
Highlights: 

• A new high throughput sequencing approach was developed to target Bacillus 

cereus group

• Milk contained a complex B. cereus group population, which is dominated by 

psychrotolerant strains divided in several sequence groups. 

• Dynamics of the B. cereus group in milk was influenced by storage 

temperature, sampling period and dairy.  
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Abstract 

Members of the Bacillus cereus sensu lato (B. cereus group) are spore-forming 

organisms commonly associated with spoilage of milk and dairy products. Previous 

studies have shown, by using 16S marker gene sequencing, that the genus Bacillus is 

part of the core microbiota of raw bovine milk and that some members of this genus is 

able to grow during sub-optimal storage (8 °C) of pasteurized consumption milk. 

Here, the composition of this genus in pasteurized consumption milk samples, 

collected from two dairies, over a one-year period and stored at 4 or 8 °C up to the 

end of shelf life is uncovered. Our results show that the B. cereus group is the 

dominant Bacillus group in stored consumption milk. By applying a new marker gene 

sequencing approach, several dominating phylogenetic clusters were identified within 

the B. cereus group populations from the milk samples. There was a higher 

phylogenetic diversity among bacteria from milk stored at 8 °C compared to milk 

stored at 4 °C. Sampling period and the dairy the samples were collected from, also 

significantly influenced the diversity, which shows that the B. cereus group 

population in consumption milk is heterogeneous and subjected to temporal and 

spatial changes. The new approach applied in this study will facilitate the 

identification of isolates within the B. cereus group, of which some are potential 

spoilage bacteria and pathogenic contaminants of milk and dairy products.
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1 INTRODUCTION

Bacillus cereus sensu lato (informally termed the Bacillus cereus group) is a sub-

group within the genus Bacillus, which currently contains the eight species B. cereus 

(sensu stricto), Bacillus thuringiensis, Bacillus anthracis, Bacillus 

weihenstephanensis, Bacillus mycoides, Bacillus pseudomycoides, Bacillus 

cytotoxicus and Bacillus toyonensis (Patino-Navarrete and Sanchis, 2016). Recently, 

other species have also been suggested as members of this group (Jung et al., 2011; 

Liu et al., 2014; Miller et al., 2016). Members of this group show a great ecological 

diversity. Some species are harmful to humans, for example B. anthracis, the 

etiologic agent of anthrax, and B. cereus, which is involved in food poisoning 

(Granum and Lindbäck, 2013), while B. thuringiensis produces insecticidal toxins and 

is used commercially for crop protection (Aronson and Shai, 2001). Bacillus cereus 

group species also vary in their ability to grow at different temperatures, with the 

psychrotolerant B. weihenstephanensis and the thermotolerant B. cytotoxicus as 

extremes within this group (Guinebretiere et al., 2013; Lechner et al., 1998). 

Bacillus spp. are frequently found in soil environments and on plants, and they 

easily spread to bovine raw milk. Members of the genus Bacillus have been defined as 

part of the core microbiota of raw milk (Christiansson et al., 1999; Kable et al., 2016; 

Magnusson et al., 2007). Contamination of milk with these bacteria may also occur 

during transport and at the dairy plant through the processing facilities (Eneroth et al., 

2001; Flint et al., 1997; Svensson et al., 2000). The ability of Bacillus spp.to form 

endospores renders them a challenge to the dairy industry. Spores are able to survive 

heat treatment regimes commonly applied to consumption milk, such as high 

temperature-short time (HTST) pasteurization. The spores may then germinate into 

proliferative bacteria if environmental conditions allow it (Novak et al., 2005; Setlow, 
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2003). The species B. weihenstephanensis and psychrotolerant strains of B. cereus are 

frequently isolated from milk products and are able to grow and cause spoilage when 

the temperature is favorable (Bartoszewicz et al., 2008). For example, B. 

weihenstephanensis is able to grow at 7 °C or below, and can reach high numbers in 

milk products during storage (Francis et al., 1998). Since different Bacillus spp. are 

present in HTST pasteurized dairy consumption milk products, and various species 

might impact product quality and safety differently, detailed knowledge on the 

Bacillus spp. population in this products will benefit the food quality and safety 

assessment work of the dairy industry.    

