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Summary

Thanks to the recent advent of inexpensive positioning technologies, data about movement
of various mobile objects are collected in rapidly growing amounts. Massive repositories of
movement data require developing new data analysis methods in order to reduce
unnecessary complexity of the recorded data and extract meaningful information for
decision making about the application in question.

In Norway, sheep are the most common large herbivores in most Norwegian mountain
areas during the summer months. Remotely monitoring the position of sheep in the
mountains is important for animal welfare and provides an increased understanding of
grazing patterns. I bring together spatiotemporal concepts and techniques from GIScience,
cluster analysis methods from knowledge discovery, statistical tests and reasoning from
statistics, and animal movement analyses from the animal study literature in order to
extract high-level information from low-level, raw movement data from sheep tracking.
During this research, different movement datasets with different temporal sampling
frequencies became available for us. The first dataset is from an experimental site in Hol
municipality in Buskerud County and contains the positions of many sheep during the
whole summer season (2012) with a half hour sampling interval. The second dataset is from
an experimental site in Valdres in Oppland County and contains four individual sheep
tracked for some observation periods of 3-4 days (2016) with 10 second time interval.

[t is obvious that some observable short time scale patterns will not be detectable for the
coarser time scale. Two different segmentation methods tailored to two different sets of
movement behaviors were developed for the available datasets. In addition to detection of
the movement behavior of the animals for each temporal sampling frequency, a statistical
method for estimating the measurement error was proposed. The developed methods for
analyzing movement data are all based on the movement parameters of step length, speed
and turning angles. I found that the derived movement parameters are influenced by
different factors, including temporal sampling frequency. Hence, how to assess the impact
of temporal scale on movement parameter estimation was investigated in the final stage of

the research.

111



All in all, this study has been a three stage research process including the development of
(I) a segmentation method according to Inactive and Active periods of animal movement
paths from low frequency tracking data, (II) a segmentation method for classification
animal movement paths from high frequency tracking data into foraging, resting and
walking behavior, and (III) temporal sampling frequency assessments for movement
parameter estimation.

The core of this thesis is presented in three scientific research papers corresponding to the

three stages mentioned above.
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Sammendrag

Takket vaere den den stadig gkende tilgangen pa rimelig sporingsteknologi samles data om
bevegelsene til ulike mobile objekter i stadig gkende mengder. De store mengdene med
sporingsdata krever at det utvikles nye metoder for a redusere ungdvendig kompleksitet i
de registrerte dataene og for a trekke ut meningsfull informasjon for beslutningstaking.
[ Norge er sau det vanligste husdyret i de fleste norske fjellomrader i sommermanedene.
Overvaking av hvor sauene er i fjellet er viktig for dyrevelferd og gir gkt forstaelse for
beitemgnstre. Jeg kombinerer rom-tid-konsepter og teknikker fra geografisk
informasjonsvitenskap, cluster-analysemetoder fra datautforsking, statistiske tester og
resonnement fra statistikk og bevegelsesanalyser fra dyrestudier for a trekke ut overordnet
informasjon fra detaljerte sporingsdata fra sau.
[ lgpet av denne forskningen fikk jeg tilgang til sporingsdatasett med ulik
samplingsfrekvens. Det fgrste datasettet, fra et felteksperiment i Hol kommune i Buskerud,
inneholder posisjoner til mange sau fra hele sommersesongen (2012) med en halv times
samplingsintervall. Det andre datasettet, fra et eksperimenti Valdres i Oppland, inneholder
sporingsdata fra fire sau med observasjonsperioder pa 3-4 dager (2016) og 10 sekunders
samplingsintervall.

Det er dpenbart at noen observerbare hgyfrekvente bevegelsesmgnstre ikke kan avdekkes
med lavfrekvensdata. To forskjellige segmenteringsmetoder skreddersydd for ulike sett
med bevegelsesadferd ble utviklet for de tilgjengelige datasettene. I tillegg til gjenkjenning
av bevegelsesadferden til dyrene, ble det foreslatt en statistisk metode for estimering av
malefeil. De utviklede metodene for & analysere bevegelsesdata er alle basert pa
bevegelsesparametrene trinnlengde, hastighet og svingvinkel. Vi fant at de avledede
bevegelsesparametrene er pavirket av forskjellige faktorer, inkludert samplingsfrekvens.
Derfor ble det i sluttfasen av forskningen undersgkt hvordan man kan vurdere effekten av
samplingsfrekvens pa bevegelsesparameterestimering.
Alt i alt har denne studien vaert en tre-trinns forskningsprosess, inkludert utvikling av (I)
en metode for & segmentere dyrs bevegelser i inaktive og aktive perioder fra lavfrekvente
sporingsdata, (II) en segmenteringsmetode for klassifisering i beiting, hvile og gang fra

hgyfrekvente sporingsdata, og (1M samplingsfrekvensvurderinger for

v



bevegelsesparameterestimering.
Kjernen i denne avhandlingen er presentert i tre vitenskapelige forskningsartikler som

svarer til de tre trinnene som er nevnt ovenfor.
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1 Introduction

The emergence of digital tracking technologies such as VHF, GPS, and Argos has simplified
the acquisition of spatiotemporal information of moving objects including animal
movements. Almost every process related to animal ecology, including foraging, migration,
predation and predator avoidance is related to animal movements. Understanding of
animal movement, including why, how (fast or slow), when and where animals move, can
be useful in a wide range of biological topics, including population and community ecology,
animal physiology, disease spread, gene flow, and wildlife management and conservation
(D).

However, movement processes take place at different spatiotemporal scales, from coarse
temporal scales in migration research studies to fine temporal scales in home range
analysis and even finer in transitions between different behavioral states (e.g., resting,
moving, foraging) (2).

Additionally, autocorrelation is another concern that we must take into account in tracking
data analysis. On one hand, it is an obstacle in ecological studies as it violates the basic
assumptions of standard statistical hypothesis testing. On the other hand, autocorrelation
is often the consequence of ecological processes and also high frequency sampling data (3).
Therefore, there is a need for adequate methods for analyzing movement data and
extracting relevant information. The emergence of similar challenges in data analysis of
tracking data has encouraged us to offer an interdisciplinary perspective between
geography and animal movement study to trigger innovative approaches and research
direction.

This thesis presents research on the development of methods applicable to movement of
all kinds of animals, but our focus has been on livestock. We start this chapter with a brief
history of Norwegian sheep farming and then, we mention our motivations and all the

research questions and objectives for this thesis.

1.1 Introduction to Norwegian Sheep Farming

Domestic sheep are the most abundant large herbivore in alpine pastures during the
Norwegian summer grazing season (4). Summer farming was formerly an important part
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of Norwegian husbandry and mountain areas have been used for grazing for hundreds of
years (5). Lambs are born during late winter or spring while the sheep are fed indoors.
Sheep and lambs are being released in open forests or alpine ranges for about 100 days
during summer. Most lamb growth occurs on the open ranges during summer. The animals
are gathered in September, often using herding dogs, and selected lambs are then
slaughtered (6). Supervision in the Norwegian context does not involve guarding or active
herding, rather it represents patrolling of the grazing area to look for signs of dead or
injured sheep (7).
Each day the animal decides where and when to graze, ruminate, rest and drink based on
its own needs and the kind of available resource. Biotic factors, such as forage quality and
quantity, and abiotic factors, such as topography, water availability, and thermal cover,
affect animal performance and uniformity of grazing (8, 9).
One of today's most crucial agricultural dilemmas is: how to find a balance between a fast-
growing global demand for food and the need to sustain the natural resource base of land,
water, air and biological diversity (10).
As stated in (11), sustainable sheep grazing management must be considered from different
aspects as follows:

1. Animal productivity (weight gained per unit time grazed in open pastures)

2. Sustainable production of forage plants

3. Erosion

4. Biodiversity
Although high animal productivity is both economically and socially beneficial to human
beings and food demand in the short term, it might lead to ecological issues. For example,
high animal density over a longer timescale (i.e. overgrazing) could reduce forage quality
and quantity, lose biodiversity and lead to erosion. Also under-grazing might lead to
ecological issues. For example, decline in sheep farming practices in the alpine areas of
Norway has caused a large-scale encroachment of trees and shrubs leading to extensive
landscape changes and decreased biodiversity (5).
In order to enhance the positive impact of livestock on the environment and contribute to
the sustainable use of natural resources, the impact of management factors such as the

number of sheep per unit area, breeds, grazing season, supplemental feeding, relative use
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of different habitats and vulnerability to soil erosion, to name but a few, must be considered
for any experiment. The control of the above-mentioned management factors is out of the
scope of this thesis.

This thesis intends to primarily contribute to animal movement studies, figuring out
livestock distribution and its spatiotemporal variation in open ranges. By distinguishing
different behaviors from sheep movement data, we can contribute to the understanding of

how sheep move and react.

1.2 Motivation

The ability to track sheep as moving objects with tracking units provide researchers (and
potentially farmers) with valuable information about how sheep use their environment.
Animal movement data is fundamental to many different branches of research including
movement pattern mining, habitat use and selection analysis using vegetation maps, to
name but a few.

From the geographical point of view, analyzing sequences of positional data and finding
spatiotemporal movement patterns is an interesting challenge. Knowledge discovery
techniques and statistical inference in addition to spatiotemporal analyses make it possible
to explore the daily movement of sheep in order to detect pronounced/abnormal
movement.

Given a dataset and general movement pattern mining questions, the practical starting
point is to first carry out some exploratory analyses to gain a better understanding of data
and then come up with different hypotheses and research questions. Finally, available
methods can be adapted to the application or new methods can be developed.

In the following, we mention the process that motivated us to carry out this study and
formulate our Research Questions.

First we got hold of half hourly position data of sheep tracking for a few months duration
and did some exploratory analysis to gain insight into sheep movement. One of the main
undertakings was to figure out the daily spatial distribution of sheep using Standard

Deviational Ellipses (SDE)(12).



According to (13), this daily topographical trend of movement of sheep can be due to the
existence of insects. Sheep tend to select upland or open areas with more wind for resting
to avoid insects. The result of this exploratory analysis encouraged us to identify the resting
pattern of sheep. Where and when is the favorite place and time for sheep to be inactive?
According to the literature, the resting pattern has mostly been identified using activity
sensor values and field observation (14). Due to the lack of this kind of extra information
for our dataset, we tried to model resting through the spatiotemporal distribution of
positional data by taking into account measuring error. To this end, we formulated our first
Research Objective (see Section 1.3) and conducted stage [ (see Section 1.4).

If we had had access to a dataset with significantly higher temporal sampling frequency,
more accurate inference about the behavior between consecutive observations would be
attainable. Straight-line connections between consecutive observations would then better
represent the movement path of the animal. Analysis of various combinations of the derived
movement feature values such as speed and turning angles could allow the identification of
movement behavior type. Our premise was that the overall distribution of speed and
turning angles for the observations must be the basis for our reasoning and clustering. A
significant body of work has been done to distinguish between different movement
behaviors (15, 16). Our interest was to find a solution that takes into account the
spatiotemporal autocorrelation structure of the observations while considering the overall
distribution of speed and turning angle values. To this end, we formulated our second
Research Objective (see Section 1.3) and conducted stage II (see Section 1.4).

Although there is literature that investigates the accuracy of movement parameter
estimation, there has been considerably less work on how movement parameter estimation
varies with temporal sampling frequency (17, 18). Additionally, battery capacity and the
length of the monitoring period put constraints on the temporal sampling frequency in
practical field studies. We were therefore motivated to assess the impact of temporal
sampling frequency on movement parameter estimation. Our goal was to design a field
experiment with appropriate temporal sampling frequency such that the results of the
performed analyses should not be affected much by the sampling regime. To this end, we
formulated our third Research Objective (see Section 1.3) and conducted stage III (see

Section 1.4).



1.3 Research Questions and Research Objectives

Research Question: Five Research Questions have been formulated:

1.

How do animals move over time and what kind of movement patterns can be
detected by exploring the recorded dataset?

What is the impact of positioning error in the animal movement recordings? How
can we detect the impact of positioning error in the recordings? For which behavior
states are the influence of positioning error pronounced?

How can we figure out different movement behaviors along an animal trajectory?
How can we segment a trajectory into sub-trajectories according to movement
behavior? How can we find segments that are similar with respect to movement
behavior? How can we label the animal trajectory (annotating) according to the type
of movement behavior?

To what extent are animal recordings auto-correlated in time and space? How can
we take this into account in animal movement analysis?

To what degree do movement parameters such as speed, sinuosity, and turning

angle vary when derived at variable temporal scales?

Research Objectives: This thesis intends to contribute to animal movement analysis by

developing clustering methods on spatiotemporal recordings. The purpose of our first

spatiotemporal clustering method is to distinguish between inactive and active periods

along the animal trajectory. Our second spatiotemporal clustering method aims to partition

and label animal trajectories according to foraging, resting and walking behavior. This

thesis intends to investigate positing errors of the measurement units and assesses the

requirement for temporal sampling frequency for trajectory data.

Two dataset from Norwegian sheep have been available for us. One dataset with half (or

one) hour time interval and the other one with 10 second time interval. We consider the

former one as low frequency tracking data and the latter as high frequency tracking data.

The aforementioned research questions are embodied in the following research objectives:



Objective 1: Given a user-specified minimum duration of inactivity, the research shall find
Inactive Periods of an animal trajectory based on low frequency tracking data. By
considering each Inactive Period as a dense cluster of recording, this research shall develop
a density-based clustering method to both detect Inactive Periods and estimate positioning

error.

Objective 2: The research shall develop a method to distinguish between three types of
animal movement behavior (foraging, resting and walking) based on high frequency

tracking data.

Objective 3: The research shall investigate the temporal interval between recordings and
assess over-sampling or under-sampling in terms of different research questions, for
example movement parameter estimation. Finding the temporal sampling frequency for
which the difference between the reconstructed movement path and the true movement

path is the minimum in terms of movement parameter estimation.

1.4 Research Process and Research Papers

The core of this thesis is presented in three scientific Research Papers. This thesis follows
a three-stage process in order to achieve the main objectives and address the research
questions. Each stage of this process is presented in a Research Paper, and is associated
directly with one or two research questions and objectives. The thesis reports on the

research published (or submitted) in peer-reviewed international scientific journals.

Stage I: Inactivity and Activity Period Detection from Low Frequency Tracking Data
Research Paper I presents the developed method and the outcome of this stage. This
Research Paper is based on low frequency tracking data of non-differentially corrected GPS
positions and discriminate between inactive and active periods of the animal.

In the context of this Research Paper, previous research from different areas is relevant: (i)
current methods for identifying POIs (points of interest) in movement trajectories

discussed in GIScience; (ii) those branches of animal study literature that are devoted to



identifying Inactive Periods; (iii) handling GNSS inaccuracy for biotelemetry. It treats

Research Objective 1 and the associated Research Questions 1-3 of this thesis.

Stage II: Movement Behavior Detection from High Frequency Tracking Data

The main research question of Research Paper Il is: given a sequence of locations of animals
sampled at high frequency, how to make inferences about animal behavior. Where and
when does the animal engage in a specific behavior and how does the behavior change over
time?

One common reason for analyzing animal movement data is to discover latent information
about behavior that cannot be observed directly. The results of behavior detection can

significantly contribute to other important issues such as pasture management.

Stage III: Intermediate-Frequency Tracking for Movement Parameter Estimation

Movement parameters can enrich trajectories with additional information on the
characteristics of the movement. The inaccuracy of GNSS measurements, sampling
frequency, and species-specific movement characteristics influence movement parameter
estimation. Research Paper III tries to model the contributing factors on movement
parameter estimation and gives a guideline for designing experiments according to

constraints.

1.5 Structure of the Thesis

The content of this thesis is presented in two parts. Part (I) - Synopsis; and Part (II) -
Research Papers.

We start the Synopsis part with the theoretical background and a review of state of the art
of animal movement analysis (Chapter 2). We also look into the basic definitions of
telemetry and movement trajectories.

The Synopsis proceeds with Methods and Results (Chapter 3) that covers the research
process, the objectives, the methods used in each research paper, and the main findings of
the research papers. Finally, the Synopsis ends with conclusions and outlook for future

research (Chapter 4).



In part II (Research Papers), the papers are presented as they were submitted or published.
To obtain a comprehensive insight into the methods, problems, and achievements of this

work, studying the full papers provided in Part Il is recommended.



2 Theoretical Background and State of the Art

The overall aim of this chapter is fivefold: First, to introduce animal tracking and different
issues and concerns for GNSS tracking units (Section 2.1). Second, to illustrate the trajectory
concept and describe the different aspects of trajectories that are central to this research
(Section 2.2). Third, to introduce two interchangeable concepts (Inactive Period from the
animal movement study and Stop from GIScience) and report the relevant literature
(Section 2.3). Fourth, to give an overview of earlier and current trends in animal movement
behavior research (Section 2.4). And finally, to describe a recently developed stochastic
animal movement model and take advantage of it to decide optimal temporal frequencies

for research experiments based on the research questions (Section 2.5).

2.1 Animal Tracking

Usually, we cannot observe the complete, continuous movement path of an animal through
space and time. Instead, we sample a set of discrete locations to approximate the animals’
actual movement path (19). The resulting sequence of consecutive discrete locations of the
animal (e.g., spatiotemporal coordinates, ordered by time) is termed a movement path
(trajectory).

The emergence of digital tracking technologies have strongly facilitated the study of the
movement and behavior of animals in their natural environment (20, 21). GNSS tracking
have been applied to a wide range of taxa, including mammals (22, 23), reptiles (24), fish

(25), and birds (26).

Measurement Accuracy

Recorded GNSS locations are subject to errors, which might be a concern based upon the
application. GNSS accuracy for a given record may be affected by atmospheric conditions,
satellite or receiver clock error, satellite orbit-error and multipath effects (bounced signals)
(27), as well as topography, overhead canopies, or adjacent structures. Additionally, the
accuracy of each GNSS location depends on the number of and position of visible satellites.
Each location has a specific dilution of precision value, which is a measure of satellite

geometry quality. The Position Dilution of Precision (PDOP) value and the fix rates (the



number of recorded locations vs. the number of attempted recorded locations (28)) are
proxies for the quality of GNSS locations (29). Inaccurate locations are more likely when
PDOP values are large, indicating poor satellite geometry for triangulation between the
GNSS receiver and three or more satellites. The influence of satellite geometry on accuracy
can be considerably reduced when applying differential correction (30). Differential
correction involves calibration of measured locations using the measured location of a base
station relative to its true location (31). However, GNSS based locations in biotelemetry are
still inaccurate due to environmental parameters (canopy and topographic obstruction),
weather conditions and animal behavior (32, 33). We can be certain that closed canopies
and steep terrains interfere with satellite signals, inducing habitat-biased errors that
include both missing and spatially imprecise animal locations (14).

Location measurement accuracy also depends on the type of tracking, intermittent mode
versus continuous mode. In intermittent mode, the tracking unit is turned off between two
consecutive recordings to save battery. In continuous mode, the tracking unit is on all the

time, and the positions are expected to be more accurate.

Stationary Test

In order to quantify GNSS accuracy, it is common to perform a stationary test before the
experiment. For a stationary test, the GNSS receiver is positioned at an accurately surveyed
location and left in place for a period of time (usually 24 h or more). The device attempts to
acquire locations (or ‘fixes’) at a pre-determined temporal interval. The number of
successful fixes (stored locations) divided by the number of attempts yields the fix rate. The
accuracy is quantified as the average distance between the estimated locations and the
‘true’ location of the device (the latter determined using fixed geodetic markers,
differential-correction or a large-sample average)(14, 34).

Several different accuracy measures have been explored in various applications (Figure 1).
2drms (twice Distance Root Mean Squared), CEP (Circular Error Probability) and R95 (an
extension of CEP) are the most commonly used two-dimensional accuracy measures (35).
CEP is the radius of the smallest circle centered at the true position that covers 50% of the

observations. R95 is a similarly defined quantity covering 95% of the observations.
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Figure 1. Points marked with a solid circle are the recorded points for the stationary test and the point with
the solid square is the true location.

