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Summary

Continual urbanization in Norway and elsewhere combined with more intense precipi-
tation forced by climate change requires better monitoring and understanding of pre-
cipitation in cities. This paper assesses the possibility of adopting two opportunistic
networks, Commercial Microwave Links (CML) and Personal Weather Stations (PWS),
to create high-resolution urban precipitation maps for use in flood modeling, calibrating
sewage/runoff models and other urban hydrological applications.

The assessment was accomplished by identifying the supply-side stakeholders (own-
ers/aggregators of the networks), assessing the networks with respect do density, clus-
tering, extent, and topographical representativeness. Further, the error structures of
both networks were attempted identified by geostatistical methods and identifying the
effective quantization level for PWS and CML networks, respectively. Data from the
PWS network was subsequently corrected using a simple quality control (QC) algorithm
before five different interpolation methods (Nearest Neighbor (NN), Inverse Distance
Weighting (IDW), and three geostatistical approaches) were applied to the PWS net-
work and assessed by comparing the output to point measurements from the traditional
gauge network to determine suitability. Finally, the possibility of using both oppor-
tunistic networks in combination with their traditional counterpart was assessed by
implementing a weighted average approach called the Best Combined Spatial Predictor
(BCSP).

This research finds that both networks have favorable characteristics in all respects ex-
cept measurement error and availability. Further, a geostatistical model constrained by
a climatological variogram is found to be the best performing with R2 = 0.848 validated
over 38 hours of precipitation spread over five days. The application of the model re-
veals that inadequate QC increases the model error term resulting in underestimation
of locally intense precipitation.

This research concludes that both networks have considerable potential and identifies
two distinct challenges going forward, namely improved QC and facilitating data access
for PWS and CML networks, respectively.
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Sammendrag

Stadig urbanisering kombinert med mer intens nedbør grunnet klimaendringer krever
bedre forståelse og overvåking av nedbør i byer. Denne oppgaven utforsker muligheten
av å benytte to opportunistiske nettverk bestående av kommersielle radiolinker (CML)
og personlige værstasjoner (PWS) for bruk i høyoppløselige nedbørskart brukt til flom-
modellering, kalibrering av avløp- og overvannsmodeller, samt andre urbanhydrologiske
bruksområder.

Det er gjort en analyse av mulige interessenter (nettverkseiere) for å estimere potensiell
nettverksstørrelse og identifisere utfordringer knyttet til datatilgang. De opportunistiske
nettverkene ble videre sammenliknet med metrologisk institutts (MET) tradisjonelle
nettverk med hensyn på tetthet, dekning, og topografisk representativitet. Usikker-
hetsstrukturen i nettverkene er utforsket ved hjelp av geostatistiske metoder for PWS
nettverket og indentifisering av effektivt kvantiseringsnivå for CML nettverket. Videre
er PWS dataene forsøkt korrigert med en simpel kvalitetskontroll (QC) før anvendelse av
fem forskjellige interpoleringsmetoder. Resultatet av disse er sammenliknet med punk-
tdata fra tradisjonelle nedbørmålere i Osloområdet for å bestemme egnethet. Til slutt
er muligheten av å aggregere data fra samtlige nettverk utforsket ved å implementere
en kombinert modell (BCSP).

Resultatene i oppgaven viser at begge de opportunistiske nettverkene har gunstige
kvaliteter sammenliknet med MET nettverket utenom måleusikkerhet og måletilgjenge-
lighet. Videre vises det at geostatistisk interpolering på grunnlag av et klimatologisk
semivariogram er mest nøyaktig med R2 = 0.848 validert med 38 timer med nedbør over
5 dager. Modellen viser at utilstrekkelig kvalitetskontroll øker modellens usikkerhetspa-
rameter som videre fører til underestimering av lokal ekstrem nedbør.

Oppgaven konkluderer med at begge nettverk har betydelig potensiale og identifiserer
forbedret kvalitetskontroll og av tilrettelegging av datatilgjengelighet for henholdsvis
PWS og CML nettverk som de viktigste utfordringene videre.
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1. Introduction

1.1 Motivation

Populations in Norway and internationally are continually becoming more urbanized.
People are to a large extent living in dense metropolitan cities sprawling over large areas
or in smaller urban settlements, as is the case in Norway where the population density
is lower in general. Both planned and unplanned urban sprawl has adverse effects on
the hydrologic system in which it occurs. Mainly, these effects manifest themselves as
increased risk of flooding and higher pollution transport to the receiving water-body and
are primarily due to four factors: diversion or blockage of waterways and impermeable
land cover increase the risk of flooding (Jha et al., 2012) and constructed drainage and
the land use itself increases the pollution transport.

Natural waterways are commonly diverted, either underground through culverting or
displaced (i.e. outside of a natural depression) to free up the land for other uses. Cul-
verting always reduces hydraulic capacity. By restricting the flow area to the size of
the pipe or tunnel constructed, the culvert acts as a dam for runoff above design ca-
pacity. Below design capacity, a culvert might have the opposite effect, increasing the
flowrate due to smother channels and a more efficient hydraulic cross-section (Niem-
czynowicz, 1999). As buildings and roads are constructed, they are usually covered by
impermeable materials, i.e., roofs and pavement. Impermeable surfaces do not allow
for infiltration. Therefore, the runoff volume is increased compared to natural sur-
faces such as woods and grasslands. Additionally, impermeable surfaces tend to have
a lower roughness coefficient, increasing the velocity of overland flow, thereby lowering
the hydraulic concentration-time of catchments and increasing the peak runoff discharge
(Fletcher et al., 2013).

Constructed drainage systems such as combined- or separate sewers further decrease
concentration-times (Fletcher et al., 2013). Additionally, they complicate the hydraulic
system by introducing sub-surface pipe flow, which does not necessarily follow topo-
graphically imposed catchment boundaries.
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2 CHAPTER 1. INTRODUCTION

Finally, the water quality in urban catchments differs drastically from their rural coun-
terparts. Generally, pollutant loading is higher. The pollutant concentration and com-
position can, to some extent, be characterized by land use type and interaction with
sanitary systems such as combined sewers.

A recently widely adopted method of local stormwater management called Low Impact
Development (LID) , in Norwegian: LOD (Lokal Overvannsdisponering) , aims to restore
the hydrologic response of an urbanized catchment to that of its pre-development state.
Briefly, the method consists of fully retaining runoff from smaller showers at the source,
attenuating runoff from larger showers in local, normally-dry basins, and mapping safe
floodways to secure runoff from extreme precipitation events.

To design-, and determine the effectiveness of LID installations as well as provide efficient
urban flood forecasting, extensive modeling is used. These models use information
about the topography, land cover, soil type and associated infiltration capacity, sewage
and runoff systems as well as information about precipitation. All of these except
precipitation and infiltration capacity are continuous in time and well documented, i.e.,
non-changing and usually implemented accurately in models. Precipitation, however, is
typically applied as uniform fields. Although this might give a general understanding
of the hydraulic response, precipitation is never uniform, and to be able to model the
response of a plausible precipitation event, one must take into account the spatial and
temporal variation of precipitation. Infiltration capacity is hard to model as it is affected
by a multitude of factors. One of them, the soil moisture content, is in turn affected by
antecedent precipitation.

This variation must be captured by dense sensor networks combined with a mapping
model. For urban catchments, the optimal resolution of precipitation maps, according
to Fletcher et al. (2013), is between 1 and 10 minutes temporally and 100 to 500 meters
spatially. Although traditional sensors such as rain gauges are very accurate and are
cheap per-unit, the cost associated with dense network deployment such as installation
and maintenance, makes them unfeasible as a single solution for mapping applications.

There exist other measurement systems that can aid in increasing the spatial and tem-
poral resolution of measurements. These methods include radar and satellite which are
both in wide-spread use. As these systems are deployed for a specific task, they have
good measurement sensitivity and a geographical distribution which is optimized for
coverage (Messer and Sendik, 2015). However, a central limitation for their deployment
is cost in addition to other shortcomings explained further in section 2.2.1.

Conversely, opportunistic networks, networks that are already in place but not connected
or in use for a different purpose (Uijlenhoet et al., 2018) (see also sections 2.2.2, 2.2.3),
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enjoy the benefit of zero deployment cost and can have a very high spatial density.
Two opportunistic networks are explored in this thesis, namely: Commercial microwave
links (CML’s) , a network of directional microwave antennae used for communications
infrastructure such as cellphones, and Personal Weather Stations (PWS’s) , a network
of weather stations for personal use connected to the internet.

1.2 Aim and Research Questions

1.2.1 Aim

The aim of this thesis is to assess the viability of CML and PWS networks as a source
for urban precipitation mapping in Norway for rain-event reconstruction as well as now-
casting applications. By answering the research questions below, the thesis aims to
determine whether these systems have an added benefit to existing systems and provide
a foundation for larger-scale application. The study also hopes to identify or develop
well-suited methods for signal processing, quality control, and map-reconstruction as to
be able to determine their achievable (theoretical) accuracy. Finally, the study aims
to obtain an indication of real-world accuracy by recreating a precipitation event and
comparing the estimated precipitation to observed point value(s).

1.2.2 Research Questions

1: Who are the affected stakeholders? What companies and organizations own the data
and who would be the potential customers for the data itself and the products on which
it is based. What is the benefit to these stakeholders?

2: What is the current state of the art in urban precipitation mapping in Norway? What
is the current resolution and accuracy of precipitation maps, and what data-sources are
they based on?

3: What are the characteristics of CML and PWS networks in Norway, and how do
they compare to those of the traditional gauge network?

4: What is the achievable accuracy using opportunistic networks in Norway? Are cur-
rently developed signal processing and mapping models for the opportunistic networks
applicable to Norwegian conditions? What methods exist for the calibration of these
models? What methods exist to aggregate data from the different networks?





2. Background

2.1 Spatio-Temporal Components of Precipitation

Precipitation is a phenomenon that is governed by very complex atmospheric interac-
tions. The chief among these are moisture content and temperature, which together
govern the condensation of water in the air. Additionally, solid particle concentration
plays a role as the atmospheric water needs a nucleation site to condense to. These
factors are again forced by wind and weather patterns occurring far away from where
the precipitation falls. As these factors are near impossible to model in a deterministic
manner, precipitation is best viewed as a stochastic process, a process that is partially
or fully random.

However, precipitation is not completely random as it exhibits a strong correlation
within short distances in both space and time. Within a geostatistical framework, this
similarity is characterized by a semivariance function, also called a semivariogram or
just variogram. The variogram is defined as half the variance of the difference (of the
random function Z, e.g., precipitation intensity) between any two points separated by
the vector ~h (Note: ~h can represent a difference between locations in space or time).
The definition of the semivariance function is given in equation (2.1) where ~u is a point
in space or time.

γ(~h) = 1
2V ar{Z(~u+ ~h)− Z(~u)} = 1

2E{[Z(~u+ ~h)− Z(~u)]2} (2.1)

It builds on the assumptions that 1: The mean of Z(~u) is the same for all ~u, i.e.,
there is no trend in the data. And 2: That the difference between two points Z(~u +
~h)− Z(~u) for any distance must have zero mean and constant, finite variance over the
study area. These assumptions are referred to as the intrinsic assumption or hypothesis
(Legendre and Legendre, 1998, p. 718). The value of the semivariance function will then
be independent on the position ~u. One can further simplify the concept by assuming
that the change in precipitation is independent of direction, that is, an isotropic process.
The variogram will then be a function of the distance |~h| = h only. Note that the latter

5



6 CHAPTER 2. BACKGROUND

assumption is not always valid for precipitation; for instance, if there is strong wind
during an event or a single prevailing wind direction over a longer time, the variation
in that direction will generally be lower due to smoothing.

Figure 2.1: Variogram illustration

A variogram can be characterized by three main parameters: The nugget γ(0) = b, the
sill b+c and the range hr where γ(hr) = b+c. The nugget (non-zero intercept in fig. 2.1)
is a measure of the local variation occurring at a single point or at scales finer than the
resolution or sampling interval. The sill represents the variance of the entire field. The
distance at which the variogram reaches the sill is the range, beyond which points are no
longer considered spatially correlated (Legendre and Legendre, 1998, p. 729). Note that
parameters b, and c are commonly referred to as C0 and C1 in the field of geostatistics
though this is not done here to avoid confusion with the covariance function.

The nugget effect deserves a closer explanation as it can have two distinct interpretations:
When characterizing a field it, corresponds to variation within zero distance illustrated
by the following from which the term bears its name: Finding a gold nugget at a certain
location, for example, does not guarantee that other nuggets are right next to it and
the field itself of actual gold nuggets is discontinuous. Another interpretation that
characterizes the measurement of a field is the variation occurring at finer scales than
the measurement interval (distance between measurement stations) or the error of the
measurements themselves. Precipitation, though locally varying, is a continuous process
in time and space i.e., if it rains on one’s left shoulder, it likely rains on the right one as
well, so there is no variance at zero distance. The distinction between the field and its
measurement is important, as accurate information about the field characteristics and
sampling interval allows the measurement-nugget to be divided between its two causes:
i.e., how much of the measured nugget is attributed to measurement error, and how
much is due to the characteristics of the measurement network (measurement interval).
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Another function used to describe spatial structure is the covariance function C(h)
(some times denoted k(h) as a kernel function), which is more common in other fields
such as machine learning, statistics and meteorology. Under the intrinsic assumption, it
contains exactly the same information as the variogram and the two functions are related
by (2.2) (Cressie, 1991, p. 67). Being mindful of this relationship is important as it
enables researchers to leverage interdisciplinary knowledge and implement geostatistical
prediction in production using highly optimized machine learning algorithms.

γ(h) = C(0)− C(h), C(0) = σ2
Z (2.2)

The true variogram cannot be known, however it is commonly approximated by using
a model function, called theoretical variogram, such as the exponential function (2.3),
which in particular has an exact covariance analogue. Here, a and b correspond to the
nugget and partial sill. As the model asymptotically reaches the sill, the practical range
r where γ reaches 95% of the sill is approximately r = 31/βl (Lloyd, 2006). δn in (2.4)
is equal to 1 if h = 0 and zero otherwise (Rasmussen and Williams, 2006, p. 16).

γ(h) = b+ c(1− e−h
l

β) (2.3)

C(h) = bδn + ce−h
l

β

(2.4)

Fitting the variogram model is either done by computing the empirical variogram or by
optimization algorithms. The experimental variogram (2.5) is computed by grouping
pairs of observations by the distance between them in bins B(h) centered on h where a
bin contains N observations and computing their variance. Then the theoretical model
is fit to the center of the bins, either by visual inspection or using regression.

γ̂(h) = 1
2N(B)

N(B)∑
i,j in B(h)

(Z(u)i − Z(u)j)2 (2.5)

The application of the variogram to describe the spatial structure depends on the as-
sumption that there is no external trend in the data. However, precipitation is strongly
affected by topographic features such as elevation and slope (Ly et al., 2011; Tobin
et al., 2011), and other factors, including vegetative cover and solar radiation (Jin et al.,
2016). These effects can be prominent even at smaller spatial scales; Mohr (2008) found
that precipitation was expected to increase with 10% for every 100m increase in altitude
below 1000masl. Some geostatistical interpolation methods (described in section 2.1.1)
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account for this by using linear regression against one or multiple background fields and
treating the residuals as a random spatially correlated variable so that the assumption
of a constant mean is still satisfied.

Precipitation measurements, as many other environmental variables, are almost always
represented as temporally aggregated values. Most sensors present measurements as
either an average [mm/h] or accumulated [mm] over a given time window e.g., one
hour, and researchers further aggregate data to study daily, monthly or yearly averages
for various purposes. By aggregating a stochastic function such as precipitation, one
is by definition also reducing its variance and increasing the distance at which values
are spatially correlated. Demonstrated by the variogram, aggregating will decrease the
sill and increase the range. This behavior is a consequence of the central limit theorem
in statistics and is quite intuitive as aggregating is an operation in which information
(variance) is lost. Importantly, this fact implies that there is a relationship between the
spatial resolution (aggregation time step) and the spatial structure of a precipitation
map.

