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Abstract

Most modeling in systems neuroscience has been descriptive where neural representations

such as ‘receptive fields’, have been found by statistically correlating neural activity to sen-

sory input. In the traditional physics approach to modelling, hypotheses are represented by

mechanistic models based on the underlying building blocks of the system, and candidate

models are validated by comparing with experiments. Until now validation of mechanistic

cortical network models has been based on comparison with neuronal spikes, found from

the high-frequency part of extracellular electrical potentials. In this computational study we

investigated to what extent the low-frequency part of the signal, the local field potential

(LFP), can be used to validate and infer properties of mechanistic cortical network models.

In particular, we asked the question whether the LFP can be used to accurately estimate

synaptic connection weights in the underlying network. We considered the thoroughly ana-

lysed Brunel network comprising an excitatory and an inhibitory population of recurrently

connected integrate-and-fire (LIF) neurons. This model exhibits a high diversity of spiking

network dynamics depending on the values of only three network parameters. The LFP gen-

erated by the network was computed using a hybrid scheme where spikes computed from

the point-neuron network were replayed on biophysically detailed multicompartmental neu-

rons. We assessed how accurately the three model parameters could be estimated from

power spectra of stationary ‘background’ LFP signals by application of convolutional neural

nets (CNNs). All network parameters could be very accurately estimated, suggesting that

LFPs indeed can be used for network model validation.

Author summary

Most of what we have learned about brain networks in vivo has come from the measure-

ment of spikes (action potentials) recorded by extracellular electrodes. The low-frequency

part of these signals, the local field potential (LFP), contains unique information about

how dendrites in neuronal populations integrate synaptic inputs, but has so far played a

lesser role. To investigate whether the LFP can be used to validate network models, we

computed LFP signals for a recurrent network model (the Brunel network) for which the
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ground-truth parameters are known. By application of convolutional neural nets (CNNs)

we found that the synaptic weights indeed could be accurately estimated from ‘back-

ground’ LFP signals, suggesting a future key role for LFP in development of network

models.

Introduction

The traditional physics approach to modeling typically involves four steps: (i) A hypothesis is

formulated in terms of a candidate mechanistic mathematical model, that is, a model based on

interactions between building blocks of the system, (ii) predictions of experimentally measur-

able quantities are calculated from the model, (iii) the predictions are compared with experi-

ments, and (iv) if necessary, the hypothesis is adjusted, that is, a new candidate model is

proposed. In neuroscience, a descriptive or statistical approach has been more common, in

particular in systems neuroscience aiming to understand neural network behaviour in vivo.

Here statistical techniques are used to look, for example, for correlations between measured

neural activity and sensory stimuli presented to the animal to estimate receptive fields [1, Ch.

2]. While descriptive models can inform us about neural representations in various brain

areas, mechanistic models may explain the biological mechanisms underlying these represen-

tations [2].

Starting with Hodgkin and Huxley’s development of a mechanistic model for action-poten-

tial generation and propagation in squid giant axons [3], mechanistic modeling of neurons is

now well established [1, 4, 5]. Numerous biophysically detailed neuron models tailored to

model specific neuron types have been constructed, for example, for cells in mammalian sen-

sory cortex [6, 7], hippocampus [8] and thalamus [9, 10]. Further, simplified mechanistic

point-neuron models of the integrate-and-fire type excellently mimicking experimental data,

have been constructed [11, 12]. At present, mechanistic network models mimicking specific

neural circuits are scarce, however. For small networks like the circuit in the crustacean stoma-

togastric nervous system comprising a few tens of neurons, some excellent models have been

developed [13]. For cortical networks important pioneering efforts to construct comprehen-

sive networks with tens of thousands of neurons mimicking cortical columns in mammalian

sensory cortices, have been pursued, e.g., [7, 14–17]. These models were found to predict spik-

ing activity in rough qualitative accordance with some observed population phenomena (spik-

ing statistics, spike oscillations, . . .). Fitting of cortical network models to trial-averaged multi-

unit activity (MUA) recorded in somatosensory cortex has been pursued for population firing-

rate models [18]. However, we do not yet have validated, general-purpose network models

that accurately predict experimentally recorded neural activity both in the various ‘back-

ground’ states and as a response to sensory stimulation.

The cortical models above have been compared with experimental spiking activity, that is,

the high-frequency part of extracellular electrical potentials. The low-frequency part, the local

field potential (LFP), in contrast largely reflects how synaptic inputs are processed by dendrites

in the populations of neurons surrounding the electrode contacts [19–21]. Several methods for

analysis of cortical LFP signals have been developed, see [20, 21] for reviews. LFP signals have

also been used to validate network models both in cortex [22–24] and hippocampus [25–27].

However, a systematic exploration of how informative the LFP signal is for network model val-

idation, has not yet been pursued.

In the present work we explore to what extent the LFP signal generated by a neuronal net-

work model can be used to extract the connectivity parameters of the same network. As a
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model network we consider the so-called Brunel network comprising an excitatory and an

inhibitory population of recurrently connected integrate-and-fire (LIF) neurons [28]. Point

neurons do not generate extracellular potentials, however, and to compute corresponding

LFPs we use a hybrid LFP scheme [29]: First the spiking activity is computed by use of the sim-

ulator NEST [30], and next the computed spikes are replayed as presynaptic spikes onto bio-

physically detailed multicompartmental neuron models to compute the LFP using LFPy [31,

32]. The LFP generated by a network depends crucially on the level of temporal correlations of

synaptic input onto the neurons [29, 33–35]. Thus the LFPs generated by the Brunel network

will, as the spiking activity, vary strongly between the different network states as obtained for

different choices of network model parameters.

We assess how well network model parameters can be estimated from the stationary ‘back-

ground’ LFP signal. For this, we first train convolutional neural nets (CNNs) [36] with LFP

training data for which the underlying model parameters are known, and then test the accu-

racy of parameter estimation on a separate set of LFP test data. As it turns out, a relatively sim-

ple CNN is sufficient for the task and is indeed found to accurately estimate the network

model parameters. Thus for the present example, the LFP signal contains sufficient informa-

tion to accurately recover the underlying model parameters. This suggest that not only spiking

data, but also LFPs, can be used to validate candidate network models.

Methods

Point-neuron network model

The Brunel network [28] consists of two local populations, one with excitatory and one with

inhibitory neurons. These populations of size NE and NI, respectively, consist of leaky inte-

grate-and-fire (LIF) neurons interconnected with current-based delta-shaped synapses. Inputs

from external connections are modeled as uncorrelated excitatory synaptic input currents with

activation governed by a fixed-rate Poisson process with rate νext.

The sub-threshold dynamics of the point-neurons obey a first-order differential equation,

cf. Equation (1) and Equation (2) in Table 1. When the membrane potential of a neuron

reaches its firing threshold θ, the neuron emits a spike, the synapses onto all its postsynaptic

neurons are activated after a time delay td, and the neuron’s membrane potential is clamped to

a potential Vreset for a refractory period of tref. Each neuron receives a fixed number of incom-

ing connections (fixed in-degree) from a fraction � of all other local neurons in the network in

addition to the external input. The synaptic connection strengths are constant for each popula-

tion, for excitatory neurons and external input it is given by JE = J and for inhibitory neurons

JI = −gJ. The amount of input the local neurons receive from the external population is deter-

mined by the parameter η = νext/νthr, where νthr = θ/(Jτm) is the minimum constant rate input

that by itself will drive a neuron to its firing threshold, and τm is the membrane time constant.

A complete description of the point-network model is given in Table 1, with specific parameter

values given in Table 2.

