4 7.82 3.3
MYNN2 6.68 3.2 7.11 3.1 7.31 2.3
MYNN3 6.43 3.3 6.99 3.2 7.16 1.5
MYJ 7.40 0.9 7.56 1.8 7.76 3.1
QNSE 7.37 1.3 7.27 1.2 7.29 1.2
GBM 7.28 2.5 7.55 2.1 7.67 3.7
UW 7.14 2.6 7.38 3.2 7.52 3.7
BL 7.20 1.8 7.42 2.2 7.56 2.8
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Fig. 9. Scheme Rankings in the “High Winds” season for predictions at 60m.
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test days at a height of 60m. It can be seen from the figure that, the
GBM scheme consistently ranks best or second best in simulating
winds from the days selected from this season. The UW and YSU
also rank consistently well. However, at lower heights, the UW
sometimes outranked the GBM scheme (see full results in
Appendix 2).

3.5. Results with TEMF scheme

With TEMF scheme, some days in the first 12 days (February
17th, June 20th, March 15th, April 10th) could not be simulated and
therefore, all results for this scheme were excluded from the
analysis and results already presented in this work. Notwith-
standing, when this scheme was included in an analysis that was
restricted to the days that it could fully simulate, we found it to be
one of the relatively worst schemes, and it had no significant in-
fluence on the ranking of the best schemes, be it across all seasons
or in the High Winds season. For this reason, it was not included in
subsequent tests. Detailed results for this analysis (that included
the TEMF scheme) are available in Appendix 2.

4. Discussion

When we rank the PBL schemes tested in this study based on
their prediction skill scores, the second order MYNN3 local closure
approximation scheme appears to be the best scheme for wind
simulations across all major seasons. It consistently often ranked
best at all the heights that were considered for analysis. It is fol-
lowed by the 1.5 order hybrid closure ACM2, and local closure
MYNN2 schemes. These three schemes consistently predicted with
the best prediction skills irrespective of the number of simulated
days. Judging from the terrain and pertaining vegetation cover in
the study area, the main source of turbulence over the study area
should be thermal turbulence, as there is little elevation or the kind
of vegetation cover that can cause significant mechanical turbu-
lence. The good performance of the local MYNN schemes, suggests
the turbulent eddies generated by thermal turbulence over this site
are more often small and localised in nature; conditions that are
generally better resolved by local closure techniques [16]. As a
second order scheme, the MYNN3 scheme predicts Turbulent Ki-
netic Energy (TKE) and other second moment terms, instead of
approximating them like the lower order schemes would have
done. This probably explains why the MYNN3 scheme consistently
ranked better thanMYNN2 schemewhich does a limited prediction
of TKE at “sub-grid” level [20]. The ACM2 scheme is a hybrid
scheme that combines non-local upward closure with local
downward closure techniques. Its good performance suggests that
some eddies that were generated on some of the days tested, were
large enough to be considered non-localised, presenting conditions
that it could resolve better than the MYNN schemes.

The GBM and UW schemes generally simulate winds better, in
the “High Winds” season. These two schemes are similar and were
designed to better depict the influence of clouds in the PBL and
better resolve conditions comparable to large eddy simulation
conditions. A major difference between the two is that the UW
scheme diagnosis TKE (approximates by relating it to the state of
other variables) instead of predicting it [23]. The consistence of the
top four (4) ranked schemes, which are GBM, UWand the two non-
local YSU schemes, suggests that the cloud cover that this part of

the country tends to experience around this time of the year [37],
combined with the high winds during this period, produces con-
ditions that are more similar to non-localised large eddy conditions
during this time of the year compared to the rest of the year. Where
a full year's simulation, comprising shorter runs like the type used
in this study will be conducted at this site, it might make sense to
run this period with the GBM or UW schemes for better results,
though we cannot tell at this stage how much improvement in
overall wind energy estimate this might bring.

Generally, our findings agree with findings of other similar
studies we found in open literature. The QNSE and MYJ schemes
were often the worst schemes for speed prediction [9]. The TEMF
scheme was one of the worst schemes when it was included in the
analysis [18]. The best schemes include MYNN2, YSU and ACM2
schemes [6,8,24,26], as well as the UW and GBM schemes [7].
Compared with the ACM2 scheme, the YSU scheme is better [8].
However, we find that performance of the PBL schemes depends on
the prevailing weather conditions of period they are used to
simulate. Overall, the MYNN3 appears to be the best scheme for
simulations over this area.

5. Conclusion

In this paper, we investigated the sensitivity of selected BPL
schemes in the AR-WRF v3.8.1 to winds at a site with high wind
energy potential in South-Eastern Ghana. From our findings, we
conclude that generally, the higher local closure schemes with TKE
prediction, and hybrid schemes (combining local and non-local
closure) best simulate all year winds at this site, with the former
being more consistent. We believe the local, second order, MYNN3
scheme is best for wind simulations in this area (and perhaps other
parts of the country and West African sub-region with similar
terrain and climate), due to its consistently good performance
ranking in our tests. We also find that the local 1.5 order GBM and
UW schemes simulate winds better during a “High Winds” period
but do not give the kind of all-year performance that the MYNN3
exhibited. We recommend tests covering longer periods to deter-
mine if the comparative performance of the schemes remains same.
We also recommend tests to determine if estimated energy with
combined data simulated by different schemes for the different
periods in which each performs best, would have any advantages
over energy estimations with data from just one scheme.

Acknowledgements

Denis Dzebre acknowledges the PhD scholarship support by the
UPERCRET Program with fund from the Energy and Petroleum
(EnPe) Project of the Norwegian Agency for Development Cooper-
ation (Norad).

Appendix 1

Daily Wind Speed Averages at Anloga for 2013

Appendix 2. Analyses Results

D.E.K. Dzebre, M.S. Adaramola / Renewable Energy 146 (2020) 66e8676



A
ve

ra
ge

sp
ee

d
s
an

d
m
et
ri
cs

fo
r
sp

ee
d
p
re
d
ic
ti
on

(fi
rs
t
6
te
st

d
ay

s)

60
m

50
m

40
m

A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

O
bs

er
va

ti
on

s
6.
9

6.
8

6.
7

A
C
M
2

7.
0

2.
2

0.
1

2.
2

0.
8

6.
9

2.
1

0.
1

2.
1

0.
8

6.
8

2.
1

0.
1

2.
1

0.
8

Y
SU

(1
)

7.
6

2.
1

0.
7

2.
0

0.
9

7.
6

2.
1

0.
8

2.
0

0.
9

7.
5

2.
1

0.
8

1.
9

0.
9

Y
SU

(2
)

7.
7

2.
1

0.
8

1.
9

0.
9

7.
7

2.
1

0.
9

1.
9

0.
9

7.
6

2.
1

1.
0

1.
9

0.
9

M
Y
N
N
2

7.
3

2.
1

0.
4

2.
0

0.
9

7.
2

2.
0

0.
4

2.
0

0.
9

7.
0

2.
0

0.
4

2.
0

0.
9

M
Y
N
N
3

7.
1

2.
0

0.
2

2.
0

0.
9

7.
0

1.
9

0.
2

1.
9

0.
9

6.
9

1.
9

0.
2

1.
9

0.
9

M
Y
J

7.
7

2.
3

0.
8

2.
1

0.
8

7.
6

2.
2

0.
8

2.
1

0.
8

7.
6

2.
2

0.
9

2.
0

0.
8

Q
N
SE

7.
5

2.
4

0.
6

2.
3

0.
8

7.
4

2.
3

0.
7

2.
2

0.
8

7.
4

2.
3

0.
7

2.
2

0.
8

G
B
M

7.
7

2.
2

0.
8

2.
0

0.
9

7.
6

2.
1

0.
8

2.
0

0.
9

7.
6

2.
1

0.
9

1.
9

0.
9

U
W

7.
6

2.
1

0.
7

2.
0

0.
9

7.
5

2.
0

0.
7

1.
9

0.
9

7.
5

2.
0

0.
8

1.
9

0.
9

B
L

7.
5

2.
2

0.
6

2.
1

0.
8

7.
5

2.
1

0.
7

2.
0

0.
8

7.
4

2.
1

0.
7

2.
0

0.
8

Sc
al
ed

m
et
ri
cs

an
d
m
o
d
el

m
ea

n
sc
o
re
s
fo
r
sp

ee
d
p
re
d
ic
ti
o
n
(fi

rs
t
6
te
st

d
ay

s)
60

m
50

m
40

m
R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

A
C
M
2

0.
4

0.
0

0.
6

0.
8

2.
8

0.
4

0.
0

0.
6

0.
8

2.
8

0.
4

0.
0

0.
6

0.
8

2.
8

Y
SU

(1
)

0.
4

0.
8

0.
2

0.
9

2.
4

0.
4

0.
8

0.
2

0.
9

2.
4

0.
4

0.
8

0.
2

0.
9

2.
4

Y
SU

(2
)

0.
4

1.
0

0.
0

0.
9

2.
5

0.
4

1.
0

0.
0

0.
9

2.
5

0.
4

1.
0

0.
0

0.
9

2.
5

M
Y
N
N
2

0.
2

0.
4

0.
2

0.
9

3.
0

0.
2

0.
3

0.
3

0.
9

3.
0

0.
3

0.
3

0.
4

0.
9

2.
9

M
Y
N
N
3

0.
0

0.
2

0.
0

0.
9

3.
7

0.
0

0.
1

0.
1

0.
9

3.
6

0.
0

0.
1

0.
2

0.
9

3.
6

M
Y
J

0.
7

1.
0

0.
5

0.
8

1.
7

0.
7

0.
9

0.
5

0.
8

1.
7

0.
7

0.
9

0.
5

0.
8

1.
7

Q
N
SE

1.
0

0.
7

1.
0

0.
8

1.
1

1.
0

0.
7

1.
0

0.
8

1.
1

1.
0

0.
7

1.
0

0.
8

1.
1

G
B
M

0.
5

0.
9

0.
2

0.
9

2.
3

0.
5

0.
9

0.
2

0.
9

2.
2

0.
5

0.
9

0.
2

0.
9

2.
2

U
W

0.
3

0.
8

0.
0

0.
9

2.
8

0.
3

0.
8

0.
1

0.
9

2.
7

0.
3

0.
8

0.
1

0.
9

2.
7

B
L

0.
6

0.
7

0.
5

0.
8

2.
1

0.
5

0.
7

0.
4

0.
8

2.
2

0.
5

0.
7

0.
4

0.
8

2.
3

60
m

50
m

A
ve

ra
ge

W
in
d
D
ir
ec
ti
on

(d
eg

re
es
)
R
M
SE

(d
eg

re
es
)

M
E
(d
eg

re
es
)

ST
D
E

(d
eg

re
es
)

C
ir
cC

A
ve

ra
ge

W
in
d
D
ir
ec
ti
on

(d
eg

re
es
)
R
M
SE

(d
eg

re
es
)

M
E
(d
eg

re
es
)

ST
D
E

(d
eg

re
es
)

C
ir
cC

O
b
se
rv
at
io
n
s
38

.7
36

.4
A
C
M
2

48
.9

56
.6

�7
.6

56
.1

0.
5

49
.0

57
.1

�5
.7

56
.9

0.
5

Y
SU

(1
)

45
.5

58
.1

�1
1.
4

56
.9

0.
5

45
.5

58
.5

�9
.5

57
.7

0.
5

Y
SU

(2
)

45
.8

58
.0

�1
1.
1

56
.9

0.
5

45
.9

58
.4

�9
.1

57
.7

0.
5

M
Y
N
N
2

45
.0

58
.9

�1
0.
3

57
.9

0.
4

45
.0

59
.3

�8
.4

58
.7

0.
4

M
Y
N
N
3

45
.2

58
.7

�8
.8

58
.1

0.
5

45
.2

59
.2

�6
.9

58
.8

0.
5

M
Y
J

47
.3

57
.5

�1
1.
4

56
.4

0.
5

47
.3

58
.1

�9
.5

57
.3

0.
5

Q
N
SE

49
.1

56
.0

�9
.5

55
.2

0.
5

49
.1

56
.6

�7
.7

56
.1

0.
5

G
B
M

46
.6

57
.8

�1
0.
3

56
.9

0.
5

46
.6

58
.3

�8
.4

57
.7

0.
5

U
W

47
.2

58
.0

�9
.4

57
.2

0.
5

47
.2

58
.4

�7
.5

57
.9

0.
5

B
L

47
.4

57
.8

�1
0.
5

56
.9

0.
4

47
.4

58
.4

�8
.6

57
.8

0.
5

Sc
al
ed

m
et
ri
cs

an
d
m
od

el
sk
ill

sc
or
e
fo
r
d
ir
ec
ti
on

p
re
d
ic
ti
on

(fi
rs
t
6
te
st

d
ay

s)
60

m
50

m
R
M
SE

SC
A
LE

D
(d
eg

re
es
)

M
E S

C
A
LE

D

(d
eg

re
es
)

ST
D
E S

C
A
LE

D

(d
eg

re
es
)

C
ir
cC

Sk
ill

Sc
or
e
R
M
SE

SC
A
LE

D
(d
eg

re
es
)

M
E S

C
A
LE

D

(d
eg

re
es
)

ST
D
E S

C
A
LE

D

(d
eg

re
es
)

C
ir
cC

Sk
ill

Sc
or
e

A
C
M
2

0.
2

1.
0

0.
3

0.
5

2.
0

0.
2

1.
0

0.
3

0.
5

2.
0

Y
SU

(1
)

0.
7

0.
0

0.
6

0.
5

2.
2

0.
7

0.
0

0.
6

0.
5

2.
2

Y
SU

(2
)

0.
7

0.
1

0.
6

0.
5

2.
1

0.
7

0.
1

0.
6

0.
5

2.
1

M
Y
N
N
2

1.
0

0.
3

1.
0

0.
4

1.
2

1.
0

0.
3

1.
0

0.
4

1.
2

M
Y
N
N
3

1.
0

0.
7

1.
0

0.
5

0.
8

1.
0

0.
7

1.
0

0.
5

0.
8

(c
on

ti
nu

ed
on

ne
xt

pa
ge
)

D.E.K. Dzebre, M.S. Adaramola / Renewable Energy 146 (2020) 66e86 77



(c
on

ti
nu

ed
)

60
m

50
m

A
ve

ra
ge

W
in
d
D
ir
ec
ti
on

(d
eg

re
es
)
R
M
SE

(d
eg

re
es
)

M
E
(d
eg

re
es
)

ST
D
E

(d
eg

re
es
)

C
ir
cC

A
ve

ra
ge

W
in
d
D
ir
ec
ti
on

(d
eg

re
es
)
R
M
SE

(d
eg

re
es
)

M
E
(d
eg

re
es
)

ST
D
E

(d
eg

re
es
)

C
ir
cC

M
Y
J

0.
5

0.
0

0.
4

0.
5

2.
5

0.
5

0.
0

0.
4

0.
5

2.
5

Q
N
SE

0.
0

0.
5

0.
0

0.
5

3.
0

0.
0

0.
5

0.
0

0.
5

3.
0

G
B
M

0.
6

0.
3

0.
6

0.
5

1.
9

0.
6

0.
3

0.
6

0.
5

1.
9

U
W

0.
7

0.
5

0.
7

0.
5

1.
6

0.
7

0.
5

0.
7

0.
5

1.
6

B
L

0.
6

0.
2

0.
6

0.
4

2.
0

0.
7

0.
2

0.
6

0.
5

1.
9

60
m

50
m

40
m

A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

O
bs

er
va

ti
on

s
6.
6

6.
5

6.
4

A
C
M
2

6.
7

1.
9

0.
1

1.
9

0.
8

6.
7

1.
9

0.
2

1.
9

0.
8

6.
6

1.
9

0.
2

1.
9

0.
8

Y
SU

(1
)

7.
5

2.
0

0.
9

1.
8

0.
9

7.
5

2.
0

1.
0

1.
8

0.
9

7.
4

2.
0

1.
0

1.
8

0.
9

Y
SU

(2
)