2.1.1 Models for Precipitation Mapping

A precipitation map is a continuous or near-continuous (i.e., gridded) field of precip-
itation intensity or accumulated precipitation over a given area. As precipitation is
commonly measured at point locations, a precipitation map is generated through inter-
polation of likely values between the point observations. Multiple models exist for this
purpose ranging from very simple deterministic models (Thiessen polygons, inverse dis-
tance weighting) to highly advanced geostatistical models (Kriging, Regression Kriging,
Kriging with external drift) and further to black-box models (machine learning). For
a comprehensive comparison of methods not included here, the reader is referred to Li
and Heap (2014).

It should be noted that throughout this study, the terms predictor and interpolator are
used interchangeably. Such is also the case for the terms prediction and interpolation,
where they both consequently refer to predicting a point in space and not time. The
term prediction is, in some sense, more applicable as some of the models used are not
exact (at measurement points), and the underlying measurements have associated errors
that are unknown.

The deterministic models can be collectively described by equation (2.6) where Zi is the
calculated precipitation at grid-point i, Zj is the measured precipitation at point j, λj
is the weight assigned to the measurement at j and n is the number of measurement
stations. The models differ mostly in how the weight λj is calculated, and the number
n of stations considered (Lyra et al., 2018).
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Ẑi =
n∑
j=1

λi,jZj (2.6)

The deterministic model commonly used in hydrology is called the Thiessen method
(Thiessen, 1911), also called nearest neighbor (NN) interpolation. In this method the
interpolation area is divided into n polygons Vj, j = 1...n. Each polygon includes all
grid-points for which Zj is the closest observation. The value of the closest observation
is then assigned to all grid-points. The weights are then computed by the following rule:

λi,j =

1, ifẐi ∈ Vj
0, otherwise

(2.7)

The benefit to this model is its simplicity and the fact that it will never interpolate
or extrapolate (interpolation between an observation and the edge of the study area)
an unlikely value i.e., −1mm/h. The chief disadvantage is that the method discounts
neighboring measurements completely and is thereby very susceptible to measurement
errors. Further, the method creates discontinuous regions between polygons (Ly et al.,
2011).

Another geometric method is Triangulation with Linear Interpolation. This method is
based on Delaunay triangulation, where each observation is connected by non-overlapping
lines creating a mosaic of triangles. The value at each triangle corner is constrained to
the observation at that point and the slope of the vertices is the spatial gradient

(
mm/h
m

)
between corners. The triangles then span a plane in 3D space (precipitation being the
third dimension) from which Zi is taken (Lyra et al., 2018). This method has previously
been used by the Norwegian meteorological institute for precipitation mapping purposes
(Mohr, 2008; Tveito, 2016) but has since been superseded by a method called Optimal
Interpolation which is similar to Kriging (Lussana et al., 2018).

The other deterministic models commonly used for precipitation mapping are Inverse
Distance weighting (IDW) , which assigns a value based on the average of surrounding
measurements weighted by the inverse of the distance to the point being interpolated.
It relies on the assumption that that measurements close by an unknown point are more
influential than those further away. The weights are computed by equation (2.8) where
da,b = ua−ub and u are locations. The p parameter represents a smoothing effect where
p > 1 will increase the weight of closer points and decrease weights further away, and
p < 1 will do the inverse leading to a smoother field. Dirks et al. (1998) found that the
optimal value of p was dependent on aggregation time and recommended p = 2 for daily
and monthly precipitation and p = 1 for hourly. [Drawback is the tendency to produce
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spots]

λi,j =

1
|di,j|p
n∑
k=1

1
|di,k|p

(2.8)

Kriging is a geostatistical method for interpolating points which incorporates the spatial
structure described in section 2.1 into the weights for predicting Zi. It does this under
two constraints: Firstly, the prediction should be unbiased, which is accomplished by
the weights summing to 1 and that the mean is stationary. Secondly, the prediction
variance σ2

e = V ar(Z0 − Ẑ0) should be minimized. This is accomplished by solving the
system of n+ 1 equations in (2.9) (Ly et al., 2011).


∑n
i=1 λiγi,j − µ forj = 1, ..., n∑n
i=1 λi = 1

(2.9)


∑n
i=1 λiCi,j + µ forj = 1, ..., n∑n
i=1 λi = 1

(2.10)

Here, γi,j is the semivariance between points ui and uj given by the distance between
them. n represents the number of observation points and, µ is a Lagrange parameter
included to constrain the solution to the un-biasedness criterion.

When applying the weights calculated from (2.9) directly to eq. (2.6) the process is called
Ordinary Kriging (OK) . This is the most common kriging method, though there exist
many other methods. One is Simple Kriging, which assumes the mean to be constant
and known where OK assumes the mean to be constant, but unknown. In principle these
methods are equivalent but by limiting n = n(u) to stations in a local search window
OK can account for a trend (changing mean) in the data (Goovaerts, 1997, p. 137). As
the mean is assumed to be known, the un-biasedness criterion is no longer necessary,
and the system is reduced to n equations without the Lagrange parameter.

In the case where the trend in the data is related to exhaustive secondary information
such as elevation, methods such as Regression Kriging (RK) can be used. This method
splits equation (2.6) into a sum of the trend and residual (see eq. 2.11) (Hengl et al.,
2003). Here, the trend is estimated using (most commonly) generalized least squares
regression between the background field, e.g. elevation and the target, e.g. precipitation
and OK is performed on the regression residuals. The results are then added back
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together.

Ẑ(u) = m̂(u) + ε̂(u)

m̂ = β0 + β1q(u)

ε̂ =
n∑
i=1

λi(u)ε(ui)

ε(ui) = Z(ui)− m̂(ui)

(2.11)

One of the key benefits of the Kriging method is that it is able to predict not only
target values, but also the corresponding error variance at any point. A key aspect of
the predicted variance is that it is dependent only on the semivariance (or covariance)
function and the spatial configuration of measurements, i.e., independent of the observed
values (Goovaerts, 1997, p. 179). In this way, it is possible to create a map of the
prediction confidence and evaluate regions in need of more sensors. Further, this enables
drawing points from a normal distribution with mean and variance equal to the kriging
prediction and kriging variance, then adding them as an "observation". Doing this
iteratively creates a realization, or possible reality of the field, rather than the most
likely value at every point. This method is called Stochastic simulation.

Importantly, when using the kriging method for interpolation of precipitation, one must
take into account that the spatial precipitation will change over time. Different precip-
itation types (convective, frontal, orographic) might differ vastly in their corresponding
variograms. Further, if the temporal scale is fine enough e.g., less than the duration of
a precipitation event, the spatial structure might vary throughout the storm and con-
sequently be unique for each measured time-step. This complicates the application of
kriging for nowcasting, as the variogram needs to be re-fitted at each time-step, mak-
ing the model prone to erroneous measurement. This problem can be overcome by
either fitting the variogram to an average of prior empirical variograms creating a cli-
matological variogram, or one could pre-process the observations to filter out erroneous
measurements before applying the model.

The general kriging methodology is also referred to as "Gaussian Process Regression"
(GPR) (for simple kriging specifically) or best linear unbiased estimator (BLUE). These
methods are more general as they are commonly used for non-spatial applications, and
usually rely on the covariance function rather than the variogram. Further, there exist
other methods of the black box type used for regression in machine learning applications.
These can also be considered for spatial interpolation, though they do not have the same
physical basis in the spatial structure and rely primarily on cross-validation techniques
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to optimize against some form of prediction error.

It should be noted that precipitation, in addition to being non-continuous in time and
space, is also skewly distributed with an absolute lower boundary of zero, i.e., negative
precipitation does not exist. For smaller time-steps, this is especially relevant and implies
that the intrinsic assumption is not exactly valid (Tveito, 2016). This fact somewhat
diminishes the advantage of a statistical basis for the geostatistic interpolation methods
over the deterministic and black box ones.

The above interpolation techniques have been compared for precipitation interpolation
for various spatial and temporal scales, see (Wang et al., 2014; Hofstra et al., 2008;
Haberlandt, 2007; Lyra et al., 2018; Ly et al., 2011), a review of which indicates that no
single method is superior, though likely candidates are the Ordinary Kriging, Regression
Kriging, and Inverse Distance Weighting methods. Reviews of interpolation methods
for climate data (Li and Heap, 2014; Tveito, 2008; Sluiter, 2009) all recommend testing
multiple methods for the same application.

2.2 Sensor Network Theory

In this section, the distinction between traditional precipitation networks and oppor-
tunistic networks is defined. Traditional networks are networks of ordinary rain gauges.
The gauges can either be manual or reporting (see 2.2.1). Opportunistic networks are
defined as networks already deployed by a third party but not currently in use for pre-
cipitation monitoring, the two included in this study are commercial microwave link
(CML) networks (see 2.2.2), whose primary use is relaying information, and Personal
Weather Station (PWS) networks which are personal weather stations. The inclusion of
the latter in the definition might not seem obvious as they are quite similar to traditional
networks. However, there are some important differences between them as discussed fur-
ther in 2.2.3. Other forms of opportunistic networks might include the use of mobile
phones to measure solar radiation or pressure (de Vos et al., 2020) or the windshield
wiper frequency of cars to measure precipitation (Haberlandt and Sester, 2010). Oppor-
tunistic networks have three things in common: The sensors are already deployed, the
sensor distribution is usually denser than its traditional counterpart, and importantly,
the opportunistic user of the network has little to no control of its configuration or
quality.

For precipitation, there are many objectives a sensor network needs to fulfill. First
and foremost, it should give its users (usually the public or research organizations) a
picture of precipitation that is clear enough for its application. This application can
range from tracking climate data such as the mean annual precipitation over a country
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to hydrologic monitoring of flooding and pollution discharge or short term precipitation
prediction. These applications impose different criteria on the network in terms of
representativeness, coverage, clustering, and resolution. In this section will pay specific
attention to the requirements for urban hydrological applications for flooding.

The coverage of a network is herein defined as the network’s spatial extent i.e., the
border around the network outside which there are no sensors. For all applications, it is
important that the network extends to or beyond the extents of the studied area so as
eliminate the need for extrapolation in mapping applications. Networks for precipitation
monitoring are usually country-wide, though they do not extend to bodies of water such
as the sea, making the coastline an effective border. For urban hydrological applications,
however, this is of little importance as precipitation falling in the ocean has no effect
in cities. However, the presence of large upstream catchments should be considered if
there is a risk of fluvial (river-borne) flooding.

Representativeness is a measure of how un-biased the network is with respect to factors
that are explanatory for the measured variable, chiefly elevation. This is a real challenge
for precipitation networks as they tend to be denser in populated areas, which are com-
monly low-lying and less dense in mountainous regions where there is more precipitation.
This fact can lead to underestimation in many applications. For urban hydrology, this
is of less importance where the primary cause of flooding is pluvial, from precipitation
occurring close to the flooded area which is topographically homogeneous, as opposed to
fluvial, where the source of floods are rivers with large upstream catchments where the
topography is much more varied. A related measure is clustering, which describes how
the network density varies throughout the network. A network of 10 stations would have
a low degree of clustering if the stations were equally distributed, and clustering would
be high if 8 of the stations were squashed together in a corner. With a fixed number
of stations, a low degree of clustering is preferred, and the network should approximate
a grid. However, if geostatistical methods are to be used, data of short scale variation
needs to be gathered, so some degree of clustering is needed.

Density is the most important factor for urban applications. It describes how close the
sensors are to each other on average and dictates how much of the spatial structure can
be captured. The density required for hydrological applications is, in large part, dictated
by the spatial structure of the storm event and the catchment response time, the latter
of which is mostly dependent on slope and catchment area. Berne et al. (2004) found
a relationship between catchment size (S [ha]), the required temporal (∆t [min]) and
spatial (∆r [km]) resolutions by analyzing the spatiotemporal structure of precipitation
in a Mediterranean climate:
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∆t = 0.7S0.3

∆r = 1.5
√

∆t
(2.12)

The equations rely on the assumption that the temporal resolution should be equal to
the catchment response time, the time between peak rainfall and peak discharge, usually
approximated by the time it takes water to traverse the whole catchment. According
to the authors, the equations are valid for catchments between 10 and 10000 ha, with
slopes between 1 and 10% and with imperviousness between 10 and 60%. It should
be noted that rain event spatial structure is dependent on climate, so the relationships
presented might not be applicable to the Norwegian climate.

The final aspects of sensor networks are homogeneity and data quality. Homogeneity is
a measure of how the network itself changes. Complete homogeneity is achieved when
measurement variations are completely the consequence of variation in the climate.
Any change to the network like changing the position or type of sensors, construction of
buildings at the sensor site that affects the measurement, or the addition or relocation
of sensors will all create breaks of homogeneity in the network (Tveito, 2016).

Data quality refers to the accuracy and quality of the sensors and can result in erro-
neous, missing, or biased measurements. These can be corrected by applying quality
(QC) control procedures before any interpolation is done. Many QC methods exist for
traditional networks as values can be checked against what is likely based on climato-
logical data for the same station and season (temporal consistency tests) and data from
other sensor types (humidity, wind, temperature) at the same location (Internal consis-
tency checks) (Vejen et al., 2002; Plummer et al., 2003). For opportunistic networks,
the selection of QC methods is more limited as the stations have no climatological data.
Some bias-correction is possible (de Vos et al., 2019) and stations can be flagged for
erroneous values through spatial consistency checks where neighbouring observations
are compared (Nipen et al., 2020; de Vos et al., 2019). However, there exists little basis
for correcting erroneous and missing values.

The homogeneity and data quality of a network is consequential for what methods can
be used for later interpolation, prediction, or analysis. If the homogeneity is high, one
can use rigorous, finely tuned models that expect each sensor to be "present". For these
models to work, the data quality needs to be high so that there are few missing and
erroneous values, and those that occur can be "fixed" by QC before further processing.
This is especially important if aggregate analysis is to be done. Imagine that a sensor
is offline for a single day and monthly precipitation is analyzed. The missing day will
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invalidate the whole month unless fixed.

2.2.1 Traditional Sensors

Traditional sensors are defined in this paper as sensors and sensor systems that are
commonly used in precipitation measurement. These include point sensors such as
pluviometers and disdrometers as well as weather radar.

Pluviometers measure the mass of rain falling into a funnel of known area. For auto-
matic reporting, a weighing system or tipping-bucket arrangement is used. The weighing
system periodically records the weight of a collection bucket, and the tipping-bucket ar-
rangement reports every emptying of a small bucket (typically corresponding to 0.1mm
of precipitation). For unattended stations, the tipping-bucket is used as it does not
require periodic emptying. Pluviometers are highly accurate if installed with proper
wind shields, though they are still prone to wind-induced collection deficiency when the
precipitation occurs as snow (Wolff et al., 2013). The world meteorological organization
(WMO) has guidelines for the production, installment, calibration, and maintenance of
pluviometers and other meteorological observation methods (WMO, 2014). If a mea-
surement station adheres to these guidelines, it is deemed WMO compliant.

For the tipping-bucket arrangement, the temporal resolution is governed by the size of
the bucket and logging frequency and effectively increases with precipitation intensity.
This is because the rain rate is recorded as the number of tips per time interval multiplied
by the bucket volume, which leads to inconsistent data when the rain-rate is lower than
the bucket volume, i.e., less than one tip per time interval. This inconsistency can
be corrected by recording the time of each tip and re-sampling to fixed time intervals
later using fixed timeline processing (see fig. 3.1). Conversely, the same system will
experience collection deficits if the precipitation intensity is large enough to overburden
the tipping-mechanism e.g., if water over-tops the bucket before tipping. The tipping
mechanism also has a risk of clogging due to debris or solid precipitation. An oft-
overlooked aspect of traditional pluviometers is their spatial representativeness. The
actual area in which the pluviometer measures is the area of its collection funnel which
is so small as to be considered a point sample, the representative area of which (Sr)
can be formulated as Sr = π

[
∆r
2

]2
using ∆r from (2.12). Traditional gauge networks

are designed taking the above factors into account and are, as a consequence, built out
to maximize spatial representativeness of the network with regard to distance between
sensors and other important factors such as elevation.