Forward-model predictions of LFPs

In order to compute local field potentials (LFPs) from the point-neuron network, we utilized

the recently introduced ‘hybrid LFP scheme’ [29] (github.com/INM-6/hybridLFPy), illustrated

in Fig 1. The scheme allows for the decoupling of the simulation of spiking dynamics (here

computed using point neurons) and predictions of extracellularly recorded LFPs. The latter

part relies on reconstructed cell morphologies and multicompartment modeling in combina-

tion with an electrostatic forward model. As the complete description of the scheme (including

the biophysics-based forward model) and its application with a cortical microcircuit model
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[15] is given in [29], we here only briefly summarize the main steps taken to predict LFPs

from the two-population network described above: To represent each network population we

chose one layer-4 pyramidal neuron and one interneuron reconstruction for the excitatory

and inhibitory populations, respectively (Fig 1B). The corresponding morphology files

L4E_53rpy1_cut.hoc and L4I_oi26rbc1.hoc were also used in [29] (cf. their Table 7), but the

apical dendrite of the pyramidal neuron was cut to make it shorter to better fit our smaller col-

umn. The somatic positions of all NE + NI neurons were drawn randomly with homogeneous

probability within a cylinder with radius r = 564 μm and height Δz = 100 μm, z between -450

and -350 μm (Fig 1B). This depth spread of 100 μm is in qualitative agreement with what can

be expected for a laminarly organized population in rodent cortices. Each excitatory cell

Table 1. Description of point-neuron network following the guidelines of [37].

Model summary

Populations One excitatory, one inhibitory

Network

model

Fixed in-degree, random convergent connections

Neuron

model

Local populations: leaky integrate-and-fire, external: Poisson generator

Synapse

model

Current-based delta-shaped, fixed strength for each population

Populations

Names Excitatory: E

Inhibitory: I

Network model

Connectivity Fixed number of incoming connections CE = �NE from excitatory population and CI = �NI from inhibitory population

Input Poissonian synaptic input with fixed rate νext for each neuron

Neuron model

Type Leaky integrate-and-fire neuron

Description Dynamics of membrane potential Vi(t) (neuron i 2 [1, N]):

• Spike emission at times til with ViðtilÞ � y
• Subthreshold dynamics:

tm
dViðtÞ
dt
¼ � ViðtÞ þ RmIiðtÞ if 8l : t =2 ðtil ; t

i
l þ tref � 1ð Þ

where τm is the membrane time constant, V the membrane potential, Rm the membrane resistance, and I the synaptic inputs.

• Reset + refractoriness: ViðtÞ ¼ Vreset if 8l : t 2 ðtil ; til þ tref �

Exact integration with temporal resolution dt
Uniform distribution of membrane potentials Vi 2 [Vreset, θ) at t = 0

Synapse model

Type Delta-shaped postsynaptic current

Description RmIiðtÞ ¼ tm
X

j

Jij
X

l

dðt � tjl � tdÞ ð2Þ

where the first sum is over all the presynaptic neurons j, including the external ones, and the second sum is over the spike times of those neurons. tjl is

the lth spike of presynaptic neuron j, and td is the synaptic delay. δ denotes the Dirac delta function.

Jij ¼
J; j 2 fE;Eextg

� gJ; j 2 fIg

8
<

:

Multapses and autapses are allowed.

https://doi.org/10.1371/journal.pcbi.1007725.t001
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morphology was oriented with their apical dendrite pointing upwards in the direction of the

positive z–axis and rotated with a random angle around that axis, while inhibitory neurons

were rotated randomly around all three axes. The membranes of each morphology were fully

passive, with the same membrane time constant τm as in the point-neuron network.

In the present hybrid scheme the activity in the LFP-generating populations of multicom-

partment neurons are obtained by mapping spikes generated by individual LIF neurons in the

point-neuron network to synapse activation times at specific positions on their equivalent

multicompartment neurons. To obtain the synaptic connectivity onto the different positions

on the morphologies of the multicompartment neurons, we defined an ‘upper’ and ‘lower’

layer (homologous to e.g., layer 2/3 and 4) on the depth intervals [0, z1) and [z1, z2), see Fig 1B.

The layer-specific connection probability [29, p. 4470–4473] was set so that half of the excit-

atory synapses onto excitatory neurons were in the upper layer and half in the lower layer. In

contrast all inhibitory synapses and excitatory synapses onto inhibitory neurons were posi-

tioned in the lower layer. Within each layer, the probabilities for synaptic connections were

proportional to the surface area of each compartment normalized by the total compartment

surface area within the layer. Only inhibitory synapses were allowed on the soma compart-

ments. The per-neuron synaptic in-degrees were preserved from the network. Since the

singular delta-shaped postsynaptic currents (PSCs) cannot be exactly represented in the multi-

compartment neuron modeling as in the point-neuron network simulations, alpha-function

shaped PSCs (Equation (7) in Table 3) with synaptic time constant τs were used instead. The

Table 2. Point-neuron network parameters.

Point-neuron parameters

Symbol Description Value

η relative amount of external input [0.8, 4.0]

g relative strength of inhibitory synapses [3.5, 8.0]

J absolute excitatory strength [0.05, 0.4] mV

τm membrane time constant 20 ms

Cm membrane capacitance 250 pF

td synaptic delay period 1.5 ms

tref absolute refractory period 2 ms

θ firing threshold 20 mV

Vreset reset membrane potential 10 mV

EL passive leak reversal potential 0 mV

NE number of excitatory neurons 10000

NI number of inhibitory neurons 2500

� connection probability 0.1

CE number of incoming excitatory synapses 1000

CI number of incoming inhibitory synapses 250

Simulation parameters

Training and test data

Tsim simulation duration 3 s

Ttransient start-up transient duration 150 ms

dt time resolution 0.1 ms

Model exploration data

Tsim simulation duration 30.5 s

Ttransient start-up transient duration 500 ms

dt time resolution 0.1 ms

https://doi.org/10.1371/journal.pcbi.1007725.t002
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amplitude of the PSCs was chosen so that the total transferred charge is equal for both synapse

types (thus preserving the total synaptic input current between the network and multicompart-

ment neurons). A full description of the multi-compartment neuron model is given in Tables

3 and 4.

The presently used choice of current-based synapses and morphologies with passive mem-

branes in the multicompartment neuron models introduces a linear relationship between any

presynaptic spike event and contributions to the LFP resulting from evoked currents in all

postsynaptic multicompartment neurons. Thus the LFP contribution �
j
Yðr; tÞ at position r

from a single presynaptic point-neuron neuron j in population Y can, in general, be calculated

by the convolution of its spike train n
j
YðtÞ �

P
kdðt � t

k
j Þ with a unique kernel Hj

YXðr; tÞ as

�
j
Yðr; tÞ ¼

P
Xðn

j
Y �H

j
YXÞðr; tÞ. This kernel encompasses effects of the postsynaptic neuron

morphologies and biophysics, the electrostatic forward model, the synaptic connectivity pat-

tern, conduction delay and PSCs. (Note that to be in accordance with the notation used in

[28], we here use a different notation than in [29] where instead i and X denoted presynaptic

neurons, and j and Y denoted postsynaptic neurons.)

The resulting LFP due to spikes in a presynaptic population Y is then given by [29]

�Yðr; tÞ ¼
X

X

X

j2Y

ðn
j
Y �H

j
YXÞðr; tÞ : ð9Þ

The evaluation of this sum is computationally expensive for large population sizes. For our

Fig 1. Overview of hybrid scheme for computing local field potentials (LFPs). Top row: First, the dynamics of a network is simulated using a point-neuron

simulation (A), and the resulting spike times are saved to file. Orange and blue color indicate excitatory and inhibitory neurons, respectively. In a separate simulation,

the obtained spike times are replayed as synaptic input currents onto reconstructed neuron morphologies representing postsynaptic target neurons (B, only one

excitatory in orange and one inhibitory neuron in blue are shown). Based on the resulting transmembrane currents of the postsynaptic target neurons in this second

simulation, the LFP is calculated (C). Bottom row: Prediction of LFPs from population firing histograms. Instead of running the full hybrid scheme, the LFP can be

predicted by the convolution of the population firing histograms (lower figure in A) with kernels representing the average contribution to the LFP by a single spike in

each population (lower figure in B). These kernels are computed using the hybrid scheme [29], see Methods.

https://doi.org/10.1371/journal.pcbi.1007725.g001
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purposes where the calculation of LFP signals lasting seconds must be repeated tens of thou-

sands of times to have training and test data for the CNNs, this scheme is not feasible.

