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1 |  INTRODUCTION

Maternal traits are important for sheep produced in pas-
ture-based production systems where overall production 
efficiency depend heavily on the maternal abilities of ewes 
(Conington, Bishop, Waterhouse, & Simm, 2004). The 
Norwegian White Sheep (NWS) breeding programme has 
experienced a large genetic gain in litter size (Eikje, Ådnøy, 
& Klemetsdal, 2008), and this increases the demand for a ewe 
that can feed and raise multiple lambs. In addition to milk 
yield, maternal traits such as udder conformation, lambing 
difficulties and mastitis have large effects on production costs 
and animal welfare and need to be considered in the breed-
ing goal. The conventional breeding programme is a progeny 
testing scheme, which is optimized to improve growth related 

traits and slaughter traits. With increasing importance of ma-
ternal traits, a revision of the breeding programme is needed.

Implementation of genomic selection is expected to im-
prove genetic gain for maternal traits already included in 
the breeding goal and facilitate effective selection for new 
maternal traits to be included in the future. Several studies 
on the implementation of genomic selection have suggested 
a large potential for improving traits not measured directly 
on selection candidates both in sheep (Brito et al., 2017; 
Pickering, Dodds, Auvray, & Mcewan, 2013) and other spe-
cies (Goddard, 2009; Ibañez-Escriche & Gonzalez-Recio, 
2011; Lillehammer, Meuwissen, & Sonesson, 2013). Typical 
challenges when genomic selection is to be implemented 
in sheep are the large number of breeds. These tend to be 
numerically small, causing small reference populations and 
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generation interval for artificial insemination rams from current 3 to 2 years. Then, 
total genetic gain for maternal traits increased by 65%–77% and total genetic gain 
by18%–20%, but at increased rates of inbreeding.
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have low linkage disequilibrium and sometimes lack of 
phenotypic recording (Rupp, Mucha, Larroque, Mcewan, 
& Conington, 2016). Across breed genomic evaluation has 
shown to give low selection accuracy (Daetwyler, Kemper, 
Werf, & Hayes, 2012). However, genomic selection has been 
implemented for meat sheep in Australia and New Zealand, 
but with low cost-benefit margins at the current genotyping 
cost (Rupp et al., 2016). When it comes to number of animals 
available to build and update a reference population, this is 
also a challenge in Norway. NWS is numerically a large pop-
ulation (100,000 breeding ewes per year), but limited use of 
artificial insemination (AI) gives few animals with accurate 
progeny proofs available to update the reference population.

The aim of this study was to test different implementation 
strategies for genomic selection, designed to increase genetic 
gain for maternal traits. The strategies were compared with 
a conventional pedigree-based breeding scheme and with a 
pedigree-based breeding scheme with prolonged generation 
intervals from including a progeny test for maternal traits. 
The comparisons were made through stochastic simulations. 
The tested scenarios were limited to those relevant and eco-
nomically feasible for NWS.

2 |  MATERIALS AND METHODS

2.1 | The conventional breeding programme 
in NWS

The breeding goal of NWS in Norway consists of several 
traits, which can be divided into three categories, depending 
on their source of information. The categories are (a) growth 
related traits measured on all animals at 6 months of age, (b) 
carcass traits measured on slaughtered lambs, and (c) mater-
nal traits measured on ewes when they have offspring. The 
NWS breeding population counts approximately 100,000 
ewes, in a number of ram circles (breeding units) with on 
average 1,000 ewes each. Usually, a ram circle includes more 

than one flock. Flocks exchange males within circles, but 
not between circles due to health restrictions (Eikje et al., 
2008). Selection of rams takes place in several stages. Test 
rams are selected within ram circles among half-year-old 
ram lambs. The selection is based on a combination of esti-
mated breeding value, exterior traits and wool quality traits. 
The breeding organization “The Norwegian Association 
of Sheep and Goat Breeders” (NSG) decides the minimum 
score needed to be eligible for selection. The selection deci-
sion is then made by the farmers in the ram circle, among 
the eligible rams. In total, 1,800 test rams are progeny tested 
every year. Elite rams (300 in total) are selected within ram 
circles among the previous year's test rams, and 20 rams for 
artificial insemination (AI) are selected each year across ram 
circles among the previous year's elite rams. In all stages, 
rams are selected based on their total merit index and to some 
extent on the pedigree relationship. Rams for AI are selected 
by NSG, based on EBV. The AI rams are usually used for 
one year only, giving a generation interval for the AI rams 
of 3 years. Approximately 10% of the lambs born every year 
are from AI sires. This scheme has been optimized, assuming 
the use of pedigree based BLUP breeding value estimation 
and simultaneous use of local elite rams and central AI rams 
(Eikje, Schaeffer, Adnoy, & Klemetsdal, 2011). With access 
to BLUP-EBV on an animal level based on analyses of the 
whole national breeding population, dams are selected within 
herd, and selection decisions as well as mating decisions are 
made by the farmers.

