

Noregs miljø- og biovitskaplege universitet

Masteroppgåve 2019 30 stp Fakultet for realfag og teknologi

Styrkerelaterte eigenskapar til to trelimsystem ved ulike temperaturar – eit metodestudie ved bruk av dynamisk mekanisk analyse (DMA)

Strength-related properties of two wood adhesive systems at different temperatures – a methodological study using dynamic mechanical analysis (DMA)

Johan Olav Røsvik Synnes Byggjeteknikk og arkitektur

Føreord

Arbeidet med denne masteroppgåva starta hausten 2018 ved fakultet for realfag og teknologi (REALTEK) på Noregs miljø- og biovitskaplege universitet (NMBU) på Ås i Akershus. Masteroppgåva er den avsluttande delen av masterstudiet i byggjeteknikk og arkitektur.

Gjennom oppgåva har eg opparbeida meg både kunnskap og interesse for eit tidsrelevant tema som limtrekonstruksjonar, der termisk analyse av ulike limtypar ved bruk av DMA har vore i fokus. Det har vore både kjekt, utfordrande og lærerikt å få prøve seg som forskar på laboratoriet ved avdeling for treteknologi hjå NIBIO på Ås. Det å få gjere noko praktisk ved sida av all lesinga og skrivinga, har vore eit høgdepunkt i denne masterperioden.

Eg vil rette ein stor takk til Andreas Treu (forskar ved avdeling for treteknologi hjå NIBIO, Ås) som har vore ekstern vegleiar i denne masteroppgåva, og som har brukt mykje av si tid til vegleiing og ikkje minst gjennomlesing av denne oppgåva. Her har eg fått god hjelp og støtte til alt frå produksjon av prøveobjekt, opplæring i bruk av utstyr og fagleg vegleiing gjennom heile perioden. Dette har vore til stor hjelp og motivasjon heile vegen.

Takk til NIBIO for lån av material, utstyr, DMA og arbeidsplass, og for stor interesse for denne oppgåva frå start til slutt. Takk til Erik Larnøy (avdelingsleiar ved avdeling for treteknologi hjå NIBIO, Ås) for god hjelp og innføring i oppstartsfasen av denne oppgåva. Eg vil også takke Thor-Erik Vatne Alstad (avdelingsingeniør ved avdeling for treteknologi hjå NIBIO, Ås) for god hjelp til produksjon av prøveobjekta som har vorte brukt i denne oppgåva.

Eg vil vidare rette ein stor takk til hovudvegleiar Tormod Aurlien, professor ved fakultet for REALTEK, Bygg og miljø, ved NMBU på Ås. Det var Tormod som først kom med ideen til denne oppgåva, som vidare i samarbeid med NIBIO utvikla seg til denne oppgåva. Takk for god fagleg vegleiing, positiv innstilling, oppmuntring og gode samtalar gjennom alle fasar i denne perioden. Det har vore veldig trygt og godt å ha ein hovudvegleiar som heiar på meg som masterstudent og nybakt småbarnsfar!

Takk til Anette (kona) for enormt tolmod, støtte og dagleg oppmuntring gjennom denne perioden som ferske foreldre, der eg for det meste har vore på skulen. Eg vil også takke familie og venar for hjelp og støtte.

Denne oppgåva har i tillegg til å ha gjeve meg stort fagleg utbyte, lært meg mykje om meg sjølv og mi arbeidsevne. Alle erfaringar frå denne perioden veit eg vil vere til nytte når eg no skal vidare ut i arbeidslivet.

Ås, 15. mars 2019

Johan Olav Røsvik Synnes

Samandrag

Bruken av limtre og krysslimt tre i byggebransjen har auka betydeleg i seinare tid. Dette har opna opp for nye konstruksjonsmoglegheiter, mykje på grunn av treet si høge styrke i forhold til eigenvekt. Det byggjast stadig lengre spenn og høgare konstruksjonar, og Noreg har i dag fleire verdsleiande byggjeprosjekt i limtre og krysslimt tre.

Samstundes som bruken av limtre og krysslimt tre aukar, aukar også viktigheita av å kunne analysere og kontrollere eigenskapane til desse konstruksjonane ved ulike temperaturar. Forsking viser at dei styrkerelaterte eigenskapane til materialet vil variere ved ulike temperaturar. Det er derfor naudsynt å ha god innsikt i både treet og limet sine termiske eigenskapar for å kunne føreseie korleis konstruksjonen vil reagere i ein brannsituasjon.

I denne oppgåva har det største fokuset vore på limet som vert brukt i dagens limtrekonstruksjonar. Det har vorte utført målingar for å kunne analysere dei termiske eigenskapane til dei to limtypane melamin-urea-formaldehyd (MUF) og polyuretan (PUR) ved bruk av dynamisk mekanisk analyse (DMA) ved NIBIO på Ås. Gjennom metodeutvikling ved tre ulike metodar, vart det funne ein som gjer det mogleg å analysere dei viskoelastiske og termiske eigenskapane til limet mellom to overlappskomponentar av gran. Metode 3 var den mest eigna av dei tre metodane, og resultata frå denne er derfor vekta høgst i konklusjonen i denne oppgåva. Det har vorte prøvd ut to ulike overlapp på 3 millimeter og 5 millimeter. Her har resultata vist at materialstivheita aukar med auka limareal.

Prøveobjekt har vorte produsert og påført dynamiske pulserande krefter i DMA. Desse kreftene har resultert i skjerspenningar i limfuga i prøveobjektet, som vidare har gjeve resultat og faktorar som har gjeve grunnlag for å kunne analysere styrkeeigenskapar og skilnadar i dei to limtypane på eit detaljert nivå mellom 30 °C og 240 °C.

Resultat frå målingane i denne oppgåva har vist at MUF-limet som er brukt her er betydeleg meir termisk stabilt enn PUR-limet. MUF beheldt store delar av si stivheit gjennom det valte temperaturområdet, medan stivheita til PUR vart sterkt redusert. Årsaka til desse skilnadane vert i oppgåva anteke å vere eit resultat av at MUF har høgare grad av sterk tverrbinding i molekylstrukturen enn PUR.

Forsking har vist til liknande resultat ved testing av MUF- og PUR-lim. Ved standard branntesting av limtre viser resultata at PUR-lim smeltar og gir stor grad av delaminering og auka forkolingshastighet, medan MUF-lim ikkje smeltar og gir liten til ingen grad av delaminering. Sjølvsløkking er også erfart ved bruk av MUF-lim.

Samla viser resultat frå målingar og forskingslitteratur at val av lim har betydning for kor lenge limtrekonstruksjonar kan tilfredsstille påkravd bereevne og stabilitet i ein brannsituasjon (R-tid). Denne tida bør verte kortare enn vanleg innbrenningstid tilseier som følgje av at limet smeltar.

Abstract

The use of glued laminated timber (glulam) and cross-laminated timber (CLT) in the construction industry has increased significantly over the last years. This has resulted in new opportunities for construction, largely because of the high strength of wood compared to its weight. The spans are getting longer and the hights of constructions are getting higher. Today, Norway has some of the world-leading construction projects in glulam and CLT.

While the use of glulam and cross-laminated timber increases, the importance of knowledge about how to analyse and control the properties of these constructions at different temperatures increases as well. Research shows that the strength-related properties of the material will vary at different temperatures. Therefore it is essential to have knowledge about the thermal properties of both the wood and adhesive, in order to predict how the contruction will react in a fire situation.

The biggest focus for this thesis is on the adhesive that is used in today's glulam constructions. Measurements have been made to analyse the thermal properties of the two adhesive systems melamine-urea-formaldehyde (MUF) and polyurethane (PUR) using dynamic mechanical analysis (DMA) at NIBIO at Ås. Through methodological study with three different methods, it was found one that makes it possible to analyze the viscoelastic and thermal properties of the glue between two overlap components of spruce. The third method turned out to be the most suitable of the three methods, and the results from this method are therefore weighted the most in the conclusions of this thesis. Two different overlaps of 3 millimeters and 5 millimeters have been tried out. The results have shown that the stiffness of the material increases with increasing adhesive area.

Samples have been produced and applied to dynamic oscillating forces in the DMA. These have resulted in shear stresses in the adhesive layer of the samples, which gave results that can be used to analyze the strength-related properties and differences in the two adhesive systems in detail between 30 °C and 240 °C.

The results have shown that the used MUF adhesive is consideably more thermally stable than the PUR adhesive. MUF retained much of its stiffness through the selected temperature range, while the stiffness of PUR was greatly reduced. The reason for these differences is assumed to be a result of the fact that MUF has a higher degree of strong cross-linking in the molecular structure than PUR.

Research has shown similar results for MUF and PUR adhesives. In standard fire tests of glulam, the results show that PUR melts and gives a high degree of delamination and increased charring rate, while MUF does not melt and give little or no degree of delamination. Self extinguishing has also been experienced for glulam with MUF.

The overall results shows that the choice of adhesive is important for how long glulam can obtain the required carrying ability and stability in a fire situation. This should be shorter than the normal charring rate estimates due to the melting of adhesives.

Innhaldsliste

Føreord i
Samandragiii
Abstractiv
Tabelloversiktvii
Figuroversiktviii
Symbol og forkortingarx
1 Innleiing
1.1 Bakgrunn
1.2 Problemstilling
1.3 Avgrensing 2
2 Teori
2.1 Tre
2.1.1 Eigenskapar og oppbygging3
2.1.2 Termiske eigenskapar
2.1.3 Limtre
2.2 Lim
2.2.1 Polymerar
2.2.2 Lim i berande trekonstruksjonar
2.3 Dynamisk mekanisk analyse (DMA)15
2.3.1 Prinsipp ved måling med DMA15
2.3.2 Polymeranalyse ved bruk av DMA17
2.3.3 Analyse av limte treprøver i enkel overlapp18
2.4 Branneigenskapar til limtre
2.4.1 Bereevne og stabilitet til berande konstruksjonar ved brann (R-tid) 22
3 Material og metode 23
3.1 Material
3.1.1 Tre
3.1.2 Lim
3.1.3 Utstyr
3.2 Metode
3.2.1 Produksjon av prøveobjekt
3.2.2 Avgrensingar
3.2.3 Testoppsett og testprosedyre
3.2.4 Innhenting og behandling av resultat

3.2.5 Metode 1
3.2.6 Metode 2
3.2.7 Metode 3
3.2.8 Usikkerheit
4 Resultat
4.1 Metode 1
4.2 Metode 2 41
4.3 Metode 3
5 Drøfting
5.1 Metodeutvikling
5.1.1 Måling i DMA
5.1.2 Produksjon av prøveobjekt
5.2 Termisk stabilitet
5.2.1 Metode 1 60
5.2.2 Metode 2
5.2.3 Metode 3
5.3 Praktisk betydning av resultat66
6 Konklusjon
7 Vidare arbeid
8 Referanseliste
9 Vedlegg75
9.1 Metode 1
9.2 Metode 2
9.3 Metode 3

Tabelloversikt

Tabell 1: Klimaklasser frå Eurokode 5. [17] 6
Tabell 2: Testoppsett for tøyingsmodus, metode 1 32
Tabell 3: Testoppsett for kraftmodus, metode 2 32
Tabell 4: Testoppsett for kraftmodus, metode 3 33
Tabell 5: Gjennomsnittleg lagringsmodul og standardavvik per limtype og overlapp ved utvalde målepunkt. 75
Tabell 6: Gjennomsnittlege verdiar for tan δ og standardavvik per limtype og overlapp ved utvalde målepunkt
Tabell 7: Gjennomsnittleg tapsmodul og standardavvik per limtype og overlapp ved utvalde målepunkt
Tabell 8: Gjennomsnittleg påført kraft på prøveobjekt og standardavvik per limtype og overlapp ved utvalde målepunkt
Tabell 9: Gjennomsnittleg skjerspenning og standardavvik per limtype og overlapp ved utvalde målepunkt
Tabell 10: Gjennomsnittleg påført tøying på prøveobjekt og standardavvik per limtype og overlapp ved utvalde målepunkt
Tabell 11: Gjennomsnittleg forlenging/krymping og standardavvik per limtype og overlapp ved kvart målepunkt
Tabell 12: Fullstendig datatabell med alle målingar og faktorar i metode 1
Tabell 13: Gjennomsnittlege verdiar og standardavvik for lagringsmodul, E', og tapsfaktor, tan δ, for MUF med 3 millimeter overlapp
Tabell 14: Gjennomsnittlege verdiar og standardavvik for tapsmodul, E", for MUF med 3 millimeter overlapp. 84
Tabell 15: Gjennomsnittlege verdiar og standardavvik for påført kraft på prøveobjekt, F, for MUFmed 3 millimeter overlapp.85
Tabell 16: Gjennomsnittlege verdiar og standardavvik for påført skjerspenning, τ, på prøveobjekt for MUF med 3 millimeter overlapp
Tabell 17: Gjennomsnittlege verdiar og standardavvik for påført tøying på prøveobjekt, As', for MUFmed 3 millimeter overlapp.86
Tabell 18: Gjennomsnittlege verdiar og standardavvik for forlenging/krymping av prøveobjekt forMUF med 3 millimeter overlapp.86
Tabell 19: Fullstendig datatabell med alle målingar og faktorar i metode 2 87
Tabell 20: Gjennomsnittlege verdiar og standardavvik for lagringsmodul, E', for MUF og PUR med 3og 5 millimeter overlapp
Tabell 21: Gjennomsnittlege verdiar og standardavvik for tapsfaktor, tan δ, for MUF og PUR med 3 og5 millimeter overlapp
Tabell 22: Gjennomsnittlege verdiar og standardavvik for tapsmodul, E", for MUF og PUR med 3 og 5millimeter overlapp
Tabell 23: Gjennomsnittlege verdiar og standardavvik for påført kraft på prøveobjekt, F, for MUF og PUR med 3 og 5 millimeter overlapp90
Tabell 24: Gjennomsnittlege verdiar og standardavvik for skjerspenning, τ, på prøveobjekt for MUF og PUR med 3 og 5 millimeter overlapp

Tabell 25: Gjennomsnittlege verdiar og standardavvik for påført tøying av prøveobjekt, As', for MI	UF
og PUR med 3 og 5 millimeter overlapp	91
Tabell 26: Gjennomsnittlege verdiar og standardavvik for forlenging/krymping av prøveobjekt, dL,	, for
MUF og PUR med 3 og 5 millimeter overlapp	92
Tabell 27: Fullstendig datatabell med alle målingar og faktorar i metode 3	93

Figuroversikt

Figur 1: Oppbygging av gran og andre bartre [10]	4
Figur 2: (A) - Krymping i ulike retningar i gran og andre bartre. (B) – Krumming som resultat av ulik	
radiell og tangentiell krymping. [10]	4
Figur 3: Standard limtre av gran. [15]	5
Figur 4: Adhesjon og kohesjon i limfuge. [18]	7
Figur 5: Organisk molekylkjede til polyuretan og melaminformaldehyd. [18]	7
Figur 6: Primære og sekundære bindingar i polymerar. [18]	8
Figur 7: Molekylstruktur for termoplast og herdeplast. [18]	9
Figur 8: Amorf og krystallinsk molekylstruktur i polymer. [18]	9
Figur 9: E-modul for amorf polymer ved aukande temperatur. [18]	11
Figur 10: E-modul for delkrystallinsk polymer ved aukande temperaturar. [18]	11
Figur 11: E-modul for herdeplast med tett tverrbindingsstruktur. [18]	12
Figur 12: E-modul for herdeplast med open tverrbindingsstruktur. [18]	12
Figur 13: (A) 100% elastisk oppførsel ved DMA. (B) 100% viskøs oppførsel ved DMA. [37]	15
Figur 14: Viskoelastisk oppførsel ved DMA. [37]	16
Figur 15: Forklaring på E' og E''. [24]	16
Figur 16: Forhold mellom tan δ , lagringsmodul E', tapsmodul E'' og kompleks modul E*. [24]	17
Figur 17: Viskoelastiske eigenskapar som funksjon av temperatur for ein ideell amorf termoplastisk	:
polymer. [38]	18
Figur 18: Skrellkrefter dominerer over skjerkrefter på endane ved analyse av enkel overlapp. [41]	19
Figur 19: Standard modell for måling av strekkskjerstyrke på langs. [42]	19
Figur 20: Termisk påverknad på mekaniske eigenskapar til tre, stål og aluminium ved standardisert	
brann. [14]	20
Figur 21: Forkoling av tre ved brann. [14]	21
Figur 22: DMA 242 E Artemis frå produsenten Netzsch [47]	24
Figur 23: Festemekanisme for måling av strekk [47]	24
Figur 24: Vinkel på årringar på skiver som vart høvla ut	26
Figur 25: To ulike overlapp per limtype	27
Figur 26: (A) – Valt symmetrisk overlappskonstruksjon av prøveobjekt. (B) – Tradisjonell enkel	
overlappskonstruksjon	27
Figur 27: Produksjon av prøveobjekt.	28
Figur 28: Prinsippet for korleis DMA påfører krefter på prøveobjekt. [49]	29
Figur 29: Strekking og trykking av prøveobjekt gir skjerkrefter i limfuga	29
Figur 30: Prøveobjekt etter fullført måling og demontering	29
Figur 31: Tolking av figur for statistisk signifikans. [50]	31
Figur 32: Utvendig kryssingsvinkel og statistisk signifikans. [51]	31

Figur 33: Gjennomsnittleg lagringsmodul saman med tapsfaktor ved temperaturauke for MUF og	25
Figur 34: Gjennomsnittleg tapsmodul ved temperaturauke for MUF og PUR, 3 millimeter og 5	35
millimeter	36
Figur 35: Gjennomsnittleg påført kraft på prøveobjekt ved temperaturauke for MUF og PUR, 3	
millimeter og 5 millimeter overlapp.	37
Figur 36: Gjennomsnittleg påført skjerspenning ved temperaturauke for MUF og PUR, 3 millimeter.	r og 38
Figur 37: Gjennomsnittleg påført tøying ved temperaturauke for MUF og PUR, 3 millimeter og 5	
millimeter	39
Figur 38: Gjennomsnittleg forlenging/krymping av prøveobjekt. Figuren illustrerer standardavvik begge limtypar og overlapp.	for 40
Figur 39: Gjennomsnittleg lagringsmodul saman med tapsfaktor ved temperaturauke for MUF me millimeter overlapp. Figuren illustrerer standardavvik for heile temperaturområdet	ed 3 41
Figur 40: Gjennomsnittleg tapsmodul, E'', ved aukande temperatur for MUF med 3 millimeter	42
Figur 41: Gjennomsnittleg påført kraft på prøveobjekt ved aukande temperatur for MUF med 3 millimeter overlapp. Figuren illustrerer standardavvik for heile temperaturområdet	/13
Figur 42: Gjennomsnittleg påført skjerspenning, τ, på prøveobjekt ved aukande temperatur for M med 3 millimeter overlapp. Figuren illustrerer standardavvik for heile temperaturområd	UF let.
	44
Figur 43: Gjennomsnittleg påført tøying på prøveobjekt, As', ved aukande temperatur for MUF m millimeter overlapp. Figuren illustrerer standardavvik for heile temperaturområdet	ed 3 45
Figur 44: Gjennomsnittleg forlenging/krymping av prøveobjekt ved aukande temperatur for MUF med 3 millimeter overlapp. Figuren illustrerer standardavvik for heile temperaturområd	let.
	46
Figur 45: Gjennomsnittleg lagringsmodul saman med tapsfaktor ved temperaturauke for MUF og med 3 og 5 millimeter overlapp. Figuren illustrerer standardavvik for heile	PUR
temperaturområdet	48
Figur 46: Statistisk signifikans av E' ved 150 °C. Organisert etter storleik på overlapp	50
Figur 47: Gjennomsnittleg tapsmodul, E", ved temperaturauke for MUF og PUR med 3 og 5	
millimeter overlapp. Figuren illustrerer standardavvik for heile temperaturområdet	51
Figur 48: Gjennomsnittleg parørt kraft på prøvobjekt, F, ved temperaturauke for MUF og PUR me	a3 + 52
Figur 49: Gjennomsnittleg påført skjerspenning, τ, på prøveobjekt ved temperaturauke for MUF o PUR med 3 og 5 millimeter overlapp. Figuren illustrerer standardavvik for heile	92)g
temperaturområdet	53
Figur 50: Gjennomsnittleg påført tøying, As', på prøveobjekt ved temperaturauke for MUF og PUF med 3 og 5 millimeter overlapp. Figuren illustrerer standardavvik for heile	२
temperaturområdet	54
Figur 51: Gjennomsnittleg forlenging/krymping av prøveobjekt, dL, ved temperaturauke for MUF PUR med 3 og 5 millimeter overlapp. Figuren illustrerer standardavvik for heile	og
temperaturområdet	55
Figur 52: Tre-punkts bøying av prøveobjekt. [47]	69
Figur 53: Enkel eller dobbel innfesting av prøveobjekt. [47]	70

Symbol og forkortingar

DMA	Dynamisk mekanisk analyse
ТМА	Termisk mekanisk analyse
MUF	Melamin-urea-formaldehyd (limtype)
PUR	Polyuretan (limtype)
E*	Kompleks modul. E*= E'+iE''
E'	Lagringsmodul. Viser stivheit til material ved DMA-analyse
E"	Tapsmodul. Viser kor mykje svingingsenergi som går tapt til friksjon
Tan δ	Tapsfaktor. Viser kor effektivt eit material gir frå seg energi. Kan brukast til å observere overgangsfasar i material.
As'	Påført tøying på prøveobjekt i DMA.
dL	Forlenging/krymping av prøveobjekt i DMA.
F	Påført kraft på prøveobjekt i DMA.
τ	Påført skjerspenning på prøvobjekt i DMA.
Тg	Glasovergangsområde
Tm	Smeltepunkt
R-tid	Påkravd tid for bereevne og stabilitet ved brann og eksplosjon i berande konstruksjonar.

1 Innleiing

1.1 Bakgrunn

Bruken av limtre og krysslimt tre i byggebransjen har auka betydeleg i seinare tid. Dette har opna opp for nye konstruksjonsmoglegheiter, mykje på grunn av treet si høge styrke i forhold til eigenvekt. Det har også auka fokuset på klima- og miljøutslepp, der tre vert sett på som eit naturleg, fornybart og berekraftig materiale som er venleg mot miljøet. [1]

Det vert stadig bygd lengre spenn og høgare konstruksjonar i tre. I 2013 stod dei to studentblokkene, Krona og Verket, ferdige ved NMBU på Ås. Desse var då dei to høgste bygningane i Noreg i krysslimt tre, med 8 etasjar og passivhusstandard. Dei to bygningane er ein del av studentbustad-området Palisaden [2]. I 2015 fekk Bergen verdas høgste trehus, Treet. Dette er 51 meter høgt, og har 14 etasjar [3]. Våren 2019 blir denne rekorden passert av Mjøstårnet i Brumunddal. Dette er 85,4 meter høgt, og har 18 etasjar [4]. Og i 2020 skal 795 studenthyblar av krysslimt tre vere klare ved NMBU på Ås. Dette vert sannsynlegvis det største byggeprosjektet for studentbustadar i krysslimt tre i verda [5].

Samstundes som bruken av limtre og krysslimt tre skyt fart, vert det også stilt fleire spørsmål rundt sikkerheita i slike konstruksjonar. Ei naturleg bekymring knytt til dette er brannmotstand. Tre er kjend for å vere eit brennbart materiale, og limet som brukast i produksjonen er også eit omtala tema med tanke på termiske eigenskapar ulike limtypar har.

Nokre limtreprodusentar har i seinare tid starta produksjon ved bruk av limet melamin-ureaformaldehyd (MUF). Dette vert sagt å ikkje skulle smelte ved brann. Limet er også godt likt på grunn av dei lyse og lite synlege limfugene det gir. Limtreproduksjonen ved bruk av MUF er ein kostbar og tidkrevjande prosess.

Andre produsentar av limtre produserer ved bruk av polyuretan-lim (PUR). Også dette er godt likt på grunn av dei fargelause limfugene det gir. For PUR-lim vert det spesielt stilt spørsmål ved dei termiske eigenskapane, då det har vist seg å smelte relativt tidleg ved brann.

Med bakgrunn i dette er det derfor naudsynt å ha god innsikt i både treet og limet sine eigenskapar ved branndimensjonering, slik at sikkerheit i slike bygningar alltid kan vere høgt prioritert og oppretthalda. Meir kunnskap om korleis styrkerelaterte eigenskapar varierer ved ulike temperaturar både for tre og lim, kan resultere i betre grunnlag for å kunne føreseie moglege utfal ved ulike brannsituasjonar der bereevne, stabilitet og temperatur er avgjerande faktorar.

1.2 Problemstilling

Kva for parametrar og metodar kan brukast til å analysere termiske eigenskapar til MUF- og PUR-lim ved bruk av dynamisk mekanisk analyse (DMA)? Kan dette gi resultat som kan føreseie tid for bereevne og stabilitet ved brann i ein limtrekonstruksjon? Bør R-tida ved brann verte kortare enn vanleg innbrenningstid tilseier som følgje av at limet smeltar i ein limtrekonstruksjon?

1.3 Avgrensing

I forsøka i denne oppgåva er fokuset retta mot MUF-lim og PUR-lim sine viskoelastiske og termiske eigenskapar i overlappskonstruksjon med gran ved temperaturar mellom 30 °C og 240 °C. Alle prøveobjekt som har vorte testa i laboratoriet ved DMA har først blitt tørka til tilnærma 0 % fukt. Dette for å kunne sjå bort frå påverknaden frå sjølve trematerialet i prøveobjekta.

Konklusjonar er nært knytt til metodane som er brukt i denne oppgåva. Som forklart seinare, er det fleire måtar å analysere slike eigenskapar til lim på, men med bakgrunn i kva utstyr som har vore tilgjengeleg, vart DMA sett på som det beste og mest interessante alternativet.

Vidare er det forsøkt å kople eigne resultat til kva desse kan bety i praksis, ved å samanlikne dei med resultat frå tidlegare forsking som har branntesta trekonstruksjonar som inneheld MUF- og PUR-lim.

2 Teori

2.1 Tre

2.1.1 Eigenskapar og oppbygging

Tre har vore eit kjært byggemateriale i Noreg og store delar av verda i fleire generasjonar. Ein sentral eigenskap som blir meir og meir fokusert på er at det er eit miljøvennleg materiale. Ein av grunnane til dette er at tre er eit fornybart materiale, og at produksjonen av dette har liten påverknad på miljøet samanlikna med andre material. Dette føreset sjølvsagt at treet og skogen vert forvalta på ein berekraftig og sertifisert måte. [1], [6]

Tre gir også betre innemiljø. Noko av dette ligg både i den dempande påverkinga treet har på akustikken i rommet, og kjensla treet gir i form av komfort og kvalitet. I tillegg er det kjend at treet kan utjamne døgnvariasjon i temperatur og relativ luftfuktigheit. [7]

Ein sentral eigenskap er også evna treet har til å redusere utslepp av CO2 til atmosfæra. Ved fotosyntese samlar og lagrar skogen CO2, som vidare vert med i treprodukta. I sum av at det i tillegg trengs lite fossil energi i produksjonen av trematerial, er CO2 effekten positiv samanlikna med andre byggjematerial. [1], [7]

Det er også positivt at det er enkelt å gjenvinne og bruke om igjen trematerial. Det kan brytast ned til andre produkt som for eksempel fiberplater og sponplater, men også brukast om igjen i nye produkt. Gjenvinning i form av CO2-nøytral bioenergi er også eit alternativ. [7]

Alle treslag har ulik oppbygging og har ulike eigenskapar. Bruksområdet til materialet vil derfor ligge til grunn for val av treslag. Gran er eit mykje brukt treslag i byggebransjen. Dette er eit naturleg og organisk materiale med høg styrke i forhold til vekt og densitet. Den låge densiteten fører mellom anna til at gran er lett å tørke utan at det dannar seg sprekker. Andre sentrale fordelar er at gran er enkel å behandle og lime. Dette medfører store fordelar når gran vert brukt som byggjematerial i for eksempel krysslimt tre eller i limtre. [8]

Anatomisk sett er gran bygd opp av 95 % fiber. Desse vert også kalla trakeidar, og er lange celler som kan bli opptil 6 millimeter. Dette er av dei lengste fibra som finst i naturen, noko som gjer gran til eit ettertrakta treslag på grunn av den gode evna desse har til å gi stivheit til materialet og frakte næringsstoff gjennom stammen. Etter kvart som treet veks, vert det danna meir lignin i celleveggane, som vidare fører til auka stivheit i trematerialet. Stivheita kjem i hovudsak frå dei tjukke celleveggane i sommarveden, medan dei tynne celleveggane i vårveden står for transporten av væske (sjå Figur 1). Dei horisontale margstrålane sin funksjon er å transportere næring innover i tverrsnittet. [9], [8]

Figur 1: Oppbygging av gran og andre bartre [10]

Ein annan grunn til at gran er godt likt i byggebransjen, er eigenskapane den har ved krymping. Krympinga i gran er låg samanlikna med andre treslag. Figur 2 (A) illustrerer krymping i prosent i dei ulike retningane ved tørking frå fibermettingspunktet rundt 30 % til tørt tre på 0 % fukt. Den inkluderar også eit eksempel for tørking frå 22 % til 12 % fuktigheit, der tangentiell krymping er 2,6 %. Dette er eit mål på dimensjonsendringa når likevektsfuktigheita endrar seg med 1 % i treet. Krympinga er størst i tangentiell retning med årringane med rundt 8 %. Radiell krymping på tvers av åringane er på rundt 4 %, medan aksiell krymping i fiberretning er på rundt 0,3 %. Denne forskjellen i krymping fører vidare til at treprodukt som er henta ut i ytre del av tretverrsnittet vil krumme seg ved tørking. I Figur 2 (B) er det tydeleg at rette årringar gir minst krumming. [10], [8]

3)

Figur 2: (A) - Krymping i ulike retningar i gran og andre bartre. (B) – Krumming som resultat av ulik radiell og tangentiell krymping. [10]

Det er fleire gode grunnar til at tre bør tørkast før bruk. Denne prosessen påverkar eigenskapane til sluttproduktet på fleire måtar. Grad av krymping og svelling vert redusert, styrkeeigenskapane aukar, det vert betre limingsforhold og treproduktet vert lettare. I tillegg aukar motstandsevna mot sopp og liknande. [11], [12]

2.1.2 Termiske eigenskapar

Ved aukande temperaturar i treverk, kjem det fleire faktorar inn i biletet. Krymping og svelling er ofte dei mest avgjerande faktorane ved termisk påverknad i gran. Vidare er varmeleiingsevna til gran avhengig av mellom anna densitet, grad av kvist og tennar, anatomisk retning på treproduktet og fuktigheit. Dess høgare fuktigheita er, dess høgare er varmeleiingsevna. For eksempel ved 20 % fukt og densitet på 500 kg/m³, har både gran og furu ei varmeleiingsevne på 0,12 W/mK på tvers av fibra. Høge temperaturar vil i tillegg føre til mørkare farge. [8], [11]

2.1.3 Limtre

Limtre kan definerast som ein *«berande komponent der tverrsnittet er bygd opp av minst fire lamellar med tilnærma parallell fiberretning, som ved hjelp av lim har full statisk samvirke» [13]*. Lamellane vert plukka ut etter ynskja styrkeeigenskapar, noko som gjer det enkelt å tilpasse kvart limtreelement etter behov. Vidare vert dei limt saman under trykk. Med limtre kan ein oppnå betre styrkeeigenskapar og stivheit samanlikna med andre material i same dimensjon. Dette kjem som tidlegare nemnt av høg styrke i forhold til eigenvekt. I lengderetning kan lamellane fingerskøytast til ynskja lengde. Tjukkleiken på lamellane skal vere mellom 6 millimeter og 45 millimeter. Figur 3 illustrerer ein typisk limtrebjelke. I Noreg er lamellane i limtre i hovudsak produsert av gran eller furu. Valet av treslag er ofte påverka av pris, estetikk og behov for impregnering. [14], [13]

Figur 3: Standard limtre av gran. [15]

Limet er ein sentral og viktig komponent i limtre. Dette skal vere eit godkjent konstruksjonslim. Her er limtypane melamin-urea-formaldehyd (MUF) og polyuretan (PUR) mykje brukt. Krava til desse, og fleire limtypar, kjem fram i NS-EN 14080, NS-EN 301 og NS-EN 302. Limtypane vert sortert etter klasse 1 og klasse 2. I klasse 1 er limtypar som kan brukast i alle dei tre klimaklassene. Limtypane melamin-urea-formaldehyd (MUF) og fenolresorcinol-formaldehyd (PRF) er døme på lim i denne klassa. Limtypane i klasse 2 kan brukast i klimaklasse 1 og klimaklasse 2. Her er ein-komponent polyuretan (PUR) eit døme. [14]

Eurokode 5 (NS-EN 1995-1-1) definerer dei tre klimaklassene som vist i Tabell 1. Bakgrunnen for denne inndelinga i klimaklasser, er at fuktigheita i tre har stor påverknad på dei mekaniske eigenskapane, og må derfor takast omsyn til ved dimensjonering [16].

- Klimaklasse 1 er for berande element i innandørs rom som vanlegvis er oppvarma.
- Klimaklasse 2 er for berande element som vanlegvis ikkje er oppvarma, men ventilerte.
- Klimaklasse 3 er for konstruksjonar som ikkje er beskytta mot regn og vatn.

Klima- klasse	Relativ luftfuktighet RF	Fuktighetsinnhold for trevirke ^a ω	Eksempler
		X	bærende elementer innendørs i rom som vanligvis er oppvarmet
1	RF < 65 %	ω < 12 %	loftsbjelkelag og bærende takkonstruksjoner i kalde, men luftede loftsrom over rom som vanligvis er oppvarmet
			yttervegger i bygninger som vanligvis er oppvarmet og som er beskyttet av damp- sperre på varm side og av bl.a. vindsperre
2	65 % ≤ RF ≤ 85 %	12 % ≤ ω ≤ 20 %	bærende elementer i bygninger som vanligvis ikke er oppvarmet, men ventilerte
			taktro
			konstruksjoner i friluft, når disse er effektivt beskyttet mot regn og vann.
3	RF > 85 %	ω > 20 %	konstruksjoner som ikke er beskyttet mot regn og vann.
			konstruksjoner som er i direkte kontakt med terreng.
			MERKNAD Bare i unntakstilfeller anses tildekte konstruksjoner å tilhøre klimaklasse 3.

Tabell 1: Klimaklasser frå Eurokode 5. [17]

2.2 Lim

Ein grunnleggande funksjon for lim er at det skal kunne binde saman to eller fleire komponentar og overføre krefter. For å kunne gjere dette er det naudsynt med tett kontakt ved at limet er tilstrekkeleg flytande ved påføring, slik at det jamnar seg ut over det limte arealet og fyllar porene i ulike overflatestrukturar. Vidare må limfuga ha tilstrekkeleg kohesjon og adhesjon (sjå Figur 4). Med kohesjon meinast fastheita til limfuga, medan adhesjon viser til hefteeigenskapane mellom limet og dei limte komponentane. [18]

Figur 4: Adhesjon og kohesjon i limfuge. [18]

2.2.1 Polymerar

For å kunne analysere eigenskapane til lim, er det naudsynt å forstå korleis limet er bygd opp. Lim til samanbinding av tre er ofte kategorisert som polymerar. Felles for polymerar er at dei er viskoelastiske. Det vil seie at dei har både dei elastiske eigenskapane til eit fast materiale og dei viskøse eigenskapane til ei flytande væske. Polymerar er bygd opp av monomerar (små molekyl) som har festa seg saman i lange kjeder ved kjemisk reaksjon gjennom polymerisering. Lengdene på kjedene varierer innanfor same polymer. Dei lange molekylkjedene bidreg til auka styrkeeigenskapar i materialet. [18]

I kjemien vert det sagt at stoff som har karbon i molekylskjelettet, er organiske. Molekylkjeder som ikkje har karbon i seg, vert kalla uorganiske. Figur 5 viser eksempel på plastmaterial som har C-, N- og O- atom i molekylskjelettet, og som derfor er organiske. Figuren nemner her polyuretan og melaminformaldehyd som relevante eksempel.