7.
5

2.
0

0.
9

1.
8

0.
9

7.
5

2.
0

1.
0

1.
8

0.
9

7.
4

2.
0

1.
0

1.
7

0.
9

M
Y
N
N
2

7.
0

1.
9

0.
4

1.
9

0.
8

7.
0

1.
9

0.
4

1.
9

0.
8

6.
9

1.
9

0.
5

1.
9

0.
8

M
Y
N
N
3

6.
8

1.
9

0.
2

1.
9

0.
9

6.
7

1.
9

0.
2

1.
9

0.
8

6.
6

1.
9

0.
2

1.
9

0.
8

M
Y
J

7.
5

2.
2

0.
9

2.
0

0.
8

7.
4

2.
1

0.
9

1.
9

0.
8

7.
4

2.
2

1.
0

1.
9

0.
8

Q
N
SE

7.
3

2.
2

0.
7

2.
1

0.
8

7.
2

2.
2

0.
7

2.
0

0.
8

7.
2

2.
2

0.
8

2.
0

0.
8

G
B
M

7.
5

2.
1

0.
8

1.
9

0.
8

7.
4

2.
0

0.
9

1.
8

0.
8

7.
4

2.
1

1.
0

1.
8

0.
8

U
W

7.
3

2.
0

0.
7

1.
8

0.
8

7.
3

1.
9

0.
7

1.
8

0.
8

7.
2

2.
0

0.
8

1.
8

0.
8

B
L

7.
3

2.
1

0.
7

1.
9

0.
8

7.
3

2.
0

0.
8

1.
9

0.
8

7.
2

2.
0

0.
8

1.
9

0.
8

Sc
al
ed

m
et
ri
cs

an
d
m
od

el
m
ea

n
sc
or
es

fo
r
sp

ee
d
p
re
d
ic
ti
on

(1
2
te
st

d
ay

s)
60

m
50

m
40

m
R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

A
C
M
2

0.
0

0.
0

0.
4

0.
8

3.
4

0.
0

0.
0

0.
4

0.
8

3.
4

0.
0

0.
0

0.
4

0.
8

3.
4

Y
SU

(1
)

0.
4

0.
8

0.
2

0.
9

2.
4

0.
4

0.
8

0.
2

0.
9

2.
4

0.
5

0.
8

0.
2

0.
8

2.
3

Y
SU

(2
)

0.
4

1.
0

0.
0

0.
9

2.
5

0.
5

1.
0

0.
0

0.
9

2.
4

0.
5

1.
0

0.
0

0.
9

2.
3

M
Y
N
N
2

0.
1

0.
3

0.
4

0.
9

3.
1

0.
1

0.
2

0.
5

0.
9

3.
0

0.
2

0.
2

0.
6

0.
8

2.
9

M
Y
N
N
3

0.
1

0.
1

0.
4

0.
9

3.
3

0.
1

0.
1

0.
5

0.
8

3.
2

0.
1

0.
0

0.
6

0.
8

3.
1

M
Y
J

0.
9

1.
0

0.
6

0.
8

1.
3

0.
9

1.
0

0.
6

0.
8

1.
3

1.
0

0.
9

0.
6

0.
8

1.
3

Q
N
SE

1.
0

0.
7

1.
0

0.
8

1.
1

1.
0

0.
7

1.
0

0.
8

1.
1

1.
0

0.
7

1.
0

0.
8

1.
1

G
B
M

0.
5

0.
9

0.
2

0.
8

2.
2

0.
6

0.
9

0.
2

0.
8

2.
1

0.
7

1.
0

0.
3

0.
8

2.
0

U
W

0.
1

0.
7

0.
1

0.
8

2.
9

0.
2

0.
7

0.
1

0.
8

2.
8

0.
3

0.
7

0.
1

0.
8

2.
7

B
L

0.
6

0.
8

0.
5

0.
8

2.
0

0.
5

0.
7

0.
5

0.
8

2.
1

0.
5

0.
7

0.
4

0.
8

2.
2

60
m

50
m

A
ve

ra
ge

W
in
d
D
ir
ec
ti
on

(d
eg

re
es
)

R
M
SE

(d
eg

re
es
)

M
E
(d
eg

re
es
)

ST
D
E

(d
eg

re
es
)

C
ir
cC

A
ve

ra
ge

W
in
d
D
ir
ec
ti
on

(d
eg

re
es
)

R
M
SE

(d
eg

re
es
)

M
E
(d
eg

re
es
)

ST
D
E

(d
eg

re
es
)

C
ir
cC

O
bs

er
va

ti
on

s
48

.7
46

.5
A
C
M
2

43
.6

51
.4

�1
5.
2

49
.1

0.
5

43
.6

52
.3

�1
3.
4

50
.6

0.
5

Y
SU

(1
)

42
.8

52
.4

�1
6.
7

49
.7

0.
6

42
.8

53
.3

�1
5.
0

51
.2

0.
6

Y
SU

(2
)

43
.2

52
.6

�1
6.
4

50
.0

0.
5

43
.3

53
.5

�1
4.
7

51
.4

0.
5

M
Y
N
N
2

41
.2

53
.3

�1
7.
9

50
.2

0.
5

41
.1

53
.9

�1
6.
2

51
.4

0.
5

M
Y
N
N
3

47
.4

54
.7

�1
9.
0

51
.3

0.
4

47
.4

55
.0

�1
7.
3

52
.2

0.
4

M
Y
J

45
.1

51
.7

�1
4.
5

49
.6

0.
5

45
.1

52
.9

�1
2.
7

51
.4

0.
5

Q
N
SE

46
.6

53
.3

�1
5.
2

51
.1

0.
5

46
.6

54
.4

�1
3.
6

52
.6

0.
5

G
B
M

43
.5

52
.2

�1
5.
9

49
.8

0.
5

43
.5

53
.2

�1
4.
1

51
.3

0.
5

U
W

44
.9

53
.7

�1
5.
3

51
.5

0.
5

44
.9

54
.6

�1
3.
6

52
.9

0.
4

B
L

45
.6

54
.8

�1
5.
8

52
.4

0.
4

45
.5

55
.6

�1
4.
1

53
.8

0.
4

D.E.K. Dzebre, M.S. Adaramola / Renewable Energy 146 (2020) 66e8678



Sc
al
ed

m
et
ri
cs

an
d
m
od

el
s
m
ea

n
sc
or
es

fo
r
d
ir
ec
ti
on

p
re
d
ic
ti
on

(1
2
te
st

d
ay

s)
60

m
50

m
R
M
SE

SC
A
LE

D
(d
eg

re
es
)

M
ES

C
A
LE

D
(d
eg

re
es
)

ST
D
ES

C
A
LE

D
(d
eg

re
es
)

C
ir
cC

Sk
ill

Sc
or
e

R
M
SE

SC
A
LE

D
(d
eg

re
es
)

M
ES

C
A
LE

D
(d
eg

re
es
)

ST
D
ES

C
A
LE

D
(d
eg

re
es
)

C
ir
cC

Sk
ill

Sc
or
e

A
C
M
2

0.
0

0.
8

0.
0

0.
5

2.
7

0.
0

0.
9

0.
0

0.
5

2.
7

Y
SU

(1
)

0.
5

0.
5

0.
3

0.
5

2.
3

0.
4

0.
5

0.
3

0.
5

2.
3

Y
SU

(2
)

0.
3

0.
6

0.
2

0.
5

2.
4

0.
3

0.
6

0.
2

0.
5

2.
4

M
Y
N
N
2

0.
5

0.
2

0.
3

0.
5

2.
4

0.
4

0.
2

0.
2

0.
5

2.
6

M
Y
N
N
3

1.
0

0.
0

0.
6

0.
4

1.
8

0.
8

0.
0

0.
5

0.
4

2.
1

M
Y
J

0.
1

1.
0

0.
2

0.
5

2.
3

0.
2

1.
0

0.
2

0.
5

2.
1

Q
N
SE

0.
6

0.
8

0.
6

0.
5

1.
5

0.
6

0.
8

0.
6

0.
5

1.
4

G
B
M

0.
3

0.
7

0.
2

0.
5

2.
4

0.
3

0.
7

0.
2

0.
5

2.
4

U
W

0.
7

0.
8

0.
7

0.
5

1.
2

0.
7

0.
8

0.
7

0.
4

1.
3

B
L

1.
0

0.
7

1.
0

0.
4

0.
7

1.
0

0.
7

1.
0

0.
4

0.
8

60
m

50
m

40
m

A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

O
bs

er
va

ti
on

s
6.
5

6.
4

6.
3

A
C
M
2

6.
8

1.
8

0.
2

1.
8

0.
8

6.
7

1.
8

0.
3

1.
8

0.
8

6.
6

1.
8

0.
4

1.
8

0.
8

Y
SU

(1
)

7.
4

2.
0

0.
9

1.
7

0.
8

7.
4

2.
0

1.
0

1.
7

0.
8

7.
3

2.
0

1.
0

1.
7

0.
8

Y
SU

(2
)

7.
5

2.
0

1.
0

1.
7

0.
9

7.
5

2.
0

1.
1

1.
7

0.
8

7.
4

2.
0

1.
2

1.
7

0.
8

M
Y
N
N
2

7.
0

1.
8

0.
4

1.
8

0.
8

6.
9

1.
8

0.
5

1.
8

0.
8

6.
8

1.
9

0.
5

1.
8

0.
8

M
Y
N
N
3

6.
8

1.
8

0.
3

1.
8

0.
8

6.
7

1.
8

0.
3

1.
8

0.
8

6.
6

1.
8

0.
4

1.
8

0.
8

G
B
M

7.
5

2.
0

0.
9

1.
8

0.
8

7.
4

2.
0

1.
0

1.
7

0.
8

7.
4

2.
1

1.
1

1.
7

0.
8

U
W

7.
3

1.
9

0.
8

1.
8

0.
8

7.
3

1.
9

0.
9

1.
7

0.
8

7.
2

2.
0

0.
9

1.
7

0.
8

Sc
al
ed

m
et
ri
cs

an
d
m
od

el
m
ea

n
sc
or
es

fo
r
sp

ee
d
p
re
d
ic
ti
on

(1
8
te
st

d
ay

s)
60

m
50

m
40

m
R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

A
C
M
2

0.
0

0.
0

0.
9

0.
8

2.
9

0.
0

0.
0

0.
9

0.
8

2.
9

0.
0

0.
0

0.
8

0.
8

3.
0

Y
SU

(1
)

0.
7

0.
8

0.
4

0.
8

1.
8

0.
7

0.
8

0.
4

0.
8

1.
9

0.
7

0.
8

0.
4

0.
8

1.
9

Y
SU

(2
)

0.
8

1.
0

0.
0

0.
9

2.
0

0.
8

1.
0

0.
0

0.
8

2.
0

0.
8

1.
0

0.
0

0.
8

2.
0

M
Y
N
N
2

0.
2

0.
3

0.
9

0.
8

2.
6

0.
2

0.
2

0.
9

0.
8

2.
5

0.
2

0.
2

1.
0

0.
8

2.
4

M
Y
N
N
3

0.
1

0.
0

1.
0

0.
8

2.
8

0.
1

0.
0

1.
0

0.
8

2.
8

0.
1

0.
0

1.
0

0.
8

2.
7

G
B
M

1.
0

0.
9

0.
7

0.
8

1.
2

1.
0

0.
9

0.
6

0.
8

1.
3

1.
0

1.
0

0.
6

0.
8

1.
3

U
W

0.
6

0.
7

0.
5

0.
8

2.
0

0.
6

0.
7

0.
5

0.
8

2.
0

0.
6

0.
7

0.
5

0.
8

2.
0

60
m

50
m

A
ve

ra
ge

W
in
d
D
ir
ec
ti
on

(d
eg

re
es
)

R
M
SE

(d
eg

re
es
)

M
E
(d
eg

re
es
)

ST
D
E

(d
eg

re
es
)

C
ir
cC

A
ve

ra
ge

W
in
d
D
ir
ec
ti
on

(d
eg

re
es
)

R
M
SE

(d
eg

re
es
)

M
E
(d
eg

re
es
)

ST
D
E

(d
eg

re
es
)

C
ir
cC

O
bs

er
va

ti
on

s
55

.8
53

.5
A
C
M
2

42
.9

52
.2

�1
8.
1

48
.9

0.
5

42
.9

52
.8

�1
6.
1

50
.3

0.
5

Y
SU

(1
)

42
.2

51
.1

�1
9.
3

47
.3

0.
5

42
.2

51
.7

�1
7.
3

48
.7

0.
5

Y
SU

(2
)

42
.6

51
.1

�1
8.
8

47
.5

0.
5

42
.7

51
.7

�1
6.
9

48
.9

0.
5

M
Y
N
N
2

40
.7

51
.9

�2
0.
1

47
.9

0.
5

40
.7

52
.4

�1
8.
2

49
.1

0.
5

M
Y
N
N
3

45
.4

55
.9

�2
0.
9

51
.8

0.
3

45
.2

55
.6

�1
9.
1

52
.3

0.
3

G
B
M

42
.9

51
.1

�1
8.
2

47
.7

0.
5

42
.9

51
.8

�1
6.
2

49
.2

0.
5

U
W

44
.2

51
.6

�1
7.
7

48
.4

0.
5

44
.2

52
.2

�1
5.
8

49
.8

0.
5

Sc
al
ed

m
et
ri
cs

an
d
m
od

el
s
m
ea

n
sc
or
es

fo
r
d
ir
ec
ti
on

p
re
d
ic
ti
on

(1
8
te
st

d
ay

s)
60

m
50

m
R
M
SE

SC
A
LE

D
(d
eg

re
es
)

M
ES

C
A
LE

D
(d
eg

re
es
)

ST
D
ES

C
A
LE

D
(d
eg

re
es
)

C
ir
cC

Sk
ill

Sc
or
e

R
M
SE

SC
A
LE

D
(d
eg

re
es
)

M
ES

C
A
LE

D
(d
eg

re
es
)

ST
D
ES

C
A
LE

D
(d
eg

re
es
)

C
ir
cC

Sk
ill

Sc
or
e

A
C
M
2

0.
2

0.
9

0.
4

0.
5

2.
0

0.
3

0.
9

0.
5

0.
5

1.
8

Y
SU

(1
)

0.
0

0.
5

0.
0

0.
5

3.
0

0.
0

0.
5

0.
0

0.
5

3.
0

(c
on

ti
nu

ed
on

ne
xt

pa
ge
)

D.E.K. Dzebre, M.S. Adaramola / Renewable Energy 146 (2020) 66e86 79



(c
on

ti
nu

ed
)

60
m

50
m

A
ve

ra
ge

W
in
d
D
ir
ec
ti
on

(d
eg

re
es
)

R
M
SE

(d
eg

re
es
)

M
E
(d
eg

re
es
)

ST
D
E

(d
eg

re
es
)

C
ir
cC

A
ve

ra
ge

W
in
d
D
ir
ec
ti
on

(d
eg

re
es
)

R
M
SE

(d
eg

re
es
)

M
E
(d
eg

re
es
)

ST
D
E

(d
eg

re
es
)

C
ir
cC

Y
SU

(2
)

0.
0

0.
6

0.
0

0.
5

2.
8

0.
0

0.
7

0.
0

0.
5

2.
8

M
Y
N
N
2

0.
2

0.
2

0.
1

0.
5

2.
9

0.
2

0.
2

0.
1

0.
5

2.
9

M
Y
N
N
3

1.
0

0.
0

1.
0

0.
3

1.
3

1.
0

0.
0

1.
0

0.
3

1.
3

G
B
M

0.
0

0.
9

0.
1

0.
5

2.
6

0.
0

0.
9

0.
1

0.
5

2.
5

U
W

0.
1

1.
0

0.
3

0.
5

2.
1

0.
1

1.
0

0.
3

0.
5

2.
0

60
m

50
m

40
m

A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

O
bs

er
va

ti
on

s
6.
5

6.
4

6.
2

A
C
M
2

6.
5

1.
8

0.
1

1.
80

0.
8

6.
5

1.
8

0.
1

1.
8

0.
8

6.
4

1.
8

0.
2

1.
8

0.
8

Y
SU

(2
)

7.
3

1.
9

0.
8

1.
66

0.
8

7.
3

1.
9

0.
9

1.
6

0.
8

7.
2

1.
9

1.
0

1.
6

0.
8

M
Y
N
N
2

6.
8

1.
8

0.
3

1.
76

0.
8

6.
7

1.
8

0.
4

1.
8

0.
8

6.
6

1.
8

0.
4

1.
7

0.
8

M
Y
N
N
3

6.
6

1.
8

0.
1

1.
75

0.
8

6.
6

1.
8

0.
2

1.
7

0.
8

6.
5

1.
7

0.
2

1.
7

0.
8

Sc
al
ed

m
et
ri
cs

an
d
m
od

el
m
ea

n
sc
or
es

fo
r
sp

ee
d
p
re
d
ic
ti
on

(2
4
te
st

d
ay

s)
60

m
50

m
40

m
R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

A
C
M
2

0.
5

0.
0

1.
0

0.
8

2.
3

0.
3

0.
0

1.
0

0.
8

2.
5

0.
3

0.
0

1.
0

0.
8

2.
5

Y
SU

(2
)