The average amount of phenotypic information available 
for the different categories of male candidates, on the candi-
dates themselves and on their progeny groups, is shown in 
Table 1. The first row of Table 1 corresponds to the infor-
mation available when selecting lambs to become test rams, 
which is only own phenotype for growth related traits (in ad-
dition to information from sibs and older relatives). The next 
two rows of Table 1 represent the available information when 
selecting elite rams and AI rams, respectively. Selection of 
elite rams among the test rams takes place in the autumn at 

Age

GROWa CARCa MATa 

Phenotype Progeny Phenotype Progeny Phenotype Progeny

0.5 yearsb 1 – – – – –

1.5 yearsb 1 60 – 25 – –

2 yearsb 1 60 – 50 – –

3 yearsb 1 120 – 80 – 20
aThe traits were defined as follows: GROW—trait measured on male and female candidates before the first 
round of selection; CARC—trait measured on slaughtered lambs; MAT—trait measured on females when 
having the first litter. 
bAge class when information becomes available; 0.5 years corresponds to the stage when selecting young 
males for progeny testing, 1.5 years is when selecting elite males to be used for a second year locally, 2 years 
is when selecting AI males, and 3 years is when selecting AI males one year delayed (scheme PED-4) or to be 
used for a reference population in the genomic selection schemes. 

T A B L E  1  Accumulated, average 
amount of phenotypic information for rams 
and traits (own performance and/or number 
of progeny with records)
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1.5 years of age. By this time, the first offspring group will 
have live weight information and some of them have already 
become slaughtered. Successive selection of AI rams among 
the elite rams takes place in the summer at 2 years of age, 
with access to all the slaughter information for the first off-
spring group, but yet with no information about the second 
offspring group (Table 1). The final row of Table 1 shows the 
cumulative information obtained on the elite rams after hav-
ing two rounds of offspring that will contribute to increased 
selection accuracy for relatives of the male candidates in the 
conventional breeding scheme.

All selection steps in the conventional breeding pro-
gramme are based on BLUP-EBV. This progeny test scheme 
is well designed to produce genetic gain in growth and slaugh-
ter traits, because the test rams get progeny records for these 
traits before being selected for AI. For maternal traits, how-
ever most information about the daughters, like for instance 
litter size, health and maternal ability are not available in time 
before the rams are selected to become elite rams or AI rams. 
Improvement in maternal traits is therefore dependent on in-
formation about sisters, aunts and more distant relatives to 
the male candidates. To increase the genetic gain for mater-
nal traits, two options exist; either to increase the generation 
interval to allow for a progeny test for maternal traits (i.e. to 
wait for the information in the last row of Table 1) or to use 
genomic selection to get more accurate breeding values for 
maternal traits without relying on progeny testing.

2.2 | Description of the simulations

A historical population was simulated by random mating for 
2000 generations according to the Fisher-Wright population 
model (Fisher, 1930; Wright, 1931) assuming an effective 
population size of 200. To create polymorphisms in the ge-
nome and linkage disequilibrium between genes and between 
the genes and the molecular markers, mutation and recombi-
nation events were sampled at random positions throughout 
the period as in Sonesson and Meuwissen (2009). The last 
generation of the historical population was used as a base 
for the breeding population. Among the polymorphisms that 
were present at this stage, 100 randomly selected polymor-
phisms with minor allele frequency above 0.05 per chromo-
some were used as QTL, and the 500 polymorphisms with 
highest minor allele frequency per chromosome were used 
as neutral markers. Each animal was simulated to have 10 
pairs of chromosomes although sheep is known to have 27 
pairs of chromosomes. Each chromosome was 100cM long. 
Downsizing of the total genome size from 34 M down to 10 M 
was necessary to reduce the computational requirements. A 
smaller genome size increases the accuracy of genomic se-
lection (Daetwyler, Villanueva, Bijma, & Woolliams, 2007); 
thus, the resulting accuracies and genetic gains will require 

in practice larger training population sizes than were used in 
the simulation.

Starting with the base population, the breeding population 
was set up to mimic the conventional breeding population of 
NWS (100,000 ewes) and run for 12 years. Only the selection 
candidates were individually simulated, being the offspring 
of AI or elite sires. It was assumed that 74% of the ewes were 
mated with a test ram. Consequently, the number of ewes to 
give birth to selection candidates (i.e. mated to the 300 elite or 
20 AI sire, see below) was 26,000 (26% of 100,000). A total 
of 12,800 lambs were simulated with an AI sire and a dam 
randomly selected among the top 25% of the ewes and 28,800 
lambs were simulated with an elite sire and a dam randomly 
selected among the top 40% of the ewes. Consequently, each 
elite sire and AI sire got 96 and 640 lambs, respectively, and 
the numbers of selection candidates from each mating category 
reflected the numbers in the real population. Each ewe had on 
average 1.6 lambs, which corresponds to the average number 
of available selection candidates from each litter in the NWS 
population, accounting for that some lambs born dies, get sick, 
get fostered by a different ewe etc., which will exclude the lamb 
from being a selection candidate. Simulated females were those 
needed to mate with the three categories of males, and all fe-
males were candidates from age 1 until age 4, but ewes were 
randomly culled (33% every year) from the age of 2 to reflect 
the NWS ewe population and ewe selection, which is decided 
by the farmers, and not necessarily based on EBV, although 
EBVs are available. No random culling of males occurred, but 
non-selected males were culled after each stage of selection.