Disdrometers are optical or pressure-sensitive sensors that measure the hydrometeors
(raindrops, snowflakes, etc.) more directly by recording their size and velocity and then
binning them into a drop size distribution (DSD) . These parameters can be transformed



16 CHAPTER 2. BACKGROUND

to precipitation intensity directly, but are also valuable for determining precipitation
type and for error correction in surrogate measurement techniques such as weather radar
where the reflectivity is highly dependent on the DSD. (Islam et al., 2012). Disdrometers
are not as prone to wind-induced loss as pluviometers with no risk of clogging, but are
costly instruments and normally not used in networks.

Weather radar has seen widespread use in recent years, mainly due to its ability to mea-
sure over a very large area, a disk centered at the radar installation with a typical radius
between 150 and 300 km. The system works by scanning the atmosphere around the
radar at different angles (from the horizontal) and measuring the power of the reflected
signal for each radial segment along the beam. The data is then processed by extensive
error correction algorithms to eliminate reflections from non-meteorological objects such
as birds, ground- and sea clutter, as well as effects due to anomalous propagation (radar
beam bending due to unusual gradients in temperature and humidity) (Elo, 2012). The
end product is in the form of a cartesian grid of reflectivity values with a resolution on
the order of 1x1km2 at 5min intervals (Berne and Krajewski, 2013) and is typical for
C-band radar. Using modern X-band radar such as the IDRA used by Ochoa-Rodriguez
et al. (2015), resolutions of 100x100m2 and 1min are possible, though at the expense
of range which decreases to approximately 15km. The system is very useful for clas-
sifying the precipitation type and intensity (low, moderate, extreme), but less so for
estimating the actual precipitation intensity. This is because the relation between water
content and reflectivity is highly dependent on the DSD, which is largely unknown at
the sampling location.

2.2.2 Commercial Microwave Links

This section contains a small summary of CML’s for use in precipitation measurement
and mapping. For further information, the reader is referred to a critical survey (Messer
and Sendik, 2015) and two excellent reviews (Uijlenhoet et al., 2018; Chwala and Kun-
stmann, 2019) on the topic.

Commercial microwave links (CML) are directional antennas used for point-to-point
communications applications. They are primarily deployed by cellular network operators
as part of their backhaul networks interconnecting base-stations and servers. They
operate with frequencies between 5 and 40 GHz with future installations to facilitate 5G
extending to 80 GHz. The fact that precipitation causes considerable attenuation of the
signal at these frequency ranges has been known since 1946 (Robertson and King, 1946).
Further, Atlas and Ulbrich (1977) found that the relationship between attenuation A

and precipitation R is essentially independent of DSD at the same wavelengths. They
also found that the relationship can be described with equation (2.13) where k is the
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specific attenuation in dB/km and R is in mm/hr. (ITU-R, 2005). Note that the values
k and R are at a specific point in time and position along the link.

k = aRb (2.13)

a and b in equation (2.13) are constants mainly dependent on the polarization and
frequency of the radio waves, the temperature (Chwala and Kunstmann, 2019), and
to a much lesser extent, the DSD which Jameson (1991) affected the attenuation only
when b deviated from 1. Curve fitting to empirical data for different DSD performed by
Chwala and Kunstmann (2019) found a b between 1.193 for 10 GHz to 0.858 for 50 GHz,
where the scatter was smallest when b = 1.020 at 30 GHz. The linearity (b ≈ 1) of
equation (2.13) is important as it allows the approximation

∫
f(x)ddx ≈ [

∫
f(x)dx]d

which is important for determining the path-averaged precipitation intensity (R̄) as a
function of the total attenuation (A)

A =
∫ L

0
aR(l)bdl b≈1= a(R̄)bL, (2.14)

where L is the total length of the link, A[ dB] = TSL−RSL is the total attenuation over
the link where TSL and RSL are Transmitted and Received Signal Level respectively.
Inverting this relation, and omitting the bars (R and k both denote average values
hereafter), the following relation to determine precipitation intensity is obtained:

R =
[
k

a

]1/b

k = A

L

(2.15)

Two characteristics, bias and sensitivity are important in this relation. The constant a
can be viewed as a proxy for sensitivity, and b as a proxy for bias. For a given frequency,
stronger precipitation corresponds to a higher attenuation. For a given rain rate, the cor-
responding attenuation increases with frequency. Additionally, higher frequencies have a
higher bandwidth, i.e., they are able to transmit more information. As a consequence of
the latter two points, CML network architects employ higher frequency links for shorter
paths and lower frequency for longer paths. As a result, sensitivity is relatively equally
distributed among different links and lies between 0.25 and 1.8 dB/[mm/hr]. Bias is
a measure of how much the attenuation is affected by the distribution of precipitation
along the link. It increases as the frequency diverges from 30 GHz. For shorter paths



18 CHAPTER 2. BACKGROUND

with high frequencies, this isn’t a problem except for the wet antenna attenuation effect
discussed later, as the spatial structure is more likely to be homogeneous over shorter
distances. For longer distances with lower frequencies, bias is somewhat mitigated by
the averaging that occurs along the path.

The relationship in (2.15) is nothing new, and it has been applied in earlier studies
(Atlas and Ulbrich, 1977; Jameson, 1991) to determine precipitation. Since then, the
build-out of communications infrastructure has been tremendous. There are, as of 2017,
an estimated 4 million CMLs worldwide (Ericsson, 2017) that can potentially act as pre-
cipitation measurement stations. When compared to the number of traditional gauges,
which Kidd et al. (2017) estimated between 0.15 and 0.25 million, the added value is
obvious with regard to the spatial resolution. Messer (2006) and Leijnse et al. (2007)
were the first to explore this application, and it has been an ongoing field of research
since.

The fact that measurements represent path-averages increases the spatial representative-
ness with increasing length i.e., the chance of not detecting a localized e.g., convective
storm event is decreased. This comes at the expense of losing fine-scale variation, which
is important for interpolating on a grid finer than the path lengths. A few studies have
tried to account for this using tomographic techniques (Nebuloni et al., 2017; Giuli et
al., 1991) and dynamic models (Roy et al., 2016). The majority of studies in this field
have assumed the path-average to be representative of a point on the path center, then
using geostatistical techniques with point support for interpolation. In principle, these
techniques can be used with line support (Uijlenhoet et al., 2018), but the uncertainties
associated with the point simplification have been found to be smaller than the physical
errors associated with single-link precipitation retrieval (Rios Gaona et al., 2017).

The application of CML data for precipitation mapping faces many challenges. Most,
if not all of them, are due to the opportunistic nature of the network, and many are
not fully solved or require a unique solution for each application. The first challenge is
network access. CML operators are not accustomed to sharing their signal loss data as
they use it only for internal network monitoring purposes, and the open knowledge of it
might prove a competitive disadvantage. More importantly, communications infrastruc-
ture is in many areas considered to be of critical importance, leading CML operators to
more closely guard data access. Further, a system for data transfer needs to be created.
For research purposes, historical data can be transferred via email. For use in real-time
operational products however, data must be transferred in real-time. This has been
accomplished in Gothenburg, Sweeden (Bao et al., 2017) and Germany (Chwala et al.,
2016) using purpose-built software which has to be installed on the operator’s internal
network.
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The quality of the signal-loss data is also highly variable from network to network.
The data can be reported as an instantaneous value or as the minimum and maximum
attenuation since the last sampling. For internal network monitoring, a sampling rate of
15 min with a power resolution 1 dB is considered adequate, and storage of the data can
be non-existent or at resolutions as course as daily (Chwala et al., 2016). Considering the
spatiotemporal characteristics of precipitation, a higher polling frequency and a power
resolution of 0.1 dB(Uijlenhoet et al., 2018) is desired for use in precipitation mapping.

Another opportunistic trait of CML networks is their heterogeneity. Links are upgraded
continually, often changing location and/or frequency in the process. Additionally, links
may be unreachable at moments due to outages in other parts of the network. This
limits the available post-processing techniques, as discussed in the beginning of this
section.

Similarly to radar, not only precipitation causes attenuation of the electromagnetic sig-
nal. Other causes can be atmospheric ducting (when layering of humidity or temperature
causes the beam to bend), increased humidity, dew accumulation on the antennae, or
physical objects blocking the beam-path. These effects are important for determining
the reference level attenuation and event detection. The former refers to the signal-loss
corresponding to dry weather, which might fluctuate throughout the day and/or year.
Event detection is the classification of a rain event. If a spike occurs in the signal loss, is
it due to precipitation or not? One way to account for this is by using spatial consistency
checks. However, this method only works in areas where the network is denser than the
decorrelation-distance or range of precipitation. If not, the temporal structure of the
signal can be used. Chwala et al. (2012) used a gliding windowed fast Fourier transform
on data that was reported as 1 min averages, and Schleiss and Berne (2010) used the
standard deviation of a 25 min gliding window on 30 s instantaneous data. If the link
uses dual (both vertical and horizontal) polarization, event detection is more trivial as
the differential attenuation Ahorizontal−Avertical is affected only by the precipitation rate
(Ruf et al., 1996). However, dual-polarization links are relatively rare. Alternatively,
secondary information, such as nearby traditional gauges, satellite imagery, or radar,
can be used if available.

Another source of attenuation that is caused by precipitation, but not directly related to
its intensity, is the coating of the antenna surface by a film of water when it rains. This
results in an overestimation bias predominantly affecting shorter links as the relative
contribution of the water film to attenuation is higher. In literature, this is referred
to as the wet antenna attenuation effect, the correction of which remains a challenge.
In networks with little variation in link lengths and frequencies, it has been found
that subtracting a constant from the attenuation solves this problem (Overeem et al.,
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2016). However, in a more varied network, more advanced techniques that consider
the links individually with regard to length, frequency, and temporal structure of the
signal might need to be applied. Additionally, the duration and magnitude of the
wet antenna attenuation is affected by the material of the antenna cover and other
meteorological variables like temperature, wind, humidity, and solar radiation which
affect drying. Due to these factors, the development of a WAA model not reliant on
extensive secondary information is still an open challenge, though many methods have
been presented (Uijlenhoet et al., 2018).

2.2.3 Personal Weather Stations

Personal Weather Stations (PWS), also called citizen weather stations, are small scale
versions of meteorological sensors installed by amateurs and hobbyists on their own
property (house, garden) to be able to monitor the weather when not at home. They
are often sold as small units with integrated sensors for various climatological factors in a
plug-and-play fashion. If they wish, users may connect these stations to public networks
to aid in weather monitoring, prediction, and research, so-called Citizen Science. PWS
systems have been available since the early 2000s and have seen extraordinary growth in
recent years coinciding with the adoption of IoT (Internet of Things) technologies. This
growth is exemplified by the number of PWS stations connected to the leading PWS
network, Weather Underground, which has grown from 7000 to 0.25 million stations in
less than ten years (Chen et al., 2018).

The main advantage of PWS is their density when aggregated in networks. The aggre-
gation is either done through 3rd party services such as Weather Underground, which
station owners have to explicitly connect to, or by the supplier/manufacturer of the
station such as Netatmo. The latter option likely yields a higher degree of connectivity
as data sharing is enabled by default upon installation. The density of PWS closely
follows the density of the population. As a consequence, station densities are likely to
be high in metropolitan areas, making them very applicable for urban flood modeling
and forecasting. PWS are currently in use for operational temperature forecasting in
Norway, where the number of PWS stations from only the Netatmo network outnum-
bered Norway’s own network of WMO-compliant stations by a factor of 50 (Nipen et al.,
2020). A recent study of PWS for precipitation monitoring in the Netherlands found
that PWS had a density ten times higher than the manual gauge network and 100 times
higher than the automatic one measured in [ Nstations/km2] (de Vos et al., 2019).

The largest challenge when using PWS networks is data quality i.e., inaccurate or no
observations. de Vos et al. (2019) classifies three main causes of lacking data quality
as Instrumental errors, compromised setup and data processing issues. The sensors are
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produced with the aim of being affordable, so accuracy is expected to suffer. For precip-
itation sensors, this is illustrated by lack of wind shielding and small collection orifices,
which can be viewed as instrumental errors. The most prevalent error source in PWS
however, is a compromised setup. As stations are installed by hobbyists without the
knowledge of proper placement, they may be installed in shielded locations, i.e., under
a roof or a tree causing under-collection. Furthermore, the sensor tipping mechanism
might be hindered if it is installed at an angle or clogged by debris, which will also cause
over-estimation. Conversely, the station might report precipitation when it doesn’t rain
if the tipping mechanism is disturbed, which could happen when cleaning the station.
Finally, errors can arise from data processing issues relating to the logging of measure-
ments from the station and subsequent transfer through an aggregation network. Due to
outages in wifi- and internet connection, sensors might often be unavailable and report
no data or report measurements at a delay.

When analyzing PWS in the Netatmo network, de Vos et al. (2017) found that the
time-stamp associated with measurements were from the time of (data) collection and
not of the measurement itself. They also found that the last measurement was collected
repeatedly in the event of a sensor outage.

In summary, any PWS network is highly heterogeneous, prone to errors, and exhibits sys-
tematic bias (under-collection) in the case of precipitation. Many of these challenges can
be solved by innovative quality control methods, which due to the large network density
can be stricter than their traditional counterparts: When using PWS for temperature
monitoring, Nipen et al. (2020) used a QC method consisting of three separate filters
exclusively based on spatial checks which are completely independent of past perfor-
mance of the stations. This approach allowed even poorly placed stations to contribute
when their placement did not affect the measurement. An approach more centered on
station reputation has been proposed by Chen et al. (2018), where stations are assigned
a trust score based on past performance compared with neighboring stations. A more
traditional approach is proposed by de Vos et al. (2019) that takes both temporal and
spatial characteristics into account. This QC method works by applying three separate
filters for faulty zeroes, unrealistically high values, and outliers and is able to do bias
correction. As PWS stations that measure precipitation usually also measure temper-
ature and humidity, there exists the possibility of applying internal consistency checks.
This has not yet been attempted but is an interesting research avenue.

2.3 Stakeholder Classification

In a supply chain where the principal commodity being exchanged is information in
various forms, such as the case for precipitation maps and meteorological services in
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general, it is common to classify stakeholders in the flow chain as data suppliers, data
processors, data users and end users. Stakeholders are classified according to the way
in which they benefit from being part of the supply chain. It is likely that individual
organizations fulfill multiple roles within this classification. When identifying organi-
zations for inclusion in CML or PWS precipitation mapping, this study will primarily
focus on data suppliers and data processors, discounting the latter two except for a brief
description.

The first group, data suppliers, consists of all companies and organizations operating
point-to-point microwave links in the relevant frequency range (> 5GHz) for the CML
networks. For the PWS networks, two distinct entities are included in this group: Pri-
vate individuals who own the stations as well as the service or company that aggregates
data from them. The primary role of this group is to log the raw data they possess
and provide it together with relevant metadata. The role of the private individual is to
maintain their station and allow for collection of its data. The value proposition for this
group is an added revenue stream generated by selling the data to stakeholders in the
second group: data processing. It is assumed that the achievable revenue is sufficient to
recoup the costs of temporary data storage.