Following [29, Fig 13] we instead use a firing-rate approximation and compute the LFP by

a convolution of population firing rates nYðtÞ �
P

j2Yn
j
YðtÞ and averaged kernels

�HYðr; tÞ � 1=NY

P
X

P
j2YH

j
YXðr; tÞ, that is,

�Yðr; tÞ ¼ ðnY � �HYÞðr; tÞ : ð10Þ

As in [29], these averaged kernels �HYðr; tÞ were computed using the full hybrid-scheme. This

was done by computing the LFP resulting from a fully synchronous activation of all the outgo-

ing synapses from all neurons in the presynaptic population. Thus for the computation of the

Table 3. Description of multi-compartment neuron populations.

Model summary

Populations Local excitatory and inhibitory populations

Neuron

model

Multi-compartment neurons with passive cable formalism

Synapse

model

Current-based, α-function shaped, fixed strength for each population

Topology Cylinder of 1 mm2 cross-section with somas of both populations positioned in single layer of thickness 0.1 mm.

Neuron models

Type Reconstructed multi-compartment morphologies with passive electrical properties

Description For each neuron, the membrane potential Vn of compartment n connected to m other compartments k, with a surface area an, length ln and diameter dn
is given by:

Xm

k¼1

gaknðVk � VnÞ ¼ Cmn
dVn

dt
þ Imn ð3Þ

Cmn ¼ cman ð4Þ

gakn ¼ pðd2
n þ d

2
kÞ=ð4raðln þ lkÞÞ ð5Þ

Imn ¼ gLnðVn � ELÞ þ
X

j

Ijn ; ð6Þ

where for compartment n, Cmn is the membrane capacitance, gakn the axial conductance from compartment k, Imn the

membrane current, gLn the membrane leak conductance, EL the extracellular reversal potential, and Ijn the synaptic current from presynaptic neuron j.
Synapse model

Synapse

type

α-function shaped postsynaptic current

Description IðtÞ ¼ Hðt � taÞJCte1� t=ts ð7Þ

HðtÞ ¼ 0 for t � 0; otherwise 1: ð8Þ

Here ta is the activation time of the synapse, J the synaptic strength, and τs is the synaptic time constant. C is a constant chosen so that

JC
R1

0
te1� t=ts dt ¼ CmJ, assuring that the same total charge is transferred as in the δ-function synapse in the point-neuron network.

Topology

Type Cylinder with radius 1=
ffiffiffi
p
p

mm and height 0.5 mm containing two vertical sections

Description • Cylinder extends from z = −500 μm to z = 0

• All somas are randomly placed with a uniform distribution within the boundaries r� 564 μm and −450 μm� z � −350 μm

• Two regions separated by the plane z = −300 μm

• Synapses on inhibitory neurons are placed in lower region

• Inhibitory synapses on excitatory neurons are placed in lower region

• Excitatory synapses on excitatory neurons are split equally between regions

https://doi.org/10.1371/journal.pcbi.1007725.t003
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LFP kernel, we have n
j
YðtÞ � dðt � tYÞ where tY is the timing of the synchronous event in pop-

ulation Y. In the application of Eq 10, this computed kernel is then convolved with the popula-

tion firing rates measured in the point-neuron simulations to compute the LFP.

By using this kernel approach the computational resources needed to run LFP simulations

are reduced by several orders of magnitude compared to direct use of Eq 9. To test the accu-

racy of the approximation of using Eq 10 instead of Eq 9, we compared their LFP predictions

for a set of example parameter sets and found in general excellent agreement between the

resulting power spectra. A comparison is shown in the lower panels of the first figure in

Results.

The kernel �HY will scale linearly with the postsynaptic strengths of population Y, and is

therefore dependent on the parameters J for Y 2 {E, I} and g for Y 2 {I}. The kernels were thus

computed only once for a set of reference values for J and g, and for each simulation these ref-

erence kernels were scaled accordingly to the particular values of J and g. The LFP was com-

puted across depth through the center of the cylindric volume with a spatial resolution d as

illustrated in Fig 1B for the same duration as the network simulations.

Statistical methods

LFP spectral analysis. The power spectral densities Pϕ(r, f) of LFPs ϕ(r, t) in each location

r were estimated using Welch’s average periodogram method [38]. For this we used the imple-

mentation from the Python SciPy package [39] (scipy.signal.welch), with parameters

listed in Table 5.

Statistical measures of activity. Two statistical measures were employed to probe the

spiking network activity in the different regions of the parameter space. Simulations of 30.5

seconds of the activity were run and used to calculate the statistics, where the first 500 ms of

the simulations were discarded. These simulations were run in addition to the ones entering

the training and testing of the convolutional neural network (described in the next section), in

Table 5. Parameters for Welch’s method for computing power spectral density (PSD) of LFP.

Power spectrum estimation

Symbol Description Value

NFFT number of data points used in each window 300

noverlap number of overlapping data points 150

Fs sampling frequency 1 kHz

window window function Hann

https://doi.org/10.1371/journal.pcbi.1007725.t005

Table 4. Multi-compartment neuron parameters.

Multi-compartment neuron parameters

Symbol Description Value

τm membrane time constant 20 ms

Cm membrane capacitance 1.0 μF/cm2

Rm membrane resistivity τm/Cm

Ra axial resistivity 150 Ocm

τs synaptic time constant 5 ms

EL passive leak reversal potential 0 mV

Vinit membrane potentials at t = 0 ms 0 mV

σe extracellular conductivity 0.3 Sm−1

https://doi.org/10.1371/journal.pcbi.1007725.t004
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order to have longer data sets for calculating reliable statistics characterizing the parameter

regimes.

The mean network firing rate, including both the excitatory and inhibitory populations was

calculated as

�n ¼
1

ðNE þ NIÞðTsim � TtransientÞ

X

i

X

l

Z Tsim

Ttransient

dðt � tilÞdt; ð11Þ

over all neurons i and their spikes l at spike times til . The coefficient of variation (CV) of the

inter-spike intervals (ISI) of individual neurons was used as a measure of the irregularity of fir-

ing [40]. The presently used mean CV was defined as

CV ¼
1

N

XN

i

sISI;i

mISI;i
; ð12Þ

averaged over all neurons i.
As a measure of the degree to which the LFP power spectrum is spread out over different

frequencies, we employed the entropy of the normalized power spectrum of the LFP measured

in the uppermost channel, defined as

S ¼ �
P

n
~P�ðfnÞ log ~P�ðfnÞ ; ð13Þ

where ~P�ðfnÞ is the power spectrum of the LFP ϕ(r, t) at frequency fn normalized to unity.

Since the power spectrum is computed numerically using Welch’s method, this introduces a

discretization in frequency space.

Simulation of training and test data

Two different sets of training and test data were created for this study. The first data set is from

a large parameter space with η 2 [0.8, 4.0], g 2 [3.5, 8.0] and J 2 [0.05, 0.4] mV. The parameters

were drawn randomly from a uniform probability distribution with a total of 50000 examples.

This data set encompasses all four different activity states displayed by the Brunel network,

illustrated in Fig 2. These activity states include synchronous regular (SR), asynchronous irreg-

ular (AI), synchronous irregular (SI) with either slow or fast oscillations. The large parameter

space is illustrated by the orange outline in Fig 2. The second data set is from a smaller parame-

ter space with η 2 [1.5, 3.0], g 2 [4.5, 6.0] and J 2 [0.1, 0.25] mV, encompassing only the AI

activity state, as illustrated by the blue outline in Fig 2. All other parameters (Table 2) were

kept constant across simulations, which were run for a duration of Tsim = 3 s. Start-up tran-

sients with duration Ttransient = 150 ms were discarded. LFP signals for all spiking output were

computed as outlined above, and as final training and test data we estimated the power spec-

trum Pϕ(r, f) in each LFP channel.