The simulated breeding programme consisted of three 
traits, where each simulated trait reflects an index of the traits 
with information from the same group of animals. The simu-
lated traits were denoted GROW (growth related traits mea-
sured on selection candidates), CARC (carcass traits measured 
on slaughtered lambs) and MAT (maternal traits measured on 
ewes when they have their first litter). Selection was based on 
a weighted index of the single trait breeding values (GEBV or 
BLUP-EBV), assuming 50% weight on MAT, 30% weight on 
GROW and 20% weight on CARC. The genetic parameters 

T A B L E  2  Genetic parameters assumed for the simulated traits

  GROWa CARCa MATa 

GROWa 0.1    

CARCa −0.2 0.25  

MATa 0/−0.2b 0 0.05

Note: The table shows heritabilities on the diagonal and correlations 
(phenotypic, genetic and residual) on the lower triangular. Genetic variances 
were standardized to 1.
aThe traits were defined as follows: GROW—trait measured on male and 
female candidates before the first round of selection; CARC—trait measured on 
slaughtered lambs; MAT—trait measured on females when having the first litter. 
bTwo different levels of this correlation were tested. 
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assumed for the simulated traits are as shown in Table 2. Since 
each simulated trait reflects a typical set (index) of real traits, 
heritabilities and correlations do not reflect actual traits, but 
are typical parameters found for each category of traits in NWS 
and other breeds (Brito et al., 2017; Eikje et al., 2011). For the 
correlation between MAT and GROW, we tested two different 
levels, 0 and −0.2, as indicated in Table 2, since the MAT index 
may consist of a wide variety of already included, but also fu-
ture maternal traits, and the correlations between these traits 
and GROW are unknown. In the simulations, it was further as-
sumed that the residual and phenotypic correlations between 
traits equalled the genetic correlations.

Male selection was conducted in three steps, as in the 
conventional breeding programme. The number of test rams 
in the simulation was set to 1,500, somewhat reduced from 
the 1,800 used in the conventional breeding programme, to 
account for that some test rams fail to produce enough prog-
eny records. All selection was truncated selection without in-
breeding restrictions. The first selection step occurred when 
the lambs were approximately 6 months of age, where 1,500 
test rams were selected among the 20 800 male lambs born 
from elite or AI sires, assuming a sex ratio of 0.5. The 1,500 
test rams got offspring when they were 1 year of age, and the 
best 300 were selected to get offspring again when they were 
2 years of age and then denoted elite rams. Finally, among 
the elite rams, 20 AI rams were selected to obtain a third 
offspring group when they were 3 years of age. At each stage 
of selection, male selection candidates were assumed to have 
the average size of the progeny group as described in Table 1. 
Females were assumed to obtain own phenotype for GROW 
at the age of 0.5 years and for MAT at the age of 1.5 years. In 
addition, they were assumed to accumulate 1–5 progeny with 
records, depending on trait, over their lifetime.

2.3 | Simulated records and breeding 
value estimation

For all animals, QTL-effects were sampled from a multi-
variate normal distribution (MVN), assuming that the QTL-
effects were normally distributed, with mean 0 and variance 
V = 1/1,000 × g, where g is the genetic covariance matrix 
of the three traits, scaled to give genetic variance of 1 for 
each trait and genetic covariance to fit with the assumed cor-
relations in Table  2. The total number of QTL was 1,000. 
True breeding values (TBV) were calculated as the sum of 
the QTL effects for each trait per individual.

The records (yi = [yiGROW yiCARC yiMAT]’) of individual i 
were simulated as: yi = TBVi +ri, where ri is a random devi-
ate vector ~ MVN(0,R), and R is the residual covariance ma-
trix, scaled to give heritabilities and residual correlations 
between the traits as given in Table 2. When an animal (male 
or female) had progeny with records, the progeny record 

(PROG) for animal i, trait j, was produced as: 
PROGij = 1/2TBVij + rij, where TBV is as defined above and 
rij is a standard normal random deviate, 
N∼

(

0,

(

0.75�2
gj
+�2

rj

)

∕nij

)

, where n is the number of prog-

eny assumed for animal i, trait j. Since progeny records were 
produced directly for the sires, progeny group size was as-
sumed to be equal for all sires within a category, and the 
progeny record also includes records from animals not indi-
vidually simulated, like daughters of test rams. Progeny re-
cords for sires were simulated also after the sire was culled, 
to add to the accuracy of GEBV when the sire exists in the 
reference population.

Selection of females was always based on conventional 
pedigree-based BLUP breeding values (BLUP-EBV), pre-
dicted with a univariate animal model: yij = µj + uij + eij, in 
which yij was the phenotype or progeny record for animal i, 
trait j, μj was the overall mean for trait j, uij was breeding 
value for animal i, trait j, assumed to have a variance of 
A×�2

uj
, where A was the relationship matrix estimated from 

the pedigree and �2
uj

 was the genetic variation of trait j, and eij 
was the random residual for individual i, trait j, assumed to 
have a variance of �2

ej
.

Males were in some schemes and stages selected based on 
genomic breeding values, estimated with the SNP-BLUP 
method (GEBV) (Meuwissen, Hayes, & Goddard, 2001). In 
SNP-BLUP, the following single trait statistical model was 

used: yij =�j+
5000
∑

k=1

Xikakj+eij, where Xik was the marker gen-

otype; akj was the random effect of the kth marker on trait j, 
with variance equal to the total additive genetic variance for 
trait j, �2

uj
 divided by number of SNP-markers (5,000) and 

other traits were as defined in the pedigree based BLUP 
model. Additive breeding values (uij) for candidates were es-
timated as a sum of the SNP effects of all their SNP markers 
for each trait. All genotyped animals were selected based on 
GEBV, while selection among non-genotyped individuals 
was based on BLUP-EBV.

Level of inbreeding, estimated from the pedigree, was 
monitored every generation and reported as an output of the 
simulation programme.

2.4 | Simulated selection schemes

The simulated schemes were denoted “method-x_y,” where 
methods were either PED or GS, depending on whether 
breeding value estimation for the males was based on pedi-
gree BLUP-EBV or on GEBV, x denotes the generation in-
terval for AI males and y is the number of genotyped animals 
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per year (for GS schemes only). The scheme PED-3 aimed to 
estimate the genetic gain of the conventional breeding pro-
gramme. The other schemes tested were designed to increase 
genetic gain for MAT, without compromising genetic gain in 
other traits.