The 2drms (Twice Distance Root Mean Squared) is defined as two times the Root-Mean-

Square (RMS) of the radial errors as follows:

DO =) + (3, = p,))

2dlrms = 2%4| = . (1)

Where k is the number of recorded positions for the stationary test. Here [(xi, yi)| i=1,..., k]
represents coordinates of k recorded positions for each stationary test and (ux,uy) is the
true stationary site.

For optimal performance, tests should deploy the GNSS devices on a medium that mimics
an animal’s body.

We know from stationary tests that canopy closure (33, 36), topography of the area (37,
38), habitat selection (39, 40), and collar orientation (41, 42) in addition to GNSS intrinsic
error sources (as previously mentioned) influence both fix rate and location precision (see
(14) for details). The effects of canopy closure on GNSS errors remain predominant (33,

43).

Temporal Sampling Frequency

Due to battery limitations, GNSS users are still confronted with a trade-off between the
overall duration of monitoring and the number of locations per day, making the latter a key
limiting factor for field studies (30). Generally, trade-offs between GNSS location collection

intervals and unit longevity lead to fewer monitored individuals and shorter study
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durations (14). Decreasing the interval between recorded locations increases the level of
autocorrelation in the resulting data.

Longer time between data logging means that less fine-grained information about an
animal path will be available, but the lifetime of the device in the field will increase.

Both memory and power could be used more efficiently if the data collecting device could
change its temporal sampling frequency given the activity state of the animal. For example,
during Inactive Periods there is little to benefit from a high temporal sampling frequency,
while during active periods, a high temporal sampling frequency is required to identify
prominent properties of an animal’s path (44). It is important to carefully design an
experiment in terms of sampling frequency, memory considerations, and battery
limitations, making sure that the data can help to answer the specific experimental
questions.

Throughout this thesis, we use two different GNSS recorded datasets with a priori sampling
schedules. For Research Paper I, GPS collars were configured to record animal locations at
intervals of 30 minutes (low sampling frequency). For the second dataset, the sampling
interval is about 10 seconds (high sampling frequency). In the third paper, based on high
frequency data, we develop a method to pre-design the sampling frequency for a specific

research question.

2.2 Animal Movement Trajectories

Continuous animal movement in two-dimensional space can be represented as a discrete,

ordered set of locations and associated times.

Definition 1: Trajectory (Traj) - A sequence of spatiotemporal points recording the trace
of a moving object, i.e. Traj = (P1, Pz, ..,Pn ) where Pi= (x; y; t) is a tuple including a position
(x; y) and a timestamp (t).

Trajectories also differ with regard to the regularity of the time intervals between
successive steps. Irregular data commonly result from missing relocation fixes or varying

sampling frequencies throughout a study period (45). (A regularly sampled trajectory
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(either recorded using a sampling frequency or resampled using interpolation techniques)
is a necessity for Research Paper I, while it is not mandatory for Research Paper I1&III)
For the sake of clarity, let us recall some basic principles. Calenge et al. (46) categorize

trajectories by using the following movement parameters (Figure 2):

a: abs angle
P reLangle

Figure 2. Definition of movement parameters on a trajectory (46)

dx, dy, dt: these parameters describe the increments in the x and y directions and the
increment in time between the locations i and i+1.

dist: the spatial distance between successive locations.

abs.angle: the absolute angle ai between the x axis and the line from location i to i+1.
rel.angle: the relative angle 8 measures the change of direction between the line from
location i-1 to location i and the line from location i to location i+1 (often called turning
angle)

R?n (Net Squared Displacement - NSD): the squared distance between the first location of

the trajectory and the current location (47).

2.3 ldentifying Active and Inactive States from Animal Movement
Trajectories

In this section, we want to show the possibility of identifying ‘Inactive periods’ (inspired
from the animal study literature) / 'Stops’ (inspired from GIScience literature) for half-

hourly sampled data (low frequency). The problem can be formally described as a
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trajectory segmentation problem, where the trajectory is divided into a series of static and
moving segment groups. A wide range of methods exist for segmenting trajectories (48,
49); however, trajectory segmentation is mostly performed using ad-hoc methods
developed for the dataset in question (17). Our segmentation method for animal movement
trajectories is based on the detection of Inactive Periods. For subsequent animal movement
analysis, the identified Inactive Periods could be excluded from the trajectory or given

special treatment.

Definition 2. Inactive Period (IP): A state where the animal is stationary or has limited
variation in geographic location.

When an animal sleeps or lies down and rests at one location over a period of time, the
collected positions can be misplaced, due to positioning error, becoming scattered around
the true resting position. A stationary test (see Section 2.1) is often used to estimate the
positioning error in advance.

There are several strategies proposed in the animal study literature to identify Inactive
Periods using activity sensors combined with GNSS (30, 44, 50), minimum distance or
acceleration thresholds (34, 51), or combinations of activity sensors, movements and other
variables (34, 50, 52) (see (14) for details). Predictive models that combine information
from various sensors with field observations can also be used to detect IPs (53, 54).

The choice of a cut off distance or an acceleration threshold that can differentiate active
from inactive behavior is subjective and will influence the results. Given location data with
neither activity sensor values nor field observation, none of the above-mentioned strategies
for detecting Inactive Periods are applicable. To address this shortcoming, we developed a
clustering method, inspired by stop detection from GIScience. In GIScience research, the

term ‘stop’ is, to some extent, the same concept as an Inactive Period.

Definition 3. Stop: the important places of the trajectory where the moving object stayed
for at least a given minimal amount of time (55).

According to Spaccapietra et al. (56), a raw trajectory may semantically be segmented into
‘move’ and ‘stop’ parts (an event-based perspective) (57). In the conceptual framework of

an application, the spatial range of the trajectory for each ‘stop’ part is a single point (56).
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The original definition of “stop” was emphasized as “not moving” (56). However, real-life
stops are not purely depending on whether it is moving or not. For example, ‘shopping at a
mall’ with wandering around in a store can be considered as a stop even if the user is
moving. In our IP detection algorithm, we consider ‘stop’ as not moving or a limited
variation in the location (for example, when the animal reorients itself).

Anderienko et al. (58) classified stop detection methods based on movement parameters
such as speed (59, 60), distance (61), speed and duration (62), speed and distance (63) and
direction (64).

Gong et al. (65), in another study, categorized the identification of stop locations into the
following five groups: centroid-based methods (66), speed-based methods (67), duration-
based methods (68), density-based methods (69), and hybrid methods (58). Hybrid
methods use two of the variables such as speed, duration, density, etc., together.

Recently, Luo et al. (70) divided stop discovery algorithms into two categories, i.e. static and
dynamic methods.

Typically, the static methods, e.g. Algorithm SMoT (Stops and Moves of Trajectories) (55),
are built on some a priori known POI (Points Of Interest) or Regions Of Interest (ROI). In
these methods, first, the spatial intersections of the POI/ROI with the trajectory are
computed to find stop candidates, and then additional stop constraints (e.g. time duration)
are applied to filter out non-meaningful stop candidates. Difficulty in getting well-defined
POI data significantly limits these static methods.

Dynamic methods, without using any predefined POI/ROI, consider different aspects of
mobility characteristics (70), such as velocity characteristics. Typically, general clustering
algorithms (such as k-means clustering, DBSCAN (71) and OPTICS (72)) are adopted in the
dynamic solutions (58, 65-69).

In Research Paper ], inspired by clustering-based stop discovery methods, we consider each
IP as a dense cluster of recordings in space-time, and assume that the location error is
normally distributed. We test our algorithm using both simulated movement trajectories
with well-defined characteristics and a real movement dataset. The only parameter
required for our proposed algorithm is a user-specified minimum duration of inactivity,

that will depend on the application.
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2.4 ldentifying Movement Behavior States from Animal Movement
Trajectories

In the second stage of this research, first, we report on the relevant literature about
movement behavior state detection, and we proceed by developing a movement behavior
state detection algorithm. Research Paper Il presents the substance of this stage. Movement
behavior detection is often an early and critical component of movement data analysis that
guides further analysis pathways.

A segmentation algorithm decomposes a trajectory into a set of segments (sub-trajectories)
with homogeneous characteristics with respect to some application-dependent criteria (73,
74). Then, the segments are grouped together corresponding to movement behavior (75).
Behavioral movement analysis methods, according Gurarie et al. (16), can be categorized
into four groups: Metric-based methods, Classification methods, Mechanistic
movement models and Phenomenological methods.

Metric-based methods are built on various Movement Parameters. Movement Parameters
such as Net/Mean Squared Displacement (76), Fractal Dimension (77), (Multi-Scale)
Straightness Index/Sinuosity (78), and First Passage Time (79) are defined to identify the
different behaviors (see (19) for the details).

Classification methods apply clustering algorithms and selection criteria to determine the
number of partitions a dataset can be subdivided into. For example, Van Moorter et al. (52)
distinguished four different states of behavior of elk by k-means clustering, using turning
angle, step length derived from GPS location data and activity sensor values for free-ranging
elk.

Mechanistic movement models include the large family of random walk models with
variations (see Section 2.5), in which movement of an animal is broken down into two
components: step length and turning angle between successive steps (80). Different
probability density functions for step length and turning angle distribution (15, 81) are
assumed as the underlying movement model for the different behaviors. A limitation of this
method is that it is ultimately only as good as the underlying movement model and the
behavioral hypotheses associated with it (82). In case of no a priori anticipated behavioral

states, this kind of model becomes inadequate.
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Phenomenological methods, with origins in time series and signal processing, identifies
the structure or periodicity of movement paths through time series of movement
parameters. Our Research Paper II is built on a phenomenological method called
‘Behavioral Change Point Analysis’ (BCPA(83)). In BCPA, two time series are created: (i)
‘Persistence velocity’, the product of the estimated speed and the cosine of the turning
angle, and (ii) ‘Turning velocity’, the product of the estimated speed and the sine of the
turning angle. These two continuous auto-correlated time series are described by three
parameters: a mean, a variance and a continuous autocorrelation. A change in these
parameters corresponds to a change in behavior. For example, an increase in the mean of
the ‘Persistence velocity ‘component corresponds to a combination of faster and more
directed movement. An increase in variance of the ‘Persistence velocity’ component
indicates more variable movement, e.g. bouts of movement and stopping and sudden
changes in direction. A higher autocorrelation indicates more directed and correlated
movements, whether fast or slow (83). Naming the time at which change in the movement
parameter occurs as a change point, there are eight possible models to consider when
analyzing each side of a possible change point: 1) no significant change for mean, variance
and autocorrelation, 2) significant change for mean, 3) significant change for variance, 4)
significant change for autocorrelation, 5) significant change for mean and variance, 6)
significant change for mean and autocorrelation, 7) significant change for variance and
autocorrelation and 8) significant change for all the parameter values.

Given a sweeping analysis window of fixed size (this size is the only tunable variable), BCPA
uses maximum likelihood to find the most likely change point within the window,
corresponding to shifts in behavior, and determines which combination (if any) of the three
parameters (mean, variance and autocorrelation) most parsimoniously describes the
separation in the data according to BIC (Bayesian Information Criterion). BIC is a criterion
for model selection among a finite set of models (84). The interested reader is encouraged
to study the original paper for more details on the derivation of formulas and theory behind
BCPA (83).

The developed methodology of Research Paper Il consists of the following processes:

Trajectory segmentation and sub-trajectory clustering. Trajectory segmentation partitions
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the trajectory into reasonably homogenous sub-trajectories using BCPA and then these
sub-trajectories are grouped according to similarities in movement behavior.

Grouping sub-trajectories is closely related to clustering analysis and similarity measures.
We refer the reader to (85) for a complete review of similarity measures. The most
important similarity measures defined for assessing the similarity of (sub)trajectories are
Spatial similarity measures and Spatiotemporal similarity measures (86) as follows:
Spatial similarity measures: These similarity measures ignore the temporal aspect of
(sub)trajectories and consider just geometric shapes. The simplest one is ‘Euclidean
distance’ which only works on trajectories with the same duration and sampling schedule.
‘Hausdorff distance’ (85, 86) is defined as the maximum of the minimum Euclidean
distances between each point of one trajectory to the set of points constituting the other
trajectory. Fréchet distance’(75), also called the dog-walking distance, takes into account
the location and ordering of trajectory points and represents the minimum length of a leash
between two objects, i.e. a person and its dog, that move along their respective trajectories
without backtracking.

Spatiotemporal similarity measures: These similarity measures compare movement
with respect to both spatial and temporal aspects. The simplest and most straightforward
spatiotemporal distance measure is the sum of all Euclidean distances between the
positions of the two trajectories that match in time divided by the common duration of the
two trajectories. ‘DTW (Dynamic Time Warping)' (87), a classic speech recognition tool
(88), calculates the similarity between two trajectories by finding an optimal match
between all their points, even if the trajectories are not identical in size. The similarity
measure is called ‘time warping’ since the two trajectories are compressed or expanded in
time to find the optimal match between them. DTW finds a monotonically increasing
matching between all pair of points in the two trajectories with the minimal cost. ‘LCSS
(Longest Common Subsequence)’(87) matches two trajectories by allowing them to
stretch, without rearranging the sequence of the elements and allows some elements to be
unmatched in order to handle outliers. ‘Edit distance’ (89), with the origin in pattern
matching for alphanumeric datasets (86), encodes movement parameters for each
trajectory into a symbolic sequence, and then calculates the cost of the string matching

between the two generated symbolic sequences.
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According to (15), animal movement behavioral states can be categorized by probability
distribution functions of movement parameters. In Research Paper II, we establish the
concept of similarity between different animal movement behaviors based on the
cumulative distribution function of movement parameters. We do a spatiotemporal
similarity analysis of the cumulative distribution function of movement parameters to

detect sub-trajectories with similar dynamic behavior.

2.5 Stochastic Animal Movement Models

The final stage of this research intends to model animal movement data using continuous-
time stochastic movement modeling, and to assess the sampling frequency requirements
for estimating movement parameters correctly from a discrete-time movement trajectory.
Movement of an individual organism is an interplay of four major components: (i) internal
state (why move?), (ii) motion capacity (how to move?), (iii) navigation capacity (when and
where to move?), and (iv) external factors (the abiotic and biotic environment influencing
movement) (75, 90). Since modeling all of these interactions for movement of organisms is
infeasible in practice, various analytic techniques, including Simple Random Walk models
or Composite Random Walk models (80, 91, 92), have long served as the standard approach
to wildlife movement modeling (82).

Uncorrelated and unbiased (isotropic) random walk is the most simple stochastic
movement model. Uncorrelated means the direction of movement is completely
independent of the previous directions (92). Unbiased means there is no preferred
direction; the direction moved at each step is completely random. Correlated random
walk (CRW), frequently used to model animal paths in various contexts (e.g. (80, 93)),
involves a correlation between successive step directions, which is termed ‘persistence’
(94). Persistence is the tendency to continue moving in the same direction (95). It means
that the animal changes its direction gradually from step to step. Biased correlated
random walk (BCRW) (92) has a consistent direction bias in addition to persistence.
Codling et al. (92) provide a comprehensive review of different random walk models

applied in ecology.
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RW analyses focus on quantifying step length distributions and turn-angle distributions,
and comparing the observed mean squared displacement (MSD) to the model-predicted MSD
(92, 96).
Assuming that an observed trajectory is comprised of N successive points as follows:

P, =(x;,y), i=1,..,N
Mean Squared displacement (MSD) as a function of time duration (corresponding to n
consecutive steps) is defined as the mean of the squared distances between pairs of points

separated by that amount of time duration (80, 97):
1 _
MSDy = +— %" Wisn — P1)? =1, N-1

MSD can be used to distinguish between diffusive, super-diffusive, and sub-diffusive
movements. In diffuse movement, MSD scales linearly with time or path length, but sub- or
super-diffusive movements have a power-law relationship with time (98).

Parameter estimation for RW and its variations depend on the sampling schedule, making
it difficult to draw sampling-independent inferences about the underlying movement
process (99, 100). On the other hand, RW and its variations are based on locations that are
collected at regular intervals, making subsampling, interpolation, or aggregation necessary
for irregular sampling data (101). Furthermore, memory, avoidance, repetition and other
biological complexities introduce long-term autocorrelations into the movement paths of
individuals. Long-term autocorrelations in the movement paths of individuals cannot be
modeled by using RW (102).

Recent developments in modeling movement as a continuous-time stochastic process (CTSP)
(99, 100) solve the above mentioned problems (irregular sampling, sampling schedule
dependency and long-term autocorrelation). CTSP models separate the continuous-time
movement process from the discrete-time sampling process. CSTP models feature position
autocorrelation, velocity autocorrelation, and range residency. Position autocorrelation
means that position observations that are close in time tend to be more similar than those
farther apart in time. Velocity autocorrelation means that an individual’s direction and

speed at one point in time tend to be correlated with those quantities at adjacent times.
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Velocity autocorrelation is often observable for finely sampled datasets. Range residency
exhibits the tendency of the animal to remain in a defined region or ‘home range’. CTSP
models currently in use in the ecologic literature (103), including IID, BM, OU, I0U, and
OUF, feature different combinations of position autocorrelation, velocity autocorrelation
and range residency. In the following, we give a general explanation of the most frequently
used CTSP models for animal movement in the ecologic literature and refer the reader to
(99) for more details.

Independent Identically Distributed (IID): A purely random movement model which
ignores autocorrelation completely in both positions and velocities. It is generally not
recognized as a suitable movement model for organisms.

Brownian Motion (BM) (104): BM is a continuous counterpart to the Random Walk model
(20). It features correlation in positions but not in velocities. It does not limit space use. BM
is not able to model velocity autocorrelation and range residency. BM is appropriate for
data with too coarse sampling rate or too short sampling duration, as such data will not
reveal velocity autocorrelation and range residency, respectively.

Ornstein-Uhlenbeck (0OU) (105): OU combines BM with a tendency to remain in a
particular area. The OU process is therefore appropriate for data with too coarse sampling
to reveal velocity autocorrelation, and with sampling duration that is long enough to show
the restricted space use.

Integrated OU (I0U) (106): Similar to BM, 10U assumes that space use is not limited, but it
assumes autocorrelation in velocities. 10U is therefore appropriate for finely sampled
datasets that reveal velocity autocorrelation, but that have a sampling duration that is too
brief to show range residency.

Ornstein-Uhlenbeck Foraging (OUF) (99): OUF is a hybrid of the OU and 10U processes
that features both correlated velocities and restricted space use. The OUF process is
appropriate for finely sampled data that reveal velocity autocorrelation and that have along
enough duration to reveal restricted space use.

Comparable to MSD for RW modeling, Semi-variance, a nonparametric autocorrelation
estimator, contains information about the step length distribution for all possible time lags
in the data.

The mathematical definition of semi-variance is as follows (99):
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r@ = % E((x(t+1) = x(D)*)
Which measures the variability in the distance between two locations (noted as x(.)) as a
function of time separation (7) between them. Plotting the estimated semi-variance as a
function of lag yields the empirical semi-variogram, which contains information about the
mix of processes represented in a relocation dataset.
All CSTP models can be expressed in terms of their SVFs as follows (see Figure 3):
e [ID: Since autocorrelation is zero for all time lags other than 0, the semivariance is
constant for all time lags other than zero.
e BM: Semivariance is a linear function of time.
e (QU: Semivariance is a mixture of a linear function of time over short scales, t<tH,
and approaches a constant for longer time lags (t>tn)
e JOU: Semivariance is a mixture of a power law function (curve upward) for small
time lags, t<tr, and a linear function for longer time lags, t>tr
e OUF: Semivariance is a mix of a power law function for small time lags, tT<tr, alinear
function for intermediate time lags, tr<t<tH, and then approaches a constant for
longer time lags (t>tn)
The theoretical SVFs of CSTP models can be fit to the empirical semi-variogram via
regression and then compared using standard model selection techniques to identify the
mix of movement processes best supported by the relocation data (99).
Uncertainties in animal movement data, owing to issues such as measuring accuracy and
sampling frequency, may strongly influence interpretations (17, 107).
We can’t get GNSS data with very high temporal sampling frequency for a long monitoring
duration due to battery constraints. We also lose a lot of information when recording data
with a low temporal sampling frequency. In Research Paper III, we try to assess the impact
of sampling frequency on the estimation of the movement parameter of speed, and develop
a method to find the most effective sampling frequency in terms of the accuracy of speed

estimation.
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Figure 3. An exemplary illustration of CTSP models (in different zoomed-in views ranging from the general
view (a) to more detailed views (b) and (c)). tr is the typical duration of a foraging bout. tu is the timescale
associated with the animal covering its home range on.
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3 Methods and Results

This chapter summarizes the three research papers corresponding to the three stages of
the research process introduced in chapter 1. For every paper the objectives, the methods,
the main contributions, and the key findings are highlighted to provide a basis for the
subsequent discussion chapter. However, this does not provide a substitute for reading the

full papers. Studying the full papers provided in Part I is recommended.