Recent progresses in sequencing technologies and bioinformatics tools have 

enabled characterization of the total microbiota directly from food matrices, including 

milk (Ercolini, 2013; Kable et al., 2016). However, in the resulting data sets the 

bacterial composition is often described at genus or family level. For Bacillus spp., 

some members of the B. cereus group have highly conserved 16S and 23S rRNA 

sequences. Therefore, accurate species characterization based on these sequences is 

challenging (Liu et al., 2015). For example, amplicon-based high throughput 

sequencing (HTS) approaches can only assign Bacillus sequences to the genus level. 

Therefore, it is of interest for both research and industrial purposes to develop culture-

independent HTS methods for identification of subpopulations of the Bacillus cereus 

group directly from food products. 

Here, we developed a novel culture-independent approach to follow the 

dynamics and composition of the B. cereus group population in samples of 

consumption milk. This approach achieved higher resolution compared to 16S rRNA 

sequencing and was applied to evaluate the composition of the B. cereus group 

population in pasteurized milk stored at different temperatures.
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2 MATERIALS AND METHODS

2.1 Milk Samples and DNA extraction

A total of 184 bovine milk samples, which were part of a larger study on milk 

microbiota (Porcellato et al., 2017), were included in the present work. The milk 

samples were collected monthly (with the exception of one month) from two dairy 

plants in Norway over a period of 13 months. The milk samples were obtained from 

two dairy plants with different production volumes (A and B, respectively), and 

details on the sampling procedures are described previously (Porcellato et al., 2017). 

Samples from every sample month included 100 mL of raw milk from the dairy silo 

tanks and six cartons (1 L) of homogenized and pasteurized (72 °C for at least 15 sec) 

full fat milk. The milk samples were stored cold (maximum temperature of 4 °C) 

before and during transport to the laboratory, and were kept at 4 °C (3 milk cartons) 

or 8 °C (3 milk cartons and 100 mL samples of raw milk) until the end of carton shelf 

life (as indicated on the carton; 13-14 days after production). At the end of storage, 

three replicates from each milk carton and two replicates of each raw milk sample 

were analysed. Storage of raw milk samples at 8 °C for the same period of time as the 

milk cartons has not to our knowledge been previously reported. Bacterial pellet and 

DNA extraction was performed as described before (Porcellato et al., 2016a). The 

DNA was stored at -20 °C until further analysis.

2.2 Analysis of Bacillus spp. 16S rRNA gene sequences

To investigate the most abundant Bacillus species within the 16S sequence 

library from a previous study (Porcellato et al., 2017), a new in silico database was 

constructed. The database was constructed using the complete 16S rRNA gene 
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sequences (n = 28605) collected from the ribosomal database project (RDP) database 

(parameters: Genus = Bacillus, Strain = Both, Source = Isolate, Size > 1200, and 

Quality = Good; Cole et al 2014). A custom database was constructed by performing 

an in silico PCR, using the same primers against the Bacillus 16S rRNA (allowing 2 

mismatches) as used for the 16S library preparation. The obtained PCR products were 

filtered by removing sequences containing unknown bases (“N”) and by removing 

sequences which were not assigned to a Bacillus species. The in silico PCR products 

were then clustered at 99% sequence identity using the Usearch algorithm (Edgar, 

2010) and the OTU-based approaches as described previously for the 16S rRNA 

library. For each Bacillus OTU detected at 99% sequence identity, the species names 

were used to assign the different species that belonged to the OTU. All sequences, 

which were previously assigned to the genus Bacillus in the previous study 

(Porcellato et al., 2017), were extracted and a new OTU table was constructed using 

the Usearch algorithm with 99% identity. Taxonomic assignment of new Bacillus 

OTUs was performed by searching each OTU representative sequence against the 

previously created database. 

2.3 Primer design 

To assign the Bacillus cereus group members to a sub-species level, marker 

genes were chosen from a previously described MLST scheme (Tourasse et al., 2006). 