Molekylskjelett av C-, N- (og O-) atomer	A R	Polyamid Polyuretan Melaminformaldehyd
	C	

Figur 5: Organisk molekylkjede til polyuretan og melaminformaldehyd. [18]

Det er to hovudtypar av bindingar som held materialet saman (sjå Figur 6). Bindingane mellom atoma er primærbindingar, og kallast også kovalente bindingar. Dette er sterke bindingar med høg bindingsenergi. Denne energien er avgjerande for fleire materialeigenskapar som for eksempel smeltepunkt, viskositet, friksjon og løysingsevne. Bindingane mellom molekylkjedene er sekundærbindingar. Desse er svake samanlikna med primærbindingane, og opptrer i form av tiltrekkingskrefter mellom molekyla. Her er avstanden mellom molekyla ein avgjerande faktor. For stor avstand fører til svakare binding, medan for liten avstand kan føre til at molekyla støytar kvarandre vekk. Fleire sekundære bindingspunkt fører til høgare styrke og stivheit for materialet. [19], [18]

Figur 6: Primære og sekundære bindingar i polymerar. [18]

Ein viktig faktor som gjer det mogleg å skilje mellom eigenskapane til ulike polymerar, er strukturen til molekyla. Denne kan vere lineær, forgreina, open tverrbunden eller tett tverrbunden (sjå Figur 7). Ut frå molekylstrukturen kan polymerar vidare delast inn i gruppene termoplast, elastomer og herdeplast. Termoplast vert kjenneteikna ved lineære kjedemolekyl som også kan ha forgreiningar. Her vert molekyla haldne saman av sekunderbindingar. Elastomer kan kategoriserast som ein type herdeplast med open nettverksstruktur. I herdeplast er det eit nettverk av tverrbindingar som held molekyla saman i form av primærbindingar. Sidan desse er sterkare enn sekundærbindingar, medfører dette at herdeplast har betydeleg ulike eigenskapar samanlikna med termoplast. [19], [20]

Viktige forskjellar er at herdeplast ikkje kan smelte, er ofte relativt stiv ved temperaturauke og svell lite. Termoplast kan smelte, har varierande reduksjon i stivheit ved temperaturauke og svell ofte meir enn herdeplast. [18]

= kovalent tverrbinding

Figur 7: Molekylstruktur for termoplast og herdeplast. [18]

Vidare vert termoplastiske polymerar delt inn i grupper etter korleis molekylkjedene er orientert i materialet. Her vert det skilja mellom uordna og ordna struktur (sjå Figur 8). Material som har uordna struktur, vert kalla amorfe, medan dei med ordna struktur vert kalla krystallinske. Ved amorf struktur, er det få sekundære bindingspunkt mellom molekylkjedene. Ved krystallinsk struktur, ligg molekylkjedene slik at det oppstår fleire sekundære bindingspunkt. Fleire sekundære bindingar fører til at det må større energi til for å bryte dei i form av varme. Dette fører vidare til at både smeltepunktet og stivheita er høgare for ein krystallinsk polymer samanlikna med ein amorf. Polymerar er ofte samansett av både amorfe og krystallinske områder. [21]

Figur 8: Amorf og krystallinsk molekylstruktur i polymer. [18]

Termiske eigenskapar til polymerar

Ved aukande temperaturar vil polymerar reagere ved at det oppstår svingingar i molekyla. Dette vil etter kvart føre til at materialet utvidar seg ved at avstanden mellom molekyla aukar, og materialet mjuknar. Når temperaturen kjem over eit visst område, kan molekylkjedene rotere om si eiga akse. Her er graden av sekundære bindingar avgjerande ved at desse motverkar rotasjon. Dette temperaturområdet heiter glasovergangsområdet (Tg). Under dette temperaturområdet er materialet glasaktig, sprøtt og har høg stivheit (høg E-modul). Når temperaturen kjem over Tg, men er under smeltetemperaturen, Tm, er materialet mjukare og meir gummiliknande. Her vert stivheita redusert. Når temperaturen passerer Tm, vert materialet flytane. Her er stivheita tilnærma lik null. [18], [22]

I amorfe polymerar er Tg den viktigaste overgangsfasen. Denne kan også kallast alfaovergangen, Tα. I tillegg til Tg, kan det i amorfe polymerar ofte observerast mindre overgangar i form av beta- og gamma-overgangar i temperaturområdet under Tg. Desse kallast sekundære overgangar, og skuldast ofte små lokale rørsler i molekyla. Desse kan også observerast i delkrystallinske polymerar, men då ofte i området rundt både Tg og Tm. [23], [24], [22]

Det er store skilnadar mellom termoplast og herdeplast ved påføring av varme. Felles for begge er at styrkeeigenskapane vert redusert ved aukande temperatur, men graden av reduksjon er ulik. Ved temperaturauke, vil termoplast ved eit visst punkt gå frå ein fast til ein mjukare og meir flytande struktur, og materialet vil etter kvart smelte. Dette kjem av at sekundærbindingane mellom molekyla vert brotne. Denne reaksjonen kan reverserast tilbake ved nedkjøling, og det termoplastiske materialet vil då få tilbake strukturen og eigenskapane sine.

Det er naudsynt å skilje mellom amorfe og delkrystallinske polymerar ved termisk analyse. Figur 9 viser eit typisk eksempel for korleis E-modulen (stivheita) i ein amorf polymer endrar seg ved aukande temperatur. Før glasovergangsområdet, Tg, er polymeren hard og stiv. Dette er bruksområdet for amorfe polymerar. Ved Tg, reduserast stivheita betydeleg før polymeren går inn i ein mjuk og gummiliknande fase og vidare til flyt. Gummifasen vert også kalla gummiplatået. Tg markerer her eit viktig punkt på grunn av at stivheita til for eksempel lim etter Tg er sopass redusert at det ikkje lengre egnar seg til lastberande konstruksjonar som limtre og krysslimt tre. [24], [18]

Figur 9: E-modul for amorf polymer ved aukande temperatur. [18]

For ein delkrystallinsk polymer, vil E-modulen variere som vist i Figur 10 ved aukande temperaturar. Samanlikna med amorfe polymerar, vil ikkje Tg her vere like tydeleg. Den Tg som er synleg her, er eit resultat av den amorfe delen i den delkrystallinske strukturen. Den krystallinske delen reagerer her ved smeltepunktet, Tm, og har størst betydning. Bruksområde for desse polymerane er ofte mellom Tg og Tm.

Figur 10: E-modul for delkrystallinsk polymer ved aukande temperaturar. [18]

Når ein herdeplast vert varma opp, vil tverrbindingane mellom molekyla ved eit visst punkt svikte. I motsetning til termoplast, er ikkje denne reaksjonen reverserbar, og materialet er då øydelagt.

Ved høg grad av tverrbinding i herdeplast, vil det vere vanskeleg å observere eit glasovergangsområde Tg (sjå Figur 11). Tg vil i så fall observerast ved relativt høge temperaturar. Forsking viser at auka grad av tverrbinding i eit materiale, aukar temperaturen for Tg [25]. Her har stivheita ein jamnare og mindre reduksjon samanlikna med termoplast. Slike polymerar er også generelt hardare enn termoplast. Dette kjem også fram i kurva for Emodul som viser at materialet er relativt stivt heilt til brot. Herdeplastar toler ofte høgare temperaturar enn termoplastar, mykje på grunn av den primære tette tverrbindingsstrukturen i herdeplast.

Figur 11: E-modul for herdeplast med tett tverrbindingsstruktur. [18]

For elastomere polymerar er tverrbindingsnettverket relativt ope (sjå Figur 12). Dette er eit mjukare materiale enn den tett tverrbundne herdeplasten, og det er tydeleg at stivheita vert betydeleg redusert ved glasovergangsområdet, Tg, som her er synleg.

Figur 12: E-modul for herdeplast med open tverrbindingsstruktur. [18]

2.2.2 Lim i berande trekonstruksjonar

Bruken av lim i trekonstruksjonar har både positive og negative sider. Det positive er at det har vorte mogleg å bruke trekonstruksjonar som limtre og krysslimt tre i prosjekt der det tidlegare måtte brukast andre material som stål og betong. Ei negativ side er at måten lim vert framstilla på, kan ha negativ påverknad på miljøet, der framstillingsprosessane kan vere ressurskrevjande.

Nokre av limtypane har også vist seg å innehalde stoff som kan medføre helseplager. Her er det spesielt formaldehyd som har vore i fokus ved samanlikning av MUF og PUR. Formaldehyd finnast i MUF-lim, og har vore ein sentral grunn til at enkelte limtreprodusentar vel å bruke PUR framfor MUF. Formaldehyd har det systematiske namnet metanal med kjemisk formel CH₂O. Stoffet er kjend for å ha ei ubehageleg lukt og gir ofte plager i luftvegar, auge, slimhinner og ved hudkontakt. Det er også fare for at formaldehyd kan auke risikoen for kreft [26], [27]. I dagens moderne limtrekonstruksjonar har fleire produsentar gjort endringar i formuleringa av MUF, og emisjonsnivået av formaldehyd er ofte lågt til moderat. [28], [29]

Norsk Treteknisk Institutt har vore med på å utvikle ei liste over limtypar som er godkjende for bruk i trekonstruksjonar [30]. Her er MUF og PUR inkludert, og begge har vorte testa i samhøve med gjeldande standardar.

Melamin-urea-formaldehyd (MUF) kjem ofte som to-komponent lim, og har i seinare tid vorte brukt både til liming mellom lamellane og i fingerskøyting. MUF er klassifisert som ein polymer i kategorien herdeplast med tett tverrbindingsstruktur [31]. Dette vil seie, som tidlegare forklart, at MUF er ein hard og stiv limtype som ikkje smeltar. Dei to komponentane består av ein MUF-harpiks og ein herdar. Herdaren kan tilsetjast ein type katalysator som gjer at limet herdar ved romtemperatur. Ein viktig eigenskap til denne limen er fargen. MUF har ein lys farge som tek seg godt ut arkitektonisk, og som er lite synleg. [13], [30]

Melamin-formaldehyd (MF) er ein to-komponent limtype med gode tekniske eigenskapar. Melamin er ein økonomisk kostbar ingrediens. Derfor vert delar av melamininnhaldet i melamin-formaldehyd-blandingar (MF) erstatta med urea for å senke kostnadane. Dette har ført til limtypen MUF. Det er dokumentert at MUF har i stor grad dei same teknisk gode eigenskapane som MF. Samanlikna med urea-formaldehyd (UF), har MUF betre fuktmotstand. Denne eigenskapen kjem frå melamin som er lite løyseleg i vatn. [32], [26]

Polyuretan (PUR) kjem som både éin-komponent og to-komponent lim, men det er berre éin-komponent som er testa og godkjend til bruk i limtre [30]. Denne er godt likt mellom anna på grunn av at den gir fargelause limfuger og er enkel å påføre som følgje av at det ikkje trengs tilsetjing av herdar. Den er også fri for formaldehyd, noko fleire produsentar ser på som ein viktig faktor ved val mellom MUF eller PUR. [13], [33], [21]

Produsentar som brukar PUR-lim brukar også framstillingsprosessen for MUF og PUR som argument. Ved framstilling av PUR-lim vert det berre tilsett luft og fukt for å starte herdeprosessen. Dette er mindre energikrevjande og kostbart samanlikna med framstilling av MUF-lim der herdeprosessen krev oppvarming. Produsentar som brukar MUF-lim seier at dagens moderne MUF-lim ikkje treng like høg varme ved framstilling som tidlegare. [28]

PUR er ein limtype som kan tilpassast fleire typar bruk. Det er oppgitt at PUR produserast med eigenskapar både som termoplast og herdeplast [18]. Dette gjer det mogleg å velje om PUR skal brukast som ein termoplastisk lim som er elastisk og fleksibel, eller som ein herdelim som er hard, stiv og har betre termiske eigenskapar.

Termiske eigenskapar til MUF og PUR

Ein limtrekonstruksjon kan verte utsett for varme på fleire måtar. Det kan vere i form av soloppvarming, brann og liknande. Derfor er det naudsynt at ikkje berre trematerialet toler termiske påkjenningar, men også limet. Det har vorte utført fleire forsøk på termiske eigenskapar til konstruksjonslim i form av MUF-lim og PUR-lim. Metodane for slike testar varierer i stor grad, det same gjeld resultata.

Fleire testar viser at MUF-lim har betre termisk stabilitet enn PUR-lim. MUF held høg stivheit over eit høgare temperaturområde samanlikna med PUR. I branntesting av krysslimt tre er det dokumentert at prøveobjekt som er limt med PUR smeltar og fører til stor grad av delaminering. Her viste MF-lim god termisk stabilitet, og smelta ikkje. Graden av delaminering var svært liten [34], [33], [28]. Her er det viktig å påpeike at fleire testar konkluderer med at faktorar som kjemisk oppbygging av lim, ytre påverkingar, geometrisk oppbygging av prøveobjekt og forsøksmetode er avgjerande for resultata. Testar for PUR viser at tjukkheita til limfuga er avgjerande, og det er konkludert med at det ikkje er anbefalt å ha tjukkare limfuge enn 0,3 millimeter. Dette har bakgrunn i at det i tjukkare limfuger ofte dannar seg bobler ved herdeprosessen som aukar sjansen for svikt ved temperaturauke. [35], [36], [23]

At MUF er meir termisk stabil enn PUR, vert kopla til graden av kovalente tverrbindingar i molekylstrukturen. Grad av tverrbindingar viser seg å vere ein avgjerande faktor ved termisk analyse uavhengig av testmetode [36], [23]. Dette har også støtte frå teori om polymerar tidlegare i dette kapittelet.

Det er no kjend at temperatur har stor påverknad på lim sine eigenskapar, og at det er mange metodar å analysere desse på. Ein mykje brukt metode er å teste limfuger i overlappsprøver. Dette er ein god måte å måle lim sin termiske stabilitet på ved påføring av skjerspenning. I ein test med temperaturar frå 20 °C til 220 °C, viste MUF og PUR varierande skjerkapasitet og termisk stabilitet i overlappsprøver laga av tre. Testen vart utført i ei universal testemaskin av typen Zwick Z100. Prøveobjekta vart varma opp og deretter testa i strekkmodus for å oppnå skjerspenning i limfuga. [32]

Skjerkapasiteten minka ved aukande temperatur for alle limtypane i testen. Ved låge temperaturar var skjerkapasiteten relativt lik, men forskjellane vart større ved aukande temperaturar. Her var det tre ulike typar PUR med ulik kjemisk struktur og frå ulike fabrikantar. Alle var sertifiserte for bruk i trekonstruksjonar etter EN 301 og EN 302. Resultata viste relativt store forskjellar. Éin av PUR-variantane viste seg å ha noko høgare skjerkapasitet enn MUF, medan dei to andre variantane hadde lågare kapasitet. Dette er med på å bekrefte dei store moglegheitene det er for å tilpasse PUR-lim etter føremål og behov. Ein påverkande faktor i forsøket var fuktigheita i treverket. Mellom 70 °C og 150 °C vart det observert at skjerkapasiteten auka. Dette vart konkludert med å vere eit resultat av reduksjon i trefuktigheit, og at denne faktoren har større påverknad på skjerstyrke enn temperatur. [32]

2.3 Dynamisk mekanisk analyse (DMA)

Ein metode for måling av termiske og viskoelastiske eigenskapar til polymerar, er dynamisk mekanisk analyse (DMA). Dette apparatet kjem i fleire modellar og har eit breitt utval av festemekanismar som opnar opp for ulike analysemetodar og modusar.

2.3.1 Prinsipp ved måling med DMA

Ved bruk av DMA vil prøveobjekt verte påført ei konstant pulserande, dynamisk kraft, og analysert for korleis det reagerer på denne som funksjon av tid eller temperatur. Krafta vert påført i form av spenning ved sinus-rørsler som vidare resulterer i deformasjon i form av tøying. Dette kan illustrerast med spennings- tøyingsdiagram. For material som er 100 % elastiske, vil tøyinga respondere i takt med påført kraft, og fasevinkelen (δ) vil vere lik 0 grader (sjå Figur 13 (A)). For material som er 100 % viskøse, vil fasevinkelen (δ) vere lik 90 grader (sjå Figur 13 (B)). For viskoelastiske material vil responsen ver ein stad mellom desse ekstremtilfella, og fasevinkelen vil vere mellom 0 grader og 90 grader (sjå Figur 14). Dette er ein typisk reaksjon for viskoelastiske material ved dynamisk mekanisk analyse. Tøyingskurva heng etter stresskurva og dannar dermed ein fasevinkel (δ). [24]

Figur 13: (A) 100% elastisk oppførsel ved DMA. (B) 100% viskøs oppførsel ved DMA. [37]

For viskoelastiske material, delast spenningskurva inn i to delar der den eine er i fase med tøyinga og den andre er 90 grader ute av fase med tøyinga. Signalet frå delen som er i fase, koplast til den elastiske responsen. Dette resulterer i ein elastisk modul, som også vert kalla lagringsmodul (E'). Denne viser stivheita til materialet. Delen som ikkje er i fase med tøyinga, koplast til den viskøse responsen. Dette resulterer i ein tapsmodul (E''). Denne gir eit tal på kor mykje av svingingsenergien som vert tapt i form av varme og friksjon i prøveobjekta.

Figur 14: Viskoelastisk oppførsel ved DMA. [37]

Ein måte å forklare kva lagringsmodulen (E') og tapsmodulen (E'') er, er å samanlikne det med å sprette ein ball mot eit hardt underlag (sjå Figur 15). Her representerer lagringsmodulen (E') det nivået ballen sprett opp igjen etter å ha vore i bakken. Dette er eit tal på evna materialet har til å lagre energi. Tapsmodulen (E'') representerer avstanden mellom startnivået og spretthøgda, og viser dermed kor mykje energi som har gått tapt i form av friksjon og indre rørsler i materialet. [24]

Ein viktig faktor som er mykje brukt til analyse av polymerar, er tan δ . Denne gir forholdet mellom tapsmodulen og lagringsmodulen som vist i formelen under. Ut frå tan δ kan det sjåast kor effektivt eit material gir frå seg energi til friksjon og molekylrørsler. [22]

 $\tan \delta = E''/E'$

Figur 15: Forklaring på E' og E''. [24]

Forholdet mellom tan δ , E', E'' og E* kan illustrerast ved Figur 16. E* vert kalla den komplekse modul, og er gjeve ved E* = E' + iE''. Dette er eit tal på total spenning på prøveobjekt slått saman av E' og E''.

Figur 16: Forhold mellom tan δ , lagringsmodul E', tapsmodul E'' og kompleks modul E*. [24]

2.3.2 Polymeranalyse ved bruk av DMA

Alle faktorane som er nemnt over kan mellom anna brukast til å måle eigenskapane til polymerar i form av viskoelastisitet som funksjon av temperatur. Apparatet er sensitivt og kan registrere små reaksjonar som andre måleinstrument kan ha vanskar med å registrere [35].

Som tidlegare nemnt er glasovergangstemperaturen (Tg) ein sentral faktor ved viskoelastisk analyse. For polymerar markerer dette overgangen frå ein hard og stiv tilstand til ein mjukare tilstand der det kan observerast store endringar i styrkeeigenskapar. Denne overgangen skjer ikkje ved ein spesifikk temperatur, men over eit visst temperaturområde. Dette på grunn av at polymerane har ulike lengder på molekylkjedene [18].

Ved dynamisk mekanisk analyse av viskoelastiske polymerar som funksjon av temperatur, kan resultata verte vist som i Figur 17. I figuren er forsøket gjort i skjermodus, og modulane er derfor gjeve ved G' og G''. I denne oppgåva vil desse vere erstatta med E' og E''. Desse vert ofte gjeve i megapascal (MPa). I starten av temperaturområdet vil denne polymeren vere i glasfasen der E' er høg, og polymeren er elastisk, hard og stiv. Neste fase er glasovergangsområdet som tidlegare omtala. Her vil den idealiserte amorfe polymeren i dømet verte mjukare som følgje av at avstanden mellom molekyla aukar og føre til at molekyla får rom til å røre seg. Dette inneber at polymeren mistar betydeleg mykje av stivheita si. Denne reaksjonen vert observert ved at lagringsmodul (E') stupar. E'' og tan δ viser toppar i dette området. [24]

Figur 17: Viskoelastiske eigenskapar som funksjon av temperatur for ein ideell amorf termoplastisk polymer. [38]

Etter kvart som temperaturen stig, går polymeren inn i gummifasen. Her kan slike termoplastiske polymerar verte plastisk deformerte og få ein gummiliknande konsistens. Tan δ og E'' har ofte låge verdiar her. Vidare inn i flytefasen vil denne polymeren byrje å oppføre seg som ei væske og dermed flyte. Her vert stivheita (E') vidare redusert, medan tan δ og E'' aukar.

For tverrbundne herdeplast-polymerar, vil reduksjonen i stivheit vere lågare og tan δ og E" vil vise rundare toppar som ved aukande grad av tverrbinding vil verte vanskelegare å observere. [23]

2.3.3 Analyse av limte treprøver i enkel overlapp

Ein metode for å måle lim sine styrkeeigenskapar i kopling med tre på, er å lage prøveobjekt av to trekomponentar som er limt saman ved overlapp. Ei enkel løysing er å lage ein modell som vist i Figur 18. Denne vert kalla enkel overlapp, og gir god evne til overføring av krefter i limfuga [39].

For måling av skjerkrefter i limfuga, har denne gjennom forsking vist seg å gi meir kompliserte resultat enn tidlegare anteke. Ved påføring av krefter som vist i figuren, vil det ikkje vere reine skjerkrefter som er den dimensjonerande faktoren for brot i limfuga, men skrellkrefter. På grunn av usymmetrisk påføring av krefter, vil det oppstå vriding i prøveobjektet, og kreftene vil vere størst i endane av limfuga. Figuren viser at skrellkreftene overgår skjerkreftene heilt ytst på endane. [40]

Figur 18: Skrellkrefter dominerer over skjerkrefter på endane ved analyse av enkel overlapp. [41]

Vidare i denne oppgåva har dette vorte løyst ved å lage ein symmetrisk geometri på prøveobjekta. Dette er forklart i detalj i metodekapittelet ved Figur 25. Modellen er noko ulik det som er brukt i Figur 19 frå NS-EN 302-1:2013 [42] og andre forsøk [32], [39].

Figur 19: Standard modell for måling av strekkskjerstyrke på langs. [42]

2.4 Branneigenskapar til limtre

Tre er eit brennbart materiale, men det er opparbeida kunnskap om korleis tre oppfører seg i brann som gjer at vi i dag ser på tre som forutsigbart i ein brannsituasjon. Samanlikna med stål og aluminium, viser tre seg å ofte ha betre termiske eigenskapar ved brann. Figur 20 illustrerer styrkeeigenskapane til tre, stål og aluminium som funksjon av tid og temperatur ved ein standardisert brann. Ein viktig skilnad ved desse materiala er at stål og aluminium ofte vil ha lik temperatur gjennom heile tverrsnittet ved påføring av brann. Her har tre den eigenskapen at det dannar eit forkola ytre lag som har dårleg varmeleiingsevne og dermed beskyttar treverket innanfor i ein viss periode. Innanfor det forkola laget vil temperaturen vere tilnærma upåverka av brannen på utsida, og styrkeeigenskapane i ein viss grad bevart fram til vidare forkoling eller delaminering (sjå Figur 21). Dette resulterer i at tre ofte har eit treigare og meir forutsigbart brannforløp samanlikna med stål og aluminium. [43], [14]

Figur 20: Termisk påverknad på mekaniske eigenskapar til tre, stål og aluminium ved standardisert brann. [14]

Prosessen som tre går gjennom ved brann vert kalla pyrolyse. Dette er ei termisk nedbryting av treet sine byggjesteinar, cellulose, hemi-cellulose og lignin. Her blir treet gjort om til antennelege brennbare gassar og kol. Denne prosessen avhenger av treslag med tanke på mellom anna fuktnivå, densitet og permeabilitet. Kvist og variasjonar i treet får større betydning ved høgare temperatur. For gran og furu er det erfart sjølvtenning mellom 350 °C og 400 °C. [28], [14]

Figur 21: Forkoling av tre ved brann. [14]

Forkolingshastigheita gjennom treverket er ein sentral faktor ved branndimensjonering. Denne avgjer kor lenge trekonstruksjonen held seg berande ved brann, og gir dermed grunnlag for å kunne rekne ut kor lenge ein lastberande konstruksjon vil halde seg gjennom eit brannforløp. Verdiar for forkolingshastigheit er gjeve ved EN 1995-1-2, og er standardisert etter treslag og densitet. Dette kan vidare verte brukt til å rekne ut kor stor del av tverrsnittet som vil forkolast ved ei viss branneksponeringstid, og dermed kunne seie kor mykje friskt treverk som er igjen etter brannen. Her er det vanleg å bruke ein metode som ser på effektivt tverrsnitt av bjelken.

For limtre vil branneigenskapane vere ulike samanlikna med heiltre. Forkolingshastigheita vil vere mindre enn det som er gjeve i EN 1995-1-2 på grunn av at treverket i limtre vil vere sortert ut etter kvalitet og dermed vere meir homogent. Vidare har val av lim stor betydning for branneigenskapane til limtre. Det er vanlegvis ikkje lov å bruke termoplastisk lim i limtre på grunn av at dei vil smelte ved brann. Limtypar av herdeplast har, som tidlegare forklart, ulike eigenskapar avhengig av kjemisk oppbygging. Ved mindre grad av tverrbinding vil nokre herdelim gå inn i glasovergangsområdet og mjukne. Dette vil som kjend redusere styrkeeigenskapane til limet betydeleg. Konsekvensar ved svekka limfuge i limtre kan vere at brannen får tilgang til friskt treverk, og dermed fører til auka forkolingshastigheit. [14]

I forsking har det vorte avdekka store forskjellar i branneigenskapar mellom MUF-lim og PUR-lim. I branntestar med krysslimt tre har PUR-lim ført til stor grad av delaminering og dermed auka forkolingshastigheita. Delaminering ved bruk av PUR-lim har ved nokre høve vorte registrert rundt 200 °C. For krysslimt tre med MUF-lim har det vore lite eller inga delaminering, og det forkola laget har fungert som brannisolasjon gjennom store delar av testane. Delaminering ved bruk av MUF har vorte registrert rundt 300 °C. Med delaminering meinast her at ytre lamell som er brannpåverka losnar. Dette skjer ofte ved temperaturar rundt 300 °C. [34], [28] På grunn av at krysslimte treelement ofte har eit større branneksponert areal enn limtrebjelkar og limtresøyler, må det skiljast mellom limtre og krysslimt tre ved branndimensjonering [44]. I ein 90 minutt lang standard branntest gjennomført av Norske Limtreprodusentars Foreining, Sweco og SP Fire Research kom det fram at limtre kan dimensjonerast til å tole fullstendig brannforløp og bevare naudsynt bereevne og stabilitet. Her var lamellane limt saman med MUF. Resultatet var at limtrekonstruksjonane slokna av seg sjølv, og forkolinga stansa når temperaturen vart senka. Det friske treverket innanfor det forkola laget kan dimensjonerast til å bere bygget etter at brannen stoppar, og vidare tilfredsstille krava for brannklasse 3 og 4 i TEK 17. [45]

2.4.1 Bereevne og stabilitet til berande konstruksjonar ved brann (R-tid)

I byggteknisk forskrift (TEK17) vert det stilt krav til bereevne og stabilitet ved brann. I § 11-4(1) står det at «*byggverk skal prosjekterast og utførast slik at byggverket som heilheit, og dei enkelte delane av byggverket, har tilfredsstillande sikkerheit med omsyn til bereevne og stabilitet*». R-tida vert rekna ut ved å først bestemme risikoklasse og brannklasse for den aktuelle konstruksjonen. Risikoklassa veljast ut frå risikoen ein brann har for liv og helse, og tek omsyn til bruksområdet for bygget og føresetnadar for sjølvberging ved brann. Brannklassa veljast ut frå kva konsekvens ein brann har for liv, helse, miljø og samfunnsmessige interesser. Denne tek omsyn til kor mange etasjar det aktuelle bygget har, i tillegg til risikoklasse. Deretter vert R-tid valt ved bruk av aktuell brannklasse. For berande hovudsystem i brannklasse 3, er det krav om R 90, altså at det berande hovudsystemet skal bevare naudsynt stabilitet i 90 minutt slik at redning, røming og sløkking er mogleg. Både for brannklasse 3 og 4, er det krav om at bereevne og stabilitet skal vere bevart gjennom eit fullstendig brannforløp. Dette vil seie frå tenning til brannen har slokna av seg sjølv. [46]

3 Material og metode

I material- og metodedelen i denne oppgåva er det utført laboratoriearbeid på avdeling for treteknologi hjå NIBIO på Ås.

Her var målet å undersøkje dei viskoelastiske og termiske eigenskapane til dei to limtypane melamin-urea-formaldehyd (MUF) og polyuretan (PUR) under påføring av dynamiske, pulserande krefter i form av strekk og trykk ved konstant temperaturauke. Dette vil føre til skjerkrefter i limfuga, som også vert analysert i denne oppgåva. Det har også vorte brukt to ulike overlapp, 3 millimeter og 5 millimeter, for å sjå korleis limarealet påverkar resultata innanfor dei to limtypane.

For å kunne måle desse eigenskapane, vart det valt å bruke dynamisk mekanisk analyse (DMA). Prøveobjekt vart produsert og tilpassa til festemekanismen i DMA-en. Det var naudsynt å utvikle ein metode som fungerte for desse prøveobjekta, og som gav resultat som kunne brukast til analyse og samanlikning for dei to limtypane.

Det har vorte gjennomført tre ulike metodar for å prøve å finne ut kva metode som egnar seg best til denne problemstillinga.

3.1 Material

3.1.1 Tre

I denne oppgåva er alle prøveobjekta laga av norsk gran, *Picea abies(L.) Karst*. Denne kjem frå Pinaceae-familien, og er eit mykje brukt treslag i byggebransjen. Dette på grunn av høg styrke og stivheit i forhold til densitet [8]. Plank henta frå lagring vert anteke å ha ei likevektsfuktigheit på rundt 12 % ved relativ fuktigheit på 65 % og 20 °C. Fuktigheita vart redusert til om lag 0 % før testing i DMA.

3.1.2 Lim

Limtypane som vart brukt til samanføying er melamin-urea-formaldehyd (MUF) og polyuretan (PUR). MUF er av typen Prefere 4546 (batch: 230042013). Dette er ein tokomponents lim som vart tilsett ein herdar av typen Prefere 5093 (batch: 230042016). Denne inneheld ein katalysator som gjer det mogleg for MUF å herde ved normal romtemperatur. PUR er av typen PUR 6000 (batch: 1170522). Dette er ein ein-komponents lim, og er derfor klar for påføring rett frå flaska utan tilsetjing av herdar. Begge limtypane er henta frå Dynea i Lillestrøm. 3.1.3 Utstyr

DMA

DMA-apparatet som er brukt under alle forsøka i denne oppgåva er DMA 242 E Artemis frå produsenten Netzsch (sjå Figur 22).

Figur 22: DMA 242 E Artemis frå produsenten Netzsch [47].

Festemekanisme for strekktesting

DMA 242 E Artemis kan bruke ei rekkje av ulike festemekanismar til fleire testmetodar og føremål. I denne oppgåva har festemekanismen for strekktesting blitt brukt (sjå Figur 23).

Når denne er montert på DMA-en, fungerer den ved at prøveobjektet blir montert som vist i raudt i Figur 23. Nedre klemme er fast, medan øvre klemme bevegar seg vertikalt som innstilt i Proteus Measurement Software.

Figur 23: Festemekanisme for måling av strekk [47].
3.1.3.2 Programvare

Proteus Measurement Software

Denne programvara blir brukt til å styre DMA-en og hente inn direkte resultat frå målingar som blir utført. Her blir kalibrering av DMA-en starta, og val av testmetode og ønska parametrar blir plotta inn.

Sidan forsøka i denne oppgåva blir utført ved bruk av festemekanismen for måling av strekk, må det her veljast strekk som målemodus. Dette for å informere DMA-en og proteus measurement software om at dette utstyret er montert.

Under strekk som målemodus har det under forsøka blitt brukt to ulike parametrar: tøying og kraft. Val av kva for parameter ein vil bruke kjem an på kva for parameter ein ynskjer å kontrollere under forsøket.

Proteus evaluation software

Denne programvara blir brukt til å analysere, samanlikne og behandle resultat frå Proteus Measurement Software. Her kan ein enkelt importere data frå målingar, studere dei og deretter opprette illustrasjonar og datasett som kan eksporterast vidare.

JMP Pro 14

JMP Pro 14 er eit program brukt til statistisk behandling og analyse av datasett. Dette forenklar prosessen for databehandling og dataanalyse i oppgåva. Figurar i resultat og tabellar i vedlegg er produsert i dette programmet.

Microsoft Excel

Microsoft Excel vart brukt til å importere og transformere datasetta frå Proteus Evaluation Software slik at JMP Pro 14 skulle kunne importere og lese datasetta.

3.2 Metode

3.2.1 Produksjon av prøveobjekt

Ved blanding av MUF og herder vart det brukt eit blandingsforhold på 100/20 (lim/herder) som anbefalt av produsenten og NS-EN 301:2017. 10 gram lim og 2 gram herdar vart blanda saman. Dette viste seg å vere rikelege mengder, men samtidig naudsynt for å få blanda tilstrekkeleg. [48]

Frå plank vart det saga ut emne som vidare vart høvla ut til 3 millimeter tjukke skiver. Skivene vart høvla ut i radiell retning frå treemnet for å minimere påverking frå krymping og svelling av prøveobjekta, i og med at krymping av gran er mindre i radiell retning enn i tangentiell retning. Vinkel på årringane på skivene vart høvla ut var omkring 45 grader som vist i Figur 24.

Figur 24: Vinkel på årringar på skiver som vart høvla ut.

Vidare vart det sagd ut prøveobjekt som vist i Figur 25 og Figur 27. Overflatestrukturen til treverket, vart påverka av sagbladet som vart brukt til å skjere ut prøveobjekta. Dette kan klassifiserast som ein relativt grov overflatestruktur i forhold til om overflata hadde vore høvla.

Prøveobjekta vart deretter limt saman på dei sagde overflatene i to ulike overlapp, 3 millimeter og 5 millimeter, med begge limtypane (sjå Figur 25). Både for MUF og PUR vart limet påført på éi av overflatene før andre lamell vart montert på og lagt i klem over natta for herding av limet.

Figur 26 (A) viser valt utforming av prøveobjekta. For å kunne få så reine skjerkrefter som mogleg, vart det forsøkt å konstruere prøveobjekta på ein måte som gav symmetri. Føremålet med å konstruere prøvene som vist på figuren, er å redusere påverknaden frå såkalla skrell-krefter, som ville ha opptrett i større grad om ein tradisjonell enkel overlapp hadde blitt brukt (sjå Figur 26 (B)).

Figur 26: (A) – Valt symmetrisk overlappskonstruksjon av prøveobjekt. (B) – Tradisjonell enkel overlappskonstruksjon.

Etter herding i om lag 18 timar vart prøveobjekta kappa ut til mindre bitar som vist på figur 27 og lagt i tørkeskap med vakuum og 60 grader celsius over natta. Dette for å få fuktprosenten i trematerialet ned mot 0 %, og dermed kunne sjå bort frå trefuktigheita si påverking på dei viskoelastiske styrkeeigenskapane under vidare testing med dynamisk mekanisk analyse (DMA).

Etter at prøveobjekta hadde stått i tørkeskap, vart dei plassert i ein eksikator med silica-gel på botnen for å halde eit lågt og stabilt fuktnivå.

Figur 27: Produksjon av prøveobjekt.