1.
0

1.
0

0.
0

0.
8

1.
8

1.
0

1.
0

0.
0

0.
8

1.
8

1.
0

1.
0

0.
0

0.
8

1.
8

M
Y
N
N
2

0.
3

0.
3

0.
7

0.
8

2.
5

0.
3

0.
3

0.
8

0.
8

2.
4

0.
3

0.
3

0.
8

0.
8

2.
4

M
Y
N
N
3

0.
0

0.
1

0.
6

0.
8

3.
1

0.
0

0.
1

0.
7

0.
8

3.
1

0.
0

0.
1

0.
7

0.
8

3.
0

60
m

50
m

A
ve

ra
ge

W
in
d
D
ir
ec
ti
on

(d
eg

re
es
)

R
M
SE

(d
eg

re
es
)

M
E
(d
eg

re
es
)

ST
D
E

(d
eg

re
es
)

C
ir
cC

A
ve

ra
ge

W
in
d
D
ir
ec
ti
on

(d
eg

re
es
)

R
M
SE

(d
eg

re
es
)

M
E
(d
eg

re
es
)

ST
D
E

(d
eg

re
es
)

C
ir
cC

O
bs

er
va

ti
on

s
55

.7
53

.4
A
C
M
2

43
.8

51
.9

�1
6.
0

49
.3

0.
5

43
.8

52
.5

�1
4.
0

50
.6

0.
5

Y
SU

(2
)

43
.7

52
.2

�1
7.
6

49
.2

0.
5

43
.7

52
.8

�1
5.
6

50
.5

0.
5

M
Y
N
N
2

43
.9

54
.3

�2
0.
0

50
.4

0.
4

43
.9

54
.5

�1
8.
1

51
.4

0.
4

M
Y
N
N
3

48
.2

57
.8

�2
0.
5

54
.0

0.
3

48
.0

57
.6

�1
8.
6

54
.5

0.
3

Sc
al
ed

m
et
ri
cs

an
d
m
od

el
s
m
ea

n
sc
or
es

fo
r
d
ir
ec
ti
on

p
re
d
ic
ti
on

(2
4
te
st

d
ay

s)
60

m
50

m
R
M
SE

SC
A
LE

D
(d
eg

re
es
)

M
ES

C
A
LE

D
(d
eg

re
es
)

ST
D
ES

C
A
LE

D
(d
eg

re
es
)

C
ir
cC

Sk
ill

Sc
or
e

R
M
SE

SC
A
LE

D
(d
eg

re
es
)

M
ES

C
A
LE

D
(d
eg

re
es
)

ST
D
ES

C
A
LE

D
(d
eg

re
es
)

C
ir
cC

Sk
ill

Sc
or
e

A
C
M
2

0.
0

1.
0

0.
0

0.
5

2.
4

0.
0

1.
0

0.
0

0.
5

2.
4

Y
SU

(2
)

0.
1

0.
6

0.
0

0.
5

2.
8

0.
1

0.
7

0.
0

0.
5

2.
8

M
Y
N
N
2

0.
4

0.
1

0.
3

0.
4

2.
6

0.
4

0.
1

0.
2

0.
4

2.
6

M
Y
N
N
3

1.
0

0.
0

1.
0

0.
3

1.
3

1.
0

0.
0

1.
0

0.
3

1.
3

60
m

50
m

40
m

A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

O
bs

er
va

ti
on

s
6.
5

6.
3

6.
2

A
C
M
2

6.
5

1.
7

0.
0

1.
7

0.
8

6.
4

1.
7

0.
1

1.
7

0.
8

6.
4

1.
7

0.
2

1.
7

0.
8

M
Y
N
N
3

6.
5

1.
7

0.
1

1.
7

0.
8

6.
5

1.
7

0.
1

1.
7

0.
8

6.
4

1.
6

0.
2

1.
6

0.
8

Sc
al
ed

m
et
ri
cs

an
d
m
od

el
m
ea

n
sc
or
es

fo
r
sp

ee
d
p
re
d
ic
ti
on

(3
0
te
st

d
ay

s)
60

m
50

m
40

m
R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

D.E.K. Dzebre, M.S. Adaramola / Renewable Energy 146 (2020) 66e8680



A
C
M
2

1.
0

0.
0

1.
0

0.
8

1.
8

1.
0

0.
0

1.
0

0.
8

1.
8

1.
0

0.
0

1.
0

0.
8

1.
8

M
Y
N
N
3

0.
0

1.
0

0.
0

0.
8

2.
8

0.
0

1.
0

0.
0

0.
8

2.
8

0.
0

1.
0

0.
0

0.
8

2.
8

60
m

50
m

A
ve

ra
ge

W
in
d
D
ir
ec
ti
on

(d
eg

re
es
)

R
M
SE

(d
eg

re
es
)

M
E
(d
eg

re
es
)

ST
D
E

(d
eg

re
es
)

C
ir
cC

A
ve

ra
ge

W
in
d
D
ir
ec
ti
on

(d
eg

re
es
)

R
M
SE

(d
eg

re
es
)

M
E
(d
eg

re
es
)

ST
D
E

(d
eg

re
es
)

C
ir
cC

O
bs

er
va

ti
on

s
54

.6
52

.0
A
C
M
2

44
.9

55
.2

�1
8.
6

51
.9

0.
4

44
.9

55
.4

�1
6.
6

52
.8

0.
4

M
Y
N
N
3

50
.1

58
.5

�2
2.
1

54
.2

0.
2

49
.9

58
.1

�2
0.
2

54
.5

0.
2

Sc
al
ed

m
et
ri
cs

an
d
m
od

el
s
m
ea

n
sc
or
es

fo
r
d
ir
ec
ti
on

p
re
d
ic
ti
on

(3
0
te
st

d
ay

s)
60

m
50

m
R
M
SE

SC
A
LE

D
(d
eg

re
es
)

M
ES

C
A
LE

D
(d
eg

re
es
)

ST
D
ES

C
A
LE

D
(d
eg

re
es
)

C
ir
cC

Sk
ill

Sc
or
e

R
M
SE

SC
A
LE

D
(d
eg

re
es
)

M
ES

C
A
LE

D
(d
eg

re
es
)

ST
D
ES

C
A
LE

D
(d
eg

re
es
)

C
ir
cC

Sk
ill

Sc
or
e

A
C
M
2

0.
0

1.
0

0.
0

0.
4

2.
4

0.
0

1.
0

0.
0

0.
4

2.
4

M
Y
N
N
3

1.
0

0.
0

1.
0

0.
2

1.
2

1.
0

0.
0

1.
0

0.
2

1.
2

60
m

50
m

40
m

A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

O
bs

er
va

ti
on

s
6.
4

6.
3

6.
2

A
C
M
2

6.
5

1.
8

0.
1

1.
8

0.
8

6.
4

1.
7

0.
1

1.
7

0.
8

6.
4

1.
7

0.
2

1.
7

0.
8

M
Y
N
N
3

6.
5

1.
7

0.
1

1.
7

0.
8

6.
5

1.
7

0.
2

1.
7

0.
8

6.
4

1.
7

0.
2

1.
7

0.
8

Sc
al
ed

m
et
ri
cs

an
d
m
od

el
m
ea

n
sc
or
es

fo
r
sp

ee
d
p
re
d
ic
ti
on

(3
6
te
st

d
ay

s)
60

m
50

m
40

m
R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

A
C
M
2

1.
0

0.
0

1.
0

0.
8

1.
8

1.
0

0.
0

1.
0

0.
8

1.
8

1.
0

0.
0

1.
0

0.
8

1.
8

M
Y
N
N
3

0.
0

1.
0

0.
0

0.
8

2.
8

0.
0

1.
0

0.
0

0.
8

2.
8

0.
0

1.
0

0.
0

0.
8

2.
8

60
m

50
m

A
ve

ra
ge

W
in
d
D
ir
ec
ti
on

(d
eg

re
es
)

R
M
SE

(d
eg

re
es
)

M
E
(d
eg

re
es
)

ST
D
E

(d
eg

re
es
)

C
ir
cC

A
ve

ra
ge

W
in
d
D
ir
ec
ti
on

(d
eg

re
es
)

R
M
SE

(d
eg

re
es
)

M
E
(d
eg

re
es
)

ST
D
E

(d
eg

re
es
)

C
ir
cC

O
bs

er
va

ti
on

s
58

.0
55

.6
A
C
M
2

44
.9

56
.4

�2
0.
0

52
.7

0.
4

45
.0

56
.6

�1
8.
0

53
.7

0.
4

M
Y
N
N
3

49
.5

60
.5

�2
2.
6

56
.2

0.
2

49
.3

60
.4

�2
0.
7

56
.7

0.
2

Sc
al
ed

m
et
ri
cs

an
d
m
od

el
s
m
ea

n
sc
or
es

fo
r
d
ir
ec
ti
on

p
re
d
ic
ti
on

(3
6
te
st

d
ay

s)
60

m
50

m
R
M
SE

SC
A
LE

D
(d
eg

re
es
)

M
ES

C
A
LE

D
(d
eg

re
es
)

ST
D
ES

C
A
LE

D
(d
eg

re
es
)

C
ir
cC

Sk
ill

Sc
or
e

R
M
SE

SC
A
LE

D
(d
eg

re
es
)

M
ES

C
A
LE

D
(d
eg

re
es
)

ST
D
ES

C
A
LE

D
(d
eg

re
es
)

C
ir
cC

Sk
ill

Sc
or
e

A
C
M
2

0.
0

1.
0

0.
0

0.
4

2.
4

0.
0

1.
0

0.
0

0.
4

2.
4

M
Y
N
N
3

1.
0

0.
0

1.
0

0.
2

1.
2

1.
0

0.
0

1.
0

0.
2

1.
2

60
m

50
m

40
m

A
ve

ra
ge

W
in
d

Sp
ee

d
s
(m

/s
)

R
M
SE

(m
/s
)

M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

A
ve

ra
ge

W
in
d

Sp
ee

d
s
(m

/s
)

R
M
SE

(m
/s
)

M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

A
ve

ra
ge

W
in
d

Sp
ee

d
s
(m

/s
)

R
M
SE

(m
/s
)

M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

O
bs

er
va

ti
on

s
6.
09

5.
99

5.
88

A
C
M
2

6.
20

2.
00

0.
11

2.
00

0.
82

6.
13

1.
96

0.
14

1.
95

0.
82

6.
06

1.
96

0.
18

1.
95

0.
82

Y
SU

(1
)

6.
91

2.
04

0.
82

1.
87

0.
86

6.
86

2.
02

0.
86

1.
82

0.
86

6.
81

2.
04

0.
93

1.
82

0.
86

Y
SU

(2
)

6.
96

2.
03

0.
87

1.
84

0.
86

6.
92

2.
01

0.
92

1.
79

0.
86

6.
88

2.
03

1.
00

1.
77

0.
86

M
Y
N
N
2

6.
51

1.
96

0.
42

1.
92

0.
86

6.
42

1.
94

0.
43

1.
89

0.
86

6.
33

1.
96

0.
45

1.
91

0.
85

M
Y
N
N
3

6.
34

1.
89

0.
25

1.
87

0.
87

6.
26

1.
86

0.
26

1.
84

0.
87

6.
18

1.
88

0.
30

1.
85

0.
87

M
Y
J

7.
03

2.
19

0.
94

1.
98

0.
83

6.
96

2.
16

0.
97

1.
93

0.
82

6.
90

2.
18

1.
02

1.
92

0.
82

Q
N
SE

6.
67

2.
26

0.
58

2.
18

0.
76

6.
62

2.
22

0.
62

2.
13

0.
76

6.
57

2.
22

0.
69

2.
11

0.
76

(c
on

ti
nu

ed
on

ne
xt

pa
ge
)

D.E.K. Dzebre, M.S. Adaramola / Renewable Energy 146 (2020) 66e86 81



(c
on

ti
nu

ed
)

60
m

50
m

40
m

A
ve

ra
ge

W
in
d

Sp
ee

d
s
(m

/s
)

R
M
SE

(m
/s
)

M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

A
ve

ra
ge

W
in
d

Sp
ee

d
s
(m

/s
)

R
M
SE

(m
/s
)

M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

A
ve

ra
ge

W
in
d

Sp
ee

d
s
(m

/s
)

R
M
SE

(m
/s
)

M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

G
B
M

6.
85

2.
03

0.
76

1.
88

0.
85

6.
82

2.
01

0.
83

1.
83

0.
85

6.
79

2.
03

0.
90

1.
82

0.
85

U
W

6.
73

1.
94

0.
64

1.
83

0.
86

6.
68

1.
91

0.
69

1.
78

0.
86

6.
64

1.
93

0.
76

1.
78

0.
85

B
L

6.
86

2.
11

0.
77

1.
96

0.
83

6.
79

2.
06

0.
79

1.
91

0.
83

6.
71

2.
06

0.
83

1.
89

0.
83

TE
M
F

6.
88

2.
53

0.
79

2.
40

0.
69

6.
77

2.
49

0.
77

2.
36

0.
69

6.
65

2.
46

0.
77

2.
34

0.
69

Sc
al
ed

m
et
ri
cs

an
d
m
o
d
el

m
ea

n
sc
o
re
s

60
m

50
m

40
m

R
M
SE

SC
A
LE

D
(m

/s
)

M
ES

C
A
LE

D
(m

/s
)

ST
D
ES

C
A
LE

D
(m

/s
)

C
C

Sk
ill

Sc
or
e

R
M
SE

SC
A
LE

D
(m

/s
)

M
ES

C
A
LE

D
(m

/s
)

ST
D
ES

C
A
LE

D
(m

/s
)

C
C

Sk
ill

Sc
or
e

R
M
SE

SC
A
LE

D
(m

/s
)

M
ES

C
A
LE

D
(m

/s
)

ST
D
ES

C
A
LE

D
(m

/s
)

C
C

Sk
ill

Sc
or
e

A
C
M
2

0.
17

0.
00

0.
29

0.
82

3.
35

0.
16

0.
00

0.
30

0.
82

3.
37

0.
13

0.
00

0.
31

0.
82

3.
37

Y
SU

(1
)

0.
24

0.
85

0.
08

0.
86

2.
68

0.
25

0.
87

0.
08

0.
86

2.
66

0.
28

0.
89

0.
07

0.
86

2.
62

Y
SU

(2
)

0.
23

0.
92

0.
02

0.
86

2.
69

0.
24

0.
94

0.
01

0.
86

2.
66

0.
27

0.
97

0.
00

0.
86

2.
62

M
Y
N
N
2

0.
11

0.
38

0.
15

0.
86

3.
22

0.
12

0.
35

0.
19

0.
86

3.
20

0.
14

0.
32

0.
23

0.
85

3.
16

M
Y
N
N
3

0.
00

0.
17

0.
08

0.
87

3.
63

0.
00

0.
15

0.
10

0.
87

3.
61

0.
00

0.
14

0.
14

0.
87

3.
59

M
Y
J

0.
47

1.
00

0.
26

0.
83

2.
09

0.
48

1.
00

0.
26

0.
82

2.
09

0.
51

1.
00

0.
26

0.
82

2.
05

Q
N
SE

0.
57

0.
57

0.
61

0.
76

2.
00

0.
57

0.
59

0.
59

0.
76

2.
01

0.
59

0.
60

0.
60

0.
76

1.
97

G
B
M

0.
22

0.
79

0.
10

0.
85

2.
74

0.
24

0.
83

0.
09

0.
85

2.
70

0.
27

0.
86

0.
08

0.
85

2.
63

U
W

0.
07

0.
64

0.
00

0.
86

3.
14

0.
08

0.
66

0.
00

0.
86

3.
12

0.
09

0.
68

0.
00

0.
85

3.
08

B
L

0.
34

0.
80

0.
23

0.
83

2.
46

0.
33

0.
78

0.
22

0.
83

2.
50

0.
32

0.
77

0.
21

0.
83

2.
53

TE
M
F

1.
00

0.
82

1.
00

0.
69

0.
87

1.
00

0.
76

1.
00

0.
69

0.
93

1.
00

0.
70

1.
00

0.
69

0.
99

H
ar
m
at
ta
n

En
ti
re

R
ai
n
y
Se

as
on

H
ig
h
W

in
ds

A
ve

ra
ge

W
in
d
Sp

ee
d
(m

/s
)

Sk
ill

Sc
or
e

A
ve

ra
ge

W
in
d
Sp

ee
d
(m

/s
)

Sk
ill

Sc
or
e

A
ve

ra
ge

W
in
d
Sp

ee
d
(m

/s
)

Sk
ill

Sc
or
e

M
ea

su
re
m
en

ts
3.
16

7.
07

7.
58

A
C
M
2

4.
36

2.
3

6.
81

2.
8

7.
18

2.
7

Y
SU

(1
)

5.
07

1.
7

7.
57

2.
8

7.
76

3.
5

Y
SU

(2
)