Parameter estimation by convolutional neural networks

The CNN architecture is illustrated in Fig 3 and fully described in Table 6, and was set up

using the Keras machine learning framework [41] running on top of TensorFlow [42]. It con-

sisted of three convolutional layers with 20 filters, each followed by max pooling layers, and

two fully connected layers before the output layer. The rectified linear unit (ReLU) function f
(x) = max(0, x) was used as the activation function for all layers apart from the output layer,

and biases were only used in the fully connected layers. As input, it took the PSD of each LFP

channel, a 6 by 151 matrix. The convolutions were done in one dimension, with kernels

extending over all LFP channels. There were two fully connected layers, with 128 nodes each,
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before the output layer consisting of 3 nodes. Each node in the output layer corresponded to a

single parameter η, g and J.
The LFP PSD was normalized for each channel by the mean of the sum of the PSD over all

frequencies, serving to diminish the variation in amplitude across the different LFP PSDs

input to the network, while keeping the variation in amplitude across channels for each single

LFP PSD. Each parameter range was linearly mapped to the interval [0, 1] when used as target

Fig 2. Brunel model network and phase diagram. A, Illustration of network. Solid lines represent excitatory connections,

dashed lines inhibitory connections.B, Phase diagram, adapted from [28], Fig 2A. Different network states arise depending

on the parameters η = νext/νthr and g (where in the present example a fixed synaptic delay td of 1.5 ms is used). SR stands for

synchronous regular, SI for synchronous irregular, and AI asynchronous irregular. Orange box shows the extent of

parameters we simulated and blue box when we restricted the simulations to the AI state. Note that this plot shows a slice

of the parameter space for a given value of J = 0.1. We considered different values of J in the study, so the actual parameter

space is a cube, with the third axis being in the J-direction. The red dots labeled A–E indicate the η and g values of the

example activities shown in the first figure in Results.

https://doi.org/10.1371/journal.pcbi.1007725.g002

Fig 3. Illustration of convolutional neural network (CNN). The PSDs of all six LFP channels are taken as input. The

three convolutional layers consist of 20 filters each, and are followed by max pooling. Two fully connected layers

precede the output layer which consists of 3 nodes, one for each parameter.

https://doi.org/10.1371/journal.pcbi.1007725.g003
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quantities during training and inference. The network was trained by batch gradient descent

on 40000 of the simulated LFPs, while the final 10000 simulated LFPs were reserved for testing.

To train the CNN, we required a loss function which was minimized during training. We

defined the loss as the mean squared error of the estimator

loss ¼ hðâ � atrueÞ
2
i ð14Þ

where â is the estimate (output from the CNN) and atrue is the truth (‘ground-truth’ value) of

any vector of normalized network parameters a.

Table 6. Detailed specification of presently used convolutional neural network (CNN). The convolutional kernel

dimensions are given as [frequency, channels in, channels out], the strides and window sizes are given in the frequency

dimension.

Convolutional neural network

Layer Description

Conv. layer 1 kernel size: 12x6x20

stride: 1

activation: ReLU

bias: no

initialization: glorot uniform

Max pool 1 window size: 2

stride: 2

Conv. layer 2 kernel size: 3x20x20

stride: 1

activation: ReLU

bias: no

initialization: glorot uniform

Max pool 2 window size: 2

stride: 2

Conv. layer 3 kernel size: 3x20x20

stride: 1

activation: ReLU

bias: no

initialization: glorot uniform

Max pool 3 window size: 2

stride: 2

Dense layer 1 nodes: 128

activation: ReLU

bias: yes

initialization: glorot uniform

Dense layer 2 nodes: 128

activation: ReLU

bias: yes

initialization: glorot uniform

Output layer nodes: 3

activation: Linear

bias: no

initialization: glorot uniform

https://doi.org/10.1371/journal.pcbi.1007725.t006
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The Adam optimizer [43] was used, with a batch size of 100, learning rate of 0.001 and β1,

β2 and �Adam parameters of 0.9, 0.999 and 10−8 respectively. The networks were trained for 400

epochs, and the network weights with the lowest test loss were saved.

Effect of duration of LFP signals

It was a priori not known what duration of the data are required to obtain stable results. To

test this, the duration of each LFP simulation was successively extended, the PSD of the LFP

was computed using the Welch method, and the CNN was trained with the data to predict the

three parameters simultaneously. The test loss during training is shown in Fig 4A.

Overall, the loss decreased with training duration and reached a plateau after a certain

amount of training epochs. Increase of the duration of each simulation led to a decrease in the

loss. This is due to lower noise in the estimated PSDs when it is computed over larger time

windows.

The results in the figure suggested that a simulation duration of about 1800 ms would be a

good choice, as shorter simulation times decreased the performance. Fig 4B shows the scaling

of the minimal test loss (that is, loss obtained in the limit where more training epochs do not

improve results) as a function of simulation duration. The� 1=
ffiffi
t
p

least squares fit was moti-

vated by the scaling of the error of the mean, which gives the square root dependence of the

standard error of the mean. This scaling assumes uncorrelated experiments, which is not the

case when using Welch’s method as we do. Nevertheless, the fact that this scaling was observed

to hold in our estimations suggested that the error indeed is largely explained by limited

amounts of data and that the error decreases as more data is used.

Technical details

Reproducibility. The simulations were done using Python v2.7.12. All point-network

simulations were done with the NEST simulator v2.12.0 [30]. The forward-modeling of the

LFP was done using hybridLFPy v0.1.3 [29], with NEURON v7.5 [44]. All simulations were

run on the Stallo high-performance computing cluster consisting of 2.6 GHz Intel Xeon E5

2670 and 2.8 GHz Intel Xeon E5 2680 CPUs.

Fig 4. A, Test loss as a function of number of training epochs of the CNN for different simulation lengths. B, Minimal loss (that is,

smallest loss in panel A) as a function of simulation length. A function with� 1=
ffiffi
t
p

shape was fitted to the data to illustrate that the

scaling is explained by limited amount of data and that the error decreases as more data is used. The R2 score was 0.994.

https://doi.org/10.1371/journal.pcbi.1007725.g004
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The convolutional neural networks were trained using Python v3.5.2 using Keras v2.2 with

TensorFlow v1.10.0 as backend. All simulation and analysis code for this study is available on

Github: https://github.com/CINPLA/Skaar_et_al_2020_PLoS_Comput_Biol.

Results

The aim of this study is to investigate the possibility of estimating network model parameters

for the Brunel two-population spiking-network model [28] from the stationary ‘background’

LFP signal. We start by describing this spiking model and its salient dynamical properties and

further describe how the resulting spikes can be used in a hybrid scheme to calculate associated

LFPs [29]. Then we discuss the estimation performance of a convolutional neural network

(CNN) to predict network parameters of the Brunel network model based on LFP data only.

Network model and LFPs

The presently used Brunel network produces four different network states dependent on the

post-synaptic potential amplitude of excitatory connections J, the ratio of inhibitory to excit-

atory connection strength g, and the strength of the external input η relative to the threshold

rate, see Fig 2. In the synchronous regular (SR) state the neurons fire regularly and in syn-

chrony. In the asynchronous irregular (AI) state individual neurons have irregular firing and

very little synchronization. The synchronous irregular (SI) state, characterised by oscillatory

population firing rates, displays highly irregular firing of individual neurons. Example spike

raster plots and population firing rates for SR, AI and SI states of the network are shown in the

top rows of Fig 5. AI states are commonly believed to be realised in most healthy neural net-

works in vivo, often characterized by low average pairwise spike-train correlations (see e.g.,

[45]) and irregular spike trains (see e.g., [46]).

To generate training and test data for the convolutional neural net (CNN), we simulated

the network for many combinations of parameters (η 2 [0.8, 4], g 2 [3.5, 8] and J 2 [0.05, 0.4]

mV). This parameter space includes parameter combinations giving three of the states

described above: AI, SI, and SR (see orange rectangle in Fig 2). For details of the simulation

procedure, see Methods.

The LFPs were simulated using the so-called hybrid scheme introduced by [29]. In this

scheme, neuronal network activity is predicted by a point-neuron network (here the Brunel

network), and the corresponding LFPs are estimated in a subsequent step by ‘playing back’

spike times as activation times of synapses distributed across reconstructed neuron morpholo-

gies representative for each population type. The LFP is then computed from the resulting

transmembrane currents combined with an electrostatic forward model derived from volume-

conductor theory, as detailed in Methods. An overview over the hybrid scheme, including the

geometrical organisation of the ‘cortical column’ used in the LFP-generating step, is shown in

Fig 1.