One strategy to obtain increased genetic gain for maternal 
traits would be to increase the generation interval and select 
AI rams at a higher age. This was tested in the scheme PED-
4, where elite sires were used for two years in the herds, and 
the AI sires were selected one year later than at current, giv-
ing a generation interval of 4 years for the AI rams. In scheme 
PED-4, selection was based on BLUP-EBV.

Alternatively, genomic selection could be used to ob-
tain increased accuracy of selection for maternal traits at a 
younger age through the use of GEBV (Meuwissen et al., 
2001). This was tested by the use of four different genomic 
selection (GS) schemes. In the GS-schemes, it was assumed 
that prior to the start of the selection scheme, 320 proven 
rams and 30,000 females with records were genotyped. The 
reference population consisted of the accumulated data from 
these genotyped animals and animals genotyped after the 
GS scheme was started. Two of the tested genomic selec-
tion schemes introduced genomic selection without altering 
the generation interval. These were denoted GS-3_300 and 
GS-3_1500. In GS-3_300, the elite rams (n  =  300) were 
genotyped every year, and genomic selection was used to 
select the AI rams among the elite rams, keeping the gener-
ation interval for the AI rams at 3 years. In GS-3_1500, all 
test rams were genotyped after they had produced offspring 
groups. Selection of elite rams were based on BLUP-EBV, 
while selection of AI rams among the elite rams was based 
on GEBV. The generation intervals for all categories re-
mained the same, but all test rams were genotyped, increas-
ing the number of males with progeny information available 
to update the reference population every year, thereby in-
creasing the accuracy of male selection.

Other studies have shown that replacing progeny test 
by genomic selection can increase the effect of implement-
ing genomic selection through reduced generation interval 
(Schaeffer, 2006; Shumbusho et al., 2015). This was tested 
by reducing the generation interval for AI rams to 2  years 
(GS-2_1500) or 1 year (GS-1_1540). In GS-2_1500, all test 
rams were genotyped, and genomic breeding values were as-
sumed to be available before selecting elite rams. Among the 
tested rams, the 20 best (ranked on GEBV) were selected as 
AI rams, and the next 300 from the same age class were se-
lected to become elite rams. Hence, genomic selection was 
used to select AI rams one year earlier than in PED-3 and 
was also used to select the elite rams among the test rams. In 
GS-1_1540, the 1,540 lambs born with the highest BLUP_
EBV were genotyped shortly after birth. Based on GEBV, 40 
lambs were selected for use in AI directly, while the remain-
ing 1,500 became test rams. The GEBV were updated after 

the test rams had slaughtered offspring and used to select 300 
rams as elite rams, to be used for a second year. The reason 
for doubling the number of AI rams in scheme GS-1_1540 
was biological limitations on how much semen the rams can 
produce at such young age.

2.5 | Output from the simulations

All schemes were run for 12  years with 50 replicates. 
Average genetic gain per year and trait were calculated 
over years 6–12. For the scheme PED-3, genetic gain was 
given in genetic standard deviations, while for the other 
schemes, a percentage relative to that of PED-3 was used. 
Generation intervals for males (m) were calculated from 
relative contributions of AI males and elite males to the 
next generation, measured as fraction of selected test rams 
with an AI sire or an elite sire. This was calculated by: 
Li =Ci,AI

(

Li,AI,m+Li,AI,f∕2
)

+ (1−Ci,AI)
(

Li,E,m+Li,E,f∕2
)

, 
where Li is the generation interval for scheme i; Ci,AI is the 
relative contribution of AI males to the next generation in 
scheme i; and Li,j,k is the generation interval for mating cat-
egory j, where j is either AI (AI) or elite (E), in scheme i. 
For females (f), generation intervals for each mating category 
were reported from the simulation software and weighted, as 
for the males. Average rate of inbreeding per year for the 
different schemes from year 6 to 12 of the simulation was 
estimated as 1∕6

∑12

t=7
Ft −Ft−1∕(1−Ft−1), where Ft is the av-

erage level of inbreeding in year t. Rates of inbreeding per 
generation were estimated by multiplying rate of inbreeding 
per year by the generation interval for each scheme.

3 |  RESULTS

The genetic gain achieved per trait under the different scenarios 
is shown in Table 3. The genetic gain achieved with PED-3 
was very similar to what is estimated genetic gain for NWS 
under the current breeding programme (https://www.sauea 
vl.nsg.no/ringa nalyse_utvik ling_list.cfm). Relative to PED-3, 
all genomic selection schemes facilitated a large increase in 
genetic gain for maternal traits, but this was accompanied by 
a reduction in gains for the other two trait categories. When 
the correlation between MAT and GROW was set to 0, the ef-
fect of implementing genomic selection on total genetic gain 
was small and a reduction in generation interval was needed to 
increase the total genetic gain. When the correlation between 
MAT and GROW was negative, genomic selection gave an 
improvement of total genetic gain, also without shortening the 
generation interval. In this scenario, shortening the generation 
interval (moving from GS-3 to GS-2 or GS-1) had minor ef-
fects on total genetic gain. Reducing the generation interval 
did, however, increase the effect of genomic selection on MAT, 

https://www.saueavl.nsg.no/ringanalyse_utvikling_list.cfm
https://www.saueavl.nsg.no/ringanalyse_utvikling_list.cfm
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irrespective of the correlation between MAT and GROW. To 
continue with conventional breeding value estimation and in-
creasing the generation interval for AI rams to 4 years (PED-4) 
caused no change in total genetic gain but transferred genetic 
gain from other traits to maternal traits. This transfer of gains 
was highest when the correlation between MAT and GROW 
was negative.

