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work with and without applying QC to assess QC e�ciency. The calculation, �tting,

and plotting was accomplished using a slightly modi�ed version of the skgstat package

(Mälicke and Schneider, 2019). The empirical variograms were computed using a uni-

form binning structure so that an approximately equal amount of observation points

were within each bin. Due to the large di�erence in network size, it was decided to

use 10 bins for the MET network and 15 bins for the Netatmo network. Thegaussian

variogram model, eq. (2.3) with� = 2, was chosen as the theoretical model to �t as it

most closely approximated the shape of the empirical variogram.

The computed variograms were used together with the best performing interpolator

identi�ed during validation to create maps with expected (standardized) error for the

three networks considered in the Oslo area. The maps were �rst computed for a 60-

minute aggregation time using the corresponding variograms for the Netatmo and MET

networks. For the CML network, the expected error map was estimated using the MET

variogram modi�ed to include a zero nugget. The nugget values were added back in on a

per-station basis using the expected error (� ) at a 0:1 dB quantization interval. During

the mapping procedure, the CML links were approximated by points at the link center.

To construct the 10 and 5 minute error maps, the range of the variograms were modi�ed

to resemble the spatial structure corresponding to the aggregation time recommended

by Berne et al. (2004) for intense precipitation.

3.6 Comparison of Interpolation Methods

Five separate interpolation algorithms were considered for precipitation mapping based

on the Netatmo PWS network: Nearest Neighbor (NN), Inverse distance weighting

(IDW), Universal Kriging with regional-linear drift (UK), and Gaussian Process Re-

gression (GPR). The UK model di�ers from the Ordinary Kriging model discussed in

section 2.1.1 in that it additionally �ts a linear trend model over the surface (Goovaerts,

1997, p. 139). The constrained GPR model can be viewed as a statistical-black box hy-

brid model as it very closely resembles Simple Kriging, but tunes its parameters without

using a variogram.

It should be noted that other explanatory variables, such as elevation, were not imple-

mented for any of the models. The correlation was examined brie�y by visual inspection

and regression �tting (�g. 3.4), and the resulting correlation was found to be weak for

both networks.

The NN and IDW models were made by modifying the KNeighborsResgressor from Pe-

dregosa et al. (2011). The NN model was created by forcingNneighbors to 1, and the IDW

model by settingNneighbors to the number of observations in the data-set at the current
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Figure 3.4: Mean precipitation for each station in the two networks plotted
against station elevation. Stations were �ltered to exclude ones where mean pre-
cipitation was less than 0:1 mm.

time, and implementing (2.8) as a custom weight function. Both the GPR models were

created by implementing a aussian covariance function in the GaussianProcessRegressor

from Pedregosa et al. (2011). For the manual model, the optimization was turned o�,

and the covariance function parameters were set to those of the calculated empirical

variogram. The speci�c implementation of the models are listed in table 3.1 and the

code in appendix D.

Interpolator Parameters

NN -
IDW p = 1
UK model: gaussian, variogram bins: 10, drift: regional linear, automatic

�tting
GPR

Constrained model: gaussian,nugget2 (0; 1), sil l 2 (0:02; 1), range2 (10; 105) m,
automatic �tting

Manual model: gaussian,nugget= 0:42, sill = 0:55, range= 20902:1 m

Table 3.1: Interpolator parameters. Parameters of manual GPR correspond to
those determined by the climatological variogram in �g. 4.14(b).

It was decided to validate the interpolation methods against the MET dataset for all

hours in the study period where the median precipitation was greater than or equal to

0:1 mm, which resulted in 38 observation sets (see �g.3.5). The stations were validated

for both the entire MET network as well as for the two WMO compliant stations alone.

The value for each (MET) station was predicted for each method for every observation

set and stored in an arrayypredicted . Another array was created with the measured (true)

values at the points: y true . The values were stored in the same order so thatypredicted ;i

is at the same time and location asytrue ;i for all i .