The stakeholders within data processing are providers of climatological- and meteoro-
logical data, more specifically providers or potential providers of precipitation maps.
Their role would be twofold: Firstly, as customers and aggregators of the raw data, they
would combine and homogenize data from multiple suppliers. Secondly, they would
act as processors of the data. The data would be transformed into precipitation maps,
likely through aggregation with other data sources such as traditional rain gauges and/or
weather radar. The value proposition for the second group consists of adding value to
the data by transforming it into spatial precipitation information for which there is a
larger market. Conversely, the CML and PWS data can add precision, and thereby
value, to existing products. It should be mentioned that the majority of stakeholders in
this group are governmental institutions that are not dependent on direct revenue from
sales but are funded through the state.

In the specific case of urban water management, the data users chiefly employ the
precipitation maps directly through runoff modeling, real-time sewage control, calibra-
tion of sewage/runoff models, early flood warning systems, rain-event reconstruction,
and short term precipitation forecasting. This group consists of consulting agencies,
environmental agencies, city planners ,and researchers within hydrology, climate- and
environmental science, sanitation, and runoff infrastructure.

The end users are classified as stakeholders extracting value through decision support
for various applications such as sewage system improvement, planning, pollution moni-
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toring, or simply whether to go outside or wait until a rain shower has passed.





3. Methods

To answer the research questions, a two-part study was conducted. The first part focuses
on determining the first two questions, 1: to identify stakeholders and determine value
propositions, and 2: to find the current capabilities of urban precipitation mapping.
The supply-side stakeholders, data users and end users, were assumed to align well with
those discussed in section 2.3. Further, only the most likely data processing stakeholder,
namely The Norwegian Meteorological Institute (MET) , was considered. Consequently,
the study focused on identifying data suppliers for the opportunistic networks. Finally,
it was not attempted to quantify the value proposition to these stakeholders other than
to assess whether the end products provided added benefit to current products. Current
capabilities were assessed by reviewing the current products offered by MET, and the
methodology for stakeholder identification is discussed in section 3.1.

The second part of the study focuses on the latter questions: 3: Determining the char-
acteristics of the opportunistic networks in comparison to the traditional ones, and 4:
determining the achievable accuracy the opportunistic methods provide. To answer
these questions, the PWS and CML networks were analyzed with regard to their net-
work characteristics (metadata) and compared to the traditional network with regard to
requirements for urban hydrological applications. Further, to determine an applicable
mapping method, five different interpolation techniques were tested in conjunction with
a QC algorithm for the PWS network which were validated against the traditional sen-
sor network. The best performing method was then used to create maps of prediction
quality for the three networks at different aggregation times. Finally, the networks were
aggregated to assess the potential quality over the traditional network alone.

For the metadata-analysis, it was decided to look at three study areas— mainland
Norway as a whole, a rural area, and an urban area. The rural area was chosen as a
rectangle surrounding the municipalities of Lillehammer, Hamar, and Gjøvik with an
area just above 9000 km2. The rural bounding box can be seen as a white overlay in fig.
4.3. The urban research area, hereafter called the Oslo area, intersects the municipalities
Oslo, Bærum, Asker, Nesodden, and Kolbotn with an area a lot smaller, approximately
710 km2, see fig 4.2. For interpolation and time-series analysis, only the Oslo study area
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was used.

3.1 Stakeholder Identification and Data Acquisition

CML data suppliers were identified by first finding out how radio communications are
managed in Norway in the hope of finding a registry of operators. It was found that
they are managed through the National Communications Authority of Norway (NKOM)
, which enforces the relevant regulations and manages auctions of the electromagnetic
frequency spectrum for various uses.

Consulting their web page https://www.nkom.no/english, it was found that the op-
eration of CML’s can be done in one of three ways. Either through free use, simplified
licensing, or through per-frequency licensing. Free use and simplified licensing are gov-
erned by the free use of frequencies regulation (Fribruksforskriften, 2012) articles 12 and
5 respectively. Free use includes two frequency bands in the 5 GHz range and one in the
60 GHz range and can be used with relatively low power systems, whereas simplified
licensing includes frequencies in the 70 to 80 GHz range and allows the use of higher
power systems. Free use and does not mandate registration, so no registry of operators
exists. Use through simplified licensing mandates per-link registration; however, as of
11.02.2020, only five links were registered in this manner. The simplified license reg-
istry can be found at https://www.nkom.no/forenkletlisensiering/#/main. Per-
frequency licensing gives the licensee the right to use a frequency band either nation-
wide or in a limited area for a specified use. A registry of licensees does exist, and it
was decided to use this as a basis for identifying data suppliers.

The license registry (frekvensportalen: https://frekvens.nkom.no/#/main) was fil-
tered to include only fixed use and frequencies above 5GHz. The resulting licensees
were then contacted trying, where possible, to reach the departments/persons in charge
of communications infrastructure directly. In cases where the licensee did not operate
CML’s directly but instead rented out the frequencies to third parties, an attempt was
made to get information about their costumers and contact them in turn. 9 Likely com-
panies were identified and contacted (see table 4.1). None of them would send updated
metadata, so a data-set from the Telia network collected by Hoås (2018) was used. Re-
peated requests for signal-loss data were also made, but not responded to. The CML
stations are listed in the CML row of table 4.3

PWS network operators were identified by a quick internet search as well as consult-
ing literature on the subject (Butler, 2019; Nipen et al., 2020; de Vos et al., 2020). As
these companies chiefly operate internationally, identifying them was comparatively easy.
The PWS networks identified are listed in table 4.2. As the Netatmo network had the

https://www.nkom.no/english
https://www.nkom.no/forenkletlisensiering/#/main
https://frekvens.nkom.no/#/main
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broadest coverage (in Norway) as well as (free) access to individual stations through their
API https://dev.netatmo.com/apidocumentation/weather#getpublicdata (Appli-
cation Programming Interface) , it was chosen for this study.

An advantage of the Netatmo network is that all stations are of the same model and
have equal error characteristics. From the manufacturer specifications, the Netatmo
precipitation gauge has a measurement range between 0.2 and 150 mm/h, with a stated
accuracy of 1 mmm/h and a tipping bucket volume (or resolution) of 0.1mm (Netatmo,
2020). These metrics were assumed unknown while producing the results. This was done
as the actual error is likely far larger due to incorrect operation as discussed in section
2.2.3. Further, PWS networks, in general, can include multiple station models from
differing manufacturers, and the model information might not be included in network
metadata.

Metadata for the network was requested using bounding boxes for the national, rural
and urban study areas. For the Oslo study area, it was found that the API returned
stations outside the bounding box, so a negative buffer was introduced. This technique
was necessary as the API only allows a fixed number of stations to be returned.

As Netatmo does not provide access to historical records, a logger was set up between the
dates 2020-03-26 and 2020-05-11. The logger was written in python with the pandas
(Reback et al., 2020) library using an AWS EC2 instance for hosting. The logger
requested the last 60-minute accumulated precipitation from the stations in the Oslo
study area using the same bounding box as for the metadata collection. After it was
found that more stations were included in the time-series than the original metadata-set,
the bounding box was divided into nine sub-areas, and metadata was re-requested for
each subarea every 15 minutes over three days. The result of these requests are listed
in the Oslo column of table 4.3, whereas the number of stations in the rural column is
based on a single request.

Metadata for the traditional gauge network, as well as historical records for the study
period, hereafter referred to as the MET data-set, were gathered using the FROST
API https://frost.met.no/index.html, which allows access to all of the Norwegian
meteorological institute’s stations as well as partner stations owned and operated by
municipalities and organizations. The number of stations is listed in table 4.3, where
they are divided by owner and whether or not they are WMO certified.

3.2 Data Pre-Processing

Metadata from all sources were read into separate GeoDataFrames (Jordahl et al., 2020),
a python object for geo-referenced tabular data. The CML data was added with line

https://dev.netatmo.com/apidocumentation/weather#getpublicdata
https://frost.met.no/index.html
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geometries and the other networks as points. The CML data did not include elevation,
and it was added to the data-set by overlaying a DTM raster of 50*50 meters (see
appendix A) using QGIS software (QGIS Development Team, 2019). The elevation
assigned did not include any assumptions of tower height and was calculated as the
average between the base of the two towers creating the link. The MET metadata did
not include information about the minimum temporal resolution of the stations, though
the requests could be filtered by available temporal resolution. The available temporal
resolution was gathered by repeated requests, specifying different temporal resolutions
iteratively from monthly to 1-minute. The responses were then merged together in the
same order, where each station received the resolution of the finest resolution response
it was included in.

After processing, the data-sets were then converted to the same coordinate reference
system (CRS) EPSG:32632 or UTM32N. The column names and units were also ho-
mogenized into the same measurement units. The metadata was merged into a single
table and stored as a GeoJSON file.

Figure 3.1: Fixed timeline processing example as applied to 1 min MET time-
series. A cumulative sum is performed, missing values are interpolated, and the
cumulative difference is taken. All values are in [mm] (cumulative mm for the
second and third plot).

The 1 min MET time-series were returned only for minutes with > 0.1 mm of precipi-
tation, i.e., the typical resolution of a tipping bucket pluviometer, creating holes in the
time-series. The data were re-sampled using fixed timeline processing, exemplified in
figure 3.1. The algorithm works by creating a cumulative sum of the time-series and
linearly interpolating the missing values, and then the cumulative difference is taken.



3.3. METADATA ANALYSIS 29

The algorithm relies on two fundamental assumptions: 1: that the missing values in
the data are a result only of precipitation being less than the tipping bucket volume,
and not due to errors in measurement or data collection. And 2: That the rain rate is
constant between tips up to a set duration, in this case, 15 minutes. If the duration of
missing values is greater than the duration of assumed constant rain rate, the missing
values are interpolated using a forward-fill method. The algorithm used is attached in
appendix C.

3.3 Metadata Analysis

The stations from the different sources were first plotted together over a background
map for the study areas to get an overview of coverage and network and clustering.
Density plots were then generated nationally and for the two study areas using a rolling
window approach: The area of interest was first gridded with a set resolution. Then,
for each grid-cell, a circle was spanned of a given radius, and the number of stations
within that circle was counted. The grid cell was then assigned a density [n/km2 for
each station type dividing the station counts by the area of the circle. The resulting
densities were compared to optimal densities given typical catchment sizes using the
methodologies presented in Berne et al. (2004) and Ochoa-Rodriguez et al. (2015).

Network representativeness was analyzed by creating cumulative elevation distributions,
also called hypsometric curves (Zävoianu, 1985) for each network and the underlying to-
pography. The curves were created nationally and for each study area. The topographic
hypsometric curve was created based on the DTM raster given in appendix A using the
rasterio python package (Gillies et al., 2013).

To determine expected accuracy of the CML network, the theoretical precipitation was
calculated for all links in the network for two different attenuations: A = 0.1 dB and
A = 1 dB. The selected attenuations serve as lower and upper bounds for the quantiza-
tion intervals that can be expected from CML network operators. As the relationship
between precipitation and attenuation is nearly linear, these values are used as proxies
for per link expected error (α) in [mm/h]. The calculation was done in with equa-
tion (2.15). Parameters a and b were calculated in with equations from ITU-R (2005).
The specific method is listed as calculate_alpha in appendix C. The errors calculated
were visualized as histograms and plotted together with the dependents: link length,
frequency, and polarization.
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3.4 Event Selection and Quality Control of Stations

After the Netatmo time-series was collected from the logger, it was analyzed with special
attention to station availability and measurement age to determine the degree of network
homogeneity and temporal accuracy. The median precipitation (fig. 3.2) was used to
determine the study period. The interval between the dates 2020.04.27 and 2020.05.05
contained most of the precipitation and was selected. Time-series data from the MET
network was then downloaded and plotted against the Netatmo network to gauge the
consistency between the networks.

Figure 3.2: Cumulative median precipitation in the Netatmo network during en-
tire collection period with associated interquartile range. The black line resembles
± the standard deviation of precipitation at each hour.

The quality control algorithm implemented was created based on methods employed by
Nipen et al. (2020) and de Vos et al. (2019). Given that the network morphology is
highly dynamic with a low station availability, it was decided to implement checks that
only considered current measurements and spatial relationships and do not rely on any
time-series information. This strategy enables the automatic inclusion of new stations
in the network and could potentially allow stations that aren’t accurate under certain
conditions, e.g., wind shielding from a certain direction, to contribute to the network
when the conditions are favorable.

The algorithm consists of three checks, an isolation check, a faulty zero check, and a
buddy check. The isolation check is based on the assumption that nothing is known
about the quality (placement, accuracy, etc.) of the stations beforehand, and can only be
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determined by comparing neighboring measurements. The check essentially determines
whether the number of neighboring measurements is sufficient and works by flagging
stations that have fewer than nisolation neighbors within a radius of risolation meters.

The faulty zero check aims to find malfunctioning stations that fail to report precipi-
tation and can be viewed as a test of agreement between the station in question and
the neighborhood consensus. The check finds the median precipitation of neighboring
stations within a radius of rfz meters. If the median is above zero and the station in
question reports zero, the station is flagged.

The buddy check aims to remove stations that report unlikely values, thereby removing
unrealistic short scale variation from the network. It works by finding the mean and
standard deviation of the neighboring stations within a radius rbuddy. If the station
under consideration reports a value that is more than two times the standard deviation
away from the neighbor mean it is flagged.

In principle, the parameters can be adjusted individually; however, it was found that
the following combination yielded acceptable results:

nisolation = 5

risolation

rfz

rbuddy

 = 3000 m

The QC algorithm is part of a pipeline algorithm that takes the network metadata, the
network time-series, and a timestamp as arguments. It constructs a table consisting of
the station metadata and precipitation and removes stations with missing precipitation
measurements. The pipeline then applies the QC algorithm and drops stations with
any of the above flags present. Alternatively, the pipeline can be configured not to drop
stations, or drop stations with specific flags only.

For this study, it was assumed that the stations in the MET network were quality
controlled and appropriately corrected before they were gathered through the API.
Subsequently, no QC was applied to this network other than a cursory visual inspection
of reported precipitation (see fig. 4.15). This inspection revealed that two stations,
SN19670 and SN18815, were malfunctioning by reporting no precipitation for the whole,
or part of the study period. The presence of these stations indicates that the quality of
the data might, in reality, be lower than assumed.
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Figure 3.3: Visual inspection of MET time-series. Each line represents the
cumulative sum of precipitation for a single station over the study period. The
malfunctioning stations are marked in red.

As no precipitation data for the CML network was gathered, no quality control for this
network type was implemented as part of this study.

3.5 Spatial Structure Analysis and Creation of Un-
certainty Maps

To assess the spatial structure of precipitation in the Oslo study area, climatological
variograms from the MET network were created. A climatological variogram can be
viewed as the averaged variogram over multiple precipitation instances (time steps). It
is created by producing an empirical variogram with equal binning, see (2.5), for each
time step with precipitation over a given threshold. The empirical variograms are then
standardized, dividing all the bins by the highest occurring variance. Finally, for each
bin, the average over all the time steps is calculated and assigned to that bin in the
climatological variogram. This is exemplified by equation (3.1) where γ̂(d) corresponds
to the variogram value at bin d and Nt is the number of time steps included. After
γ̂(d)climatological is computed for all bins, a theoretical variogram model is fitted.

γ̂(d)climatological = 1
Nt

Nt∑
i=1

γ̂(d)i,standardized (3.1)

The variograms were created for 1-, 10-, 60-minute, and 1-day aggregation times from
the MET network. Climatological variograms were also created for the Netatmo net-
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work with and without applying QC to assess QC efficiency. The calculation, fitting,
and plotting was accomplished using a slightly modified version of the skgstat package
(Mälicke and Schneider, 2019). The empirical variograms were computed using a uni-
form binning structure so that an approximately equal amount of observation points
were within each bin. Due to the large difference in network size, it was decided to
use 10 bins for the MET network and 15 bins for the Netatmo network. The gaussian
variogram model, eq. (2.3) with β = 2, was chosen as the theoretical model to fit as it
most closely approximated the shape of the empirical variogram.