Example LFPs for different network states. In the presently used model set-up, the LFP

is linearly dependent on the point-neuron network spiking activity. Any network parameter

change affecting ongoing spiking activity will therefore directly affect the LFP. The panels in

the lower two rows of Fig 5 show the resulting LFP and corresponding LFP power spectra for

five different network parameter combinations of η, g and J.
An example synchronous regular state (SR) is shown in panel A. The simulation showed

high regularity and synchrony of the individual spike trains and a strongly oscillating popula-

tion firing rate. The corresponding LFP generally had a similar time course over all channels,

though with opposite phases for the topmost and lower recording channels. The power spec-

tral density (PSD) of the LFP showed a decrease in power with increasing frequency, though
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with a clear peak at around 330 Hz. This peak was also seen in the PSD of the firing-rate,

reflecting the tight relationship between spikes and LFPs.

Two examples of the synchronous irregular state (SI) are illustrated in Fig 5B and 5C, char-

acterised by synchrony of the firing of neurons while individual neurons fire irregularly. In

panel B an example with high firing and fast oscillations is shown. Here the power spectrum of

the LFP showed two peaks at around 175 and 350 Hz, respectively. Again, the same peaks are

found also in the firing rate spectra. In contrast, panel C shows a low-firing SI state with more

slowly varying population firing rates, and with a small peak around 30 Hz in the firing-rate

and LFP power spectra.

Two examples of the asynchronous irregular state (AI) are shown in the last two panels (Fig

5D and 5E). As suggested by the name, this state is defined by lack of synchrony between dif-

ferent neurons and irregular firing patterns of each neuron. For the example in panel D, the

firing-rate PSD exhibited three high-frequency peaks, with the peak at the highest frequency

(*200 Hz) being highest. The same three peaks were found also in the LFP PSD, but now the

Fig 5. Examples of simulated spiking network activity and LFPs for different sets of network parameters (η, g and J). For each simulation, A–E, the first row

shows spike trains from 100 randomly selected neurons across both populations. The second and third row show the population firing rate (including both the

excitatory and inhibitory neurons) and its power spectral density (PSD). The final two rows show the LFP signal from all six channels and the PSD of channel 1,

respectively. The dashed red lines in the lowest panel shows the LFP PSD computed from spikes in individual neurons (Eq 9) rather than with the presently used

population firing-rate approach (Eq 10, black lines) which is computationally much less demanding. In general, the agreement is seen to be very high, the only

discrepancy is seen for the SR-state example where the height of the peak around 300 Hz differs. The network states for the five examples (SR/SI(fast)/SI(slow)/AI, see

text) are indicated at the top.

https://doi.org/10.1371/journal.pcbi.1007725.g005
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peak at the lowest frequency (*70 Hz) was highest. This reflects low-pass filtering effects of

the LFP from synaptic and intrinsic dendritic filtering [34, 47]. In panel E the recurrent excita-

tion J is much increased compared to the example in panel D. This combined with a reduction

of the relative inhibition g, gave much larger LFP signals, as reflected in the high power of the

LFP seen for the low frequencies in the LFP PSD. For this parameter set neither the firing-rate

PSD nor the LFP PSD exhibited any notable peaks.

Model behaviour across parameter space. To extract network model parameters from

recordings of neural activity such as the LFP, the network model parameters must necessarily

be reflected in these recordings. After the qualitative discussion above, we proceed to discuss

how the network behaves over the entire parameter space. We therefore give an overview of

how different spike- and LFP-based measures of neural activity vary across parameter space.

Spikes.
Panel A in Fig 6 shows how the mean network firing rate varied over the parameter space.

The overall trend was that with increasing g, the firing rate decreased since inhibition was

Fig 6. Statistical measures of network activity for different combinations of network parameters (η, g and J). A, Average population firing rates, that is, average

firing rate over all neurons and times. The red dots show the parameter values of the examples in Fig 5. B, Mean coefficient of variation (Eq (12)) of the inter-spike

intervals over all neurons as a measure of the spiking irregularity. C, Square root of the variance of the LFP signal integrated over time for the topmost channel

(channel 1). This measure corresponds to the square root of integral of the power spectrum of the LFP over all frequencies [33], and is referred to as the standard

deviation of the LFP (LFP STD). D, LFP Entropy, cf. Eq 13.

https://doi.org/10.1371/journal.pcbi.1007725.g006
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increased. The transition at g = 4 resulted from the fact that there are four times more excit-

atory neurons than inhibitory, and thus for g< 4 excitation dominates network behaviour.

For J≳ 0.15, three separable regions with smooth transitions emerged: A region of high firing

rate on the left border of the plots (g≲ 4), a region of low firing rate on the bottom of the plots

(g≳ 5, η≲ 1), and a region of intermediate firing rate in the upper right of the parameter

space. For smaller values of J (J≲ 0.1) the transition between the high-firing region and the

intermediate-firing region became smoother. Thus, large values of J amplified the differences

between the regions. These distinct regions in the firing-rate phase diagram correspond well

with the phase diagrams derived by [28], see Fig 2.

Panel B in Fig 6 correspondingly displays the parameter dependence of the average coeffi-

cient of variation (CV) of the inter-spike intervals. Similar to the population firing rate, one

can see a boundary at about g� 4 over a large part of the considered parameter range of J and

η. In the region with low η and high g (η≲ 1.5, g≳ 5) there was also a distinct area with low

CV, reflecting the expected lower CV of the slow-oscillation SI state compared to the AI state.

For small values of J (J≲ 0.1), there was a region of larger CV visible in the upper right corner

of the parameter space (g≳ 6 and η≳ 3.6). This region overlaps with fast-oscillation SI state

described by [28] (see phase diagram in Fig 2).

LFP.

The example LFP patterns in Fig 5 showed substantial variability of the LFPs for different

network parameter values. This suggests that it indeed may be possible to estimate network

parameters from the LFP. To explore this in more detail, we show in panels C and D of Fig 6

two different measures of LFP signals across the same parameter space.

Panel C shows a measure of the overall signal power of the LFP signal, that is, the standard

deviation (STD) for the topmost channel (channel 1). This measure corresponds to the square

root of the variance of the LFP signal integrated over all frequencies [33]. In panel C a first

observation was that large values of the excitatory weight J led to higher values of the LFP STD,

not surprising given the stronger excitatory synaptic inputs. Likewise, it was seen that the LFP

STD generally decreased when inhibition, that is, g, increased. Interestingly, despite the very

high firing activity for values of g smaller than 4, the LFP STD was small for these parameter

values. This can be understood by inspection of panel A in Fig 5 which shows results for an

example state with g = 3.5: Even if there are strong bombardments of synaptic inputs onto the

LFP-generating excitatory neurons, the input is so clock-like and regular that there is little

power in the LFP signal at the lower frequencies. The only strong LFP signal contribution was

obtained for frequencies over*300 Hz, corresponding to the peak seen in the firing rate PSD.

The LFP STD in panel C measures the square root of the squared LFP signal across time or

equivalently, according to Parceval’s theorem, essentially the square root of the integral of the

LFP PSD across frequency. In contrast the measure labeled ‘LFP Entropy’ in panel D measures

how much the overall LFP power is spread across the different frequencies, cf. Eq 13 in Meth-

ods. The largest entropy value was observed for the smallest excitatory weight (J = 0.05 mV),

but the detailed parameter dependence of the LFP entropy was not the main point here. The

most important observation was that the parameter dependence of LFP Entropy was qualita-

tively different from the parameter dependence of LFP STD. This illustrates that the frequency-

resolved PSD likely contains more information regarding the underlying network parameters

than either the overall amplitude (LFP STD) or the frequency spread (LFP Entropy) alone.

Network parameters are accurately estimated from LFP

After this rough survey over how the LFP for the Brunel network model varies across parame-

ter space, we now ask the question: Can the network parameters be estimated from this LFP by
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use of Convolutional Neural Networks (CNNs)? We chose to use CNNs because they do not

rely on manual feature extraction, and our analysis thus does not depend on any assumption

of how the model network parameters are reflected in the LFP. Further, we used the power

spectral density (PSD) of the LFP for this analysis, that is, used the PSD as input to the CNNs.

This approach removes phase information in the LFP. However, since we only considered LFP

data from stationary network activity, the hypothesis was that most of the available relevant

information regarding network parameters should the contained in the PSD.

Our CNN consisted of three convolutional layers followed by two fully connected layers. An

illustration can be seen in Fig 3, and detailed specifications are given in Methods. We generated

several pairs of training and testing data sets for different scenarios. The parameter space was

both sampled randomly and on a regular grid. We also generated a training and test data set on

a subset of the parameter space, but with the equal amount of simulations.