3.1 Research Paper |

Research Paper I responds to Research Objective 1 and Research Questions 1-2 of the
thesis. In Research Paper I, we focus on the implication of positioning error for animal
movement studies over a range of sampling. When an animal such as sheep is generally
inactive (standing immobile, grooming, ruminating or sleeping), the same location
coordinate should be recorded for that time period. However, positioning errors create
variations in the recorded locations, potentially leading to erroneous biological
interpretation (30). The presence of positioning errors leads to bias in distance and

velocity, and can lead to misclassification of animal activity (50).

3.1.1 Objectives

Segmenting animal trajectories by detecting Inactive Periods in the presence of positioning
error is the main goal of Research Paper L.
Research Paper [ aims to provide a framework to fulfill the following goals:
e Spatiotemporal clustering of points recorded during Inactive Periods
e Estimation of positioning error
Accordingly, the research framework includes two tasks as follows:
e An adapted version of the DBSCAN method for spatiotemporal clustering

e Estimation of positioning error with the aid of the Rayleigh distribution
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3.1.2 Methodology

Due to positioning errors, an Inactive Period (IP) is characterized by the recorded positions
being scattered around the true resting position. Therefore, detection of an IP resembles a
stationary test, where the mean center of the recordings is an estimate of the stationary site
(the true resting position), and its radius is determined by the positioning accuracy. We
chose to use the Z2drms accuracy measure (See Section 2.1) to be able to statistically
estimate measurement errors while detecting IPs. Each IP is considered to be a
spatiotemporal dense cluster of recordings. Therefore, we take advantage of a density-
based clustering method called DBSCAN (71). DBSCAN finds a group of positions located
close together in Euclidean space and well separated from other positions with respect to
the same distance measure. The user input of DBSCAN is the magnitude of the
neighborhood (defined by a given radius, Eps) and a minimum number of points (MinPts)
in the neighborhood, i.e. the density in the neighborhood has to exceed some threshold. Our
adapted version of DBSCAN, called DBCIP (Density-Based Clustering method for Inactive
Periods) takes advantage of the trajectory aspect in our recordings. The DBCIP method
combines the spatial and temporal dimensions into a joint neighborhood definition as
follows: (i) the Euclidean distance (geographical proximity) between points (Epse), and (ii)
the distance between points along the trajectory (Epst). Epst introduces spatiotemporal
constraints in the clustering. The only user input parameter that DBCIP requires is the
minimum duration of an IP.

Since Epse=2drms is usually unknown in practice, it was necessary to include the Epse-
estimation as a part of the suggested method. For the minimum number of recordings
(derived from the user input of minimum duration of inactivity) and some suggested a
priori value for the 2drms, the temporal neighborhood in terms of distance along the
trajectory threshold is estimated by Gaussian simulation. A feasible Epse is estimated while
detecting IPs in a repetitive approach. In each iteration, the radial errors for the detected
[Ps are calculated. By fitting a Rayleigh distribution to the radial error values, we derive a
confidence interval for the associated scale parameter. We relate the unknown Epse to the
scale parameter of the Rayleigh distribution. The candidate value Epse (i.e. the a priori Epse,

increased by a step size of e.g. 1 meter) is assessed within the confidence interval of the
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scale parameter for the Rayleigh distribution. A feasible estimate of Epse is smaller than the

lower limit of the confidence interval of the scale parameter for the Rayleigh distribution.

3.1.3 Main Findings

As long as the step lengths of the animal are long enough to be distinguishable from
positioning errors, segmentation of the animal tracking trajectory is possible through IP
detection.

e The proposed clustering method, DBCIP, can be successfully applied to detect
Inactive Periods of an animal using only a temporally ordered sequence of position
recordings.

e Assuming that the coordinates for each IP is drawn from some unknown bivariate
normal distribution, the radial errors are Rayleigh distributed. DBCIP can be used to
estimate a positioning error.

e The experimental results of applying DBCIP on sheep trajectories suggest that their
normal daily inactivity pattern contains around one-hour inactivity periods during

daytimes and a few hours inactivity period around midnights.

3.2 Research Paper |l

To respond to Research Objective 2 of the thesis and Research Questions 3-4 of the thesis,
we develop a method to distinguish movement behavioral states for trajectories with high
sampling frequency in Research Paper II. We characterize different movement behaviors
using both the distribution of speed and turning angle values.

With respect to the distribution of speed and turning angle values, movement behavior can
be grouped into four categories: (i) resting (low mean turning angle and low mean speed),
(i) walking (low mean turning angle and high mean speed), (iii) foraging (high mean
turning angle and low mean speed), and possibly (iv) undefined movement behavior (high

mean turning angle and high mean speed).
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3.2.1 Objectives

Given a sequence of locations of an animal sampled at high frequency, we aim to detect
different movement behaviors along the trajectory. First, we intend to segment the
movement trajectory according to potential changes in the underlying movement behavior.
Then, segments that are assumed to reflect similar underlying behavior are grouped
together.
Accordingly, the research framework includes the following two tasks:

e Trajectory segmentation

e Sub-trajectory clustering
The way that we do each task is based upon a review of the corresponding literature. We
concluded that a modified version of BCPA is the most appropriate trajectory segmentation
method for our auto-correlated high frequency data. However, BCPA, like many trajectory
segmentation methods, only provides information on significant change-points along the
trajectory, leading to trajectory segmentation. Assuming that the number of distinct
movement behaviors is an unknown number of one to four movement behaviors (as
introduced earlier), we suggest using a hierarchical clustering method rather than k-means
in order to consider the overall distribution of the movement parameter values in the
clustering process, rather than a specific statistic like central tendency or median as used

in (108) for the k-means clustering method.

3.2.2 Methodology

The proposed framework for detecting movement behavioral states according to changes
in the movement parameters consists of two parts: (i) using a slightly modified version of
the recently developed behavioral change point analysis (BCPA) method (83), we partition
an individual trajectory into segments of homogeneous movement parameters. (ii) using
the Kolmogorov-Smirnov distance metric, we compute a distance matrix for all pairs of
segments, in order to generate an agglomerative hierarchical clustering model of the

segments (109).
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BCPA requires a moving window size as input, and determining this is a challenge. To
identify a good value for the size of the moving window, exploring diagnostic plots of the
residuals, comparing them to a standard normal distribution and inspecting their
autocorrelation function in a trial-and-error fashion is suggested in Research Paper II.
‘Persistence velocity’ is typically used as a response variable in BCPA. We suggest using
‘Turning velocity’ as another response variable as well in order to improve the reliability of
BCPA in the detection of significant change-points along the trajectory. We do not have any
a priori assumptions regarding the number of change points. Since we expect that there are
shared change points between the two resulting sets of change points, we combine the two
sets of change points and remove duplicates. Using the resulting change points, we partition
the trajectory into segments.

To group the segments according to behavior based on consistency in their movement
parameters, we suggest hierarchical clustering (110, 111) with the Kolmogorov-Smirnov
(ks) distance (112) in Research Paper II.

Unlike the segmentation part of our method, in which both ‘Persistence velocity’ and
‘Turning velocity’ are used, the clustering part of our method uses only the ‘Persistence
velocity’ values. ‘Persistence velocity’ values can discriminate between the predefined
behaviors mentioned above: walking is characterized by high persistence velocity values,
foraging by low values, and resting by intermediate values. Additionally, investigating the
directional histogram of turning angle values for each class of behavior increased our
confidence in the classification.

In Research Paper II, we walk through the main analysis steps with data for a single sheep.
However, we demonstrate the performance of our method using all the data (for the four

available sheep) for which corresponding field observations are available.

3.2.3 Main Findings

As long as the movement behaviors of the animal in question can be distinguished by a
combination of speed and turning angle values, our method for behavior detection is

applicable.
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A confusion matrix is used to quantify the accuracy of behavior detection for our
methodology in terms of the number of minutes of correctly predicted movement divided
by the whole period of observation.

e Analysis of seven GPS recording days where corresponding observed movement
behavior data are available indicates an average accuracy for our dataset of 80.75%
+5.9% (SE).

e The method for discriminating between different animal behaviors requires neither
a temporal regularization of the data nor a strict a priori value for the number of
movement behavioral states, nor the specification of the movement model.

Adding context to the analysis would improve movement behavior prediction. Therefore, a
future extension of our proposed approach should consider the incorporation of contextual
information (e.g. environmental conditions) for the assessment of similarity between the

movement characteristics of objects.

3.3 Research Paper Il

Research Paper Il responds to Research Objective 3 and Research Questions 2 and 4-5 of
the thesis. The final stage of this thesis intends, firstly, to model animal movement paths
stochastically in a continuous-time domain, secondly, to evaluate the sensitivity of the
movement parameters derived from discrete-time movement paths to the sampling
frequency of the observations, and thirdly, to find the best sampling frequency in terms of

minimizing the impact of errors on the derived movement parameter(s).

3.3.1 Objectives

Sampling points from animal movement tracking can be connected by straight lines to
reconstruct a discrete-time animal movement path. The accuracy of the reconstructed
movement path depends on several factors, including temporal sampling frequency,
accuracy of the measuring device and species-specific movement characteristics. Given a
short observation period with high temporal sampling frequency, we can stochastically
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model the animal movement path. The animal movement path can be viewed as a
realization of a stochastic process that takes into account the accuracy of the locations and
species-specific movement characteristics. The impact of sampling frequency can then be
assessed through a cross-scale analysis. Therefore, our main research question is as
follows: Given an animal species and a device for location measurement, what is the optimal
temporal sampling frequency when the goal is that the reconstructed movement path shall
have the least difference from the true movement path in terms of the estimated movement

parameter (for example speed)?

3.3.2 Methodology

Our method for assessing the impact of temporal sampling frequency on movement
parameter estimation is applicable as long as the following requirements are met: (i) an
observation period with high temporal frequency recordings of the movement path is
available, and (ii) the movement behavior during the observation period is representative
for the long term movement behavior.

By calculating the empirical variogram for the available high frequency sampling dataset,
the main features of the movement are revealed. The empirical variogram visualizes the
autocorrelation structure and facilitates model identification. The empirical variogram is
fitted to an acceptable semi-variance model selected from a palette of models of CTSP
(continuous-time stochastic process). The selected parameterized stochastic movement
model can be used as a simulator across different (sub)sampling schedules to figure out the
impact of sampling frequency on the movement parameter in question.

Since we lack the true movement path for our experiment, we split the dataset into training
and test datasets. We do model fitting based on the training trajectory dataset and figure
out the impact of sampling frequency on the movement parameter in question by a cross-
scale analysis based on the test dataset.

We compare statistically the simulated trajectories with the corresponding observed
trajectory in terms of the movement parameter (here speed) over a range of sampling
frequencies and find the Representative Temporal Sampling Frequency (RTSF). With RTSF,
the difference between the true movement path and the reconstructed path in terms of

movement parameter estimation is minimized.
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3.3.3 Main Findings

e At high temporal sampling frequencies, location measurement errors cause
overestimation of speed. At low temporal sampling frequencies, interpolation errors
cause underestimation of speed.

e By viewing animal movement paths as realizations of a continuous-time stochastic
process, we can incorporate the effects of position autocorrelation, velocity
autocorrelation, range residency, measurement error and species-specific
movement characteristics in the movement model selection.

e The proposed method is used to find a Representative Temporal Sampling
Frequency (RTSF) that avoids both over- and under-sampling in terms of speed

calculation.
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4 Conclusion

This thesis followed a three-stage research process towards the main goals. The
achievements of each stage contribute to the main goals of the thesis. The general aim of
this chapter is to highlight the outcomes and the main contribution of our research and
draw attention to some outlooks on future work. Finally, we mention how sheep farming

may benefit from our outcomes.

4.1 Main Contributions

The first main outcome of this thesis is the development of quantitative methods to detect
animal movement behavior for different temporal sampling frequencies of the
observations. For observations with high temporal sampling frequency, detailed movement
behaviors, such as foraging, resting and walking are distinguishable, while for observation
with a lower temporal sampling frequency, only more generalized movement behaviors,
such as Inactive and Active Periods are distinguishable.

To do animal movement behavior detection, we used existing standard clustering
techniques, such as DBSCAN and hierarchical clustering, statistical reasoning based on the
Rayleigh distribution and the Wilcoxon-Mann-Whitney test, and existing animal
movement tools such as the BCPA and AdehabitatLT R packages.

We developed our generic methods based on sequences of location and time coordinates
for animal movement paths. We investigated the applicability of the proposed methods on
real movement datasets for sheep. This does not mean that the applicability of our methods
is tied to the specific examples or equipment described herein. Our proposed methods for
behavior detection provide useful tools for domain experts to gain insights into the
behavior of animals in their habitat.

Finding a Representative Temporal Sampling Frequency (RTSF) that maximizes the
monitoring period while providing guarantees for the accuracy of movement parameter
estimation, is the second main contribution of this thesis. We studied the dependency of
movement parameter estimation on different influencing factors, including sampling
frequency, accuracy of the measuring device and species-specific movement

characteristics. We proposed a novel method based on stochastic movement modeling
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reflecting and quantifying measurement accuracy and species-specific movement
characteristics. Then, we examined the impact of sampling frequency on movement
parameter estimation. To the best of our knowledge, there is currently no method to
quantify the contributions of all influencing factors, on movement parameter estimation.
With our method, we tried to consider as many influencing factors as possible.
All in all, the main achievements of the thesis are:
1. Understanding the nature and implications of measurement errors on tracking
paths and the derived movement parameters (Research Paper [ & III).
2. Developing trajectory segmentation methods for different temporal sampling
frequencies (Research Paper 1 & II).
3. Developing a similarity measure for animal movement behavioral state detection
(Research paper II).
4. Studying the effects of the temporal sampling frequency on the tracking path and
the derived movement parameters (Research paper III).
5. Assessing temporal sampling frequency requirements for specific research

questions (Research paper III).

4.2 Practical view in terms of sheep farming

In Norwegian rangelands, sheep are not usually inspected regularly. In the case of disease
and injury, they may be undiagnosed for a long period. Relying upon real-time monitoring
and classification of animal movement behavior, we can detect deviations from normal
behavior early and offer treatment on time to prevent more pain to the animal, or even
animal loss.

The long-term objective of this work is to gain insight into spatiotemporal movement
patterns of animals in their habitat. This can form the basis for developing sustainable
sheep farming practices. For example, by proper placement of stock water and mineral licks
(13, 113) or virtual fencing (114, 115), livestock movement patterns can be manipulated.
Livestock can be attracted away from environmentally critical areas or into areas targeted
for grazing in order to decrease the adverse effects from livestock in the grazed area,

including biodiversity loss and soil erosion (13).
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At a higher level, understanding when and where sheep move and discovering the
movement patterns of animals within a habitat context is valuable for allocating resources
or assessing the impact of utilization by livestock. With a particular emphasis on land
management, the outcomes of this thesis can contribute to advance sheep grazing and
increase the uniformity of grazing.

From a telemetry perspective, finding a sampling frequency for telemetry which respects
animal welfare and provides sufficient information about animal movement is another
achievement of this research that could benefit sheep farming in particular. In telemetry,
high frequency sampling requires high battery capacity or frequent battery replacement.
High battery capacity might impose a weight that exceeds the carrying capacity of the
animal. Frequent battery replacement requires recapturing, which might be infeasible or
pose ethical concerns about animal welfare.

All in all, our proposed methods can be used either solely in any decision making about
sheep farming in particular or along with other information for further analyses in the

animal study domain and in policy decision making.

4.3 Challenges for Future Research

The way that we detected different movement behaviors depended on the temporal
sampling frequency of observations. We suggest that future research should do a
comparative analysis of our methods for different temporal sampling frequencies. For
example, the impact of different sampling rates on the detected Inactive Periods. What are
the upper and lower limits for sampling rate for reliable detection of Inactive Periods using
our proposed method? How high sampling frequency is needed to distinguish foraging,
resting and walking behavior with acceptable accuracy?

We believe that by repeating our proposed methods on a reasonably large dataset, we can
obtain a general view of the movement patterns of the animal in its habitat. Detection of
abnormal behavior (that deviates from the normal movement patterns) could then be

possible.
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Future research could involve on-line monitoring of animals, in order to do real-time
analyses on the data. Then we can monitor what is happening in the pasture and make on-
time reaction to disturbances possible.

Assessing the impact of temporal sampling frequency on the movement parameter of speed
and finding the RTSF for speed calculation is another major contribution of our research to
the field of animal movement studies. The proposed method could be extended to assess
the impact of sampling frequency on other movement parameters, for instance turning

angle.
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tracking.

In this paper, we propose a method to find inactive periods of a trajectory and employ it to livestock

In contrast to the existing methods to find inactive periods in the domain of animal movement studies,
the proposed method estimates inactive periods based on the position recordings only, without involving
information from activity sensors or field observations. The only parameter that the proposed method

requires is the minimum duration of inactivity. Inactivity means being stationary or having limited
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variation in position. The results have been verified by applying the method to a dataset where activity
sensor recordings are also available.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Recent developments in location-aware technologies (including
GNSS “Global Navigation System Satellite” (e.g. (Awange, 2012)),
RFID ‘Radio Frequency Identification’ (e.g. (Kritzler, Raubal, &
Kriiger, 2007)), and cell phone tracking (e.g. (Abedi, Bhaskar, &
Chung, 2014; Versichele, Neutens, Delafontaine, & Van de Weghe,
2012)) have significantly increased their use in data collection for
moving object applications. Analyses and methods for extracting
useful information from these increasingly large dataset have lag-
ged behind the technology for generating them (Long & Nelson,
2013).

Wearable tracking collars have simplified monitoring of animal
locations for many research projects in within ecology (Cagnacci,
Boitani, Powell, & Boyce, 2010) and geography (Laube & Purves,
2011; Stewart, Nelson, Wulder, Nielsen, & Stenhouse, 2012;
Technitis, Othman, Safi, & Weibel, 2015). Tracking an animal us-
ing tracking collars results in a trajectory which is a sequence of
ordered records in time depicting the movement of the object
(Gudmundsson, Laube, & Wolle, 2011; Long & Nelson, 2013).
However, the so-called raw trajectory lacks semantic interpretation
(Bogorny, Renso, Aquino, Lucca Siqueira, & Alvares, 2014).

* Corresponding author.
E-mail addresses: maryam.teimouri@nmbu.no (M. Teimouri), ulf.indahl@nmbu.
no (U.G. Indahl), havard.tveite@nmbu.no (H. Tveite).
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According to Spaccapietra et al. (2008), a raw trajectory may
semantically be segmented into ‘move’ and ‘stop’ parts, an event-
based perspective (Hornsby & Cole, 2007). In the conceptual
framework of an application, the spatial range of the trajectory for
each ‘stop’ part is a single point (Spaccapietra et al., 2008). In ani-
mal movement studies, ‘stop” and ‘move’ parts of the raw trajectory
correspond to inactive periods (e.g., resting bouts) and active pe-
riods (e.g., foraging bouts) (Frair et al., 2010; Schwager, Anderson,
Butler, & Rus, 2007).