3.2.2 Avgrensingar

Ein viktig og avgrensande faktor for dimensjonering av prøveobjekta, var festemekanismen i DMA-apparatet. Etter tilpassing av dimensjonane til innfestinga i strekkmodus, vart storleiken til prøveobjekta bestemt til å vere 3 millimeter tjukke, 6 millimeter breie og 20 millimeter lange.

I tillegg ligg det avgrensingar i kor stor kraft DMA-apparatet kan påføre prøveobjekta. DMAapparatet som vart brukt hadde ei maksimal påførande kraft på 12 newton. Dette var ein særs viktig faktor som sette store avgrensingar i korleis forsøka kunne utførast, sidan dette kanskje ikkje ville vere nok til å køyre prøveobjekta til brot.

3.2.3 Testoppsett og testprosedyre

Før kvar måling og før prøveobjektet kan monterast i DMA-en, må det utførast ei kalibrering av systemet. Deretter kan prøveobjektet monterast før vidare kalibrering vert utført.

Eitt og eitt prøveobjekt vart montert i festemekanismen for strekk-modus. I denne modusen vert prøveobjektet klemt fast mellom to plater oppe og nede ved bruk av skruar som vist i Figur 29 (A).

Vidare blir forsøket sett i gang. DMA-en påfører dynamiske krefter ved at den trykkjer og strekk i prøveobjektet i sykliske rørsler. Dette skal som tidlegare nemnt føre til skjerkrefter i limfuga som illustrert i Figur 29 (B). Figur 28 illustrerer prinsippet for korleis DMA-en påfører krefter på prøveobjektet ved at nedre klemme er fast medan øvre klemme går opp og ned. Alle forsøk har blitt utført med minimum 5 gjentak per serie.

Figur 28: Prinsippet for korleis DMA påfører krefter på prøveobjekt. [49]

(A) - Prøveobjekt montert i DMA (B) - Plassering av skjerkrefter i prøveobjekt Figur 29: Strekking og trykking av prøveobjekt gir skjerkrefter i limfuga.

Når forsøket er fullført ved rundt 240 °C, startar automatisk nedkjøling av DMA-en og prøveobjektet ned mot romtemperatur. Mellom 25 °C og 30 °C blir nedkjølinga stoppa manuelt, og det ferdig testa prøveobjektet vert demontert frå festemekanismen. Prøveobjekta har då fått mørkare farge, som vist i Figur 30. Vidare vert kalibrering og neste forsøk gjort på same måte.

Figur 30: Prøveobjekt etter fullført måling og demontering.

3.2.4 Innhenting og behandling av resultat

Det er dei viskoelastiske og mekaniske eigenskapane som er interessante i denne oppgåva. Det er derfor interessant å hente ut dei tre resultatfaktorane E', E'' og tan δ . E' er lagringsmodul, E'' er tapsmodul og tan δ er tapsfaktor. Desse faktorane er sentrale i analyse av viskoelastiske eigenskapar til material.

Vidare vart det henta ut resultat for påført tøying på prøveobjekt, As', og forlenging/krymping av prøveobjekt, dL.

For å kunne finne påført skjerspenning i limfuga på prøveobjekta, var det naudsynt å først finne påført kraft, F, på prøveobjektet. Denne krafta kunne hentast direkte ut frå Proteus evaluation software. Vidare vart formelen under brukt.

$$\tau = \frac{F}{A} \quad \frac{N}{mm^2}$$

På grunn av store datamengder, vart det henta ut eit utval av målepunkt for alle testane. Desse målepunkta var ved 30 °C, 50 °C, 70 °C, 110 °C, 150 °C, 160 °C, 170 °C, 180 °C, 190 °C, 200 °C, 220 °C og 240 °C. Desse vart bestemt ut frå forprøver der det vart observert kor det gjennomsnittleg var mest interessante hendingar i testane.

3.2.4.1 Statistisk analyse

Det vart også utført statistisk analyse av resultata i form av gjennomsnitt, standardavvik og statistisk signifikans. Statistisk signifikans vart kunn funne ved utvalde resultat. Dette vart kunn gjort for resultata frå metode 3. Her vart det valt å sjå på resultat for stivheit, E', ved 150 °C for MUF og PUR med 3 millimeter og 5 millimeter overlapp. Dette vart gjort i JMP gjennom funksjonen «Fit Y by X». For å kunne forstå resultata, er det blant anna naudsynt å studere Figur 31 frå JMP sine heimesider. Denne forklarar at øvre og nedre spiss i diamantane symboliserer eit 95 % konfidensintervall for kvar gruppe. Den midtre linja gjennom diamantane representerer gjennomsnittet av målingane i kvar gruppe. [50], [51]

I **Feil! Fant ikke referansekilden.** i resultatkapittelet er det i tillegg sirklar på sidene av kvar gruppe. Desse fortel om gjennomsnittet for gruppene er signifikant ulike eller ikkje, ved å sjå på den utvendige vinkelen mellom dei to sirklane for kvar type overlapp. Dersom sirklane ikkje er i kontakt med kvarande eller er i kontakt med ein utvendig kryssingsvinkel på mindre enn 90 grader, er resultatet at gruppene er signifikant ulike. Dersom kryssingsvinkelen er meir enn 90 grader, er resultatet at gruppene ikkje er signifikant ulike (sjå Figur 32). [51]

Figur 31: Tolking av figur for statistisk signifikans. [50]

Figur 32: Utvendig kryssingsvinkel og statistisk signifikans. [51]

3.2.5 Metode 1

I den første metoden vart det valt å prøve ut ein metode der det var mogleg å kunne styre kor stor den maksimale tøyinga eit prøveobjekt kunne utsettast for. Dette vart gjort ved å velje tøyingsmodus, som er eit av alternativa under strekkmodus i DMA-programmet.

Her vart maksimal tøying bestemt ved å sette maksimal tillaten amplitude til 20 mikrometer (μ m). Ved å velje dette seier ein til DMA-en at prøveobjektet skal utsettast for tøying, men ikkje over 20 μ m, og så må DMA-en påføre nødvendig kraft for å oppnå denne tøyinga. Her er altså tøyinga den kontrollerte faktoren.

Tabell 2 viser vidare oppsett for metoden. Den dynamiske frekvensen er på 1 Hz, altså éi svinging per sekund, og ei oppvarmingshastigheit på 10 kelvin per minutt (K/min). Dette svarar til 10 °C/min. Måling av data vart registrert frå rundt 30 °C til 240 °C. Oppvarming frå romtemperatur og opp til starttemperatur hadde ei hastigheit på 2 K/min.

			Maksimal					
Limtype	Overlapp [mm]	Tretype	Lim/herder	Fuktinnhald [%]	tøying [um]	Svingingar [Hz]	Oppvarmingshastigheit [K/min]	
	2	Gran		0	20	1	10	
FUR	5	Gran	-	0	20	T	10	
PUR	5	Gran	-	0	20	1	10	
MUF	3	Gran	100/20	0	20	1	10	
MUF	5	Gran	100/20	0	20	1	10	

Tabell 2: Testoppsett for tøyingsmodus, metode 1.

3.2.6 Metode 2

I den andre metoden var det naudsynt å gjere endringar frå metode 1 for å gjere det mogleg å utføre testen. Målet var å kunne køyre alle testar av prøveobjekt opp til 240 °C utan at prøveobjektet sklei ut av festemekanismen i DMA-en og avbraut forsøket med feilmelding.

Det var ynskjeleg å gjere det mogleg å kunne kontrollere kor stor maksimal dynamisk kraft DMA-en kunne påføre prøveobjektet. Dette vart gjort ved å velje kraftmodus, som er eitt av alternativa under strekkmodus i Proteus Measurement Software.

Maksimal dynamisk kraft på prøveobjekt vart sett til 10 newton (sjå Tabell 3). Gjennom dette seier ein til DMA-en at prøveobjektet skal utsettast for ei dynamisk pulserande kraft, men denne dynamiske krafta skal ikkje overstige 10 newton. Her er det med andre ord krafta som er den kontrollerte faktoren. Temperaturområdet for målingane er det same som i metode 1, frå 30 °C til 240 °C.

					Maksimal		Oppvarmin
Limtype	Overlapp	Tretype	Lim/herder	Fuktinnhald	kraft	Svingingar	gshastigheit
	լՠՠյ			[%]	[N]	[HZ]	[K/min]
PUR	3	Gran	-	0	10	1	10
PUR	5	Gran	-	0	10	1	10
MUF	3	Gran	100/20	0	10	1	10
MUF	5	Gran	100/20	0	10	1	10

3.2.7 Metode 3

I den tredje metoden vart det valt å fortsette i kraftmodus, men det var ynskjeleg å redusere den maksimale dynamiske krafta som DMA-en kunne påføre prøveobjektet.

Maksimal dynamisk kraft på prøveobjektet vart sett til 5 newton (sjå Tabell 4). Også her, som i metode 2, seier ein til DMA-en at prøveobjektet skal utsettast for ei dynamisk pulserande

kraft, men her er denne maksimale dynamiske krafta sett til 5 newton. Temperaturområdet er også her frå 30 °C til 240 °C.

Prøveobjekta i metode 3 er frå batch 2, altså frå produksjon nummer 2. Her er prøvene laga på tilnærma nøyaktig same måte som i den første produksjonen.

			Maksimal						
Limtype	Overlapp	Tretype	Lim/herder	Fuktinnhald	kraft	Svingingar	Oppvarmingshastigheit		
	[mm]			[%]	[N]	[Hz]	[K/min]		
PUR	3	Gran	-	0	5	1	10		
PUR	5	Gran	-	0	5	1	10		
MUF	3	Gran	100/20	0	5	1	10		
MUF	5	Gran	100/20	0	5	1	10		

Tabell 4: Testoppsett for kraftmodus, metode 3.

3.2.8 Usikkerheit

Standardiserte metodar har ikkje vorte følgt under produksjon av prøveelementa. Ved påføring av lim vart det mest truleg påført meir enn datablada frå Dynea har anbefalt. Det overflødige limet vart pressa ut når lamellane vart pressa saman og deretter fjerna. Samanlikna med profesjonell prosedyre for liming på fabrikk, er det sannsynlegvis store forskjellar.

Det ligg også usikkerheit ved bruk av tre i prøveobjekta med tanke på at tre er eit inhomogent materiale. Dette aukar viktigheita av talet på prøvegjentak som vert utført under forsøka.

I metode 1 og metode 2 er det brukt prøveobjekt frå produksjon nummer 1. I metode 3 er det brukt prøveobjekt frå produksjon nummer 2. Sjølv om produksjonane vart gjort ved bruk av same prosedyre, er det likevel mogleg at det er visse forskjellar mellom dei.

4 Resultat

Figurar i dette kapittelet illustrerer gjennomsnittet av resultat henta frå målingar gjort i laboratorium ved bruk av DMA. For tabellar med gjennomsnittlege resultat og fullstendige datatabellar med alle målingar, vert det vist til vedlegg.

4.1 Metode 1

For fullstendig datautskrift med målingar og faktorar som er brukt i denne metoden, sjå Tabell 12 i vedlegg.

Lagringsmodul og tapsfaktor

Figur 33 viser ei samanstilling av lagringsmodul, E', og tapsfaktor, tan δ , ved temperaturauke. Resultata er sortert etter limtype og storleik på overlapp. Øvre figur viser MUF og PUR med 3 millimeter overlapp, medan nedre figur viser MUF og PUR med 5 millimeter overlapp. Blå linje illustrerer E', raud linje illustrerer tan δ . For detaljert tabell, sjå Tabell 5 og Tabell 6 i vedlegg.

Ved 3 millimeter overlapp viser resultata for MUF at stivheita, E', minkar ved aukande temperatur frå 959 MPa til 486 MPa, og blir mjukare. Dette er ein reduksjon på 49 %. Tan δ aukar mot eit toppunkt i samsvar med reduksjonen av E', men viser ikkje eit tydeleg toppunkt i dette temperaturområdet. Mindre forhøgingar i tan δ kan observerast ved 160 °C og 200 °C med verdi 0,13. Standardavviket viser at det er relativt stor spreiing i dei utførte målingane. To av seks prøveobjekt kom opp i 240 °C.

For PUR med 3 millimeter overlapp viser resultata tydeleg samspel mellom E' og tan δ . E' minkar frå 492 MPa til 22 MPa, og stupar samtidig som tan δ har eit tydeleg toppunkt ved 160 °C på 0,32. E' reduserast her med 96 %, som er vesentleg meir enn for MUF med same overlapp. E' flatar deretter ut medan tan δ minkar. Etter rundt 210 °C minkar E' ytterlegare og tan δ aukar kraftig. Standardavviket for målingane viser også her relativt store variasjonar i målingane i visse temperaturområder. Samanlikna med MUF mistar PUR vesentleg meir stivheit her. Fem av seks prøveobjekt kom opp i 240 °C.

Ved 5 millimeter overlapp viser resultata for MUF at E' minkar frå 1254 MPa til 884 MPa, og stupar samtidig som tan δ får eit toppunkt rundt 180 °C på 0,11. Her reduserast E' med 30 %. Toppunktet er meir tydeleg enn ved MUF med 3 millimeter overlapp. Ingen av prøveobjekta kom opp i 240 °C. Eitt av fem prøveobjekt opp i 220 °C. Standardavviket er stort i øvre temperatursjikt.

For PUR med 5 millimeter overlapp kjem det fram at tan δ stig mot eit toppunkt ved 170 °C på 0,13 medan E' minkar. E' minkar her frå 1223 MPa til 741 MPa, som er eit tap i stivheit på 39 %. Dette er eit betydeleg mindre tap enn for PUR med 3 millimeter overlapp. Samanlikna med MUF med 5 millimeter overlapp er tapet i stivheit større her. Her kom ingen av prøveobjekta over 180 °C. To av fem kom opp til 180 °C.

I denne metoden er det observert at startverdien for stivheit, E', er relativt ulik for dei to limtypane og overlappa.

Figur 33: Gjennomsnittleg lagringsmodul saman med tapsfaktor ved temperaturauke for MUF og PUR, 3 millimeter og 5 millimeter.

Tapsmodul

Figur 34 viser gjennomsnittleg tapsmodul, E'', samt standardavvik for MUF og PUR med 3 og 5 millimeter overlapp ved temperaturauke. For detaljert tabell, sjå Tabell 7 i vedlegg.

For MUF med 3 millimeter overlapp er det her eit svakt toppunkt ved 200 °C. Dette toppunktet opptrer samtidig som E' stupar og får redusert stivheit, og tan δ aukar i førre figur. Storleiken på standardavviket varierer, men er størst mellom 150 °C og 200 °C.

PUR med 3 millimeter overlapp viser eit toppunkt rundt 125 °C før nedstiging og utflating. Dette toppunktet er innanfor området der E' stupar og får redusert stivheit, og tan δ har eit toppunkt i førre figur. Samanlikna med MUF med 3 millimeter overlapp opptrer toppunktet for E'' her betydeleg tidlegare.

For MUF med 5 millimeter overlapp viser figuren eit toppunkt for E'' ved 180 °C. Dette er 20 °C før MUF med 3 millimeter overlapp. Også her er det relativt stor spreiing i målingane. Toppunktet for E'' samsvarar med reduksjon av E' og eit toppunkt i tan δ .

PUR med 5 millimeter overlapp er det eit antatt toppunkt ved 170 °C før forsøket stoppar på grunn av feilmelding. Dette ville ha samsvara med reduksjon i E' og toppunktet i tan δ . Toppunktet for E'' opptrer her ved høgare temperatur samanlikna med PUR med 3 millimeter overlapp.

Figur 34: Gjennomsnittleg tapsmodul ved temperaturauke for MUF og PUR, 3 millimeter og 5 millimeter

Påført kraft på prøveobjekt

Figur 35 viser gjennomsnittleg påført kraft, F, på prøveobjekt for MUF og PUR ved temperaturauke. Figuren illustrerer og sorterer limtypane MUF og PUR etter storleik på overlapp. For detaljert tabell, sjå Tabell 8 i vedlegg.

Resultata viser her at både MUF og PUR har relativt lik kraft i starten av forsøket ved 30 °C på rundt 10,7 N. Det er likt for alle resultata at påført kraft minkar med aukande temperatur.

MUF med 3 millimeter overlapp viser eit lite utslag, og påført kraft reduserast med 0,6 % i dette temperaturområdet. PUR med same overlapp viser eit stort utslag samanlikna med MUF. Påført kraft reduserast her med 89,1 %.

For MUF med 5 millimeter overlapp vert påført kraft, F, redusert med 0,4 % mellom 30 °C og 240 °C. Dette er ein lågare reduksjon enn for same limtype med 3 millimeter overlapp.

PUR med 5 millimeter overlapp har ein reduksjon i påført kraft på 0,5 %. Dette er betydeleg lågare enn ved 3 millimeter overlapp for same limtype. Samanlikna med MUF med 5 millimeter overlapp er dette relativt likt.

Figur 35: Gjennomsnittleg påført kraft på prøveobjekt ved temperaturauke for MUF og PUR, 3 millimeter og 5 millimeter overlapp.

Skjerspenning

Figur 36 viser gjennomsnittleg påført skjerspenning, τ, ved temperaturauke for MUF og PUR. Figuren illustrerer og sorterer limtypane MUF og PUR etter storleik på overlapp. Resultata viser at skjerspenninga på prøveobjekta minkar ved aukande temperatur. For detaljert tabell, sjå Tabell 9 i vedlegg.

MUF med 3 millimeter overlapp har gjennomsnittleg skjerspenning på rundt 0,59 MPa ved 30 °C, og viser ein svak konstant reduksjon i skjerstyrke gjennom heile temperaturområdet. Reduksjonen er på 0,7 %.

PUR med 3 millimeter overlapp har det største utslaget i denne kategorien. Her er maksimal skjerspenning målt til 0,59 MPa ved 30 °C og minste skjerspenning 0,06 MPa ved 240 °C. Dette er ein reduksjon på 89,2 %. Det er tydeleg at skjerspenninga reduserast betrakteleg i området rundt toppunktet til tan δ ved 160 °C. Dette resultatet er også i takt med påført kraft i førre figur. Standardavviket viser at det er noko stor spreiing i målingane frå 70 °C og oppover.

For MUF med 5 millimeter overlapp er skjerspenninga rundt 0,36 MPa ved 30 °C, og minkar med 0,6 %. Reduksjonen er tilnærma lik som for 3 millimeter overlapp med same limtype.

PUR med 5 millimeter overlapp er tilnærma lik MUF med same overlapp med 0,6 % reduksjon i påført skjerspenning. Denne reduksjonen er svært liten samanlikna med PUR med 3 millimeter overlapp.

Figur 36: Gjennomsnittleg påført skjerspenning ved temperaturauke for MUF og PUR, 3 millimeter og 5 millimeter.

Påført tøying på prøveobjekt

Figur 37 viser gjennomsnittleg påført tøying, As', på prøveobjekt for MUF og PUR ved aukande temperatur. Figuren illustrerer og sorterer limtypane MUF og PUR etter storleik på overlapp. For detaljert tabell, sjå Tabell 10 i vedlegg.

For alle målingane er det ein trend at tøyinga på prøveobjekta aukar ved aukande temperatur. For MUF med 3 millimeter overlapp aukar As' sakte. Etter 150 °C aukar tøyinga i takt med auke i tan δ . Maksimal tøying er oppnådd ved 240 °C på 9,6 µm.

For PUR med 3 millimeter overlapp er det ei betydeleg auke i tøying i temperaturområdet rundt toppunktet til tan δ . Etter ein liten nedgang stig kurva igjen. Maksimal tøying er nådd ved 240 °C, der tøyinga er 21,1 µm.

MUF med 5 millimeter overlapp viser både auke og reduksjon av tøying. Tøyinga varierer i temperaturområdet rundt toppunktet til tan δ . Maksimal tøying er oppnådd ved 180 °C på 4,9 μ m.

PUR med 5 millimeter overlapp aukar i takt med auke i tan δ , der kurva stig når tan δ nærmar seg toppunktet. Her er maksimal tøying ved 180 °C, der tøyinga er 7,2 µm.

Figur 37: Gjennomsnittleg påført tøying ved temperaturauke for MUF og PUR, 3 millimeter og 5 millimeter.

Forlenging/krymping av prøveobjekt

Figur 38 viser gjennomsnittleg forlenging/krymping av prøveobjekt, samt standardavvik for MUF og PUR med 3 millimeter og 5 millimeter overlapp ved temperaturauke. Blå linje illustrerer resultat for MUF. Raud linje illustrerer resultat for PUR. For detaljert tabell, sjå Tabell 11 i vedlegg.

Resultata viser at grad av forlenging og krymping aukar ved aukande temperatur. Prøveobjekta vert både forlenga og krympa gjennom heile temperaturområdet, men i området før målingane vert avslutta, aukar graden av forlenging betydeleg for både MUF og PUR med 3 og 5 millimeter overlapp. Rørslene er størst i temperaturområdet der tan δ har eit toppunkt eller aukar.

Figur 38: Gjennomsnittleg forlenging/krymping av prøveobjekt. Figuren illustrerer standardavvik for begge limtypar og overlapp.

4.2 Metode 2

For fullstendig datautskrift med målingar og faktorar som er brukt i denne metoden, sjå Tabell 19 i vedlegg.

Lagringsmodul og tapsfaktor

Figur 39 viser ei gjennomsnittleg samanstilling av lagringsmodul, E', og tapsfaktor, tan δ , ved temperaturauke. Blå linje illustrerer E', og raud linje illustrerer tan δ . I denne metoden er det berre MUF med 3 millimeter overlapp som har vorte testa. For detaljert tabell, sjå Tabell 13 i vedlegg.

E' til MUF med 3 millimeter overlapp minkar med aukande temperatur frå 932 MPa til 328 MPa. Dette er ein reduksjon på 64,8 %. Tan δ aukar mot eit toppunkt ved 190 °C på 0,12. Vidare aukar tan δ betydeleg frå 200 °C og oppover. Standardavviket for målingane er relativt stort mellom 150 °C og 200 °C. I denne metoden kom eitt av fem prøveobjekt seg opp til 240 °C.

Figur 39: Gjennomsnittleg lagringsmodul saman med tapsfaktor ved temperaturauke for MUF med 3 millimeter overlapp. Figuren illustrerer standardavvik for heile temperaturområdet.

Tapsmodul

Figur 40 viser gjennomsnittleg tapsmodul, E", samt standardavvik for MUF med 3 millimeter overlapp ved temperaturauke. For detaljert tabell, sjå Tabell 14 i vedlegg.

E'' aukar mot eit svakt toppunkt på 87,2 MPa ved 190 °C før det vidare aukar betydeleg til målinga vart avslutta rundt 240 °C. Toppunktet er i same temperaturområdet som der tan δ har ein topp og E' minkar.

Figur 40: Gjennomsnittleg tapsmodul, E'', ved aukande temperatur for MUF med 3 millimeter overlapp. Figuren illustrerer standardavvik for heile temperaturområdet.

Påført kraft på prøveobjekt

Figur 41 viser gjennomsnittleg påført kraft på prøveobjekt, F, samt standardavvik for MUF med 3 millimeter overlapp ved temperaturauke. For detaljert tabell, sjå Tabell 15 i vedlegg.

Resultatet viser at påført kraft ved 30 °C er 9,9 N, og minkar med aukande temperatur. Reduksjonen er på 1,1 % og har størst reduksjon i temperaturområdet over toppunktet i tan δ .

Figur 41: Gjennomsnittleg påført kraft på prøveobjekt ved aukande temperatur for MUF med 3 millimeter overlapp. Figuren illustrerer standardavvik for heile temperaturområdet.

Påført skjerspenning

Figur 42 viser gjennomsnittleg påført skjerspenning, τ, samt standardavvik for MUF med 3 millimeter overlapp ved temperaturauke. For detaljert tabell, sjå Tabell 16 i vedlegg.

Resultata viser at skjerspenninga ved 30 °C er på 0,55 MPa, og minkar med aukande temperatur. Reduksjonen i dette temperaturområdet er på 1,1 %. Frå 200 °C og oppover reduserast skjerspenninga betydeleg i takt med at tan δ aukar kraftig og E' minkar.

Figur 42: Gjennomsnittleg påført skjerspenning, τ, på prøveobjekt ved aukande temperatur for MUF med 3 millimeter overlapp. Figuren illustrerer standardavvik for heile temperaturområdet.

Påført tøying på prøveobjekt

Figur 43 viser gjennomsnittleg tøying av prøveobjekt, As', samt standardavvik for MUF med 3 millimeter overlapp ved temperaturauke. For detaljert tabell, sjå Tabell 17 i vedlegg.

Resultatet viser at tøying av prøveobjektet aukar betydeleg frå 200 °C og oppover. Det er i same temperaturområde som tan δ aukar kraftig og E' minkar.

Figur 43: Gjennomsnittleg påført tøying på prøveobjekt, As', ved aukande temperatur for MUF med 3 millimeter overlapp. Figuren illustrerer standardavvik for heile temperaturområdet.

Forlenging/krymping av prøveobjekt

Figur 44 viser gjennomsnittleg forlenging/krymping av prøveobjekt, dL, samt standardavvik for MUF med 3 millimeter overlapp ved temperaturauke. For detaljert tabell, sjå Tabell 18 i vedlegg.

Resultata viser at prøveobjekta vert utsett for både forlenging og krymping gjennom målingane. I temperaturområdet rundt 200 °C aukar graden av forlenging betydeleg. Dette er i same område som tan δ aukar, E' minkar, E'' aukar, påført kraft minkar, skjerspenning minkar og tøying aukar.

Figur 44: Gjennomsnittleg forlenging/krymping av prøveobjekt ved aukande temperatur for MUF med 3 millimeter overlapp. Figuren illustrerer standardavvik for heile temperaturområdet.

4.3 Metode 3

For fullstendig datautskrift med målingar og faktorar som er brukt i denne metoden, sjå Tabell 27 i vedlegg.

Lagringsmodul og tapsfaktor

Figur 45 viser ei samanstilling av lagringsmodul, E', og tapsfaktor, tan δ , ved temperaturauke. Resultata er sortert etter limtype og storleik på overlapp. Øvre figur viser MUF og PUR med 3 millimeter overlapp, medan nedre figur viser MUF og PUR med 5 millimeter overlapp. Blå linje illustrerer E', raud linje illustrerer tan δ . For detaljert tabell, sjå Tabell 20 og Tabell 21 i vedlegg.

Resultata viser at for MUF med 3 millimeter overlapp, minkar stivheita, E', frå 1246 MPa til 827 MPa med aukande temperatur. Dette er ein reduksjon på 33,6 %. Tan δ viser ikkje eit tydeleg toppunkt i dette temperaturområdet, men viser ein liten topp ved 150 °C på 0,11 i samsvar med reduksjon av E'. Her kom fem av fem prøveobjekt opp i 240 °C.

For PUR med 3 millimeter overlapp viser tan δ ein relativt tydeleg topp ved 180 °C på 0,15 som samsvarar med reduksjonen i E'. Dette er 30 °C over der MUF hadde ein liten topp i tan δ med same overlapp. E' minkar frå 1150 MPa til 62 MPa, noko som er ein reduksjon på om lag 95 %. Dette er ein betydeleg større stivheitsreduksjon enn for MUF med same overlapp. Frå 220 °C og oppover aukar tan δ kraftig, og stivheita minkar ytterlegare. Her kom fem av fem prøveobjekt opp til 240 °C.

Resultata for MUF med 5 millimeter overlapp viser at E' minkar frå 1506 MPa til 977 MPa, og har dermed ein reduksjon i stivheit på 35 % over dette temperaturområdet. Samanlikna med 3 millimeter overlapp for same limtype, er startstivheita noko høgare, men reduksjonen i stivheit er relativt lik. Tan δ har heller ikkje her eit tydeleg toppunkt, men viser ein liten topp ved 150 °C på 0,07. Dette er relativt likt som for MUF med 3 millimeter overlapp. Her kom seks av seks prøveobjekt opp til 240 °C.

PUR med 5 millimeter overlapp viser eit relativt tydeleg toppunkt i tan δ på 0,15 ved 190 °C. Dette er same verdi som for 3 millimeter overlapp med same limtype, men ved 10 °C høgare. Samanlikna med MUF med same overlapp, er toppen i tan δ her 40 °C over. Stivheita, E', minkar her frå 1453 MPa til 140 MPa, som er ein reduksjon på 90,4 %. Startstivheita er her større enn ved 3 millimeter overlapp av same limtype, og reduksjonen noko mindre. Samanlikna med MUF med 5 millimeter overlapp, er reduksjonen i stivheit betydeleg større over dette temperaturområdet. Her kom seks av seks prøveobjekt opp til 240 °C.

I denne metoden er det observert at startstivheita ved 30 °C er relativt lik for dei to limtypane og overlappa.

Figur 45: Gjennomsnittleg lagringsmodul saman med tapsfaktor ved temperaturauke for MUF og PUR med 3 og 5 millimeter overlapp. Figuren illustrerer standardavvik for heile temperaturområdet.

Figur 46 illustrerer statistisk signifikans for lagringsmodulen, E', ved 150 °C for MUF og PUR. Øvre del illustrerer prøveobjekta med 3 millimeter overlapp. Nedste del illustrerer prøveobjekta med 5 millimeter overlapp.

Diamantformene illustrerer i dette tilfellet gjennomsnittet og konfidensintervallet for målingane. Sirklane indikerer at gjennomsnitta til limtypane er statistisk signifikante ved at dei ikkje er i kontakt med kvarandre.

Resultata for 3 millimeter overlapp viser at stivheita, E', er større for MUF enn for PUR ved 150 °C. Konfidensintervallet på 95 % viser at p-verdien her er lik 0,0001, og dermed signifikant.

Også i resultata for 5 millimeter overlapp er stivheita, E', større for MUF enn for PUR ved 150 °C. Her er p-verdien mindre enn 0,0001, og dermed signifikant med eit konfidensintervall på 95 % og signifikansnivå på 5 %.

Figur 46: Statistisk signifikans av E' ved 150 °C. Organisert etter storleik på overlapp.

Tapsmodul

Figur 47 viser gjennomsnittleg tapsmodul, E'', samt standardavvik for MUF og PUR med 3 millimeter og 5 millimeter overlapp ved temperaturauke. For detaljert tabell, sjå Tabell 22 i vedlegg.

Her viser resultata at MUF med 3 millimeter overlapp har eit svakt toppunkt ved 150 °C før E'' minkar. Dette samsvarar med temperaturområdet der tan δ har eit svakt toppunkt og E' minkar.

PUR med 3 millimeter overlapp har ein tydelegare topp ved 150 °C som også samsvarar med området der toppunktet til tan δ er og E' minkar kraftig. Samanlikna med MUF med same overlapp er dette toppunktet mykje tydelegare.

MUF med 5 millimeter viser her eit noko tydelegare toppunkt enn ved 3 millimeter overlapp. Toppunktet er ved 150 °C der også toppunktet til tan δ er. Dette er også ved same temperatur som MUF med 3 millimeter overlapp har eit svakt toppunkt.

For PUR med 5 millimeter overlapp er det eit relativt tydeleg toppunkt ved 150 °C. Dette er noko under toppunktet for tan δ for dette tilfellet, men innanfor temperaturområdet kor E' minkar. Samanlikna med 3 millimeter overlapp for same limtype, er dette ved same temperatur.

Figur 47: Gjennomsnittleg tapsmodul, E'', ved temperaturauke for MUF og PUR med 3 og 5 millimeter overlapp. Figuren illustrerer standardavvik for heile temperaturområdet.

Påført kraft på prøveobjekt

Figur 48 viser gjennomsnittleg påført kraft på prøveobjekt, F, samt standardavvik for MUF og PUR med 3 millimeter og 5 millimeter overlapp ved temperaturauke. For detaljert tabell, sjå Tabell 23 i vedlegg.

Resultata viser her at MUF og PUR har lik startkraft ved 30 °C på rundt 4,94 N. Det er likt for alle resultata at påført kraft minkar med aukande temperatur.

MUF med 3 millimeter overlapp viser her lite utslag, og påført kraft vert redusert med 0,3 % i dette temperaturområdet. PUR med same overlapp viser eit større utslag samanlikna med MUF. Påført kraft reduserast her med 8,7 %.

For MUF med 5 millimeter overlapp vert påført kraft, F, redusert med 0,3 % mellom 30 °C og 240 °C. Dette er same reduksjon som for same limtype med 3 millimeter overlapp.

PUR med 5 millimeter overlapp har ein reduksjon i påført kraft på 4,1 %. Dette er betydeleg lågare enn ved 3 millimeter overlapp for same limtype. Samanlikna med MUF med 5 millimeter overlapp er dette ein betydeleg større reduksjon.

Figur 48: Gjennomsnittleg påført kraft på prøvobjekt, F, ved temperaturauke for MUF og PUR med 3 og 5 millimeter overlapp. Figuren illustrerer standardavvik for heile temperaturområdet.

Påført skjerspenning

Figur 49 viser gjennomsnittleg skjerspenning, τ, samt standardavvik for MUF og PUR med 3 millimeter og 5 millimeter overlapp ved temperaturauke. Resultata viser at skjerspenninga på prøveobjekta minkar ved aukande temperatur. For detaljert tabell, sjå Tabell 24 i vedlegg.

MUF med 3 millimeter overlapp har gjennomsnittleg skjerspenning på rundt 0,27 MPa ved 30 °C, og viser ein svak konstant reduksjon i skjerstyrke gjennom heile temperaturområdet. Reduksjonen er på 0,4 %.

PUR med 3 millimeter overlapp har her maksimal skjerspenning på 0,27 MPa ved 30 °C og minste skjerspenning 0,25 MPa ved 240 °C. Dette er ein reduksjon på 8,4 %. Det er tydeleg at skjerspenninga har størt reduksjon i området etter toppunktet til tan δ ved 180 °C. Dette resultatet er også i takt med påført kraft i førre figur. Samanlikna med MUF med same overlapp, er dette ein betydeleg større reduksjon.

For MUF med 5 millimeter overlapp er skjerspenninga rundt 0,16 MPa ved 30 °C, og minkar med 0,6 %. Denne reduksjonen er tilnærma lik som for 3 millimeter overlapp med same limtype.

PUR med 5 millimeter overlapp er har her ein reduksjon på 4,2 % i påført skjerspenning. Dette er halvparten så stor reduksjon som for PUR med 3 millimeter overlapp. Samanlikna med MUF med 5 millimeter overlapp er dette ein betydeleg større reduksjon.

Figur 49: Gjennomsnittleg påført skjerspenning, τ, på prøveobjekt ved temperaturauke for MUF og PUR med 3 og 5 millimeter overlapp. Figuren illustrerer standardavvik for heile temperaturområdet.

Påført tøying på prøveobjekt

Figur 50 gjennomsnittleg tøying av prøveobjekt, As', samt standardavvik for MUF og PUR med 3 millimeter og 5 millimeter overlapp ved temperaturauke. For detaljert tabell, sjå Tabell 25 i vedlegg.

Resultata viser at tøying av prøveobjekta aukar ved aukande temperatur. For MUF med 3 millimeter overlapp aukar As' sakte. Maksimal tøying er ved 240 °C på 2,6 μ m.

For PUR med 3 millimeter overlapp er det ei betydeleg større auke i tøying samanlikna med MUF med same overlapp. I temperaturområdet rundt toppunktet til tan δ er det størt auke. Maksimal tøying er nådd ved 240 °C, der tøyinga er 29,3 µm.

MUF med 5 millimeter overlapp viser her liten påverknad til stigande temperatur. Maksimal tøying er oppnådd ved 240 °C på 2,3 μ m. Dette er relativt likt som for MUF med 3 millimeter overlapp.

PUR med 5 millimeter overlapp aukar i takt med auke i tan δ , der kurva stig når tan δ nærmar seg toppunktet. Her er maksimal tøying ved 240 °C på 14,3 µm.

Figur 50: Gjennomsnittleg påført tøying, As', på prøveobjekt ved temperaturauke for MUF og PUR med 3 og 5 millimeter overlapp. Figuren illustrerer standardavvik for heile temperaturområdet.