The computed variograms were used together with the best performing interpolator
identified during validation to create maps with expected (standardized) error for the
three networks considered in the Oslo area. The maps were first computed for a 60-
minute aggregation time using the corresponding variograms for the Netatmo and MET
networks. For the CML network, the expected error map was estimated using the MET
variogram modified to include a zero nugget. The nugget values were added back in on a
per-station basis using the expected error (α) at a 0.1 dB quantization interval. During
the mapping procedure, the CML links were approximated by points at the link center.
To construct the 10 and 5 minute error maps, the range of the variograms were modified
to resemble the spatial structure corresponding to the aggregation time recommended
by Berne et al. (2004) for intense precipitation.

3.6 Comparison of Interpolation Methods

Five separate interpolation algorithms were considered for precipitation mapping based
on the Netatmo PWS network: Nearest Neighbor (NN), Inverse distance weighting
(IDW), Universal Kriging with regional-linear drift (UK), and Gaussian Process Re-
gression (GPR). The UK model differs from the Ordinary Kriging model discussed in
section 2.1.1 in that it additionally fits a linear trend model over the surface (Goovaerts,
1997, p. 139). The constrained GPR model can be viewed as a statistical-black box hy-
brid model as it very closely resembles Simple Kriging, but tunes its parameters without
using a variogram.

It should be noted that other explanatory variables, such as elevation, were not imple-
mented for any of the models. The correlation was examined briefly by visual inspection
and regression fitting (fig. 3.4), and the resulting correlation was found to be weak for
both networks.

The NN and IDW models were made by modifying the KNeighborsResgressor from Pe-
dregosa et al. (2011). The NN model was created by forcing Nneighbors to 1, and the IDW
model by setting Nneighbors to the number of observations in the data-set at the current
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Figure 3.4: Mean precipitation for each station in the two networks plotted
against station elevation. Stations were filtered to exclude ones where mean pre-
cipitation was less than 0.1 mm.

time, and implementing (2.8) as a custom weight function. Both the GPR models were
created by implementing a aussian covariance function in the GaussianProcessRegressor
from Pedregosa et al. (2011). For the manual model, the optimization was turned off,
and the covariance function parameters were set to those of the calculated empirical
variogram. The specific implementation of the models are listed in table 3.1 and the
code in appendix D.

Interpolator Parameters
NN -
IDW p = 1
UK model: gaussian, variogram bins: 10, drift: regional linear, automatic

fitting
GPR
Constrained model: gaussian, nugget ∈ (0, 1), sill ∈ (0.02, 1), range ∈ (10, 105) m,

automatic fitting
Manual model: gaussian, nugget = 0.42, sill = 0.55, range = 20902.1 m

Table 3.1: Interpolator parameters. Parameters of manual GPR correspond to
those determined by the climatological variogram in fig. 4.14(b).

It was decided to validate the interpolation methods against the MET dataset for all
hours in the study period where the median precipitation was greater than or equal to
0.1 mm, which resulted in 38 observation sets (see fig.3.5). The stations were validated
for both the entire MET network as well as for the two WMO compliant stations alone.
The value for each (MET) station was predicted for each method for every observation
set and stored in an array ypredicted. Another array was created with the measured (true)
values at the points: ytrue. The values were stored in the same order so that ypredicted,i
is at the same time and location as ytrue,i for all i.

To evaluate the performance, the following metrics were used: bias, relative bias, root
mean squared error (RMSE) , and the coefficient of determination (R2). The equations
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Figure 3.5: Median precipitation from netatmo and MET dataset for all hours
included in validation.

for these metrics are given in (3.2). The bias and relative bias are used to assess whether
the interpolated values are higher or lower than the measured values on average, the
latter being relative to the mean of ytrue. RMSE is a measure of the error of the
interpolation in [mm] (lower is better), and R2 is a measure of how good the prediction
of the interpolated value is, a perfect fit would yield R2 = 1.

bias = mean(ypredicted − ytrue)

relative bias = bias
ȳtrue

RMSE =
√∑n

i (ypredicted, i − ytrue, i)2

n

R2 = 1−
∑(ytrue, i − ypredicted, i)2∑(ytrue, i − ȳtrue)2

(3.2)

Lastly, the possibility of combining the networks was assessed by implementing the Best
Combined Spatial Predictor (PCSP) (Hengl, 2009, p. 35) algorithm to create a single
precipitation map from the three networks. The algorithm combines predictions from
different interpolation models (spatial predictors) weighing the predicted values ẑ(u) by
the inverse of their associated uncertainty (error) σ̂(u) at every point u:

ẑBCSP =

n∑
i=1

(
ẑSPi(u) 1

σ̂SPi
(u)

)
n∑
i=1

1
σ̂SPi

(u)
(3.3)
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where there are SPi, i = 1, .., n spatial predictors. The algorithm can be applied to any
set of predictors capable of producing error estimates where it is important that their
errors are scaled equally. The resulting error, σ̂BCSP(u), can be assessed by σ̂BCSP(u) ≈
min[σ̂SP1(u), ..., σ̂SPn(u)]. The resulting error is valuable to identify problematic areas
with low coverage or high uncertainty, it has no statistical basis, and therefore shouldn’t
be used as an accurate error estimate.

The BCSP was applied to all three networks at 13:00, 2020-04-27. The models used
were three versions of the manual GPR, the same that were used to compute uncertainty
maps for a 10 minute aggregation time. Precipitation data for the CML network was
synthesized by drawing samples from the predictor associated with the MET network.
The sampling equates to drawing a number from a distribution centered on the predicted
value with a standard deviation equal to the predicted error. If the sampling returned
negative values, they were set to zero.



4. Results

The results are presented in approximately the same order as the methodology described
to achieve them. Section 4.1 chiefly deals with research questions 1 and 2, concerning
stakeholders and current capabilities, whereas the remaining sections detail the results
concerning network characteristics, accuracy, and applicability.

4.1 Stakeholder Analysis and Current Capabilities

The results of the stakeholder identification are summarized in tables 4.1 and 4.2 for the
CML and PWS networks respectively. For the CML case, most of the identified organi-
zations either didn’t respond to requests or would not disclose any information regarding
network size metadata indicating that disclosing the information would constitute a risk
to critical communications infrastructure. The respondents were also asked under what
circumstances sharing the data would be permissible. In summary, the answers were
that one or multiple of the following criteria had to be met: A non-disclosure agreement
had to be signed, all work done with the data had to be done on internal servers, or the
people working with the data had to have security clearances issued by The Norwegian
National Security Authority (NSM).

37
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Company type network size (number of links)

GlobalConnect ISP N.A.
Telenor ISP/mobile 4300
Bane Nor Infrastructure secret
Statnet Infrastructure N.A
DSB Emergency network N.A
Telia ISP/mobile 1400
Norwegian armed forces military secret
Avinor Infrastructure secret
Tampnet ISP (offshore) N.A.

Table 4.1: Overview of identified CML operators in Norway. Network size refers
to number of links with a frequency above 5 GHz. "N.A." denotes stakeholders that
likely operate CMLs but did not respond to requests, "secret" denotes stakeholders
who confirmed operating CMLs, but would not specify network size.

Given the data in table 4.1, any estimate of total network size if all stakeholders decided
to participate would be inaccurate. However, a minimum combined network size would
be 6000 links. This corresponds to an average link density three times higher than for
the network included in this study.

The information presented in table 4.2 was gathered by investigating what products
the PWS network services provide to consumers through APIs and web services. The
services can loosely be classified into station manufacturers, for-profit networks, and
not-for-profit networks. The not-for-profit networks are CWOA (Citizen weather ob-
server program), WOW UK, and WOW NL. The latter two are essentially the same
network as they are made as a collaboration between the British and Dutch meteoro-
logical offices. Both of the WOW networks offer station access through APIs, and the
CWOP provides access through a web page. The station manufacturers: (Netatmo,
AmbientWeather, WeatherLink, and AcuRite) generally don’t offer public access with
the notable exception of Netatmo. The for-profit networks (Weather Underground,
PWS weather, and Open Weather) generally do not provide individual station access,
as their business model involves delivering end-products; forecasting, and current con-
ditions etc., directly. However, it should be noted that partnerships such as the one
between Netatmo and MET that serves as part of operational temperature forecasting
(Nipen et al., 2020), where data is transferred directly, could possibly be entered in to
with any of the services identified.
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Name coverage (Norway) public access individual station access

Weather underground medium paid no
CWOA low free yes
PWS weather low paid yes
OpenWeather unknown paid no
AcuRite unknown none no
WeatherLink unknown none no
AmbientWeather low none no
Netatmo high free (limited) yes
WOW UK low free yes
WOW NL low free yes

Table 4.2: Overview of PWS network services

To identify current capabilities, it was decided to look into two domains, historical
precipitation maps, and nowcasting. The best available historical precipitation map
is the seNorge2 precipitation data-set, available at senorge.no or in higher detail at
thredds.met.no: https://thredds.met.no/thredds/catalog/senorge/catalog.html,
METs archive. Its temporal resolution is 1 day going back to the year 1957 and its spatial
resolution is 1 by 1 km. It is based on METs rain-gauges and an Optimal Interpolation
procedure. Further details about its production can be found in its associated publica-
tion: (Lussana et al., 2018). However, a newer, non-operational dataset, seNorge_2018,
with the same characteristics but better performance in mountainous areas is soon ex-
pected to supersede it (Lussana et al., 2019).

Current operational nowcasting is based on radar data from 11 C-band radars located
along the Norwegian coast. The nowcast is updated every 7.5 minutes with a lead
time of 90 minutes. Its spatial resolution is 1 by 1 km, and its availability extends to
most of the Norwegian mainland, with the exception of areas far inland and at higher
elevations. As it is a radar-based product, precipitation nowcasts are given categorically
(low, moderate, heavy) (Yr.no, 2020).

https://www.wunderground.com
http://www.wxqa.com
https://www.pwsweather.com/
https://openweathermap.org
https://www.myacurite.com/
https://www.weatherlink.com/
https://ambientweather.net/
https://weathermap.netatmo.com/
https://wow.metoffice.gov.uk/
https://wow.knmi.nl/
http://www.senorge.no/
https://thredds.met.no/thredds/catalog/senorge/catalog.html
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4.2 Metadata Analysis

Figure 4.1: Distribution of station owners in the MET network

An overview of the number of stations is presented in table 4.3, where stations are
classified by study area and source. In the MET network, approximately 50% of the
stations are owned and operated by MET, and the remainder are operated by partners
(fig. 4.1), most of them being municipalities. Nationally the CML network is about
twice the size of the traditional network, including all partner stations. The same
relationship is apparent in the rural study-area, though not in the Oslo area. This is
explained by the large number of partner stations in Oslo owned and operated by the
Oslo municipality. Regrettably, the number of stations from the Netatmo PWS network
was not gathered due to limitations in the API it was gathered through. In the Oslo
study area, the Netatmo network is almost 15 times larger than the MET network.
However, as discussed later, the average number of stations available at any single
moment is closer to 280 stations, making it six times larger than the MET network. In
the rural study area, in which stations were gathered with a single request, the average
density is about eight times higher than the MET network. It is highly likely that this
relationship extends to the National level to some degree.

The stations from the networks within the Oslo study area are plotted by color together
with the bounds of the study area in figure 4.2. From the figure, the difference in density
is well illustrated. Looking at how the stations are distributed, extent and clustering
can be assessed. The MET and Netatmo network are both clustered in populated areas
with approximately the same spatial extent. The CML network has a slightly different
structure: there is a cluster of short and medium-length links in the north-eastern
quadrant of the study area, with fewer, and longer links in the remaining quadrants.
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stations in Norway Stations in Oslo area Stations in rural area

Netatmo N.A. 676 146*
CML 1465 58 43
MET 727 46 18

WMO 205 2 7
non WMO 199 3 4
partners 323 41 7

Table 4.3: Number of stations from the three networks: Netatmo, MET through
frost, and the CML network. (*): The netatmo stations in the rural area are based
on a single request to their API and might be lower than the true value. WMO
denotes WMO compliant stations in the MET network, non WMO denotes non
WMO compliant stations owned and operated by MET, and partners denote
stations from the MET data-set owned and operated by municipalities and other
organizations.

Figure 4.2: All stations within the oslo study area. The boundary of the study
area is given by the white overlay. The CML stations have been fuzzed so that
their locations are not exact.

The network characteristics differ significantly in the rural area (figure 4.6), where all
networks are more evenly distributed. The Netatmo network still shows clustering in the
population centers Gjøvik and Hamar but has the largest spatial extent with considerable
coverage throughout the area. In the rural area, the CML network contains a higher
degree of longer links than in Oslo, and the majority of them are across the Mjøsa river.
This is a natural consequence of the geography and population distribution as large
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distances of undeveloped land and rivers present barriers to buried communications
infrastructure such as fiber-optic, or copper, cables.

Figure 4.3: All stations within the rural area. The boundary of the study area
is given by the white overlay. The CML stations have been fuzzed so that their
locations are not exact.

4.2.1 Station Density and Coverage

Recommended network resolutions for urban hydrological applications are listed for
select catchment sizes in table 4.4. The recommendations assume ∆t is equal to the re-
sponse time of the catchment and coverage of 87% of all variability. According to Fleig
and Wilson (2013), more than half of the flood estimations performed at The Norwegian
Water Resources and Energy Directorate (NVE) between 2007 and 2011 were requested
for catchments under 20 km2, and about 25% for catchments smaller than 5 km2. Con-
versely, the municipality of Oslo considers response times of 10 minutes to be significant
for localized flooding and 2 to 6 hours for city-wide flooding (Kvitsjøen, personal com-
munication, May 5th, 2020). Consequently, the range of temporal resolutions up to 10
minutes are relevant for urban precipitation mapping.
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S[ km2] ∆t [min] ∆r [km] Sr[ km2] Dtarget [n/km2] rrange [km]

5 4.52 3.19 7.98 0.125 9.56
10 5.56 3.54 9.83 0.102 10.61
25 7.32 4.06 12.93 0.077 12.17
50 9.01 4.50 15.92 0.063 13.51
100 11.09 5.00 19.61 0.051 14.99
1000 22.14 7.06 39.12 0.026 18.54
10000 44.17 9.97 78.05 0.013 22.80

Table 4.4: Recommended network resolution for intense precipitation reconstruc-
tion from Berne et al. (2004) in time (∆t) and space (∆r) for given urban catch-
ment sizes calculated using (2.12). Also listed are the representative area (Sr) for
a given rain gauge, and the associated network density (Dtarget = 1/Sr) as well
as the range or decorrelation distance (rrange) for precipitation at the temporal
resolution.

Figure 4.4 gives an overview of the station distribution and density of the CML and
MET network nationally. Both networks have a high density in the area around Oslo.
In the rest of the country, the CML coverage is far higher along the coast, specifically in
population centers, whereas the MET network is more evenly distributed. Comparing
the density to the target density associated with a 10 minute response time from table
4.4, we see that the MET network has low coverage throughout most of the country.
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Figure 4.4: Station density of MET and CML stations netionally.

Figure 4.5 shows the same overview for the Oslo study area. Here, the MET network
has a density surpassing the target density for 10 min concentration-times (0.05 n/km22)
throughout most of the populated area. The same is true for a concentration-time of
5 minutes (corresponding to 0.1 n/km2) for most of the urban center. When looking
at the CML network, the effect of clustering becomes apparent. Here, only part of the
populated areas has sufficient density corresponding to 10 minute concentration-times.
The density advantage of the Netatmo network is clear from figure 4.5, where the target
density is sufficient for response times down to 5 minutes throughout the whole study
area, with a density between 5 and 6 times greater than required in the Urban center.
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Figure 4.5: Station densities in the Oslo study area.
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A corresponding map for the rural study area is presented in figure 4.6. In this area, all
the networks have lower densities, and it is more relevant to look at the target densities
for one- to three-hour concentration-times, namely 9 ∗ 10−3 to 3 ∗ 10−3 n/km2. The
Netatmo network exceeds both of these requirements, whereas the MET network meets
only the lower criteria (3-hour concentration-time) in parts of the study area. The CML
network exceeds the target resolution of 3 ∗ 10−3 n/km2 throughout most of the area,
and meets the 9 ∗ 10−3 n/km2 where it is the most dense.