Segmenting animal trajectories by detecting inactive periods in
the presence of positioning error is the main goal of this paper.
Positioning error is still considered an important concern in
different applications, including animal movement studies
((Ganskopp & Johnson, 2007; Hurford, 2009; Jerde & Visscher,
2005), to name but a few). When an animal sleeps or lies down
and rests at one location for a period, the collected positions can be
misplaced, due to positioning error, complicating the detection of
inactivity. Undetected periods of inactivity may lead to biological
misinterpretation (Pepin, Adrados, Mann, & Janeau, 2004), e.g.
degrade the estimation of spatial habitat use pattern or the eval-
uation of energetic requirement of animals.

In this paper, we investigate how well active and inactive pe-
riods of animals can be distinguished relying only on positions from
non-differentially corrected GPS ‘Global Positioning System’ re-
cordings. Positioning error is generally not available for the indi-
vidual recordings, so we suggest a method for estimating the
positioning error for the detected inactive periods. Due to the lack
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of empirical evidence (e.g., field observations) to validate the re-
sults, findings of the study are verified by utilizing available activity
sensor data. A simulation is also conducted to evaluate the per-
centage of the inactive periods detected correctly by the proposed
method.

The paper is structured as follows. In Section 2, we provide a
brief literature review on methods for extracting inactive periods of
GPS-tracked animals. In Section 3 (Methodology), a detailed
description of the proposed method is given. In Section 4 (Case
study), an explanation of our equipment to track domestic sheep on
an alpine range is given. In Section 5 (Result), we apply the pro-
posed method to our dataset and evaluate the outcomes based on
the available activity sensor recordings. In Section 6 (Validation),
we use a Random Walk model and a Correlated Random Walk
model to simulate animal paths and evaluate what percentage of
the simulated inactive periods that can be detected by the proposed
algorithm.

2. Background and related works

An Inactive Period (IP) is defined as a state where the animal is
stationary or has limited variation in geographic location. With
error-free location data, defining a threshold value for the variation
in geographic location would be sufficient to detect IPs. However,
with errors in the location data, more sophisticated approaches are
required to identify IPs.

In the literature of animal movement studies, inactive periods
have been identified by combining activity sensor values and
movement variables based on GPS recordings (Frair et al., 2005,
2010; Ganskopp & Johnson, 2007; Pepin et al., 2004; Schwager
et al., 2007; Ungar et al., 2005; Van Moorter, Visscher, Jerde, Frair,
& Merrill, 2010). Inactive periods (bedded, standing) and active
states (feeding, moving) of animals have been identified using
predictive models by including information from various sensors
along with field observations (Body, Weladji, & Holand, 2012;
Grunewalder et al., 2012).

Gervasi, Brunberg, & Swenson (2006)) tested an individual-
based method to discriminate active and inactive periods for
brown bears using dual-axis motion sensors mounted on GPS
(Global Positioning Systems) collars. The motion sensors mounted
on the collars “separately measure the true acceleration of the
collar in 2 orthogonal directions 6—8 times per second”. The ac-
celeration values acquired between 2 consecutive recordings were
averaged, ranging from 0 to 255, and assigned to each direction.
They found that the frequency distribution of motion sensor values
was bimodal, and they identified a separation point and considered
all activity values lower than the separation point as inactive.

Ganskopp & Johnson (2007) tried to select an activity sensor
value threshold between active and inactive periods based on left-
right sensor values of GPS collars worn by cattle. The activity sensor
values, ranging from 0 to 255, were acquired at 5-min intervals.
They visually identified the first point of inflection of the cumula-
tive frequency curve of increasing activity values as a break point
separating inactive and active periods. They found out that they
needed to combine the activity value and a minimum distance
threshold to filter out inactive periods from active periods.

Schwager et al. (2007) used the k-mean classification algorithm
to categorize tracking data from cows into two groups corre-
sponding to active and inactive periods. They used position and
head angle data to demonstrate how the algorithm can be
employed in a behavioral study.

Adrados, Baltzinger, Janeau, & Pepin (2008) proposed an
individual-based relative method using the count provided by a
GPS collar activity sensor to separate active from inactive periods. A
dataset from free-ranging red deer (Cervus elaphus) was used to

pinpoint locations where animals were inactive versus active. For
each individual and day of measurement, the mean activity during
a 24-hr period was defined as the referential slope (ap). Then the
slope of each pair of successive activity values (a) was compared
with (ap). The animal was considered inactive during the time in-
terval under consideration if a < ap.

To our knowledge, most prior studies in this area have been
conducted based on the existence of activity sensor values and field
observations. With only location data available, it is a challenge to
discriminate between active and inactive periods. Due to the lack of
sufficiently fine resolution of activity sensor values and field ob-
servations in our data (see the case study section for details about
the current dataset), we were interested in developing methods
that only requires location data.

In the study of movement data, which is the forefront of
Geographic information science research (Alvares et al., 2007;
Andrienko et al., 2013; Long & Nelson, 2013; Palma, Bogorny,
Kuijpers, & Alvares, 2008; Tran, Nguyen, Do, & Yan, 2011;
Zimmermann, Kirste, & Spiliopoulou, 2009), the term ‘stop’ is
used as a synonym for an inactive period (IP). Many analytical ap-
proaches in this area rely on geometrical properties and movement
parameters of the trajectory, such as distance, duration and speed.
The Euclidean distances between recordings in a fixed time win-
dow could be used to detect IPs, but identifying appropriate values
for the Euclidean distances and time window length is challenging.
In addition, such an approach is sensitive to outliers. Another
approach could be to use the average Euclidean distance in a time
window (Laube & Purves, 2011), but that reduces the sensitivity to
the spatial distribution of the recordings.

Andrienko et al. (2013) classify stop detection methods based on
movement parameters such as speed (Palma et al, 2008; Yan,
Parent, Spaccapietra, &  Chakraborty, 2010), distance
(Phithakkitnukoon, Horanont, Di Lorenzo, Shibasaki, & Ratti, 2010),
speed and duration (Zimmermann et al., 2009), speed and distance
(Buard, 2011) and direction (Rocha et al, 2010). Among the
different approaches to detect stops, density based clustering
methods has attracted the attention of many researchers (Palma
et al,, 2008; Tran et al., 2011; Zimmermann et al., 2009). They
develop adapted versions of ‘Density-Based Spatial Clustering of
Applications with Noise’ (DBSCAN) (Ester et al., 1996). Based on a
given set of points, DBSCAN cluster points that are located closely
together in space. Our DBSCAN based method is original in the
sense that it takes particular advantage of the trajectory aspect in
our recordings (dataset) and detect IPs using a combined time-
space distance measure.

Birant & Kut (2007) presented a spatio-temporal clustering
method based on DBSCAN named ST-DBSCAN. This method has the
ability to discover clusters according to non-spatial, spatial and
temporal values of objects while DBSCAN finds clusters according
to only the spatial values of objects. However, ST-DBSCAN handles
spatiotemporal data stored as temporal slices, and it is not suitable
for trajectory data. Spatial and temporal distances are defined
separately, and the similarity of objects are defined by a conjunc-
tion of the two metrics.

Zimmermann et al. (2009) propose an interactive density-based
clustering algorithm based on OPTICS (Ankerst, Breunig, Kriegel, &
Sander, 1999) to discover stops in a trajectory. The density is
defined based on the spatial and temporal properties of the tra-
jectory and the potential stops are extracted interactively, which
requires some domain knowledge. The advantage of the method is
its applicability for trajectories of different transportation modes,
so-called heterogeneous trajectories.

More relevant to our idea is the approach (CB-SMoT) of Palma
et al. (Palma et al., 2008) suggesting a spatio-temporal clustering
method for finding interesting places on the trajectory of a moving
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object. Based on CB-SMoT, one can say that there are parts of a
trajectory (i.e., interesting places) where the speed of the moving
object is lower than in other parts of the same trajectory. However,
finding this speed threshold is a non-trivial task.

3. Detection of inactive periods (IPs)

In order to detect IPs, one needs first to determine the magni-
tude of the positioning error for the collected location data. A sta-
tionary test is often used to estimate positioning error for animal
studies (Lewis, Rachlow, Garton, & Vierling, 2007). A stationary test
is usually based on a GPS collar of a known position that is left in
place for a given period. Precision determines to what extent the
observations are close to each other while accuracy defines the
distribution of the difference between the “true” location and the
measured locations. Therefore, if the true value of a collar position
is known, the accuracy of the collar in terms of position estimation
can be quantified; otherwise, only the precision can be estimated
and hence quantified.

Several different accuracy measures have been explored in
various applications. 2drms (twice Distance Root Mean Squared),
CEP (Circular Error Probability) and R95 (an extension of CEP) are
the most commonly used two-dimensional accuracy measures
(Chin, 1987). CEP is the radius of the smallest circle centered at the
true position that covers 50% of the observations. R95 is a similarly
defined quantity covering 95% of the observations. The 2drms
(Twice Distance Root Mean Squared) is defined as two times the
Root-Mean-Square (RMS) of the radial errors as follows:

2
Z:":l <<xi - :u'x): + (Yi - uy) > (1)

2drms = 2*

Where k is the number of recorded positions included in a sta-
tionary test. Here {(x; y;)li = 1, ..., k} represent coordinates of k
recorded positions for each stationary test and (ux.py) is the true
stationary site.

Experience with stationary tests has shown that the accuracy of
collars depends on different criteria such as the topography of the
area (Cain, Krausman, Jansen, & Morgart, 2005; D’eon, Serrouya,
Smith, & Kochanny, 2002), habitat selection (Di Orio, Callas, &
Schaefer, 2003; Moen, Pastor, Cohen, & Schwartz, 1996), and col-
lar orientation (Bowman, Kochanny, Demarais, & Leopold, 2000;
D’eon & Delparte, 2005) in addition to GPS intrinsic error sources
(for example atmospheric conditions). Hansen & Riggs (2008) point
out the importance of checking out the manufacturers’ GPS collar
programming criteria for acquisition time before employing them
in the field because longer satellite-acquisition times for GPS collars
generally results in higher precision but reduced battery life.

Based on terrestrial deployments, Frair et al. (2010) conclude
that GPS imprecision is up to 30 m on average, and the factors that
contribute most to errors are canopy closures and unpredictable
animal interactions with the local habitats. Cargnelutti et al. (2007)
mention that GPS positioning error is highly variable, even for a
given PDOP (Positional Dilution of Precision) value and a given
number of tracked satellites.

Due to positioning errors, an IP is characterized by the recorded
positions being scattered around the true resting position. There-
fore, detection of an IP resembles a stationary test, where the mean
center (X,Y) of the recordings is an estimate of the stationary site
(the true resting position). A circle centered on the mean center
with a radius of 2drms is then expected to contain between 95 and
98% (Specht & Szot, 2012) of the recordings for an IP. By choosing
2drms for measuring accuracy, we relate the unknown positioning
error to the Rayleigh distribution of the radial errors for the

detected IPs (see formula 5 below).

In order to detect IPs from a trajectory, we will start by assuming
that the positioning error (expressed as 2drms) is known. Later a
technique for estimating the positioning error is presented as part
of the IP detection process.

We propose two methods for detection of IPs for individual
animals: i) the naive method and ii) the Density Based Clustering
method for Inactive Periods (DBCIP). The user-specified minimum
duration of inactivity (T) is the only user input required for the
DBCIP method, whereas the naive method needs 2drms as well.

Both methods are designed to work on regular trajectories,
characterized by a constant time lag between successive recordings
(SI) (Calenge, 2006).

Given the user-specified minimum duration of inactivity (T) and
the known fixed sampling interval (SI), the associated minimum
number of recordings (N) required to be in sufficient spatio-
temporal proximity is calculated as follows:

N— {%J 1 @)

Here |- | denotes rounding down to the nearest integer.

3.1. The naive method

The naive method detects IPs for a trajectory of n time ordered
recordings P = {py, p, ..., pn} (Where each p; is a point) based on two
input parameters: i) positioning error (2drms) and ii) the minimum
duration of inactivity (T). Pseudo code for the naive method is
provided in appendix A. The naive method shifts a time window of
width T through the recordings in P. An initial IP is defined as a
sequence of points in the neighborhood of p; (pi_j, ..., Pi—1, Pis Pis1
..., Diyj) where j = (N-1)/2 (here N > 0 should be an odd integer
requiring the user’s choice of T to be an even multiple of SI ac-
cording to formula 2) and EDistyay (pi) < 2drms. EDistmay (pi) = max
(EDisty, ..., EDisty,.., EDisty_1) is the maximum Euclidean Distance
between p; and the set of the j previous and the j next points of p;. If
initial IPs overlap, they are combined into one IP. Fig. 1 illustrates a
simple application of the naive method, in which a polyline is used
to visualize the time consecutive recordings. The circles with radius
of r = 2drms show the inactive periods detected by the naive
method. Recordings are represented with black dots and the re-
cordings of the detected inactive periods are marked by black
squares. Fig. 2 illustrates the potential inactive periods detected by
DBCIP with the same notation as Fig. 1.

For the naive IP-detection method, both T (the minimum dura-
tion of inactivity) and the positioning error are required inputs.
With this method, one must expect that some fraction of “true” IPs
remain undetected (compare Fig. 1 with Fig. 2) due to the outliers
caused by positioning errors. Below we suggest a more robust
version capable of detecting IPs in the presence of outliers. The
more robust method is closely related to DBSCAN (Density-Based
Spatial Clustering of Applications with Noise) (Ester et al., 1996).

3.2. The density based clustering method for inactive periods
(DBCIP)

For a spatial database, a density-based cluster is defined as a
group of positions located closely together and well separated from
other positions with respect to some distance measure. In addition,
each cluster must contain at least a critical number of recordings.
Well separated from the clusters, there may be “noisy recordings”
sparsely occupying the domain to be considered. Since each IP is
considered as a dense cluster of recordings, first, we briefly provide
a background of the basic concepts of DBSCAN through the
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The Naive Method

r= Positioning Error
N=5§

m  Point in detected Inactive Period

Fig. 1. Basic concepts of the naive method and the corresponding elements.

The DBCIP Method

IPs detected by the Naive Method
(Partially or completely)

o

IPs detected by the DBCIP Method

r= Positioning Error
N=5

m  Point in detected Inactive Period

Fig. 2. IPs detected by the naive method versus IPs detected by the DBCIP method.

definitions. Then, we propose our modified version of DBSCAN for
detecting IPs in trajectory data.

The DBSCAN algorithm (Ester et al., 1996) was designed to
discover arbitrary-shaped clusters from noisy points in spatial
datasets. The main idea of DBSCAN is that the neighborhood
(defined by a given radius, Eps) of each cluster core point (see
definition 2 below) is required to contain a minimum number of
points (MinPts), i.e. the density in the neighborhood has to exceed
some threshold.

The DBSCAN definitions based on a dataset D of points in 2-
dimensional space using Euclidean distance (EDist) are as follows:

r=Eps,
MinPts=5

(a)

Definition 1: The Eps neighborhood of a point p< D is the subset

Q(p. Eps) = {qEDIEDist(p,q) < Eps}.

Definition 2: (Core point) A point p& D whose Eps neighborhood
contains at least MinPts other points is called a core point.

Definition 3: (Directly density-reachable) A point g D is said to
be directly density-reachable from the point pe D if p is a core point
and q is inside the Eps neighborhood of p (Fig. 3a).

Definition 4: (Density reachable) A point pe D is density-
reachable from the core point g D with respect to Eps and MinPts, if

Fig. 3. Basic concepts of DBSCAN (a) q is directly density-reachable from the point p (b) p is density-reachable from q and (c) p and q are density-connected to each other through o

(Birant & Kut, 2007; Ester et al., 1996).
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there is a chain of points py, ..., px with p; = g and py = p, where each
Div1 is directly density-reachable from p; (so all the points on the
chain must be core points, with the possible exception of p) (see
Fig. 3b).

Definition 5: (Density-connected) A point pe D is density-con-
nected to a point g< D, with respect to Eps and MinPts, if there is a
point o€ D such that both p and q are density-reachable from o with
respect to Eps and MinPts (see Fig. 3c).

Definition 6: (Cluster) A cluster C, with respect to Eps and
MinPts, is a non-empty subset of D satisfying the following two
conditions:

(Maximality) Vp,gqeD : if pe Cand q is density-reachable from p
with respect to Eps and MinPts then g C.

(Connectivity) Vp,qC: is density-connected to q with respect to
Eps and MinPts.

In our particular context, an IP is considered as a cluster of re-
cordings (or positions) located closely together, both in the space
and time dimension that contains at least a minimum number of
recordings (N) (see formula 2). DBCIP is going to extend the notion
of closeness in space to include the time dimension.

In contrast to the DBSCAN algorithm, which only considers the
spatial dimension for the clustering (Edist), see the definitions 1—6,
the DBCIP method combines the spatial and temporal dimensions
into a joint neighborhood definition. In addition to the Edist term
that is the Euclidean distance (geographical proximity) between
points, DBCIP introduces the TDist term that is the distance be-
tween points along the trajectory (P). The TDist term introduces
temporal constraints in the clustering. Inclusion of both the
Euclidean distance threshold, Eps,, and the distance along the tra-
jectory threshold, Eps;, are required for the neighborhood definition
in the DBCIP method.

Calculation of EDist for two points is straightforward. For TDist,
prior to running the algorithm, a list of cumulative step lengths
(CSLp = {L3,Ly, ...,Ly}) from the first point to every point of the tra-
jectory is created, where L; = 0, L, = EDist(pyp2),
L3 = Ly + EDist(p2,p3), ..., Ln = Ly_1 + EDist(pn_1,pn)- Then TDist for
two points can be calculated by subtracting the cumulative step
lengths associated with the two points.

Definition 7: (Trajectory distance) the trajectory distance (TDist)
between two points p; and p; (i < j) on the path P = {py, p, ..., pn} is
defined as TDist(p;, pj) = L; -Li, where the cumulative step lengths L;,
L; € CSLp.

The TDist term also allows ‘reasonable’ outliers, defined as fol-
lows, to be included in the cluster:

Vp;€IP : if EDist (pj, core point)
> Epse then TDist (pj, core point) <Epst

To discover IPs using DBCIP for a trajectory P of n time ordered
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recordings, let MinPts = N-1 (where N is the minimum number of
recordings to detect an IP) and let Eps. denote the 2drms in
Euclidean space.

For the minimum number of recordings (N) and some suggested
a priori value for the 2drms, when it is unavailable for the appli-
cation, the temporal neighborhood in terms of distance along the
trajectory threshold is estimated from a bivariate normal distri-
bution (see 3.2.1). Using N, the a priori 2drms and the estimated
Eps;, the DBCIP method (pseudo code is provided in appendix B) is
able to cluster the recordings. Each detected IP is considered as the
result of a stationary test and the associated positioning error es-
timate is compared to the a priori value of the 2drms, as described
in 3.2.2. Therefore, the 2drms, and consequently the trajectory
distance threshold, is estimated by a repetitive approach.

3.2.1. Estimation of Eps;

An appropriate estimate for the trajectory distance threshold
(Eps¢) can be obtained by simulation. The simulation is executed by
drawing {cj = (x;yi)|i = 1, ..., N} from a bivariate normal distribution
with Z ~ N (0, =); where the mean (0) is the vector (0,0), and the
covariance matrix ¥ (2 x 2) is diagonal with identical entries of
(Epse/2) % (Four simulated trajectories are shown in Fig. 4).

The N simulated points (o7, ..., on) are used to create a trajectory,
TSim, and then the length of TSim is calculated.

Finally, an average trajectory length is calculated from a large
number (10,000) of simulated trajectories (TSim) and taken as the
Eps; estimate.