5.
03

1.
7

7.
61

2.
7

7.
82

3.
3

M
Y
N
N
2

4.
66

2.
9

7.
13

3.
5

7.
31

2.
9

M
Y
N
N
3

4.
35

3.
1

7.
00

3.
6

7.
16

2.
4

M
Y
J

5.
52

1.
4

7.
53

2.
6

7.
76

3.
3

Q
N
SE

5.
27

0.
8

7.
14

2.
9

7.
29

2.
5

G
B
M

5.
05

2.
1

7.
46

2.
9

7.
67

3.
7

U
W

4.
84

2.
2

7.
36

3.
4

7.
52

3.
7

B
L

5.
22

2.
0

7.
41

2.
8

7.
56

3.
5

TE
M
F

5.
19

1.
3

7.
44

1.
0

7.
71

1.
5

60
m

50
m

40
m

A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

O
bs

er
va

ti
on

s
8.
1

7.
9

7.
8

A
C
M
2

7.
5

1.
6

�0
.5

1.
5

0.
9

7.
4

1.
5

�0
.5

1.
4

0.
9

7.
3

1.
5

�0
.4

1.
4

0.
9

Y
SU

(1
)

7.
9

1.
3

�0
.1

1.
3

0.
9

7.
9

1.
3

0.
0

1.
3

0.
9

7.
8

1.
3

0.
0

1.
3

0.
9

Y
SU

(2
)

8.
0

1.
3

�0
.1

1.
3

0.
9

8.
0

1.
2

0.
0

1.
2

0.
9

7.
9

1.
2

0.
1

1.
2

0.
9

M
Y
N
N
2

7.
6

1.
5

�0
.5

1.
4

0.
9

7.
4

1.
5

�0
.5

1.
4

0.
9

7.
3

1.
5

�0
.5

1.
4

0.
9

M
Y
N
N
3

7.
5

1.
5

�0
.6

1.
4

0.
9

7.
4

1.
5

�0
.5

1.
4

0.
9

7.
2

1.
6

�0
.5

1.
5

0.
9

M
Y
J

7.
9

1.
3

�0
.1

1.
3

0.
9

7.
8

1.
3

�0
.1

1.
3

0.
9

7.
7

1.
3

0.
0

1.
3

1.
0

Q
N
SE

7.
6

1.
8

�0
.5

1.
7

0.
9

7.
5

1.
7

�0
.4

1.
6

0.
9

7.
4

1.
7

�0
.3

1.
6

0.
9

G
B
M

7.
9

1.
3

�0
.1

1.
2

0.
9

7.
9

1.
2

0.
0

1.
2

0.
9

7.
8

1.
2

0.
0

1.
2

0.
9

U
W

7.
7

1.
4

�0
.3

1.
3

0.
9

7.
7

1.
3

�0
.3

1.
3

0.
9

7.
6

1.
3

�0
.2

1.
3

0.
9

B
L

7.
7

1.
6

�0
.3

1.
5

0.
9

7.
6

1.
5

�0
.3

1.
5

0.
9

7.
5

1.
5

�0
.3

1.
5

0.
9

D.E.K. Dzebre, M.S. Adaramola / Renewable Energy 146 (2020) 66e8682



Sc
al
ed

m
et
ri
cs

an
d
m
od

el
m
ea

n
sc
or
es

fo
r
sp

ee
d
p
re
d
ic
ti
on

(2
h
ig
h
w
in
d
s
te
st

d
ay

s)
60

m
50

m
40

m
R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

A
C
M
2

0.
6

1.
0

0.
5

0.
9

1.
8

0.
6

0.
9

0.
5

0.
9

1.
8

0.
7

0.
8

0.
6

0.
9

1.
9

Y
SU

(1
)

0.
1

0.
1

0.
2

0.
9

3.
5

0.
1

0.
0

0.
2

0.
9

3.
6

0.
2

0.
0

0.
2

0.
9

3.
6

Y
SU

(2
)

0.
0

0.
0

0.
1

0.
9

3.
8

0.
1

0.
0

0.
1

0.
9

3.
8

0.
1

0.
2

0.
0

0.
9

3.
6

M
Y
N
N
2

0.
4

0.
8

0.
3

0.
9

2.
4

0.
5

0.
9

0.
4

0.
9

2.
2

0.
6

0.
9

0.
5

0.
9

1.
9

M
Y
N
N
3

0.
6

1.
0

0.
4

0.
9

2.
0

0.
7

1.
0

0.
5

0.
9

1.
8

0.
8

1.
0

0.
6

0.
9

1.
6

M
Y
J

0.
2

0.
1

0.
2

0.
9

3.
5

0.
1

0.
1

0.
1

0.
9

3.
6

0.
1

0.
0

0.
1

1.
0

3.
8

Q
N
SE

1.
0

0.
9

1.
0

0.
9

1.
0

1.
0

0.
7

1.
0

0.
9

1.
2

1.
0

0.
6

1.
0

0.
9

1.
3

G
B
M

0.
0

0.
2

0.
0

0.
9

3.
8

0.
0

0.
0

0.
0

0.
9

3.
9

0.
0

0.
0

0.
0

0.
9

3.
9

U
W

0.
2

0.
6

0.
2

0.
9

2.
9

0.
3

0.
4

0.
2

0.
9

3.
0

0.
3

0.
3

0.
3

0.
9

3.
1

B
L

0.
6

0.
6

0.
6

0.
9

2.
1

0.
6

0.
5

0.
6

0.
9

2.
2

0.
6

0.
5

0.
6

0.
9

2.
2

A
ve

ra
ge

sp
ee

d
s
an

d
m
et
ri
cs

fo
r
sp

ee
d
p
re
d
ic
ti
o
n
(4

h
ig
h
w
in
d
s
te
st

d
ay

s)
60

m
50

m
40

m
A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

O
bs

er
va

ti
on

s
7.
6

7.
4

7.
0

A
C
M
2

7.
2

1.
4

�0
.4

1.
3

0.
9

7.
1

1.
4

�0
.3

1.
3

0.
9

7.
6

1.
4

�0
.2

1.
4

0.
9

Y
SU

(1
)

7.
7

1.
3

0.
2

1.
3

0.
9

7.
7

1.
3

0.
3

1.
3

0.
9

7.
7

1.
4

0.
4

1.
3

0.
9

Y
SU

(2
)

7.
8

1.
3

0.
2

1.
3

0.
9

7.
8

1.
3

0.
3

1.
3

0.
9

7.
1

1.
4

0.
5

1.
3

0.
9

M
Y
N
N
2

7.
3

1.
4

�0
.3

1.
4

0.
9

7.
2

1.
4

�0
.2

1.
4

0.
9

7.
0

1.
5

�0
.2

1.
5

0.
9

M
Y
N
N
3

7.
2

1.
5

�0
.4

1.
4

0.
9

7.
1

1.
5

�0
.4

1.
4

0.
9

7.
6

1.
5

�0
.3

1.
5

0.
9

M
Y
J

7.
8

1.
4

0.
2

1.
3

0.
9

7.
7

1.
3

0.
3

1.
3

0.
9

7.
2

1.
4

0.
3

1.
3

0.
9

Q
N
SE

7.
3

1.
6

�0
.3

1.
5

0.
9

7.
2

1.
5

�0
.2

1.
5

0.
9

7.
6

1.
5

�0
.1

1.
5

0.
9

G
B
M

7.
7

1.
3

0.
1

1.
3

0.
9

7.
6

1.
3

0.
2

1.
3

0.
9

7.
4

1.
3

0.
3

1.
3

0.
9

U
W

7.
5

1.
3

�0
.1

1.
3

0.
9

7.
5

1.
3

0.
0

1.
3

0.
9

7.
4

1.
3

0.
1

1.
3

0.
9

B
L

7.
6

1.
4

0.
0

1.
4

0.
9

7.
5

1.
4

0.
1

1.
4

0.
9

0.
0

1.
4

0.
1

1.
4

0.
9

Sc
al
ed

m
et
ri
cs

an
d
m
o
d
el

m
ea

n
sc
o
re
s
fo
r
sp

ee
d
p
re
d
ic
ti
o
n
(4

h
ig
h
w
in
d
s
te
st

d
ay

s)
60

m
50

m
40

m
R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

A
C
M
2

0.
4

0.
9

0.
2

0.
9

2.
4

0.
3

0.
9

0.
2

0.
9

2.
5

0.
2

0.
4

0.
2

0.
9

3.
1

Y
SU

(1
)

0.
2

0.
4

0.
2

0.
9

3.
2

0.
2

0.
7

0.
2

0.
9

2.
8

0.
3

0.
8

0.
2

0.
9

2.
6

Y
SU

(2
)

0.
1

0.
5

0.
0

0.
9

3.
3

0.
1

0.
9

0.
0

0.
9

2.
9

0.
2

1.
0

0.
0

0.
9

2.
7

M
Y
N
N
2

0.
5

0.
6

0.
5

0.
9

2.
3

0.
6

0.
6

0.
6

0.
9

2.
1

0.
7

0.
3

0.
7

0.
9

2.
2

M
Y
N
N
3

0.
8

1.
0

0.
6

0.
9

1.
5

0.
9

1.
0

0.
7

0.
9

1.
3

0.
9

0.
6

0.
8

0.
9

1.
6

M
Y
J

0.
2

0.
4

0.
2

0.
9

3.
1

0.
2

0.
7

0.
2

0.
9

2.
8

0.
2

0.
7

0.
2

0.
9

2.
8

Q
N
SE

1.
0

0.
7

1.
0

0.
9

1.
2

1.
0

0.
5

1.
0

0.
9

1.
4

1.
0

0.
0

1.
0

0.
9

1.
9

G
B
M

0.
0

0.
2

0.
0

0.
9

3.
7

0.
0

0.
5

0.
0

0.
9

3.
4

0.
1

0.
6

0.
0

0.
9

3.
2

U
W

0.
0

0.
1

0.
0

0.
9

3.
7

0.
0

0.
0

0.
1

0.
9

3.
8

0.
0

0.
2

0.
1

0.
9

3.
6

B
L

0.
5

0.
0

0.
6

0.
9

2.
8

0.
5

0.
1

0.
6

0.
9

2.
7

0.
5

0.
1

0.
6

0.
9

2.
6

A
ve

ra
ge

sp
ee

d
s
an

d
m
et
ri
cs

fo
r
sp

ee
d
p
re
d
ic
ti
o
n
(6

h
ig
h
w
in
d
s
te
st

d
ay

s)
60

m
50

m
40

m
A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

O
bs

er
va

ti
on

s
7.
4

7.
2

7.
0

A
C
M
2

7.
0

1.
3

�0
.4

1.
2

0.
9

6.
9

1.
3

�0
.3

1.
2

0.
9

6.
9

1.
3

�0
.1

1.
3

0.
9

Y
SU

(1
)

7.
5

1.
3

0.
1

1.
3

0.
9

7.
5

1.
3

0.
3

1.
3

0.
9

7.
4

1.
4

0.
4

1.
3

0.
0

Y
SU

(2
)

7.
6

1.
2

0.
2

1.
2

0.
9

7.
6

1.
3

0.
4

1.
2

0.
9

7.
5

1.
4

0.
5

1.
3

0.
0

M
Y
J

7.
5

1.
3

0.
1

1.
3

0.
9

7.
4

1.
3

0.
2

1.
3

0.
9

7.
4

1.
4

0.
3

1.
3

0.
0

G
B
M

7.
5

1.
2

0.
1

1.
2

0.
9

7.
4

1.
2

0.
2

1.
2

0.
9

7.
4

1.
3

0.
4

1.
3

0.
0

U
W

7.
3

1.
2

�0
.1

1.
2

0.
9

7.
2

1.
2

0.
0

1.
2

0.
9

7.
2

1.
3

0.
2

1.
3

0.
0

B
L

7.
4

1.
3

0.
0

1.
3

0.
9

7.
3

1.
3

0.
1

1.
3

0.
8

7.
2

1.
4

0.
2

1.
4

0.
0

(c
on

ti
nu

ed
on

ne
xt

pa
ge
)

D.E.K. Dzebre, M.S. Adaramola / Renewable Energy 146 (2020) 66e86 83



(c
on

ti
nu

ed
)

60
m

50
m

40
m

A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

Sc
al
ed

m
et
ri
cs

an
d
m
o
d
el

m
ea

n
sc
o
re
s
fo
r
sp

ee
d
p
re
d
ic
ti
o
n
(6

h
ig
h
w
in
d
s
te
st

d
ay

s)
60

m
50

m
40

m
R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

A
C
M
2

0.
8

1.
0

0.
3

0.
9

1.
8

0.
4

0.
7

0.
3

0.
9

2.
5

0.
0

0.
0

0.
1

0.
9

3.
7

Y
SU

(1
)

0.
5

0.
2

0.
5

0.
9

2.
7

0.
5

0.
7

0.
4

0.
9

2.
2

0.
6

0.
7

0.
3

0.
0

1.
4

Y
SU

(2
)

0.
3

0.
5

0.
2

0.
9

2.
9

0.
4

1.
0

0.
1

0.
9

2.
3

0.
7

1.
0

0.
1

0.
0

1.
3

M
Y
J

0.
7

0.
2

0.
7

0.
9

2.
3

0.
7

0.
6

0.
6

0.
9

1.
9

0.
8

0.
5

0.
6

0.
0

1.
0

G
B
M

0.
0

0.
0

0.
0

0.
9

3.
8

0.
0

0.
5

0.
0

0.
9

3.
3

0.
2

0.
6

0.
0

0.
0

2.
2

U
W

0.
3

0.
2

0.
3

0.
9

3.
0

0.
2

0.
0

0.
3

0.
9

3.
3

0.
2

0.
1

0.
3

0.
0

2.
4

B
L

1.
0

0.
0

1.
0

0.
9

1.
9

1.
0

0.
1

1.
0

0.
8

1.
7

1.
0

0.
1

1.
0

0.
0

0.
9

A
ve

ra
ge

sp
ee

d
s
an

d
m
et
ri
cs

fo
r
sp

ee
d
p
re
d
ic
ti
o
n
(8

h
ig
h
w
in
d
s
te
st

d
ay

s)
60

m
50

m
40

m
A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

O
bs

er
va

ti
on

s
7.
3

7.
1

7.
0

Y
SU

(1
)

7.
4

1.
3

0.
1

1.
3

0.
9

7.
4

1.
3

0.
2

1.
3

0.
9

7.
3

1.
3

0.
4

1.
3

0.
8

Y
SU

(2
)

7.
5

1.
2

0.
2

1.
2

0.
9

7.
5

1.
3

0.
3

1.
2

0.
9

7.
4

1.
3

0.
5

1.
2

0.
9

M
Y
J

7.
5

1.
3

0.
1

1.
3

0.
9

7.
4

1.
3

0.
2

1.
3

0.
9

7.
4

1.
4

0.
3

1.
3

0.
8

G
B
M

7.
4

1.
2

0.
0

1.
2

0.
9

7.
3

1.
2

0.
2

1.
2

0.
9

7.
3

1.
3

0.
3

1.
3

0.
8

U
W

7.
3

1.
3

�0
.1

1.
2

0.
9

7.
2

1.
3

0.
0

1.
3

0.
9

7.
1

1.
3

0.
2

1.
3

0.
8

B
L

7.
4

1.
3

0.
0

1.
3

0.
9

7.
3

1.
3

0.
1

1.
3

0.
8

7.
2

1.
4

0.
2

1.
4

0.
8

Sc
al
ed

m
et
ri
cs

an
d
m
o
d
el

m
ea

n
sc
o
re
s
fo
r
sp

ee
d
p
re
d
ic
ti
o
n
(8

h
ig
h
w
in
d
s
te
st

d
ay

s)
60

m
50

m
40

m
R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

Y
SU

(1
)

0.
4

0.
4

0.
4

0.
9

2.
6

0.
5

0.
7

0.
4

0.
9

2.
4

0.
4

0.
7

0.
3

0.
8

2.
5

Y
SU

(2
)

0.
1

1.
0

0.
0

0.
9

2.
7

0.
2

1.
0

0.
0

0.
9

2.
6

0.
3

1.
0

0.
0

0.
9

2.
6

M
Y
J

0.
6

0.
5

0.
6

0.
9

2.
1

0.
7

0.
7

0.
6

0.
9

1.
9

0.
8

0.
6

0.
7

0.
8

1.
8

G
B
M

0.
0

0.
0

0.
0

0.
9

3.
9

0.
0

0.
5

0.
0

0.
9

3.
4

0.
0

0.
5

0.
1

0.
8

3.
2

U
W

0.
4

0.
3

0.
4

0.
9

2.
8

0.
3

0.
0

0.
4

0.
9

3.
2

0.
1

0.
0

0.
3

0.
8

3.
4

B
L

1.
0

0.
0

1.
0

0.
9

1.
8

1.
0

0.
1

1.
0

0.
8

1.
7

1.
0

0.
1

1.
0

0.
8

1.
8

A
ve

ra
ge

sp
ee

d
s
an

d
m
et
ri
cs

fo
r
sp

ee
d
p
re
d
ic
ti
o
n
(1
0
h
ig
h
w
in
d
s
te
st

d
ay

s)
60

m
50

m
40

m
A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

O
bs

er
va

ti
on

s
7.
3

7.
1

6.
9

Y
SU

(2
)

7.
6

1.
2

0.
3

1.
2

0.
9

7.
6

1.
3

0.
5

1.
2

0.
9

7.
5

1.
3

0.
6

1.
2

0.
9

G
B
M

7.
5

1.
2

0.
2

1.
2

0.
9

7.
4

1.
2

0.
3

1.
2

0.
9

7.
4

1.
3

0.
5

1.
2

0.
8

U
W

7.
4

1.
2

0.
1

1.
2

0.
9

7.
3

1.
2

0.
2

1.
2

0.
9

7.
2

1.
3

0.
3

1.
2

0.
8

Sc
al
ed

m
et
ri
cs

an
d
m
o
d
el

m
ea

n
sc
o
re
s
fo
r
sp

ee
d
p
re
d
ic
ti
o
n
(1
0
h
ig
h
w
in
d
s
te
st

d
ay

s)
60

m
50

m
40

m
R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

Y
SU

(2
)

0.
8

1.
0

0.
0

0.
9

2.
1

1.
0

1.
0

1.
2

0.
9

0.
7

1.
0

1.
0

0.
0

0.
9

1.
9

G
B
M

1.
0

0.
5

0.
7

0.
9

1.
6

0.
8

0.
6

1.
2

0.
9

1.
3

0.
9

0.
6

0.
8

0.
8

1.
5

U
W

0.
0

0.
0

1.
0

0.
9

2.
9

0.
0

0.
0

1.
2

0.
9

2.
6

0.
0

0.
0

1.
0

0.
8

2.
8

D.E.K. Dzebre, M.S. Adaramola / Renewable Energy 146 (2020) 66e8684



References

[1] D. Carvalho, et al., WRF wind simulation and wind energy production esti-
mates forced by different reanalyses: comparison with observed data for
Portugal, Appl. Energy 117 (2014) 116e126.