While several approaches were tested and compared, we defined the following set-up as the

standard set-up: The data was simulated using randomly distributed parameters η, g and J with

a simulated duration of 2.85 seconds for each trial. From the simulated LFP, the power spectral

densities (PSD) for six recording channels were computed and used as input to the CNN.

Then, a single CNN network was trained to predict the parameter vector~p ¼ ðZ; g; JÞ simulta-

neously, and all three parameters were set to contribute equally to the loss function, Eq 14. To

achieve this, the parameter ranges of η, g and J were all scaled to the unit interval [0, 1] for the

considered part of the parameter space.

To quantify and illustrate the accuracy of the parameter estimation we used the estimation

error â − atrue where atrue was the true value and â the estimated value. Fig 7 (orange lines)

shows the accuracy of the three network parameters when considering the full parameter

space (η 2 [0.8, 4), g 2 [3.5, 8) and J 2 [0.05, 0.4) mV). As observed, the estimation errors are

in all cases generally smaller than 5%. Further, the estimates had small biases, that is, the mean

errors were close to zero (see also Table 7).

The full parameter space considered above covered four of the characteristic network states

seen for the Brunel network, see orange rectangle in Fig 2. Here the network-generated LFP

can be expected to vary substantially across parameter space making the CNN estimation eas-

ier. We thus next explored to what extent CNNs could estimate network parameters within a

particular state, that is, the AI state which is thought to be most relevant for cortex.

Training and validation of the CNN were repeated using a second data set, fully contained

within the AI region (η 2 [1.5, 3), g 2 [4.5, 6) and J 2 [0.1, 0.25) mV), see blue rectangle in Fig

2. The same amount of training and test data were used as for the full parameter space, so effec-

tively the restricted parameter space was more densely sampled. Estimation errors are shown

in Fig 7 (blue lines). With a same-sized data set containing only the AI state, the observed error

was even smaller than for the full parameter space. Thus focusing on a single network state

within which there expectedly is less variation in the LFP, increased the accuracy. However,

when using the CNN trained with the data from the full parameter space, the estimation accu-

racy for a restricted test set containing only the AI state, was reduced (Fig 7, purple lines). The

accuracy was still better than when estimating parameters across the full parameter space,

though, that is, the purple line was always positioned between the yellow and blue lines in the

cumulative plots in Fig 7B. Further, independent of which data set was used, the g parameter

was always the one with the largest prediction accuracy compared with η and J.

Highest prediction accuracy of network parameters in AI state

Next, the variation of the parameter estimation errors across the full parameter set was investi-

gated (Fig 8A–8C). The estimation of η (panel A of Fig 8) was less reliable in the region of low
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g (g< 4) which corresponds to the SR state of the network model [28]. The estimation perfor-

mance of J (panel C) was instead worse for the smallest values of η, that is, in and around the

region of parameters where the network model is in an SI state. The estimation of g was gener-

ally very accurate for all states of the network (panel B of Fig 8). Taken together this implies

that the highest prediction accuracy of the three network parameters is obtained for the AI

state.

We next considered the estimation accuracies across the restricted parameter space

corresponding to the AI network state only (η 2 [1.5, 3], g 2 [4.5, 6] and J 2 [0.1,0.25]),

Fig 7. Accuracy of network parameter estimation. A, Estimation error distributions for η, g and J averaged over the entire parameter space. In the

plots all parameter ranges were rescaled to the interval [0, 1] for easier comparison on the lower x-axis, the upper x-axis shows the original values. The

vertical line indicates the mean of both distributions. The orange curve shows the result when using the full parameter set (η 2 [0.8, 4], g 2 [3.5, 8] and J
2 [0.05, 0.4]) and the blue curve when the parameter set only contains the AI state (η 2 [1.5, 3], g 2 [4.5, 6] and J 2 [0.1, 0.25]). The purple line gives the

estimation error of the CNN trained for the full parameter set, but evaluated on the restricted parameter set containing the AI state only. To compare

the full parameter data set and the AI-only data set, they were both scaled to the range of the full parameter set. Table 7 shows the bias and standard

deviation for each of the data sets and estimated parameters. B, Cumulative error distributions, the proportion of absolute errors that fall below a given

value, also with all parameters rescaled to [0, 1]. This can be understood as the fraction of the data points which are reconstructed better than a specific

error. The dashed black lines indicate the 90% coverage interval.

https://doi.org/10.1371/journal.pcbi.1007725.g007

Table 7. Bias and standard deviation (std) of estimators of network parameters. The table shows the bias and width

(std) of the estimator distributions in Fig 7. Note that the biases are all close to zero, indicating that our estimator is

essentially unbiased.

Mean and standard deviation of estimators

η g J
Full parameter bias −0.0030 0.0010 0.0049

std 0.041 0.018 0.042

AI state only bias −0.0001 0.0014 0.0009

std 0.014 0.007 0.024

Full parameter evaluated on AI state only bias −0.0080 −0.0006 0.0034

std 0.017 0.010 0.029

https://doi.org/10.1371/journal.pcbi.1007725.t007
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see Fig 8D–8F. Also within the AI state, g was predicted with the highest accuracy, and J had

the lowest estimation accuracy. Further, while the estimation accuracy of g and η was almost

constant across the restricted parameter space, the estimation of J became worse with increas-

ing values of J and g (panel F of Fig 8).

Predicting all parameters at once almost as good as using individually

trained CNNs

In the above application all three network parameters were predicted by a single convolutional

neural net (CNN). We next investigated to what extent the estimation accuracy changed when

CNNs were trained to estimate each parameter separately. The results when considering the

full parameter space are shown in Fig 9. As expected the estimation accuracy was always better

for these ‘single-prediction’ CNN networks: The error distribution of the η prediction was

Fig 8. Mean absolute prediction errors. Each voxel in the panels shows the error on the test dataset averaged across the parameter ranges, defined by the pixel size of

the grid and the value of J indicated above. A–C, the network trained on the full parameter space. D–F, the network trained on the restricted parameter space. The

region of this parameter space is indicated by the red boxes in panels A–C.

https://doi.org/10.1371/journal.pcbi.1007725.g008
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more centered, that is, less biased, for a single prediction network, compared to the ‘com-

bined-prediction’ network (left panel). For the estimation of g, the single-prediction network

displayed a narrower peak, also highlighting a slightly better performance. For J, the two

approaches gave very similar results. Overall, we conclude that merely small gains are achieved

for the present application in terms of estimation accuracy by training a separate CNN for

each of the three network parameters.

Randomly sampled training-data preferable

The above estimations were based on CNNs trained by LFPs with random network parameters

drawn from uniform distributions. To test if the way the parameter space was sampled had an

effect on the accuracy of the estimator, we also generated the same amount of training data on

a regular grid, spanning the same parameter space and repeated the training. The estimation

accuracy was then computed using a randomly generated test data set, and results are shown

in Fig 10. The bias and standard deviation of the estimators are listed in Table 8.

For the prediction of η, there was almost no difference in performance between the CNNs

trained with grid-sampled and randomly sampled data (left panel in Fig 10). For g, however,

the grid-trained data showed a substantial bias towards lower values of g (middle panel). Such

a bias was also seen in the estimation of J, but not so pronounced (right panel).

Fig 9. Parameter estimation errors for a single versus multiple CNNs. Comparison of the parameter estimation error orange, when (i) a single CNN

is trained to optimise all three parameters η, g and J simultaneously (combined predictions) orange, with (ii) three CNNs each trained to estimate a

single parameter (single predictions). All parameters were rescaled to the interval [0, 1]. The bias and standard deviation of the estimators are listed in

Table 8.

https://doi.org/10.1371/journal.pcbi.1007725.g009

Fig 10. Grid-sampled vs. randomly sampled training data. The plots show error distributions for CNNs trained on data randomly sampled from the

parameter set (blue) and from the same amount of training data taken from a regular grid (yellow). All parameters were rescaled to the interval [0, 1].