Forlenging/krymping av prøveobjekt

Figur 51 viser gjennomsnittleg forlenging/krymping av prøveobjekt, dL, samt standardavvik for MUF og PUR med 3 millimeter og 5 millimeter overlapp ved temperaturauke. For detaljert tabell, sjå Tabell 26 i vedlegg.

Resultata viser forlenging og krymping aukar ved aukande temperatur. Prøveobjekta vert både forlenga og krympa gjennom dette temperaturområdet, men for PUR aukar forlenginga i temperaturområdet der tan δ har eit toppunkt og E' minkar. MUF viser ikkje store utslag i desse tilfella. MUF krympar og flatar deretter ut mot slutten av forsøka både ved 3 millimeter og 5 millimeter overlapp.

Figur 51: Gjennomsnittleg forlenging/krymping av prøveobjekt, dL, ved temperaturauke for MUF og PUR med 3 og 5 millimeter overlapp. Figuren illustrerer standardavvik for heile temperaturområdet.

5 Drøfting

5.1 Metodeutvikling

Ein sentral del av arbeidet på laboratoriet har vore å finne ein metode som gjer det mogleg å måle dei viskoelastiske og styrkerelaterte eigenskapane til limet ved ulike temperaturar i prøveobjekta brukt i denne oppgåva.

5.1.1 Måling i DMA

Metodeutviklinga i denne oppgåva har basert seg på bruk av dynamisk mekanisk analyse (DMA). Dette er kjend som ein av dei mest nøyaktige måtane å finne glasovergangstemperaturar i polymerar på, på grunn av at apparatet er svært sensitivt og gjer det mogleg å påføre kraft og temperatur samtidig. [47], [52]

Det kunne også vorte brukt andre metodar for dette. Termisk mekanisk analyse (TMA) er eit av alternativa her. Denne brukar i staden for dynamisk kraftpåføring, statisk kraftpåføring til å måle Tg. Her vert utvidinga av polymeren analysert av ein følar under oppvarming ved bruk av ein termisk ekspansjonskoeffisient som vil vise ei kurveendring ved eventuell Tg. Denne metoden er ikkje ideell til analyse av Tg for sterkt amorfe polymerar, på grunn av at materialet vert så mjukt at følaren går gjennom. [52]

Differensiell skannekalorimetri er også ein måte å måle glasovergangstemperatur i polymerar på. Her vert prøveobjekt påført varmestraumar og deretter samanlikna med eit tilsvarande prøveobjekt som har vore gjennom same påkjenning. Resultata frå dette vert brukt til å observere glasovergangsområdet i polymeren. Denne metoden er ofte ikkje sensitiv nok til å kunne analysere Tg for herdepolymerar med høg grad av tverrbinding. [52]

Av desse metodane er det anteke at DMA er eit godt val i denne oppgåva, med tanke på sensitivitet og allsidigheit for termisk analyse av ulike typar polymerar.

Metode 1

Forsøka i metode 1 var sterkt prega av feilmeldingar under fleire av målingane. Feilmeldinga sa «DMA hardware reset occured!». Dette kan omsetjast til «det oppstod ei tilbakestilling av DMA-maskinvare!». Dette indikerer at det er nokre av dei valte innstillingane og parametrane som ikkje er optimale i denne metoden. I tillegg viste metoden seg å gi svært varierande resultat frå målingane ut frå illustrasjonar og framstillingar av standardavvik.

På grunn av at det ved fleire høve var svært få målingar som kom opp i det øvste temperaturområdet, er det for nokre av prøveobjekta eit usikkert grunnlag for å analysere og trekkje sikre konklusjonar frå resultata i dette temperaturområdet. Stor spreiing i målingar var også ein viktig faktor til dette. Dette gjer at tolking av samla resultat får denne metoden er diskutable.

Frå resultata frå metode 1 kjem det fram at for prøveobjekta med 5 millimeter overlapp, vart PUR avbrote ved omtrent 180 °C. Berre to av fem prøveobjekt kom opp til denne

temperaturen. MUF vart avbrote ved omtrent 220 °C. Berre eitt av fem prøveobjekt kom opp til denne temperaturen.

For prøveobjekta med 3 millimeter overlapp kom PUR opp til 240 °C med fem av seks prøveobjekt. MUF kom også opp til 240 °C, men berre med to av seks prøveobjekt.

Det var interessant å spekulere i kva som var årsaka til at denne feilmeldinga stadig kom opp og avbraut målingane. Ved studering av prøveobjekta, var det ikkje nokre synlege teikn til sprekker etter gjennomført testing i DMA-en, men dei hadde som forventa endra farge etter varmepåkjenninga. Det var også små trykkspor i endane der festemekanismen hadde klemt på prøveobjekta, men det var heller ikkje her teikn til vidare sprekkdanningar ut frå desse.

Ein mogleg teori er at skruane som strammar festemekanismen i DMA-en ikkje har vorte stramma hardt nok ved montering av prøveobjekt. Det er også mogleg at skruane har vore tilstrekkeleg stramma ved montering når prøveobjektet har hatt romtemperatur, men at prøveobjektet undervegs i testen har krympa enten av trykket vinkelrett på trefibrane (i radiell flate) frå festemekanismen eller av temperaturen det har blitt utsett for. Det er kjent at tre krympar ved uttørking og sveller ved auka fuktigheit. Den påførte temperaturen kan derfor i dette tilfellet ha ført til uttørking av trematerialet i prøveobjekta og resultert i krymping. Dette kan også forklare kvifor nokre av skruane sat noko svakare ved demontering enn ved montering av prøveobjekta. Dersom det er tilfelle at prøveobjekta har krympa undervegs i testen, vil dette sannsynlegvis ha ført til at prøveobjekta har glidd i festemekanismen, men sidan prøveobjekta her var tørka ned mot 0 % trefuktigheit før testing, er det ikkje forventa store utslag som følgje av uttørking undervegs i målingane.

Med tanke på at prøveobjekta skal ha ein fuktprosent på tilnærma lik null etter tørking, rettar dette vidare fokuset på tørkeprosessen prøveobjekta var gjennom i tørkeskapet før testing. Her er moglege feilkjelder at temperaturen på 60 °C ikkje har vore tilstrekkeleg høg. Det er også mogleg at vakuumet ikkje har vore tilstrekkeleg høgt. Tida i tørkeskapet er også ei mogleg feilkjelde. Dette er faktorar som kan ha spelt ei rolle for dei endelege resultata, men med bakgrunn i at vakuumtørking med temperaturar under 75 °C er ein mykje brukt tørkemetode i treindustrien, er det anteke at temperatur og vakuum har hatt tilstrekkelege verdiar her [12], [11]. Tida i tørkeskapet er også anteke å vere tilstrekkeleg. Prøvene stod der i underkant av eit døgn, noko som er anteke tilstrekkeleg med tanke på dei små dimensjonane til prøveobjekta brukt i denne oppgåva.

Vidare rettar det også fokuset på eksikatoren prøveobjekta låg i dagane etter tørkeprosessen i tørkeskapet og fram til testing. Ei feilkjelde her kan vere at dersom loket på denne ikkje har vore tetta tilstrekkeleg, kan det ha ført til at prøveobjekta har teke opp fuktigheit frå omgjevnadane. Dersom dette er tilfelle, er det sannsynlegvis snakk om for lite fuktigheit til å kunne ha påverka forsøka i stor grad. Ved høgt fuktopptak ville det ha vorte observert ei stor auke i stivheit (E') etter 100 °C. Det har ikkje vorte observert i nokon av dei tre metodane, og det er derfor anteke at opphaldet i eksikatoren ikkje har hatt nokon betydeleg påverknad på stivheita til prøveobjekta. I Figur 38 og Tabell 11 kjem det fram at prøveobjekta har krympa og deretter utvida seg relativt mykje i tidspunktet før feilmelding og resulterande avbryting av testen. Sidan ingen av prøveobjekta hadde skader etter demontering, kan dette vere ei forklaring på kva som har forårsaka feilmeldinga.

Det vart sendt ein e-post til Netzsch, som er produsenten av DMA 242 E Artemis. Netzsch meinte at det ut frå dataloggen såg ut til at prøveobjektet har utvida seg for raskt i tidspunktet når feilmeldinga kom, og at DMA-en ikkje har greidd å reagere raskt nok på desse plutselege endringane.

Vidare spekulerte Netzsch i kva som kunne vere grunnen til dette. Dei meinte det kunne vere at prøveobjektet har blitt skada under testing, prøveobjektet har vore for elastisk, eller at prøveobjektet har glidd i festemekanismen.

Av desse tre vert det siste alternativet sett på som mest sannsynleg. Dette styrkar også den tidlegare teorien om at feilmeldinga kjem av at prøveobjekta glir i festemekanismen. Sidan det ikkje var mogleg å stramme skruane hardare under montering av prøveobjekta i festemekanismen, var det derfor naudsynt å endre metoden for testing. Ein teori var at den påførte krafta på prøveobjektet var for stor, og at ein reduksjon av denne krafta ville hindre at prøveobjektet glei i festemekanismen. I Figur 37 og Tabell 10 kjem det også fram at PUR med 3 millimeter var den einaste som kom opp mot den bestemte tøyinga på 20 µm. Totalt sett førte dette til konklusjonen om at metode 1 ikkje var mogleg å bruke i dette tilfellet, og at påførte krefter var for store til at metoden kunne gi tilfredsstillande resultat.

For målingane kjem det fram at tøyinga, As', på prøveobjekta aukar ved aukande temperatur. Det er interessant å sjå at det i området rundt toppunktet til tan δ oppstår ei raskare auking i As' for PUR og MUF med 3 millimeter overlapp (sjå Figur 37 og Tabell 10). For PUR aukar tøyinga ytterlegare på slutten av målinga. Denne aukinga i As' etter toppunktet i tan δ kan sannsynlegvis forklarast ved at limet her går inn i det sokalla gummiplatået, og at det her går over i ein mjuk og gummi-liknande fase på veg mot ein flytande fase. Dette kan sannsynlegvis i dette tilfellet føre til at limfuga har lettare for å sleppe taket mellom trelamellane og dermed føre til auka deformasjon av prøveobjektet.

Metode 2

I metode 2 vart det prøvd ut endringar med omsyn til problema som oppstod i metode 1. Her vart det som tidlegare nemnt gjort endringar for å finne ein metode som kunne gjere det mogleg å køyre alle prøveobjekt opp til 240 °C utan stop som følgje av bruk av feil parametrar ved oppsett av metoden. Med bakgrunn i drøfting tidlegare i dette kapittelet angåande feilmeldingar frå metode 1, var det her ynskjeleg å kunne kontrollere den påførte krafta på prøveobjektet ved å endre målemodus frå tøying til kraft.

I Figur 41 og Tabell 15 viser resultata at påført kraft på prøveobjekt kom opp mot 10 newton. Dette er i same område som for påført kraft i metode 1. Grunnen til dette var at det var ynskjeleg å sjå om resultata vart like som for tilsvarande tilfelle i metode 1. Dette for å få ein indikasjon på om denne målemodusen var brukbar eller ikkje for dette tilfellet.

Tøyinga på prøveobjekta viser seg å heller ikkje her kome opp mot 20 μ m (sjå Figur 43 og Tabell 17). Det er også her observert ei auke i As' i området rundt toppunktet i tan δ på 190 °C på 6,3 μ m. Tøyinga aukar betrakteleg igjen etter ein liten reduksjon, og kan tolkast som inngangen til gummi-platået og vidare flyteområde som forklart i metode 1.

MUF med 3 millimeter overlapp var det einaste som vart prøvd med denne metoden på grunn av at det også her vart påverkingar frå feilmeldingar. Det var den same feilmeldinga som i metode 1, og årsaka vert anteke å vere lik. Altså at påført kraft på prøveobjekta har vore for stor. Figur 44 og Tabell 18 bekreftar dette når det vert vist at det oppstår auke i forlenging av prøveobjekta i temperaturområdet før avbryting. Her var det berre eitt av fem prøveobjekt som kom opp til 240 °C, så det var naudsynt å endre metoden for måling. Det var ynskjeleg å undersøke om ein reduksjon i påført kraft kunne føre til at feilmeldinga forsvann.

Metode 3

I metode 3 gjekk alle målingane gjennom heile måleprosessen frå 30 °C til 240 °C utan avbryting og feilmelding. Ut frå dette vart det konkludert med at endringane som vart gjort frå erfaringar i metode 1 og metode 2 fungerte godt, og at teoriar om moglege grunnar til feilmeldinga sannsynlegvis var korrekte.

Ein annan konsekvens av endringane gjort i denne metoden er at målingane viser seg å få eit betydeleg lågare standardavvik samanlikna med i metode 1 og metode 2. Dette fører til eit betre grunnlag for statistisk analyse og tydelegare resultat.

I denne metoden vart maksimal påført kraft på prøveobjektet endra frå 10 newton i metode 2 til 5 newton. Dette vert vist i Figur 48 og Tabell 23. Det er her mogleg å sjå at PUR reagerer sterkare enn MUF ved temperaturauke uavhengig av storleik på limareal.

Ein interessant observasjon i metodeutviklinga var at det i metode 3 var relativt lik stivheit for MUF og PUR ved same overlapp. I metode 1 var forskjellen betydeleg større. Ei sannsynleg feilkjelde her kan vere at spreiinga i målingane også var betydeleg større i metode 1 samanlikna med i metode 3.

5.1.2 Produksjon av prøveobjekt

Metoden som har vorte brukt ved produksjon av prøveobjekta i denne oppgåva kan som tidlegare nemnt innehalde feilkjelder. Dersom det har vore nokon grad av skeivheit ved påføring av krefter i DMA-en, kan dette ha ført til skrellkrefter i limfuga, og dermed påverka målte resultat av skjerspenning. Med bakgrunn i teorikapittelet er det anteke at valt geometri og påførte krefter har gjeve neglisjerbar påverknad frå skrellkrefter. I produksjonen av prøveobjekta i denne oppgåva, vart det valt å påføre lim på den saga overflata. Denne er kategorisert som ein relativt grov overflatestruktur samanlikna med til dømes høvla og pussa overflate. Tidlegare forsking har testa ut korleis ulike overflatestrukturar i tre påverkar samanbindinga mellom limfuga og trematerialet. Resultata viste at saga overflatestruktur gir sterkast binding, etterfølgt av pussa overflatestruktur og til slutt høvla overflatestruktur. I forsøket vart det brukt MUF-lim i enkel og dobbel overlapp med bøk og furu. Sidan det i denne oppgåva har vorte brukt gran, ligg det usikkerheit ved samanlikning her, men det er anteke at saga overflate vil gi tilstrekkeleg god binding. [23]

5.2 Termisk stabilitet

For dette delkapittelet om termisk stabilitet til MUF og PUR er resultata frå alle dei tre metodane inkludert og drøfta. Sjølv om metode 1 og metode 2 viste seg å vere ueigna i dette tilfellet, vil delar av resultata likevel verte brukt til drøfting og samanlikning med dei endelege resultata frå metode 3. Det er resultata frå metode 3 som vil ha størst betydning ved endeleg analyse og tolking av dei termiske eigenskapane til MUF og PUR i denne oppgåva. Desse vil også vere grundigare drøfta enn dei to første metodane.

5.2.1 Metode 1

Lagringsmodul og tapsfaktor

I Figur 33, Tabell 5 og Tabell 6, vert det undersøkt om det er eit samsvar mellom ein større reduksjon i E' og eit toppunkt i tan δ . Dette for å kunne oppdage og analysere eventuelle glasovergangsområder og andre overgangsfasar i limtypane. Dette gjeld for alle illustrasjonar av lagringsmodul og tapsfaktor i denne oppgåva.

Ved 3 millimeter overlapp viser resultata for MUF at stivheita minkar ved aukande temperatur som forventa. Tan δ aukar i samsvar med reduksjonen av E', men viser ikkje ein tydeleg topp i dette temperaturområdet. Likevel er det tydeleg at tan δ aukar mot eit mogleg toppunkt som kan vere eit glasovergangsområde, Tg, over temperaturområdet som er brukt her. Med tanke på at MUF mistar store delar av si stivheit, er det ikkje usannsynleg at eit mogleg Tg kan oppstå. Det er observert mindre forhøgningar i tan δ ved 160 °C og 200 °C, begge på rundt 0,13. Om dette kan vere eit teikn på glasovergangspunkt er usikkert. Samanlikna med 5 millimeter overlapp for same limtype, er desse toppane i same temperaturområdet, men ved 5 millimeter overlapp er det eitt tydeleg toppunkt her. Samtididig viser resultata at standardavviket viser relativt stor spreiing i akkurat dette området for tan δ , så resultata er for usikre til å kunne fastsetje om dette er Tg eller ikkje.

For PUR med 3 millimeter overlapp viser figuren tydeleg samspel mellom E' og tan δ . E' stupar samtidig som tan δ har eit tydeleg toppunkt rundt 160 °C på 0,32 som kan tolkast som området for glasovergang, Tg. E' flatar deretter ut medan tan δ minkar. Etter rundt 210 °C minkar E' ytterlegare og tan δ aukar kraftig. Dette er indikasjonar på at limet går inn i
flytområdet, der limet byrjar å oppføre seg som ei væske og gå i oppløysing. Standardavviket for målinga viser også her relativt store variasjonar i målingane i visse temperaturområder.

Ved 5 millimeter overlapp viser figuren for MUF at E' stupar samtidig som tan δ får eit mogleg Tg rundt 180 °C på 0,11. Her er Tg mykje meir tydeleg enn ved MUF med 3 millimeter overlapp. Den mindre reduksjonen av Tg kan tyde på at MUF oppfører seg meir elastisk med 5 millimeter overlapp enn med 3 millimeter overlapp, og har derfor her større lagringskapasitet for påført last. Samtidig er standardavviket stort i området der toppunktet er observert. Dette kan vere ei sannsynleg forklaring på kvifor det oppstod eit tydeleg toppunkt ved 5 millimeter, men ikkje ved 3 millimeter overlapp. Ingen av prøveobjekta kom over 220 °C i dette tilfellet.

For PUR med 5 millimeter overlapp kjem det fram at tan δ stig mot eit mogleg glasovergangsområde, Tg, ved 170 °C på 0,13 medan E' minkar. Her kom ingen av prøveobjekta over 180 °C, på grunn av for stor påført kraft på prøveobjekta. Dersom dette er Tg, har verdien vorte redusert samanlikna med PUR med 3 millimeter overlapp. Dette kan sannsynlegvis føre til ein teori om at auka limareal gir reduksjon i tan δ-verdi, som vidare medfører høgare stivheit i materialet.

Tapsmodul

I Figur 34 og Tabell 7 vert det undersøkt om E'' får eit toppunkt i samsvar med temperaturområdet for toppunkt i tan δ og ein reduksjon av E' for å kunne definere eit eventuelt glasovergangsområde. Dette gjeld for alle illustrasjonar av tapsmodul i denne oppgåva.

For MUF med 3 millimeter overlapp er det her eit svakt toppunkt rundt 200 °C. Dette toppunktet opptrer samtidig som E' stupar i førre figur. Det er også i dette området tan δ har antyding til eit svakt Tg. Det er derfor mogleg at dette er området for glasovergang, og vidare overgang til gummifasen kor limet går inn i ein tilstand der eigenskapane kan minne om gummi og verte plastisk deformert. Kurva startar å auke igjen frå 220 °C og opp til sluttemperatur. Storleiken på standardavviket varierer, men er størst mellom 150 °C og 200 °C.

PUR med 3 millimeter overlapp viser eit toppunkt rundt 125 °C før nedstiging og utflating. Dette toppunktet er innanfor området der E' stupar og tan δ har eit mogleg Tg. Det er derfor sannsynleg at dette er glasovergangsområdet for PUR med 3 millimeter overlapp.

For MUF med 5 millimeter overlapp viser figuren eit toppunkt for E'' ved 180 °C. Også her er det relativt stor spreiing i målingane. Toppunktet for E'' samsvarar med reduksjon av E' og eit mogleg Tg i tan δ . Dette kan sannsynlegvis vere glasovergangsområdet for MUF med 5 millimeter overlapp.

PUR med 5 millimeter overlapp kan ha eit mogleg toppunkt ved 170 °C før forsøket stoppar. Dette ville sannsynlegvis ha samsvara med reduksjon i E' og mogleg Tg i tan δ . Også her er det relativt stor spreiing i målingane.

Skjerspenning

Figur 36 og Tabell 9 viser at skjerstyrken til prøveobjekta minkar ved aukande temperatur. I metode 1 er denne skjerspenninga den naudsynte skjerspenninga som må til for å oppretthalde den bestemte maksimale tøyinga på 20 µm. Skjerspenninga er som tidlegare nemnt eit resultat av påført kraft på prøveobjekt (sjå Figur 35 og Tabell 8) og arealet til limfuga.

MUF med 3 millimeter overlapp har gjennomsnittleg skjerstyrke på rundt 0,6 MPa ved 30 °C, og viser ein svak konstant reduksjon i skjerstyrke gjennom heile temperaturområdet. PUR med 3 millimeter overlapp har det største utslaget i dette tilfellet. Her er maksimal skjerspenning målt til 0,59 MPa ved 30 °C og minste skjerspenning 0,06 MPa ved 240 °C. Det er tydeleg at skjerstyrken reduserast betrakteleg i området rundt Tg ved 160 °C. Standardavviket viser at det er relativt stor spreiing i målingane frå 70 °C og oppover.

For MUF med 5 millimeter overlapp er skjerspenninga nær konstant over heile temperaturområdet, med ein svak nedgang som tydlegare vist i tabellen. Det same gjeld for PUR med 5 millimeter overlapp.

Bortsett frå PUR med 3 millimeter overlapp, kan det ut frå figuren tolkast som at temperaturområdet som er brukt i denne metoden ikkje er optimalt med tanke på testing av skjerkapasitet til limfuga i desse prøveobjekta. Sidan det ikkje har vore mogleg å køyre testane heilt til brot verken i temperatur eller i påført kraft, har heller ikkje skjerkapasiteten vore mogleg å fastsetje. Ved påføring av høgare temperaturar og større kraft, ville resultata sannsynlegvis ha vist større utslag og dermed kunne gjort det mogleg å finne skjerspenningskapasiteten. Dette føreset sjølvsagt at prøveobjekta ikkje glir ved måling.

5.2.2 Metode 2

Lagringsmodul og tapsfaktor

I Figur 39 og Tabell 13 viser tan δ eit mogleg glasovergangsområde, Tg, ved 190 °C på 0,12. Dette er relativt lik verdi og i same temperaturområde som i metode 1 for tilsvarande tilfelle. E' har her ein verdi på 932 MPa, som er ein nedgang frå 959 MPa i metode 1. Dette viser som kjend prøveobjektet sin elastiske respons og evna det har til å lagre energi, samt stivheita til materialet. E' frå metode 1 viser dermed her ei noko høgare energilagringsevne og høgare stivheit ved 30 °C enn metode 2. Det kan kome av at påført kraft er noko større i metode 1 enn i metode 2 ved 30 °C. Det er framleis stor spreiing i målingane ut frå standardavviket, noko som er ein av grunnane til at det vart prøvd ut ein tredje metode seinare i oppgåva.

Tapsmodul

I Figur 40 og Tabell 14 viser E'' eit toppunkt på 87,2 MPa ved 190 °C. Dette samsvarar med Tg i tan δ og reduksjon i E', og viser derfor sannsynlegvis området for glasovergang for dette tilfellet. Det samsvarar også med toppunktet for E'' i metode 1 for tilsvarande tilfelle.

Skjerspenning

Figur 42 og Tabell 16 viser at opptreande skjerspenning minkar ved aukande temperatur, og at skjerspenninga har ein liten nedgang frå 0,6 MPa til 0,55 MPa ved 30 °C i forhold til tilsvarande tilfelle i metode 1. I området for glasovergang, Tg, kjem det fram at skjerspenninga også her minkar betrakteleg.

5.2.3 Metode 3

Lagringsmodul og tapsfaktor

Figur 45, Tabell 20 og Tabell 21 viser samsvaret mellom lagringsmodul, E', og tan δ i same temperaturområde som for dei to førre metodane.

MUF med 3 millimeter overlapp viser her, som i metode 1 og metode 2, ikkje noko tydeleg toppunkt i tan δ . Dette gir også meining med bakgrunn i teorikapittelet om at MUF er kategorisert som herdelim med høg grad av tverrbinding, og vil derfor i teorien vise små eller ingen teikn til glasovergangsområde. Det er ein svak topp ved 150 °C med verdi 0,11. I og med at det også er eit relativt stort standardavvik i akkurat dette området, kan dette vere ein årsak, og ei mogleg feilkjelde, til at dette oppstår akkurat her. Det er også mogleg at dette er eit svakt teikn på eit glasovergangsområde Tg. Med tanke på at stivheita, E', minkar i same området, er det ikkje usannsynleg å observere Tg her. Tidlegare forsøk med MUF ved bruk av DMA viser også eit svakt toppunkt i tan δ rundt 150 °C. Her vart forsøket gjennomført ved bruk av MUF i form av rein limfilm. I dette forsøket vart prøvene øydelagde ved 160 °C, så resultata er derfor noko usikre. Også her viste det seg å vere vanskeleg å måle dei viskoelastiske eigenskapane til MUF blanda i laboratorium. Dette gjeldt både for MUF i form av limfilm og som limfuge mellom tre. I studiet vart det konkludert med at den tette tverrbindingsstrukturen til MUF var årsaka til dette. [23]

Det har vorte gjennomført forsking for å undersøke forskjellane mellom eigenskapane til polymerar i form av limfilm og limfuge mellom gran. I forsøket kom det fram at dei fleste limtypane presterte relativt likt i begge formene, og at forma på prøveobjekta derfor hadde lite påverknad på resultata. MUF og ein-komponents PUR var inkludert her. [53]

MUF er som kjend karakterisert som ein sterkt tverrbunden polymer. Det er også vist til kjelder at aukande grad av tverrbinding i ein polymer fører til både lågare intensitet og auka temperatur for Tg. Dette forutset at Tg vert definert ut frå eit toppunkt i tan δ . Det er også mogleg å definere Tg ut frå toppunkt i E'' som illustrert tidlegare i Figur 17. Nøyaktig temperatur for Tg vil vere noko ulik mellom dei to metodane. [22], [35] Ei anna mogleg tolking av den svake toppen ved 150 °C kan vere at det er teikn på sokalla beta- og gammaovergangar, T_β og T_γ , som tidlegare forklart i oppgåva. Desse kjem av små lokale rørsler i polymerkjedene. Tg, også kalla alfaovergang, kjem som kjent frå store rørsler i polymerkjedene. [24], [22]

For PUR med 3 millimeter overlapp viser tan δ ein relativt tydeleg topp ved 180 °C på 0,15 som samsvarar med reduksjonen i E', og dermed sannsynlegvis er Tg. Samanlikna med same tilfelle i metode 1, er Tg mindre tydeleg her. Dette er sannsynlegvis eit resultat av lågare påført kraft på prøveobjektet, som vidare fører til lågare skjerspenningar i limfuga. Tg på 0,15 er også vesentleg lågare enn i metode 1, der den var på 0,32. Verdien er nesten halvert. Dette kan sannsynlegvis sjåast som ein samanheng med at også den påførte krafta på prøveobjektet er tilnærma halvert. Også her, som for alle dei andre tilfella av PUR, aukar tøyinga av prøveobjektet kraftig etter å ha passert Tg (sjå Figur 50 og Tabell 25). Det same gjeld forlenging og krymping av prøveobjektet i Figur 51 og Tabell 26. Etter å ha passert 225 °C aukar tan δ kraftig, noko som kan tolkast som at PUR går inn i flytområdet. Det tydelege toppunktet i tan δ gjer det naturleg å kople PUR til reaksjonen som også vert observert i amorfe områder i polymerar. Spisse toppar som indikerer glasovergangsområde er kjenneteikn på dette. Det er også sannsynleg ut frå resultata at PUR har mindre grad av tverrbinding i strukturen samanlikna med MUF, på grunn av at PUR viser smalare og tydlegare toppar i tan δ som indikerer Tg.

For MUF med 5 millimeter overlapp er det ikkje ein tydeleg topp i tan δ som i metode 1. Forklaringa til den markerte toppen i metode 1 vert derfor sett på som eit resultat av dårlege målingar og resulterande stort standardavvik. I metode 3 er det her eit toppunkt for tan δ på 0,07 ved 150 °C. Dette er 30 °C lågare enn i metode 1 for tilsvarande tilfelle, der tan δ hadde eit tydelegare toppunkt på 0,11. Dette er ved same temperatur som ved 3 millimeter overlapp for same limtype, og kan vere teikn på Tg. Ved E' kjem det fram at 5 millimeter overlapp har høgare stivheit enn ved 3 millimeter overlapp for same limtype. Dette gir også meining på grunn av at eit større limareal sannsynlegvis vil ha betre føresetnadar til å fordele kreftene og resultere i ei sterkare limfuge.

MUF-lim viser god termisk stabilitet i dette temperaturområdet med tanke på stivheit (E'). Ved 3 millimeter overlapp vart stivheita redusert med 33,6 %. Ved 5 millimeter overlapp var reduksjonen på 35 %. Limet har framleis relativt høg stivheit ved 240 °C. Som kjend frå teorikapittelet, vil sterkt tverrbundne polymerar av herdeplast vise ein relativt jamn og langsam reduksjon i stivheit før det ved eit punkt oppstår ein brå reduksjon. E' har likskap med illustrasjonen av stivheita for herdeplast i Figur 11 i teorikapittelet.

PUR med 5 millimeter overlapp viser her eit relativt tydeleg toppunkt i tan δ ved 190 °C på 0,15. Dette er ei auke på 20 °C og 0,02 samanlikna med metode 1. I metode 1 vart målingane avslutta ved 180 °C, så det er noko usikkerheit knytt til om dette er det absolutte Tg i det tilfellet, men det er likevel sannsynleg. Etter det antekne glasovergangsområdet aukar tan δ kraftig, noko som kan tolkast som at PUR går inn i flytområdet. Det er tydeleg at E' her er

høgare enn ved PUR med 3 millimeter overlapp. Dette er sannsynlegvis på grunn av ulikt limareal som tidlegare forklart.

Resultata for stivheit frå utførte målingar viser at PUR-lim har betydeleg dårlegare termisk stabilitet enn MUF uavhengig av storleik på limareal. Ved 3 millimeter overlapp vert stivheita, E', redusert med 95 % i valt temperaturområde. Ved 5 millimeter er reduksjonen på 90,4 %, sjølv om anteke glasovergangsområde, Tg, viste seg å vere høgare for PUR-lim enn for MUF-lim i resultata. Det var også tydeleg at MUF hadde minst reduksjon av dei to limtypane i metode 1 ved begge typar overlapp. Ei så stor redusering av stivheit i limfuga vil ha stor påverknad på bereevna og stabiliteten til ein limtrekonstruksjon.

Tapsmodul

I Figur 47 og Tabell 22 har MUF med 3 millimeter overlapp eit svakt toppunkt ved 150 °C som samsvarar med toppunktet i tan δ . Dette styrkar antakinga om at glasovergangsområdet kan vere i dette området. Det er her, som i dei førre metodane, svake former som gjer det vanskelegare å tolke resultata samanlikna med PUR.

PUR med 3 millimeter overlapp har ein tydelegare topp ved 150 °C som også samsvarar med området der toppunktet i tan δ er og E' minkar kraftig. Dette gjer det sannsynleg anta at glasovergangsområdet for PUR er i dette området.

MUF med 5 millimeter viser her eit noko tydelegare toppunkt enn ved 3 millimeter overlapp. Toppunktet er ved 150 °C der også tan δ har eit breitt toppunkt. Glasovergangsområdet er derfor truleg i dette området for MUF.

For PUR med 5 millimeter overlapp er det eit relativt tydeleg toppunkt ved 150 °C. Dette er under toppunktet i tan δ for dette tilfellet, som har vore tilfelle tidlegare også. Dette definerer sannsynlegvis glasovergangsområdet for PUR.

Skjerspenning

Figur 49 og Tabell 24 viser som forventa ei tilnærma halvering i skjerspenning samanlikna med resultata frå metode 1 og 2. Dette gir meining som følgje av at den påførte krafta på prøveobjektet også er halvvert (sjå Figur 48 og Tabell 23).

Samanlikna med resultata for skjerspenning i metode 1, der PUR med 3 millimeter overlapp hadde det største utslaget, kjem det her fram at den påførte krafta på 5 newton gir mindre utslagsgivande resultat. I metode 1 starta den største reduksjonen i påført skjerspenning ved rundt 100 °C. I metode 3 startar den største reduksjonen etter 200 °C. Dette kan vere teikn på at krafta på 5 newton ikkje er stor nok til å kunne gi eit godt bilete av skjerstyrka til prøveobjekta i dette temperaturområdet.

I alle tilfella ved måling av skjerspenning i denne metoden, kjem det tydeleg fram at PUR viser større reduksjon i skjerspenning enn MUF for begge tilfella av overlapp. Dette

samsvarar med resultata for stivheit og glasovergangsområde, der PUR også viste størst utslag i reduksjon av stivheit. Reduksjonen startar etter å ha passert temperaturområdet for glasovergang.

5.3 Praktisk betydning av resultat

Ved kopling av målte resultat frå denne oppgåva og kva desse kan bety i praksis, er det viktig å understreke at metodane for produksjon av prøveobjekt, dimensjonar på prøveobjekt og måling som er brukt her ikkje er identiske med dei som vert brukt av profesjonelle aktørar. Produsentar av limtrekonstruksjonar må følgje standardar og forskrifter for produksjon og testing. Dei har også maskiner og utstyr som kan tilpasse og optimalisere alle avgjerande faktorar som påverkar konstruksjonar sine eigenskapar. Likevel kan det med bakgrunn i at det i målingane frå denne oppgåva har vorte utført ei viss mengde gjentak med tilnærma identiske målingar, vere grunnlag for å kunne karakterisere dei termiske eigenskapane til MUF-lim og PUR-lim.

Med bakgrunn i resultata frå målingane i denne oppgåva er det grunn til å anta at val av lim i limtreproduksjon vil ha mykje å seie for korleis konstruksjonen vil oppføre seg ved aukande temperaturar. MUF-lim har vist seg å ha betydeleg betre termisk stabilitet enn PUR-lim. Ved bruk av PUR har det vorte observert stor reduksjon i stivheit (90,4 % og 95 %) i temperaturområdet frå 30 °C til 240 °C. Det resulterte vidare til reduksjon i skjerstivheit. Med bakgrunn i andre forsøk som er nemnt i teorikapittelet, vil dette ved brann sannsynlegvis resultere i tidleg delaminering som vidare fører til auka forkolingshastigheit og reduksjon av bereevna og stabiliteten til konstruksjonen. Dette kan medføre alvorlege konsekvensar dersom det fører til at konstruksjonen kollapsar før naudsynt redning, røming og sløkking har vorte gjennomført.

Ved bruk av MUF-lim har den observerte reduksjonen i stivheit og skjerstyrke vore betydeleg mindre enn ved bruk av PUR-lim. MUF har vist god termisk stabilitet i forsøka med reduksjon i stivheit på 33,6 % og 35 % i dette temperaturområdet. Skjerstyrka viste ikkje betydeleg reduksjon her. MUF har også vist gode resultat ved testing av skjer og termisk stabilitet i andre forsøk nemnt i teorikapittelet. Det har vist seg å tole høgare temperaturar enn PUR, og grad av delaminering har vore liten eller ikkje eksisterande. Det har også vore brukt i branntesting av limtrekonstruksjonar der resultatet har vore at konstruksjonen slokna av seg sjølv når temperaturen minka. Med bakgrunn i dette vil MUF-lim i limtrekonstruksjonar sannsynlegvis vere det tryggaste valet med tanke på termisk stabilitet for limtrekonstruksjonar, og gi den mest gunstige R-tida av desse to limtypane.