Selection of the three most discriminating genes was performed after alignment of all 

type sequences for the 7 genes used in the MLST scheme (available online 

http://mlstoslo.uio.no/). The sequences were aligned using MAFFT and the three 

genes with the lowest % of identical sites were chosen. The three selected genes were 

panC, pycA and glpT. After alignment of each gene sequence, new primers were 
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designed to amplify PCR products of lengths between 300 and 400 bp. This length 

was chosen in order to obtain a good overlap of the sequences after merging the 

paired-end sequences acquired from the Miseq Illumina system (Illumina, San Diego, 

CA, USA). Three degenerate bases and 1 mismatch were allowed on both forward 

and reverse primers. Regions with high similarity between all the sequences were 

visualized using the software Geneious v 7.0 and primers were designed using the 

primer3 software (Untergasser et al., 2012). The selected primers were searched 

against the “nr” nucleotide database using the blast algorithm (Camacho et al., 2009). 

Primers were validated for specificity using isolates of different Bacillus species and 

other species from the in-house laboratory collection at the Norwegian University of 

Life Sciences (Table S1). 

2.4 Illumina sequencing 

Each marker gene was amplified using a Lightcycler 480 system (Roche). Each 

PCR reaction was run in a volume of 20 μl using 1X of Q5 reaction buffer (New 

England Biolabs inc., Pswich, MA, USA), 10 mM dNTPs, 2 μM of each of the 

forward and reverse primer, 1X of Evagreen dye (Biotium, Fremont, CA, USA), 0.02 

U/μl of Q5 high-fidelity DNA polymerase (New England Biolabs inc.,) and 2 μl of 

DNA. The PCR conditions were as follows: one cycle of initial denaturation at 98 °C 

for 30 sec, followed by 35 cycles of 98 °C for 10 sec, 52 - 54 °C (annealing 

temperature according to Table 1) for 20 sec and 72 °C for 20 sec. The final extension 

was performed for 2 min at 72 °C. Five μl of each PCR product was cleaned using 

Illustra ExoProStar S (GE Healthcare Life Sciences, Oslo, Norway) according to the 

manufacturer´s protocol. The cleaned PCR product was used as template for a second 

indexing PCR using customized primers with unique 8 bp barcodes on the forward 
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and reverse primer. Each sample obtained the same combination of barcodes for all 

three genes. The PCR mix was similar to the first PCR mix except for the volume of 

template added (5 μl). The PCR reaction was carried out in a volume of 20 μl and the 

amplification conditions were as follows: Initial denaturation at 98 °C for 30 sec 

followed by 10 cycles of 98 °C for 10 sec, 55 °C for 20 sec and 72 °C for 20 sec. The 

final extension was performed at 72 °C for 2 min. Library normalization was 

performed using a SequalPrepTM Normalization plate (Thermo Fischer Scientific, 

Oslo, Norway) and quantified using a PerfeCTa NGS quantification kit (Quanta 

Biosciences, Beverly, MA, USA). The samples were diluted to a final concentration 

of 4 nM. Sequencing of the marker genes panC, pycA and glpT from the total DNA 

was performed on a Miseq Illumina platform (Illumina) using a 300 bp paired-end 

sequencing kit. The library was diluted to 8 pM as described by the Illumina 

sequencing protocol (Illumina) before sequencing.  

2.5 Bioinformatics analysis

After sequencing, sequences were divided for each sample by the Miseq 

Reporter (Illumina). The obtained files were quality filtered (q30) using trimmomatic 

(Bolger et al., 2014) and merged using Qiime 1.9.0 (Caporaso et al., 2010). Sequences 

shorter than 250 bp were discarded. The remaining sequences were divided in three 

files (one for each gene) after alignment to a custom made database using Usearch v8 

(Edgar, 2010). The databases consisted of a FASTA file with all the type sequences of 

the panC, pyCa and glpT genes obtained from the online database 

(http://mlstoslo.uio.no/). Each set of sequences were subjected to in silico PCR using 

a custom made R script allowing one mismatch for each of the two primers. Only 

sequences that obtained a correct in silico amplification, were kept for further 
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analysis. The sequences were then clustered using the Usearch OTU picking 

algorithm (Edgar, 2010) with 99 % sequence identity. The pipeline included chimera 

and singletons removal steps. OTUs with a relative abundance below 0.01 % were 

discarded. All sequences from the 16S library and the Bacillus marker genes are 

available after request.