The bias and standard deviation of the estimators are listed in Table 8.

https://doi.org/10.1371/journal.pcbi.1007725.g010
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We speculate that training on grid-sampled data introduces a certain lower resolution to

the CNN estimators. Randomly sampled data does not contain such a grid scale and eventually

(with sufficient training data) enables the network to learn to interpolate on arbitrarily small

scales. This intrinsic scale of the grid data might thus be the explanation for the poorer perfor-

mance of the CNN trained with randomly sampled data.

For this study we only used two simple sampling techniques, grid sampling and random

sampling, which were still feasible for the case of only three parameters. However, for further

improvement, it might be beneficial to change to more advanced and better performing sam-

pling methods like Latin hypercube sampling [48].

Robustness of parameter estimation

In the above testing we found that the three network parameters η, g, and J generally could be

excellently predicted by the LFP signal in the background state. However, in this testing, the

other model parameters, that is, the synaptic delay td and the parameters describing the neuron

dynamics (cf. Table 1), are kept identical to the values used in the training of the CNN. Here

we explore the robustness of this performance when this is no longer the case, that is, how

does the accuracy of the CNN estimation of synaptic weight parameters change when these

other parameters are different in the training and test data sets, mimicking an uncertainty on

the true parameter at the stage of training the estimator.

In the example in Fig 11 we show in panels A–C how the estimation errors increase when

the synaptic delay td is no longer constant in the network, but rather has a Gaussian distribu-

tion about the fixed value td = 1.5 ms used in the training of the CNN. As expected the estima-

tion errors increase with increasing spread σ of the Gaussian. When only the AI states are

considered, the estimation error remains small (less than 0.1) even for very large values of the

spread where td is essentially uniformly distributed between 0 and 3 ms (see panel G). When

the full parameter space is considered, the errors remain smaller than 0.1 for values of σ less

than 0.1. For larger values of σ, the error increases, mostly so for η and least so for g.
The corresponding results when the membrane time constant τm is spread around the sin-

gle value τm = 20 ms used in the training phase, are shown in Fig 11D–11F. Here the estima-

tion errors are very low when only the AI state is considered, generally much smaller than 0.1,

even in the extreme case when τm is almost uniformly spread between 0 and 40 ms. While the

estimation errors increase when the full parameter space is considered, the errors remains

smaller than *0.1 when predicting g and J (panels E, F). For η, the prediction errors gets

much larger for large values of σ though (panel D).

Also with the firing threshold θ spread around the fixed training-phase value θ = 20 mV

(panels G–I), small errors are seen for σ less than 0.1, although larger errors are seen in the

Table 8. Bias and standard deviation (std) of estimators of network parameters. The table shows the bias and width (std) of the estimator distributions in Figs 9 and 10

for single and multi-variable prediction and two different sampling methods. Note that the biases are all close to zero, indicating that our estimator is essentially unbiased.

Mean and standard deviation of estimators

η g J
Default (random sample, combined prediction) bias −0.0030 0.0010 0.0049

std 0.041 0.018 0.042

Single parameter prediction bias −0.0006 −0.0002 0.0021

std 0.040 0.014 0.043

Grid sample bias −0.0056 −0.0136 −0.0053

std 0.090 0.045 0.052

https://doi.org/10.1371/journal.pcbi.1007725.t008
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prediction of η and J for larger values of σ. Note that it follows from IF-model as described in

Table 1 that with all other parameters fixed, the network dynamics will only depend on the

ratio between J and θ. Thus the observed effect of the spread in θ would be directly related to

the effect of spread in J in the test data.

Fig 11. Robustness of estimates with Gaussian spread of model parameters in test data. A–C, estimation errors for η, g, and J, respectively, when the synaptic time

delay td is randomly distributed when generating test data LFPs. td has a truncated Gaussian distribution around the fixed value td = 1.5 ms used when generating

training data, and results for different values of the standard deviation σ are shown (note logarithmic scale). The Gaussian distributions are truncated at 0.2 and 2.8 ms.

Results for the average estimation errors across both the full parameter space and the restricted AI parameter spaces are shown. D–F, same as A–C when the neuron

membrane time constant τm instead is randomly distributed around the training-data value τm = 20 ms when generating test data LFPs. The Gaussian distributions are

truncated at 2 and 38 ms. G–I, same as A–C when the neuronal firing threshold θ instead is randomly distributed around the training-data value θ = 20 mV when

generating test data LFPs. The Gaussian distributions are truncated at 12 and 28 mV. J–L, same as A–C when the refractory period tref instead is randomly distributed

around the training-data value tref = 2.0 ms when generating test data LFPs. The Gaussian distributions are truncated at 0.2 and 3.8 ms. M, Illustration of probability

density function (pdf) of truncated Gaussian parameter distributions used in panels A–L.

https://doi.org/10.1371/journal.pcbi.1007725.g011
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The effect on the estimation errors from the spread of the value of the refractory period

around the fixed training-phase value tref = 2.0 ms is seen to be generally small, however (pan-

els J–L).

While the case with heterogeneity in model parameters likely better mimics the situation in

brain networks, we also explored in Fig 12 the estimation errors for the situation where the

synaptic delay td (panels A–C), membrane time constant τm (panels D–F), firing threshold θ
(panels G–I), and refractory period tref (panels J–L) are fixed at different values when generat-

ing the test data compared to the training data. The smallest errors are found in the estimation

of g and J. An exception is the estimation of J with shifted θ (panel I). Here the error is not only

generally larger, but the error is also larger for the AI case alone than when the full parameter

space is considered. The accuracy in the predictions of η is in general less than for g and J, and

Fig 12. Robustness of estimates with shifts of model parameters in test data. A–C, estimation errors for η, g, and J, respectively, when the synaptic time delay td is

shifted when generating test data LFPs. td = 1.5 ms is used when generating training data. Result for the average estimation errors across both the full parameter space

and the restricted AI parameter spaces are shown. D–F, same as A–C when the neuron membrane time constant τm instead is different than the value τm = 20 ms used

for generating training data. The vertical bars indicate the x-value used for generating the training data. G–I, same as A–C when the neuronal firing threshold θ instead

is different from the value θ = 20 mV used for generating training data. J–L, same as A–C when the refractory period tref instead is different from the value tref = 2.0 ms

used for generating training data.

https://doi.org/10.1371/journal.pcbi.1007725.g012
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the errors are particularly large for shifted values of td, τm and θ. In general, the estimation

errors always remain low when shifting tref.

We did not explore in detail why, for example, the prediction of η in general is less robust

to differences of td, τm and θ in the training and test data. However, it is not unexpected that

the error in general is larger when the full parameter space is considered rather than only the

AI-part of the parameter space. For example, in the SR state the detailed frequency position of

the dominant peak in the power spectra (Fig 5) is very sensitive to the values of the synaptic

delay parameter td. If so, this will increase the estimation error for the full parameter space

compared to for the AI part alone.

Discussion

In the present work we have investigated to what extent the local field potential (LFP), that is,

the low-frequency part of an extracellular electrical signal, can be used to extract information

about synaptic connection weights and external inputs in the underlying network. As a model

we considered the well-known and thoroughly analysed Brunel network comprising an excit-

atory and an inhibitory population of recurrently connected integrate-and-fire (LIF) neurons

[28]. Here only three parameters, η, J, and g, describe the strength of the recurrent synaptic

connections and the strength of the external synaptic drive: Despite its simplicity, this model

exhibits a high diversity of network dynamics, that is, regular or irregular spiking patterns of

individual neurons and synchronous or asynchronous spiking across populations.

The LFP generated by the network was computed using a hybrid scheme [29]: Spikes com-

puted by the point-neuron Brunel network were replayed as presynaptic spikes onto biophysi-

cally detailed multicompartmental neuron models to compute the LFP as predicted by

volume-conductor theory [31, 32]. We then assessed how well the values of the three network

parameters could be estimated from the power spectrum of the stationary ‘background’ LFP

signal by application of a convolutional neural net (CNN) [36] and indeed found that all

parameters in general could be very accurately estimated. This was the case even when LFPs

stemmed from networks in different dynamic states (Figs 7 and 8), but even more so when the

LFPs stemmed from the asynchronous irregular (AI) state only (Fig 8). The accuracy of the

estimation of the three network parameters was found to be particularly high when the same

values of the remaining model parameters (synaptic delay and parameters describing the neu-

rons) were used for the training data and test data. However, the estimates were generally also

quite accurate when these parameters were different in the test and training data (Figs 11

and 12).