[2] D. Carvalho, et al., A sensitivity study of the WRF model in wind simulation for
an area of high wind energy, Environ. Model. Softw 33 (2012) 23e34.

[3] W.C. Skamarock, A description of the advanced research WRF version 3, Tech.
Note (2008) 1e96.

[4] F.J. Santos-Alamillos, et al., Analysis of WRF model wind estimate sensitivity to
physics parameterization choice and terrain representation in andalusia
(southern Spain), Journal of Applied Meteorology and Climatology 52 (2013)
1592e1609, https://doi.org/10.1175/jamc-d-12-0204.1.

[5] E.-M. Giannakopoulou, R. Nhili, WRF model methodology for offshore wind
energy applications, Advances in Meteorology 2014 (2014), 319819, 14 pages,
https://doi.org/10.1155/2014/319819.

[6] C. Surussavadee, W.Wu, Evaluation of WRF planetary boundary layer schemes
for high-resolution wind simulations in Northeastern Thailand, in: IEEE In-
ternational Geoscience and Remote Sensing Symposium, IGARSS), 2015,
pp. 3949e3952, https://doi.org/10.1109/IGARSS.2015.7326689, 2015.

[7] C. Surussavadee, Evaluation of WRF near-surface wind simulations in tropics
employing different planetary boundary layer schemes, in: 8th International
Renewable Energy Congress (IREC), 2017, pp. 1e4, https://doi.org/10.1109/
IREC.2017.7926005, 2017.

[8] M.O. Mughal, et al., Wind modelling, validation and sensitivity study using
Weather Research and Forecasting model in complex terrain, Environ. Model.
Softw 90 (2017) 107e125, https://doi.org/10.1016/j.envsoft.2017.01.009.

[9] K.B.R.R. Hariprasad, et al., Numerical simulation and intercomparison of
boundary layer structure with different PBL schemes in WRF using experi-
mental observations at a tropical site, Atmos. Res. 145e146 (2014) 27e44.
https://doi.org/10.1016/j.atmosres.2014.03.023.

[10] T. Ohsawa, et al., Investigation of WRF configuration for offshore wind
resource maps in Japan, in: Wind Europe Summit, Hamburg Messe, Hamburg,
Germany, 2016.

[11] M. Mohammadpour Penchah, H. Malakooti, M. Satkin, Evaluation of planetary
boundary layer simulations for wind resource study in east of Iran, Renew.
Energy 111 (2017) 1e10. https://doi.org/10.1016/j.renene.2017.03.040.

[12] C. Mattar, D. Borvar�an, Offshore wind power simulation by using WRF in the
central coast of Chile, Renewable Energy, 2016, pp. 22e31.

[13] R. Boadh, et al., Sensitivity of PBL schemes of the WRF-ARW model in simu-
lating the boundary layer flow parameters for its application to air pollution
dispersion modeling over a tropical station, Atm�osfera 29 (2016) 61e81.
https://doi.org/10.20937/ATM.2016.29.01.05.

[14] J.M. Wallace, P.V. Hobbs, Atmospheric Science: an Introductory Survey, vol.
92, Elsevier, 2006.

[15] R.B. Stull, An Introduction to Boundary Layer Meteorology, vol. 13, Springer
Science & Business Media, 2012.

[16] T.T. Warner, Numerical Weather and Climate Prediction, Cambridge Univer-
sity Press, 2011.

[17] F. Dominguez, ATMO 579 Boundary Layer Meteorology and Surface Processes,
2010.

[18] X. Chadee, N. Seegobin, R. Clarke, Optimizing the weather research and
forecasting (WRF) model for mapping the near-surface wind resources over
the southernmost caribbean islands of Trinidad and Tobago, Energies 10
(2017) 931. https://doi.org/10.3390/en10070931.

[19] J. Dudhia, Overview of WRF Physics, 2017.
[20] C.B. Wei Wang, Michael Duda, Jimy Dudhia, Dave Gill, Michael Kavulich,

Keene Kelly, Ming Chen, Hui-Chuan Lin, John Michalakes, Syed Rizvi,
Xin Zhang, Judith Berner, Soyoung, Ha and Kate Fossell, ARW Version 3
Modeling System User's Guide, 2016.

[21] R.F. Banks, et al., Sensitivity of boundary-layer variables to PBL schemes in the
WRF model based on surface meteorological observations, lidar, and radio-
sondes during the HygrA-CD campaign, Atmos. Res. 176e177 (2016)
185e201. https://doi.org/10.1016/j.atmosres.2016.02.024.

[22] S.-Y. Hong, Y. Noh, J. Dudhia, A new vertical diffusion package with an explicit
treatment of entrainment processes, Mon. Weather Rev. 134 (9) (2006)
2318e2341.

[23] A.E. Cohen, et al., A review of planetary boundary layer parameterization
schemes and their sensitivity in simulating southeastern US cold season se-
vere weather environments, Weather Forecast. 30 (2015) 591e612. https://
doi.org/10.1175/WAF-D-14-00105.1.

[24] S. Madala, et al., Mesoscale atmospheric flow-field simulations for air quality
modeling over complex terrain region of Ranchi in eastern India using WRF,
Atmos. Environ. 107 (2015) 315e328. https://doi.org/10.1016/j.atmosenv.
2015.02.059.

[25] S. Madala, A.N.V. Satyanarayana, T.N. Rao, Performance evaluation of PBL and
cumulus parameterization schemes of WRF ARW model in simulating severe
thunderstorm events over Gadanki MST radar facility d case study, Atmos.
Res. 139 (2014) 1e17.

[26] P. Gunwani, M. Mohan, Sensitivity of WRF model estimates to various PBL
parameterizations in different climatic zones over India, Atmos. Res. 194
(2017) 43e65.

[27] Volta River Authority, Power Generation: Facts & Figures, 2016 [cited 2016
06-Nov]; Available from: http://www.vra.com/resources/facts.php.A

ve
ra
ge

sp
ee

d
s
an

d
m
et
ri
cs

fo
r
sp

ee
d
p
re
d
ic
ti
o
n
(1
2
h
ig
h
w
in
d
s
te
st

d
ay

s)
60

m
50

m
40

m
A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

A
ve

ra
ge

W
in
d
Sp

ee
d
s

(m
/s
)

R
M
SE

(m
/s
)
M
E
(m

/s
)

ST
D
E

(m
/s
)

C
C

O
bs

er
va

ti
on

s
7.
3

7.
1

6.
9

Y
SU

(2
)

7.
6

1.
3

0.
3

1.
3

0.
8

7.
5

1.
3

0.
4

1.
3

0.
8

7.
5

1.
4

0.
6

1.
3

0.
8

G
B
M

7.
4

1.
3

0.
2

1.
3

0.
8

7.
4

1.
3

0.
3

1.
3

0.
8

7.
3

1.
4

0.
4

1.
3

0.
8

U
W

7.
3

1.
3

0.
0

1.
3

0.
8

7.
2

1.
3

0.
2

1.
3

0.
8

7.
2

1.
4

0.
3

1.
3

0.
8

Sc
al
ed

m
et
ri
cs

an
d
m
o
d
el

m
ea

n
sc
o
re
s
fo
r
sp

ee
d
p
re
d
ic
ti
o
n
(1
2
h
ig
h
w
in
d
s
te
st

d
ay

s)
60

m
50

m
40

m
R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

R
M
SE

SC
A
LE

D
(m

/s
)

M
E S

C
A
LE

D

(m
/s
)

ST
D
E S

C
A
LE

D

(m
/s
)

C
C

Sk
ill

Sc
or
e

Y
SU

(2
)

1.
0

1.
0

0.
2

0.
8

1.
7

1.
0

1.
0

0.
0

0.
8

1.
8

1.
0

1.
0

0.
0

0.
8

1.
8

G
B
M

0.
0

0.
5

0.
0

0.
8

3.
4

0.
1

0.
5

0.
2

0.
8

3.
0

0.
4

0.
5

0.
4

0.
8

2.
4

U
W

0.
5

0.
0

1.
0

0.
8

2.
4

0.
0

0.
0

1.
0

0.
8

2.
8

0.
0

0.
0

1.
0

0.
8

2.
8

D.E.K. Dzebre, M.S. Adaramola / Renewable Energy 146 (2020) 66e86 85



[28] Energy Comission of Ghana, The SWERA Ghana Project. Energy Commission of
Ghana,.

[29] National Renewable Energy Laboratory (NREL), Ghana Wind Energy Resource
Mapping Activity, 2004.

[30] reportGhana Statistical Service, 2010 Population And Housing Census: District
Analytical Report, Keta Municipality. 2014, Ghana Statistical Service.

[31] C. McSweeney, M. New, G. Lizcano, UNDP Climate Change Country Profiles:
Ghana, 2010, 2016.

[32] NASA Langley ASDC User Services, NASA Surface Meteorology and Solar En-
ergy - Available Tables [cited 2018 May 25]; Available from: https://eosweb.
larc.nasa.gov/cgi-bin/sse/grid.cgi?&num¼181096&lat¼5.
786&submit¼Submit&hgt¼100&veg¼6&sitelev¼&email¼skip@larc.nasa.
gov&p¼grid_id&p¼T10M&p¼DLYRANGE&p¼TSKIN_
MN&p¼wspd50m&p¼wnd_dir&p¼gipe_wnd&step¼2&lon¼0.919.

[33] J. Dudhia, et al., Evaluation of Weather Research and Forecasting (WRF) Model
Physics in Simulating West African Monsoon, WAM), 2017.

[34] Statistical Computation Laboratory, Computing the Pearson correlation coef-
ficient [cited 2018 27/05]; Available from: http://www.stat.wmich.edu/s216/
book/node122.html.

[35] P. Berens, CircStat: a MATLAB toolbox for circular statistics, J. Stat. Softw. 31
(10) (2009) 1e21.

[36] C. Emery, E. Tai, G. Yarwood, Enhanced meteorological modeling and per-
formance evaluation for two Texas ozone episodes, in: Prepared for the Texas
Natural Resource Conservation Commission, ENVIRON International Corpo-
ration, 2001.

[37] Cedar Lake Ventures Inc, Average weather in accra, Ghana, year round -
weather spark [cited 2018 07/06]; Available from: https://weatherspark.com/
y/42322/Average-Weather-in-Accra-Ghana-Year-Round, 2018.

D.E.K. Dzebre, M.S. Adaramola / Renewable Energy 146 (2020) 66e8686





Paper III 



 



energies

Article

Impact of Selected Options in the Weather Research
and Forecasting Model on Surface Wind Hindcasts in
Coastal Ghana

Denis E.K. Dzebre 1,2,3 and Muyiwa S. Adaramola 1,*
1 Faculty of Environmental Sciences and Natural Resources, Norwegian University of Life Sciences (NMBU),

1432 Akershus, Norway; dekdzebre.coe@knust.edu.gh
2 Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology (KNUST),

Kumasi 00000, Ghana
3 The Brew-Hammond Energy Centre, KNUST, Kumasi 00000, Ghana
* Correspondence: muyiwa.adaramola@nmbu.no

Received: 2 September 2019; Accepted: 21 September 2019; Published: 25 September 2019 ����������
�������

Abstract: This paper examines the impacts of five planetary boundary layer (PBL) parameterization
schemes paired with several compatible surface layer (SL) parameterization schemes in the Weather
Research and Forecasting Model on wind hindcasts for resource assessment purposes in a part of
Coastal Ghana. Model predictions of hourly wind speeds at 3 × 3 km2 and 9 × 9 km2 grid boxes
were compared with measurements at 40 m, 50 m, and 60 m. It was found that the Mellor-Yamada
Nakanishi and Niino Level 3 (MYNN3) PBL scheme generally predicted winds with a relatively better
combination of error metrics, irrespective of the SL scheme it was paired with. When paired with the
Eta surface layer scheme, it often produced some of the relatively fewest errors in estimated mean
wind power density (WPD) and Weibull cumulative density. A change in the simulation grid size
did not have a significant impact on the conclusions of the relative performance of the PBL-SL pairs
that were tested. The results indicate that the MYNN3 PBL and Eta SL pair is probably best for wind
speed and energy assessments for this part of coastal Ghana.

Keywords: wind resource assessment; dynamical downscaling; parameterization schemes;
WRF; Ghana

1. Introduction

Over the years, there has been increasing interest in the use of numerical weather prediction
(NWP) models, such as the Weather Research and Forecasting (WRF) model [1], for wind resource
assessment. By numerically downscaling meteorological datasets, these models are used to generate
wind data (wind speeds and directions) at relatively low cost for areas lacking ground measurements of
such data for preliminary assessments of wind resources. Owing to diverse model options, identifying
optimum model configurations (which are basically combinations of the options available in the
models) for an application sometimes requires sensitivity tests, which assess, comparatively, the effects
of varying model options on model performance. Predictions of surface winds by NWP models such as
WRF are sensitive to model options such as simulation grid size, model physics, initial and boundary
data, and parameterization of processes at the subgrid scale [2,3]. This paper focuses on selected
parameterization options in the Advanced Research WRF (ARW).

Planetary Boundary and Surface Layer Parameterization

Atmospheric processes play an important role in determining certain fundamental properties of
the weather and climate of the earth. Therefore, their correct representation in atmospheric models is
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important. In NWPs, this is done in part via the model physics, the purpose of which is to resolve
and parameterize (approximate) these processes in the models [4]. Where, due to the complexity
of the processes or the scales on which they occur or for other reasons, the processes cannot be
explicitly represented in or resolved by the models, they are parameterized (or approximated with
parameterization schemes) [4]. Parameterization involves relating the effects of such processes to
variables that can more easily be determined by the models [4]. The physics parameterization schemes
in WRF fall into the microphysics (MP), cumulus, long-wave radiation (Rad-L), short-wave radiation
(Rad-S), land surface model (LSM), surface layer (SL), and planetary boundary layer (PBL) categories [1].
Vertical sub-grid scale transport processes in the atmosphere are parameterized by the PBL schemes,
which interact directly with the SL and LSM schemes [5].