2.6 Statistical analysis

The three OTU tables (one for each gene) were normalized using the 

metagenomeSeq package. Alpha indexes (richness and diversity) were calculated for 

each OTU table and compared using Student’s t-test with 1,000 Monte Carlo 

simulations. Beta diversity was analyzed using the principal coordinate analysis 

(PCoA) of the Unifrac distance matrix (Lozupone and Knight, 2005). Multivariate 

dispersion between groups of samples was calculated with the R package Vegan and 

ANOVA test (Anderson et al., 2006; Oksanen et al., 2017). Permutational 

multivariate analysis of variance between groups was also calculated with the R 

package Vegan using the Unifrac distance matrix and the function “Adonis” (Oksanen 

et al., 2017). The centroid sequence of the 19 most abundant panC sequences were 

searched against with the online tool 

(https://www.tools.symprevius.org/bcereus/english.php) to assign the sequence group 

to a specific Bacillus group as described by Guinebretiere et al (2008). The same 

sequences were aligned using MAFFT (Katoh and Standley, 2013) and the alignment 

was used to construct a Neighbor-Joining phylogenetic tree (with 999 boostraping 

replicates) with the R package phangorn (Schliep, 2011).
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3 Results 

3.1 16s rRNA library evaluation 

To explore the Bacillus population during storage of consumption milk, we 

used 1) data from a previously published 16S rRNA library (Porcellato et al., 2017) 

and 2) a new marker gene sequencing approach. First, we extracted all reads from the 

16S rRNA library assigned to the genus Bacillus (n= 6326686) with a pairwise 

identity of 97%. These reads were then clustered in OTUs based on 99% identity (to 

account for sequencing errors). From 186 samples of milk, six Bacillus OTUs with a 

relative abundance higher than 0.001 % were obtained. The centroid sequence for 

each OTU cluster was used to identify the Bacillus group, which the sequences 

belong to. This was done by searching the sequences against the in-house Bacillus 

16S rRNA database. One sequence group (OTU 1), which matched species of the 

Bacillus cereus group (Table S2), represented over 99.6 % of the total reads and was 

the most abundant OTU in all milk samples. This OTU dominated the Bacillus 

population (> 95%) in all samples, with a few exceptions. Two of the three replicates 

of the milk cartons stored at 8 °C from dairy B collected in April, were dominated by 

OTU 5 (species included in this OTU are described in Table S2). In these samples, 

both duplicates of the same carton contained 81 and 71 % of Bacillus OTU 5. The 

same OTU was also detected in two replicate samples from the March sampling from 

dairy A and showed a relatively abundance of 11.8 and 11.5 %.

3.2 New marker gene sequencing

The primers designed in this study targeted the Bacillus cereus group genes 

panC, pycA and glpT and generated PCR products of 304, 347 and 378 bp in length, 

respectively (Table 1). These three marker genes were used to further characterize the 
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Bacillus cereus group from raw milk samples from dairy silo tanks stored at 8 °C, and 

samples of carton milk stored at either 4 or 8 °C. However, no visible amplification 

products were received within 35 PCR cycles for some samples due to the low 

amount of Bacillus. An increased number of PCR cycles was not applied due to the 

potential formation of primer dimers, which could interfere with the sequencing 

quality and results. 

Due to the low level of Bacillus in the other samples, only samples from milk 

cartons stored at 8 °C until end of shelf-life were used to evaluate the performance of 

the three primer sets in discriminating between species within the Bacillus cereus 

group population. A total of 285190, 175810 and 195668 good quality sequences 

were obtained for the panC, glpT and pycA genes, respectively. After grouping the 

sequences based on > 99% identity and excluding rare sequences (OTUs with relative 

abundance < 0.01 %), there were 186, 126 and 127 sequence groups for panC, glpT 

and pycA, respectively. The highest sequence group richness and highest diversity 

among the milk samples was found for the panC gene (Fig. 1). Both the feature 

richness and the diversity were significantly higher for panC compared to the other 

two genes (Fig. 1). The lower Shannon index detected for glpT and pycA compared to 

panC (Fig. 1) indicated that the communities described by these two genes were 

dominated by a few sequence groups of high abundance. This was also indicated by 

the relative abundance analysis (Fig. S1). Another advantage of using the panC gene 

was that it allowed for identification of Bacillus cereus sequence groups, according to 

Guinebretière et al. (2008), among the different phylogenetic groups (Fig. 5). 