6 Konklusjon

Gjennom prøving og feiling i metodestudiet i denne oppgåva, har det vorte utvikla ein metode som gjer det mogleg å analysere og samanlikne dei viskoelastiske og termiske eigenskapane til MUF- og PUR-lim i samanbinding med gran i enkel overlapp. Målingane vart gjort ved påføring av pulserande krefter og konstant aukande temperatur ved bruk av dynamisk mekanisk analyse (DMA). Det vart valt å bruke festemekanismen for strekktesting for å kunne påføre mest mogleg reine skjerkrefter i limfuga. Prøveobjekta vart utforma med omsyn til at kreftene skulle påførast mest mogleg symmetrisk for å unngå skrellkrefter i prøveobjekta. Den valte utforminga og festemekanismen vert konkludert med å vere brukande til denne typen skjertesting ut frå at det ikkje vart observert skader på prøveobjekta etter testing som gav teikn på skrellpåverknad. Dette har også støtte frå andre forsøk som har brukt liknande utforming på prøveobjekt ved skjertesting.

Av dei tre metodane som har vorte prøvd ut, var det metode 3 som viste seg å vere den som gav best grunnlag for statistisk analyse av resultata. Dette på grunn av at dette var den einaste av metodane som ikkje førte til feilmelding under målingane. Dei ugunstige parametrane som førte til feilmelding i metode 1 og metode 2 har ført til at for få målingar har kome opp til sluttemperaturen på 240 °C, og dermed ført til for få moglege gjentak og usikre resultat i det øvre temperaturområdet. Denne feilmeldinga vert konkludert med å vere eit resultat av at prøveobjekta har glidd i festemekanismen som følgje av at påført kraft har vore for stor i tillegg til at trematerialet i prøveobjekta har krympa som følgje av uttørking ved aukande temperaturar. Dette vart retta opp i metode 3, der påført kraft kunne kontrollerast, og vart tilnærma halvert frå ei påført kraft på rundt 10 newton til 5 newton.

DMA har vist seg å vere eit sensitivt måleapparat. Også andre studiar har vist til at DMA er meir sensitiv enn for eksempel differensiell skannekalorimetri og TMA, og at DMA derfor eignar seg betre til analyse av polymerar med høg grad av tverrbinding. Med bakgrunn i resultat frå målingar i denne oppgåva, er det konkludert med at MUF-limet som er brukt her kan plasserast i denne kategorien, og at analyse ved bruk av DMA derfor har vore eit fornuftig val for å analysere dei viskoelastiske og termiske eigenskapane til dette limet. Den høge graden av tverrbinding vert også konkludert med å vere forklaringa på kvifor MUFlimet hadde betydeleg mindre reduksjon i stivheit enn PUR-limet gjennom temperaturområdet frå 30 °C til 240 °C uavhengig av limareal. Dette er også sannsynlegvis forklaringa på kvifor MUF-lim ved fleire høve har vist seg å ikkje smelte, og dermed motverke graden av delaminering ved brann, der PUR-lim har vist høg grad av delaminering og resulterande auka forkolingshastigheit.

Med bakgrunn i eigne målingar og erfaring frå andre studiar, vert det konkludert med at PUR-limet som er brukt her har mindre grad av tverrbinding i molekylstrukturen enn MUF, og at dette er hovudgrunnen til at PUR-lim har vist betydeleg lågare termisk stabilitet enn MUF-lim både i målingar i denne oppgåva og i annan forsking som er vist til. Konsekvensen av desse store skilnadane i termisk stabilitet mellom MUF- og PUR-lim som er analysert her, vil vere at det i limtrekonstruksjonar som brukar denne typen PUR-lim, sannsynlegvis vil oppstå tidlegare delaminering i ein brannsituasjon enn ved bruk av MUFlim, som følgje av smelting av limfuge og auka forkolingshastigheit. Dette vil innebere at limtrekonstruksjonar med denne typen PUR-lim vil ha raskare reduksjon i stivheit og styrke ved brann enn MUF-lim, og dermed også kortare tid med tilstrekkeleg bereevne og stabilitet (R-tid). Med bakgrunn i dette vert det derfor konkludert med at R-tida bør verte kortare enn vanleg innbrenningstid tilseier som følgje av at limet smeltar.

7 Vidare arbeid

DMA-apparatet har, som tidlegare nemnt, eit breitt spekter av festemekanismar og målemodusar. Her er det mange moglege måtar å analysere lim og tre på. Metode nummer 3 i denne oppgåva kan optimaliserast ved å finne maksimal kraft som kan påførast prøveobjekta før dei glir i festemekanismen. Denne krafta vil vere ein stad mellom 5 og 10 newton. Ei auking i påført kraft vil gi større utslag og tydlegare reaksjonar i polymerane i form av for eksempel glasovergangsområder og sekundærovergangar.

Det vil også vere interessant å utføre metode 3 ved temperaturar over 240 °C og større påført kraft, for å kunne køyre prøveobjekta til brot.

Ein annan interessant framgangsmåte kan vere å produsere reine limfilmar og prøve same metode som har vorte brukt i denne oppgåva, for å sjå korleis dette slår ut på resultata.

Det hadde også vore spanande å lage enkle tradisjonelle overlappsprøver som gir ei blanding av skjerkrefter og skrellkrefter i limfuga ved strekktesting. Analyser kunne blitt utført, og det kunne vorte tolka korleis ein skil mellom påverknadane frå skrellkreftene og skjerkreftene i prøveobjektet.

Ein annan mogleg metode er å bruke festemekanismen for tre-punkts bøying til å påføre moment i for eksempel eit prøveobjekt med fleire limfuger, som vidare kan gjere det mogleg å analysere mellom anna skjerkrefter i limfugene ved aukande eller minkande temperatur (sjå Figur 52).

Figur 52: Tre-punkts bøying av prøveobjekt. [47]

Ein metode ved bruk av enkel eller dobbel innfesting av prøveobjekt er også ein mogleg innfallsvinkel som kan brukast til analyse av lim- og treprøver (sjå Figur 53). Her kan resultata sannsynlegvis verte kopla til korleis ein limtrebjelke reagerer ved påføring av last ved ulike temperaturar.

Figur 53: Enkel eller dobbel innfesting av prøveobjekt. [47]

For best mogleg å kunne analysere korleis ein limtrekonstruksjon vil reagere ved høge temperaturar, vil det vere interessant å utføre ein branntest på ein limtrebjelke med realistiske dimensjonar. Slike testar har vorte gjort ved fleire høve tidlegare som vist til tidlegare i oppgåva. Følarar kan plasserast i limfugene, og faktorar som for eksempel forkolingshastigheit, forkolingsdjupn og grad av delaminering kan analyserast. Her er det interessant å kunne belaste bjelken med eit lasttilfelle som simulerer aktuelt lasttilfelle i ei bygning. For eksempel jamt fordelt last på ein limtrebjelke over tre spenn.

8 Referanseliste

- [1] J. Svanæs, "Tre og miljø," TreFokus AS og Treteknisk Nr.8 Desember, 2004, Available: http://www.trefokus.no/resources/filer/fokus-pa-tre/8-Tre-og-miljo.pdf.
- [2] VVS aktuelt. (2013, 13.03.2019). *Studentblokker i massivtre* [Online]. Available: https://www.vvsaktuelt.no/studentblokker-i-massivtre-65149/nyhet.html
- [3] M. G. GARATHUN. (2015, 21.02.2019). I dag åpner verdens høyeste trehus. Men det er usikkert hvor lenge det vil beholde tittelen. [Online]. Available: <u>https://www.tu.no/artikler/i-dag-apner-verdens-hoyeste-trehus/276298</u>
- [4] Redaksjonen. (2018, 21.02.2019). *Mjøstårnet blir enda høyere* [Online]. Available: <u>http://trenytt.no/mj%C3%B8st%C3%A5rnet-blir-enda-h%C3%B8yere</u>
- [5] T. Treindustrien. (2018, 13.03.2019). Skal bygge 795 studenthybler i massivtre på Ås
 [Online]. Available: <u>http://trenytt.no/skal-bygge-795-studenthybler-i-massivtre-p%C3%A5-%C3%A5s</u>
- [6] Å. D. Lieblein, "Brannsikkerhet i høye trehus," NTNU, 2016.
- [7] TreFokus AS. *Hvorfor er tre et miljøvennlig byggemateriale*? [Online]. Available: <u>http://www.trefokus.no/treveilederen/temaer/miljo-og-berekraft/hvorfor-er-tre-et-miljovennlig-byggemateriale-</u>
- [8] V. Kilde, "Gran," TreFokus AS og Treteknisk, Nr. 28 Mars, 2011, Available: http://www.trefokus.no/resources/filer/fokus-pa-tre/28-Gran.pdf.
- [9] E. Skaug, "Trevirkets oppbygging og egenskaper," in "FOKUS på tre " TreFokus, Treteknisk2007, vol. 40 Available: <u>http://www.trefokus.no/resources/filer/fokus-pa-tre/40-Trevirkets-oppbygging-og-egenskaper.pdf</u>.
- [10] Trevirke. Treslag og materialegenskaper, 571.523, 2015.
- [11] S. Tronstad, "Trefuktighet tørking," Treteknisk, Nr. 38 2000, Available: <u>http://www.trefokus.no/resources/filer/fokus-pa-tre/38-Trefuktighet-torking.pdf</u>.
- [12] S. Tronstad, "Tørking av gran og furu," Treteknisk, Nr. 39 2000, Available: http://www.trefokus.no/resources/filer/fokus-pa-tre/39-Torking-av-gran-ogfuru.pdf.
- [13] T. AS. *Limtre* [Online]. Available: http://www.trefokus.no/proff/artikler/materialer/limtre
- K. Bell, & Liven, H., Limtreboka: Norske Limtreprodusenters Forening, 2015. [Online].
 Available: <u>https://www.moelven.com/globalassets/moelven-</u> limtre/limtreboka 2015 el2.pdf.
- [15] Moelven. (2019). Standard limtre gran [Online]. Available: <u>https://www.moelven.com/globalassets/moelven-limtre/produktbilder/1814-6055.jpg?w=1000</u>
- [16] Limtreboka, Beregningseksempler, N. L. Forening, ed.: Norske Limtreprodusenters Forening, 2018. [Online]. Available: <u>https://www.moelven.com/globalassets/moelven-limtre/limtre_eksmpl_digital.pdf</u>.
- [17] Eurokode 5: Prosjektering av trekonstruksjoner, Del 1-1: almenne regler og regler for bygninger, NS-EN 1995-1-1, 2004.

- [18] H. Johansen, "Plastmaterialer," 2008.
- [19] S. Ratnavel, "Metodeutvikling for kartlegging av elastisitetsmodulen i arktiske temperaturer på resirkulerte og kompositt polymerere," Norwegian University of Life Sciences, Ås, 2016.
- [20] A. Sivapalan, "Atferd til polymerer ved lave temperaturer: kartlegging av materialegenskaper," Norwegian University of Life Sciences, Ås, 2017.
- [21] A. Pizzi and K. L. Mittal, Handbook of adhesive technology. CRC press, 2017.
- [22] J. D. Menczel and R. B. Prime, *Thermal analysis of polymers: fundamentals and applications*. New Jersey: John Wiley & Sons, 2009.
- [23] A. B. Sandlund, "A study of wood adhesion and interactions using DMTA," Doctoral, Division of Wood Material Science, Luleå tekniska universitet, Sweden, 2004:49, 2004.
- [24] K. P. Menard, *Dynamic mechanical analysis: a practical introduction*, 2. ed. USA: CRC press, 2008.
- [25] I. M. Ward and D. W. Hadley, *An introduction to the mechanical properties of solid polymers*. 1993.
- [26] T. S. W. PLESSER, "Limsystemer for limtre og sponplater, Sammensetning og miljøegenskaper," SINTEF Byggforsk, Prosjektrapport 94 2012.
- [27] S. K. Langård, Peter. (2018, 27.02.2019). *Formaldehyd* [Online]. Available: https://sml.snl.no/formaldehyd
- [28] M. Rønquist, "Branntekniske utfordringer og kompenserende tiltak i høye trehus," Høgskolen på Vestlandet, 2018.
- [29] G. Materialguide, "Grønn Materialguide, Veileder til miljøriktig materialvalg," Direktorat for Byggkvalitet, Husbanken, Grønn Byggallianse og Context AS, Versjon 2.2 Juni, 2017, Available: <u>https://byggalliansen.no/wp-</u> <u>content/uploads/2018/11/Gronn-Materialeguide-V2.pdf</u>.
- [30] N. T. Institutt, "Lim testet og godkjent for produksjon av konstruksjonslimtre og fingerskjøtt konstruksjonslast i Norge, Sverige, Finland og Danmark," 2015, Available: <u>http://www.treteknisk.no/resources/filer/sertifisering-ce-merking/Limliste.pdf</u>.
- [31] D. AS. (2019). *MELAMINE-UREA ADHESIVES* [Online]. Available: https://www.dynea.com/products/product-technology/melamine-urea/
- [32] S. Clauß, M. Joscak, and P. Niemz, "Thermal stability of glued wood joints measured by shear tests," *European Journal of Wood and Wood Products*, vol. 69, no. 1, pp. 101-111, 2011.
- [33] A. Frangi, M. Fontana, and A. Mischler, "Shear behaviour of bond lines in glued laminated timber beams at high temperatures," *Wood science and technology*, vol. 38, no. 2, pp. 119-126, 2004.
- [34] L. Hasburgh, K. Bourne, P. Peralta, P. Mitchell, S. Schiff, and W. Pang, "Effect of adhesives and ply configuration on the fire performance of southern pine crosslaminated timber," in *World Conference on Timber Engineering. Vienna, Austria*, 2016.

[35] F. Stoeckel, J. Konnerth, and W. Gindl-Altmutter, "Mechanical properties of adhesives for bonding wood—A review," International Journal of Adhesion and Adhesives, vol. 45, pp. 32-41, 10. april 2013. Online. Available: https://ac.elscdn.com/S0143749613000687/1-s2.0-S0143749613000687-main.pdf? tid=54ec0fdc-1d9b-4da7-8d61-

ca43e3ecbd2e&acdnat=1550568061 5a4aa999ed3727d4be7c1cb3b6a28c51

- [36] K. Richter, A. Pizzi, and A. Despres, "Thermal stability of structural one-component polyurethane adhesives for wood—structure-property relationship," Journal of *applied polymer science*, vol. 102, no. 6, pp. 5698-5707, 2006.
- [37] T. instruments, "Dynamic Mechanical Analysis, Basic Theory & Applications Training," upublisert.
- [38] M. Toledo, "Dynamic Mechanical Analysis (DMA) – online training course," 16.11.2015, Available: https://www.youtube.com/watch?v=wH3J4DDQWnc&t=191s
- [39] Azo Materials. (2001). Adhesives - Application and Joint Design [Online]. Available: https://www.azom.com/article.aspx?ArticleID=190
- [40] P. S. Abbott. Lap Joint Models: Kendall & Goland-Reissner [Online]. Available: https://www.stevenabbott.co.uk/practical-adhesion/g-rlap.php
- [41] H. Özer, Applied Adhesive Bonding in Science and Technology, 2018. [Online]. Available.
- [42] Lim for bærende trekonstruksjoner, prøvingsmetoder, Del 1: Bestemmelse av strekkskjærstyrke på langs, NS-EN 302-1:2013, 2013.
- G. Glasø and H. Landrø, "Tre og brann," Norsk Treteknisk Institutt: Fokus på tre, vol. [43] 37, 2012.
- [44] MOELVEN INDUSTRIER ASA. *Limtre tåler fullstendig brannforløp* [Online]. Available: https://www.moelven.com/no/aktuelt-og-nyheter/nyhetsarkiv/2017/limtre-talerfullstendig-brannforlop/
- [45] S. o. S. F. R. Norske Limtreprodusenters forening, "Fullstendig brannforløp i limtrekonstruksjoner, Vurdering av resultater fra branntest," Tech rep., 03. april 2017, Available:

https://www.limtreforeningen.no/images/bilder/Fullstendig brannforl%C3%B8p i li mtrekonstruksjoner.pdf.

- [46] Byggteknisk forskrift (TEK17), 2017.
- [47] Netzsch. (15.11.2018). DMA 242 E Artemis [Online]. Available: https://www.netzschthermal-analysis.com/en/products-solutions/dynamic-mechanical-thermalanalysis/dma-242-e-artemis/
- [48] Lim av fenolplast og aminoplast for bærende trekonstruksjoner - Klassifisering og ytelseskrav, NS-EN 301:2017, 2018.
- [49] D. K.-Z. SKZ. (14.02.2019). Dynamic Mechanical Analysis (DMA) [Online]. Available: http://www.skz.de/en/research/technicalfacilities/pruefverfahren1/thermischeeigenschaften1/4853.Dynamic-Mechanical-Analysis-DMA.html

- [50] SAS Institute. *Mean Diamonds and X-Axis Proportional* [Online]. Available: https://www.jmp.com/support/help/14-2/mean-diamonds-and-x-axisproportional.shtml
- [51] JMP Basic Analysis and Graphing, S. I. Inc., ed., 9. ed. USA: JMP, A Business Unit of SAS, 2010. [Online]. Available: <u>https://www.jmp.com/support/downloads/pdf/jmp9/basic_analysis_and_graphing.pdf</u>.
- [52] G. Sime. (2013, 07.03.2019). A Closer Look: Techniques for Obtaining Glass Transition Temperature of Polymeric Materials [Online]. Available: http://www.intertek.com/blog/2013-04-15-glass-transition-temperature/
- [53] J. Konnerth, A. Jäger, J. Eberhardsteiner, U. Müller, and W. Gindl, "Elastic properties of adhesive polymers. II. Polymer films and bond lines by means of nanoindentation," *Journal of applied polymer science*, vol. 102, no. 2, pp. 1234-1239, 09.03.2006. doi: <u>https://doi.org/10.1002/app.24427</u> Online.

9 Vedlegg

9.1 Metode 1

Lagringsmodul og tapsfaktor

Tabell 5 viser detaljert standardavvik og gjennomsnittleg E' for alle målepunkt i forsøket ved 3 og 5 millimeter overlapp.

Tabell 5: Gjennomsnittleg lagringsmodul og standardavvik per limtype og overlapp ved utvalde målepunkt.

				Lii	m					
		M	UF		PUR					
		Overlap	p [mm]		Overlapp [mm]					
	3		5	5	3		5			
	E' [N	lpa]	E' [N	1pa]	E' [N	lpa]	E' [Mpa]			
T [°C]	Mean Std Dev		Mean	Std Dev	Mean	Std Dev	Mean	Std Dev		
30	959,427098	216,627145	1253,92383	172,1728	491,629085	142,478293	1222,95164	80,5246191		
50	962,305463	216,84736	1268,77721	178,435046	477,821573	143,743484	1228,94424	87,9107279		
70	953,290958	216,116203	1263,20408	180,583926	451,4576	141,128713	1215,8489	93,0869457		
110	917,185875	203,385509	1232,88283	179,24139	348,798778	129,443081	1131,29078	99,3838179		
150	849,235225	179,793969	1131,70853	157,70779	170,000375	78,3421458	906,131472	51,798134		
160	744,018946	219,203947	1086,04304	145,350151	134,899025	73,2997795	828,632266	80,3023252		
170	755,793068	161,932137	604,879586	916,066533	104,867183	65,0096994	774,091917	41,9547309		
180	710,289908	100,843303	1002,15285	125,897342	85,42547	59,7232427	741,476895	80,0212309		
190	673,71765	72,8795434	988,273183	199,895269	74,113065	54,8108927				
200	647,084783	72,1247438	349,931577	1452,95451	65,5447567	47,5756854				
220	590,641203	120,201064	884,39079		47,6570433	19,5349795				
240	486,67437	110,559836			21,859762	8,33542611				

Tabell 6 viser detaljert standardavvik og gjennomsnittleg tan δ for utvalde målepunkt i forsøket ved 3 og 5 millimeter overlapp.

Tabell 6: Gjennomsnittlege verdiar for tan δ og standardavvik per limtype og overlapp ved utvalde målepunkt.

		M	UF		PUR				
		Overlap	p [mm]		Overlapp [mm]				
	3		5	j –	3		5		
	tar	n d	tar	n d	tar	n d	ta	n d	
T [°C]	Mean Std Dev		Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	
30	0,0587333	0,0187658	0,01958	0,002351	0,0678167	0,0041916	0,037898	0,0380051	
50	0,0565333	0,0184015	0,0199	0,0025971	0,0729833	0,0057304	0,03777	0,0366781	
70	0,05635	0,0171052	0,02146	0,0022098	0,08361	0,0129307	0,037948	0,0351667	
110	0,0524167	0,0152066	0,02614	0,0024131	0,151315	0,0608353	0,04424	0,0259464	
150	0,079345	0,051109	0,05298	0,0072558	0,306505	0,083359	0,101334	0,0307539	
160	0,134432	0,1607319	0,079832	0,0282033	0,3191417	0,0785413	0,116422	0,027893	
170	0,0825775	0,0404608	0,090132	0,057542	0,3099967	0,0698281	0,13435	0,0358682	
180	0,10664	0,0890609	0,11293	0,0569973	0,27839	0,0659651	0,11837	0,0136754	
190	0,1253725	0,1168571	0,0805867	0,0267837	0,245545	0,0612725			
200	0,134295	0,1287594	0,0813133	0,0436533	0,21699	0,0644882			
220	0,1102033	0,0648739	0,081		0,2172583	0,0484757			
240	0,192205	0,0471994			0,462522	0,0772747			

Tapsmodul

Tabell 7 viser detaljert standardavvik og gjennomsnittleg E'' for utvalde målepunkt i forsøket ved 3 og 5 millimeter overlapp.

				Lin	im				
		M	UF		PUR				
		Overlap	p [mm]			Overlap	p [mm]		
	3	3	5	5	3			5	
	E'' [N	/Ipa]	E'' [N	/Ipa]	E'' [N	/Ipa]	E'' [l	Mpa]	
T [°C]	Mean Std Dev		Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	
30	56,609755	23,2372962	24,581294	4,81651881	33,5257733	10,6633783	45,225522	43,1300099	
50	54,4849717	22,504072	25,291078	5,14187139	34,71602	10,3096564	45,041248	40,9864537	
70	53,6494467	20,5465111	27,05032	4,53091698	37,23487	11,2070435	44,604884	38,1154505	
110	48,2723267	18,4964031	32,017002	3,80704037	47,749915	11,4918993	48,711498	24,35133	
150	68,1159983	46,7010986	60,084438	12,6811698	47,5016183	15,6541906	89,003482	21,9185188	
160	86,645366	83,3204076	87,305468	35,3591687	39,174005	14,1901061	95,140982	20,6621931	
170	66,9794825	47,9843385	71,994626	85,5508962	29,9343983	12,6278217	104,29271	30,861972	
180	80,874305	78,8453879	112,811416	58,4788345	21,8187217	10,2204161	83,65809	13,0459504	
190	86,8066025	86,0897223	76,6097567	11,9995737	16,7689367	8,49691417			
200	87,01599	85,4336657	52,3110467	110,550975	13,23218	6,87351179			
220	60,0609867	21,8664293	99,63303		10,0571467	3,55886927			
240	90,778735	1,86713667			9,714788	2,90651083			

Tabell 7: Gjennomsnittleg tapsmodul og standardavvik per limtype og overlapp ved utvalde målepunkt.

Påført kraft på prøveobjekt

Tabell 8 viser detaljert standardavvik og gjennomsnittleg påført kraft på prøveobjekt for utvalde målepunkt i forsøket ved 3 og 5 millimeter overlapp.

Tabell 8: Gjennomsnittleg påført kraft på prøveobjekt og standardavvik per limtype og overlapp ved utvalde målepunkt.

				Lin	n					
		M	UF		PUR					
		Overlap	p [mm]			Overlap	p [mm]			
	3		5	5	3		5			
	F []	N]	F [N]		F []	N]	F [N]			
T [°C]	Mean Std Dev		Mean	Std Dev	Mean	Std Dev	Mean	Std Dev		
30	10,75828	0,01416185	10,786724	0,0088158	10,6761533	0,0598944	10,786082	0,00394185		
50	10,75707	0,01424598	10,785926	0,00894342	10,668575	0,06623478	10,784882	0,0042629		
70	10,7549017	0,01450108	10,784316	0,00915183	10,5897	0,23026869	10,782878	0,00461608		
110	10,7492983	0,01518337	10,780626	0,0096141	9,97461	1,62432017	10,776022	0,00572378		
150	10,7409583	0,0160913	10,77373	0,01005057	7,581615	3,19800953	10,754182	0,01226309		
160	10,724548	0,02580649	10,77093	0,01015041	6,20608167	3,14495935	10,749366	0,00608184		
170	10,732265	0,01108204	10,793888	0,06164527	4,98998833	3,09769125	10,74492	0,00569323		
180	10,7270925	0,01101881	10,765302	0,00955302	3,99888833	2,81613855	10,72707	0,00758018		
190	10,72178	0,01500386	10,7626967	0,01445471	3,415935	2,5803974				
200	10,71697	0,01846133	10,8106333	0,09908237	3,01700167	2,27513591				
220	10,71175	0,02697773	10,74239		2,18084167	1,0456654				
240	10,68862	0,03125412			1,158988	0,47325373				

Skjerspenning

Tabell 9 viser detaljert standardavvik og gjennomsnittleg skjerspenning på prøveobjekt for utvalde målepunkt i forsøket ved 3 millimeter og 5 millimeter overlapp.

		Lim											
			M	UF		PUR							
			Overlap	p [mm]		Overlapp [mm]							
		3		5	j	3		5					
		τ [M	pa]	τ[Μ	pa]	τ [Μ	pa]	т [Мра]					
ן ד	°C]	Mean Std Dev		Mean	Std Dev	Mean	Std Dev	Mean	Std Dev				
	30	0,59768222	0,00078677	0,35955747	0,00029386	0,59311963	0,00332747	0,35953607	0,0001314				
	50	0,597615	0,00079144	0,35953087	0,00029811	0,59269861	0,00367971	0,35949607	0,0001421				
	70	0,59749454	0,00080562	0,3594772	0,00030506	0,58831667	0,01279271	0,35942927	0,00015387				
	110	0,59718324	0,00084352	0,3593542	0,00032047	0,554145	0,09024001	0,35920073	0,00019079				
	150	0,59671991	0,00089396	0,35912433	0,00033502	0,42120083	0,1776672	0,35847273	0,00040877				
	160	0,59580822	0,00143369	0,359031	0,00033835	0,34478231	0,17471996	0,3583122	0,00020273				
	170	0,59623694	0,00061567	0,35979627	0,00205484	0,27722157	0,17209396	0,358164	0,00018977				
	180	0,59594958	0,00061216	0,3588434	0,00031843	0,22216046	0,15645214	0,357569	0,00025267				
	190	0,59565444	0,00083355	0,35875656	0,00048182	0,18977417	0,14335541						
	200	0,59538722	0,00102563	0,36035444	0,00330275	0,1676112	0,12639644						
	220	0,59509722	0,00149876	0,35807967		0,12115787	0,05809252						
	240	0,59381222	0,00173634			0,06438822	0,02629187						

Tabell 9: Gjennomsnittleg skjerspenning og standardavvik per limtype og overlapp ved utvalde målepunkt.

Påført tøying på prøveobjekt

Tabell 10 viser detaljert standardavvik og gjennomsnittleg As' for utvalde målepunkt i forsøket ved 3 og 5 millimeter overlapp.

Tabell 10: Gjennomsnittleg påført tøying på prøveobjekt og standardavvik per limtype og overlapp ved utvalde målepunkt.

				Lii	n						
		MU	F		PUR						
		Overlapp	[mm]		Overlapp [mm]						
	3	1		5	3		5				
	As' [μm]	As'	[μm]	As' [μm]	As' [µm]				
T [°C]	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev			
30	5,707335	0,9130161	3,883904	0,56656079	11,010355	3,88154861	3,923034	0,25117647			
50	5,69184333	0,91859602	3,84127	0,57501786	11,4066867	4,29332195	3,906172	0,27125994			
70	5,74691333	0,93500047	3,859726	0,58830767	12,016585	4,58900252	3,950116	0,29381053			
110	5,96761167	0,97964677	3,95535	0,61792746	14,307375	4,53839685	4,248728	0,36539687			
150	6,39507167	1,03405871	4,290992	0,64641094	19,0746583	1,48771064	5,538784	0,78288709			
160	7,41654	1,61595701	4,446894	0,65297457	19,428975	0,79026702	5,825054	0,38810938			
170	6,91589	0,71918523	2,953852	3,94883291	19,8925333	0,17951649	6,09147	0,3698467			
180	7,2283325	0,70468447	4,770304	0,61432014	19,845815	0,14548893	7,224915	0,48238118			
190	7,5519975	0,94792202	4,929	0,92559225	19,784285	0,19516706					
200	7,8482275	1,16392252	1,84925	6,34503384	19,8840267	0,29315788					
220	8,17775667	1,72142429	4,55876		19,7940483	0,67135613					
240	9,640265	1,99879995			21,088344	1,04981402					

Forlenging/krymping av prøveobjekt

Tabell 11 viser detaljert standardavvik og gjennomsnittleg forlenging/krymping, dL, for utvalde målepunkt i forsøket ved 3 og 5 millimeter overlapp.

				Lii	m						
		M	UF		PUR						
		Overlap	p [mm]			Overlap	p [mm]				
	3		5	5	3		5				
	dL (µ	ւm]	dL (j	.m]	dL (j	ւm]	dL [µm]				
T [°C]	Mean Std Dev		Mean	Std Dev	Mean	Std Dev	Mean	Std Dev			
30	0,3736933	0,1519694	0,077456	0,1388805	0,4043767	0,2229743	0,273088	0,1438271			
50	-1,154058	0,181079	-1,86038	0,2726602	0,1028167	1,7418113	-1,459954	0,2650336			
70	-3,775525	0,5281236	-5,562162	0,3659356	1,480925	7,4756093	-4,224184	0,8075324			
110	-9,573307	2,6817353	-14,54714	0,8680313	22,449767	32,029998	-9,5903	2,4950572			
150	-0,74948	28,142759	-22,77162	2,3503085	74,447673	35,302839	-4,525364	8,8731171			
160	116,70335	249,54257	-17,78746	7,1992524	68,12125	28,333247	37,984652	62,766447			
170	16,557878	50,480701	11,700042	44,013407	60,611468	16,36222	50,65724	82,487587			
180	53,608055	118,75092	257,00364	478,07894	53,934053	10,512906	139,11115	189,23696			
190	91,841973	187,81008	4,1517967	24,780263	55,501645	7,0959647					
200	160,24507	270,45691	168,63139	178,40761	71,374087	6,6570149					
220	99,64067	197,76736	162,2307		223,05355	13,090685					
240	412,14873	537,93916			838,44771	154,02933					

Tabell 11: Gjennomsnittleg forlenging/krymping og standardavvik per limtype og overlapp ved kvart målepunkt.

Tabell 12 inneheld fullstendige data frå metode 1.