Transport processes transmit the effect of surface phenomena such as frictional drag, heat transfer,
and terrain induced flow modification in the planetary boundary layer to the upper layers of the
atmosphere [6]. Turbulence plays a key role in such transport processes and acts as a feedback
mechanism in wind circulation [6–8]. PBL schemes compute turbulence flux profiles within the
atmosphere, providing atmospheric tendencies of temperature, moisture, and horizontal momentum [5],
which are used in predicting variables. A key difference in the PBL schemes in WRF is how they
address the turbulence closure problem, which arises in the mathematical representation of turbulence
(explained in several texts such as [4,9,10]), due to the difficulty of resolving the smallest turbulent
eddies (which are in the order of a few milometers [6–8]). This is often a challenge in NWPs, as they are
often run at grid resolutions that do not allow the adequate resolving of such eddies. Depending on
how the closure problem is addressed in a PBL scheme, it may be classified according to an order
of closure, and as a local or nonlocal closure scheme. Only vertical levels that are directly adjacent
to a given point directly influence the estimation of the fluxes at that point in local closure schemes.
In nonlocal closure schemes, on the other hand, multiple vertical levels influence the estimation of
fluxes at a given point [11]. In addition, in WRF, most nonlocal schemes have diagnostic components
for a flux profile, while the local closure schemes use turbulent kinetic energy (TKE) predicted at a
point in approximating fluxes [12]. Higher order local closures and nonlocal closures are often more
accurate than lower order local closure schemes [4]. Brief descriptions of several PBL schemes as well
as their shortcomings have been summarized in the literature [11–14].

Parameterization methods perform differently in different atmospheric stability conditions, which
inform their formulation [5,11]. Stability dependent information and other inputs needed by the PBL
schemes are provided by SL schemes. The SL schemes also provide exchange coefficients for the
calculation of the heat and moisture fluxes by LSM schemes. These fluxes serve as bottom boundary
conditions for the PBL schemes [15,16]. Key differences among SL schemes include the approaches and
methods used in computing surface exchange coefficients [5]. However, they are mostly based on the
similarity theory, which is explained in texts such as [6,9,10]. In WRF, PBL schemes are recommended
to be used with specific SL schemes but are generally compatible with most of the LSM schemes in
the model.

Given the importance of wind speeds to wind energy extraction, and as wind turbines operate in
the lower parts of the PBL, several studies [3,17–23] over the years have examined the impact of PBL
schemes in WRF on the wind hindcasts. However, studies in the tropics [17–21] have often not tested
the different PBL schemes with different compatible SL schemes. In addition, the impact of the schemes
on model performance is influenced by local terrain features and atmospheric conditions, which often
vary with geographical location [2,3]. Against this background, in this paper, we investigate the impact
of selected PBL schemes, paired with several compatible SL schemes, on wind hindcasts for wind
energy assessment purposes in an area in coastal Ghana. The study focuses on five PBL schemes
selected from a preliminary study of PBL schemes in coastal Ghana, and other studies in tropical
areas [17–21]. These are:

• 1st order hybrid (local/nonlocal) closure Asymmetric Convective Model (ACM2) [24]
• 2nd order TKE closure Mellor-Yamada Nakanishi Niino Level 3 (MYNN3) [25]
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• 1.5 order TKE closure University of Washington (UW) [26]
• 1.5 order TKE closure Grenier-Bretherton-McCaa (GBM) [27]
• 1st order nonlocal closure Yonsei University (YSU) [28]

The aim of the study is to offer some insight into the relative impacts of the selected PBL-SL pairs
on wind speed and mean wind power density estimates by the model for coastal Ghana. The rest of the
paper is organized as follows; Section 2 covers the study area, verification data, model configuration,
and experimental design. Section 3 presents and discusses results of analysis, and Section 4 summarizes
the study and presents conclusions drawn from the study.

2. Materials and Methods

2.1. Study Area and Data

The study area covers the coastal plains of South East Ghana (shown in Figure 1). The area
comprises predominantly low-lying coastal plains with savanna grass vegetation and experiences
two main seasons in a year: a harmattan season that is dominated by dry and dusty desert winds
from the North-East, starting from around November and lasting until February, and a bimodal rainy
season dominated by Monsoon winds that ends around November [29,30]. The Energy Commission of
Ghana (EC) has conducted mast measurements at selected sites, mostly along the coast of this region.
The observed (measured) data for this study, which comprise hourly measurements of wind speeds (in
selected months) in 2013, at heights of 40, 50, and 60 m above ground level, is from one such EC masts,
located at 5.7861 ◦N and 0.9188 ◦E.
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2.2. Model Configuration

Version 3.8.1 of the Advanced Research WRF (ARW) [1] was used for this study. Key features
of the model include a fully compressible, non-hydrostatic Euler equation, a terrain following a
vertical coordinate system, and a staggered horizontal grid. Model prognostic variables include
three-dimensional wind, turbulent kinetic energy, and potential temperature. Detailed descriptions of
the model physics, equations, and dynamics are provided by [1].
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The model configuration for the study is summarized in Table 1. Map projections transform
atmospheric properties (defined on earth’s spherical surface) to a flat model grid [4] to enable the
application of grid point methods to solutions of the atmospheric flow equations. Map projections
tend to affect model stability as they distort distances at any given point, affecting the maximum stable
timestep in the WRF solver. To maintain numerical solution stability, it is recommended to use a
projection that keeps the map-scale factor (a measure of distance distortions from the transformation)
close to unity over the simulation grid [4]. For low-latitude and tropical regions, the Mercator projection
is recommended as it best satisfies this (stability) condition [4,31]. To further ensure model stability,
a model timestep of 120 s (less than the maximum 6 times the magnitude of the coarsest horizontal grid
distance) was used as suggested by [1]. The domains, shown in Figure 2, have horizontal resolutions
of 27 km, 9 km, and 3 km, and a vertical resolution of 40 vertical pressure levels each. The horizontal
resolutions were chosen to achieve a nesting ratio of 3, and the final horizontal resolution of 3 km was
used because it was found to be optimal for wind simulations in WRF [32,33]. The vertical resolution
was chosen following recommendations of [34]. The model top was 50 hPa with the lowest half level
at approximately 28 m asl.

Table 1. Model configuration.

Model Version Advanced Research WRF v3.8.1
Initial and Boundary Conditions NCEP Final Analysis (GFS-FNL) [35]: 1◦ × 1◦ and 6 h Resolution

Land Use Data 30-arc-second USGS1 with lakes
Topographical Data 30-arc-second USGS GMTED2010

Map Projection Mercator
Vertical Resolution 40 vertical pressure levels (automatically set)

Horizontal Resolution (km) 27 9 3
Domain Size (grid points) 91 × 103 82 × 94 64 × 55
Model Timestep (seconds) 120

FDDA2 Analysis Nudging (Disabled in the PBL)

Parameterization Schemes:

Cloud Microphysics (MP) Eta microphysics [36]
Long-Wave Radiation (LW-Rad) Rapid Radiative Transfer Model [37]
Short-Wave Radiation (SW-Rad) Dudhia [38]

Surface Layer (SL)

i. Mellor-Yamada Nakanishi Niino (MYNN)
ii. Pleim-Xiu (PX) [39]

iii. Revised MM5 Similarity (R-MM5) [40]
iv. Eta Similarity (Eta) [41–43]

Land Surface Model (LSM) Unified Noah [44]
Pleim-Xiu (PX) [45,46]

Planetary Boundary Layer (PBL)

i. ACM2 [24]
ii. GBM [27]

iii. MYNN3 [25]
iv. UW [26]
v. YSU [28]

Cumulus Kain-Fritsch [47] (turned off for domain 3 [1,32])
1 United States Geological Survey. 2 Four-Dimensional Data Assimilation.
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The selected PBL parameterization schemes were paired with compatible SL schemes as
recommended by [31,48] (except the old MM5 scheme). Other required parameterization schemes were
selected based on other wind sensitivity studies in coastal Ghana [49,50], and practices from other wind
sensitivity studies (mostly in the tropics) [17–21]. The Eta Microphysics, New Rapid Radiative Transfer
Model [37] and Dudhia [38] schemes were used for MP, LW-Rad, and SW-Rad parameterizations,
respectively. Cumulus parameterization was not used in domain 3, as the horizontal grid resolution
in this domain was considered fine enough for adequate resolving of cumulus processes [1,32].
For domains 1 and 2, however, cumulus processes were parameterized with the updated Kain-Fritsch
scheme [47]. The Unified Noah LSM [44], was used for land surface parameterization. In addition,
following recommended best practices on the use of the ACM2 PBL scheme and PX SL schemes [51],
the PX LSM [45,46] was also tested but with the PX SL scheme only. The resulting PBL-SL-LSM
configurations that were tested are presented, with references as obtained from the WRF physics page,
in Table 2.

Table 2. Configurations tested.

No. Designation PBL Scheme SL Scheme LSM Scheme

1 ACM2-P-P ACM2 PX PX
2 ACM2-P-N ACM2 PX Noah
3 ACM2-R-N ACM2 R-MM5 Noah
4 GBM-R-N GBM R-MM5 Noah
5 MYNN3-M-N MYNN3 MYNN Noah
6 MYNN3-R-N MYNN3 R-MM5 Noah
7 MYNN3-E-N MYNN3 Eta Noah
8 UW-R-N UW R-MM5 Noah
9 UW-E-N UW Eta Noah
10 YSU-R-N YSU R-MM5 Noah

2.3. Experimental Design

A total of 10 configurations were tested. Owing to limited computational resources, each
configuration was used to simulate a period comprising four months, January, February, May,
and September of 2013, one month at a time. The months were selected for their relatively high or
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low monthly average wind speeds in the seasons that pertained in this part of Ghana; January and
March represented the harmattan season and May and September, the rainy season. It was hoped
that by selecting the periods simulated in this manner (as has been done in other resource assessment
sensitivity studies [22,32]), the effect of major seasonal changes on annual winds would be captured by
the options being tested. The grid nudging option of the WRF Four-Dimensional Data Assimilation
(FDDA) system is a technique that has been used in several studies on wind downscaling for resource
assessment purposes [20,52,53]. The technique bridges the gap between the model simulations and
time-interpolated values from input data. All three simulation domains were nudged during all
the simulations, following practices of previous studies [20,52,53]. Nudging options and simulation
lengths were chosen based on recommendations from a previous study in coastal Ghana [49].

2.4. Postprocessing of Data and Evaluation of Options

Post-processing of results generally followed the procedure used in previous studies in the study
area [49,50]. However, hourly predictions of winds (at 10 m and other relevant half vertical levels) were
bilinearly interpolated to the mast location. Furthermore, winds were interpolated to the heights of
analysis (40 m, 50 m, and 60 m), with log-linear interpolation [54]. Scheme performance was assessed
in terms of four error metrics, which were calculated with procedures from previous studies [49,50]:
mean error (ME), root mean square error (RMSE), standard deviation of the error (STDE), as well as the
correlation coefficient (CC) of the predictions. The error metrics were combined into a prediction skill
score (SS) (as was done in previous studies [49,50]), which was used to rank the options. In addition,
the ME, RMSE, and CC were compared to values that were considered as indicators of good model
performance in studies [18,19,55].

As the intended application of the findings of the study is wind energy assessment, the impacts
of the options on wind power estimation were evaluated by comparing their Weibull cumulative
distributions and mean wind power densities to those from observations for the study period.
The Weibull distribution is widely used in many fields of the wind energy industry. The cumulative
distribution gives the probability of wind speeds being less than or equal to the speed at which it is
evaluated. Its function is given as [56]

F(v) = 1− exp
[
−

(v
c

)k
]

(1)

where v, c, and k are the wind speed, Weibull scale, and shape factors, respectively. The scale and shape
parameters were estimated using the empirical (mean and standard deviation) method (with formulas
from [56]). This method was chosen after an evaluation of five methods—the empirical, moment,
graphical or least squares, the energy pattern factor, and maximum likelihood methods—using an
evaluation method from a study by [56]. The empirical method was chosen for its simplicity and often
relatively better or on-par relative test rank, which was in terms of total normalized results.

The distributions for observed data and the configurations were compared via the maximum
absolute error of the cumulative distribution function (max CDF error), which was determined as the
maximum difference between the cumulative distributions of observed and predicted data, (evaluated
in 0.5 m/s bins as recommended by [57]) [53]:

Max CDF Error = max
∣∣∣F(vi)obs − F(vi)sim

∣∣∣. (2)

The mean wind power densities were expressed as the percent error of the difference between the
mean WPD of observed and predicted data for a period of evaluation. The error was then expressed
as a percentage of the mean WPD from observations. The mean WPDs were determined from the
estimated Weibull parameters as [56,57]

WPD =
[1
2
ρc3Γ

(
1 +

3
k

)]
(3)
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where ρ, the air density, was assumed to be 1.160 kg m−3, as estimated in a previous study [49] in the
study area.

3. Results

Results at 60 m for the PBL-SL pair options are presented in Table 3. It can be seen from the error
metrics that the impacts of all the tested PBL-SL pairs on model performance were mostly within the
acceptable limits: RMSE < 2 m/s, ME < 0.5 m/s. However, the ACM2, GBM, and YSU predictions had
CCs that were slightly less than the acceptable limits (CC ≥ 0.7 [18,19,55]). It can also be observed that
for the same PBL scheme, although the choice of an SL scheme did have some impact on the average
wind speed prediction, the impact (if any at all) was less on the error metrics. Again, for the same PBL
scheme, the Eta SL scheme produced higher average wind speeds than the other SL schemes. The YSU
PBL scheme predicted higher average wind speeds than the MYNN3 PBL scheme (irrespective of
SL scheme). Generally, configurations with the MYNN3 PBL scheme predicted with some of the
least RMSEs, the best consistency (least STDEs), and highest correlations, and therefore, gave the
best skill scores, although as has been mentioned, the error metrics for all the other configurations
(except for the CCs of the ACM2, GBM, and YSU PBL schemes) were within acceptable limits for
good model performance. In contrast to the average wind speed predictions, the configurations had
more significant impacts on WPD estimates. However, some of the trends observed in the speed
predictions were also observed in the WPD estimates; the configurations with the Eta SL scheme gave
relatively smaller absolute WPD errors than the R-MM5 SL scheme. The MYNN3-E-N and ACM2-R-N
configurations gave the best average WPD estimates for the entire study period. However, as can be
seen from the table, the MYNN3-E-N configuration had a better maximum error of CDF. In addition,
it can be observed from the CDF plots presented in Figure 3 that the probability plot of the MYNN3-E-N
configuration was closest to the plot of observed data for speeds below 7 m/s; the other options
gave relatively lower probabilities. For higher speeds, the MYNN3-E-N together with the UW-E-N
configurations gave the closest probability plots.

Table 3. Error metrics and skill scores at 60 m for study period.

Average
Wind

Speeds
(m/s)

ME
(m/s)

RMSE
(m/s)

STDE
(m/s) CC Skill

Score
Weibull

k
Weibull

c

Mean
WPD

(Wm−2)

WPD
Error
(%)

Max
|CDF
Error|

Observation 5.87 2.93 6.58 167
ACM2-P-P 5.83 −0.04 1.65 1.65 0.67 0.3 3.78 6.59 145 −13.1 0.0645
ACM2-P-N 5.95 0.08 1.66 1.66 0.67 0.2 3.78 6.59 154 −7.6 0.0693
ACM2-R-N 6.08 0.21 1.65 1.64 0.67 1.0 3.86 6.72 163 −2.2 0.0888
GBM-R-N 6.06 0.19 1.60 1.59 0.69 2.0 4.04 6.68 158 −5.1 0.0964

MYNN3-M-N 5.68 −0.19 1.55 1.54 0.71 3.3 3.56 6.31 137 −17.6 0.0731
MYNN3-R-N 5.71 −0.16 1.55 1.54 0.72 3.5 3.34 6.36 143 −14.2 0.0545
MYNN3-E-N 5.96 0.09 1.58 1.57 0.72 2.6 3.33 6.64 163 −2.2 0.0399

UW-R-N 5.86 −0.01 1.57 1.57 0.70 2.1 3.67 6.49 149 −10.9 0.0530
UW-E-N 6.19 0.32 1.63 1.60 0.70 2.2 3.70 6.85 174 4.6 0.0932
YSU-R-N 6.01 0.14 1.60 1.59 0.69 1.9 3.85 6.64 157 −5.7 0.0802

Similar trends were often observed when the analysis was restricted to the seasons in the area;
a change in SL scheme did not often produce a significant change in metrics. The Eta SL scheme
produced higher average wind speed estimates than the R-MM5. The YSU scheme simulated higher
wind speeds than the MYNN3 scheme. Configurations with the MYNN3 PBL scheme still ranked
best in the rainy season and all the options satisfied all the criteria for good performance (except the
ACM2 configurations, which had CCs < 0.7 in the rainy season). Notable exceptions to these trends are
the ACM2 PBL scheme with the Noah LSM (with either SL schemes) ranking relatively better for speed
prediction during the harmattan season. In addition to the MYNN3-E-N configuration, the UW-R-N
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configuration gave a relatively good WPD error with a better max CDF error in the harmattan season.
Results on the seasonal analyses at 60 m are available in Table A2 in the Appendix A.
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Changes in heights of analysis and the simulation grid box sizes did not have significant impacts
on most of the above trends either. At the lower heights, the relative performances of the configurations
for speed predictions at the lower heights were also largely the same. However, the UW-E-N and
GBM-R-N configurations tended to give relatively better mean WPD errors, although the max CDF error
of the MYNN3-E-N configuration was still relatively better. In the seasonal analyses, the MYNN3-E-N
still tended to give some of the relatively best (if not the best) mean WPD and max CDF error. Data from
the 9 × 9 km2 grid produced generally lower average wind speeds and general increase in absolute
ME with little impact on the scheme rankings presented earlier. Max CDF errors were also higher
when compared to those estimated with data from the 3 × 3 km2 grid. The MYNN3-E-N and UW-E-N
configurations still tended to give relatively lower mean WPD errors with the max CDF error of the
former better as compared to the other options. Selected results on these analyses are available in
Tables A1 and A3 in the Appendix A.