To evaluate the performance, the following metrics were used: bias, relative bias, root

mean squared error (RMSE) , and the coe�cient of determination (R2). The equations
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Figure 3.5: Median precipitation from netatmo and MET dataset for all hours
included in validation.

for these metrics are given in (3.2). The bias and relative bias are used to assess whether

the interpolated values are higher or lower than the measured values on average, the

latter being relative to the mean of y true . RMSE is a measure of the error of the

interpolation in [mm] (lower is better), and R2 is a measure of how good the prediction

of the interpolated value is, a perfect �t would yieldR2 = 1.

bias= mean(ypredicted � y true )

relative bias=
bias
�y true

RMSE =

s P n
i (ypredicted, i � ytrue, i )2

n

R2 = 1 �
P

(ytrue, i � ypredicted, i )2

P
(ytrue, i � �y true )2

(3.2)

Lastly, the possibility of combining the networks was assessed by implementing the Best

Combined Spatial Predictor (PCSP) (Hengl, 2009, p. 35) algorithm to create a single

precipitation map from the three networks. The algorithm combines predictions from

di�erent interpolation models (spatial predictors) weighing the predicted valueŝz(u) by

the inverse of their associated uncertainty (error)̂� (u) at every point u:

ẑBCSP =

nX

i =1

 

ẑSPi (u)
1

�̂ SPi

(u)

!

nX

i =1

1
�̂ SPi

(u)
(3.3)
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where there areSPi ; i = 1; ::; n spatial predictors. The algorithm can be applied to any

set of predictors capable of producing error estimates where it is important that their

errors are scaled equally. The resulting error,̂� BCSP (u), can be assessed bŷ� BCSP (u) �

min[�̂ SP1 (u); :::; �̂ SPn (u)]. The resulting error is valuable to identify problematic areas

with low coverage or high uncertainty, it has no statistical basis, and therefore shouldn't

be used as an accurate error estimate.

The BCSP was applied to all three networks at 13:00, 2020-04-27. The models used

were three versions of the manual GPR, the same that were used to compute uncertainty

maps for a 10 minute aggregation time. Precipitation data for the CML network was

synthesized by drawing samples from the predictor associated with the MET network.

The sampling equates to drawing a number from a distribution centered on the predicted

value with a standard deviation equal to the predicted error. If the sampling returned

negative values, they were set to zero.



4. Results

The results are presented in approximately the same order as the methodology described

to achieve them. Section 4.1 chie�y deals with research questions 1 and 2, concerning

stakeholders and current capabilities, whereas the remaining sections detail the results

concerning network characteristics, accuracy, and applicability.

4.1 Stakeholder Analysis and Current Capabilities

The results of the stakeholder identi�cation are summarized in tables 4.1 and 4.2 for the

CML and PWS networks respectively. For the CML case, most of the identi�ed organi-

zations either didn't respond to requests or would not disclose any information regarding

network size metadata indicating that disclosing the information would constitute a risk

to critical communications infrastructure. The respondents were also asked under what

circumstances sharing the data would be permissible. In summary, the answers were

that one or multiple of the following criteria had to be met: A non-disclosure agreement

had to be signed, all work done with the data had to be done on internal servers, or the

people working with the data had to have security clearances issued by The Norwegian

National Security Authority (NSM).

37
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Company type network size (number of links)

GlobalConnect ISP N.A.

Telenor ISP/mobile 4300

Bane Nor Infrastructure secret

Statnet Infrastructure N.A

DSB Emergency network N.A

Telia ISP/mobile 1400

Norwegian armed forces military secret

Avinor Infrastructure secret

Tampnet ISP (o�shore) N.A.

Table 4.1: Overview of identi�ed CML operators in Norway. Network size refers
to number of links with a frequency above5 GHz. "N.A." denotes stakeholders that
likely operate CMLs but did not respond to requests, "secret" denotes stakeholders
who con�rmed operating CMLs, but would not specify network size.

Given the data in table 4.1, any estimate of total network size if all stakeholders decided

to participate would be inaccurate. However, a minimum combined network size would

be 6000 links. This corresponds to an average link density three times higher than for

the network included in this study.