Table 4 shows that all tested schemes except GS-1_1540 
still gave rates of inbreeding below 1% per generation when 
the correlation between MAT and GROW was 0; that is, 

the schemes may be regarded as sustainable (Meuwissen & 
Woolliams, 1994). When the correlation between MAT and 
GROW was negative, rates of inbreeding increased for all 
schemes, and GS-3_1500, as well as GS-1_1540, caused rates 
of inbreeding per generation > 1%. The other GS schemes 
were also close to this limit. Even though the simulations 
tested generation intervals between 1 and 4 years for the AI 
rams, the generation interval for the entire populations, in-
cluding elite rams and females, had a lower span; from 1.17 to 
2.01 years. Therefore, the main conclusions were unaffected 

T A B L E  3  Genetic gain per trait and year and in total under the different scenarios. Gain of alternative schemes are shown relative to PED-3

Trait PED-3a  (σg) PED-4a  (%) GS-3_300a  (%) GS-3_1500a  (%) GS-2_1500a  (%) GS-1_1540a  (%)

Correlations between GROW and MAT were assumed to be 0

GROWb 0.35 95 74 74 85 111

CARCb 0.23 94 61 77 63 72

MATb 0.25 105 116 129 165 169

Totalc 0.28 100 91 100 118 131

Correlations between GROW and MAT were assumed to be −0.2

GROWb 0.27 85 92 117 90 117

CARCb 0.26 81 74 78 64 65

MATb 0.19 121 143 157 177 157

Totalc 0.23 99 109 120 120 122
aThe schemes were named by their breeding value estimation method for AI rams-generation interval for AI rams _ number of genotyped rams per year (in schemes 
involving genotyping). The breeding value estimation method for males was either pedigree based BLUP (PED) or SNP_BLUP (GS). 
bThe traits were defined as follows: GROW—trait measured on male and female candidates before the first round of selection; CARC—trait measured on slaughtered 
lambs; MAT—trait measured on females when having the first litter. 
cAn index with weights being 0.3 for GROW, 0.2 for CARC and 0.5 for MAT was assumed. 

Scheme
Rate of inbreeding per 
year (%)

Rate of inbreeding per 
generation (%)

Generation 
interval (years)

Correlations between GROW and MAT were assumed to be 0

PED-3a 0.31 0.57 1.81

PED-4a 0.18 0.36 1.98

GS-3_300a 0.46 0.90 1.94

GS-3_1500a 0.41 0.79 1.95

GS-2_1500a 0.55 0.87 1.58

GS-1_1540a 1.12 1.31 1.17

Correlations between GROW and MAT were assumed to be −0.2

PED-3a 0.38 0.69 1.83

PED-4a 0.23 0.46 2.01

GS-3_300a 0.51 0.96 1.89

GS-3_1500a 0.59 1.10 1.88

GS-2_1500a 0.61 0.96 1.59

GS-1_1540a 1.03 1.21 1.17
aThe schemes were named by their breeding value estimation method for AI rams-generation interval for AI 
rams_number of genotyped rams per year (in schemes involving genotyping). The breeding value estimation 
method for males was either pedigree based BLUP (PED) or SNP_BLUP (GS). 

T A B L E  4  Rate of inbreeding and 
generation interval achieved with each 
tested scheme
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by whether the schemes were compared based on rate of in-
breeding per year or per generation. GS schemes gave higher 
rate of inbreeding than PED schemes, and rate of inbreeding 
increased with decreasing generation intervals.

One cause for differences in rate of inbreeding between 
the schemes is the relative contribution of the AI males to the 
next generation, as shown in Table 5. Since test rams were 
selected across ram lambs from AI sires and from elite sires, 
the relative contribution of AI rams was an output from the 
simulation. For both levels of correlation between MAT and 
GROW, AI rams were shown to contribute more when ge-
nomic selection was applied (Table  5) and especially with 
schemes with a reduced generation interval (Table 4), proba-
bly because more accurate selection increased the difference 
in performance between the more intensively selected AI 
rams and the less intensively selected elite rams. Increased 
contributions of AI sires to the next generation increased rate 
of inbreeding since the number of simulated AI males was 
considerably smaller than the number of elite males, which 
explains some of the differences between the schemes found 
in Table 4.

4 |  DISCUSSION

4.1 | Genetic gain

In the breeding programme for Norwegian White Sheep, the 
final selection of males is being conducted when the males 
have received progeny test records for growth and slaugh-
ter traits only. This system gives relatively low genetic gain 
for maternal traits, for which information becomes avail-
able too late to be taken into account in the male selection, 
compared to the other traits under selection. There is a need 
for restructuring the breeding programme to reduce the gap 
between the importance of maternal traits and the achieved 
improvement for these traits. Two solutions to resolve this 
discrepancy were tested in this study: select the AI males 
later (PED-4), when offspring with records on maternal traits 