3.3 Evaluation of the panC library
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The number of milk samples that generated positive amplification (within 35 

cycles of PCR), were 78 and 66 for dairy A and B, respectively. Principal coordinate 

analysis of the weighted Unifrac distance showed that the Bacillus spp. composition 

was diverse between the three factors considered (temperature, dairy and month). 

Using multivariate analysis of variance, all the three factors significantly contributed 

to the diversity between the different samples (month: adonis p value 0.001, dairy: 

adonis p value 0.02, temperature adonis p value 0.004). The summer and autumn 

months (June, Jul, Aug, Sep, and Oct) were characterized by similar B. cereus group 

composition, as did also the winter months (Nov, Jan and Feb). Samples from March, 

April and May showed the largest variation in composition (Fig. 2). ANOVA of the 

beta-dispersion or homogeneity of group dispersions was not significant (p > 0.05) for 

all three factors tested, and therefore the dispersion within each group of samples was 

homogeneous. However, samples of carton milk stored at 8 °C had a higher 

distribution of the distance to centroid compared to samples of carton milk stored at 4 

°C and samples of raw milk stored at 8 °C (Fig. 2). This indicates that the highest 

storage temperature increased the diversity of the B. cereus group composition 

compared to the lower storage temperature and compared to the raw milk samples 

stored at 8 °C.

The two most abundant panC sequence groups detected in milk from both 

dairies were panC_1 and panC_3. These two sequence groups accounted for 39 and 

21 % of the total number of reads, respectively, and were detected in all samples. The 

findings from the multivariate analysis of variance were confirmed by the relative 

abundance analysis. The Bacillus cereus group population in milk cartons was 

influenced by the month of sampling, the dairy and the temperature of storage. In 

particular, a larger diversity among the panC sequences was found in samples from 

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720



13

March, April and May compared to other times of the year (Fig. 3). During these 

months some panC sequences groups, which were not detected or detected in low 

abundance during other months, dominated the Bacillus population (e.g. panC_28, 

panC_41, panC_7). Furthermore, the Bacillus cereus group population in samples 

from milk cartons was significantly different between the two storage temperatures 

(Adonis p value <0.001). The higher storage temperature increased the relative 

abundance of some panC OTUs (Fig. 4), as well as the percentage of Bacillus cereus 

group OTUs quantified over the entire sample microbiota (Fig. 3). In contrast, storage 

at 4 °C resulted in a more uniform distribution of the relative abundance of the B. 

cereus population throughout the year (Fig. 4). In addition to the higher Bacillus 

population diversity in cartons stored at 8 °C compared to cartons stored at 4 °C, the 

higher storage temperature increased the variation between replicate cartons. When 

stored at 8 °C, replicate cartons from the same sampling month, contained different 

sequence groups at 3 and 9 occasions for dairy A and B, respectively (Fig. 3 and Fig. 

S1). Particularly, for dairy B, samples from June 2015 and from October 2015 to May 

2016 contained different sequence groups in at least one of the three replicate cartons 

stored at 8 °C. For some of these months, namely January, March and April, all the 

three replicates contained different compositions of B. cereus sequence groups. For 

dairy A, differences in sequence groups between replicate cartons were observed only 

in June and August 2015 and in March 2016 (Fig. S1). 

Representative sequences for each of all panC sequence groups were 

identified and assigned to phylogenetic groups according to Guinebretiere et al. 

(2008). Among the 19 most abundant panC sequence groups, two phylogenetic 

groups were identified. These two groups were separated into two clusters based on 

their sequences (Fig. 5) and were assigned to the group VI (14 OTUs) and Group II (5 
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OTUs). While the first group dominated most of the samples (86% of the total 

number of reads), Group II (5 % of the total number of reads) was found in high 

abundance in a few samples of milk stored at 8 °C. In particular, the panC group 

sequences panC_28 and panC_41 were detected in all April milk carton replicates 

from dairy A stored at 8 °C until end of shelf-life, and in one replicate of carton milk 

collected from dairy B in May 2016 and stored under the same conditions.

4 Discussion

Utilization of the 16S rRNA gene for microbial community studies have 

previously revealed that the genus Bacillus is part of the core microbiota present in 

raw and processed milk (Kable et al., 2016; Porcellato et al., 2017). To describe the 

composition and dynamics of Bacillus spp. in samples of raw milk and consumption 

milk stored at different temperatures, two different approaches were used in the 

present study. First, the 16S rRNA library from Porcellato et al. (2017) was 

reanalyzed to target only sequences assigned to the genus Bacillus, and second, a new 

HTS sequencing approach was applied to target marker genes for the Bacillus cereus 

group. 