3.2.2. Estimation of Eps,

Knowledge of the threshold value Eps, (positioning error) is
required in the proposed method for detecting IPs (see appendix B
for pseudo code). If a stationary test before real animal tracking
were available, or if the positioning error of the device were known,
estimation of Eps, by the following proposed procedure would be
superfluous. Because this quantity is usually unknown in practice, it
is necessary to include the Eps.-estimation as a part of the sug-
gested method based on some prior candidate value (Epsep). In the
present case study we use Epsep = 10 (ordinary GPS collar tech-
nology with non-differentially corrected positions does not guar-
antee a 2drms less than 10 m). Starting our algorithm from Epsep
with an error step size of 1 m, increasing up to EpSemax = 30, our
method explores all candidate values of Eps,;, together with the
spatial distribution of the points of the corresponding detected IPs.
The smallest “feasible” (as specified below) candidate value for the
unknown Eps, is taken as the final estimate.

The statistical justification of our strategy is based on the Ray-
leigh distribution:

Definition 8: R ~ Rayleigh (o) is Rayleigh distributed with the
scale parameter o if R = /X2 + Y2, where X ~ N (0,6%), Y ~ N (0,6?)
are normal random variables, see p. 140 in (Papoulis, 1991).

- =~ .
e e
> /

~ ~

- e -~ -

Fig. 4. Four simulated trajectories (Tsim) are shown (N = 7). The circles are centered at zero and have radius of Eps,.
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According to our assumptions, the coordinates (x, y) for each IP
are considered to be drawn from a bivariate normal distribution
with a covariance matrix (2 x 2) having zero off-diagonal entries
and diagonal entries of (Epse/2) °. The distributions for the x- and y-
coordinates in each IP are assumed to be

(2*(}(-7{)/@) ~ N(0,Eps?) 3)
(2*(1/ - 7)/m> ~N(0,Eps?) (4)

where k is the number of coordinates associated with the particular
IP. Accordingly the statistic:

Rzz*\/(x—X)Z/((kH)/k) + (Y—V)z/((k+1)/k)

~ Rayleigh(Epse) (5)

Starting with the a priori value for Epsep, we proceed by calcu-
lating the radial errors for all detected IPs associated with the re-
alizations of the statistic (R) in equation (Long & Nelson, 2013). By
fitting the Rayleigh distribution to the radial errors, we derive a
confidence interval for the associated scale parameter Eps.. We
expect the true unknown scale parameter (Eps,) to be equal to
(from the assumption that all IPs are equally accurate) or less than
the candidate value Eps,;. A candidate value Eps,; is considered as a
feasible estimate of Eps, if it is smaller than the lower limit of the
confidence interval of the scale parameter for the Rayleigh
distribution.

For each i, we repeat the confidence interval calculations for the

107

scale parameter and compare with the corresponding Eps,;. If j is
the smallest integer resulting in Epse; (for all i > j) being strictly
smaller than the estimated lower limit of the associated confidence
interval of the scale parameter for the Rayleigh distribution, then
Epse; is taken as the smallest “feasible” estimate for Epse.

Note that by increasing the Eps,;'s, the neighborhoods in terms
of EDist and TDist are extended correspondingly. This means that
more points, possibly irrelevant to the real IPs, are taken into
consideration with the effect of increasing the Rayleigh distribu-
tion’s scale parameter estimates.

4. Case study

The dataset used in this paper is a part of a larger dataset from a
long-term study of the ecological effects of sheep grazing in an
alpine ecosystem (Mobak, 2012). The research project is conducted
on an established experimental site in Hol municipality, Buskerud
county in the southern part of Norway (60°40’'N, 7°55’E) (Fig. 5a).
The site has been grazed by domestic sheep from 2002 onward, is
roughly 2.7 km? in size (Fig. 5b) and covers an alpine habitat with
sub-continental alpine climate. The mean annual temperature and
precipitation of the enclosure are respectively —1.5 °C and about
1000 mm (Evju, Austrheim, Halvorsen, & Mysterud, 2009; Kausrud,
Mysterud, Rekdal, Holand@, & Austrheim, 2006). Fig. 5c illustrates
an example trajectory that is used throughout this paper. The tra-
jectory contains 1851 position recordings over 39 days. A sub-
trajectory for one day with 48 recordings is also included.

Every summer 23 to 26 lactating ewes and 44 to 49 lambs
belonging to the same sheep farmer are released into the experi-
mental enclosures (Mobak, 2012). Ewes are tracked using Tellus
collars from Followit (URL, http://wildlife.followit.se/) during the
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Fig. 5. (a) Map of Norway in a UTM projection (Source: Norwegian Mapping Authority) and the experimental site in Hol Municipality, (b) Map of Enclosures for the experimental
site and (c) Representation of the trajectory of one specific ewe over 39 days and over one day.
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grazing seasons (i.e., late June to late August/early September)
within the enclosures. The collars record sheep locations once
every half an hour. For each recording, the collars are programmed
to search for satellites for 30—90 s. Time To Fix (TTF), the time the
collar uses to calculate a position varies. The collars are equipped
with dual axis activity sensors, which record the acceleration on
two axes (x and y), i.e. the back-forth and left-right movement of
the neck of ewes. The activity sensor value for each axis is the
number of seconds within the TTF for which the accelerometer
exceeds a user defined threshold. In order to control the variability
of the TTF, the recorded activity sensor value for each axis is divided
by the TTF for the particular attempt (Body et al., 2012), and the
average of the x- and y-axis ((x + y)/(2 x TTF)) is considered as the
Mean Activity Sensor Value (MASV). MASV does not capture the
activities of the animal between recordings, but zero values (or
values relatively close to zero) for consecutive activity sensor re-
cordings may be used as a proxy for inactivity. Based on domain
expert knowledge, the low quarter of the MASVs could represent
inactivity.

5. Results

In this section, we first describe how the method works for a
couple of cases. We use the MASV (Mean Activity Sensor Values) to
verify our results. Then the effects of different minimum durations
of inactivity (T) will be shown on the detected IP.

Since the proposed method requires a trajectory with constant
time lag between successive recordings, linear interpolation was
used for situations with one or two missing recordings and the
trajectory was split when there were three or more missing
recordings.

Three parameters MinPts, Eps; and Eps, are required for the
DBCIP method (see appendix B). Based on the user input of T, 3-h
for the following illustrative example, MinPts = N-1 is calculated by

Table 1

formula 2, and Eps; is calculated based on the explained simulation
in (3.2.1). Table 1 and Fig. 6 summarize the method proposed in
(3.2.2) for estimating Eps,. The method results in an Eps, estimate of
20 m for the current data.

Fig. 7 shows an IP that is ignored by the naive method but
detected by the DBCIP method. Fig. 8 shows an IP that is partly
detected by the naive method but detected by the DBCIP method.
The corresponding details of recording time, coordinates, activity
sensor values and more are provided with Table 2 and 3.

Fig. 9 shows histograms for MASV for all the recordings (a) and
for the IPs detected by the DBCIP method (b) and the naive method
(c). The figure shows that the MASV for many of the recordings in
the dataset is zero, and that the total number of recordings with a
non-zero MASV is approximately two times the total number of
recordings with zero MASV. The MASV histograms for the detected
IPs confirm that the majority of IPs detected by both the presented
methods are valid in terms of MASV. The results show that 84% of
the IPs detected by the DBCIP method have MASV of zero or rela-
tively close to zero.

MASVs close to zero for the recordings of detected IPs support
our confidence in the clustering method. However, MASVs do not
have to be close to zero for an IP. Because sensors are placed around
the neck of animals, and therefore, are affected by head movements
even at resting bouts. Therefore, higher MASVs than usual for that
period may occur (for example see the fifth point for the detected IP
in Fig. 8) (Gervasi et al., 2006).

Our results show that 79% of the IPs detected based on only
MASVs are also detected by the DBCIP method, and 66% of the IPs
detected by the DBCIP method are detected based on only MASVs.

It should be noted that the DBCIP method detected more IPs
than the naive method (29% and 17% of the recordings, respec-
tively). Moreover, 55% of the recordings detected by the DBCIP
method as IPs, were also detected by the naive method, and 94% of
the recordings which were detected by the naive method as IPs,

Recordings for the estimation of Eps, for a dataset. The candidate values (Eps,;) and corresponding scale parameter confidence interval estimates based on the detected IPs. The

candidate values Eps,; 8 and 9 are included in the table just for demonstration.

Confid I
Candidate values onfidence

the Rayleigh
Eps.; (2drms) ¢ Raylelg

scale parameter

nterval for | Percentage of recordings

distributed detected as IPs

BEREEEESE c xS

8 [7.8, 8.8] 13%
9 [8.4, 94] 16%
10 [9.9, 11.0] 18%
11 [10.6, 11.7] 19%
12 [11.0, 12.2] 20%
13 [11.9, 13.1] 21%
14 [124, 13.7] 22%
(132, 14.5] 23%
[14.1, 15.4] 24%
(149, 16.3] 25%
[16.5, 17.9] 26%
[18.0, 19.5] 27%
[19.9, 21.6] 29%
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Table 2
The dataset corresponds to the recordings for the IP detected by DBCIP in Fig. 7.

label Date and Time x coordinate | y coordinate [ Alt | DOP | SVs | Activity sensor X | Activity sensor Y [ TTF
a 2012-07-19 00:00:00 441311.4 6730428.1 1298 | 1.1 7 0 0 30
b 2012-07-19 00:30:00 441317.4 6730427.4 | 1302 | 0.8 10 0 0 30
c 2012-07-19 01:00:00 441294.7 67304539 | 1290 | 0.8 9 0 0 30
d 2012-07-19 01:30:00 441320.5 67304309 | 1312 | 0.7 10 0 0 43
e 2012-07-19 02:00:00 441322.6 67304262 | 1307 | 0.8 10 2 0 30
f 2012-07-19 02:30:00 441327.7 6730436.4 | 1322 1 9 0 0 30
g 2012-07-19 03:00:00 441326.5 6730443.3 | 1311 1 9 0 0 30
h 2012-07-19 03:30:00 441330.0 6730429.1 1321 | 0.9 10 1 0 30
i 2012-07-19 04:00:00 4413352 67304214 [ 1319 | 1.1 9 1 1 30

Table 3
The dataset corresponds to the recordings for the IP detected by DBCIP in Fig. 8.

label Date and Time x coordinate | y coordinate | Alt | DOP | SVs | Activity sensor X | Activity sensor Y | TTF
a 2012-07-22 21:00:00 441275.6 6729579.2 1176 0.8 10 6 0 30
b 2012-07-22 21:30:00 441283.2 6729580.1 1176 0.8 10 2 0 43
© 2012-07-22 22:00:00 441282.2 6729574.9 1163 1 9 0 0 30
d 2012-07-22 22:30:00 441282.7 6729573.0 1161 0.8 8 0 1 30
€ 2012-07-22 23:00:00 441282.2 6729573.4 1168 1.3 5 8 2 30
f 2012-07-22 23:30:00 441273.2 6729578.0 1162 1.1 6 3 0 44
g 2012-07-23 00:00:00 441274.4 6729577.2 1163 0.9 6 0 0 30
h 2012-07-23 00:30:00 441261.7 6729552.0 1169 0.9 8 0 0 30
i 2012-07-23 01:00:00 441284.1 6729581.5 1185 0.8 9 1 3 43
] 2012-07-23 01:30:00 441285.2 6729581.8 1182 0.8 9 2 2 30
k 2012-07-23 02:00:00 441292.3 6729591.2 1211 1 8 1 1 30
1 2012-07-23 02:30:00 441284.1 6729585.4 1188 0.9 9 1 0 43
m 2012-07-23 03:00:00 441281.7 6729578.2 1175 1 9 1 0 30
J%j 0 - - T T T T T T :
E The scale parameter equal to the assumed Epsei P
Sl i g:me lower limit of CI of the estimated scale parameter ﬁ,_e/ e o
% ‘The upper limit of CI of the estimated scale parameter A
[
Em 1
£
g 15 -
g ©  Recording with half an hour sampling interval ~ [*
g @ Recording for the Inactive Period .
2 55 m 5 14 m 5 N o e = Subtrajectory of the Inactive Period 55
‘The assumed Epsei X Mean center of recordings for the Inactive Period -
Fig. 6. The confidence intervals (CI) of the Rayleigh distribution scale parameters for Laeuit e . :
increasing Eps,; candidate values.

were also detected by the DBCIP method. The average step length
during the detected IPs for the naive method and DBCIP method
were 7.11 m + 5.30 (SE) and 12.01 m + 11.25 (SE), respectively (in
comparison, the average step length for the whole trajectory is
50.14 m + 66.57 (SE)).

Fig. 10 shows the detected IPs for different values of T (1-6 h),
using the DBCIP method. There are IPs around midnight for almost
all of the 39 days (Fig. 10a) and also some IPs during the day. As T
increases, the number of days with IPs decreases. Fig. 10c (T = 3 h)
shows very few detected IPs during daytime, and almost none
during the daytime when T = 4, 5 or 6 h (Fig. 10d—f).

Fig. 7. An IP with MASV close to zero that is undetected by the naive method but
detected by the DBCIP method. The highlighted record in Table 2 corresponds to the
outlier point, c. The labeled points from a to i show the IP detected by the DBCIP
method centered at the red x with T = 4 h. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

6. Validation

Besides using available activity sensor values to verify the IPs
detected by the proposed method, we also used simulation tech-
niques for a precise quantitative evaluation of the proposed method.

With the R-package 'adehabitat’ (Calenge, 2006) it is possible to
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Recording with half an hour sampling interval
@  Recording for the Inactive Period
Subtrajectory of the Inactive Period

X Mean center of recording for the Inactive Perio

0 25 5 10 Meters

h .

Fig. 8. An IP partly detected by the naive method, and fully detected by the DBCIP
method with MASV close to zero. The highlighted records in Table 3 correspond to the
highlighted points on the map and show the IP detected by the naive method. The
labeled points from a to m show the IP detected by the DBCIP method centered at the
red x with 6 h of inactivity. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Histogram of MASV for all the Recordings

Histogram of MASV of Detected Inactive
Periods by the Naive Method

centers representing true resting positions) as well as the duration
of inactivity reflected by the sets of simulated local positions.

For the simple random walk model based on 10,000 simulations,
the average percentage of the inactive periods correctly detected by
the DBCIP algorithm and the naive algorithm is 91% + 4% (SE) and
17% + 3% (SE) respectively.

For the correlated random walk model based on 10,000 simu-
lations, the average percentage of the inactive periods correctly
detected by the DBCIP algorithm and the naive algorithm is
86% + 4% (SE) and 15% + 5% (SE) respectively.

Our experiments with the simple random walk and correlated
random walk models indicate that when the average step length is
less than 2.5 x (Epse), we cannot trust the result of the proposed
algorithm. As already mentioned in (Jerde & Visscher, 2005), it is
difficult to conclude if an animal is moving or not at step lengths
less than 5 error standard deviations.

7. Conclusion

In this paper, a method (DBCIP) is introduced to detect when
and where a GPS tracked animal is inactive versus active. Contrary
to existing work from the animal movement literature, which are
mostly based on the existence of relatively high sampled activity

Histogram of MASV of Detected Inactive
Periods by the DBCIP Method
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Fig. 9. Histogram of MASVs for (a) the whole dataset (mean = 0.17) (b) the IPs detected by the naive method (mean = 0.03) and (c) the IPs detected by the DBCIP (mean = 0.05).

MASV ranging from 0 to 0.7.

simulate individual animal movement trajectories based on both a
simple random walk model (i.e. uncorrelated and unbiased) and a
correlated random walk model' (Kareiva & Shigesada, 1983). The
number of positions and the average step length for each simulated
trajectory is chosen to be similar to the number of positions and
average step length found from the real dataset.

Between 20% and 30% of the simulated trajectory points were
chosen randomly as inactive locations (IP centers). For each IP
center a set of local positions, satisfying the requirements for the
minimum inactivity period (T), were drawn from a bivariate normal
distribution with mean (u) equal to the coordinates of the IP center,
and covariance matrix (X) with zero off-diagonal entries and di-
agonal entries equal to (Eps./2)’. The simulated trajectories to be
tested with the DBCIP method were obtained by inserting simu-
lated local positions for all IP centers (see Fig. 11). In these simu-
lations, we control both the location of each inactive site (the IP

! The correlated random walk models assume a dependency between the di-
rections of successive steps. In the simple random walk models, such dependencies
are exchanged with independence.

sensor values, the proposed method requires only the positions of
the tracked animal. Another advantage of DBCIP is its estimation of
the positioning error. Compared to existing studies in space-time
analysis of movement data, DBCIP is original by being able to
detect inactive periods by only requiring the minimum duration of
inactivity (T) as input from the user.

An inactive period (IP) is defined as a set of points with high
spatial and temporal similarity, where the exact similarity
threshold is unknown in advance. The basic idea of the proposed
method for detecting IPs is that both the distance along the tra-
jectory and the distances between positions for an IP part of a
trajectory should be very small when compared with the non-IP
parts of the same trajectory. The required thresholds for the dis-
tance along the trajectory and the Euclidean distance between
points are directly derived from the user specified T and the
bivariate normal distribution of positions in the IP neighborhoods.

Results have been verified using Mean Activity Sensor Values,
domain expert knowledge, and simulations.

The usefulness of the proposed method has been demonstrated
in an animal movement context, but it can also be employed for all
homogeneous trajectories which are formed based on error-prone
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Fig. 10. 24-hour histograms of the IPs detected by the DBCIP method with T=1h(a), T=2h(b), T=3h(c), T=4h(d), T=5 h (e), and T = 6 h (f) of inactivity.

\\ 7 d

Fig. 11. The trajectory fragment (to the left) has 4 simulated points (i.e. a,b,c,d) of a random walk. Its second point (b) is drawn as an IP center and replaced by 7 local positions
generated from the bivariate normal distribution. The resulting trajectory fragment (to the right) containing 10 points used for validation of the DBCIP method.

recordings in different application domains.

When increasing the sampling rate for a fixed user input value of
T, more recordings (N) are required to be within a sufficient spatio-
temporal proximity to be detected as an IP and then, the estimated
trajectory distance threshold (Eps;) will increase. By the same to-
ken, a decrease in sampling rate implies a reduction of N and Eps;
for the detection of IPs. In the end, the sampling rate does not in-
fluence the detected IPs significantly since an increase in the
number of recordings requires a larger threshold Eps; and vice
versa. It should be noted that for homogeneous trajectories, there is
a tight correspondence between sampling rate and the step lengths
(Euclidean distance between consecutive recordings). An increased
(finer) sampling rate may lead to unwanted problems when the
step lengths become close to the positioning error. According to
(Jerde & Visscher, 2005), it is difficult to classify movements of an
object at step lengths less than 2.5 times the positioning error. The
simulation results confirm that DBCIP can detect IPs with high

accuracy for step lengths larger than 2.5 times the positioning error.
With exact knowledge about the average speed of a moving object
and the positioning error, it would be possible to calculate the step
lengths for various sampling rates and finally estimate the highest
practical sampling rate for the DBCIP method.

Further investigations of the DBCIP method may consider the
impact of sampling rate on the detected IPs. By considering tra-
jectories of high sampling rate and their various associated down
sampled versions, it is possible to study the effects (if any) of the
sampling rate in the detection of IPs.

Acknowledgement

We are grateful to our colleagues Prof. @ystein Holand and his
PhD student (Nicolai Hermann Jergensen) from department of
‘Animal and Aquacultural Sciences’ who shared their expert
knowledge with us and provided the dataset. The Research Council



112 M. Teimouri et al. / Applied Geography 73 (2016) 102—112

of Norway (project number 239070) provided financial support for
one of the co-authors (Indahl). This research was supported by the
Norwegian University of Life Sciences under project number
1301051701.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://
dx.doi.org/10.1016/j.apgeog.2016.06.009.

References

Abedi, N., Bhaskar, A., & Chung, E. (2014). Tracking spatio-temporal movement of
human in terms of space utilization using Media-Access-Control address data.
Applied Geography, 51, 72—81.

Adrados, C., Baltzinger, C., Janeau, G., & Pepin, D. (2008). Red deer Cervus elaphus
resting place characteristics obtained from differential GPS data in a forest
habitat. European Journal of Wildlife Research, 54(3), 487—494.