are available, or to introduce genomic selection (GS-3_300, 
GS-3_1500, GS-2_1500 or GS-1_1540). The results showed 
that implementation of genomic selection could significantly 
increase the genetic gain for maternal traits, while later se-
lection of AI males had lower potential. When genomic se-
lection was applied, the increased genetic gain for maternal 
traits came partly at the expense of gain in other traits, as also 
shown in similar simulations for several species (Granleese, 
Clark, Swan, & Werf, 2017; Granleese, Clark, & Werf, 2019; 
Lillehammer et al., 2013; Van der Werf et al., 2014). To 
achieve an increased total genetic gain, genomic selection 
had to be combined with a reduced generation interval (GS-
2_1500 or GS-1_1540). This is in concordance with findings 
when optimizing genomic selection schemes for meat sheep 
in France (Shumbusho et al., 2015) and Australia (Van der 
Werf et al., 2014), which also showed a low increase in over-
all genetic gain, but potentials to shift selection pressure from 
early measured traits to later measured traits and to reduce 
the generation interval. The benefit of combining genomic 
selection with reduced generation interval in sheep has 
also been reported in New Zealand, for carcass traits (Brito 
et al., 2017), sex-limited traits and traits measured late in life 
(Pickering et al., 2013) and in Australia for multi-trait selec-
tion in various breeds (Swan et al., 2014). All GS schemes 
tested in this study included preselection of ram lambs be-
fore genotyping, on a conventional breeding value based on 
pedigree and, to some extent, own performance. This made 
the tested schemes economically realistic. Granleese et al. 
(2019) found that genotyping around 20% of the ram lambs 
born (selected breeding value) gave the lowest cost per rate 
of genetic improvement. This could indicate that genotyping 
more lambs than tested in our study would be economically 
beneficial, as our 1,500 lambs genotyped corresponds to 7% 
of the male lambs born. However, the results are probably not 
fully comparable because of differences in population struc-
ture and information available at the time of preselection. In 
addition, our population size was much larger than the one 
simulated in Granleese et al. (2019). Population size could af-
fect the optimal fraction of lambs to genotype, since selection 
accuracy is driven by the number of genotyped rams rather 
than the percentage.

The combination of genomic selection and reduction of 
generation interval has also been shown to be advantageous 
over a conventional progeny testing programme in dairy cat-
tle (Lillehammer, Meuwissen, & Sonesson, 2011; Schaeffer, 
2006), which is comparable with sheep in the sense that 
conventional programmes rely on a progeny test. However, 
in dairy cattle, most traits under selection are recorded on 
females only, and the progeny test is designed to include re-
cords on maternal traits. In the conventional breeding scheme 
of NWS, the generation interval is kept short by not includ-
ing maternal traits in the progeny test, that is by not waiting 
for maternal records. This reduces the scope for additional 

T A B L E  5  Fraction of the selected rams with an AI sire

Scheme Corr 0 Corr −0.2

PED-3a 0.42 0.44

PED-4a 0.39 0.40

GS-3_300a 0.64 0.64

GS-3_1500a 0.69 0.63

GS-2_1500a 0.70 0.68

GS-1_1540a 0.81 0.84
aThe schemes were named by their breeding value estimation method for AI 
rams-generation interval for AI rams_number of genotyped rams per year (in 
schemes involving genotyping). The breeding value estimation method for 
males was either pedigree based BLUP (PED) or SNP_BLUP (GS). 
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shortening of the generation interval but enlarges the scope 
for improvement of genetic gain for maternal traits through 
increased accuracy of selection. The PED-4 approach mim-
ics a typical dairy cattle progeny testing scheme, but with 
inclusion of natural matings with younger rams in the flocks. 
This gave no increase in total genetic gain and only a minor 
shift from other traits to maternal traits, compared to the con-
ventional scheme (PED-3). However, the reduced rates of in-
breeding make PED-4 advantageous over PED-3, assuming 
that maternal traits constitute 50% of the breeding goal.

4.2 | Rate of inbreeding

When the correlations between MAT and GROW was as-
sumed to be 0, all schemes, apart from GS1_1540, gave rates 
of inbreeding within an acceptable range, that is less than 1% 
per generation (Table 4) (Meuwissen & Woolliams, 1994). 
With a negative correlation between MAT and GROW, all 
implementations of genomic selection were close to or ex-
ceeding 1% rate of inbreeding per generation. Differences 
in rates of inbreeding between schemes were high and need 
to be taken into account when evaluating genetic gain. 
Simultaneous increases in total genetic gain and rate of in-
breeding, as seen from implementing genomic selection in 
this study, could in theory have been accomplished by in-
creasing the selection intensity. Thus, the major finding of 
this study is the large improvement in genetic gain for mater-
nal traits, obtained in the genomic selection schemes, that is 
the potential of genomic selection to shift selection pressure 
from other traits to maternal traits.

Other studies have shown that the rate of inbreeding per 
generation is reduced when genomic selection is implemented, 
because genomic selection increases in particular the accu-
racy of estimates of the individual Mendelian sampling com-
ponent of breeding values (Daetwyler et al., 2007; Granleese 
et al., 2019; Raoul, Swan, & Elsen, 2017). However, a re-
duced generation interval in genomic selection schemes can 
increase rate of inbreeding per year despite a reduction in rate 
of inbreeding per generation (Schaeffer, 2006), due to faster 
turnover of generations. In addition, a shorter generation in-
terval may increase inbreeding per year and per generation 
due to fewer selected parents per generation. In this study, im-
plementation of genomic selection was shown to shift selec-
tion pressure from growth to maternal traits. More emphasis 
on traits not measured on selection candidates could increase 
rate of inbreeding due to higher importance of family selec-
tion and less on the individual Mendelian sampling compo-
nent. Another factor to affect rate of inbreeding is the relative 
contribution of the different categories of males in each of 
the scenarios (Table 5). Since the group of AI rams is much 
smaller than the group of elite males, the higher contribution 
of the AI rams to the next generation will reduce the effective 