The re-analysis of the 16S rRNA library revealed that the Bacillus cereus 

group was predominant in the milk samples. To further identify the composition of 

the B. cereus group in the milk samples, a culture-independent approach, based on 

three marker genes, was applied in the present study. This approach divided the B. 

cereus group population in several phylogenetically–related subgroups and provided 

an indication of the B. cereus group composition without the bias of a culturing step 

where the temperature, the media and the incubation conditions might influence the 

outcome. The panC gene, demonstrated the best discriminative power, and produced 

781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840



15

a more comprehensive description of the phylogenetic diversity in the samples, 

compared to the glpT and pycA genes.

The two dominant phylogenetic groups, detected from the panC sequences, 

include, according to Guinebretiere et al. (2008), psychrotrophic strains of the genus 

Bacillus. Group VI, which include B. weihenstephanensis, B. mycoides and B. 

thuringiensis strains, was most abundant. This group contains strains able to grow at 

low temperature (5 °C) and can be separated from strains in group II (the second most 

abundant phylogenetic group in our study) by the presence of a cspA gene signature 

(Francis et al.,1998). Group II includes both mesophilic and psychrotolerant strains of 

B. cereus and B. thuringiensis (Guinebretiere 2008). 

The two storage temperatures used in this study represented optimal (4 °C) 

and sub-optimal (8 °C) storage conditions for consumption milk. In milk stored at 4 

°C, the two dominant sequence groups were detected over the entire year at both 

dairies. In our previous work, we found that the level and relative abundance of 

Bacillus in samples from carton milk did not change between day 1 after production 

to the end of shelf-life when stored at 4 °C (Porcellato et al., 2017). In contrast, 

storage of milk cartons at 8 °C changed the microbial composition and gave 

significantly higher plate count levels of presumptive B. cereus (>log 6 CFU / mL, 

Porcellato et al. (2017). We therefore hypothesized that a change in the B. cereus 

group population is very unlikely to happen at 4 °C. 

In the present work, we found that the two most abundant panC sequence 

groups (panC_1 and panC_3) did not always dominate the B. cereus group population 

after storage at 8 °C. In samples stored at 8 °C, the dominant sequence groups 

differed between the two dairies involved, the sampling months and also between the 

replicates within each sampling. Dairy B had more sampling months with a B. cereus 
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group composition that differed between the two storage temperatures, compared to 

dairy A (9 months vs 3 months, respectively). Seasonal differences in the B. cereus 

group population were also found; during the spring months (March, April and May) 

the samples were dominated by sequence groups that were only present in low 

abundance or even not detected during the rest of the year. Variations in the milk 

microbiota over time and between samples have also been described previously 

(Doyle et al., 2017; Kable et al., 2016). Our results show that compositional 

differences between milk samples also apply for the genus Bacillus. This is supported 

by previous culture-dependent studies where different Bacillus cereus group isolates 

have been collected from milk produced in different countries and at different times 

of the year (Coorevits et al., 2008; Schmidt et al., 2012). Another important 

consideration about the B. cereus group population, which grew at 8 °C, is the 

differences observed between replicate samples. Each replicate was obtained from a 

single milk carton and all cartons were collected at the same day from the same 

production line and production batch at each dairy plant. This suggests that some, but 

not all the cartons, were contaminated by a low abundance B. cereus sequence groups, 

capable of growing at 8 °C. These sequence groups could already be present in the 

raw milk and survive the pasteurization process, or they could have re-contaminated 

the milk during or after processing. In a previous study, Bacillus spores were detected 

in all parts of biofilms and in particular in those parts that were in contact with the 

growth medium (Faille et al., 2014). During milk processing, spores and vegetative 

cells from biofilms can end up in the milk at a low concentration and contaminate the 

final product.

In conclusion, we present a new approach to target the Bacillus cereus group 

in consumption milk. This new method allowed us to obtain a more detailed 
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understanding of the structure of the B. cereus group population that contaminate milk 

and how it is influenced by the storage temperature. The B. cereus population in milk 

was composed of a mix of psychrotolerant strains divided in several sequence groups. 