т	-	Overlapp	F	τ	Ε'	E''		As'	dL
[°C]	Lim	[mm]	[N]	[Mpa]	[Mpa]	[Mpa]	tan d	[µm]	[µm]
30	MUF	3	10,7548	0,5975	1103,4873	72,6693	0,0659	5,9304	0,4238
30	MUF	3	10,7641	0,5980	1230,9660	41,1987	0,0335	5,3378	0,3193
30	MUF	3	10,7595	0,5978	846,4921	55,3691	0,0654	5,6252	0,1532
30	MUF	3	10,7362	0,5965	667,6496	26,4039	0,0396	7,1358	0,3158
30	MUF	3	10,7555	0,5975	808,7216	51,8066	0,0641	5,8868	0,6101
30	MUF	3	10,7797	0,5989	1099,2460	92,2109	0,0839	4,3281	0,4200
50	MUF	3	10,7529	0,5974	1098,3813	66,2093	0,0603	5,9610	-0,9961
50	MUF	3	10,7630	0,5979	1236,7020	38,5570	0,0312	5 <i>,</i> 3133	-1,2906
50	MUF	3	10,7588	0,5977	853,8613	56,5111	0,0662	5 <i>,</i> 5758	-1,3813
50	MUF	3	10,7350	0,5964	669,4166	26,6970	0,0399	7,1160	-0,9006
50	MUF	3	10,7541	0,5975	809,8879	48,0696	0,0594	5,8809	-1,1371
50	MUF	3	10,7786	0,5988	1105,5837	90,8659	0,0822	4,3040	-1,2187
70	MUF	3	10,7502	0,5972	1081,7495	65,4804	0,0605	6,0510	-4,0156
70	MUF	3	10,7615	0,5979	1233,5160	39,0303	0,0316	5,3262	-4,2156
70	MUF	3	10,7574	0,5976	851,9278	57,6122	0,0676	5 <i>,</i> 5866	-3,7366
70	MUF	3	10,7324	0,5962	661,6421	27,3002	0,0413	7,1971	-2,8473
70	MUF	3	10,7515	0,5973	798,7462	47,1287	0,0590	5,9618	-3,5733
70	MUF	3	10,7764	0 <i>,</i> 5987	1092,1641	85,3449	0,0781	4,3588	-4,2647
110	MUF	3	10,7411	0,5967	1007,4778	59,0210	0,0586	6,4931	-10,7941
110	MUF	3	10,7567	0,5976	1195,1192	38,4880	0,0322	5,4946	-11,5815
110	MUF	3	10,7536	0,5974	836,7513	50,1552	0,0599	5,6914	-10,2800
110	MUF	3	10,7267	0,5959	641,1225	24,8735	0,0388	7,4249	-4,6946
110	MUF	3	10,7462	0,5970	772,2552	39,3507	0,0510	6,1686	-8,3581
110	MUF	3	10,7715	0,5984	1050,3892	77,7456	0,0740	4,5330	-11,7314
150	MUF	3	10,7294	0,5961	895,5643	157,8343	0,1805	7,1161	55,0219
150	MUF	3	10,7474	0,5971	1094,5049	58,0983	0,0531	5 <i>,</i> 9850	-16,7171
150	MUF	3	10,7442	0,5969	767,2784	59,2367	0,0772	6,1869	-19,1099
150	MUF	3	10,7191	0,5955	608,3104	30,3025	0,0498	7,8123	0,4359
150	MUF	3	10,7397	0,5966	734,3493	32,8803	0,0448	6,4869	-12,3071
150	MUF	3	10,7660	0,5981	995,4040	70,3440	0,0707	4,7832	-11,8206
160	MUF	3	10,6823	0 <i>,</i> 5935	544,5293	232,3961	0,4206	10,0499	560,2707
160	MUF	3	10,7441	0,5969	1107,2148	70,4756	0,0642	6,1846	51,4419
160	MUF	3	10,7400	0,5967	735,9478	64,5441	0,0877	6,4367	-20,9602
160	MUF	3	10,7175	0,5954	601,7117	32,8731	0,0546	7,8929	5,5835
160	MUF	3	10,7389	0,5966	730,6912	32,9379	0,0451	6,5187	-12,8191
170	MUF	3	10,7375	0,5965	980,3168	135,8384	0,1371	6,5606	89,0921
170	MUF	3	10,7383	0,5966	725,6764	63,6766	0,0878	6,5269	-22,1054
170	MUF	3	10,7157	0,5953	593,5854	35,9662	0,0606	7,9941	12,1766
170	MUF	3	10,7376	0,5965	723,5938	32,4368	0,0448	6,5820	-12,9319
180	MUF	3	10,7229	0,5957	830,6470	198,3349	0,2388	7,4672	229,5315

Tabell 12: Fullstendig datatabell med alle målingar og faktorar i metode 1

180	MUF	3	10,7360	0,5964	712,2435	53,9768	0,0758	6,6613	-22,8979
180	MUF	3	10,7134	0,5952	583,7950	39,3663	0,0674	8,1195	20,6504
180	MUF	3	10,7361	0,5964	714,4741	31,8192	0,0446	6,6653	-12,8518
190	MUF	3	10,7084	0,5949	718,5553	215,0082	0,2991	8,3660	371,2129
190	MUF	3	10,7353	0,5964	708,3435	57,2742	0,0809	6,6923	-23,5501
190	MUF	3	10,7092	0,5950	564,8205	42,8903	0,0759	8,3789	32,3234
190	MUF	3	10,7342	0,5963	703,1512	32,0537	0,0456	6,7708	-12,6183
200	MUF	3	10,6984	0,5944	658,3575	214,4778	0,3258	8,9886	553,3289
200	MUF	3	10,7334	0,5963	696,5745	53,9259	0,0774	6,8078	-23,8197
200	MUF	3	10,7038	0,5947	541,9253	46,9803	0,0867	8,7138	123,5646
200	MUF	3	10,7323	0,5962	691,4819	32,6800	0,0473	6,8828	-12,0936
220	MUF	3	10,7283	0,5960	664,9591	57,7888	0,0869	7,1172	-21,5511
220	MUF	3	10,6806	0,5934	451,9641	82,9748	0,1835	10,1640	327,8562
220	MUF	3	10,7263	0,5959	655,0004	39,4194	0,0602	7,2521	-7,3831
240	MUF	3	10,7107	0,5950	564,8520	89 <i>,</i> 4585	0,1588	8,2269	31,7683
240	MUF	3	10,6665	0,5926	408,4968	92,0990	0,2256	11,0536	792,5292
30	PUR	3	10,5759	0,5875	367,5035	23,0845	0,0628	17,5180	0,8528
30	PUR	3	10,7434	0,5969	713,1999	49,3704	0,0692	6,6632	0,3065
30	PUR	3	10,6548	0,5919	380,6841	25,4239	0,0668	7,6461	0,3496
30	PUR	3	10,6875	0,5938	460,7547	29,2847	0,0636	11,5822	0,3234
30	PUR	3	10,6672	0,5926	407,1555	29,8978	0,0734	10,2680	0,3485
30	PUR	3	10,7281	0,5960	620,4768	44,0934	0,0711	12,3846	0,2455
50	PUR	3	10,5537	0,5863	339,8097	27,4018	0,0806	18,8590	3,6057
50	PUR	3	10,7400	0,5967	699,9412	51,2042	0,0732	6,7835	-0,3235
50	PUR	3	10,6525	0,5918	378,7773	26,3632	0,0696	7,8064	-0,5552
50	PUR	3	10,6824	0,5935	450,1039	29,0182	0,0645	12,0467	-0,2422
50	PUR	3	10,6585	0,5921	390,8925	30,3735	0,0777	10,5048	-0,8466
50	PUR	3	10,7242	0 <i>,</i> 5958	607,4049	43,9353	0,0723	12,4396	-1,0215
70	PUR	3	10,1257	0,5625	305,6620	32,2655	0,1056	20,0257	16,4551
70	PUR	3	10,7340	0,5963	668,3884	56,0056	0,0838	7,0881	-0,3433
70	PUR	3	10,6476	0,5915	371,3997	26,6816	0,0718	8,1951	-1,4552
70	PUR	3	10,6718	0,5929	424,9976	30,3380	0,0714	13,0097	0,3639
70	PUR	3	10,6423	0,5912	360,6689	32,5263	0,0902	11,1041	-2,5078
70	PUR	3	10,7168	0,5954	577,6291	45,5923	0,0789	12,6769	-3,6272
110	PUR	3	6,6609	0,3701	193,5182	44,6318	0,2306	20,0123	74,8906
110	PUR	3	10,7053	0,5947	533,6327	64,6073	0,1211	8,7884	6,8854
110	PUR	3	10,6333	0,5907	348,7440	29,4444	0,0844	10,2532	4,1876
110	PUR	3	10,6207	0,5900	325,0263	45,3418	0,1395	19,0841	47,9218
110	PUR	3	10,5449	0,5858	234,3105	52,0153	0,2220	14,2499	9,9766
110	PUR	3	10,6826	0,5935	457,5610	50,4589	0,1103	13,4565	-9,1635
150	PUR	3	2,5771	0,1432	71,5917	24,5797	0,3433	19,8994	81,0804
150	PUR	3	10,4731	0,5818	215,5285	68,2184	0,3165	19,6795	89,5829
150	PUR	3	10,5913	0,5884	287,3703	41,5120	0,1445	19,7124	80,0641
150	PUR	3	7,3155	0,4064	149,7812	49,4793	0,3303	19,4570	107,2680
150	PUR	3	5,2166	0,2898	104,4722	40,3253	0,3860	19,6481	83,3155

150	PUR	3	9,3160	0,5176	191,2585	60,8950	0,3184	16,0516	5,3751
160	PUR	3	1,8188	0,1010	50,8555	16,4618	0,3237	20,0509	63,5132
160	PUR	3	8,2727	0,4596	168,4979	56,4815	0,3352	19,6868	92,2039
160	PUR	3	10,5631	0,5868	255,7441	43 <i>,</i> 3350	0,1694	19,7511	74,1973
160	PUR	3	5,5898	0,3105	113,3092	38,9856	0,3441	19,5169	91,1226
160	PUR	3	3,8282	0,2127	75,7720	30,5888	0,4037	19,7131	72,7246
160	PUR	3	7,1639	0,3980	145,2155	49,1914	0,3388	17,8551	14,9660
170	PUR	3	1,3122	0,0729	37,3717	10,3612	0,2772	20,1811	49,0669
170	PUR	3	6,2061	0,3448	126,1495	42,3611	0,3358	19,7423	81,8440
170	PUR	3	10,2015	0,5667	219,6083	41,6485	0,1897	19,8575	63,0988
170	PUR	3	4,1378	0,2299	84,0220	27,0994	0,3225	19,6746	73,5118
170	PUR	3	2,7591	0,1533	54,7023	21,5509	0,3940	19,9530	59,6391
170	PUR	3	5,3232	0,2957	107,3494	36,5854	0,3408	19,9467	36,5083
180	PUR	3	1,0357	0,0575	30,3436	6,9343	0,2285	20,0237	43,3975
180	PUR	3	4,5379	0,2521	93,4461	29,3105	0,3137	19,7581	69,3342
180	PUR	3	9,1232	0,5068	197,3327	34,5076	0,1749	19,7279	54,1142
180	PUR	3	3,1828	0,1768	66,2184	18,4434	0,2785	19,6684	62,7041
180	PUR	3	2,0867	0,1159	42,5762	14,9267	0,3506	19,9428	51,0314
180	PUR	3	4,0271	0,2237	82,6358	26,7899	0,3242	19,9541	43,0230
190	PUR	3	0,9028	0,0502	26,8268	5,1282	0,1912	19,9919	49,2627
190	PUR	3	3,5741	0,1986	75,3747	21,5870	0,2864	19,5864	65,0724
190	PUR	3	8,2750	0,4597	179,3257	28,4737	0,1588	19,5940	53,7238
190	PUR	3	2,6868	0,1493	57,3538	13,3365	0,2325	19,6692	63,4412
190	PUR	3	1,7428	0,0968	36,5753	10,9239	0,2987	19,8453	52,9887
190	PUR	3	3,3141	0,1841	69,2222	21,1644	0,3058	20,0189	48,5211
200	PUR	3	0,8121	0,0451	24,2868	3,9225	0,1615	20,0281	70,7012
200	PUR	3	3,1118	0,1729	65,8418	18,3361	0,2785	19,6109	78,4228
200	PUR	3	7,3174	0,4065	157,0488	21,1371	0,1346	19,5895	67,4117
200	PUR	3	2,3977	0,1332	51,5809	9,9945	0,1938	19,7426	79,9244
200	PUR	3	1,5606	0,0867	33,5089	7,9801	0,2381	19,9822	69,2486
200	PUR	3	2,9024	0,1612	61,0014	18,0229	0,2955	20,3509	62,5358
220	PUR	3	0,7857	0,0436	23,6008	4,7126	0,1997	19,7416	235,2164
220	PUR	3	2,4831	0,1380	53,2538	13,6039	0,2555	19,5729	232,5941
220	PUR	3	3,9216	0,2179	81,3634	11,8780	0,1460	19,7515	201,8714
220	PUR	3	1,9840	0,1102	43,2626	8,1806	0,1891	18,9385	224,2910
220	PUR	3	1,5959	0,0887	35,7603	8,3733	0,2341	19,7546	213,0606
220	PUR	3	2,3149	0,1286	48,7013	13,5944	0,2791	21,0051	231,2877
240	PUR	3	0,4027	0,0224	10,3800	5,1458	0,4962	20,8546	622,3615
240	PUR	3	0,9843	0,0547	15,5647	8,8736	0,5715	21,1531	800,0304
240	PUR	3	1,4143	0,0786	26,9241	11,7396	0,4354	20,3853	849,8281
240	PUR	3	1,4940	0,0830	28,0176	12,4979	0,4464	20,2062	867,6862
240	PUR	3	1,4997	0,0833	28,4124	10,3170	0,3632	22,8425	1052,3323
30	MUF	5	10,7807	0,3594	1121,3107	19,8999	0,0177	4,2717	0,0239
30	MUF	5	10,7742	0,3591	1021,1269	20,9379	0,0205	4,6875	0,2033
30	MUF	5	10,7941	0,3598	1406,6552	25,2977	0,0180	3,4094	0,0181

30	MUF	5	10,7915	0,3597	1339,6444	24,6339	0,0184	3,5790	-0,0946
30	MUF	5	10,7931	0,3598	1380,8820	32,1371	0,0233	3,4720	0,2366
50	MUF	5	10,7798	0,3593	1131,5428	20,5019	0,0181	4,2327	-1,8853
50	MUF	5	10,7732	0,3591	1027,4542	20,8890	0,0203	4,6582	-1,6216
50	MUF	5	10,7934	0,3598	1426,3833	23,5079	0,0165	3,3622	-2,1018
50	MUF	5	10,7907	0,3597	1356,4851	30,9249	0,0228	3,5337	-2,1475
50	MUF	5	10,7925	0,3597	1402,0207	30,6317	0,0218	3,4196	-1,5457
70	MUF	5	10,7780	0,3593	1121,9349	23,4574	0,0209	4,2677	-5,7359
70	MUF	5	10,7714	0,3590	1019,6798	22,5566	0,0221	4,6926	-5,4470
70	MUF	5	10,7918	0,3597	1418,9846	25,5477	0,0180	3,3790	-5,6625
70	MUF	5	10,7895	0,3597	1359,1345	32,4688	0,0239	3,5262	-5,9672
70	MUF	5	10,7910	0,3597	1396,2866	31,2212	0,0224	3,4331	-4,9982
110	MUF	5	10,7746	0,3592	1101,9568	27,0478	0,0245	4,3430	-15,3482
110	MUF	5	10,7666	0,3589	984,4045	29,3594	0,0298	4,8566	-14,6379
110	MUF	5	10,7884	0,3596	1387,2069	32,5440	0,0235	3,4546	-14,6986
110	MUF	5	10,7861	0,3595	1329,9270	34,9597	0,0263	3,6021	-14,9733
110	MUF	5	10,7874	0,3596	1360,9191	36,1741	0,0266	3,5204	-13,0777
150	MUF	5	10,7679	0,3589	1023,4654	44,3425	0,0433	4,6673	-24,2065
150	MUF	5	10,7587	0,3586	907,0740	52,0135	0,0573	5,2543	-24,9640
150	MUF	5	10,7811	0,3594	1251,3830	77,0076	0,0616	3,8147	-22,5981
150	MUF	5	10,7799	0,3593	1226,9089	66,7052	0,0544	3 <i>,</i> 8935	-23,1938
150	MUF	5	10,7810	0,3594	1249,7113	60,3533	0,0483	3,8252	-18,8958
160	MUF	5	10,7672	0,3589	1017,8376	44,3432	0,0436	4,6927	-24,2197
160	MUF	5	10,7549	0,3585	866,7660	71,4882	0,0825	5,4776	-24,3605
160	MUF	5	10,7773	0,3592	1172,4136	133,3737	0,1138	4,0335	-15,2638
160	MUF	5	10,7754	0,3592	1141,3806	112,3971	0,0985	4,1556	-18,0892
160	MUF	5	10,7799	0,3593	1231,8174	74,9251	0,0608	3,8751	-7,0042
170	MUF	5	10,7656	0,3589	998,5665	49,6540	0,0497	4,7798	-25,0211
170	MUF	5	10,7494	0,3583	811,0757	100,2891	0,1238	5,8026	-10,2161
170	MUF	5	10,7735	0,3591	1018,1728	182,2233	0,1740	4,2432	2,7461
170	MUF	5	10,9024	0,3634	-1014,1678	-53,4635	0,0361	-3,9953	87,6590
170	MUF	5	10,7786	0,3593	1210,7506	81,2702	0,0671	3,9389	3,3322
180	MUF	5	10,7636	0,3588	975,5286	54,7266	0,0561	4,8885	-25,3353
180	MUF	5	10,7507	0 <i>,</i> 3584	827,8492	84,1852	0,1017	5,7129	10,5436
180	MUF	5	10,7686	0,3590	1018,9317	206,9724	0,2038	4,5423	180,9223
180	MUF	5	10,7667	0,3589	1007,4145	126,2874	0,1253	4,6766	1100,3003
180	MUF	5	10,7769	0,3592	1181,0403	91,8855	0,0778	4,0312	18,5873
190	MUF	5	10,7608	0,3587	942,0954	67,6537	0,0718	5,0506	-24,1893
190	MUF	5	10,7493	0,3583	815,5080	90,2437	0,1107	5,7878	14,9097
190	MUF	5	10,7780	0,3593	1207,2162	71,9318	0,0593	3,9486	21,7351
200	MUF	5	10,7588	0,3586	919,4761	71,8954	0,0782	5,1690	25,0475
200	MUF	5	10,9249	0,3642	-1301,5122	-66,7233	0,0393	-5,4669	112,4897
200	MUF	5	10,7482	0,3583	1431,8309	151,7611	0,1264	5,8457	368,3570
220	MUF	5	10,7424	0,3581	884,3908	99,6330	0,0810	4,5588	162,2307
30	PUR	5	10,7831	0,3594	1153,9602	121,9640	0,1057	4,1074	0,2515

30	PUR	5	10,7905	0,3597	1317,2485	33,6794	0,0256	3,6384	0,4656
30	PUR	5	10,7870	0,3596	1239,6224	24,6299	0,0199	3,8660	0,1362
30	PUR	5	10,7887	0,3596	1276,5498	22,7472	0,0178	3,7550	0,3699
30	PUR	5	10,7811	0,3594	1127,3773	23,1071	0,0205	4,2484	0,1422
50	PUR	5	10,7810	0,3594	1142,8976	117,8997	0,1032	4,1485	-1,2142
50	PUR	5	10,7894	0,3596	1324,9954	34,6474	0,0262	3,6166	-1,1433
50	PUR	5	10,7858	0,3595	1244,6718	25,2684	0,0203	3,8498	-1,5734
50	PUR	5	10,7883	0,3596	1298,8578	23,0177	0,0177	3,6904	-1,6267
50	PUR	5	10,7800	0,3593	1133,2987	24,3732	0,0215	4,2256	-1,7421
70	PUR	5	10,7781	0,3593	1115,5726	112,2789	0,1006	4,2511	-3,0756
70	PUR	5	10,7877	0,3596	1314,4106	35,4735	0,0270	3,6450	-3,7941
70	PUR	5	10,7839	0,3595	1231,5931	26,9249	0,0219	3,8897	-4,3243
70	PUR	5	10,7868	0,3596	1294,1121	24,6953	0,0191	3,7032	-4,9860
70	PUR	5	10,7781	0,3593	1123,5561	23,6518	0,0211	4,2616	-4,9409
110	PUR	5	10,7691	0,3590	1012,6192	91,6774	0,0905	4,6884	-5,7966
110	PUR	5	10,7822	0,3594	1242,6095	44,1352	0,0355	3,8516	-8,5552
110	PUR	5	10,7768	0,3592	1138,8673	38,3645	0,0337	4,2009	-10,1713
110	PUR	5	10,7807	0,3594	1211,7281	36,2203	0,0299	3,9507	-11,9118
110	PUR	5	10,7713	0,3590	1050,6298	33,1602	0,0316	4,5520	-11,5166
150	PUR	5	10,7337	0,3578	881,1531	119,8023	0,1509	6,8425	9,3934
150	PUR	5	10,7650	0,3588	977,0184	96,5332	0,0988	4,8421	-2,1206
150	PUR	5	10,7558	0,3585	869,8177	91,3332	0,1050	5,4362	-5,9324
150	PUR	5	10,7621	0,3587	944,4536	75,1724	0,0796	5,0328	-13,0287
150	PUR	5	10,7543	0,3585	858,2146	62,1764	0,0724	5,5404	-10,9386
160	PUR	5	10,7394	0,3580	721,4330	110,8716	0,1536	6,4577	86,2488
160	PUR	5	10,7546	0,3585	942,3296	118,2158	0,1298	5,4855	123,8095
160	PUR	5	10,7487	0,3583	803,2396	94,6794	0,1179	5,8665	0,1147
160	PUR	5	10,7539	0,3585	854,6899	85,7789	0,1004	5,5366	-10,1240
160	PUR	5	10,7502	0,3583	821,4692	66,1592	0,0805	5,7790	-10,1258
170	PUR	5	10,7514	0,3584	821,3192	132,0364	0,1607	5,6724	145,1199
170	PUR	5	10,7405	0,3580	741,1300	109,7903	0,1489	6,3723	13,9999
170	PUR	5	10,7429	0,3581	759,8266	71,0514	0,0935	6,2297	-7,1481
180	PUR	5	10,7217	0,3574	798,0605	92 <i>,</i> 8830	0,1280	7,5660	272,9219
180	PUR	5	10,7324	0,3577	684,8933	74,4332	0,1087	6,8838	5,3004

9.2 Metode 2

Lagringsmodul og tapsfaktor

Tabell 13 viser detaljert standardavvik og gjennomsnittleg E' og tan δ for utvalde målepunkt i forsøket ved 3 millimeter overlapp.

Tabell 13: Gjennomsnittlege verdiar og standardavvik for lagringsmodul, E', og tapsfaktor, tan δ , for MUF med 3 millimeter overlapp.

		Lim										
		MU	F									
		Overlapp	[mm]									
		3										
	E' [N	lpa]	tar	n d								
T [°C]	Mean	Std Dev	Mean	Std Dev								
30	932,140964	71,5623955	0,02988	0,0074774								
50	939,375998	70,6616906	0,0297	0,0080446								
70	930,578448	68,0016218	0,03056	0,0068995								
110	885,32113	64,2488397	0,03468	0,005238								
150	817,718822	47,6974787	0,05174	0,0156878								
160	365,1323	910,289234	0,061512	0,0364718								
170	777,270726	45,6716388	0,077446	0,0323928								
180	747,192083	39,1150337	0,0841775	0,0445084								
190	728,786005	29,8208663	0,1233825	0,0570361								
200	51,38428	1101,83645	0,08961	0,0453968								
220	589,06538		0,21919									
240	327,55735		0,43238									

Tapsmodul

Tabell 14 viser detaljert standardavvik og gjennomsnittleg E'' for utvalde målepunkt i forsøket ved 3 millimeter overlapp.

Tabell 14: Gjennomsnittlege verdiar og standardavvik for tapsmodul, E'', for MUF med 3 millimeter overlapp.

	Lim								
	MUF								
	Overlap	p [mm]							
	3	•							
	E'' [N	/Ipa]							
T [°C]	Mean	Std Dev							
30	28,19161	9,08691613							
50	28,17881	9,47256671							
70	28,627104	7,86827054							
110	30,766974	5,63526964							
150	43,557232	16,6232537							
160	28,955294	54,5804616							
170	60,326062	25,4579072							
180	62,3416425	30,9308863							
190	87,2300575	38,6643896							
200	31,8014633	79,8051566							
220	129,10228								
240	141,63418								

Påført kraft på prøveobjekt

Tabell 15 viser detaljert standardavvik og gjennomsnittleg påført kraft, F, for utvalde målepunkt i forsøket ved 3 millimeter overlapp.

Tabell 15: Gjennomsnittlege verdiar og standardavvik for påført kraft på prøveobjekt, F, for MUF med 3 millimeter overlapp.

	Lim							
	MUF							
	Overlap	p (mm)						
	3	•						
	F [N]						
T [°C]	Mean	Std Dev						
30	9,869686	0,005303						
50	9,868958	0,005178						
70	9,867126	0,005106						
110	9,861472	0,005397						
150	9,853952	0,005035						
160	9,881092	0,071892						
170	9,849408	0,005114						
180	9,84593	0,004391						
190	9,838648	0,007468						
200	9,892583	0,101401						
220	9,8254							
240	9,76025							

Skjerspenning

Tabell 16 viser detaljert standardavvik og gjennomsnittleg τ for utvalde målepunkt i forsøket ved 3 millimeter overlapp.

Tabell 16: Gjennomsnittlege verdiar og standardavvik for påført skjerspenning, τ , på prøveobjekt for MUF med 3 millimeter overlapp.

	Lim							
	MUF							
	Overlap	p (mm)						
	3							
	τ[Μ	pa]						
T [°C]	Mean	Std Dev						
30	0,548316	0,000295						
50	0,548275	0,000288						
70	0,548174	0,000284						
110	0,54786	0,0003						
150	0,547442	0,00028						
160	0,54895	0,003994						
170	0,547189	0,000284						
180	0,546996	0,000244						
190	0,546592	0,000415						
200	0,549588	0,005633						
220	0,545856							
240	0,542236							

Påført tøying på prøveobjekt

Tabell 17 viser detaljert standardavvik og gjennomsnittleg As' for utvalde målepunkt i forsøket ved 3 millimeter overlapp.

Tabell 17: Gjennomsnittlege verdiar og standardavvik for påført tøying på prøveobjekt, As', for MUF med 3 millimeter overlapp.

	Lim							
	MUF							
	Overla	pp [mm]						
		3						
	As'	[µm]						
T [°C]	Mean	Std Dev						
30	4,722386	0,34161517						
50	4,684954	0,33353491						
70	4,727144	0,328868						
110	4,964672	0,34742558						
150	5,35424	0,32630866						
160	3,596182	4,60688335						
170	5,609174	0,32999646						
180	5,818295	0,28007824						
190	6,273055	0,48187584						
200	2,80058 6,49486724							
220	7,07659							
240	11,18674							

Forlenging/krymping av prøveobjekt

Tabell 18 viser detaljert standardavvik og gjennomsnittleg dL for utvalde målepunkt i forsøket ved 3 millimeter overlapp.

Tabell 18: Gjennomsnittlege verdiar og standardavvik for forlenging/krymping av prøveobjekt for MUF med 3 millimeter overlapp.

	Lim							
	MUF							
	Overlap	p [mm]						
	3	•						
	dL (j	ւտ]						
T [°C]	Mean	Std Dev						
30	0,18644	0,33872						
50	-1,834278	0,4896876						
70	-5,331194	0,6127547						
110	-13,91095	0,8701293						
150	-15,48503	17,802976						
160	19,127932	90,420666						
170	64,87048	184,24611						
180	-7,20473	34,961922						
190	15,599415	55,387764						
200	17,48089	12,380042						
220	384,23672							
240	1139,5332							

Tabell 19 inneheld fullstendige data frå metode 2.

т	-	Overlapp	F	τ	E'	E''		As'	dL
[°C]	Lim	[mm]	[N]	[Mpa]	[Mpa]	[Mpa]	tan d	[µm]	[µm]
30	MUF	3	9,8782	0,5488	1050,1724	42,9904	0,0409	4,1736	0,4745
30	MUF	3	9,8669	0,5482	894,2988	30,4842	0,0341	4,8979	0,3367
30	MUF	3	9,8697	0,5483	927,7675	24,8885	0,0268	4,7246	-0,3533
30	MUF	3	9,8640	0,5480	860,8556	21,1256	0,0245	5,0895	0,4058
30	MUF	3	9,8696	0,5483	927,6106	21,4694	0,0231	4,7263	0,0684
50	MUF	3	9,8772	0,5487	1054,7687	43,2908	0,0410	4,1549	-1,3364
50	MUF	3	9,8662	0,5481	901,3275	31,8009	0,0353	4,8590	-1,4973
50	MUF	3	9,8694	0,5483	941,6611	21,3984	0,0227	4,6558	-2,5595
50	MUF	3	9,8633	0,5480	867,6748	22,2645	0,0257	5,0489	-1,7077
50	MUF	3	9,8686	0,5483	931,4479	22,1395	0,0238	4,7062	-2,0705
70	MUF	3	9,8751	0,5486	1039,9895	40,2789	0,0387	4,2138	-4,4757
70	MUF	3	9,8645	0,5480	894,9037	33,2965	0,0372	4,8923	-5,0938
70	MUF	3	9,8677	0,5482	934,3917	22,2645	0,0238	4,6909	-6,1453
70	MUF	3	9,8613	0,5479	858,3978	23,6680	0,0276	5,1019	-5,3931
70	MUF	3	9,8670	0,5482	925,2095	23,6275	0,0255	4,7367	-5,5480
110	MUF	3	9,8696	0,5483	985,9227	37,7934	0,0383	4,4426	-12,8950
110	MUF	3	9,8599	0,5478	863,2225	35,9680	0,0417	5,0677	-13,0269
110	MUF	3	9,8617	0,5479	884,0689	26,0025	0,0294	4,9534	-14,5613
110	MUF	3	9,8545	0,5475	808,5040	27,2019	0,0336	5,4110	-14,6103
110	MUF	3	9,8617	0,5479	884,8875	26,8691	0,0304	4,9486	-14,4612
150	MUF	3	9,8600	0,5478	877,0461	70,0502	0,0748	4,9619	16,2679
150	MUF	3	9,8542	0 <i>,</i> 5475	818,2932	32,7625	0,0400	5,3436	-21,9254
150	MUF	3	9 <i>,</i> 8558	0,5475	834,6862	33,7117	0,0404	5,2394	-24,5295
150	MUF	3	9,8461	0,5470	745,0950	31,3341	0,0421	5 <i>,</i> 8628	-25,0201
150	MUF	3	9,8538	0,5474	813,4736	49,9278	0,0614	5 <i>,</i> 3635	-22,2181
160	MUF	3	10,0095	0,5561	-1261,7540	-58 <i>,</i> 3004	0,0407	-4,6312	180,3029
160	MUF	3	9,8520	0,5473	799,2902	38 <i>,</i> 6465	0,0484	5 <i>,</i> 4655	-23,0646
160	MUF	3	9,8542	0 <i>,</i> 5475	820,7261	37,9256	0,0462	5,3249	-26,7896
160	MUF	3	9,8443	0,5469	732,2132	33,4564	0,0457	5,9629	-26,5796
160	MUF	3	9,8456	0,5470	735,1860	93 <i>,</i> 0483	0,1266	5 <i>,</i> 8588	-8,2293
170	MUF	3	9,8557	0,5475	833,9379	85 <i>,</i> 0643	0,1020	5,1976	393,3239
170	MUF	3	9,8494	0,5472	776,8242	48,9755	0,0630	5,6129	-22,2863
170	MUF	3	9,8528	0,5474	809,1988	41,6536	0,0515	5 <i>,</i> 3973	-28,9255
170	MUF	3	9,8428	0,5468	722,5260	35,6831	0,0494	6,0399	-26,6656
170	MUF	3	9,8463	0,5470	743,8666	90,2538	0,1213	5,7982	8,9059
180	MUF	3	9,8483	0,5471	767,7765	56,3114	0,0733	5,6705	-19,2663
180	MUF	3	9 <i>,</i> 8508	0,5473	792,0502	47,3340	0,0598	5,5080	-29,6542
180	MUF	3	9,8413	0,5467	711,9581	38,3116	0,0538	6,1258	-24,7490
180	MUF	3	9,8434	0,5469	716,9836	107,4096	0,1498	5,9688	44,8505
190	MUF	3	9,8444	0,5469	733,8000	75 <i>,</i> 0805	0,1023	5,9012	-1,0607

Tabell 19: Fullstendig datatabell med alle målingar og faktorar i metode 2

190	MUF	3	9,8435	0,5469	722,7888	91,3536	0,1264	5,9584	-16,7817
190	MUF	3	9,8386	0,5466	693,1787	44,9398	0,0648	6,2819	-17,6502
190	MUF	3	9,8281	0,5460	765,3765	137,5463	0,2000	6,9507	97,8903
200	MUF	3	9,8389	0,5466	688,2624	90,9691	0,1321	6,2382	24,3431
200	MUF	3	10,0095	0,5561	-1220,9066	-58,9645	0,0418	-4,6906	24,9102
200	MUF	3	9,8293	0,5461	686,7970	63,3998	0,0949	6,8542	3,1894
220	MUF	3	9,8254	0,5459	589,0654	129,1023	0,2192	7,0766	384,2367
240	MUF	3	9,7603	0,5422	327,5574	141,6342	0,4324	11,1867	1139,5332
-									

9.3 Metode 3

Lagringsmodul og tapsfaktor

Tabell 20 viser detaljert standardavvik og gjennomsnittleg E' for utvalde målepunkt i forsøket ved 3 millimeter og 5 millimeter overlapp.

Tabell 20: Gjennomsnittlege verdiar og standardavvik for lagringsmodul, E', for MUF og PUR med 3 og 5 millimeter overlapp.

				Lii	m				
		M	JF		PUR				
		Overlap	p [mm]			Overlap	p [mm]		
	3	}	5	j –	3		5	j	
	E' [N	1pa]	E' [N	lpa]	E' [N	lpa]	E' [N	lpa]	
T [°C]	Mean	Std Dev							
30	1246,0131	147,82305	1505,5745	92,785111	1149,7147	41,301758	1452,6254	77,641675	
50	1260,1646	159,5906	1530,6799	88,126781	1150,1911	47,240439	1479,7756	86,564894	
70	1255,6014	167,15602	1530,3058	88,866129	1126,523	51,383941	1471,7061	89,569334	
110	1219,9163	115,38046	1442,3768	126,1544	1046,2268	51,511255	1318,6544	58,336543	
150	1116,7541	97,188245	1325,6238	123,50807	801,89026	57,120143	983,01742	38,173646	
160	1096,1369	100,03774	1292,6256	118,4186	734,26637	48,449696	897,8553	32,070585	
170	1069,9991	91,557874	1256,0095	124,08597	657,70093	48,433089	803,59899	27,720779	
180	1046,6402	83,678034	1221,2468	116,07356	578,32383	50,871848	702,79403	29,393899	
190	1025,5673	80,526694	1190,2914	112,89967	508,00873	50,946537	606,8738	34,204537	
200	992,76321	72,628774	1158,1988	110,57137	444,44072	44,91563	523,41641	36,240016	
220	922,77683	59,600829	1086,5545	108,57391	290,19024	37,903295	353,22179	35,674566	
240	826,60976	42,351341	976,93726	100,17165	62,269466	13,244173	139,98469	14,482851	

Tabell 21 viser detaljert standardavvik og gjennomsnittleg tan δ for utvalde målepunkt i forsøket ved 3 millimeter og 5 millimeter overlapp.

Tabell 21: Gjennomsnittlege verdiar og standardavvik for tapsfaktor, tan δ , for MUF og PUR med 3 og 5 millimeter overlapp.

		Lim										
		M	UF		PUR							
		Overlap	p [mm]			Overlap	p (mm)					
	3	}	5	j	3		5	í				
	tar	n d	tar	n d	tan d		tan d					
T [°C]	Mean	Std Dev										
30	0,0860922	0,0417545	0,0328215	0,0152669	0,0472271	0,0055194	0,081422	0,0265852				
50	0,0929977	0,0487992	0,0342048	0,0142839	0,0479107	0,0039569	0,0823433	0,0309485				
70	0,0960932	0,052648	0,03436	0,0136673	0,0543739	0,0096584	0,0805135	0,0331443				
110	0,0941706	0,0582129	0,0544694	0,0190811	0,0690745	0,0113729	0,1014016	0,0354851				
150	0,1070488	0,0606367	0,0690979	0,0142841	0,1191981	0,0173551	0,1397283	0,0291877				
160	0,1062448	0,0584178	0,0640562	0,0125658	0,1293799	0,0158987	0,1407457	0,0295579				
170	0,10195	0,0562876	0,0643257	0,0104788	0,1405443	0,0154923	0,1458758	0,0282441				
180	0,1011464	0,0523696	0,064022	0,0103211	0,1459776	0,0151418	0,1522127	0,0250333				
190	0,0978476	0,0510461	0,0622648	0,0093023	0,1457268	0,0120045	0,1524752	0,0226716				
200	0,092967	0,0463544	0,060618	0,0096636	0,1405624	0,0115232	0,1453701	0,0195299				
220	0,0898875	0,0422051	0,0636282	0,0101723	0,146564	0,011335	0,1330466	0,0178723				
240	0,0938326	0,0382857	0,0710591	0,0138962	0,3935088	0,0275715	0,267821	0,0243625				

Tapsmodul

Tabell 22 viser detaljert standardavvik og gjennomsnittleg E'' for utvalde målepunkt i forsøket ved 3 millimeter og 5 millimeter overlapp.

		Lim									
		M	JF		PUR						
		Overlap	p [mm]			Overlap	p [mm]				
	3		5	5	3		5	5			
	E'' [N	/Ipa]									
T [°C]	Mean	Std Dev									
30	111,31923	67,311139	48,445497	19,935369	54,314834	7,0173144	119,51431	45,171177			
50	122,54162	80,629655	51,49182	18,835401	55,106236	5,2382613	123,52378	53,947599			
70	126,74851	87,842903	51,751623	17,788184	61,460646	13,064898	120,18776	57,027036			
110	118,68786	84,477639	76,779777	20,346713	71,954252	9,8906579	134,71122	51,82268			
150	122,78813	78,975795	90,980063	17,008722	95,328696	13,179303	137,91196	33,242232			
160	119,75949	75,001789	82,412015	15,519329	94,707134	10,237872	126,68218	29,576719			
170	111,69169	68,73217	80,597925	14,870026	91,943706	6,297726	117,22983	23,683137			
180	108,26259	62,515391	78,143603	14,750276	83,895514	4,4803401	106,71429	16,50331			
190	102,46002	59,173612	73,871443	11,302994	73,730406	5,7632538	92,215538	12,241389			
200	94,159496	52,341069	69,980507	11,303185	62,328826	6,5016941	75,769517	8,6752686			
220	84,559684	44,745603	69,555018	15,538202	42,370562	4,7488657	46,721827	5,465863			
240	78,729578	35,954379	69,291608	14,890805	24,290958	4,1402607	37,346763	3,7550105			

Tabell 22: Gjennomsnittlege verdiar og standardavvik for tapsmodul, E'', for MUF og PUR med 3 og 5 millimeter overlapp.

Påført kraft på prøveobjekt

Tabell 23 viser detaljert standardavvik og gjennomsnittleg påført kraft, F, for utvalde målepunkt i forsøket ved 3 millimeter og 5 millimeter overlapp.

Tabell 23: Gjennomsnittlege verdiar og standardavvik for påført kraft på prøveobjekt, F, for MUF og PUR med 3 og 5 millimeter overlapp.