4. Discussion

The performance of PBL and SL schemes differ in different atmospheric stability conditions, which
inform the methods used by the schemes [58]. Due to inadequate data, we were not able to assess
stability conditions in the study area, and so are unable to assess the performance of the schemes against
some of these conditions. However, we find that our observations are consistent with results from
several studies. For instance, the YSU scheme was observed to generally predict higher wind speeds
than the MYNN3 scheme due the relatively shallower mixed layer that it simulates [2,3,21]. PBL schemes
were found to have more significant impacts on error metrics of surface wind speed hindcasts than
other parameterization schemes in studies in similarly coastal terrains [2,22]. Furthermore, the often
relatively better ranking of the MYNN3 PBL scheme (over the other local closure schemes) is possible
due to it being of a higher order closure. Higher order local (and nonlocal) closure schemes generally
yield more accurate results than schemes that employ lower order local closures [4].

The diurnal profiles of average wind speeds for the seasons in the area (shown in Figure 4) are
also consistent with what has been reported from other sensitivity studies of PBL schemes in WRF
to wind hindcasts in tropical and coastal areas [3,19,21]. Similar peak winds and a relatively high
overestimation of winds around and after sunset have been reported for a tropical area. In addition,
winds peaking between noon and sunset were also reported in a relatively cooler season in the same
area [19]. It was explained that the overestimation of winds after sunset can be attributed to the
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inability of the PBL schemes to decouple air near the surface and aloft at night, as a result of differences
in vertical mixing strength and entrainment of air above the PBL [3,21].
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Figure 4. Diurnal variation of average wind speeds for the (a) harmattan season and the (b) rainy season.

The profiles also suggest local winds to be from land-sea circulations. Land and sea breezes result
from a convective cycle where warm air over land rises to be replaced by cool sea breezes during the
day. The cycle reverses at night as land cools more rapidly than the sea. The Land-sea temperature
difference plays a key role in the strength of this cycle, often producing stronger sea breezes (Figure 4),
as it is higher during the day [59]. The profiles and reports on the relative predictions of temperature
by the Eta and R-MM5 SL scheme also offer possible explanations as to why winds produced by
configurations with the Eta scheme are higher than those with the R-MM5. Higher land temperatures
during the day should result in higher land-sea temperature differences (as the sea temperature
rises at a relatively lower rate) and thus stronger winds [59]. The Eta SL scheme was reported to
produce relatively higher temperatures (due to its higher heat fluxes and exchange coefficients) than
the R-MM5 [60] (citing [61,62]). The diurnal plots of the average temperature at 2 m (T2) shown in
Figure 5, which are consistent with those reported by [19] and [60] (citing [62–65]), suggests this to
be the case in the area. In addition, we see from the profiles for both seasons that the MYNN3-M-N
configuration, which often predicted some of the lowest average wind speeds (in both seasons), also
recorded some of the lowest T2s diurnally. However, despite the relatively higher temperatures in the
harmattan season, relatively lower average wind speeds were observed during this season. This is
possibly due to a weakening of the breezes by the northeast winds that blow during the harmattan.
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Figure 5. Diurnal variation of selected configurations in (a) harmattan season and (b) rainy season.

5. Summary and Conclusions

Though the Mesoscale Atmospheric Simulation System (MASS) NWP model from the AWS
Truewind MesoMap system has been used to assess Ghana’s wind resources in the past, it is a propriety
model. In addition, there was a lack of adequate mast measurements at the time limited verifications
and adjustments of the model for optimum performance over coastal Ghana [66]. The open source
nature and increasing popularity of WRF for similar purposes makes it an attractive alternative for
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future assessments. Predictions of surface winds by WRF are sensitive to model options such as physics,
simulation grid size, and parameterization of processes at the subgrid scale. In this paper, we tested
the sensitivity of wind in coastal Ghana to five planetary boundary layer (PBL) parameterization
schemes (selected based on a preliminary study and other studies [17–21,50,67]), paired with different
compatible surface layer (SL) schemes [31,48]).

It was found that hindcasts from all 10 PBL-SL pairs generally had speed prediction error metrics
within or close to acceptable limits for good performance, as established from other sensitivity studies
(RMSE < 2 m/s, ME < 0.5, CC > 0.7 [18,19,55]). However, they differed in their prediction of the mean
wind power densities (WPD) and cumulative distribution functions for the period, in consistency
and accuracy. Hindcasts with the MYNN3 PBL scheme generally had a relatively better combination
of error metrics, and when combined with the Eta SL scheme, it often gave the best or some of the
best WPD and maximum errors of CDF. Relative to the other SL schemes, the Eta SL scheme tended
to predict relatively higher wind speeds for the same PBL scheme. At lower heights, the UW and
GBM PBL schemes (with the Eta and R-MM5 SL schemes, respectively) tended to give better mean
WPD errors, but the MYNN3 with the Eta SL scheme still gave better skill scores and max CDF errors.
The above trends were also largely observed in the two seasons that pertain along the coast of Ghana
with few exceptions. A change in grid resolution was not found to significantly affect the trends in the
relative performance of the options.

Though we were not able to assess the performance of the schemes against different atmospheric
conditions, several of the trends from our results were found to be consistent with what has been
reported by other studies in the literature, based on which we believe our other observations and
conclusions are largely credible. Some of such results from other studies include the following: a
change in SL scheme did not have significant impacts on most of the error metrics [2,22]; the YSU
PBL scheme simulated higher winds than the MYNN3 PBL scheme [2,3,21]; average wind speeds
between sunset and sunrise were overpredicted [3,21]; the Eta SL scheme predicted higher T2s than
the R-MM5 scheme [60,63]; and no one option was always superior to the others [2,11].

The MYNN3-E-N configuration (as tested in this study with the GFS FNL) is most consistent
in predicting with relatively better combined wind speed error metrics and errors of CDF, as well
as relatively good mean WPD errors with changing factors (i.e., height, simulation grid box size,
and seasons in coastal Ghana). In addition, when predictions from this configuration (MYNN3-E-N)
for the study period were compared with monthly average wind speeds for four other locations along
the coast of Ghana estimated from [68], results were largely reasonable; average mean error was
within 0.5 m/s for the locations (see Table A4 in the Appendix A). Based on this we conclude that the
MYNN3-E-N configuration could be considered suitable for wind hindcasts for resource assessments
in coastal Ghana.
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Abstract 

Analysis, reanalysis and Land Use and Land Cover (LULC) datasets serve as sources of initial and boundary 

conditions, as well as surface properties data required for simulations in the Weather Research and 

Forecasting model (WRF). The accuracy of these datasets is among factors that significantly impact the 

prediction of surface winds in WRF. In this study, we examine sensitivity of surface wind and wind energy 

potential estimates in an area in coastal Ghana to five analysis and reanalysis datasets, as well as the two 

global LUCL datasets currently found in the static datasets of WRF.  In contrast to the LULCs tested, model 

estimates were significantly impacted by the different analysis or reanalysis datasets.  For the same type of 

reanalysis datasets, those prepared with higher resolution forecasts combined with more advanced data 

assimilation techniques produced better estimates, and vice versa. The Atmosphere–Ocean–Sea Ice–Land 

NCEP CFSv2 Reanalysis generally gave higher predictions of wind speeds and the best predictions of wind 

energy. However, the JMA JRA-55 Reanalysis data, and the NCEP GFS Analysis data, also had good 

impacts on model performance and are recommended as alternatives or complements to the NCEP CFSv2 

for wind simulations in the study area.   

 

Keywords:  
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1 Introduction 

Assessments of the wind resources, key to commercial development of wind power, have 

traditionally being done with data from mast mounted instruments, and in recent times, remote sensors such 

as Light Detection and Ranging (LIDAR) and Sound Detection and Ranging (SODAR). However, 

owing to the time consuming and the expensive nature of measuring campaigns with these instruments, 

Numerical Weather Prediction (NWP) models, such as the Weather Research and Forecasting model (WRF) 

model, are now being used to downscale meteorological datasets for the preliminary assessments. In a 

process referred to as dynamical downscaling,  these models modify initial conditions (from the 

meteorological datasets) to predict time varying atmospheric data at each point on a simulation grid, to 

generate data at desired spatial and temporal resolutions [1, 2]. The process takes into account the land cover 

and topographical properties of the area for which the data is desired, in addition to other things [3, 4]. The 

land cover and topographical properties serve as inputs in the calculation of  heat and energy fluxes which 

affect turbulence in the atmosphere [3]. Turbulence acts as a feedback mechanism in wind circulation [5]. 

Therefore, in addition to other factors (such as the parameterisation of the processes occurring on the sub-

grid scale and model resolution), the accuracy of the surface properties, and the meteorological (initialisation) 

datasets for downscaling, significantly impact the quality of the generated data [5-11]. This paper focuses on 

the impact selected meteorological and land cover datasets on the accuracy of wind that is downscaled (wind 

hindcasts) using the WRF model.  

For wind hindcasts in the WRF model, Analysis and Reanalysis datasets often serve as sources of 

initial and boundary conditions. They are produced via data assimilation, a process that uses observations 

and model-based forecasts to estimate atmospheric conditions and produce a gridded set of model dependent 

variables that are consistent with both the model dynamics and the information from the observations. The 

process involves the provision of a forecast of the atmosphere, which is updated in light of observations [2, 

12]. Reanalysis datasets are produced with a frozen system (forecast models and data assimilation methods) 

that remains unchanged over the temporal coverage (or range) of the dataset. The systems for producing 

Analysis datasets on the other hand benefit from model updates and upgrades over time [2, 4, 13-16]. In 

addition, unlike Analysis datasets, Reanalysis datasets comprise data from a Retrospective Analysis; the 

process of assimilating data for past periods, using a current model and all available data for those periods, 

to produce a long-term, model-consistent dataset [12].   

Due to differences in the (capabilities of the) forecast models and data assimilation techniques, as 

well as the amount and quality of the raw observational data that are used in their production, analysis and 

reanalysis datasets tend to vary in quality (accuracy when compared to observations). For instance, based on 

the incremental advancement of reanalysis techniques, datasets can be classified as first, second and third 

generation datasets; each new generation employing data assimilation techniques that offer improvements 

over the previous generation’s techniques [13]. In addition to the data assimilation techniques, the forecast 

models, can also have an impact on quality of the datasets. The forecast models, which in the case of global 

datasets are often spectral Atmospheric General Circulation Models (AGCMs), are basically NWP models 

that are formulated with the spectral method, as opposed to finite difference method used in finite-grid 
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AGCMs. A key advantage of  the spectral method (which might explain its wide use in global forecast 

models) is that, it is comparatively less computationally expensive [17]. Differences in the methods and how 

they impact model formulation and performance are explained in texts such as  [17]. The resolution of 

spectral models is governed by a wavenumber of truncation [17]. Higher wavenumbers mean higher 

resolutions (and often better datasets as model resolution significantly impact forecasts from NWP models), 

but at increased computational cost. In addition, parameterisation techniques (for approximating atmospheric 

processes occurring at sub-grid scale or are not fully understood) in these models affects their performance, 

and often varies among models. Lastly, the quality of the datasets might also be affected by the raw 

observational data that are used in their production. Sources of the observational data include radiosonde, 

satellite, buoy, aircraft among others. Changes in observation locations and observation platforms, as well 

as periodic data voids, sometimes throughout entire nations or regions for varying reasons, results in an 

inherent lack of uniformity in the quality of the raw data available [2, 13, 14]. These factors introduce 

unavoidable differences in the quality of initialisation datasets and their impacts on the results of the 

downscaling process [2, 13, 17].  

In producing wind hindcasts, Planetary Boundary Layer (PBL) parameterisation schemes in the 

WRF model need moisture and heat fluxes at the lower levels of the atmosphere. These fluxes are essential 

for better simulations of surface winds by NWPs [5]. Surface terrain parameters, such as surface roughness 

length, albedo, moisture, and emissivity, among others, serve as inputs in the estimation of these fluxes. They 

are calculated by the surface layer parameterization schemes in the WRF model, based on tabulated values 

associated with different Land Use And Land Cover (LULC) category datasets [6]. LULC datasets are 

prepared by classifying raw satellite data into categories based on the satellite imagery [18] and serve as 

sources of surface properties in WRF simulations.  

Owing to the different levels of impact on WRF predictions of surface winds for different areas, as 

has been realised from several studies on in open literature [4, 6, 8-10, 19-21], and also that analysis and 

reanalysis datasets are sometimes “tuned” for different objectives, making their performance dependent on 

their intended use [16],  a sensitivity analysis of available datasets might be necessary to determine the best 

dataset(s) to use for simulations for an application in an area.  

Against this background, in this paper, we assess the impact of selected initialisation and LULC 

datasets to surface wind speed and energy predictions by WRF, for an area in coastal Ghana. We aim to 

identify that might  correlate well with accuracy of the hindcasts (when compared to observations) in order 

to suggest guidelines for their selection for generating wind hindcasts in the area (and probably the west 

African sub-region). In addition, we aim to recommend dataset(s) for generating wind hindcasts with the  

WRF model for resource assessments in coastal Ghana.  The rest of the paper is organised as follows; Section 

2 covers the study area, verification data, selected details of the datasets tested and the experimental design. 

Section 3 is on the results and discussions and section 4, the conclusions drawn from the results.  

 

2 Data and Methods 

2.1 Study Area and Measured Data 

TheodoreMGiannaros
Inserted Text
the

TheodoreMGiannaros
Cross-Out
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The study area covers the coastal plains of south east Ghana. The measured wind data for this study was 

measured on a mast (location: 5.786 ON, 0.918 OE) used in a wind measurement campaign by the Energy 

Commission of Ghana. The data comprises wind speeds measured at heights of 40, 50, and 60 m above 

ground level. The area experiences two main seasons in a year; a Harmattan season that is dominated by dry 

and dusty desert winds from the North-East, lasting till around February, and a bimodal Rainy season 

dominated by Monsoon winds ends around November [22]. 

               

2.2 Model Configuration 

The Advanced Research WRF (ARW) 3.8.1 is used for this study. Key features of the model include 

a Eulerian mass solver, a terrain following vertical coordinate and staggered horizontal grid system. A 

detailed description of the model physics, equations and dynamics is available [23]. The model configuration, 

summarized in Table 1 is the same as that used in an earlier study in the area [24].  

Table 1: Model Configuration 
Model Version  Advanced Research WRF v3.8.1  

Initial and boundary conditions 

 

a) NCEP GFS-FNL 

b) NCEP CFSv2 

c) ECWMF ERA-Interim 

d) JMA JRA-55 

e) NCEP/D0E R2 

Topographical data USGS GMTED2010 

Land Use data  a) USGS with lakes 

b) MODIS with lakes 

Vertical Resolution  40  vertical levels (automatically set) 

Domains d01 d02 d03 d04 

Horizontal resolution (km) 81 27  9  3  

Domain size (grid points) 74 x 77 100 x 103 103 x 103 55 x 55 

Parameterisation Schemes: Same as was used by [24]  

 

 

Figure 1: Simulation domains. 

 

The two global LULC datasets available in the WRF Static data [25] were tested. These are the 

United States Geological Survey (USGS), and the IGBP-Modified Moderate Resolution Imaging 
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Spectroradiometer (MODIS) LULC datasets. The USGS dataset takes its primary inputs from composite 

images from the Advanced Very High-Resolution Radiometer (AVHRR) satellite, sourced from April 1992 

to March 1993 [7]. It has 24 land cover categories, classified according to the Normalised Difference 

Vegetation Index (NDVI) [7]. The MODIS LULC on the other hand is derived from data from the 

Terra/Aqua Earth Observation System satellites, and has 20 land cover classes, as defined by the 

International Geosphere Biosphere Program (IGBP) [7]. Both LULC datasets were tested in combination 

with the special land cover dataset in the WRF model that distinguishes between oceans and inland water 

bodies (lakes) [26, 27]. Plots of both LULC categories from both datasets (for simulation domain 2) are 

shown in Figure 2. The MODIS LULC plot has been reclassified to USGS according to [7] for easy 

comparison.  