The observed variation in sequence groups between months and dairies, suggest that 

the composition of the B. cereus group population in milk is dynamic and influenced 

by several factors along the value chain. More detailed studies on the composition of 

the B. cereus population along the milk value chain, from raw milk to the end 

product, are necessary to obtain a more in-depth understanding on the pathways for 

contamination. Such investigations might consider applying the method described in 

this paper to achieve a higher resolution on characterization of the B. cereus group 

population. 
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3 Fig. 1. Alpha diversity indexes obtained from milk samples stored at 8 °C for 

4 13 days and grouped by gene. A) Richness measured using the Chao1 index. B) 

5 Alpha diversity measure with the Shannon index. *) Significantly different genes 

6 obtained using t-test with Monte Carlo simulation.    

7

1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481



26

9 Fig. 2. A) Principal coordinate analysis of the weighted Unifrac distance 

10 between the Bacillus cereus group populations. B) Boxplot of the beta-dispersion 

11 grouped by dairy and temperature. 4C: milk samples from cartons stored at 4 °C for 

12 13 days, 8C: milk samples from cartons stored at 8 °C for 13 days, RM: raw milk 

13 collected from the silo tank and stored at 8 °C for 13 days. 
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18 Fig. 3. Relative abundance of the panC sequence groups obtained for milk 

19 samples with positive amplification from A) dairy A, B) dairy B. The group number 

20 next to the sequence group name indicates the affiliation to phylogenetic group 

21 according to Guinebretiere et al. (2008). 4: milk samples from cartons stored at 4 °C 

22 for 13 days, 8: milk samples from cartons stored at 8 °C for 13 days, R: raw milk 

23 collected from the silo tank and stored at 8 °C for 13 days. 
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27 Fig. 4: Relative abundance distribution of the 19 most abundant panC OTUs for milk 

28 cartons stored at A) 4 °C and B) 8 °C.
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29

33 Fig. 5. Neighbor-joining phylogenetic tree obtained from the most abundant panC 

34 OTU sequences. Bootstrap values based on 999 replications are shown at the nodes of 

35 the tree. The cluster on the top (14 sequence groups) belongs to the phylogenetic 

36 group VI, while the cluster on the bottom (5 sequence groups) belongs to the 

37 phylogenetic group II according to Guinebretiere et al. (2008).

38
39

1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721



30

41 Fig. S1. Relative abundance of the panC (A and B), glpT (C and D) and pycA 
42 (E and F) sequence groups obtained from milk samples from dairy A and (A, C and 
43 E) and from dairy B (B, D and F). The milk samples were stored at 8 °C for 13 days 
44 before analysis. The group number next to the panC sequence group name indicates 
45 the affiliation to phylogenetic groups according to Guinebretiere et al. (2008)
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TableS1. Bacterial species used to check for inclusivity and exclusivity of 
the primers designed for panC, glpT and pycA.

Species panC glpT pycA
Bacillus cereus ATCC 14579 + + +
Bacillus mycoides T158 + + +
Bacillus mycoides T143 + + +
Bacillus smithinii T189 - - -
Bacillus licheniformis T56 - - -
Bacillus amyloliguenfaciens T390 - - -
Bacillus pumilus T77 - - -
Kocuria rhizophila T10 - - -
Streptococcus thermophilus T5 - - -
Aneurinibacillus thermoaerophilus T216 - - -
Oxybacillus flavithermus T223 - - -
Brevibacillus thermoruber T303 - - -
Staphylococcus warneri T325 - - -
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Table S2. Bacillus species included in each OTUs after clustering the in silico PCR 
product with 99% identity. Bacillus sequences were obtained from the RDP database 
(Cole et al., 2014). 

OTU_1 OTU_5 OTU_10 OTU_3 OTU_4 OTU_15
anthracis butanolivorans coagulans aerius aryabhattai infantis
bombysepticus frigoritolerans licheniformis flexus
brevis litoralis sonorensis horikoshii
cereus macroides megaterium
gaemokensis muralis meqaterium
mycoides niabensis
pseudomycoides psychrosaccharolyticus
salmalaya simplex
samanii
thuringiensis
toyonensis
weihenstephanensis
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