Figure 4.6: Station densities in the rural area.

From the hypsometric curves (figure 4.7), the networks’ topographic representativeness
can be assessed by inspecting how close the network distributions are to the topographic
distribution (DEM). Both nationally and in the two study areas, all networks are biased
towards lower elevations. For the national analysis (fig.4.7 a), all three networks follow
a similar distribution. The extent of the MET network in terms of elevation exceeds
the CML network by almost 500 meters. This is to be expected as MET, being a
traditional network, stations are placed with topographic representativeness in mind.
The distribution of Netatmo stations nationally is not a valid result as it is based on a
sub-sample of approximately 140 stations.
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(a) National (b) Rural area

(c) Oslo area

Figure 4.7: Hypsometric curves of three precipitation networks compared with
topography. The vertical lines resemble the highest station elevation in each net-
work. Note that the Netatmo curve for the national level is based on a small
subsample of actual stations.

In the Oslo study area (4.7 c), the MET and Netatmo networks have a similar distribu-
tion with the CML network being slightly biased towards lower elevations. The Netatmo
network has the largest extent at 230 meters, where the MET and CML networks ex-
tend to around 220 meters. Whether these relationships extend to other urban areas
is uncertain in part due to the MET network being markedly denser around Oslo then
elsewhere (fig. 4.4). In the rural area (4.7 b), the Netatmo network shows the largest
bias, and the MET network has the largest extent.

4.2.2 CML Expected Error

The expected accuracy of the links constituting the CML network was assessed using two
quantization levels (the resolution of attenuation in dB) lieu of actual measurement data
as none was available. This assessment discounts all the other error sources discussed
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in section 2.2.2, so the error estimates are likely conservative. Nevertheless, they give
an accurate overview of some key aspects. In figure 4.8, the expected error is plotted
together with its dependents: link length, frequency ,and polarization. Firstly, there is
no appreciable correlation between error and polarization. There is a strong negative
correlation between frequency and error, which is due to higher frequencies being more
strongly attenuated. Secondly, the error increases with decreasing link length due to
the total attenuation being lower as there is less rain between antennas for a given
precipitation intensity. These relationships extend across quantization levels, though
the spread in expected error is larger for a higher quantization.

Figure 4.8: Expected error of CML stations plotted against length and frequency
for two quantization values using equation (2.15), a and b coefficients determined
recommendations fromITU-R (2005). The color in the legend corresponds to the
lower frequency bound i.e. black refers to f ∈ [0, 15) GHz.

The distribution of expected error (figure 4.9) reveals that the error nationally would be
small for a quantization of 0.1 dB. However, for the case of a 1 dB quantization, the error
shows a larger spread and is predominantly above 1 mm/h making it less suitable for
accurate mapping. The expected error in the Oslo area is a lot higher than nationally,
which is due to short links in the city center accounting for the majority of CMLs.
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Figure 4.9: Distribution of expected error as mm/h both nationally and in the
Oslo area from 0.1 dB and 1dB quantization of total attenuation. Calculated from
frequency, polarization and length using equations from ITU-R (2005). Note that
the 1 dB error extends beyond the graph.

4.3 Time-series Analysis

Accumulated precipitation throughout the study period is plotted for the MET and
Netatmo networks in figure 4.10 together with the two WMO certified stations as ref-
erence. Both networks correspond well with the reference station SN18700 which is
located centrally in Oslo. However, the other reference station located in Asker (lower
left quadrant of figure 4.2) reports accumulated precipitation consistently higher than
the 75th percentile of either the Netatmo or MET networks. The station in Asker is
located in a region with varying topography outside of the density centers of either
network, which could explain why it is so far from either network median. Further,
both the average and median precipitation is higher in the Netatmo network than in
the MET network. This is an unexpected result as PWS stations, and Netatmo stations
specifically are believed to underestimate rainfall. de Vos et al. (2019) found a negative
bias of 11% when comparing Netatmo stations to gauge adjusted radar. The peaks in
the standard deviation where there is no change in the median indicate localized pre-
cipitation events when both the networks are in agreement. When the peaks are only
visible in the Netatmo network, this could also be due to faulty measurements.
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Figure 4.10: Cumulative precipitation over the study period. The interquartile
range (IQR) is the area between the 25th and 75th percentile. The black shadow
resembles median precipitation ± the standard deviation. The two reference sta-
tions are the two WMO certified stations in the MET data-set: SN19710 is located
in Sem, Asker and SN18700 is located at Blindern, Oslo.

4.3.1 Availability and Measurement Age

Lacking station availability is a defining characteristic of PWS networks and is caused by
communication problems between the station and server, stations being removed from
the network, or station owners taking the stations off-line to maintain them. When
stations are accessed through an API, as was done for the Netatmo network, stations
might be filtered further. When analyzing the availability in the Netatmo network,
it was found that the average station was available just over 40% of the time (fig.
4.11). Further, the number of stations returned varied considerably, between 220 and
320 stations, each time precipitation data was requested. When applying a seven day
mean to the number of stations returned, an apparent increase in reporting stations was
observed during the collection period.
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Figure 4.11: Availability of Netatmo stations during entire collection period

To determine the cause of the low availability, the stations were visualized in a matrix
(fig. 4.12) for the study period. The stations were colored by whether the station
returned an observation or not. Apparent in the figure is a slight diurnal variation of
higher availability just left of center in the matrix. Upon closer inspection, the increase
occurs simultaneously with a decrease in the left side of the matrix. This is either
indicative of the API sub-sampling the stations or stations reporting under multiple
identifiers. To test the possibility of the latter, it was checked if any two stations (rows
in the matrix) had a correlation of -1, which would correspond to an observation always
occurring in one station while it did not in the other and vice versa. No such correlations
were found, which indicates that the low station availability is, in part, a result of the
API.
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Figure 4.12: Matrix of Netatmo station availability in the study period. Each
row in the matrix resembles the measurements at each hour, each column resembles
a station. Each cell is colored black if a measurement exists (i.e. the station is
available) or white if there is no measurement.

The measurement age analyzed for the entire collection period (fig. 4.13) was found
to be between 0 and 10 minutes, with a uniform distribution. This is a consequence
of data being uploaded to the API from central servers every 10 minutes, a fact that
was later confirmed (Netatmo, personal communication, April 4th, 2020) through email
correspondence. It was also discovered that observations are collected from stations
every 5 minutes. These two facts result in a measurement age between 0 and 10 minutes
when data is accessed through Netatmos API and a measurement age between 0 and 5
minutes if measurements are sent directly. The latter result assumes that stations do
not report at the same time intervals, and instead report every 5 minutes at arbitrary
times.

Figure 4.13: Histogram of measurement age for Netatmo hourly precipitation
measurements.
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4.3.2 Quality Control Results

The application of the QC algorithm on the Netatmo network during the hours selected
for validation resulted in the removal of about 50 stations on average. The maximum
number removed was 76, while the minimum number removed was 40. The effect of QC
can be assessed by the climatological variograms in figure 4.14. The effective range (r)
is almost doubled from 13.5 km to 20.1 km and the nugget (b) is reduced from 0.62 to
0.42 in the fitted models. Further, the empirical variogram (blue dots) forms a much
more coherent curve after the application of QC. However, comparing the QC filtered
variogram to that of the MET network (fig. 4.15 c) where range (r) and nugget (b) are
26.5 km and 0.2 respectively, indicates that the QC algorithm is not perfect as much of
the nugget is likely due to inaccurate measurement. Further, a side effect of the QC
algorithm not apparent in the figure is its tendency to increase network clustering. This
is a consequence of applying the isolation check, which has the possibility of removing
all stations in sparse areas.

(a) Without QC (b) With QC

Figure 4.14: Gaussian climatological variograms computed for the study period.
Precipitation instances were filtered by Rmedian ≥ 0.1 mm resulting in 38 instances.

4.4 Spatial and Temporal Characteristics

The change in spatial characteristics of the precipitation measured by the MET network
was assessed using the climatological variograms in figure 4.15, created by re-sampling
the time-series to aggregation times from 1 minute to 1 day. The observed tendency of
decreasing nugget and increasing range with increasing aggregation time is expected as
a consequence of aggregating.

Having established that the MET network fulfills the target density corresponding to a
10 minute aggregation time, the expected nugget value should be nearly zero for both
the 10 and 60-minute variograms. A possible explanation for the discrepancy could be
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that the filtering condition (Rmedian) was quite low, including many instances where the
median precipitation was at or near the quantization level (0.1 mm) of the rain gauges
leading to very large (relative) differences between neighboring gauges. Comparing the
ranges to those in table 4.4, the effective range is higher than that suggested for both 1
and 10-minute variograms. The inclusion of low-intensity precipitation instances could
serve as an explanation for the range discrepancy as low-intensity, non-convective events
are less localized.

(a) 1 minute, Nt = 437, Rmedian ≥
0.0167 mm

(b) 10 minutes, Nt = 167, Rmedian ≥
0.0167 mm

(c) 1 hour, Nt = 41, Rmedian ≥
0.1 mm

(d) 1 day, Nt = 5, Rmedian ≥ 0.6 mm

Figure 4.15: Gaussian climatological variograms generated from MET stations in
the Oslo area for different aggregation times during the study period. Precipitation
instances were filtered by a threshold value (Rmedian) resulting in Nt precipitation
instances before the variograms were computed.

The uncertainty maps in figure 4.16 illustrate the location and magnitude of the error
associated with precipitation maps from the three networks. The error maps are stan-
dardized where an error of 0 corresponds to an absolute error of 0mm/h, and an error of
1 corresponds to an absolute error equal to the standard deviation of all measurements
in the network. The lowest error of the networks corresponds to the nugget values iden-
tified in the variograms for the MET and Netatmo maps. In the case of the CML map,
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it corresponds to the expected error at 0.1 dB quantization.

(a) 1 min

(b) 10 min

(c) 60 min

Figure 4.16: Uncertainty maps of interpolated precipitation from the networks
for the Oslo study area for different aggregation times.

For the 60-minute uncertainty map, it is apparent that all networks have coverage over
most of the study area. However, the error of the CML network sharply increases away
from where it is the densest. For shorter aggregation times, the error becomes more
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varied in space, and the locations where the error is small more closely mimics the
location of stations within the network. This effect is less prominent in the Netatmo
network due to higher coverage.

In figure 4.16, the Netatmo network consistently has a higher error than the MET
network. This is due to the difference in nugget value, which, if the spatial precipitation
characteristics agree with those in table 4.4, in turn, is due to measurement error at
individual stations. To illustrate the potential of the networks if the station measurement
error can be minimized through better QC and/or bias correction, the error maps have
been created with an equal nugget value of 0.1 and plotted in figure 4.17. The error of
the CML network is slightly higher than in (4.16 a) as the constant nugget has been
added to the individual station error (α). These maps represent an ideal situation
where the characteristics more closely match those identified from figure 4.5. Under
these circumstances, the Netatmo network has the lowest error overall with consistent
accuracy over almost the entire study area.

Figure 4.17: Uncertainty maps for 5 min precipitation with equal nugget for all
networks. The nugget is added to the per-station error (α) for the CML network.

4.5 Predictor Selection and Validation

When selecting precipitation events to use for validation, it was decided to use all hours
where the median precipitation within the Netatmo network was above 0.1 mm/h, which
resulted in the 38 precipitation instances plotted in figure 4.18. The figure represents
boxplots of each hour for each network before any QC was applied. The whiskers of
the Netatmo boxplots extends to zero for almost every hour in the validation series,
indicating the presence of faulty zeroes. The overall variation is also higher in the
Netatmo network with a higher presence of data-points beyond the whiskers.
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Figure 4.18: Boxplots of precipitation periods used for validation. Hours are fil-
tered by precipitation > 0.1 mm/h. The boxes represent the IQR and the whiskers
extend to data-points ±1.5 ∗ IQR beyond the boxes. Data beyond the whiskers
are represented by black dots, some of which extend beyond 10 mm/h and are not
shown.

A predicted precipitation map is presented for the different interpolation methods in fig-
ure 4.19. The parameters for the GPR manual model are the same as those identified
in the variograms (figures 4.15 b and c for the 10-minute and daily maps, respectively,
and figure 4.14 b for the 60-minute map). The maps presented clearly illustrate some
key features of the interpolation methods. Firstly, the discontinuities associated with
Nearest Neighbor interpolation are very apparent along the left edge of the 10-minute
precipitation map, where the precipitation increases rapidly over a very short distance.
Further, with the Nearest Neighbor interpolation, it is very difficult to distinguish a
spatial pattern, especially if the stations aren’t in agreement locally. The IDW method
appears to produce spots at station location in all the maps, and interpolating conserva-
tively (closer to the network mean) at all other locations. This is a known disadvantage
of the method, but for illustration purposes can be used as a proxy for the measured
values at the stations.

The 10-minute and 1-hour maps for the UK method clearly illustrate a problem that can
occur with automatic, unconstrained fitting, where precipitation far outside the range
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of observations is predicted, and the spatial pattern bears no resemblance to the one
present in the networks. In the 1-hour map of the GPR auto method, a similar problem
is evident. Here, the automatic fitting found the decorrelation distance (range) to be
extremely short, possibly due to outliers or disagreement between neighboring stations
and predicts the network mean over most of the study area.

By visual inspection, the GPR manual model appears to incorporate most of the
spatial variation in the networks. It also handles disagreement between neighboring
stations well, such as in the lower left quadrant of the one hour map.

Figure 4.19: Graphic comparison of interpolation methods at different aggrega-
tion times. The 10-minute and 1-day fields are generated from MET data, while
the 60-min field is generated from Netatmo data. The plots are of precipitation on
the 27th of April 2020. Hourly and 10-min data are from 13:00:00. The colorbars
denote precipitation intensity [mm/h] with a range from 0 to the 95th percentile
of the observations in the network.
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The interpolation methods were applied to the Netatmo network for all 1-hour pre-
cipitation in the validation period. The precipitation value at station locations in the
MET network was predicted and compared with the observed values at those stations
to assess the interpolation methods. The predicted and true (observed) value pairs are
plotted for each interpolation method in figure 4.20 and serve as basis for the metrics
presented in table 4.5. The NN interpolation method exhibits the highest amount of
scatter, both at lower precipitation intensities, but especially at higher precipitation
intensities. Both the GPR auto and UK methods exhibit scatter at larger intensities,
but at a lower degree than the NN method. The IDW method shows a large scatter
where the true precipitation is between 1.5 and 2.5 mm but is otherwise conservative,
never predicting above 5 mm though the true precipitation extends beyond 7.5 mm. The
GPR manual method has the least amount of scatter but also predicts conservatively
at higher intensities.

Figure 4.20: Scatterplot of predicted (based on netatmo dataset) vs true (based
on full MET dataset) precipitation for all interpolation methods.

The scores in table 4.5 indicate that the best performing interpolation method was GPR
manual, which scored best in both the RMSE and R2 metrics when comparing against
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both the MET network as a whole and only the WMO certified stations. Against
the whole MET network, GPR manual was also the best performing method with
respect to bias. Against the WMO stations, however, the bias was lowest for the NN
method. However, the scores against WMO stations are particularly non-indicative of
performance for this method as only two stations from the Netatmo network (for each
hour) contribute to the predicted value.

Notably, all methods exhibit a positive bias, which is expected due to the difference in
both mean and median rainfall between the two networks identified in section 4.3.

The results of the validation indicate that the NN method is the worst performing for
this application and that the IDW method with p = 1 fails in accurately capturing the
extent of variation in the field. Further, it indicates that geostatistic models perform
well in general, but their performance is best when based on climatological variograms,
and degrades when automatic fitting is applied, even when the parameters are (loosely)
constrained such as in the GPR auto model.