population size and hence increase rates of inbreeding. This 
is probably the most important reason why genomic selection 
increased rate of inbreeding in this study, as the increase was 
shown to affect rate of inbreeding both per year and per gen-
eration. This result could therefore be seen as a result of the 
population structure and the use of multiple male categories 
with different information content, progeny group size and 
contribution to the next generation. In a similar simulation 
study for sheep with a simpler population structure, genomic 
selection was shown to reduce rate of inbreeding (Granleese 
et al., 2019). Genomic selection must have resulted in more 
accurately estimated breeding values for AI rams relative to 
elite rams, explaining the increased contribution of AI rams 
to the next generation (Table 5), seemingly unaffected by the 
assumed genetic correlation between MAT and GROW. If 
schemes were compared at a fixed relative contribution of 
AI rams to test rams, rates of inbreeding are expected to be 
more similar across schemes. Within the current NWS breed-
ing programme, the relative contribution of AI rams to the 
next generation is, however, already around 80%, probably 
because farmers tend to prioritize offspring from AI matings 
when selecting test rams. Implementation of genomic selec-
tion in this population is hence expected to have smaller ef-
fects on rate of inbreeding than indicated in this study, since 
the potential to increase the contribution of AI males in real-
ity is small. The female generation intervals obtained in the 
simulations were somewhat lower than what is obtained in 
the real breeding programme of NWS, which means that rate 
of inbreeding per generation will probably be lower in real 
life, for all schemes, due to a longer generation interval. A 
recommendation for implementing GS into this or similar 
breeding programmes is to put some penalty on inbreeding 
through optimal contribution selection or other similar meth-
ods to avoid increase in rate of inbreeding because of higher 
contributions from a small number of AI rams.

4.3 | Implementation costs

Optimization of breeding programmes is about weighing 
costs against benefits. Compared to the conventional NWS 
scheme, all the alternatives proposed will increase the cost of 
the breeding programme because phenotypic recording was 
not reduced while genotyping costs were introduced in all 
GS schemes, keeping more males alive for a longer period 
increases costs (PED-4), and increasing the size of the AI 
station enlarges costs (GS-1_1540). For PED-4 without more 
intense selection, the improvement in genetic gain is too 
small to defend any increased costs. GS-1_1540 is the most 
expensive scheme among all compared schemes, including 
both genotyping and an increased number of AI rams. For the 
other three GS schemes, GS-2_1500, GS-3_1500 and GS-
3_300, the additional cost will be due to genotyping, causing 
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the 1,500 schemes to have similar costs and be approxi-
mately five times marginally more expensive than the 300 
schemes. Even though the low-cost programme GS-3_300 
could potentially increase genetic gain for maternal traits, 
the total genetic gain was reduced under this scheme, relative 
to PED-3, when the correlation between MAT and GROW 
was 0. Implementation of GS-3_300 would hence increase 
costs and reduce genetic gain and is not recommendable. 
The two tested schemes that could be recommended are thus 
GS-3_1500 and GS-2_1500, which have similar costs, and 
where GS-2_1500 seems the logical choice, as it gives higher 
gain for maternal traits or the same or higher total genetic 
gain than GS-3_1500 (Table 3). GS-2_1500 gave 10% higher 
rate of inbreeding per generation than GS-3_1500 when the 
correlation between MAT and GROW was 0 (Table 4), but 
when the correlation between MAT and GROW was nega-
tive, GS-3_1500 gave 10% higher rate of inbreeding than GS-
2_1500. Within GS-2_1500, genomic selection is utilized to 
select AI rams as well as locally selected elite rams, and the 
generation interval for AI rams is reduced from 3 to 2 years. 
It is hence also intuitively appealing, when all test rams are 
going to be genotyped anyway, to make sure that the GEBV 
are available in time to utilize them also to select local elite 
rams. Whether implementation of GS is economically profit-
able will depend on the genotyping costs. Other studies of 
implementation strategies of GS in sheep have shown that 
low-cost genotyping is more profitable, than medium to high 
density, because of significantly reduced costs and smaller 
reductions in genetic gain (Raoul et al., 2017; Santos, Werf, 
Gibson, Byrne, & Amer, 2017). The large number of animals 
assumed to be genotyped before GS was implemented would 
represent a large investment cost which comes on top of the 
running costs of these schemes. In real life, a smaller number 
would probably be genotyped initially, which could cause se-
lection response to be reduced the first years until a sufficient 
reference population has been built.

4.4 | Updating the reference population

The accuracy of genomic breeding values depends on the 
size and updates of the reference population (Goddard, 2009; 
Hayes & Goddard, 2008). The accuracy is also dependent on 
the relationship between the candidates and the animals in the 
reference population (Pickering, Auvray, Dodds, & Mcewan, 
2015; Pszczola, Strabel, Mulder, & Calus, 2012), which is 
why it is necessary to update the reference population every 
generation (Sonesson & Meuwissen, 2009). In this study, we 
assumed a large number of animals (30 320) to be genotyped 
before GS was implemented, to study the need for additional 
updates of the reference population after a reference popula-
tion has been established. The updating was accomplished 
by genotyping 300 or 1,500 rams every year; that is all rams 