 

Figure 2: Plot of the MODIS (left) and USGS (right) LULC in the Second Domain. 

 

Five Gridded Binary (GRIB) meteorological datasets from the Research Data Archive (RDA) of the 

National Centre of Atmospheric Research (NCAR) [28] were tested. These are;  

i. The 1 degree NCEP Final Analysis (NCEP GFS-FNL) [29]. 

ii. The NCEP Climate Forecast System Version 2 (NCEP-CFSv2) [30]. 

iii. The ECMWF ERA Interim [31]. 

iv. The Japan Meteorological Agency JRA-55 Reanalysis (JMA JRA-55) [32]. 

v. The NCEP/DOE R2 [33]. 

Selected characteristics of the meteorological datasets (as tested) are summarised in Table 2. Other 

datasets were not tested because they did not cover the period for which we had observational data for 

verification (2013) or have been improved upon by one of the five tested. The latter was the case with the 

NCEP/NCAR R1. 

Table 2: Selected specifications of initialisation datasets tested [15, 29-38]. 
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Dataset 
Data Type AGCM Model  

Resolution  

Data Assimilation 

Technique 

Resolution tested 

(lon. x lat. x pressure levels) 

NCEP GFS-FNL Analysis T574/T190,  L64   Hybrid 3DVAR * 1 x 1 x 26 

NCEP CFSv2  Reanalysis T126, L64 0.266 hPa top 3DVAR 0.5 x 0.5 x 37 

ECMWF ERA-I Reanalysis T255, L60 0.1 hPa top 4DVAR 0.703 x ~0.702 x 37 

JMA JRA-55  Reanalysis T319, L60 0.1 hPa top 4DVAR  1.25 x 1.25 x 37 

 NCEP/DOE R2 Reanalysis T62, L28 3 hPa top 3DVAR 2.5 x 2.5 x 18 
* as at 2012 [35] 

 

Experimental Design 

Ten experiments, each involving two simulations; one each, for the months of February and 

September 2013, were conducted. These months were chosen because of their relatively high monthly 

average wind speeds in the seasons in the study area. It was hoped that by selecting these months, seasonal 

variations of winds could be accounted for in the study. A similar approach has been used in past sensitivity 

studies [39, 40]. Possible interactions between LULC and initialisation datasets were explored by using a 

different combination of LULC and initialisation dataset in each experiment. Details of the dataset 

combinations are presented in Table 3. Initial runs with the JMA JRA-55 dataset were not successful (as a 

result of unsuccessful pre-processing of soil data that is needed by the Noah LSM, which was used in the 

configuration for this study). Therefore, the JRA-55 dataset was complemented with soil data from the GFS-

FNL dataset for both JRA-55 experiments. Following practices of past studies in the area [24, 41, 42], a spin-

up time of 12 hours was used for each simulation. To save on computational power, the nudging technique 

in the WRF model’s Four Dimensional Data Assimilation (FDDA) System was applied in each simulation  

with a simulation run time of 30 days as recommended in a previous study in the area [24]. All the 

experiments except for the R2 experiments were run with the three inner domains (d02, d03, and d04). Due 

to the larger spatial resolution the R2 dataset, domain d01 was used in addition to the inner 3 in the R2 

experiments.  

 

Table 3: Experimental Design 

No. Experiment Name Initialisation Data LULC Data Domains Used 

1 USGS_CFSv2 NCEP CFSv2 USGS d02, d03, d04 

2 MODIS_CFSv2 NCEP CFSv2 MODIS d02, d03, d04 

3 USGS_FNL NCEP GFS FNL USGS d02, d03, d04 

4 MODIS_FNL NCEP GFS FNL MODIS d02, d03, d04 

5 USGS_ERA-I ECWMF ERA-Interim USGS d02, d03, d04 

6 MODIS_ERA-I ECWMF ERA-Interim MODIS d02, d03, d04 

7 USGS_JRA-55 JMA JRA-55 USGS d02, d03, d04 

8 MODIS_JRA-55 JMA JRA-55 MODIS d02, d03, d04 

9 USGS_R2 NCEP/DOE R2 USGS d01, d02, d03, d04 

10 MODIS_R2 NCEP/DOE R2 MODIS d01, d02, d03, d04 

 

2.5 Evaluation 

Evaluation of predictions followed the same procedures as has been used in previous studies in the area 

[41]. Predictions were assessed with the Root Mean Square Error (RMSE), Mean Error (ME), Standard 

Deviation of the Error (STDE) and a Correlation Coefficient (CC) which were combined into a Skill Score 

as was done in previous studies [24]. Calculation of  each metric followed the procedures used in previous 



7 
 

studies in the study area [24]. The error metrics were also compared to performance benchmarks as had been 

used in a previous study in the study area.  

The Weibull cumulative distributions and mean wind power densities estimated with data from the 

experiments and observations were also compared as has been done in previous studies. Weibull parameters, 

and other metrics of comparison (Maximum absolute Cumulative Density Function Error, and Mean Wind 

Power Density Error as explained in [41]) were calculated with the same formulations from [41]. However, 

in this study, the Empirical, and the Power Density methods were used since they compared closely in an 

evaluation with observational covering the study period. Formulations for the two methods were from [43].  

 

3. Results and Discussion 

Averages of observed and downscaled wind speeds, and evaluation metrics at 60 m for the study 

period are presented in Table 4. It can be seen from the Table that, even though the MODIS LULC often 

gave better metrics, its values did not differ greatly from those of the USGS LULC, irrespective of 

meteorological dataset it was paired with. However, average wind speeds and error metrics differed 

significantly for the different meteorological datasets. Most of the meteorological datasets met most of the 

RMSE and CC benchmarks for performance (i.e. RMSE < m/s, CC > 0.7). However, the CC of the CFSv2 

was less than the benchmark, and all the metrics of the NCPE/DOE R2 did not meet any of the benchmarks. 

None of the datasets met the benchmark for ME. However, the JMA JRA-55 had the relatively least absolute 

ME. While the CC of NCEP GFS FNL was best. JMA JRA-55 had the best combination of metrics followed 

by the NCEP GFS FNL, then the ECWMF ERA-I. The NCEP/DOE R2 had the relatively worst combination 

of metrics.  

 

Table 4: Average predictions and Statistical Metrics at 60 m for the entire study period. 

Experiment 
Average Wind Speeds 

(m/s) 

RMSE 

(m/s) 

STDE 

(m/s) 
CC 

ME 

(m/s) 

Speed Prediction 

Skill Score 

Observation 6.89      

USGS_FNL 5.94 1.52 1.19 0.8 -0.9 3.4 

MODIS_FNL 6.00 1.49 1.20 0.8 -0.9 3.5 

USGS_CFSv2 6.10 1.65 1.45 0.6 -0.8 2.5 

MODIS_CFSv2 6.11 1.64 1.45 0.6 -0.8 2.5 

USGS_ERA-I 5.74 1.77 1.34 0.7 -1.2 2.3 

MODIS_ERA-I 5.82 1.68 1.29 0.7 -1.1 2.7 

USGS_JRA-55 6.22 1.46 1.30 0.7 -0.7 3.5 

MODIS_JRA-55 6.26 1.43 1.28 0.7 -0.6 3.7 

USGS_R2 5.54 2.18 1.71 0.5 -1.4 0.1 

MODIS_R2 5.65 2.15 1.76 0.5 -1.2 0.2 

 

Similar trends were observed on the Mean WPD, as well as the Mean WPD and Max CDF Errors as 

well, as can be seen in Table 5. Though the MODIS LULC generally had lower errors, it was often not more 

than 2 points better than the USGS LULC. The JMA JRA-55 again had the relatively best predictions of 

Mean WPD, Max CDF Error while the NCEP/DOE R2 had the relatively worst. However, these estimates 

for the CFSv2 were better than those for the NCEP-GFS FNL and ERA-I datasets. These trends were not 

affected by the methods we used in computing the Weibull parameters. However, errors were slightly smaller 
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when the Power Density Method was used. Significant differences were not observed in the above trends in 

similar analyses at 50 m and 40 m (see Tables in appendix).  A repeat of the analysis with data from the 9 

km resolution domain did not change trends observed in the earlier analysis. Error margins in the two LUCL 

datasets were greater. But the MODIS LULC still had better impacts than the USGS LULC.  

 

Table 5: Weibull parameters, Mean WPD Error, and Max CDF Error calculated with Empirical and Power 

Density Methods. 

 

Empirical Method Power Density Method 

c k 
Mean 

WPD 

Mean WPD 

Error 

(%) 

Max 

|CDF Error| 
c k 

Mean 

WPD 

Mean 

WPD Error 

(%) 

Max 

|CDF Error| 

Observation 7.6 4.2 230   7.6 4.1 233   

USGS_FNL 6.5 4.7 143 -38.1 0.25 6.5 4.2 148 -36.5 0.22 

MODIS_FNL 6.6 4.8 147 -36.3 0.23 6.6 4.2 152 -34.6 0.21 

USGS_CFSv2 6.7 4.7 154 -33.1 0.21 6.7 4.2 160 -31.3 0.18 

MODIS_CFSv2 6.7 4.9 153 -33.4 0.22 6.7 4.2 160 -31.2 0.18 

USGS_ERA-I 6.3 4.2 133 -42.3 0.28 6.3 4.1 134 -42.3 0.27 

MODIS_ERA-I 6.4 4.3 138 -40.1 0.26 6.4 4.1 140 -40.0 0.25 

USGS_JRA-55 6.9 4.1 171 -25.9 0.15 6.9 4.0 172 -26.2 0.15 

MODIS_JRA-55 6.9 4.2 173 -24.9 0.15 6.9 4.0 175 -25.1 0.14 

USGS_R2 6.2 3.5 128 -44.5 0.29 6.1 3.9 123 -47.2 0.30 

MODIS_R2 6.3 3.5 136 -41.0 0.27 6.2 3.9 131 -44.0 0.28 

 

4. Discussion 

The quality downscaled data depends on a combination of several factors such as the quality of the 

input datasets (which are in turn affected by factors discussed earlier), the capabilities of the downscaling 

model itself which also depends on several other factors. It will be difficult to satisfactorily explain trends in 

our results without considering all these factors and how they interact with each other to affect the final 

downscaled data.  Nonetheless, some of the trends in the comparisons of the initialisation datasets can be 

explained to some extent.  

The meteorological datasets can be classified according to some key characteristics, which include; 

the type of dataset (whether analysis or reanalysis), the data assimilation technique that was used in the 

(analysis/reanalysis) process, the type of AGCM and the resolution at which it produced the forecasts for the 

(analysis/reanalysis) process, and the final resolution of the datasets from this process. These characteristics 

are summarised for each meteorological dataset tested, in Table 2. In terms of data assimilation techniques, 

the ECMWF ERA-I and JMA JRA-55 can be classified as third-generation Reanalyses, with the NCEP R2, 

a first generation Reanalysis, as explained by [13]. The NCEP GFS-FNL is an analysis dataset, and the NCEP 

CFSv2 differs from all the other datasets tested here, in that it is a Coupled Reanalysis, as it utilises forecasts 

from a Coupled Forecast Model (a coupled atmosphere–ocean–sea ice–land model to better account for 

ocean interactions) in its forecasts [13, 44].  

The mathematical concepts and basis for various approaches to data assimilation (which have 

evolved over the years), are described in texts such as [2, 45]. A major improvement to the data assimilation 

process was achieved with the variational 3DVAR method which enabled the use of worldwide observations 

[2, 46]. However, limitations of 3DVAR data assimilation include its inability to use asynoptic data (data 

measured at times either than the synoptic hours of 00, 06, 12 and 18 UTC) and account for the time-evolution 

of the errors associated with data [45, 47, 48]. The 4DVAR method accounts for this to some extent with a 
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linear forecast model to account for the evolution of perturbations in the atmospheric state, representing and 

calculating the time-evolution of errors from the forecast and observational data, albeit at extra computational 

cost [45, 48, 49]. The Hybrid (Variational–Ensemble) data assimilation technique combines the variational 

data assimilation with another technique; the Ensemble Kalman Filter (EnKF) technique. The Ensemble 

Kalman Filter (EnKF) technique (like the 4DVAR,) accounts for time-evolution errors by deriving error 

estimates from nonlinear short-range forecasts from an ensemble prediction system (EPS) [48, 49]. The 

Hybrid data assimilation technique has been found to sometimes offer comparatively better performance 

over the pure variational and pure ensemble techniques in both 3DVAR and 4DVAR modes [49, 50].  

Generally, better data assimilation techniques (used for the latter generation datasets) and higher 

resolutions of the forecasts by the AGCM models, should produce better analysis/reanalysis products 

(datasets) [13, 17]. Our results suggest that, the relative performances are probably significantly impacted 

by the forecast resolutions and data assimilation techniques employed in their production.  

This will explain the relative worse quality of the of the R2 Reanalysis as compared to all the other 

datasets, as they both use AGCM forecasts of relatively better resolution and relatively better data 

assimilation techniques in their reanalysis process (See Table 2). The NCEP GFS-FNL’s forecast model (the 

Global Forecast System (GFS)) and data assimilation systems (the Global Data Assimilation System 

(GDAS)) have, and continue to benefit from updates since its introduction [35], hence it is an analysis dataset. 

In May 2012, the GDAS started employing the Hybrid 3D-VAR technique and the GFS resolution was 

T574/T190L64 (depending on forecast time) [35]. As has been noted by [49, 50], the Hybrid 3DVAR 

technique sometimes produces better results than more sophisticated assimilation techniques. This, with its 

higher resolution model forecasts, is probably responsible to some extent, for its relatively better prediction 

metrics. Atmospheric forecast models use somewhat simplified physics representations compared with the 

physics representations of Coupled Forecast Models[2]. Giving that the study area is near the coast with 

possible ocean influences on local winds (land and sea breezes), the possible influence of the coupled model 

forecasts (even though are of a relatively coarse resolution) cannot be ruled out on the quality of the CFSv2 

dataset.   

The results did not suggest a trend in the impact of the spatial resolution of the produced datasets (as 

downloaded) on the quality of the data downscaled from them, as the JMA-55 is of a relatively lower (worse) 

resolution than the CFSv2, ERA-I and GFS-FNL datasets, yet it seems to outperform them.  

 

4 Summary and Conclusion 

Land Use and Land Cover (LULC) and meteorological datasets have been reported to have varying 

impacts on the quality of dynamically downscaled wind data by the WRF model worldwide [4, 6, 8-10, 19-

21]. Against this background, this study sought to recommend LULC and GriB formatted meteorological 

datasets data from the options available at [25] and [28] respectively on wind speeds downscaled with the 

WRF model for a coastal area in Ghana. The study also sought to identify characteristics of the 

meteorological datasets that often correlated well with good hindcasts to inform choices in future 
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downscaling exercises or studies Two LULC datasets and five meteorological datasets were tested in 10 

dynamical downscaling experiments. 

Results confirm that, the accuracy of the downscaled data depends on the meteorological datasets 

that are downscaled [5, 9, 11]. In addition, results also confirm that when newer generation reanalysis 

meteorological datasets are downscaled, the end products are better (in terms of all the evaluation criteria 

considered in this study) than older generation ones [13, 21]. Among the meteorological datasets tested, the 

JMA JRA-55 gave the best combination of error metrics, Mean Wind Power Density and Cumulative Density 

Function error. Though the CFSv2 gave the next best WPD and Cumulative Density Errors, its combination 

of wind speed error metrics was not as good as that of the GFS FNL dataset. In addition, the GFS FNL had 

the relatively best CC of all the datasets tested. The first generation NCEP R2 reanalysis was the worst of 

the meteorological datasets tested. On the LULC datasets, results indicate the MODIS LULC gave the 

relatively better combination of error metrics as well as Mean WPD and CDF Errors when compared to the 

USGS LULC, though the difference between the metrics of the two were not so different. Trends were not 

significantly affected by a change in the grid size or the method of estimating the Weibull parameters for 

Power Density estimations. 

From our results we conclude that tests of different meteorological datasets are necessary to 

determine the best one to downscale for wind data for different areas and periods. For areas in coastal Ghana 

(and perhaps the west African sub region), where the meteorological datasets are of the same type, the 

resolution of the global model forecasts and the data assimilation techniques used in their preparation can be 

used as criteria select candidate options for testing. Based on the current results, we conclude that the JMA 

JRA-55 probably gives the best downscaled wind data for this area in coastal Ghana. However, all the other 

meteorological datasets except the NCEP R2 are worth considering in future tests and downscaling activities.   
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