For the present situation we found that the necessary information for predicting network

parameters was contained in the power spectrum (PSD) of the LFP of the background state.

While of course this information is also available in the time domain, we found that it was eas-

ier to train the CNN using the power spectrum, particularly due to reduced overfitting to the

training data. Using Welch’s method, the averaging over frequency windows likely reduces the

seed-specific variations in the LFPs, leaving less information to overfit to. It is possible that the

information contained in the full time series can provide increased accuracy, but it would

require more complex networks and possibly much more training data to overcome the issues

of overfitting, so we found that in practice using the PSD gave the best results.

Generalization to more complex network models

An obvious question is whether the present successful estimation of network parameters from

LFPs will extend to more complex network models with more than three network parameters

PLOS COMPUTATIONAL BIOLOGY Estimation of neural network model parameters from LFPs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007725 March 10, 2020 24 / 30

https://doi.org/10.1371/journal.pcbi.1007725


like in the Brunel network. Of particular interest here are multilayered cortical network models

where several neuronal populations contribute to the LFP signal [24, 29, 49–51].

The estimation problem will likely become more difficult as the number of parameters to

estimate increases. However, in the present application we only used the power-spectral den-

sity (PSD) of the LFP signals from the stationary background state in the parameter estimation.

A ‘richer’ LFP signal which may separate the LFP signals for different parameters better, can

be obtained by also including the phase information of the LFP Fourier components, but

maybe more importantly by also using stimulus-evoked transient LFP signals. Further, in the

present application, the parameters were estimated by LFPs from six channels spanning a

depth of 0.5 mm. With only a single population contributing to the LFP as in the present case,

fewer channels would in fact have sufficed. When several cortical neuronal populations posi-

tioned at different depths contribute to the LFP, the spatial variation of the signal contains

more information on the network activity. Here the use of a larger number of channels, span-

ning all cortical layers, should expectedly improve parameter estimation.

In the present study the network-parameter estimation was found to be particularly suc-

cessful when the same values of the other model parameters were used for the training and test

data. However, the estimation accuracy was generally quite good when these other parameters

were different in the test and training data (Figs 11 and 12). This accuracy could likely have

been further improved by use of more extensive training data, for example, including LFPs

from models with a wider spread of these other parameters in the training data. However, we

did not pursue this here.

In the presently studied Brunel network model [28] the external spiking inputs (parame-

terised by the variable η) were assumed to be stationary and Poissonian. In real networks this

external input will generally be more patterned, and a future study could be to investigate how

well network parameters can be estimated from LFPs by machine learning techniques in this

setting. Further, in the Brunel network the three network parameters are fixed to a single

value. In other more comprehensive network models such as the Potjans-Diesmann model

[15], however, the network weights are instead described by statistical distributions, rather

than individual weights. An interesting line of inquiry would be to explore the use of the pres-

ent approach to attempt to estimate such distribution parameters from LFPs.

The exact number of unknown model parameters that can be estimated from LFPs alone in

different situations, is difficult to predict a priori. In the present case for the Brunel network

we observed that the three network parameters could be well estimated from the PSD in the

stationary background state alone. For more complex networks described by more parameters,

one can imagine using temporally resolved stimulus-evoked LFPs in addition. Combined with

the background LFP one would expect that this reduces the above-mentioned ‘redundancy

effect’ and allows for ‘disambiguation’ of more candidate network models differing in their

parameter values. Even more disambiguation should be possible if the LFPs are supplemented

by simultaneously measured spikes and both signals are used as input for CNNs or other

machine-learning tools.

Another direction would be to explore the effects of active dendritic conductances such as

the Ih channel [52] on parameter estimatability.

Computation of LFPs

To compute the three-second long LFP signals 50000 times to train and test the CNNs in the

present study, it was computationally unfeasible to explicitly sum over LFP contributions from

each individual presynaptic neuron. Instead we used the approximate formula in Eq 10 based

on population firing rates to compute the LFPs, reducing the required computer time by
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several orders of magnitude. The accuracy of this approximation for the present network was

demonstrated for a set of representative examples (Fig 5). In [29] where the eight-population

Potjans-Diesmann [15] cortical network model was considered, the same approximation was

seen to give fairly accurate LFPs as well [29, Fig. 13], although not as accurate as in the present

case as judged by the example tests. Thus the use of the approximation in Eq 10 to compute

the LFPs in future applications should be tested on a case-to-case basis.

Choice of machine-learning method

The choice of using convolutional neural networks (CNNs) within the Keras framework [41]

for doing the parameter estimation was made out of convenience. Other machine learning

techniques, see [53] for a recent review, could likely have done equally well, or even better.

Further, the architecture of the CNNs was not optimized in any systematic way. A systematic

study of the best machine learning method to use for LFP-based parameter estimation for

more complex network models should be pursued, but is beyond the scope of the present

paper.

Implications for analysis of LFPs

For single neurons, biophysics-based modeling is well established [1, 4, 5] and numerous bio-

physically detailed models with anatomically reconstructed dendrites have been made by fit-

ting to experimental data, for example, [6–8, 10]. These models have mainly been fitted to

intracellular electrical recordings, but extracellular recordings [54] and calcium concentrations

[55] can also be used.

Until now the analysis of LFPs has largely been based on statistical methods [20, 21]. An

overall goal of the present project is to contribute to the investigation of to what extent LFPs

also can be used to develop and validate network models in layered brain structures such as

cortex and hippocampus. Spikes have already been used to distinguish candidate network

models in cortex [18, 56], and LFPs recorded in vitro have been used to fit hippocampal net-

work models [27]. There is expectedly a clear link between the accuracy with which a parame-

ter can be (i) estimated from and (ii) fitted to LFP signals. Thus the present observation that

network parameters for the Brunel network can be accurately estimated from the background

LFPs suggests that the same LFP signal also could be used to accurately fit the same network

parameters given that the model structure was known a priori. This link between ‘estimatabil-

ity’ and ‘fitability’ should be properly investigated, not only for the Brunel model, but also for

more complex network models. However, such a study is beyond the present scope. A related

question that also should be investigated is to what extent LFPs can be used to distinguish

between candidate models with a different network structure.

Outlook

The recording of single-unit and multi-unit activity (MUA) from the high-frequency part of

the extracellular potential, has historically been the most important method for studying in
vivo activity in neurons and neural networks. However, the interest in the low-frequency part,

the LFP, has seen a resurgence in the last decades. One key reason is the development of new

multicontact electrodes allowing for high-density electrical recordings across laminae and

areas (as well as computers and hard drives allowing for the storage and analysis of the LFP sig-

nals). Another reason is the realisation that the LFP offers a unique window into how the den-

drites of neurons integrate synaptic inputs for populations of thousands or more neurons [33].

In contrast, the MUA measures the output resulting from this dendritic integration, that is,

spikes from a handful of neurons around the electrode contact [57]. Thus spikes and LFPs
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offer complementary information about network activity. Since both signals are produced

from the same network model, the combined use of spikes and LFPs appears particularly

promising for estimation of network model parameters, or for assessing the merit of candidate

network models. Such combined use of spikes and LFPs has been shown to be beneficial in

identifying laminar neural populations and their synaptic connectivity patterns from multi-

electrode cortical recordings [51, 58]. Thus combined use of spikes and LFPs in the estimation

of model parameters should be explored in projects with more complex network models

where, unlike for the presently considered Brunel network model, the LFP signal is insufficient

to alone allow for accurate parameter estimation.

Further, many new optical techniques for probing cortical activity have also been developed

and refined, for example, two-photon calcium imaging [59], and voltage-sensitive dye imaging

(VSDI), measuring population-averaged membrane potentials [60]. Further, at the systems

level one has methods such as electroencephalography (EEG) [61]), which measures electrical

potentials at the scalp, and magnetoencephalography (MEG) [62]) which measures the mag-

netic field outside the head. These measures can be computed from the activity of candidate

network models [63], and tools to facilitate this have been developed [31, 32, 64, 65]. They can

all be used to constrain and validate candidate network models, and used in combination they

will likely be particularly powerful.
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