		Lim									
		М	UF		PUR						
		Overlap	op [mm]			Overlap	op (mm)				
	2	3	5	j .		3	5	j			
	F	N]	F [N]	F	N]	F [N]			
T [°C]	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev			
30	4,943808	0,0032066	4,9486233	0,001393	4,941646	0,0010601	4,9479067	0,0013384			
50	4,943548	0,0034024	4,9484433	0,0012775	4,941084	0,001212	4,947765	0,0014316			
70	4,942936	0,0035826	4,9479333	0,0012879	4,939966	0,0013902	4,94713	0,001501			
110	4,94151	0,0029341	4,9457067	0,0021196	4,936882	0,0015599	4,9437517	0,0012972			
150	4,9385	0,0029635	4,9430833	0,0024471	4,926696	0,0028944	4,9347083	0,0014944			
160	4,937808	0,0031486	4,9423267	0,0024293	4,922862	0,0029007	4,9313967	0,0014793			
170	4,936974	0,0030167	4,9414467	0,002744	4,917564	0,0035333	4,927005	0,0014815			
180	4,936222	0,0028916	4,94062	0,0027724	4,910534	0,0046989	4,9210517	0,0018434			
190	4,935502	0,0028778	4,9398433	0,0028266	4,902428	0,0060371	4,913485	0,0028228			
200	4,934372	0,0027534	4,9390133	0,0029335	4,892974	0,0069356	4,90457	0,0040494			
220	4,931792	0,0025845	4,93704	0,0033608	4,853402	0,0129418	4,87366	0,0086019			
240	4,927684	0,002293	4,9335683	0,0039363	4,511844	0,0806244	4,74568	0,0199893			

Skjerspenning

Tabell 24 viser detaljert standardavvik og gjennomsnittleg τ for utvalde målepunkt i forsøket ved 3 millimeter og 5 millimeter overlapp.

				Lii	<u>m</u>					
		M	JF		PUR					
		Overlap	p [mm]			Overlap	p [mm]			
	3	1	5	j	3	3	5			
	τ [Μ	lpa]	τ[Μ	pa]	τ [Μ	lpa]	τ [Mpa]			
T [°C]	Mean	Std Dev								
30	0,274656	0,0001781	0,1649541	4,6435e-5	0,2745359	0,0000589	0,1649302	4,4613e-5		
50	0,2746416	0,000189	0,1649481	4,2583e-5	0,2745047	6,7333e-5	0,1649255	4,7721e-5		
70	0,2746076	0,000199	0,1649311	4,2929e-5	0,2744426	7,7235e-5	0,1649043	5,0034e-5		
110	0,2745283	0,000163	0,1648569	7,0653e-5	0,2742712	8,6661e-5	0,1647917	4,3241e-5		
150	0,2743611	0,0001646	0,1647694	8,1571e-5	0,2737053	0,0001608	0,1644903	4,9813e-5		
160	0,2743227	0,0001749	0,1647442	8,0976e-5	0,2734923	0,0001611	0,1643799	0,0000493		
170	0,2742763	0,0001676	0,1647149	9,1468e-5	0,273198	0,0001963	0,1642335	4,9383e-5		
180	0,2742346	0,0001606	0,1646873	9,2415e-5	0,2728074	0,0002611	0,1640351	6,1447e-5		
190	0,2741946	0,0001599	0,1646614	9,4221e-5	0,2723571	0,0003354	0,1637828	0,0000941		
200	0,2741318	0,000153	0,1646338	9,7783e-5	0,2718319	0,0003853	0,1634857	0,000135		
220	0,2739884	0,0001436	0,164568	0,000112	0,2696334	0,000719	0,1624553	0,0002867		
240	0,2737602	0,0001274	0,1644523	0,0001312	0,250658	0,0044791	0,1581893	0,0006663		

Tabell 24: Gjennomsnittlege verdiar og standardavvik for skjerspenning, τ , på prøveobjekt for MUF og PUR med 3 og 5 millimeter overlapp.

Påført tøying på prøveobjekt

Tabell 25 viser detaljert standardavvik og gjennomsnittleg As' for utvalde målepunkt i forsøket ved 3 millimeter og 5 millimeter overlapp.

Tabell 25: Gjennomsnittlege verdiar og standardavvik for påført tøying av prøveobjekt, As', for MUF og PUR med 3 og 5 millimeter overlapp.

				Lii	n					
		M	UF		PUR					
		Overlap	op (mm)			Overlap	op (mm)			
		3	5	5		3	5 As' [μm]			
	As'	[µm]	As' [μm]	As'	[µm]				
T [°C]	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev		
30	1,76768	0,2062246	1,4635117	0,0882507	1,907954	0,0677783	1,506915	0,0862841		
50	1,747634	0,2189648	1,4387733	0,080965	1,907434	0,0772485	1,4794417	0,0922742		
70	1,754594	0,230761	1,439075	0,0814745	1,946326	0,0889332	1,4880183	0,0966801		
110	1,794384	0,1894652	1,5287833	0,1341923	2,090994	0,0989902	1,650855	0,0840244		
150	1,951328	0,1915793	1,66122	0,1556441	2,702484	0,1838961	2,1903383	0,096586		
160	1,989712	0,2036194	1,7039867	0,1548191	2,940232	0,1840853	2,395205	0,0953898		
170	2,038202	0,1949607	1,7555633	0,1750661	3,271898	0,2240496	2,669685	0,0949866		
180	2,082682	0,1870673	1,8045083	0,1768319	3,716138	0,2983021	3,0448	0,116679		
190	2,126244	0,1861845	1,851445	0,1801015	4,231188	0,3843523	3,52451	0,1790775		
200	2,19706	0,1779974	1,90306	0,1871953	4,83465	0,4425036	4,09294	0,2571389		
220	2,361918	0,1677257	2,0290117	0,2148577	7,367848	0,8286173	6,0721383	0,5492472		
240	2,63409	0,1573434	2,2542983	0,25109	29,34859	5,2387956	14,256573	1,2827774		

Forlenging/krymping av prøveobjekt

Tabell 26 viser detaljert standardavvik og gjennomsnittleg dL for utvalde målepunkt i forsøket ved 3 millimeter og 5 millimeter overlapp.

				Li	m					
		M	UF		PUR					
		Overlap	p [mm]			Overlap	p [mm]			
	3	}		5	3		5 dL (μm)			
	dL (j	μm]	dL [μm]	dL (J	ւտ]				
T [°C]	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev		
30	-0,126394	0,1845179	-0,233337	0,202112	-0,224522	0,2529886	-0,268465	0,1843624		
50	-2,427572	0,3110338	-2,53521	0,3082221	-2,423346	0,6010178	-2,419527	0,1548971		
70	-6,377158	0,5221211	-6,49776	0,3262905	-6,303814	0,6987125	-6,090957	0,276506		
110	-16,39369	1,4300843	-16,41894	0,4808149	-16,26719	1,2945328	-15,27601	0,7946622		
150	-31,029	2,4192093	-30,20749	1,115041	-29,11667	2,2522924	-27,55501	1,6268557		
160	-35,4335	2,5022718	-34,10578	1,3120925	-32,98979	2,5695462	-30,94553	1,7132658		
170	-40,1016	2,3306152	-38,1854	1,4967153	-36,92981	3,0090192	-34,17466	1,779389		
180	-44,7398	1,8662559	-42,21245	1,5934238	-40,59515	3,4881401	-37,11646	1,8862614		
190	-48,87074	1,4332407	-45,95729	1,6961921	-43,3769	3,9168947	-39,20725	1,9176369		
200	-52,44947	0,9274213	-49,20605	1,7697886	-44,24348	4,4057124	-39,77559	2,0347493		
220	-57,9183	0,6588993	-53,79054	1,9578996	-21,35908	7,6447504	-25,30774	3,6744766		
240	-60,25466	1,8136469	-53,79125	6,2577613	442,62141	77,37277	189,35787	35,726478		

Tabell 26: Gjennomsnittlege verdiar og standardavvik for forlenging/krymping av prøveobjekt, dL, for MUF og PUR med 3 og 5 millimeter overlapp.

Tabell 27 inneheld fullstendige data frå metode 3.

т	-	Overlapp	F	τ	Ε'	E"		As'	dL
[°C]	Lim	[mm]	[N]	[Mpa]	[Mpa]	[Mpa]	tan d	[µm]	[µm]
30	MUF	3	4,9487	0,2749	1480,0497	215,7820	0,1458	1,4552	0,0573
30	MUF	3	4,9450	0,2747	1284,9386	135,3837	0,1054	1,6917	-0,0717
30	MUF	3	4,9423	0,2746	1172,4216	85 <i>,</i> 5589	0,0730	1,8637	-0,1704
30	MUF	3	4,9429	0,2746	1200,3105	41,3958	0,0345	1,8281	-0,4219
30	MUF	3	4,9402	0,2745	1092,3451	78,4757	0,0718	1,9997	-0,0253
50	MUF	3	4,9487	0,2749	1513,9152	250,6930	0,1656	1,4142	-2,1217
50	MUF	3	4,9448	0,2747	1302,4969	147,1592	0,1130	1,6661	-2,2226
50	MUF	3	4,9419	0,2745	1177,7150	90,6109	0,0769	1,8540	-2,4291
50	MUF	3	4,9425	0,2746	1208,4738	44,0219	0,0364	1,8153	-2,9289
50	MUF	3	4,9398	0,2744	1098,2221	80,2232	0,0730	1,9885	-2,4355
70	MUF	3	4,9485	0,2749	1524,5536	269,9109	0,1770	1,3989	-5,7126
70	MUF	3	4,9440	0,2747	1289,4798	145,1608	0,1126	1,6828	-6,0281
70	MUF	3	4,9413	0,2745	1172,1504	95,0658	0,0811	1,8614	-6,4709
70	MUF	3	4,9420	0,2746	1206,1349	44,6082	0,0370	1,8186	-7,0551
70	MUF	3	4,9389	0,2744	1085,6882	78,9969	0,0728	2,0112	-6,6191
110	MUF	3	4,9453	0,2747	1370,9013	261,2385	0,1906	1,5473	-14,3632
110	MUF	3	4,9425	0,2746	1254,8941	125,8640	0,1003	1,7331	-15,4867
110	MUF	3	4,9421	0,2746	1243,9033	75,6132	0,0608	1,7593	-16,8943
110	MUF	3	4,9404	0,2745	1172,4563	47,6000	0,0406	1,8697	-17,5252
110	MUF	3	4,9373	0,2743	1057,4267	83,1237	0,0786	2,0625	-17,6990
150	MUF	3	4,9423	0,2746	1237,4858	252,4485	0,2040	1,7045	-27,6151
150	MUF	3	4,9385	0,2744	1108,2815	134,3079	0,1212	1,9519	-29,5559
150	MUF	3	4,9402	0,2745	1180,0527	98,9127	0,0838	1,8477	-31,6197
150	MUF	3	4,9371	0,2743	1072,0875	47,4932	0,0443	2,0428	-33,2398
150	MUF	3	4,9345	0,2741	985,8630	80,7783	0,0819	2,2098	-33,1145
160	MUF	3	4,9416	0,2745	1212,0994	242,3383	0,1999	1,7426	-31,8481
160	MUF	3	4,9381	0,2743	1097,5458	128,3349	0,1169	1,9728	-33,9476
160	MUF	3	4,9398	0,2744	1170,6344	103,5088	0,0884	1,8610	-36,2183
160	MUF	3	4,9360	0,2742	1036,4249	45,9299	0,0443	2,1125	-37,8766
160	MUF	3	4,9336	0,2741	963,9797	78,6855	0,0816	2,2596	-37,2769
170	MUF	3	4,9402	0,2745	1159,8557	225,4056	0,1943	1,8245	-36,7339
170	MUF	3	4,9375	0,2743	1083,6734	113,3338	0,1046	2,0032	-38,7844
170	MUF	3	4,9393	0,2744	1151,5893	97,4870	0,0847	1,8928	-40,8580
170	MUF	3	4,9348	0,2742	1004,6261	43,1533	0,0430	2,1791	-42,4914
170	MUF	3	4,9330	0,2741	950,2511	79 <i>,</i> 0787	0,0832	2,2914	-41,6402
180	MUF	3	4,9393	0,2744	1128,9342	209,7972	0,1858	1,8799	-42,0581
180	MUF	3	4,9370	0,2743	1069,5999	106,9833	0,1000	2,0312	-43,6577
180	MUF	3	4,9383	0,2743	1113,9918	104,4972	0,0938	1,9531	-45,3677
180	MUF	3	4,9341	0,2741	985,5977	41,9559	0,0426	2,2210	-46,6668
180	MUF	3	4,9324	0,2740	935,0777	78,0793	0,0835	2,3282	-45,9488

Tabell 27: Fullstendig datatabell med alle målingar og faktorar i metode 3

190	MUF	3	4,9385	0,2744	1101,3163	198,7806	0,1805	1,9305	-46,7203
190	MUF	3	4,9363	0,2742	1049,1948	94,9754	0,0905	2,0742	-48,1054
190	MUF	3	4,9376	0,2743	1092,8897	101,8685	0,0932	1,9908	-49,5163
190	MUF	3	4,9334	0,2741	966,8704	38,6083	0,0399	2,2642	-50,0849
190	MUF	3	4,9317	0,2740	917,5655	78,0673	0,0851	2,3717	-49,9269
200	MUF	3	4,9375	0,2743	1069,9366	179,0389	0,1673	1,9954	-51,1390
200	MUF	3	4,9353	0,2742	1018,8300	83,1810	0,0816	2,1387	-51,8123
200	MUF	3	4,9360	0,2742	1040,3989	96,7549	0,0930	2,0906	-53,0845
200	MUF	3	4,9323	0,2740	937,4946	37,1932	0,0397	2,3346	-52,9442
200	MUF	3	4,9308	0,2739	897,1559	74,6295	0,0832	2,4260	-53,2674
220	MUF	3	4,9351	0,2742	997,4220	157,1653	0,1576	2,1461	-58,5260
220	MUF	3	4,9325	0,2740	940,2810	66,8388	0,0711	2,3198	-57,1862
220	MUF	3	4,9330	0,2741	951,9201	92,4229	0,0971	2,2818	-58,2440
220	MUF	3	4,9295	0,2739	870,0509	39,1753	0,0450	2,5130	-57,2239
220	MUF	3	4,9289	0,2738	854,2102	67,1961	0,0787	2,5488	-58,4114
240	MUF	3	4,9304	0,2739	874,0109	134,4605	0,1538	2,4495	-63,1923
240	MUF	3	4,9276	0,2738	827,1414	61,9584	0,0749	2,6331	-59,4846
240	MUF	3	4,9295	0,2739	863,2997	94,7270	0,1097	2,5078	-60,0098
240	MUF	3	4,9254	0,2736	783,6900	48,2849	0,0616	2,8042	-58,2868
240	MUF	3	4,9254	0,2736	784,9069	54,2171	0,0691	2,7758	-60,2998
30	PUR	3	4,9425	0,2746	1184,1697	47,2206	0,0399	1,8521	0,0092
30	PUR	3	4,9430	0,2746	1201,2297	65,6073	0,0546	1,8235	-0,0504
30	PUR	3	4,9410	0,2745	1125,7258	49,9443	0,0444	1,9469	-0,2756
30	PUR	3	4,9404	0,2745	1103,1340	54,4542	0,0494	1,9856	-0,6318
30	PUR	3	4,9413	0,2745	1134,3145	54,3478	0,0479	1,9317	-0,1740
50	PUR	3	4,9419	0,2746	1183,1259	50,1315	0,0424	1,8531	-2,1144
50	PUR	3	4,9427	0,2746	1212,9503	63,8063	0,0526	1,8061	-2,0683
50	PUR	3	4,9405	0,2745	1128,0083	54,0370	0,0479	1,9422	-2,3646
50	PUR	3	4,9396	0,2744	1094,6049	55 <i>,</i> 3024	0,0505	2,0006	-3,4771
50	PUR	3	4,9407	0,2745	1132,2661	52,2540	0,0461	1,9352	-2,0924
70	PUR	3	4,9409	0,2745	1161,5350	54,8417	0,0472	1,8864	-6,0487
70	PUR	3	4,9418	0,2745	1193,9861	84,5713	0,0708	1,8304	-5,9659
70	PUR	3	4,9394	0,2744	1104,3881	57,3019	0,0519	1,9825	-6,1123
70	PUR	3	4,9382	0,2743	1063,2563	57,6931	0,0543	2,0581	-7,5414
70	PUR	3	4,9395	0,2744	1109,4497	52,8952	0,0477	1,9743	-5,8508
110	PUR	3	4,9385	0,2744	1101,2472	59,6979	0,0542	1,9873	-16,3545
110	PUR	3	4,9386	0,2744	1101,6461	72,9521	0,0662	1,9837	-15,6487
110	PUR	3	4,9354	0,2742	997,6085	81,0676	0,0813	2,1844	-16,0462
110	PUR	3	4,9356	0,2742	1004,3524	64,2310	0,0640	2,1752	-18,3726
110	PUR	3	4,9364	0,2742	1026,2796	81,8227	0,0797	2,1243	-14,9139
150	PUR	3	4,9299	0,2739	863,0915	109,8482	0,1273	2,4984	-29,1865
150	PUR	3	4,9297	0,2739	863,7226	88,0594	0,1020	2,5108	-28,8249
150	PUR	3	4,9238	0,2735	744,5286	104,2784	0,1401	2,8832	-28,6911
150	PUR	3	4,9247	0,2736	764,8556	76,7454	0,1003	2,8333	-32,5877
150	PUR	3	4,9254	0,2736	773,2531	97,7122	0,1264	2,7868	-26,2931

160	PUR	3	4,9258	0,2737	780,7371	107,4595	0,1376	2,7523	-33,0128
160	PUR	3	4,9261	0,2737	790,7140	88,3661	0,1118	2,7349	-32,9126
160	PUR	3	4,9197	0,2733	681,5388	102,8700	0,1509	3,1374	-32,2984
160	PUR	3	4,9214	0,2734	710,5647	82,7516	0,1165	3,0373	-36,9436
160	PUR	3	4,9213	0,2734	707,7773	92,0885	0,1301	3,0392	-29,7815
170	PUR	3	4,9202	0,2733	689,5314	100,1160	0,1452	3,1064	-36,8610
170	PUR	3	4,9221	0,2735	723,6660	84,6787	0,1170	2,9825	-37,4318
170	PUR	3	4,9133	0,2730	601,6210	96,0387	0,1596	3,5404	-35,5775
170	PUR	3	4,9163	0,2731	638,1515	91,6559	0,1436	3,3553	-41,4948
170	PUR	3	4,9160	0,2731	635,5347	87,2292	0,1373	3,3748	-33,2840
180	PUR	3	4,9129	0,2729	598,8203	89 <i>,</i> 3550	0,1492	3,5676	-40,5288
180	PUR	3	4,9174	0,2732	655,4383	81,8982	0,1250	3,2836	-41,7627
180	PUR	3	4,9051	0,2725	522,8694	86,3504	0,1651	4,0599	-38,5469
180	PUR	3	4,9084	0,2727	553,9865	84,3257	0,1522	3,8496	-45,6870
180	PUR	3	4,9089	0,2727	560,5047	77,5483	0,1384	3,8200	-36,4504
190	PUR	3	4,9042	0,2725	518,0737	77,1836	0,1490	4,1168	-43,5120
190	PUR	3	4,9118	0,2729	590,0677	80,2601	0,1360	3,6331	-45,3579
190	PUR	3	4,8959	0,2720	456,6325	73,6978	0,1614	4,6458	-40,6510
190	PUR	3	4,8994	0,2722	481,4091	72,5498	0,1507	4,4239	-48,6723
190	PUR	3	4,9008	0,2723	493,8607	64,9609	0,1315	4,3363	-38,6914
200	PUR	3	4,8944	0,2719	449,0686	64,9299	0,1446	4,7460	-44,4551
200	PUR	3	4,9040	0,2724	518,0563	71,2109	0,1375	4,1300	-47,0131
200	PUR	3	4,8858	0,2714	400,9632	61,6329	0,1537	5,2923	-40,5632
200	PUR	3	4,8891	0,2716	418,8618	60,4541	0,1443	5,0832	-49,8910
200	PUR	3	4,8917	0,2718	435,2537	53,4163	0,1227	4,9217	-39,2951
220	PUR	3	4,8554	0,2697	291,9417	43,9791	0,1506	7,2391	-20,9657
220	PUR	3	4,8748	0,2708	354,3925	49,3126	0,1391	5,9988	-32,3795
220	PUR	3	4,8417	0,2690	258,7278	41,3396	0,1598	8,1122	-12,9600
220	PUR	3	4,8461	0,2692	268,6478	40,8571	0,1521	7,8382	-24,6688
220	PUR	3	4,8491	0,2694	277,2414	36,3644	0,1312	7,6509	-15,8214
240	PUR	3	4,4903	0,2495	57,1039	23,1847	0,4060	30,7374	475,4370
240	PUR	3	4,5990	0,2555	77,7385	30,0400	0,3864	23,6838	325,4211
240	PUR	3	4,4127	0,2452	47,2973	20,5208	0,4339	35,7846	532,6208
240	PUR	3	4,5900	0,2550	74,6186	26,9928	0,3617	24,2682	417,2557
240	PUR	3	4,4671	0,2482	54,5890	20,7164	0,3795	32,2689	462,3724
30	MUF	5	4,9500	0,1650	1600,8854	29,4105	0,0184	1,3/38	-0,2624
30	MUF	5	4,9476	0,1649	1434,4058	51,8702	0,0362	1,5310	-0,3783
30	MUF	5	4,9494	0,1650	1552,6797	49,2285	0,0317	1,4153	0,0521
30	MUF	5	4,9476	0,1649	1437,6092	43,8286	0,0305	1,5282	-0,2690
30	MUF	5	4,9502	0,1650	1608,9397	31,6906	0,0197	1,3669	-0,4911
30		5	4,9470	0,1649	1398,9270	84,6446	0,0605	1,5659	-0,0512
50		5	4,949/	0,1650	1472 4646	37,4355	0,0231	1,35/4	-2,6043
50		5	4,94/6	0,1649	1672 2075	40,8997	0,0318	1,4908	-2,/391
50		5 г	4,9491	0,1640	1/12,20/5		0,0322	1,39/0	-2,1410
50	NUL	С	4,9474	0,1049	1437,350/	53,8302	0,0309	T,2002	-2,4037

50	MUF	5	4,9499	0,1650	1631,8358	33,6315	0,0206	1,3476	-2,9964
50	MUF	5	4,9470	0,1649	1429,1569	86,5616	0,0606	1,5328	-2,3262
70	MUF	5	4,9492	0,1650	1618,9452	45 <i>,</i> 0153	0,0278	1,3576	-6,4798
70	MUF	5	4,9473	0,1649	1481,5054	47,8471	0,0323	1,4827	-6,7427
70	MUF	5	4,9484	0,1649	1559,2233	41,3937	0,0265	1,4096	-6,3197
70	MUF	5	4,9468	0,1649	1454,0991	54,9593	0,0378	1,5099	-6,3119
70	MUF	5	4,9495	0,1650	1640,2762	35,6909	0,0218	1,3405	-7,0114
70	MUF	5	4,9464	0,1649	1427,7857	85 <i>,</i> 6035	0,0600	1,5343	-6,1210
110	MUF	5	4,9479	0,1649	1582,9548	62,3029	0,0394	1,3871	-16,4123
110	MUF	5	4,9447	0,1648	1376,6010	81,6306	0,0593	1,5909	-16,4688
110	MUF	5	4,9472	0,1649	1527,2710	49,3487	0,0323	1,4382	-16,8222
110	MUF	5	4,9448	0,1648	1378,4456	76,6410	0,0556	1,5894	-16,2752
110	MUF	5	4,9473	0,1649	1535,2181	81,3675	0,0530	1,4283	-16,9473
110	MUF	5	4,9424	0,1647	1253,7706	109,3881	0,0872	1,7388	-15,5877
150	MUF	5	4,9455	0,1649	1451,7125	108,0484	0,0744	1,5057	-30,9473
150	MUF	5	4,9412	0,1647	1226,9857	81,7139	0,0666	1,7820	-28,9223
150	MUF	5	4,9441	0,1648	1372,9025	63 <i>,</i> 3339	0,0461	1,5971	-31,3812
150	MUF	5	4,9426	0,1648	1289,9523	86,9598	0,0674	1,6952	-29,9221
150	MUF	5	4,9456	0,1649	1458,3658	101,4864	0,0696	1,5000	-31,1539
150	MUF	5	4,9395	0,1647	1153,8238	104,3381	0,0904	1,8873	-28,9180
160	MUF	5	4,9452	0,1648	1438,6291	103,1221	0,0717	1,5200	-35,4030
160	MUF	5	4,9406	0,1647	1203,9621	77,0932	0,0640	1,8164	-32,4917
160	MUF	5	4,9432	0,1648	1326,5534	60,9354	0,0459	1,6526	-35,0455
160	MUF	5	4,9414	0,1647	1242,1963	71,5453	0,0576	1,7622	-33,7426
160	MUF	5	4,9447	0,1648	1407,1296	87,4217	0,0621	1,5558	-35,2549
160	MUF	5	4,9390	0,1646	1137,2834	94,3545	0,0830	1,9170	-32,6970
170	MUF	5	4,9448	0,1648	1419,6551	106,1089	0,0747	1,5395	-39,9410
170	MUF	5	4,9402	0,1647	1189,7488	84,4499	0,0710	1,8362	-36,2534
170	MUF	5	4,9422	0,1647	1280,5524	60,3721	0,0471	1,7115	-38,7989
170	MUF	5	4,9406	0,1647	1209,5445	78,8743	0,0652	1,8078	-37,7438
170	MUF	5	4,9437	0,1648	1360,0660	77 <i>,</i> 3434	0,0569	1,6104	-39,5687
170	MUF	5	4,9372	0,1646	1076,4902	76,4389	0,0710	2,0281	-36,8065
180	MUF	5	4,9439	0,1648	1368,8354	98,8627	0,0722	1,5970	-44,1327
180	MUF	5	4,9399	0,1647	1182,3236	81,9819	0,0693	1,8481	-40,0956
180	MUF	5	4,9414	0,1647	1250,0110	57,3371	0,0459	1,7533	-42,6024
180	MUF	5	4,9397	0,1647	1172,2556	86,1355	0,0735	1,8628	-41,7217
180	MUF	5	4,9428	0,1648	1312,9132	78,5216	0,0598	1,6673	-43,7911
180	MUF	5	4,9360	0,1645	1041,1421	66,0228	0,0634	2,0986	-40,9313
190	MUF	5	4,9432	0,1648	1335,5835	83,6825	0,0627	1,6385	-48,0201
190	MUF	5	4,9392	0,1646	1155,4631	82,5562	0,0714	1,8902	-43,6609
190	MUF	5	4,9409	0,1647	1227,9052	58,3085	0,0475	1,7844	-46,2857
190	MUF	5	4,9386	0,1646	1131,7693	82,5034	0,0729	1,9292	-45,3317
190	MUF	5	4,9419	0,1647	1273,1051	74,5512	0,0586	1,7194	-47,6747
190	MUF	5	4,9352	0,1645	1017,9222	61,6269	0,0605	2,1470	-44,7707
200	MUF	5	4,9423	0,1647	1295,0320	73,0710	0,0564	1,6908	-51,3274
200	MUF	5	4,9384	0,1646	1124,1115	81,2513	0,0723	1,9424	-46,9483
-----	-----	---	--------	--------	-----------	------------------	--------	--------	----------
200	MUF	5	4,9404	0,1647	1207,3579	55,9121	0,0463	1,8148	-49,4593
200	MUF	5	4,9376	0,1646	1095,5876	76,5608	0,0699	1,9933	-48,1666
200	MUF	5	4,9411	0,1647	1237,8929	77,4386	0,0626	1,7671	-51,1662
200	MUF	5	4,9342	0,1645	989,2109	55,6493	0,0563	2,2100	-48,1685
220	MUF	5	4,9406	0,1647	1215,5107	80,5992	0,0663	1,7988	-56,2239
220	MUF	5	4,9369	0,1646	1071,4383	70,7840	0,0661	2,0391	-51,6568
220	MUF	5	4,9384	0,1646	1125,5292	56,5625	0,0503	1,9452	-54,2105
220	MUF	5	4,9356	0,1645	1028,9201	67,5810	0,0657	2,1228	-52,3419
220	MUF	5	4,9395	0,1647	1166,8565	92,2016	0,0790	1,8697	-55,9090
220	MUF	5	4,9313	0,1644	911,0720	49,6019	0,0544	2,3985	-52,4012
240	MUF	5	4,9367	0,1646	1062,5232	88,5543	0,0833	2,0508	-58,8156
240	MUF	5	4,9338	0,1645	975,4205	56,2921	0,0577	2,2406	-54,4229
240	MUF	5	4,9353	0,1645	1018,2405	61,8047	0,0607	2,1463	-56,1296
240	MUF	5	4,9323	0,1644	934,0064	53 <i>,</i> 5805	0,0574	2,3393	-53,9941
240	MUF	5	4,9369	0,1646	1069,6889	85 <i>,</i> 5806	0,0800	2,0383	-57,7874
240	MUF	5	4,9264	0,1642	801,7441	69,9375	0,0872	2,7105	-41,5979
30	PUR	5	4,9498	0,1650	1561,6964	206,5857	0,1323	1,3845	-0,1621
30	PUR	5	4,9486	0,1650	1494,6476	108,9542	0,0729	1,4637	-0,3486
30	PUR	5	4,9459	0,1649	1336,0804	96,6983	0,0724	1,6367	-0,4587
30	PUR	5	4,9478	0,1649	1442,7262	117,2809	0,0813	1,5142	-0,2036
30	PUR	5	4,9483	0,1649	1475,6157	111,9426	0,0759	1,4819	-0,4501
30	PUR	5	4,9471	0,1649	1404,9859	75,6241	0,0538	1,5604	0,0123
50	PUR	5	4,9499	0,1650	1609,6458	228,3080	0,1418	1,3399	-2,3374
50	PUR	5	4,9486	0,1650	1536,0127	113,1498	0,0737	1,4242	-2,4028
50	PUR	5	4,9457	0,1649	1358,4567	95,8746	0,0706	1,6101	-2,6016
50	PUR	5	4,9474	0,1649	1453,0034	118,2688	0,0814	1,5034	-2,5465
50	PUR	5	4,9479	0,1649	1486,0747	112,5291	0,0757	1,4714	-2,4585
50	PUR	5	4,9470	0,1649	1435,4605	73,0124	0,0509	1,5278	-2,1703
70	PUR	5	4,9494	0,1650	1607,1489	230,9032	0,1437	1,3411	-5,8740
70	PUR	5	4,9479	0,1649	1521,9447	111,5790	0,0733	1,4372	-5,9084
70	PUR	5	4,9449	0,1648	1340,2107	95,0882	0,0710	1,6317	-6,2687
70	PUR	5	4,9466	0,1649	1435,1411	116,7131	0,0813	1,5219	-6,5603
70	PUR	5	4,9473	0,1649	1478,0839	100,4925	0,0680	1,4808	-6,0656
70	PUR	5	4,9467	0,1649	1447,7076	66,3507	0,0458	1,5155	-5,8688
110	PUR	5	4,9453	0,1648	1377,5718	237,3267	0,1723	1,5497	-14,3348
110	PUR	5	4,9446	0,1648	1360,2170	135,6776	0,0997	1,5998	-14,8178
110	PUR	5	4,9415	0,1647	1215,8883	99,4178	0,0818	1,7943	-16,0110
110	PUR	5	4,9436	0,1648	1309,3725	119,7099	0,0914	1,6641	-16,3736
110	PUR	5	4,9443	0,1648	1347,9236	109,8923	0,0815	1,6196	-15,3933
110	PUR	5	4,9434	0,1648	1300,9529	106,2431	0,0817	1,6776	-14,7257
150	PUR	5	4,9372	0,1646	1043,1521	198,3186	0,1901	2,0306	-25,0553
150	PUR	5	4,9348	0,1645	982,3038	151,1104	0,1538	2,1814	-27,2066
150	PUR	5	4,9325	0,1644	923,4951	123,0212	0,1332	2,3327	-28,9988
150	PUR	5	4,9343	0,1645	977,5496	109,0108	0,1115	2,2160	-29,5544