A model for enriching trajectories with semantic geographical information. In
Alvares, L. O., Bogorny, V., Kuijpers, B., de Macedo, ]. A. F, Moelans, B., &
Vaisman, A. (Eds.), Proceedings of the 15th annual ACM international symposium
on Advances in geographic information systems, (2007). ACM.

Andrienko, G. L., Andrienko, N. V., Fuchs, G., Raimond, A-M. O., Symanzik, J., &
Ziemlicki, C. (Eds.). (2013). Extracting semantics of individual places from move-
ment data by analyzing temporal patterns of visits. COMP@ SIGSPATIAL.

Ankerst, M., Breunig, M. M., Kriegel, H. P., & Sander, J. (June 1999). OPTICS: Ordering
points to identify the clustering structure. Sigmod Record, 28(No 2), 49—60.

Awange, J. L. (2012). Environmental monitoring using GNSS: Global navigation satellite
systems. Springer Science & Business Media.

Birant, D., & Kut, A. (2007). S. T.-D. B. S. C. A. N.: An algorithm for clustering spa-
tial-temporal data. Data & Knowledge Engineering, 60(1), 208—221.

Body, G., Weladji, R. B., & Holand, O. (2012). The recursive model as a new approach
to validate and monitor activity sensors. Behavioral Ecology and Sociobiology,
66(11), 15311541,

Bogorny, V., Renso, C., Aquino, A. R., Lucca Siqueira, F,, & Alvares, L. 0. (2014).
CONSTANnT—a conceptual data model for semantic trajectories of moving ob-
jects. Transactions in GIS, 18(1), 66—88.

Bowman, J. L., Kochanny, C. O., Demarais, S., & Leopold, B. D. (2000). Evaluation of a
GPS collar for white-tailed deer. Wildlife Society Bulletin, 28(1), 141—145.

Buard, E. (2011). Pratiques spatiales des populations animales: Analyses par les
trajectoires. In Actes de Dixiemes Rencontres de Théo Quant.

Cagnacci, F, Boitani, L., Powell, R. A., & Boyce, M. S. (2010). Animal ecology meets
GPS-based radiotelemetry: A perfect storm of opportunities and challenges.
Philosophical Transactions of the Royal Society of London B: Biological Sciences,
365(1550), 2157—-2162.

Cain, J. W, Krausman, P. R, Jansen, B. D., & Morgart, J. R. (2005). Influence of
topography and GPS fix interval on GPS collar performance. Wildlife Society
Bulletin, 33(3), 926—-934.

Calenge, C. (2006). The package “adehabitat” for the R software: A tool for the
analysis of space and habitat use by animals. Ecology Model, 197(3—4), 516—519.

Cargnelutti, B,, Coulon, A, Hewison, A. ]J. M., Goulard, M., Angibault, J. M., &
Morellet, N. (2007). Testing Global Positioning System performance for wildlife
monitoring using mobile collars and known reference points. Journal of Wildlife
Manage, 71(4), 1380—1387.

Chin, G. Y. (1987). Two-dimensional measures of accuracy in navigational systems. US
Department of Transportation, Research and Special Programs Administration,
Office of Program Management and Administration.

D’eon, R. G., & Delparte, D. (2005). Effects of radio-collar position and orientation on
GPS radio-collar performance, and the implications of PDOP in data screening.
Journal of Applied Ecology, 42(2), 383—388.

D'eon, R. G., Serrouya, R., Smith, G., & Kochanny, C. O. (2002). GPS radiotelemetry
error and bias in mountainous terrain. Wildlife Society Bulletin, 30(2), 430—439.

Di Orio, A. P, Callas, R., & Schaefer, R. J. (2003). Performance of two GPS telemetry
collars under different habitat conditions. Wildlife Society Bulletin, 31(2),
372-379.

Ester, M., Kriegel, H.-P., Sander, ]., & Xu, X. (Eds.). (1996). A density-based algorithm
for discovering clusters in large spatial databases with noise. Kdd.

Evju, M., Austrheim, G., Halvorsen, R., & Mysterud, A. (2009). Grazing responses in
herbs in relation to herbivore selectivity and plant traits in an alpine ecosystem.
Oecologia, 161(1), 77—85.

Frair, J. L., Fieberg, ]., Hebblewhite, M., Cagnacci, F.,, DeCesare, N. ]J., & Pedrotti, L.
(2010). Resolving issues of imprecise and habitat-biased locations in ecological
analyses using GPS telemetry data. Philosophical Transaction of the Royal Society
B, 365(1550), 2187-2200.

Frair, J. L., Merrill, E. H., Visscher, D. R,, Fortin, D., Beyer, H. L., & Morales, J. M. (2005).
Scales of movement by elk (Cervus elaphus) in response to heterogeneity in
forage resources and predation risk. Landscape Ecology, 20(3), 273—287.

Ganskopp, D. C., & Johnson, D. D. (2007). GPS error in studies addressing animal
movements and activities. d Ecoloey & M nt, 60(4), 350—358.

Gervasi, V., Brunberg, S., & Swenson, J. E. (2006). An individual-based method to
measure animal activity levels: A test on brown bears. Wildlife Society Bulletin,

34(5), 1314—1319.

Grunewalder, S., Broekhuis, F., Macdonald, D. W., Wilson, A. M., McNutt, J. W.,
Shawe-Taylor, J., et al. (2012). Movement activity based classification of animal
behaviour with an application to data from cheetah (Acinonyx jubatus). Plos
One, 7(11).

Gudmundsson, J., Laube, P., & Wolle, T. (2011). Computational movement analysis.
In Springer handbook of geographic information (pp. 423—438). Springer.

Hansen, M. C,, & Riggs, R. A. (2008). Accuracy, precision, and observation rates of
global positioning system telemetry collars. Journal of Wildlife Management,
72(2), 518—526.

Hornsby, K. S., & Cole, S. (2007). Modeling moving geospatial objects from an event-
based perspective. Transactions in GIS, 11(4), 555—573.

Hurford, A. G. P. S. (2009). Measurement error gives rise to spurious 180 degrees
turning angles and strong directional biases in animal movement data. Plos One,
4(5).

Jerde, C. L., & Visscher, D. R. (2005). GPS measurement error influences on move-
ment model parameterization. Ecological Applications, 15(3), 806—810.

Kareiva, P. M., & Shigesada, N. (1983). Analyzing insect movement as a correlated
random-walk. Oecologia, 56(2—3), 234—238.

Kausrud, K., Mysterud, A., Rekdal, Y., Holand, @., & Austrheim, G. (2006). Density-
dependent foraging behaviour of sheep on alpine pastures: Effects of scale.
Journal of Zoology, 270(1), 63—71.

Kritzler, M., Raubal, M., & Kriiger, A. (2007). A GIS framework for spatio-temporal
analysis and visualization of laboratory mice tracking data. Transactions in
GIS, 11(5), 765—782.

Laube, P., & Purves, R. S. (2011). How fast is a cow? cross-scale analysis of movement
data. Transactions in GIS, 15(3), 401—418.

Lewis, |. S., Rachlow, ]. L., Garton, E. O., & Vierling, L. A. (2007). Effects of habitat on
GPS collar performance: Using data screening to reduce location error. Journal
of Applied Ecology, 44(3), 663—671.

Long, J. A, & Nelson, T. A. (2013). A review of quantitative methods for movement
data. International Journal of Geographical Information Science, 27(2), 292—318.

Mobak, R. (2012). Density dependent foraging ecology and performance of domestic
sheep on alpine ranges [Doctoral thesis]. Norwegian University of Life Sciences
(NMBU).

Moen, R., Pastor, J., Cohen, Y., & Schwartz, C. C. (1996). Effects of moose movement
and habitat use on GPS collar performance. Journal of Wildlife Managemebnt,
60(3), 659—668.

Palma, A. T., Bogorny, V., Kuijpers, B., & Alvares, L. O. (2008). A clustering-based
approach for discovering interesting places in trajectories. Applied Computing,
1-3, 863—868.

Papoulis, A. (1991). Probability, random variables, and stochastic processes (3rd ed.).
New York: McGraw-Hill.

Pepin, D., Adrados, C., Mann, C., & Janeau, G. (2004). Assessing real daily distance
traveled by ungulates using differential GPS locations. Journal of Mammalogy,
85(4), 774—780.

Phithakkitnukoon, S., Horanont, T,, Di Lorenzo, G., Shibasaki, R., & Ratti, C. (2010).
Activity-aware map: Identifying human daily activity pattern using mobile
phone data. In Human behavior understanding (pp. 14—25). Springer.

DB-SMoT: A direction-based spatio-temporal clustering method. In Rocha, J. A. M.,
Oliveira, G., Alvares, L. O., Bogorny, V., & Times, V. C. (Eds.), Intelligent systems
(IS), 2010 5th IEEE international conference, (2010). IEEE.

Schwager, M., Anderson, D. M., Butler, Z., & Rus, D. (2007). Robust classification of
animal tracking data. Computers and Electronics in Agriculture, 56(1), 46—59.

Spaccapietra, S., Parent, C., Damiani, M. L., de Macedo, . A., Portoa, F., & Vangenot, C.
(2008). A conceptual view on trajectories. Data & Knowledge Engineering, 65(1),
126—-146.

Specht, M., & Szot, T. (2012). Accuracy analysis of GPS sport receivers in dynamic
measurements. Annual of Navigation, 19(1), 165—176.

Stewart, B. P, Nelson, T. A., Wulder, M. A,, Nielsen, S. E., & Stenhouse, G. (2012).
Impact of disturbance characteristics and age on grizzly bear habitat selection.
Applied Geography, 34, 614—625.

Technitis, G., Othman, W., Safi, K., & Weibel, R. (2015). From A to B, randomly: A
point-to-point random trajectory generator for animal movement. International
Journal of Geographical Information Science, 29(6), 912—934.

Tran, L. H., Nguyen, Q. V. H,, Do, N. H,, & Yan, Z. (2011). Robust and hierarchical stop
discovery in sparse and diverse trajectories.

Ungar, E. D., Henkin, Z., Gutman, M., Dolev, A., Genizi, A., & Ganskopp, D. (2005).
Inference of animal activity from GPS collar data on free-ranging cattle. Ran-
geland Ecology & Management, 58(3), 256—266.

Van Moorter, B., Visscher, D. R, Jerde, C. L., Frair, J. L., & Merrill, E. H. (2010).
Identifying movement states from location data using cluster analysis. Journal of
Wildlife Management, 74(3), 588—594.

Versichele, M., Neutens, T., Delafontaine, M., & Van de Weghe, N. (2012). The use of
bluetooth for analysing spatiotemporal dynamics of human movement at mass
events: A case study of the Ghent Festivities. Applied Geography, 32(2),
208-220.

Yan, Z., Parent, C., Spaccapietra, S., & Chakraborty, D. (2010). A hybrid model and
computing platform for spatio-semantic trajectories. In The semantic Web:
Research and applications (pp. 60—75). Springer.

Zimmermann, M., Kirste, T., & Spiliopoulou, M. (2009). Finding stops in error-prone
trajectories of moving objects with time-based clustering. In Intelligent inter-
active assistance and mobile multimedia computing (pp. 275—286). Springer.






Teimouri, M., Indahl, U. G., Sickel, H., & Tveite, H. (2018).
Deriving Animal Movement Behaviors Using Movement
Parameters Extracted from Location Data. ISPRS
International Journal of Geo-Information, 7(2), 78.






International Journal of

ISPTS Geo-Information MD\Py

Article
Deriving Animal Movement Behaviors Using
Movement Parameters Extracted from Location Data

Maryam Teimouri "%, Ulf Geir Indahl !, Hanne Sickel 2 and Havard Tveite !

1 Faculty of Science and Technology, Norwegian University of Life Sciences, Drgbakveien 31, NO-1433 As,

Norway; ulf.indahl@nmbu.no (U.G.I.); havard.tveite@nmbu.no (H.T.)
Norwegian Institute of Bioeconomy Research, Postboks 115, NO-1431 As, Norway; hanne.sickel@nibio.no
*  Correspondence: maryam.teimouri@nmbu.no; Tel.: +47-67-231547

2

Received: 14 December 2017; Accepted: 18 February 2018; Published: 24 February 2018

Abstract: We present a methodology for distinguishing between three types of animal movement
behavior (foraging, resting, and walking) based on high-frequency tracking data. For each animal
we quantify an individual movement path. A movement path is a temporal sequence consisting
of the steps through space taken by an animal. By selecting a set of appropriate movement
parameters, we develop a method to assess movement behavioral states, reflected by changes in the
movement parameters. The two fundamental tasks of our study are segmentation and clustering.
By segmentation, we mean the partitioning of the trajectory into segments, which are homogeneous
in terms of their movement parameters. By clustering, we mean grouping similar segments together
according to their estimated movement parameters. The proposed method is evaluated using field
observations (done by humans) of movement behavior. We found that on average, our method
agreed with the observational data (ground truth) at a level of 80.75% =+ 5.9% (SE).

Keywords: behavioral change point analysis (BCPA); hierarchical clustering; Kolmogorov-Smirnov
(ks) distance

1. Introduction

Animal movement analysis is being revolutionized by the increasing positional accuracy
and temporal frequency of tracking devices, such as ARGOS tags, RFID (Radio Frequency
IDentification) tags, Geotags, and GNSS (Global Navigation Satellite System) tags [1]. Inexpensive
and ubiquitous positioning technologies and the development of methods to characterize and classify
movement behavioral states from captured location data have received considerable attention in
movement ecology.

Given an animal movement path [2—4], as a sequence of time-stamped locations, we focus on how
to make inferences about animal movement behavior. Where and when does the animal engage in
a specific movement behavior, and how does the movement behavior change over time?

Quantities like speed, step length (straight-line distance between successive locations), direction,
and turning angle (change of direction between successive steps) that can be calculated from the raw
location data are called movement parameters [5,6]. The movement parameters can be good proxies
for movement behavioral states along an animal movement path [4].

The main research goal is this: Given sampled locations of an animal movement path, we aim at
partitioning the movement path according to changes in movement behavior. Movement behavior is
defined based on various combinations of the movement parameters, including turning angle and
speed. According to [7], movement behaviors can be (i) resting (low mean turning angle and low mean
speed), (ii) walking (low mean turning angle and high mean speed), (iii) foraging (high mean turning
angle and low mean speed), and possibly (iv) undefined movement behavior (high mean turning
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angle and high mean speed). The movement behavior of high turning angle and high speed is unlikely,
as demonstrated by the Classification and Regression Tree method proposed in [8].

The proposed framework for detecting movement behavioral states according to changes in the
movement parameters consists of two parts: (i) Using a slightly modified version of the recently
developed behavioral change point analysis (BCPA) method [5,9], we partition an individual trajectory
into segments of homogeneous movement parameters. (ii) Using the Kolmogorov—-Smirnov distance
metric, we compute a distance matrix for all pairs of segments, in order to generate an agglomerative
hierarchical clustering model of the segments [10].

The remaining parts of the paper are structured as follows. We start by reviewing some relevant
animal movement behavioral studies, which attempt to distinguish between different movement
behavioral states based on location data. Then we describe our dataset and the field observations.
Finally, we describe our methodological approach, including the modified version of BCPA and the
proposed hierarchical clustering method, and validate the resulting model, using the field observations
as ground truth.

2. Background

Recent developments in tracking devices and the increasing availability of movement data provide
new opportunities for the inference of movement behavior from animal movement paths [4,11-13].
There are different approaches for distinguishing movement behaviors from animal movement
paths, including statistical modelling, data mining techniques, mixtures of random walk models,
and movement-derived parameters [3-5,9,14-16].

Gurarie et al. [12] group behavioral movement analysis methods into four categories: (1) metric-
based, (2) classification and segmentation, (3) phenomenological time series analysis and (4) mechanistic
movement modelling. They compare the categories in terms of complexity of the results and the
intrinsic differences in the output, using one method from each category.

Edelhoff et al. [4] outline three broad types of research questions that are commonly addressed
using path segmentation methods: (1) the quantitative description of movement patterns, (2) the detection
of significant change points, and (3) the identification of underlying processes or hidden states.

The first type is based on geometric analysis of movement parameters. The movement paths are
split into segments that are assumed to reflect different underlying movement behavior. Movement
parameters include mean squared displacement [17], first passage time [18], (multi-scale) straightness
index [14] and fractal dimension [19].

State-space modeling is closely related to the latter type, and seems promising. State-space
models [16] are models that allow unobservable, true states to be inferred from observed data,
by accounting for errors arising from imprecise observations and from stochasticity in the process
being studied [20]. Specifying appropriate prior distributions and underlying model parameters for
state—space models can be a challenging task for non-experts.

The second, and most interesting type for our framework, assesses movement parameters
along the time axis, and identifies the structure or correlation of movement data using time series
analysis. Relying on significant change points along the animal movement path, we selected the BCPA
method [4,9] to segment the path, taking the temporal autocorrelation of the movement data into
account. BCPA is acknowledged in the literature as a good method for segmenting movement paths
efficiently, and it is relatively straightforward to implement. The method developed by Zhang et al. [21]
is directly comparable to our method, since it also applies BCPA. Zhang et al. [21] used a three-step
framework, including BCPA, hierarchical multivariate cluster analysis, and k-means clustering.
Hierarchical multivariate cluster analysis is required to determine the number of clusters (k) before
doing k-mean clustering. We wanted to consider the overall distribution of the movement parameter
values in the clustering process, rather than a specific statistic like central tendency or median as used
in [21]. With our approach, we also do not have to worry about seed selection, which k-means is
sensitive to.
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BCPA, like many segmentation methods (e.g., [22]), only provides information on significant
change points along the movement path, without any further ecological context. That is why
subsequent analysis (see Section 3.2 below) is required to gain particular insight into the movement
behavioral states.

Having found the significant change points along the movement path, the main challenge is to
cluster the segments, in order to identify different types of movement behavior. The clustering task
includes two important steps: first, an appropriate similarity measure must be chosen, and second,
an appropriate algorithm for grouping the observations based on the chosen similarity measure
is required.

Several of the proposed trajectory clustering approaches [23-25] rely on the similarity of geometric
shape, ignoring the temporal dimension. Recent works have developed spatiotemporal similarity
measures for trajectory data, considering both the spatial and temporal dimensions [26,27]. As stated
in [28], related work on similarity measures for trajectories include time series similarity measures,
such as a variation of Minkowski distance (Lp-Norm family) [29], dynamic time warping (DTW) [30],
edit distance [31], longest common subsequence (LCSS) [32], geometric shape matching techniques
(such as Hausdorff distance) [33], and Fréchet distance [34]. It is worth noting that trajectories may be
considered as similar in different respects—they may fully or partly coincide in space, have similar
shapes, be fully or partly synchronous, or they may be disjointed in time but with similar movement
behavior (speed, acceleration, etc.) [35,36].

We will assume that some unknown probability distribution functions of movement parameters
can be used to characterize animal movement behavioral states [3]. The corresponding research goal is
therefore to establish the concept of similarity between different animal movement behaviors, based
on probability distribution functions estimated from the movement parameters.

3. Methodology

Classifying a heterogeneous trajectory according to movement behavior starts with a segmentation
of the trajectory into reasonably homogenous parts, using relevant movement parameters. Then,
these segments are grouped according to similarities in movement behavior. In this context,
segmentation means the partitioning of a trajectory, T, into an unknown number (/) of sub-trajectories
(Ty, Ty, ..., T)) referred to as segments [4].

In Section 3.1, we demonstrate how to apply the BCPA for trajectory segmentation. In Section 3.2,
we explain how hierarchical clustering can be applied to obtain a grouping of the data, yielding
satisfactory results for real-world, auto-correlated, high temporal frequency data (see Section 4).