RMSE R2 [−] bias bias [%]

against wmo NN 0.695w 0.662w 0.307w 1.5b

IDW 0.569 0.774 0.293 1.8
GPR auto 0.624 0.728 0.247 9.5
GPR manual 0.400b 0.888b 0.219b 2.7
UK 0.605 0.751 0.296 13.6w

against all met NN 0.698w 0.521w 0.195 13.8w

IDW 0.480 0.774 0.221w 11.6
GPR auto 0.447 0.804 0.145b 10.9
GPR manual 0.393b 0.848b 0.160 9.6b

UK 0.502 0.756 0.153 12.3

Table 4.5: Validation results from 38 hourly observation sets. Scores are in
mm/h unless otherwise indicated in brackets. The scores in against wmo are from
comparison with the two WMO compliant observation stations in the MET data
set totaling 76 observations. The scores in against all met are from comparisons
with all stations in the MET data set totaling 1537 observtions. The best and worst
performing predictors in each group are marked with subscripts b,w respectively

4.6 Source Combination

A precipitation map utilizing all three networks, Netatmo, MET, and CML, is created
in figure 4.21. The map serves as an example only because the CML error is based on
conservative assumptions i.e., the error is likely underestimated, and the precipitation
data for the CML network is simulated. Nevertheless, it illustrates how accuracy in
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precipitation maps can be gained by a combination of sources that share little common-
ality and are independent of each other. In the figure, one can see that the Netatmo
network doesn’t contribute appreciably to the combined prediction, which is due to its
high error (or nugget) value. Conversely, the MET and CML networks both contribute
a great deal. Incidentally, the two networks are in agreement, so it is hard to see where
they each contribute. However, looking at the error maps, it shows that the error is
smaller for the combined map than for either network alone.

Figure 4.21: Illustration of the Best Combined Spatial Predictor from 10 minute
precipitation fields of the Oslo study area. The predicted field is on the left, with
its associated error map on the right. From top: MET network, Netatmo network,
CML network, and a combined prediction on the bottom.





5. Discussion

The results of the network density assessment indicate that both the PWS and CML
networks have higher density throughout Norway and especially in urban areas. Though
this was not proved for the country at large in the case of PWS networks, the favorable
conditions in the Oslo study area combined with the PWS network’s tendency to mimic
the population distribution indicate that good coverage of urban areas is likely in other
cities also. This is further supported by the density assessment in the rural study area,
in which the PWS network density was favorable.

Assessing the CML network nationally, clusters near major cities are clearly identified,
though the coverage is lacking inland. The coastal prevalence of the CML network
could indicate a large proportion of links across water. As these links are known to be
inaccurate for precipitation mapping (Chwala and Kunstmann, 2019), they could limit
the effective density of the network.

The station availability is found to be substantially limited for the PWS network studied,
the effect of which restricts the avenues for QC methods markedly. However, the results
of the study indicate that the limited availability is in part due to the API through
which the data was collected. Consequently, accessing the data directly from the PWS
network service, e.g., through a direct partnership, could increase station availability
substantially and facilitate the application of more extensive QC. Additionally, direct
access could decrease the measurement age of the PWS stations.

Though not studied in particular, station availability appears to be less of a concern for
CML networks (de Vos et al., 2020). As CML links are part of essential communications
infrastructure, they are expected to be operational most of the time and are only not
when an intermittent link is blocked so the data cannot be transferred. However, links
are taken offline for maintenance and taken out of- or put in commission, resulting in
some unavailability, though time-series are generally assumed to be continuous for this
network type.

When assessing the measured structure of rainfall with the MET network, agreement
with the structure identified by Berne et al. (2004) was not found. The results indicate

63
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that precipitation has more local variability than the literature suggests in addition to
having a longer decorrelation distance. It is likely that the characteristics differ some-
what due to the difference between the Norwegian and the Mediterranean climate, where
the structure in (Berne et al., 2004) was determined. However, as small scale variabil-
ity and decorrelation distance are inversely correlated for precipitation, the identified
structure is not likely representative of reality as there exist other explanatory factors.

Assuming the MET network to be accurate, the discrepancy could be explained by the
inclusion of hours with very little (0.167 mm) precipitation while assessing the struc-
ture. Firstly, that amount of precipitation is very close to the quantization level of
conventional tipping bucket rain gauges (0.1 mm), which comprise most of the MET
network used in the assessment. Under such circumstances, the smallest possible dif-
ference between gauges (0.1 mm) would correspond to a relative difference upwards of
100%. Further, as light precipitation is fairly non-localized, the variation at large dis-
tances is expected to be small. The net effect on the variogram would be equal and high
variation at short and long distances. As the variograms are standardized by maximum
(assumed at a large distance) variation before combination, the low precipitation effec-
tively raises the nugget. Additionally, as the structures identified by Berne et al. (2004)
were calculated for extreme precipitation events, including light precipitation could in-
validate the comparison. However, as the MET network in Oslo predominantly consists
of partner stations without WMO certification, the accuracy of the MET network could
be lower than expected and also be a contributing factor. These factors should be ex-
plored further by analyzing a longer time-series that includes more precipitation events,
thereby enabling separate analysis for light and heavy precipitation.

Several interpolation techniques were performed on the PWS network. The best per-
forming technique was found to be a geostatistical model (GPR manual) constrained
by a fixed climatologic variogram. The model applied was efficient enough to be run on
a laptop in a matter of seconds which indicates a potential for use at larger scales. A
benefit of the model being independent in time, i.e., not needing historical data (sans
the climatological variogram), is the possibility of applying it on request for a local
analysis, alleviating the costs associated with constantly running the model and storing
its results. A second benefit of the model is its ability to produce an accompanying
error map.

As CML signal-loss data was not collected, its error structure could not be completely
assessed. However, an assessment of the minimum error is made by computing the
quantization levels in terms of precipitation in [mm/h] corresponding to attenuation
[dB] for all links in the network. The results indicate that a low quantization level is
especially important in urban areas where link lengths are shorter.
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When assessing the geostatistical interpolation method for the PWS network, it was
found that the prediction had high uncertainty, which in turn led it to underestimate
high (possibly localized) precipitation. This is a trait that is detrimental for its ap-
plication in urban hydrology where intense precipitation is of primary interest. This
smoothing effect arises from the inclusion of the local error term (nugget effect) in the
model, the use of which acts as a double-edged sword: The nugget effect makes the
interpolated map non-exact at measurement locations, thereby allowing for outlying
measurements, provided they are few, included in the underlying observations. How-
ever, this exact behavior is detrimental as it smooths all observations, not only clear
outliers, which in turn causes the loss of real short scale variation.

While not being certain about the underlying structure of the precipitation, the amount
of error attributed to inaccurate measurements cannot be fully determined. However,
a comparison of variograms between the MET and PWS networks reveals it to be
considerable.

The QC method applied to the PWS network had a significant effect on reducing the
error term. However, a considerable error remained after the application. To further
decrease the error, a better QC method should be applied, the development of which
needs further research.

If the station availability found in this study can be increased by bypassing the API
through a direct partnership with the PWS network supplier, QC methods that use
continuous per-station time-series such as the one developed by de Vos et al. (2019)
should be explored. If not, however, QC methods that assign a trust or error score
based on past performance can be a viable option.

Regardless, efforts should be made to accurately determine the spatial characteristics
of Norwegian precipitation at different intensities and local climates to better constrain
both QC and subsequent models used for mapping.

With the QC applied in this study, the error maps created for the Oslo study area reveal
that the PWS network does not appreciably increase the accuracy of precipitation maps
compared with the traditional network. However, considering that the traditional gauge
network in Oslo is about five times denser than in other urban areas, an improvement
is expected elsewhere in Norway. Further, the study demonstrates that if QC and,
possibly, corrections were applied to increase the per-station accuracy, the PWS map
offers marked improvements over the one based on traditional networks even in the Oslo
study area.

The Best Combined Spatial Predictor is found to be a viable option for combining
information from the different networks. However, it requires that the error structures
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for each network are properly understood and that the error is standardized to the same
scale before combination.

Whether the PSW can increase the accuracy of currently operational nowcasting in Nor-
way is uncertain as this paper limits itself to study the PWS network at a 60 minute
aggregation time. However, data is available at 5 minute aggregation times from Ne-
tatmo. If the data could be accessed directly at the time it was reported from the PWS;
it could aid in quantifying the forecast as the temporal resolution is higher than the
update interval of the current forecast. However, it is likely that much of the rain for
non-intense precipitation would be at or below the PWS quantization level (bucket size)
and consequently introduce more error into the system than it mitigates.

On the other hand, the mapping methods discussed in this paper, regardless of under-
lying networks, are capable of producing weather maps far exceeding the spatial and
temporal resolution of the current state of the art product (SeNorge2), thereby making
reconstruction of single rain events a possibility.

Of the PWS networks assessed, the Netatmo network was found to be the most extensive
in Norway. The recent application of the network for temperature forecasting (Nipen
et al., 2020) indicates that bypassing the API and accessing the data directly through a
partnership is a real possibility. To further extend coverage, several of the PWS networks
identified can be integrated through similar partnerships. However, their coverage in
Norway is at this time so low as to provide negligible improvement to the final product.

Another option could be to enable PWS owners to contribute directly. This could
be accomplished by creating a PWS service that station owners could upload data to
similar to the WOW networks or the Citizen Weather Observer Program. However, this
option incurs a considerable development cost and would involve extra effort on the part
of the PWS owners. The latter would likely have a detrimental effect on connectivity
and, thereby, coverage. Conversely, this barrier to entry on the part of station owners
has the possibility of increasing accuracy as the station owners are more cognizant of
their contribution’s importance and would pay closer attention to station placement and
maintenance.

The result of the CML stakeholder assessment indicates a marked security concern for
all the network operators. Consequently, this concern must be addressed before this
network type can be used for precipitation monitoring. A likely avenue that could
address this concern is through a partnership between NKOM and MET as both of
these organizations likely have the appropriate security clearances. In such a design,
NKOM, being in the telecommunications market, would be responsible for gathering and
storing both meta- and time-series data. MET would then be responsible for facilitating
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data access for research purposes, and subsequent operational use. Such a partnership
could unlock a large potential as many methods for subsequent processing; QC, bias
correction etc., have already been developed and will enable Norwegian CML operators
and researchers to participate in an active research field internationally.

Finally, the study identifies two distinct challenges for the two opportunistic network
types studied. In the case of the PWS network, more robust QC methods need to
be developed to limit prediction error (smoothing) while not losing the real short-scale
variability. For the CML network, the challenge lies in compelling the network operators
to facilitate data access.





6. Conclusions

While the stakeholder analysis yielded limited results in the case of CML operators, it
successfully identifies the relevant organizations/companies and provides new insights
into the challenge of data access. In the case of PWS operators, the research identifies
a single PWS network, namely Netatmo, to be the most applicable at this time.

Assessment of current precipitation maps identified a severe lack in temporal resolution
for application in urban hydrology. This clearly illustrates that the proposed method-
ology has a market for application.

The results of the comparison between the opportunistic networks and their traditional
counterparts indicate that both opportunistic networks far exceed the density and, in
certain areas, the extent of the traditional gauge network. In the case of the PWS
network, the main differences to the traditional network lie in accuracy and availability.

When assessing the accuracy of the precipitation maps, it was found that constrained
geostatistical models yielded the highest interpolation accuracy. Further, their appli-
cation provided key insights into the need for network-specific quality control and a
better understanding of the underlying spatial characteristics of precipitation to con-
strain them. Finally, the Best Combined Spatial Predictor was identified as a viable
method to combine information from dissimilar networks into a single precipitation map.

This research aimed to assess the viability of CML and PWS networks as a source for
precipitation mapping in Norway. Based on a comprehensive assessment of network
characteristics, precipitation mapping techniques, and the underlying spatial charac-
teristics, it can be concluded that both networks have considerable potential for this
application. The results indicate two distinct challenges going forward for the two net-
works, namely, more efficient quality control and facilitating data access for the PWS
and CML networks, respectively.
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Appendix B. Python functions used for meta-
data collection

import requests
import pandas as pd
import geopandas as gpd
from pyproj import CRS
from shapely.geometry import Point
from collections import OrderedDict

def request_netatmo(
client_ID: str,
client_secret: str,
pw: str,
username: str,
bounding_gdf: gpd.GeoDataFrame,
areal_buffer: float,
output_crs: str = "EPSG:32632",
verbose=False

):

# Authentication
auth_params = {

"client_id": client_ID,
"client_secret": client_secret,
"grant_type": "password",
"username": username,
"password": pw,
"scope": "read_station",

}
auth_endpoint = "https://api.netatmo.com/oauth2/token"
auth = requests.post(auth_endpoint, auth_params)
auth_json = auth.json()
if auth.status_code != 200:

raise Exception(f"token request failed, response: {auth.text}")
else:

if verbose:
print(f"token request succeded.")

token = auth_json["access_token"]

names = ("lon_sw", "lat_sw", "lon_ne", "lat_ne")
coords = (

bounding_gdf
.buffer(areal_buffer)
.to_crs("epsg:4326")
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.geometry.iloc[0]

.bounds
)
bbox = dict(zip(names, coords))
if verbose:

print(f"after {areal_buffer}m buffer, requested bounding box was: {bbox}")

# Get data
endpoint = "https://api.netatmo.com/api/getpublicdata"
parameters = {

**bbox,
"required_data": "rain",

}
r = requests.get(endpoint, parameters, headers={"Authorization": "Bearer " + token})
json = r.json()
if r.status_code != 200:

raise Exception(
f"data request returned error code {r.status_code}.\

{json['error']['message']}"
)

else:
if verbose:

print("data resquest succeded")

# Initial processing
df_raw = pd.DataFrame.from_dict(json)
df = pd.DataFrame.from_records(df_raw.body)
df = df.drop(["measures", "modules", "module_types"], axis=1)

df["lon"] = df.place.apply(lambda x: x["location"][0])
df["lat"] = df.place.apply(lambda x: x["location"][1])
df["masl"] = df.place.apply(lambda x: x["altitude"])
df["country"] = df.place.apply(lambda x: x["country"])
df = df.drop(["place"], axis=1)
df = df[df.country == "NO"] # filters by stations in norway
df = df.rename(columns={"_id": "id"})

# Generate GeoDataFrame
gdf = gpd.GeoDataFrame(df)
gdf["geometry"] = gdf.apply(lambda x: Point(x["lon"], x["lat"]), axis=1)
gdf = gdf.drop(["lon", "lat"], axis=1)

# Assign, then change the crs
gdf.crs = CRS.from_epsg(4326)
gdf = gdf.to_crs(output_crs)

gdf["source"] = "NETATMO"
gdf['owner'] = "PRIVATE"
gdf["resolution"] = 60
if bounding_gdf is not None:

bound_polygon = bounding_gdf.geometry.iloc[0]
clipped_gdf = gdf[gdf.geometry.within(bound_polygon)]
removed_stations = len(gdf) - len(clipped_gdf)
if verbose:

print(f"{removed_stations} statinos exceeded study area and were removed.")

return clipped_gdf

def find_primary_owner(owners:str, owner_importance: OrderedDict=None, default_owner:str="OTHER") -> str:
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"""Assigns the primary owner by the first occuring defined by the dict owner_importance.
Otherwise it assignes default value.