150 PUR 5 4,9349 0,1645 943,9939 181,2448 0,1202 2,2408 -28,3613 160 PUR 5 4,9312 0,1644 890,4611 132,5645 0,1489 2,0527 -23,3369 160 PUR 5 4,9311 0,1644 850,3728 115,8533 0,1362 2,527 -33,0701 160 PUR 5 4,9321 0,1644 829,1021 126,920 0,1433 2,4248 -31,4530 170 PUR 5 4,9267 0,1642 795,8617 119,4391 0,1501 2,6171 -34,0318 170 PUR 5 4,9267 0,1642 762,9210 109,4392 0,1423 2,7844 -35,3268 170 PUR 5 4,9267 0,1642 762,433 1,0560 -32,8403 180 PUR 5 4,9267 0,1643 842,2923 9,8326 0,1647 3,48476 180 PUR 5 4,9208 0,1640 680,4974 102,4468 1,4053 3,6605 180 <th>150</th> <th>PUR</th> <th>5</th> <th>4,9346</th> <th>0,1645</th> <th>979,4325</th> <th>133,0213</th> <th>0,1358</th> <th>2,1989</th> <th>-27,8070</th>	150	PUR	5	4,9346	0,1645	979,4325	133,0213	0,1358	2,1989	-27,8070
160 PUR 5 4,9338 0,1645 94,9393 181,2448 0,1920 2,2408 -28,3613 160 PUR 5 4,9310 0,1644 890,4611 132,5645 0,1480 2,4082 -30,5559 160 PUR 5 4,9309 0,1644 885,2490 10,7076 0,1125 2,4177 -33,0701 160 PUR 5 4,9329 0,1644 821,308 102,8027 0,1136 2,4527 -33,0701 170 PUR 5 4,9257 0,1642 782,8171 19,4391 0,1501 2,6911 -34,0318 170 PUR 5 4,9257 0,1642 782,227 12,0648 0,1502 0,2734 -34,8467 170 PUR 5 4,9228 0,1641 824,2923 9,3326 0,1167 2,560 3,4846 170 PUR 5 4,9228 0,1640 824,2923 9,3626 1,162 2,453 3,34560 170 <td>150</td> <td>PUR</td> <td>5</td> <td>4,9349</td> <td>0,1645</td> <td>992,1714</td> <td>112,9895</td> <td>0,1139</td> <td>2,1824</td> <td>-26,7079</td>	150	PUR	5	4,9349	0,1645	992,1714	112,9895	0,1139	2,1824	-26,7079
160 PUR 5 4,9312 0,1644 890,4611 132,5645 0,1483 2,6327 3,3369 160 PUR 5 4,9330 0,1644 895,2240 10,0707 0,1125 2,4177 -33,0701 160 PUR 5 4,9320 0,1644 885,742 126,9202 0,1433 2,4248 -31,4500 160 PUR 5 4,9251 0,1642 829,1062 160,357 0,133 2,5473 -31,5320 170 PUR 5 4,9251 0,1642 769,210 10,433 0,1432 2,7894 -35,3268 170 PUR 5 4,9251 0,1642 782,2237 120,648 0,1432 2,7894 -34,8476 170 PUR 5 4,9250 0,1642 80,8191 94,9876 0,1163 2,6901 -34,8476 170 PUR 5 4,9228 0,1640 675,591 013,222 0,1515 3,0617 37,2627 180 <td>160</td> <td>PUR</td> <td>5</td> <td>4,9338</td> <td>0,1645</td> <td>943,9939</td> <td>181,2448</td> <td>0,1920</td> <td>2,2408</td> <td>-28,3613</td>	160	PUR	5	4,9338	0,1645	943,9939	181,2448	0,1920	2,2408	-28,3613
160 PUR 5 4,9239 0,1643 850,3728 115,8533 0,1322 2,5297 -32,3369 160 PUR 5 4,9310 0,1644 885,7492 12,6202 0,1132 2,4248 -31,4550 160 PUR 5 4,9321 0,1644 821,308 102,807 0,1162 2,5237 -32,8340 170 PUR 5 4,9221 0,1644 829,102 160,337 0,118 2,5071 -34,0318 170 PUR 5 4,9260 0,1642 782,221 120,6448 0,1522 2,733 -34,8476 170 PUR 5 4,9260 0,1642 782,2237 120,6448 0,1522 2,734 -34,8476 170 PUR 5 4,9260 0,1640 670,7591 103,2420 0,1551 3,0617 37,2727 180 PUR 5 4,9209 0,1640 669,894 10,4461 0,1649 3,1792 33,6565 180<	160	PUR	5	4,9312	0,1644	890,4611	132,5645	0,1489	2,4082	-30,5559
160 PUR 5 4,9311 0,1644 895,2240 100,707 0,1125 2,4177 -33,0701 160 PUR 5 4,9302 0,1644 825,7492 126,9202 0,1136 2,3502 -29,8840 170 PUR 5 4,9227 0,1643 829,1052 160,337 0,1332 2,7614 -35,3268 170 PUR 5 4,9267 0,1642 705,8617 19,4391 0,1501 2,6911 -34,0318 170 PUR 5 4,9267 0,1642 702,237 120,6448 0,1542 2,7343 -34,8476 170 PUR 5 4,9260 0,1643 842,223 98,3326 0,1167 2,560 -32,8403 180 PUR 5 4,9208 0,1640 69,7590 108,220 0,1543 3,0517 -37,627 180 PUR 5 4,9139 0,1640 60,8947 10,464 0,1543 3,0573 3,94605 180 </td <td>160</td> <td>PUR</td> <td>5</td> <td>4,9293</td> <td>0,1643</td> <td>850,3728</td> <td>115,8533</td> <td>0,1362</td> <td>2,5297</td> <td>-32,3369</td>	160	PUR	5	4,9293	0,1643	850,3728	115,8533	0,1362	2,5297	-32,3369
160 PUR 5 4,9300 0,1644 885,7492 126,9202 0,1433 2,4248 -3,4650 160 PUR 5 4,9227 0,1644 921,3308 102,8077 0,1116 2,3503 2,5473 3,15320 170 PUR 5 4,9267 0,1642 795,8617 19,4391 0,1133 2,6911 -34,0318 170 PUR 5 4,9267 0,1642 769,210 109,4392 0,1433 2,6911 -34,0318 170 PUR 5 4,9267 0,1642 782,2237 120,6448 0,1542 2,7343 -34,8476 170 PUR 5 4,9260 0,1640 697,6590 108,220 0,1551 3,0161 37,302 180 PUR 5 4,9120 0,1640 680,9447 102,446 0,1563 3,0563 180 PUR 5 4,9124 0,1634 610,813 113,9842 0,1643 3,1752 190 PUR <td>160</td> <td>PUR</td> <td>5</td> <td>4,9311</td> <td>0,1644</td> <td>895,2240</td> <td>100,7076</td> <td>0,1125</td> <td>2,4177</td> <td>-33,0701</td>	160	PUR	5	4,9311	0,1644	895,2240	100,7076	0,1125	2,4177	-33,0701
160 PUR 5 4,9321 0,1644 921,3308 102,8027 0,1116 2,3502 -29,8840 170 PUR 5 4,9226 0,1642 295,1617 119,4391 0,1532 2,6911 -31,5320 170 PUR 5 4,9257 0,1642 769,2101 109,4392 0,1423 2,6911 -35,368 170 PUR 5 4,9257 0,1642 782,2237 120,6448 0,1542 2,7343 -34,8476 170 PUR 5 4,9227 0,1643 842,2923 98,3326 0,1167 2,5660 -32,8403 180 PUR 5 4,9228 0,1640 669,894 102,4468 0,1504 3,1405 -33,0563 180 PUR 5 4,9129 0,1640 669,894 110,461 0,1649 3,1722 180 PUR 5 4,9129 0,1638 50,827 90,418 0,1635 3,6404 190 PUR 5	160	PUR	5	4,9309	0,1644	885,7492	126,9202	0,1433	2,4248	-31,4650
170PUR54,92890,1643829,1062160,53570,19362,5473-31,5320170PUR54,92570,1642795,8617119,43910,15012,6911-34,0318170PUR54,92670,1642780,2213120,64480,15422,7343-34,8476170PUR54,92670,1643842,2233120,64480,15422,7343-34,8476170PUR54,92270,1641709,9161135,98830,11672,5660-32,8403180PUR54,92080,1640680,9447102,44680,15433,1405-33,6665180PUR54,92090,1640680,944710,244680,15433,1779-37,722180PUR54,91960,1640668,9994110,44610,16433,6503-39,6605180PUR54,91240,1638610,0813113,98420,18683,6503-39,563190PUR54,91270,163859,5976791,9150,15433,571-39,3665190PUR54,91280,163556,63993,82110,16533,5713-39,9414190PUR54,91240,163556,63693,82170,1233,5713-39,9414190PUR54,91240,163552,435091,3240,17434,0361-39,8671190PUR54,9124 <td>160</td> <td>PUR</td> <td>5</td> <td>4,9321</td> <td>0,1644</td> <td>921,3308</td> <td>102,8027</td> <td>0,1116</td> <td>2,3502</td> <td>-29,8840</td>	160	PUR	5	4,9321	0,1644	921,3308	102,8027	0,1116	2,3502	-29,8840
170 PUR 5 4,9267 0,1642 795,8617 119,4391 0,1501 2,6911 -34,0318 170 PUR 5 4,9267 0,1642 769,2910 109,4392 0,1423 2,7849 -35,3268 170 PUR 5 4,9260 0,1642 782,2237 120,6448 0,1542 2,7343 -34,8476 170 PUR 5 4,9220 0,1641 709,9161 135,9883 0,1612 2,9734 -34,3560 180 PUR 5 4,9210 0,1640 680,9447 102,4468 0,1504 3,1605 -32,8605 180 PUR 5 4,9219 0,1640 669,899 10,4461 0,1248 3,0573 -39,6605 180 PUR 5 4,9149 0,1638 610,813 113,9842 0,184 3,6757 -39,3665 190 PUR 5 4,9144 0,1638 601,7106 77,3073 0,1285 3,5713 41,9121 <	170	PUR	5	4,9289	0,1643	829,1062	160,5357	0,1936	2,5473	-31,5320
170PUR54,92510,1642769,2910109,43920,14232,7894-35,3268170PUR54,92600,1642802,819194,98760,11832,6001-36,4695170PUR54,92870,1643842,2233120,64480,15422,7343-34,8476170PUR54,92170,1641709,9161135,98830,11672,5660-32,8403180PUR54,92190,1640680,9447102,44680,15043,1405-38,0636180PUR54,91960,1640668,8994110,44610,16493,1779-37,7722180PUR54,91990,1640669,8994110,44610,16483,6561-35,5837190PUR54,91440,1638610,0813113,98420,18683,6606-36,3695190PUR54,91260,1638595,976791,97150,15433,571-39,3665190PUR54,91280,1635524,435091,32240,173341,9121190PUR54,91240,1635524,435091,32240,17334,0361-36,8044200PUR54,90340,1635517,334676,59620,14314,1237-40,5406200PUR54,90340,1635517,334676,59620,14314,1237-40,5406200PUR54,90340,	170	PUR	5	4,9267	0,1642	795,8617	119,4391	0,1501	2,6911	-34,0318
170PUR54,92670,1642802,819194,98760,11832,6901-36,4695170PUR54,92600,1642782,2237120,64480,15422,7343-34,8476170PUR54,92210,1643842,292398,33260,11672,5660-32,8403180PUR54,92280,1640697,6590108,22200,151513,0617-37,2627180PUR54,91960,1640669,894102,44680,15043,1405-38,0636180PUR54,91900,1640669,894110,44610,16493,1779-37,7722180PUR54,91890,1640669,894110,44610,16493,1779-37,7722180PUR54,91440,1638610,813113,98420,18883,4606-36,3695190PUR54,91270,1638595,976791,97150,15433,5771-39,3665190PUR54,91280,1638601,710677,30730,12853,5713-41,9121190PUR54,91280,1635524,435091,32420,14814,1327-40,5406200PUR54,90390,1635518,577265,00830,12744,1700-39,6941200PUR54,90390,1635518,577265,00830,12244,1386-42,8330200PUR54,91	170	PUR	5	4,9251	0,1642	769,2910	109,4392	0,1423	2,7894	-35,3268
170 PUR 5 4,9260 0,1642 782,2237 120,6448 0,1542 2,7343 -34,8476 170 PUR 5 4,9287 0,1643 842,2923 98,3326 0,1167 2,5660 -32,8403 180 PUR 5 4,9208 0,1640 697,6590 180,220 0,1511 3,0617 -37,2627 180 PUR 5 4,9196 0,1640 669,894 10,4461 0,1649 3,1707 -37,7722 180 PUR 5 4,9149 0,1640 669,894 10,4461 0,1649 3,1707 -37,7722 180 PUR 5 4,9127 0,1638 610,813 113,9842 0,1868 3,660 -36,3695 190 PUR 5 4,9127 0,1638 695,9767 91,9175 0,1543 3,5713 -41,9121 190 PUR 5 4,9128 0,1635 666,950 83,2219 0,123 3,7464 3,4364 190 </td <td>170</td> <td>PUR</td> <td>5</td> <td>4,9267</td> <td>0,1642</td> <td>802,8191</td> <td>94,9876</td> <td>0,1183</td> <td>2,6901</td> <td>-36,4695</td>	170	PUR	5	4,9267	0,1642	802,8191	94,9876	0,1183	2,6901	-36,4695
170 PUR 5 4,9287 0,1643 842,2923 98,3326 0,1167 2,5660 -32,8403 180 PUR 5 4,9212 0,1640 697,6590 108,2220 0,1551 3,0617 -37,2627 180 PUR 5 4,9208 0,1640 680,9447 102,4468 0,1504 3,1059 -33,0636 180 PUR 5 4,9209 0,1640 669,8944 110,4461 0,1649 3,1779 -37,7722 180 PUR 5 4,9144 0,1638 610,0813 113,9842 0,1868 3,4606 -36,3695 190 PUR 5 4,9144 0,1638 596,8277 90,9141 0,1524 3,571 -39,9414 190 PUR 5 4,9127 0,1638 506,6916 93,8291 0,1565 3,7490 -36,8671 190 PUR 5 4,9148 0,1635 524,4350 91,324 0,1361 -37,868 200 PUR 5 4,9044 1,635 518,5772 5,0683 0,1241 4,1327	170	PUR	5	4,9260	0,1642	782,2237	120,6448	0,1542	2,7343	-34,8476
180 PUR 5 4,9221 0,1641 709,9161 135,9883 0,1916 2,9734 -34,3560 180 PUR 5 4,9208 0,1640 697,6590 108,2220 0,1551 3,0617 -37,2627 180 PUR 5 4,9190 0,1640 680,9447 102,4468 0,1504 3,1405 -38,0636 180 PUR 5 4,9189 0,1640 669,8994 10,4461 0,1649 3,1779 -37,7722 180 PUR 5 4,9144 0,1638 610,813 113,9842 0,1848 3,4606 -36,3695 190 PUR 5 4,9127 0,1638 596,827 91,911 0,1524 3,571 -39,9414 190 PUR 5 4,9128 0,1638 601,7106 77,373 0,1285 3,5713 -41,9121 190 PUR 5 4,9148 0,1635 524,930 9,3224 0,1524 3,5713 -41,9121 19	170	PUR	5	4,9287	0,1643	842,2923	98,3326	0,1167	2,5660	-32,8403
180 PUR 5 4,9208 0,1640 697,6590 108,2220 0,1551 3,0617 -37,2627 180 PUR 5 4,9196 0,1640 680,9447 102,4468 0,1504 3,1405 -38,0636 180 PUR 5 4,9189 0,1640 669,8994 110,4461 0,1649 3,1779 -37,7722 180 PUR 5 4,9141 0,1641 754,5872 94,1419 0,1248 3,6606 -36,3695 190 PUR 5 4,9127 0,1638 596,827 90,9814 0,1524 3,5771 -39,9464 190 PUR 5 4,9128 0,1638 601,7106 77,3073 0,1285 3,5713 -41,9121 190 PUR 5 4,9184 0,1638 669,9509 85,2197 0,1272 3,214 -37,7868 200 PUR 5 4,9044 0,1635 517,3346 76,5962 0,1481 4,1237 -40,5406 <t< td=""><td>180</td><td>PUR</td><td>5</td><td>4,9221</td><td>0,1641</td><td>709,9161</td><td>135,9883</td><td>0,1916</td><td>2,9734</td><td>-34,3560</td></t<>	180	PUR	5	4,9221	0,1641	709,9161	135,9883	0,1916	2,9734	-34,3560
180 PUR 5 4,9196 0,1640 680,9447 102,4468 0,1504 3,1405 -38,0636 180 PUR 5 4,9209 0,1640 703,7577 89,0408 0,1265 3,0593 -39,6605 180 PUR 5 4,9149 0,1641 754,5872 94,1419 0,1248 2,8561 -35,5837 190 PUR 5 4,9142 0,1638 596,8297 9,9814 0,1524 3,5757 -39,3665 190 PUR 5 4,9126 0,1638 595,9767 91,9715 0,1533 3,5711 -41,9121 190 PUR 5 4,9128 0,1638 595,9767 91,9715 0,153 3,5713 -41,9121 190 PUR 5 4,9148 0,1635 566,936 93,8291 0,1656 3,7490 -39,8671 190 PUR 5 4,9049 0,1635 517,336 91,3924 0,1743 4,0361 -36,8046 20	180	PUR	5	4,9208	0,1640	697,6590	108,2220	0,1551	3,0617	-37,2627
180 PUR 5 4,9209 0,1640 703,7577 89,0408 0,1265 3,0593 -39,6605 180 PUR 5 4,9189 0,1640 669,8994 110,4461 0,1649 3,1779 -37,7722 180 PUR 5 4,9144 0,1638 610,0813 113,9842 0,1868 3,4606 -36,3695 190 PUR 5 4,9127 0,1638 595,9767 91,9715 0,1543 3,5771 -39,3665 190 PUR 5 4,9128 0,1638 595,9767 91,9715 0,1543 3,571 -39,9414 190 PUR 5 4,9128 0,1637 566,693 93,821 0,1656 3,7490 -39,8671 190 PUR 5 4,9099 0,1637 566,693 93,821 0,1556 3,7490 -39,8671 190 PUR 5 4,9014 0,1635 514,350 91,3924 0,1437 4,0361 -36,8046 200	180	PUR	5	4,9196	0,1640	680,9447	102,4468	0,1504	3,1405	-38,0636
180PUR54,91890,1640669,8994110,44610,16493,1779-37,7722180PUR54,92410,1641754,587294,14190,12482,8561-35,5837190PUR54,91270,1638596,82790,98140,15243,5757-39,3665190PUR54,91260,1638595,976791,97150,15433,571-39,9414190PUR54,91280,1637566,693693,82910,16563,7490-39,8671190PUR54,90990,1637566,693693,82910,16563,7490-39,8671190PUR54,91840,1639669,950985,21970,12723,2114-37,7868200PUR54,90440,1635514,335091,39240,17434,0361-36,8046200PUR54,90390,1635517,334676,59620,14814,1237-40,5406200PUR54,90390,1635518,577265,00830,12544,1386-42,8330200PUR54,91160,1637589,471572,45640,12293,6464-38,4856200PUR54,87120,1624344,025355,08570,16116,1403-19,9980200PUR54,87130,1625352,595548,2240,13686,0330-26,3982200PUR54,8735 <td>180</td> <td>PUR</td> <td>5</td> <td>4,9209</td> <td>0,1640</td> <td>703,7577</td> <td>89,0408</td> <td>0,1265</td> <td>3,0593</td> <td>-39,6605</td>	180	PUR	5	4,9209	0,1640	703,7577	89,0408	0,1265	3,0593	-39,6605
180PUR54,92410,1641754,587294,14190,12482,8561-35,5837190PUR54,91440,1638610,0813113,98420,18683,4606-36,3695190PUR54,91270,1638596,829790,98140,15243,577-39,3665190PUR54,91260,1638595,976791,97150,15433,571-41,9121190PUR54,91280,1638601,710677,30730,12853,5713-41,9121190PUR54,90990,1637566,693693,82910,16563,7490-39,8671190PUR54,91840,1639669,950985,21970,12723,2114-37,7868200PUR54,90340,1635514,35091,39240,17334,0361-36,8046200PUR54,90340,1635517,334676,59620,14814,1237-40,5406200PUR54,90340,1635518,577265,00830,12544,1366-42,8330200PUR54,91160,1637589,471572,45640,12293,6464-38,4856200PUR54,89140,1637589,471572,45640,12293,6464-38,4856200PUR54,87120,1624344,025355,08570,16146,1403-19,9980202PUR54,8725 <td>180</td> <td>PUR</td> <td>5</td> <td>4,9189</td> <td>0,1640</td> <td>669,8994</td> <td>110,4461</td> <td>0,1649</td> <td>3,1779</td> <td>-37,7722</td>	180	PUR	5	4,9189	0,1640	669,8994	110,4461	0,1649	3,1779	-37,7722
190PUR54,91440,1638610,0813113,98420,18683,4606-36,3695190PUR54,91270,1638596,829790,98140,15243,5757-39,3665190PUR54,91260,1638595,976791,97150,15433,571-41,9121190PUR54,91280,1638601,710677,30730,12853,5713-41,9121190PUR54,90990,1637566,693693,82910,16563,7490-39,8671190PUR54,91840,1639669,950985,21970,12723,2114-37,7868200PUR54,90440,1635524,435091,39240,17434,0361-36,8046200PUR54,90440,1635517,334676,59620,14814,1237-40,5406200PUR54,90390,1635518,577265,00830,12544,1386-42,8330200PUR54,90410,1635518,577265,00830,12544,1386-42,8330200PUR54,9180,1635518,577265,00830,12544,1407-40,2954200PUR54,9140,1635518,5772,56760,15794,4407-40,2954200PUR54,87120,1624344,025355,08570,16166,1403-19,9980210PUR54,8733	180	PUR	5	4,9241	0,1641	754,5872	94,1419	0,1248	2,8561	-35,5837
190PUR54,91270,1638596,829790,98140,15243,5757-39,3665190PUR54,91260,1638595,976791,97150,15433,5791-39,9414190PUR54,91280,1638601,710677,30730,12853,5713-41,9121190PUR54,90990,1637566,693693,82910,16563,7490-39,8671190PUR54,91840,1639669,950985,21970,12723,2114-37,7868200PUR54,90340,1635524,435091,39240,17334,0361-36,8046200PUR54,90340,1635517,334676,59620,14814,1237-40,5406200PUR54,90390,1635518,577265,00830,12544,1386-42,8330200PUR54,90390,1633478,526275,6700,15794,407-40,2954200PUR54,91160,1637589,471572,45640,12293,6486-38,4856220PUR54,87120,1624344,025355,08570,16016,140319,9980220PUR54,87330,1624341,750245,21590,13236,2282-24,6426220PUR54,87430,1624351,429438,80720,11046,0903-30,2466220PUR54,8735 <td>190</td> <td>PUR</td> <td>5</td> <td>4,9144</td> <td>0,1638</td> <td>610,0813</td> <td>113,9842</td> <td>0,1868</td> <td>3,4606</td> <td>-36,3695</td>	190	PUR	5	4,9144	0,1638	610,0813	113,9842	0,1868	3,4606	-36,3695
190PUR54,91260,1638595,976791,97150,15433,5791-39,9414190PUR54,91280,1638601,710677,30730,12853,5713-41,9121190PUR54,90990,1637566,693693,82910,16563,7490-39,8671190PUR54,91840,1639669,950985,21970,12723,2114-37,7868200PUR54,90340,1635524,435091,39240,17434,0361-36,8046200PUR54,90340,1635517,334676,59620,14814,1237-40,5406200PUR54,90390,1635518,577265,00830,12544,1386-42,8330200PUR54,91160,1637589,471572,45640,12293,6486-38,4856200PUR54,91260,1624344,025355,08570,16016,1403-19,9980220PUR54,87320,1624341,750245,21590,13236,2282-24,6426220PUR54,87350,1624351,429438,80720,11486,8240-22,7028220PUR54,88690,1630130,556844,03350,14186,8240-22,7028220PUR54,87430,1624310,556844,03550,14186,8240-22,7028220PUR54,7146<	190	PUR	5	4,9127	0,1638	596,8297	90,9814	0,1524	3,5757	-39,3665
190PUR54,91280,1638601,710677,30730,12853,5713-41,9121190PUR54,90990,1637566,693693,82910,16563,7490-39,8671190PUR54,91840,1639669,950985,21970,12723,2114-37,7868200PUR54,90340,1635524,435091,39240,17434,0361-36,8046200PUR54,90340,1635517,334676,59620,14814,1237-40,5406200PUR54,90390,1635518,577265,00830,12544,1386-42,8330200PUR54,90390,1635518,577265,00830,12544,1386-42,8330200PUR54,91160,1637589,471572,45640,12293,6486-38,4856220PUR54,87250,1624344,025355,08570,16016,1403-19,9980220PUR54,87350,1624341,750245,21590,13236,2282-24,6426220PUR54,87350,1624351,429438,80720,11046,0903-30,2466220PUR54,87350,1624310,556844,03350,14186,8240-22,7028220PUR54,87430,1637120,351837,08720,308215,9808244,7432240PUR54,7186	190	PUR	5	4,9126	0,1638	595,9767	91,9715	0,1543	3,5791	-39,9414
190PUR54,90990,1637566,693693,82910,16563,7490-39,8671190PUR54,91840,1639669,950985,21970,12723,2114-37,7868200PUR54,90340,1635524,435091,39240,17434,0361-36,8046200PUR54,90340,1635517,334676,59620,14814,1237-40,5406200PUR54,90390,1635517,334676,59620,14814,1237-40,5406200PUR54,90390,1635518,577265,00830,12544,1386-42,8330200PUR54,89910,1633478,526275,56700,15794,4407-40,2954200PUR54,89110,1637589,471572,45640,12293,6486-38,4856220PUR54,87120,1624344,025355,08570,16016,1403-19,9980220PUR54,87130,1624341,750245,21590,13236,2282-24,6426220PUR54,87350,1624351,429438,80720,11046,0903-30,2466220PUR54,87350,1624310,556844,03350,14186,8240-22,7028220PUR54,87430,1621310,556844,03350,14186,8240-22,7028240PUR54,7476<	190	PUR	5	4,9128	0,1638	601,7106	77,3073	0,1285	3,5713	-41,9121
190PUR54,91840,1639669,950985,21970,12723,2114-37,7868200PUR54,90540,1635524,435091,39240,17434,0361-36,8046200PUR54,90340,1635517,334676,59620,14814,1237-40,5406200PUR54,90390,1635518,577265,00830,12544,1386-42,8330200PUR54,90390,1633478,526275,56700,15794,4407-40,2954200PUR54,91160,1637589,471572,45640,12293,6486-38,4856220PUR54,87250,1624344,025355,08570,16016,1403-19,9980220PUR54,87130,1625352,595548,22240,13686,0330-26,3982220PUR54,87430,1625352,595548,22240,13686,0330-26,3982220PUR54,87350,1624341,750248,9620,11046,0903-30,2466220PUR54,87350,1624351,429438,80720,11046,0903-30,2466220PUR54,87430,1621310,556844,03350,14186,8240-22,7028220PUR54,71860,1573120,351837,08720,308215,9808244,7432240PUR54,7441<	190	PUR	5	4,9099	0,1637	566,6936	93,8291	0,1656	3,7490	-39,8671
200PUR54,90540,1635524,435091,39240,17434,0361-36,8046200PUR54,90340,1634512,153973,59680,14374,1700-39,6944200PUR54,90390,1635517,334676,59620,14814,1237-40,5406200PUR54,90390,1635518,577265,00830,12544,1386-42,8330200PUR54,89910,1637589,471572,45640,12293,6486-38,4856200PUR54,87150,1624344,025355,08570,16016,1403-19,9980220PUR54,87120,1624341,750245,21590,13236,2282-24,6426220PUR54,87430,1625352,595548,22240,13686,0303-26,3982220PUR54,87430,1625352,595548,22240,11046,0903-30,2466220PUR54,87450,1624310,556844,03350,14186,8240-22,7028220PUR54,87450,1624310,556844,03550,14186,8240-22,7028220PUR54,86190,1573120,351837,08720,308215,9808244,7432240PUR54,74740,1582139,997736,35900,259714,1474179,9582240PUR54,749	190	PUR	5	4,9184	0,1639	669,9509	85,2197	0,1272	3,2114	-37,7868
200PUR54,90340,1634512,153973,59680,14374,1700-39,6944200PUR54,90410,1635517,334676,59620,14814,1237-40,5406200PUR54,90390,1635518,577265,00830,12544,1386-42,8330200PUR54,89910,1633478,526275,56700,15794,4407-40,2954200PUR54,91160,1637589,471572,45640,12293,6486-38,4856220PUR54,87120,1624344,025355,08570,16016,1403-19,9980220PUR54,87120,1624341,750245,21590,13236,2282-24,6426220PUR54,87350,1624351,429438,80720,11046,0903-30,2466220PUR54,87350,1624310,556844,03350,14186,8240-22,7028220PUR54,88660,1630418,973648,96620,11695,1170-27,8583240PUR54,71460,1583139,664738,22820,273714,0339185,1143240PUR54,72760,1576129,336433,31800,257615,4266217,2778240PUR54,72760,1576129,336433,31800,257615,4266217,2778240PUR54,72	200	PUR	5	4,9054	0,1635	524,4350	91,3924	0,1743	4,0361	-36,8046
200PUR54,90410,1635517,334676,59620,14814,1237-40,5406200PUR54,90390,1635518,577265,00830,12544,1386-42,8330200PUR54,89910,1633478,526275,56700,15794,4407-40,2954200PUR54,91160,1637589,471572,45640,12293,6486-38,4856220PUR54,87250,1624344,025355,08570,16016,1403-19,9980220PUR54,87120,1624341,750245,21590,13236,2282-24,6426220PUR54,87330,1625352,595548,22240,13686,0330-26,3982220PUR54,86190,1621310,556844,03350,14186,8240-22,7028220PUR54,86190,1621310,556844,03350,14186,8240-22,7028220PUR54,87180,1573120,351837,08720,308215,9808244,7432240PUR54,74740,1582139,997736,35900,259714,1474179,9582240PUR54,75790,1586148,875334,91850,234513,4873153,5043240PUR54,72760,1576129,336433,31800,257615,4296217,2778240PUR54,7	200	PUR	5	4,9034	0,1634	512,1539	73 <i>,</i> 5968	0,1437	4,1700	-39,6944
200PUR54,90390,1635518,577265,00830,12544,1386-42,8330200PUR54,89910,1633478,526275,56700,15794,4407-40,2954200PUR54,91160,1637589,471572,45640,12293,6486-38,4856220PUR54,87250,1624344,025355,08570,16016,1403-19,9980220PUR54,87120,1624341,750245,21590,13236,2282-24,6426220PUR54,87430,1625352,595548,22240,13686,0330-26,3982220PUR54,87350,1624351,429438,80720,11046,0903-30,2466220PUR54,86190,1630418,973648,96620,11695,1170-27,8583240PUR54,71860,1573120,351837,08720,308215,9808244,7432240PUR54,74740,1582139,997736,35900,259714,1474179,9582240PUR54,74910,1583139,664738,22820,273714,0339185,1143240PUR54,72760,1576129,336433,31800,257615,4296217,2778240PUR54,72760,1576129,336433,31800,257615,4296217,2778240PUR54,	200	PUR	5	4,9041	0,1635	517,3346	76,5962	0,1481	4,1237	-40,5406
200PUR54,89910,1633478,526275,56700,15794,4407-40,2954200PUR54,91160,1637589,471572,45640,12293,6486-38,4856220PUR54,87250,1624344,025355,08570,16016,1403-19,9980220PUR54,87120,1624341,750245,21590,13236,2282-24,6426220PUR54,87430,1625352,595548,22240,13686,0330-26,3982220PUR54,86190,1621310,556844,03350,14186,8240-22,7028220PUR54,86190,1621310,556844,03350,14186,8240-22,7028220PUR54,71860,1573120,351837,08720,308215,9808244,7432240PUR54,74740,1582139,997736,35900,259714,1474179,9582240PUR54,74910,1583139,664738,22820,273714,0339185,1143240PUR54,72760,1576129,336433,31800,257615,4296217,2778240PUR54,72760,1576129,336433,31800,257615,4296217,2778240PUR54,72760,1576129,336433,31800,257615,4296217,2778240PUR54	200	PUR	5	4,9039	0,1635	518,5772	65,0083	0,1254	4,1386	-42,8330
200PUR54,91160,1637589,471572,45640,12293,6486-38,4856220PUR54,87250,1624344,025355,08570,16016,1403-19,9980220PUR54,87120,1624341,750245,21590,13236,2282-24,6426220PUR54,87430,1625352,595548,22240,13686,0330-26,3982220PUR54,87350,1624351,429438,80720,11046,0903-30,2466220PUR54,86190,1621310,556844,03350,14186,8240-22,7028220PUR54,86190,1621310,556848,96620,11695,1170-27,8583240PUR54,71860,1573120,351837,08720,308215,9808244,7432240PUR54,74740,1582139,997736,35900,259714,1474179,9582240PUR54,74790,1583139,664738,22820,273714,0339185,1143240PUR54,72760,1576129,336433,31800,257615,4296217,2778240PUR54,72760,1576129,336433,31800,257615,4296217,2778240PUR54,77350,1591161,682244,16970,273212,4606155,5494	200	PUR	5	4,8991	0,1633	478,5262	75,5670	0,1579	4,4407	-40,2954
220PUR54,87250,1624344,025355,08570,16016,1403-19,9980220PUR54,87120,1624341,750245,21590,13236,2282-24,6426220PUR54,87430,1625352,595548,22240,13686,0330-26,3982220PUR54,87350,1624351,429438,80720,11046,0903-30,2466220PUR54,86190,1621310,556844,03350,14186,8240-22,7028220PUR54,88860,1630418,973648,96620,11695,1170-27,8583240PUR54,71860,1573120,351837,08720,308215,9808244,7432240PUR54,74910,1582139,997736,35900,259714,1474179,9582240PUR54,74910,1583139,664738,22820,273714,0339185,1143240PUR54,72760,1576129,336433,31800,257615,4296217,2778240PUR54,72760,1576129,336433,31800,257615,4296217,2778240PUR54,77350,1591161,682244,16970,273212,4606155,5494	200	PUR	5	4,9116	0,1637	589,4715	72,4564	0,1229	3,6486	-38,4856
220PUR54,87120,1624341,750245,21590,13236,2282-24,6426220PUR54,87430,1625352,595548,22240,13686,0330-26,3982220PUR54,87350,1624351,429438,80720,11046,0903-30,2466220PUR54,86190,1621310,556844,03350,14186,8240-22,7028220PUR54,88860,1630418,973648,96620,11695,1170-27,8583240PUR54,71860,1573120,351837,08720,308215,9808244,7432240PUR54,74740,1582139,997736,35900,259714,1474179,9582240PUR54,75790,1586148,875334,91850,234513,4873153,5043240PUR54,72760,1576129,336433,31800,257615,4296217,2778240PUR54,77350,1591161,682244,16970,273212,4606155,5494	220	PUR	5	4,8725	0,1624	344,0253	55 <i>,</i> 0857	0,1601	6,1403	-19,9980
220PUR54,87430,1625352,595548,22240,13686,0330-26,3982220PUR54,87350,1624351,429438,80720,11046,0903-30,2466220PUR54,86190,1621310,556844,03350,14186,8240-22,7028220PUR54,88860,1630418,973648,96620,11695,1170-27,8583240PUR54,71860,1573120,351837,08720,308215,9808244,7432240PUR54,74740,1582139,997736,35900,259714,1474179,9582240PUR54,74910,1583139,664738,22820,273714,0339185,1143240PUR54,72760,1576129,336433,31800,257615,4296217,2778240PUR54,77350,1591161,682244,16970,273212,4606155,5494	220	PUR	5	4,8712	0,1624	341,7502	45,2159	0,1323	6,2282	-24,6426
220PUR54,87350,1624351,429438,80720,11046,0903-30,2466220PUR54,86190,1621310,556844,03350,14186,8240-22,7028220PUR54,88860,1630418,973648,96620,11695,1170-27,8583240PUR54,71860,1573120,351837,08720,308215,9808244,7432240PUR54,74740,1582139,997736,35900,259714,1474179,9582240PUR54,74910,1583139,664738,22820,273714,0339185,1143240PUR54,75790,1586148,875334,91850,234513,4873153,5043240PUR54,72760,1576129,336433,31800,257615,4296217,2778240PUR54,77350,1591161,682244,16970,273212,4606155,5494	220	PUR	5	4,8743	0,1625	352,5955	48,2224	0,1368	6,0330	-26,3982
220PUR54,86190,1621310,556844,03350,14186,8240-22,7028220PUR54,88860,1630418,973648,96620,11695,1170-27,8583240PUR54,71860,1573120,351837,08720,308215,9808244,7432240PUR54,74740,1582139,997736,35900,259714,1474179,9582240PUR54,74910,1583139,664738,22820,273714,0339185,1143240PUR54,75790,1586148,875334,91850,234513,4873153,5043240PUR54,72760,1576129,336433,31800,257615,4296217,2778240PUR54,77350,1591161,682244,16970,273212,4606155,5494	220	PUR	5	4,8735	0,1624	351,4294	38,8072	0,1104	6,0903	-30,2466
220PUR54,88860,1630418,973648,96620,11695,1170-27,8583240PUR54,71860,1573120,351837,08720,308215,9808244,7432240PUR54,74740,1582139,997736,35900,259714,1474179,9582240PUR54,74910,1583139,664738,22820,273714,0339185,1143240PUR54,75790,1586148,875334,91850,234513,4873153,5043240PUR54,72760,1576129,336433,31800,257615,4296217,2778240PUR54,77350,1591161,682244,16970,273212,4606155,5494	220	PUR	5	4,8619	0,1621	310,5568	44,0335	0,1418	6,8240	-22,7028
240PUR54,71860,1573120,351837,08720,308215,9808244,7432240PUR54,74740,1582139,997736,35900,259714,1474179,9582240PUR54,74910,1583139,664738,22820,273714,0339185,1143240PUR54,75790,1586148,875334,91850,234513,4873153,5043240PUR54,72760,1576129,336433,31800,257615,4296217,2778240PUR54,77350,1591161,682244,16970,273212,4606155,5494	220	PUR	5	4,8886	0,1630	418,9736	48,9662	0,1169	5,1170	-27,8583
240PUR54,74740,1582139,997736,35900,259714,1474179,9582240PUR54,74910,1583139,664738,22820,273714,0339185,1143240PUR54,75790,1586148,875334,91850,234513,4873153,5043240PUR54,72760,1576129,336433,31800,257615,4296217,2778240PUR54,77350,1591161,682244,16970,273212,4606155,5494	240	PUR	5	4,7186	0,1573	120,3518	37,0872	0,3082	15,9808	244,7432
240PUR54,74910,1583139,664738,22820,273714,0339185,1143240PUR54,75790,1586148,875334,91850,234513,4873153,5043240PUR54,72760,1576129,336433,31800,257615,4296217,2778240PUR54,77350,1591161,682244,16970,273212,4606155,5494	240	PUR	5	4,7474	0,1582	139,9977	36,3590	0,2597	14,1474	179,9582
240 PUR5 4,7579 0,1586148,875334,9185 0,234513,4873 153,5043240 PUR5 4,7276 0,1576129,336433,31800,257615,4296217,2778240 PUR5 4,7735 0,1591161,682244,16970,273212,4606155,5494	240	PUR	5	4,7491	0,1583	139,6647	38,2282	0,2737	14,0339	185,1143
240 PUR5 4,7276 0,1576 129,3364 33,3180 0,2576 15,4296 217,2778240 PUR5 4,7735 0,1591 161,6822 44,1697 0,2732 12,4606 155,5494	240	PUR	5	4,7579	0,1586	148,8753	34,9185	0,2345	13,4873	153,5043
240 PUR 5 4,7735 0,1591 161,6822 44,1697 0,2732 12,4606 155,5494	240	PUR	5	4,7276	0,1576	129,3364	33,3180	0,2576	15,4296	217,2778
	240	PUR	5	4,7735	0,1591	161,6822	44,1697	0,2732	12,4606	155,5494

Norges miljø- og biovitenskapelige universitet Noregs miljø- og biovitskapelege universitet Norwegian University of Life Sciences Postboks 5003 NO-1432 Ås Norway