3.1. Behavioral Change Point Analysis (BCPA)

Spatio-temporal autocorrelation is an intrinsic property of animal movement data that separates it
from a random set of location data [37]. As the time interval between location observations decreases,
the dependency between successive observations increases. In other words, the higher the temporal
frequency of position sampling, the stronger the spatio-temporal autocorrelation (function of temporal
and spatial distance between observations) [38]. Autocorrelation means that values from observations
taken close to each other tend to be either more similar (positive autocorrelation) or less similar
(negative autocorrelation) than would be expected from a random arrangement [2]. Nearness can be
defined in space (spatial autocorrelation), or in time (temporal autocorrelation), or in both space and
time (spatio-temporal autocorrelation).

Our first main goal is to identify points on the animal movement path where significant changes
occur in movement behavior. We do not have any a priori assumptions about the number of change
points. The temporal correlation (autocorrelation) of the movement parameters has to be considered to
avoid spurious change points [12]. According to the guidelines for method selection in [4], “time-series
based analysis” is the most appropriate segmentation method for our specific research goal and data.
Recently, Gurarie et al. [9] introduced BCPA to statistically determine changes in movement behavioral
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states along an animal’s movement path. In BCPA, the autocorrelation is modelled explicitly as part of
the likelihood function. Changes in the movement behavioral state are identified based on pronounced
changes in the movement parameters (in our case, “persistence velocity” and “turning velocity”,
see Section 3.1.2 below).

The BCPA identifies changes in movement parameter values across a dataset, by using likelihood
comparisons in a moving window over the time series. Within the window, the most likely change
point is located according to the Bayesian Information Criterion (BIC) [12], which is a criterion for
model selection among a finite set of models [39]. For the mathematical details of BCPA, readers are
referred to [9]. For the present analysis, only the principles (without technical details) are required.

3.1.1. Moving Window Size

Choosing the moving window size is an important part of the data analysis, as it drives the
resulting segmentation. Exploring the results obtained by using different window sizes is therefore
an essential aspect in adapting the methodology for different studies.

The most important statistical assumptions in the modeling of BCPA are the Gaussian error
structure and the exponential decay in the autocorrelation. To assess the assumptions of the BCPA,
a diagnostic plot should be used both for comparing the residuals to a standard normal distribution
and inspecting the autocorrelation function of the residuals [12,40]. Determining the moving window
size is a challenge in BCPA. Based on the diagnostic plot of the residuals, BCPA is run with increasing
window sizes (including at least 20 samples [9]), in a trial and error fashion, to identify a good value
for the size of the moving window (see Section 5, results).

3.1.2. Movement Parameters and Movement Behavior

Movement parameters can be calculated based on either consecutive positions (stepwise) or
multiple steps [4]. Most movement parameters are stepwise, including speed, step length, turning
angle [41], persistence/turning velocity [9], net/mean squared displacement [17] and first passage
time [18]. Sinuosity/tortuosity [42], fractal dimension [19] and multi-scale straightness index [14] are
examples of movement parameters that are calculated over multiple steps.

Speed and turning angle are basic movement parameters that can be used to describe and analyze
movement paths [6,41]. Laube and Purves [43] investigated how the temporal scale of locational
data affects the calculation of movement parameters, such as the speed and turning angle of animal
trajectories. By combining speed and turning angle into “persistence velocity” (or “turning velocity”),
possible biases caused by varying sampling intervals are avoided, by relating speed to the observed
turning angles [4]. Persistence (or turning) velocity is defined as the product of the estimated speed
and the cosine (or sine) of the turning angle.

Influenced by [37], we segmented the animal movement path twice using BCPA (first for
“persistence velocity” and then for “turning velocity”) for improved reliability in the detection of real
changes in the movement parameters. Because we expected that the two resulting sets of time points
have some change points in common, we combined and ordered their change points and remove
duplicates. Further analysis is required to group the segments according to behaviors (based on
consistency in their movement parameters).

3.2. Hierarchical Clustering

Grouping segments into distinct groups based on some measure of similarity (or distance) is
the essence of a cluster analysis [10]. The procedure consists of two steps: first we need to use
a similarity measure that is defined for pairs of objects in the data domain, and second, we need to
apply a clustering algorithm to partition the data into distinct groups using the similarity measure [13].
A self-contained review of cluster analysis in general terms is provided in [44,45], and we refer the
reader to those for a thorough review.



ISPRS Int. ]. Geo-Inf. 2018, 7,78 50f13

From the animal movement behavior perspective, clustering analysis can be applied as either
a main analysis [46—48] or a subsequent analysis [7,21] to infer movement behavior components from
bio-logged movement data, including location data and activity sensor data.

As already mentioned, the walking behavior of animals is expected to be characterized by high
speed and small turning angles (high directional persistence) [3,7]. Low speed and low directional
persistence, usually with mean of zero, is characteristic for resting behavior. Low-directional persistence
while resting is commonly attributed to GNSS errors [49]. Foraging behavior is expected to be
characterized by low to moderate speed values and low directional persistence, with many sharp
changes in direction [7] (usually with a mean value different from zero). Turning angles and associated
parameters and graphs are analyzed using circular statistics (the key concept and formulation of
circular statistics is found in [50,51]).

For segmenting a trajectory, we considered both “persistence velocity” and “turning velocity”
when identifying behavioral change points. However, for clustering we considered only the persistence
velocity values, because their associated distribution, unlike those of turning velocity, can discriminate
between the three behaviors mentioned above (see Section 5, results): walking is characterized by high
persistence velocity values, foraging by low values, and resting by intermediate values. Additionally,
the directional histogram of turning angle values for each behavior increases our confidence to draw
comparison across behaviors.

Unlike the approach in [21], for each segment we consider the overall distribution of the movement
parameters (in our case, persistence velocity), rather than a specific parameter like central tendency.
We use the Kolmogorov-Smirnov (ks) distance [52] to determine the distance between the segments’
persistence velocity distributions. No assumptions about the distributions are required (52). Unlike the
“Pearson correlation measure” or the “cosine measure” [53], the ks-distance metric can compare vectors
of different lengths. Using the R-package “adehabitat” [54], we simulated a number of trajectories
based on correlated random walk (CRW) models with different characteristics [55], and figured out
how well the ks-metric differentiated between the different CRW models.

Given the observed persistence velocities V(t1), Vp(t2), ..., Vp(ty) of a particular segment
containing 1 samples, the empirical distribution function F,(V)) is defined as the fraction of the
observations that have values that are less than or equal to the value V). Thus F,(V}) is the empirical
cumulative distribution function, with respect to the n observations of the segment [52]. The ks metric is
defined on the space of distribution functions, and the ks-distance between two empirical distribution
functions [52,56,57] is obtained by calculating the supremum over the set of differences. Figure 1
indicates the ks-distance between two empirical persistence velocity distribution functions for two
different segments.

ks_metric between two distributions

10

08
I

Cumulative Probability
04

0.2
I

Persistence Velocity (m/min)

Figure 1. Illustration of Kolmogorov-Smirnov (ks)-metric on the two empirical distribution functions of
two different segments’ persistence velocity (red and blue lines). The dashed line shows the ks-distance
between two segments’ persistence velocities.
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From the ks-metric, we generated a distance matrix to be used for the agglomerative hierarchical
clustering approach using Ward’s minimum variance method [58]. The grouping of segments into
distinct movement behaviors was obtained as follows: each segment was assigned to its own cluster,
and then the algorithm proceeded iteratively, so that at each stage the cluster pair to be merged
was the one whose merger minimized the increase in the total within-group-error sum of squares.
This continued until all segments were merged into a single cluster. The associated tree-like structure
obtained by the merging process is known as a dendrogram [59-61].

The “hclust” function in the R programming language with the “ward.D2” criterion for
hierarchical clustering was used in our method. Hierarchical methods produce not a single partitioning,
but a hierarchy of nested partitions, which allows the user to consider different partitions according to
the desired similarity level [53]. An essential part of the cluster analysis are the interpretations of the
various clusters by a human analyst to acquire their meaning and value [23]. Careful inspection of the
dendrogram and the distribution (and mean) of the persistence velocity values and the turning angle
values is needed to determine an appropriate number of distinct movement behaviors. The number of
distinct movement behaviors in our method is a priori considered to be unknown, except for the three
movement behavioral states mentioned above.

4. Case Study

The dataset investigated in this paper belongs to an ongoing project, in which the main objective
is to determine the influence of grazing on biodiversity. Four individual sheep were followed during
the foraging season, in an established experimental site in Valdres in Oppland county, Norway
(61.06° N, 9.40° E; Figure 2 (left)). The animals were tracked with a sampling frequency of 10 s, using
Canmore GT-740FL GPS units (http://www.canmore.com.tw /pdf/GT-740FL%20DataSheet_V6.1.pdf).
These units have a battery capacity of approximately 24 h when sampling data using this frequency.
The GPS units were equipped with extra battery capacity, which extended the capacity to 3—4 days.
The GPS position accuracy is specified as 2.5 m CEP (CEP, circular error probable, which is the radius
of the smallest circle centered at the true position that covers 50% of the observations) under optimal
conditions. The waterproof box with the GPS unit and batteries weighed approximately 400 g, and the
size of the box was 13 cm x 10 cm x 5 cm.

Legend

Sheep#24_07_07_2016Points
———— Sheep#24_07_07_2016Trajectory

(v) Experiment Site

NorwayBorder 0 37575 150 Meters
0 125 250 500 Kilometers

Figure 2. Map of Norway (source: Norwegian Mapping Authority; projection: UTM 33N) with the
location of the experimental site (left) and an example trajectory for one sheep over one day (right).
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The animals were also equipped with a radio bell (Telespor) which was set to transmit position
signals every 15 min, so that it would be easy to find the animals. Before each observation period the
sheep were captured for a few minutes, wherever they were found using radio bell signals, to replace
the batteries.

The usable position data for the four sheep were collected on 15, 14, 9, and 4 different days
respectively, totaling up to approximately 26 days of observations. The total number of position
observations was 227,050.

The Android application “observationlogger” (https://play.google.com/store/apps/details?
id=com.mortensickel.obslogger), developed by Morten Sickel, with available source code on github
(https:/ /github.com/sickel/observationlogger /releases/tag/version2_0), was used to log animal
behavior (grazing, walking, resting, and other behavior) when observing the sheep. The registration
times from the “observationlogger” and the tracking units were set up to automatically synchronize.

“Grazing” was registered when the animal clearly was eating, and “resting” if the animal was
lying down. “Walking” was registered if the walking was associated with displacements that were
not part of a grazing event. Each animal was observed for a few hours per day during GPS logging.
The observations were made at a distance of approximately 25-50 m, attempting to avoid any influence
on the behavior of the animals.

To reduce the amount of noise due to GNSS position errors, the dataset was resampled to
1 min intervals by averaging. For our analysis, the part of the valid position recordings that had
corresponding “observationlogger” recordings was used.

5. Results

We demonstrated our method using a part of the trajectory of one of the sheep in the Valdres
dataset. The trajectory part contained 4960 GPS positions logged between 00:01 a.m. and 8:20 p.m. on
7 July 2016, and is shown in Figure 2 (right). The corresponding ground truth movement behavior
was recorded by a human observer from 7:20 a.m. until 3:33 p.m., and classified into “foraging
behavior”, “resting behavior”, “walking behavior” and “other behavior”. The observer recorded
the behaviors quite regularly, but when a specific behavior lasted for a while, observations were
generally not recorded until a change in behavior took place. The model performance was assessed by
comparing the predicted behaviors using our model with the ground truth (field) observations, using
a confusion matrix.

By doing the BCPA for various moving window sizes and inspecting their diagnostic plots,
we concluded that 30 consecutive sampling points (equivalent to considering a time interval of 30 min)
was a feasible moving window size for our dataset. Figure 3 illustrates the corresponding diagnostic
plots, including the qq-norm plot, the histogram, and the auto-correlation function of the standardized
example dataset for persistence velocity (panel a) and turning velocity (panel b). The result is consistent
with the required assumption of normality. The residual plots show that the model has captured the
dominant patterns of the data quite well, although there is a small amount of autocorrelation left in the
residuals (indicated by some significant spikes in the autocorrelation function plotted in the rightmost
parts of Figure 3a,b).

The dendrogram resulting from the hierarchical clustering procedure (Figure 4) guides the choice
of the number of clusters in the observed data. One might expect that there would be a certain number
of clusters (e.g., 1, 2, or 3 for Figure 4). With reference to Figure 4, one cluster means that the whole
dataset is a group, two clusters means that the leftmost (red) box is one group and the two rightmost
boxes (colored blue and green) are the other group, while three clusters means that each colored box is
a separate group. A subsequent analysis, based on visual inspection of the distribution of the turning
angle and persistence velocity values, is recommended in order to confirm the appropriate number of
clusters. The preferable number is the alternative that produces the most homogeneous clusters with
respect to distinguishable persistence velocity boxplots and turning angle histograms (see Section 3.2).
In other words, the behavior with the highest values for persistence velocity should have a mean
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turning angle value of around zero radian, with low variance to correspond to walking. The behavior
with intermediate values for persistence velocity should have a mean turning angle value of around
zero radian with high variance, to correspond to resting. The behavior with the lowest values for
persistence velocity should have a mean turning angle value different from zero with low variance,
to correspond to grazing.
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Figure 3. Diagnostic Plots for residuals for “persistence velocity” (a) and “turning velocity” (b).
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Figure 4. Dendrogram representation of the clustered sub-trajectories; the numbers in the bottom of

the plot represent the segment numbers from the trajectory segmentation.

When using three clusters (corresponding to the three colored boxes in Figure 4), the textual
output of our algorithm, including the start and the end times for each cluster, is shown in Figure 5.

Behaviour 1
[1,] "2016-07-07'

"2016-07-07
2016-07-07
"'2016-07-07
"2016-07-07
"2016-07-07
2016-07-07
"'2016-07-07
"2016-07-07
"2016-07-07

start time

06:

"2016-07-07
2016-07-07

Behaviour 2 En

"2016-07-07 00:27
" 0

2016~
"2016-07-0;
"2016-07-07
2016-07-07
"2016-07-07
"2016-07-07

07 05:
"2016-07-07 06:

d time
o .

Behaviour 3

1 "2016-07-07
"2016-07-07
"2016-07-07
"2016-07-07
"2016-07-07
"2016-07-07
"2016-07-07
"2016-07-07
21

End time
"2016-07-07 06: -

'2016-07-07
"2016-07-07
"2016-07-07
"2016-07-07

Figure 5. A part of the typical text output of the algorithm (behavior 1 is resting, behavior 2 is foraging,
and behavior 3 is walking).

As already mentioned, for clustering we considered only the persistence velocity values, because
their distribution (Figure 6), unlike the turning velocity values (Figure 7), can discriminate between

the three behaviors.
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Figure 6. Boxplot representation of persistence velocity values for each cluster. There is a significant
difference between the persistence velocity values, according to the Kruskal-Wallis rank sum test
(chi-square distribution with 2 degrees of freedom (X2(2) =58.22, p<0.01).
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Figure 7. Boxplot representation of turning velocity values for each cluster. There is no significant
difference between the turning velocity values, according to the Kruskal-Wallis rank sum test
(chi-square distribution with 2 degrees of freedom (X?(2) = 4.29, p = 0.12).

The boxplots of persistence velocity values for each cluster in Figure 6, and the directional
histograms summarizing the turning angle values for each cluster in Figure 8, are considered in
combination, in order to assign meaningful movement behavior names to the clusters.

Figure 8c shows a movement behavior where most turning angles are small, suggesting that the
overall direction is persistent. A comparison with the corresponding boxplot of persistence velocity
values in Figure 6 (Walk) suggests that the particular movement behavior is consistent with walking.

Figure 8a shows a movement behavior in which the mean of the turning angles is close to zero with
a directional persistence of around zero. A comparison with the corresponding boxplot of persistence
velocity values in Figure 6 (Rest), suggests that the particular movement behavior is consistent with
resting. By similar reasoning and visual inspection of Figure 6 (Forage) and Figure 8b, we can conclude
that the remaining movement behavior is consistent with foraging behavior. The latter observations are
characterized by low ‘Persistence velocity” values and an overall mean direction vector with a non-zero
angle, i.e., a sinuous type of motion, indicating a tendency to reverse direction.

(a) Rest (b) Forage (c) Walk

Figure 8. Distribution of turning angles for each detected movement behavior; each dot on the
perimeter of the circles represent the mean of the turning angles for one segment. The mean value of
the turning angles for foraging behavior (b) tends to be near pi radians, meaning sinuous segments.
While the mean value of turning angles for resting (a) and walking (c¢) movement behaviors tends to
zero, with high variance and low variance, respectively (inverse relationship with the arrow length).
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By comparing the derived movement behaviors to the ground truth movement behavior recorded
by a human observer, we obtain a validation of the resulting model in terms of its discriminative
power between behavioral states. The model performance is presented by a confusion matrix (Table 1)
that shows how the number of minutes for each type of observed behavior is distributed according to
the predictions of our model. Each row in the confusion matrix represents an observed movement
behavior, while each column represents a particular movement behavior predicted by our model.
Hence, each cell counts the number of minutes in the intersection of these two observed and predicted
movement behaviors. The diagonal entries of the confusion matrix represent the correct predictions,
and off-diagonal values represent the misclassifications. The sum of values on the diagonal divided by
the sum of all the matrix values shows the accuracy. Thus, using the demonstration data, the accuracy
obtained from the confusion matrix in Table 1 is 77%. Analysis of seven GPS recording days where
corresponding “observationlogger” data are available indicates an averaged accuracy for our dataset of
80.75% =+ 5.9% (SE). For these seven days, the number of hours of corresponding “observationlogger”
data varied from 2 h to 8 h, with an average of 4.6 h. The total number of valid GPS points was 39,123.

Table 1. Confusion matrix showing the performance of the clustering. Precision = True Positives/(True
Positives + False Positives). Precision (Forage) = 87.6%, Precision (Rest) = 68.7%, Precision (Walk) = 70%.

Predicted
Forage Rest Walk
Real

Forage 184 (min) 73 (min) 15 (min)
Rest 26 (min) 160 (min) 0
Walk 0 0 35 (min)

6. Concluding Remarks

With this paper, our goal has been to identify activity patterns of individual animals over
a 24 h time span. We demonstrate how changes in movement behavior can be inferred from the
tracks of individual animals, and how the movement behavior of individual animals varies over
time. The method for discriminating between different animal behaviors described in this paper
requires no specialist coding experience or statistical background. The source code is provided as
a Supplementary File.

In contrast to other methods proposed for the same purpose, our method requires neither
a temporal regularization of the data nor a strict a priori value for the number of movement behavioral
states, nor the specification of the movement model. The proposed method is exploratory and depends
only on location in space and time, with no need for ancillary data like accelerator sensor values.
The heuristics described for choosing the moving window size (see Section 3.1.1) and the number
of clusters (see Section 5) seem difficult to replace by completely objective criteria. Validation of
the selection procedure by using the proposed diagnostic plots (Figure 3), box plots (Figure 6),
and histograms (Figure 8) is therefore urgent for our confidence in the goodness of these values.

Consideration of the diurnal activity pattern for individual sheep over several days should
improve the possibilities of detecting deviant movement behavior for individual animals.
Some cautionary steps are, however, required before applying our method to large datasets. It is
well-known from the literature that applying hierarchical clustering to large datasets is challenging,
but some advanced and efficient alternatives do exist (e.g., [62]). An alternative is running the
hierarchical clustering on a manageable subset of the included animals. The mean/overall distribution
for each of the (k) resulting clusters can then be used to initialize a k-means clustering process (using
the ks-metric) to cluster the complete dataset into k clusters.

In spite of its accuracy, being sensitive to the uncertainty in the location data and the derived
movement parameters, we claim that our method for identifying movement behavioral states from
tracking data has proven successful in practice. There are, however, uncertainties associated with the
identification and recording of activities during field observations. In addition, the matching of field
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observations and tracking data must be executed carefully, to prevent loss of accuracy in the resulting
models. Further work is required to address these issues in the best possible way.