The information presented in table 4.2 was gathered by investigating what products

the PWS network services provide to consumers through APIs and web services. The

services can loosely be classi�ed into station manufacturers, for-pro�t networks, and

not-for-pro�t networks. The not-for-pro�t networks are CWOA (Citizen weather ob-

server program), WOW UK, and WOW NL. The latter two are essentially the same

network as they are made as a collaboration between the British and Dutch meteoro-

logical o�ces. Both of the WOW networks o�er station access through APIs, and the

CWOP provides access through a web page. The station manufacturers: (Netatmo,

AmbientWeather, WeatherLink, and AcuRite) generally don't o�er public access with

the notable exception of Netatmo. The for-pro�t networks (Weather Underground,

PWS weather, and Open Weather) generally do not provide individual station access,

as their business model involves delivering end-products; forecasting, and current con-

ditions etc., directly. However, it should be noted that partnerships such as the one

between Netatmo and MET that serves as part of operational temperature forecasting

(Nipen et al., 2020), where data is transferred directly, could possibly be entered in to

with any of the services identi�ed.
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Name coverage (Norway) public access individual station access

Weather underground medium paid no

CWOA low free yes

PWS weather low paid yes

OpenWeather unknown paid no

AcuRite unknown none no

WeatherLink unknown none no

AmbientWeather low none no

Netatmo high free (limited) yes

WOW UK low free yes

WOW NL low free yes

Table 4.2: Overview of PWS network services

To identify current capabilities, it was decided to look into two domains, historical

precipitation maps, and nowcasting. The best available historical precipitation map

is the seNorge2 precipitation data-set, available at senorge.no or in higher detail at

thredds.met.no:https://thredds.met.no/thredds/catalog/senorge/catalog.html ,

METs archive. Its temporal resolution is 1 day going back to the year 1957 and its spatial

resolution is 1 by 1 km. It is based on METs rain-gauges and an Optimal Interpolation

procedure. Further details about its production can be found in its associated publica-

tion: (Lussana et al., 2018). However, a newer, non-operational dataset, seNorge_2018,

with the same characteristics but better performance in mountainous areas is soon ex-

pected to supersede it (Lussana et al., 2019).

Current operational nowcasting is based on radar data from 11 C-band radars located

along the Norwegian coast. The nowcast is updated every 7.5 minutes with a lead

time of 90 minutes. Its spatial resolution is 1 by 1 km, and its availability extends to

most of the Norwegian mainland, with the exception of areas far inland and at higher

elevations. As it is a radar-based product, precipitation nowcasts are given categorically

(low, moderate, heavy) (Yr.no, 2020).
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4.2 Metadata Analysis

Figure 4.1: Distribution of station owners in the MET network

An overview of the number of stations is presented in table 4.3, where stations are

classi�ed by study area and source. In the MET network, approximately 50% of the

stations are owned and operated by MET, and the remainder are operated by partners

(�g. 4.1), most of them being municipalities. Nationally the CML network is about

twice the size of the traditional network, including all partner stations. The same

relationship is apparent in the rural study-area, though not in the Oslo area. This is

explained by the large number of partner stations in Oslo owned and operated by the

Oslo municipality. Regrettably, the number of stations from the Netatmo PWS network

was not gathered due to limitations in the API it was gathered through. In the Oslo

study area, the Netatmo network is almost 15 times larger than the MET network.

However, as discussed later, the average number of stations available at any single

moment is closer to 280 stations, making it six times larger than the MET network. In

the rural study area, in which stations were gathered with a single request, the average

density is about eight times higher than the MET network. It is highly likely that this

relationship extends to the National level to some degree.

The stations from the networks within the Oslo study area are plotted by color together

with the bounds of the study area in �gure 4.2. From the �gure, the di�erence in density

is well illustrated. Looking at how the stations are distributed, extent and clustering

can be assessed. The MET and Netatmo network are both clustered in populated areas

with approximately the same spatial extent. The CML network has a slightly di�erent

structure: there is a cluster of short and medium-length links in the north-eastern

quadrant of the study area, with fewer, and longer links in the remaining quadrants.
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