Arguments:
owners {str} -- string of all station owners

Keyword Arguments:
owner_importance {OrderedDict[str,str]} -- Ordered dictionary (by importance)

of owners (default: {None})
default_owner {str} -- what to assign primary owner if none of the owners occur

in owner importance (default: {"private"})

Returns:
str -- primary owner

"""
if owner_importance is None:

owner_importance = OrderedDict({
"MET.NO": "MET.NO",
"NVE": "NVE",
"STATENS VEGVESEN": "SVV",
"NIBIO": "NIBIO",
"BANE NOR": "BANE NOR",
"KOMMUNE": "MUNICIPALITY",
"ENERGI": "ENERGY",
"KRAFT": "ENERGY",
"STATNETT": "ENERGY",
"": default_owner

})
for key, value in owner_importance.items():

if key in owners:
# TODO: info about the owners grouped to other
return value

def request_frost(
client_ID: str,
client_secret: str,
resolution: str = "all",
bounding_gdf: gpd.GeoDataFrame = None,
output_crs: str = "EPSG:32632",

):

elements = OrderedDict({
"monthly": r"sum(precipitation_amount P1M)",
"daily": r"sum(precipitation_amount P1D)",
"hourly": r"sum(precipitation_amount PT1H)",
"10_min": r"sum(precipitation_amount PT10M)",
"1_min": r"sum(precipitation_amount PT1M)"

})
endpoint = "https://frost.met.no/sources/v0.jsonld"
parameters = {

"types": "SensorSystem",
"country": "No",
"fields": "id,geometry,masl,stationholders,wmoid",

}
if resolution in elements:

parameters["elements"] = elements[resolution]
elif resolution == "all":

# Wired subroutine, that should request all the resolutions and construct
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# a gdf with temporal resolution as column
dfs = []
for res in elements:

gdf = request_frost(
client_ID=client_ID,
client_secret=client_secret,
resolution=res,
bounding_gdf=bounding_gdf,
output_crs=output_crs

)
# Maps name to minutes
resolution_map = {

"monthly": int(60 * 24 * 30.5),
"daily": int(60 * 24),
"hourly": 60,
"10_min": 10,
"1_min": 1

}
gdf["resolution"] = resolution_map[res]
gdf = gdf.set_index("id")
dfs.append(gdf)

gdf = dfs.pop(0) # Should be the monthly resolution dataset,
# This should also contain all with finer resolution.

for other in dfs:
gdf.update(other)

gdf = gdf.reset_index()
return gdf

else:
raise ValueError(f"resolution argument must be one of {[k for k in elements]}, or \"all\"")

# Get data
r = requests.get(endpoint, parameters, auth=(client_ID, client_secret))
json = r.json()
if r.status_code != 200:

raise Exception(
f"request returned error code {r.status_code}.\

{json['error']['message']}: {json['error']['reason']}"
)

else:
print(f"resquest for {resolution} data succeded")

# create df
data = json["data"]
df = pd.DataFrame.from_dict(data)

# drop rows that don't include geometric information and sotre
# coordinates
df = df.dropna(subset=["geometry"])
df["lon"] = df.geometry.apply(lambda x: x["coordinates"][0])
df["lat"] = df.geometry.apply(lambda x: x["coordinates"][1])
df = df.drop(["geometry"], axis=1)

gdf = gpd.GeoDataFrame(df)
gdf["geometry"] = gdf.apply(lambda x: Point(x["lon"], x["lat"]), axis=1)
gdf = gdf.drop(["lon", "lat"], axis=1)

# Assign, the change CRS
gdf.crs = CRS.from_epsg(4326)
gdf = gdf.to_crs(output_crs)
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# Gets rid of stationholders as list
def cat_to_str(li):

return ",".join(li)

gdf["stationHolders"] = gdf["stationHolders"].apply(cat_to_str).apply(find_primary_owner)
gdf = gdf.rename(columns={"stationHolders": "owner"})

# filter by research area
if bounding_gdf is not None:

bound_polygon = bounding_gdf.geometry.iloc[0]
gdf = gdf[gdf.geometry.within(bound_polygon)]

gdf["source"] = "MET"
return gdf

def load_CML(path: str, bounding_gdf: gpd.GeoDataFrame = None):
gdf = gpd.GeoDataFrame.from_file(path)
if bounding_gdf is not None:

bound_polygon = bounding_gdf.geometry.iloc[0]
gdf = gdf[gdf.geometry.within(bound_polygon)]

gdf['owner'] = "TELIA"
gdf["source"] = "CML"
gdf["resolution"] = 0.166
return gdf





Appendix C. Python functions for QC and
reprocessing

import pandas as pd
import geopandas as gpd
import numpy as np
from math import log10, exp

def add_observations(df_meta, df_values, timestamp):
df = df_meta.copy()
values = df_values.loc[timestamp]
assert len(values.shape) == 1
df = df.set_index("id")
df["precipitation"] = values
return df

def faulty_zero_check(row, df, n, r):
buffer = row.geometry.centroid.buffer(r)
within = df[df.geometry.centroid.intersects(buffer)]
threshold = within.precipitation.median()
if threshold > 0:

if row.precipitation == 0:
return True

return False

def buddy_check(row, df, n, r):
buffer = row.geometry.centroid.buffer(r)
within = df[df.geometry.centroid.intersects(buffer)]
std = within.precipitation.std()
mean = within.precipitation.mean()
if abs(row.precipitation - mean) > 2*std:

return True
else:

return False

def isolation_check(row, df, n, r):
buffer = row.geometry.centroid.buffer(r)
within = df[df.geometry.centroid.intersects(buffer)]
if len(within) < n:

return True
else:

return False

def QC(df, n, r):
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"""Does QC of stations: n is the number of stations required in the
neighbourhood and r is the circular radius of it.

"""
df["fz_flag"] = df.apply(faulty_zero_check, args=(df, n, r), axis=1)
df["buddy_flag"] = df.apply(buddy_check, args=(df, n, r), axis=1)
df["isolation_flag"] = df.apply(isolation_check, args=(df, n, r), axis=1)
return df

def add_flags_in_column(row):
out = []
if row.fz_flag:

out.append("fz")
if row.buddy_flag:

out.append("buddy")
if row.isolation_flag:

out.append("isolation")
if len(out) > 0:

return "-".join(out)
else:

return "not flagged"

def pipeline(df_meta, df_values, timestamp, n_QC=5, rad_QC=3000, drop_flagged=True, drop_specific=None, apply_QC=True):
df = add_observations(df_meta, df_values, timestamp)
# Remove stations without observations, then apply other fuctions
df = df.dropna(subset=["precipitation"])
if apply_QC:

df = QC(df, n_QC, rad_QC)
df["flag"] = df.apply(add_flags_in_column, axis=1) # creates single column of flags for vis
initial = df.shape[0]
if drop_flagged:

df = df[~(df.buddy_flag | df.isolation_flag | df.fz_flag)]
elif drop_specific:

for flag in drop_specific:
df = df[~(df[flag])]

print("dropped: ", initial-df.shape[0], "stations")
return df

else:
return df

def calculate_alpha(polarization, frequency, attenuation, length):
# note, returns mm/hr
specific_attenuation = attenuation / (length/1000)
horisontal_coeff = {

"k": {
"a" : [-5.33980, -0.35351, -0.23789, -0.94158],
"b" : [-0.10008, 1.26970, 0.86036, 0.64552],
"c" : [1.13098, 0.45400, 0.15354, 0.16817],
"m_k" : -0.18961,
"c_k" : 0.71147,

},
"alpha": {

"a": [-0.14318, 0.29591, 0.32177, -5.37610, 16.1721],
"b": [1.82442, 0.77564, 0.63773, -0.96230, -3.29980],
"c": [-0.55187, 0.19822, 0.13164, 1.47828, 3.43990],
"m_alpha": 0.67849,
"c_alpha": -1.95537
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}
}
vertical_coeff = {

"k" : {
"a": [-3.80595, -3.44965, -0.39902, 0.50167],
"b": [0.56934, -0.22911, 0.73042, 1.07319],
"c": [0.81061, 0.51059, 0.11899, 0.27195],
"m_k": -0.16398,
"c_k": 0.63297

},
"alpha": {

"a": [-0.07771, 0.56727, -0.20238, -48.2991, 48.5833],
"b": [2.33840, 0.95545, 1.14520, 0.791669, 0.791459],
"c": [-0.76284, 0.54039, 0.26809, 0.116226, 0.116479],
"m_alpha": -0.053739,
"c_alpha": 0.83433

}
}
if polarization == "Vertical":

c = vertical_coeff
elif polarization == "Horizontal":

c = horisontal_coeff
elif polarization == "Dual":

return min(
calculate_alpha("Horizontal", frequency, attenuation, length),
calculate_alpha("Vertical", frequency, attenuation, length)

)
else:

raise ValueError(f"polarisation {polarization} not recognized")
k = c["k"]
a = c["alpha"]

log10k = sum([
k["a"][i] * exp(- ((log10(frequency) - k["b"][i])/k["c"][i])**2) for i in range(4)

]) + k["m_k"] * log10(frequency) + k["c_k"]
k = 10 ** log10k

alpha = sum([
a["a"][i] * exp(- ((log10(frequency) - a["b"][i])/a["c"][i] )**2 ) for i in range(5)

]) + a["m_alpha"] * log10(frequency) + a["c_alpha"]

return (specific_attenuation / k) ** (1/alpha)

def fixed_time_series_processing(series, period='1T', limit=15):
"""Simple mode. Requires fixed period apriori i.e.

Equal time between all observations (or nans)"""
series = series.replace(0, np.NaN)

# Fill with constant rainrate within 15 minutes
series = series.cumsum(skipna=True).interpolate(

method="linear", limit=limit, limit_area="inside"
)
start = series.iloc[0]

series = series.fillna(method="pad").diff()
series.iloc[0] == start
return series





Appendix D. Python classes for prediction

from pykrige.uk import UniversalKriging as pk_UK
from sklearn.neighbors import KNeighborsRegressor as KNR
from sklearn.gaussian_process.kernels import ConstantKernel, Product, Sum, RBF, WhiteKernel
from sklearn.gaussian_process import GaussianProcessRegressor
import numpy as np

def idw(p):
def f(m):

w = (1 / m**p) / np.sum(1 / m**p)
return w

return f

def make_grid(bounding_gdf, resolution):
minx, miny, maxx, maxy = bounding_gdf.total_bounds
xx, yy = np.meshgrid(

np.arange(minx, maxx, resolution),
np.arange(miny, maxy, resolution)

)
X = np.column_stack([xx.flatten(), yy.flatten()])
return X, xx.shape

class IDW(KNR):
def __init__(self, p, neighbours=None):

self.p = p
self.neighbors = neighbours
self.weight_fn = idw(p)

def fit(self, X, y):
if self.neighbors is None:

self.neighbors = X.shape[0]
super().__init__(

n_neighbors=self.neighbors,
weights=self.weight_fn,
algorithm="brute"

)
_ = super().fit(X, y)
return _

def grid(self, bounding_gdf, resolution, flip=True):
X, out_shape = make_grid(bounding_gdf, resolution)
y_pred = self.predict(X)
y_pred = y_pred.reshape(out_shape)
if flip:

y_pred = np.flip(y_pred, 0)
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return y_pred

class NN(KNR):

def __init__(self, neighbors=1):
super().__init__(

n_neighbors=neighbors,
weights='uniform',
algorithm="brute",

)

def grid(self, bounding_gdf, resolution, flip=True):
X, out_shape = make_grid(bounding_gdf, resolution)
y_pred = self.predict(X)
y_pred = y_pred.reshape(out_shape)
if flip:

y_pred = np.flip(y_pred, 0)
return y_pred

class GPR(GaussianProcessRegressor):

def __init__(
self, kernel=None, nugget=None, total_sill=None, range_param=None, optimize=True,
normalize_y=True, alpha=1e-10, random_state=None

):
if not kernel:

kernel = ( # Creates a gaussian covariance function with a nugget, sill and range.
WhiteKernel(nugget,noise_level_bounds=(1e-10, 1e0))
+ ConstantKernel(total_sill - nugget, constant_value_bounds=(1e-2, 1e0))
* RBF(0.4 * range_param, length_scale_bounds=(1e1, 1e5))

)
super().__init__(

kernel=kernel,
alpha=alpha,
optimizer=("fmin_l_bfgs_b" if optimize else None),
n_restarts_optimizer=50,
normalize_y=normalize_y,
random_state=random_state

)

def predict(self, X, return_std=False, return_cov=False):
## Wrapper to remove negative predictions
if return_cov:

return super().predict(X, return_std=return_std, return_cov=return_cov)
if return_std:

y_pred, std = super().predict(X, return_std=return_std)
y_pred = y_pred.clip(min=0)
return y_pred, std

else:
return super().predict(X).clip(min=0)

def grid(self, bounding_gdf, resolution, flip=True, return_std=False):
X, out_shape = make_grid(bounding_gdf, resolution)
if return_std:

y_pred, sigma = self.predict(X, return_std=True)
y_pred = y_pred.reshape(out_shape)
sigma = sigma.reshape(out_shape)
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if flip:
y_pred = np.flip(y_pred, 0)
sigma = np.flip(sigma, 0)

return y_pred, sigma
else:

y_pred = self.predict(X)
y_pred = y_pred.reshape(out_shape)
if flip:

y_pred = np.flip(y_pred, 0)
return y_pred

class UK(pk_UK):

def __init__(self, variogram_model="exponential", n_lags=6, drift=True, nugget=None, total_sill=None, range_param=None):
self.usr_model = variogram_model
self.usr_lags = n_lags
self.usr_drift = ["regional_linear"] if drift else None
self._my_nugget = nugget
self._my_sill = total_sill
self._my_range = range_param

def fit(self, X, y):
_x = X[:,0]
_y = X[:,1]
_z = y
if all((self._my_nugget, self._my_sill, self._my_range)):

var_params = {"sill": self._my_sill, "range": self._my_range, "nugget": self._my_nugget}
super().__init__(

x=_x, y=_y, z=_z,
variogram_model=self.usr_model,
variogram_parameters=var_params

)
else:

super().__init__(x=_x, y=_y, z=_z,
variogram_model=self.usr_model,
nlags=self.usr_lags,
drift_terms=self.usr_drift)

return self

def predict(self, X, return_std=False):
y_pred, sigma = self.execute(style="points", xpoints=X[:,0], ypoints=X[:,1])

y_pred = y_pred.clip(min=0)
if return_std:

return y_pred, sigma
else:

return y_pred

def grid(self, bounding_gdf, resolution, flip=True, return_std=False):
X, out_shape = make_grid(bounding_gdf, resolution)
if return_std:

y_pred, sigma = self.predict(X, return_std=True)
y_pred = y_pred.reshape(out_shape)
sigma = sigma.reshape(out_shape)
if flip:

y_pred = np.flip(y_pred, 0)
sigma = np.flip(sigma, 0)

return y_pred, sigma
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else:
y_pred = self.predict(X)
y_pred = y_pred.reshape(out_shape)
if flip:

y_pred = np.flip(y_pred, 0)
return y_pred

class BCSP:

def __init__(self, *trained_predictors):
"""Predictors must have a method predict(X, y, return_std)

which returns the error of prediction at each point.
"""
self.predictors=trained_predictors

def predict(self, X, return_std=False):
numerator = np.zeros_like(X[:,0], dtype=np.float64)
denomentor = np.zeros_like(X[:,0], dtype=np.float64)
sigmas = []
for predictor in self.predictors:

y_pred, sigma = predictor.predict(X, return_std=True)
numerator += y_pred * (1./sigma)
denomentor += (1./sigma)
if return_std:

sigmas.append(sigma)
y_pred = numerator/denomentor
if return_std:

sigma = np.minimum(*sigmas)
return y_pred, sigma

else:
return y_pred

def grid(self, bounding_gdf, resolution, flip=True, return_std=False):
X, out_shape = make_grid(bounding_gdf, resolution)
if return_std:

y_pred, sigma = self.predict(X, return_std=True)
y_pred = y_pred.reshape(out_shape)
sigma = sigma.reshape(out_shape)
if flip:

y_pred = np.flip(y_pred, 0)
sigma = np.flip(sigma, 0)

return y_pred, sigma
else:

y_pred = self.predict(X)
y_pred = y_pred.reshape(out_shape)
if flip:

y_pred = np.flip(y_pred, 0)
return y_pred
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