that have or will get progeny groups with records for all rel-
evant traits. Accuracy is also directly dependent on the gen-
eration interval, as a shorter generation interval reduces the 
relationship between the most recent updates of the reference 
population and the candidates (Lillehammer et al., 2011). To 
compare the number of genotyped animals between studies is 
therefore difficult, when the studies assume different popula-
tion structures and phenotypic information. The results from 
this study showed a considerable increase in genetic gain 
when genotyping 1,500 males every year, compared to 300. 
Hence, given the population structure and information avail-
able for progeny tested rams, it seems that 300 genotyped 
rams every year are not sufficient to obtain and maintain ac-
curacy of genomic breeding values over time. To increase 
the number of genotyped rams each year to 1,500 increased 
accuracy of genomic selection and hence genetic gain. Since 
only two levels of number of genotyped rams were tested, it is 
not clear how levels in between 300 and 1,500 rams or num-
bers beyond 1,500 will affect accuracy of selection. Within 
the recommended scheme GS-2_1500, a change in number 
of genotyped males will affect both accuracy of selection and 
the number of candidates to select among, since the geno-
typed young males act first as selection candidates and later 
as reference animals. Genotyping more than 1,500 males 
every year was not regarded an option, because this reflects 
the total number of rams from this breed being progeny tested 
every year. However, if the value of adding more animals to 
the reference population is high and/or genotyping costs are 
low, possibilities to progeny test more males or genotype fe-
males with records should also be investigated. Other studies 
have suggested low-density genotyping to make genotyping 
of a larger number of animals economically feasible (Van der 
Werf et al., 2014), which could be an alternative strategy to 
save costs, rather than reduce on the number of animals to 
genotype.

4.5 | Differences between the stochastic 
simulations and practical schemes

Some simplifications were made in the simulations for com-
putational reasons, including the reduction of genome size, 
exclusion of offspring of test rams as selection candidates, 
reduction from many single traits to three index traits and 
ignoring the ram circle structure. The latter was tested in a 
pilot study with a reduced population size and found to have 
only marginal effects on genetic gain and rate of inbreed-
ing (results not shown). The genome size was reduced, com-
pared to the actual genome of sheep, with 10 independent 
chromosomes to mimic a genome. With a larger genome 
size, a larger reference population will be needed to reach the 
same level of accuracy (Daetwyler et al., 2007). The simu-
lated marker density gave a linkage disequilibrium between 
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adjacent markers of r2 = 0.452. This is a quite high marker 
density with markers closer than 10kb apart, depending on 
the breed (Kijas et al., 2014), and hence corresponds to a high 
density SNP chip.

The reduction in trait dimensionality from many sin-
gle traits to three index traits was necessary to reduce the 
computational load in this study. This reduction makes it 
impossible to take into account all the trait information, 
as some of the traits behind an index trait may have more 
information than assumed for the index traits. For example, 
all maternal trait information was assumed to be available 
in the autumn when the litter was 6 months old. Ignoring 
information that is available earlier, for example litter size 
and birth weight, will affect all schemes, but take the largest 
effects in schemes where phenotypic information has the 
highest value, that is in the PED schemes. Thus, ignoring 
some sources of maternal trait information may contribute 
to overestimate the impact of genomic selection on genetic 
gain for maternal traits. In addition, the assumed genetic 
parameters for the index traits will not reflect all traits be-
hind the index. Traits with heritabilities and/or correlations 
to other traits that is most different from what was assumed 
for the index will produce the largest deviance in gain rel-
ative to that expected (Table 3). On the other hand, a ben-
efit of working with sub-indexes rather than single traits 
is that we do not make assumptions about parameters and 
information content on single traits. Many possible mater-
nal traits are not yet included in the breeding programme, 
and their genetic parameters are unknown. We tested two 
levels of the correlation between maternal traits and growth 
traits, which varies in literature, and found low sensitivity 
for this assumption, as the same scheme was found opti-
mal, whether this correlation was assumed 0 or negative. 
However, results on a more detailed level, like genetic gain 
for each sub-index, were affected by this assumption.

Another discrepancy between simulations and real life is 
that progeny group sizes vary in practice but was assumed 
constant for males from the same ram category in the sim-
ulations. In this perspective, the simulations overestimate 
the information content from the progeny groups under the 
progeny testing scheme. With varying progeny group size in 
the progeny testing scheme, selection of males will be less 
effective and genomic selection, which is less sensitive for 
individual progeny group sizes will be more beneficial. In ad-
dition, the reference population for genomic selection will be 
updated also after older genotyped rams are culled, when new 
information on their offspring occurs. In this study, we lim-
ited the included information to what is presented in Table 1, 
even though AI males will have more offspring information 
later.

Schemes were tested only when found economically re-
alistic for the NWS breeding programme. Hence, scenar-
ios requiring more extensive genotyping, like genotyping 

females to increase the reference population or genotyping 
a larger number of male lambs to select test rams based 
on GEBV, were not included. A similar study, but with a 
slightly different perspective, found that applying GS for 
males was much more economically feasible than to use 
GS on females, even when including novel reproduction 
technology (Granleese et al., 2019). The effect of genotyp-
ing females to update the reference population was not in-
vestigated here and could be an option to further increase 
accuracy of selection.

5 |  CONCLUSION

The optimal implementation design for genomic selection to 
increase genetic gain for maternal traits, among those tested, 
would be to genotype all 1,500 test rams at one year of age 
and use this information to select both elite males and AI 
rams at two years of age (GS-2_1500). Generation interval 
for AI rams is hence reduced from 3 years in today's system to 
2 years, and accuracy of selection increases for both elite rams 
and AI rams. This implementation strategy has the potential to 
increase genetic gain per year for maternal traits by 65%–77% 
and total genetic gain by 18%–20%. Rate of inbreeding is also 
expected to increase, from 0.57%–0.69% per generation in the 
conventional system to 0.87%–0.96% with GS2_1500 when 
the same number of parents is selected as before.
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