Supplementary Materials: The following are available online at http://www.mdpi.com/2220-9964/7/2/78/s1.
Source code S1 in the R programming language: ‘manuscript-supplementary.R".
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Abstract

A discrete-time animal movement path can be reconstructed by connecting the sampled
points with straight lines. The accuracy of movement parameters derived from the
reconstructed movement path depends on several factors, including temporal sampling
frequency, accuracy of the measuring device and species-specific movement
characteristics. We quantify the accuracy of the measuring device and species-specific
movement characteristics in a stochastic movement model. By using the stochastics
movement model, we explore the sensitivity of the derived movement parameters to the
temporal sampling frequency of the observations. Finally, we propose a method to estimate
the best temporal sampling frequency (Representative Temporal Sampling Frequency,
RTSF) in terms of minimizing the difference between the derived movement parameter and

the true movement parameter.

1 Introduction

The technological revolution in tracking devices allows us to capture the trajectories of
moving objects with increasing spatial accuracy and temporal sampling frequency. Spatial

accuracy is a measure of how close recorded positions are to the “true” positions.



High temporal sampling frequency requires high battery capacity or frequent battery
replacement. High battery capacity might impose a too heavy weight, exceeding the
carrying capacity of the animal (at most 5% of the animal’s body mass (1)). Frequent
battery replacement requires recapturing, which might be either infeasible, or pose ethical
concerns about the animal welfare (2). Therefore, battery capacity and battery weight
limitations still put constraints on the temporal sampling frequency in practical field
studies. Hence, prescheduling temporal sampling frequency when using animal-borne
tracking devices for any research question is in high demand. Although the literature
indicates that sampling frequency is selected based on the experience of domain experts (3,
4), the impact of sampling frequency has been explored in various research fields such as
(i) animal movement distribution and behavior (4-8) (ii) fishing vessels (9) (iii)
transportation research (10) and (vi) pedestrian movement (11). Depending on the
research question, the complexity of movement and the accuracy of the measuring device,

the optimal temporal sampling frequency can vary considerably (6, 7,9, 10).

Our main research question is the following: Given an animal species and a device for
location measurement, what is the best temporal sampling frequency when the goal is that
the reconstructed movement path shall have smallest possible difference from the true

movement path in terms of movement parameter estimation (for example speed)?

To decide the required temporal sampling frequency, given the measuring device, we will
utilize a species-specific stochastic movement model reflecting and quantifying species-
specific movement paths and accuracy of locations. The model includes a set of parameters
that are computed from high frequency sampling of the movement path of the species of
interest (in its habitat) for a short observation period. We use a fitted model to simulate the
species-specific movements at varying sampling frequencies, to determine the sampling
frequency that minimizes the difference between observed and estimated data in terms of

speed calculations.

We start our investigation by exploring different sources of errors affecting animal
movement path reconstruction. Section 3 reviews the most frequently used ecology
movement models in the literature. Section 4 presents the proposed method to determine
the best sampling frequency for animal movement path reconstruction using stochastic

2



movement modeling and cross-scale analysis. In Section 5 we explore the applicability of
our method on real tracking datasets and evaluates the implications of sampling frequency

on speed calculations, and finally section 6 concludes the article.

2 Background

Animal movement results in a continuous trajectory or path through space and time.
Correspondingly, animal movement data consist of sequences of sampled point locations
(xi, yi) of an individual collected at time ti. Methods for estimating the expected movement
path between consecutive samples differ vastly with respect to the underlying statistical
assumptions and the output produced (12-14). The Brownian Bridge Movement Model
(12) and the Continuous-Time Correlated Random Walk Model (14) represent some of the
alternatives. Frequently, animal trajectories are reconstructed by connecting consecutive
observation points with straight lines (15, 16). There are two types of errors affecting the
accuracy of path reconstruction on a discrete-time scale (17, 18): measurement error and
interpolation error. Measurement error (19) refers to the spatial uncertainty associated with
the observed samples while interpolation error is influenced by the temporal sampling
frequency and the movement characteristics of the observed object. It is widely agreed that
path reconstruction from tracking data is affected by measurement error and interpolation
error at high and low temporal sampling frequencies, respectively (6, 7, 9, 10). With high
temporal sampling frequencies, measurement error becomes significant, leading to positive
bias in the straight-line distance calculation (18). The overestimation depends on the
spatiotemporal autocorrelation of the measurement error (larger positive autocorrelations
means reduced distance calculation bias and larger negative autocorrelation means
increased distance calculation bias), the variance of the measurement error (larger variance
means larger distance calculation bias) and the Euclidean distance between consecutive
points (longer distance means smaller distance calculation bias) (18, 20-22). Conversely,
with low temporal sampling frequencies, the effect of the measurement error is ignorable,
but the impact of interpolation error is significant. At low temporal sampling frequencies,
tortuous (meandering) paths are more realistic than straight lines between points (23). At

some intermediate sampling frequency, we expect the impact of the combined



measurement and interpolation error to be minimized, so that the straight line would

deviate the least from the true path.

Many movement parameters are based on the reconstructed path (24), including step
length (straight-line distance between successive samples), speed (step length divided by
time interval), direction, and turning angle (change of direction between successive steps).
Movement parameters are used in many types of studies ranging from wildlife movement
behavior studies (25) to wildlife movement simulations (26) and wildlife movement

modeling (27).

Laube and Purves (7) explored the sensitivity of the movement parameters to measurement

error and the chosen sampling frequency, which they termed granularity grief .

Pépin et al. (4) quantified the dependence of the estimated daily distance travelled by red
deer Cervus elaphus on sampling frequency. They fit an asymptotic curve to the relationship
between apparent distance and sampling frequency. The estimated asymptote is claimed

to be the true representation of daily distance travelled.

Jerde and Visscher (28) quantified the impact of measurement error on the estimation of
movement parameters. High sampling frequencies with inaccurate samples introduces

large errors in movement parameter estimation.

Therefore, we consider temporal sampling frequencies and the accuracy of the measuring
devices together with the movement characteristics of the animal of interest as
fundamental factors in sensible movement path reconstruction and movement parameter

estimation.

A short period of location recordings provides us with valuable information about the
accuracy of the measuring device and the movement characteristics of the animal of
interest. Our ambition is to present general guidelines for choosing the sampling frequency
that best explains the true movement path traveled by the animal in terms of movement

parameter (speed) estimation.

By identifying Representative Temporal Sampling Frequency (RTSF), movement path

reconstruction and movement parameter estimation will be manageable task.



Correspondingly, the longest possible duration of monitoring can be found conditional on

the available battery capacity and the carrying capacity of the animal.

3 Related work

The movement of an individual organism is influenced by four major components: 1.
internal state (why move?), 2. motion capacity (how to move?), 3. navigation capacity
(when and where to move?), and 4. the (abiotic and biotic) environmental factors affecting
the movement (29, 30). The first three components relate to the organism and the last one
relates to the environment within which the movement takes place. Since modeling all the
constituting components of movement is infeasible in practice, various analytic techniques,
including Simple Random Walk models or Composite Random Walk models (31-35), have

long served as the standard approach to wildlife movement modelling.

In the following we will first consider traditional discrete-time modeling and discuss its

limitations. Then, we will explain the advantages of continuous-time stochastic modeling.

3.1 Discrete-Time Stochastic Process

Discrete-time stochastic movement models such as Random walk models are breaking the
movement of an animal down into two components: 1. the step lengths, and 2. the turning
angles between successive steps along with their associated distributions (32). Correlated
Random Walk and Random Walk models are distinguished by the presence or absence of
correlation between successive step directions, termed local ‘persistence’ in direction (36).
Persistence is defined as the tendency of an animal to continue moving in the same
direction (37). Note that at a sufficiently high sampling frequency, all movements are
necessarily correlated, and at a low enough sampling frequency, all movements tend to be
uncorrelated (38).

Biased Correlated Random Walk models (31) are characterized by a global directional bias
to maintain a global direction of the movement from an origin toward a destination, in

addition to the local persistence in direction.

Typically, a well-defined probability density function of random velocities and turning

angles is used to characterize the movement stochastically (38). The directional persistence



is controlled by the probability distribution of the turning angles (37). Random Walk
models and their variations require regularly sampled movement data. Thus, pre-
processing is required for irregularly sampled data (14). Another limitation of variations of
Random Walk models is that the required parameter estimation depends on the sampling
schedule. For example, variations of Random Walk models can be fitted to exactly the same
movement path by considering different temporal frequencies in the sampled data (39, 40).
Therefore, drawing sampling-independent inferences from movement data is challenging.
The shortcomings of Random Walk models and their variations get worse when long-term
autocorrelation must be taken into account in order to reveal latent movement patterns,

including repetition and memory (40, 41).

3.2 Continuous-Time Stochastic Processes (CTSPs)

Continuous-time stochastic processes (CTSP) (39, 40) aim at resolving several limitations
of their discrete-time counterparts. Recent CTSP models consider the continuous-time
movement process and the discrete-time sampling process separately (40, 42). They model
movement path as a stochastic process on a continuous time scale, in which the irregularly
spaced data points can simply be seen as discrete samples in time. In the following, we first
briefly present different variation of CTSPs, and then formulate them in terms of

semivariance functions.

3.2.1 CTSP models

To classify CTSP models (39) the following three features are used: 1. position
autocorrelation, 2. velocity autocorrelation, and 3. range residency. Samples that are close
together in time have a stronger tendency to resemble each other than those farther apart.
Therefore, relocation datasets mostly feature ‘position autocorrelation’. Finely sampled
datasets also usually feature ‘velocity autocorrelation’ resulting in directional persistence.
The latter means that an individual’s direction of motion at one point in time tends to be
correlated with those at adjacent times. Finally, at larger time scales, most animals will
exhibit a tendency to remain in a defined region or ‘home range’. In the following table, the
most frequently used CTSP models for different features of animal movement in the

ecological literature are categorized by whether or not they feature position



autocorrelation, velocity autocorrelation and home range. The interested reader is referred

to (40, 43-45) for more details.

Table 1. A summary of the most frequently used CTSP models, categorized according to whether or not position
autocorrelation (Pos. AC), velocity autocorrelation (Vel. AC) and home range (H. Range)(39) are included.

Movement Model Pos. AC Vel. AC | H.Range
Independent Identically Distributed process (I1ID) No No Yes
Brownian Motion (BM) Yes No No
Ornstein-Uhlenbeck (OU) Yes No Yes
Integrated OU (I0U) Yes Yes No
Ornstein-Uhlenbeck Foraging (OUF) Yes Yes Yes

3.2.2 Mean Squared Displacement (MSD) versus Semivariance Function
(SVF)
Classical RW analyses focus on quantifying step length distributions, turn-angle
distributions, and comparing the observed mean squared displacement (MSD) to the
model-predicted MSD (27, 31). MSD for a trajectory is a function of time that for each time
duration provides the mean of the squared distances between pairs of points separated by
that amount of time (32, 46). MSD can be used to distinguish between diffusive, super-
diffusive, and sub-diffusive movements. In diffuse movement, MSD scales linearly with time
or path length, but sub- or super-diffusive movement has a power-law relationship with
time (47). As already mentioned, an issue that seems to be ignored in RW analyses is that
both turning angle distributions and step length distributions are dependent on the choice

of sampling frequency.

The semivariance function (SVF), a nonparametric autocorrelation estimator that is very
similar in nature to MSD, quantifies the variability in the distance between two samples as

a function of time lag T (Equation 1). x(t) represents the location at time ¢t (40).

1
y(@ =5+ E((x(t+ 1) —x()?) (1)
Plotting the estimated semivariance as a function of time lag yields an ‘empirical variogram’

(48), which contains information on the autocorrelation structure in a relocation dataset.



CTSP models can be expressed in terms of their SVFs. The SVFs of the most frequently used

CTSP models in the literature are the following:

e [ID: Since autocorrelation is zero for all time lags other than 0, the semivariance is
constant for all time lags other than zero.
e BM: Semivariance is a linear function of time.
e OU: Semivariance is a mixture of a linear function of time over short scales, t<tu,
and approaches a constant for longer time lags (t>1tn)
e [OU: Semivariance is a mixture of a power law function (Curve upward) for small
time lags, t<tr, and a linear function for longer time lags, t-tr
e OUF: Semivariance is a mix of a power law function for small time lags, T<tr, alinear
function for intermediate time lags, tr<t<tHn, and then approaches a constant for
longer time lags (t>th)
For the sake of movement modeling, CTSP semivariance models are fitted to the ‘empirical
variogram’ via regression (49), and the best-fit model is selected based on standard model

selection techniques (40).

4 The proposed method

The choice of Representative Temporal Sampling Frequency (RTSF) should obviously be
close to the timescale that governs the movement process. In the following, we explain how
to determine the RTSF by using a continuous-time stochastic process and cross-scale
analysis to study the sensitiveness of reconstructed movement paths to sampling

frequency.

4.1 Model parameterization

Alocation dataset for an individual animal can be considered as a realization of a stochastic
process. According to the Semivariance approach for animal movement modeling initiated
by (40), we use the continuous-time movement modelling (ctmm) package! (39) for the R

programming language to find the underlying stochastic process. First, the ‘empirical

1 Github repository URL: https://github.com/ctmme-initiative/ctmm



variogram’ for the available dataset is used to reveal the main features of the movement,
including velocity autocorrelation (short-lag feature), position autocorrelation
(intermediate-lag feature), and range residency (long-lag feature). Using maximum
likelihood and AIC (Akaike Information Criterion)-based model selection, a semivariance
model is fitted to the ‘empirical variogram’ and the appropriate movement model is
determined (40). Once the best model for the data in terms of AIC has been selected, the
parameterized stochastic movement model can be used as a simulator across different

(sub)sampling schedules to do cross-scale analysis to derive the appropriate RTSF.

4.2 Measurement error

For densely sampled tracking data, it is necessary to consider measurement error in the
model fitting. HDOP is a standard measure of GNSS spatial accuracy, based on the number
of satellites used for each fix and their relative position in the sky (6). GNSS animal tracking
devices usually return HDOP values. HDOP values can be used to translate the device’s
UERE (User Equivalent Range Errors) to telemetry errors. UERE is device specific and
represents the RMS error given ideal satellite conditions. Since information about the UERE
for the devices used in our study were unavailable, we used data from a stationary test
(where the device has been left fixed over a period of time (50)) to estimate the UERE from
our calibration data by the uere() function in the ctmm package (39). The residuals of the
UERE calibration model are calculated by the associated residuals() function. The output of
residuals() function can be processed further by the correlogram() function to assess the
error autocorrelation. A correlogram (autocorrelation plot) is used to show the error

autocorrelation versus the time lags.

4.3 Cross-scale analysis and simulation

The search for a RTSF requires a reference trajectory, ideally calculated with a more
accurate measuring system (10). Due to the lack of a reference movement path for our
experiment, we decided to split our dataset into a training- and test set. The subsequent
model fittings were based on the training trajectory dataset and cross-scale analysis using

the test trajectory dataset.



The observed trajectory: {(ty, x1,¥1), (t2, X2, V2), -, (tn, Xn, ¥n)} is split into training (the
initial 80%) and test (the final 20%) dataset as follows:

Training dataset: {(t,, X1, V1), (t2, X2, ¥2), -, (ti, x;, y1); © = [0.8n]}
Where[. ] denotes rounding up to the nearest integer.

Test dataset: {(ti+1l Xi+1 Yi+1)' (ti+2' Xi+2) yi+2)' R (tn' Xn yn)}

The speed values for each segment of the test dataset is calculated as follows:

Vi_observed = \/(xj+1 - xj)2 + (yj+1 - yj)z/(tj+1 - tj) forj=i+1,..,n-1

A stochastic movement model is fitted to the coordinates and times of the training
trajectory dataset (see 3.2 and 4.1). From the fitted model we simulate trajectories
{Cis1 %010 Vie1) Qivor X2 Viea)s w0 (X5, Yn)}to  be compared with the true

observation in the test dataset.

The simulated speed values for each segment of the simulated trajectory is calculated in the

same way as for the observed trajectory:

Vj’—simulated = \/(xj’+1 - xj’)z + (yj’+1 - y]{)z/(tj+1 - tj) forj=i+1,.,n-1

The simulated trajectories are generated through conditional simulation based on the test
dataset (Figure 1). Therefore, the simulated trajectories have the same sampling schedule

as the test dataset.
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Figure 1. 10 simulated movement paths by Conditional Gaussian Simulation (left) and Purely Gaussian Simulation (right)
according to a common test dataset (as shown by black dots). Color is used to differentiate between the simulations.

For each sampling frequency we simulate 1000 trajectories and calculate the average speed

for each segment.

The impact of sampling frequency on the movement parameter of interest, i.e. speed, is
quantified by comparing the speed values of the observed trajectory and the mean
simulated speed values for corresponding segments of the simulated trajectories across the
sampling frequencies. Our selection rule for the RTSF is simply to choose the finest among
the available sampling frequencies where the average of the simulated speed values and

corresponding observed speed values are statistically indistinguishable.

5 Experimental Result

In the following, we first describe our dataset, and then demonstrate how the proposed
method works in practice. We will also discuss the effect of sampling frequency on the

temporal variation of speed to estimate how fast an animal moves.

5.1 Experimental dataset

The dataset analyzed in this paper is part of a project where the main objective is to

determine the influence of grazing on biodiversity.
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Four individual sheep were followed during the foraging season in an established
experimental site in Valdres in Oppland county, Norway (61.062 N, 9.402 E) - Figure 2 (left).
All animals were tracked with a sampling interval of 10 seconds using Canmore GT-740FL
GPS devices2. These devices have a battery capacity of approximately 24 hours when
sampling data using this sampling interval. The GPS devices were equipped with extra
battery which extended the capacity to 3-4 days. The GPS spatial accuracy is specified as

2.5 m CEP3 under optimal conditions.

The usable position data for four sheep (#24, #10001, #30011and #8029) were collected
on 15, 14, 9 and 4 different days respectively, totaling up to approximately 26 days of

observations. The total number of position observations was 227050.

We recorded calibration data with the Canmore GT-740FL GPS device to estimate both
UERE (see 4.2 for details), and the shortest temporal interval for which we can ignore the
error autocorrelation in our observations (the ctmm package does not yet include
modelling of error autocorrelation). Therefore, we must assess the error autocorrelation in
our observations before proceeding to the model fitting. To limit the effects of error
autocorrelation in the observations, we therefore perform subsamplings of the
observations to identify a sampling interval in which the error autocorrelation is negligible.
According to our calibration data, recorded between 17:10 and 19:40 on 2018/08/22 with
approximately 10 second time intervals, some error autocorrelation are present in the
observations, see Figure 3 (top). The top left panel of Figure 3 shows that there is significant
error autocorrelation for the lags up to 2 minutes. The top right panel of Figure 3 shows a
zoomed-in view of the same error autocorrelation plot over the shorter time lags. The
bottom panel of Figure 3 shows that the error autocorrelations for the 1 minute time
interval subsample of the observations for all time-lags up to 30 minutes are statistically

ignorable, i.e. within the upper and lower confidence bands drawn by red dotted dash-lines.

2 http://www.canmore.com.tw/pdf/GT-740FL%20DataSheet V6.1.pdf

3 CEP(Circular Error Probable) is the radius of the smallest circle centered at the true position that covers
50% of the observations

12



We therefore conclude that by subsampling our data to a 1 minute time interval, the impact

of the error autocorrelation in our calculations con be ignored.
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Norway sheep#10001_2016-07-29
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Figure 2. Map of Norway (source: Statens kartverk) with the location of the experimental site (left), an example trajectory

for sheep#10001 over one day (2016 July 29th) (right)
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Figure 3. Error autocorrelation plot for the observations with 10 second sampling interval (top-left) and its zoomed-in
view (top right), Error autocorrelation plot for the observations with 1 minute sampling interval (bottom).

5.2 Demonstration of the proposed method

To demonstrate the proposed method, we use all the data for sheep#10001 (14 observation
days including 4 observation periods with some gaps, recorded in 2016 from June 28t until
August 26™) and a small version providing continuous coverage of a period of 4 days (2016
July 28th-July 31st). The total number of observed data points for the whole datasetis 14717.
The training dataset is chosen to contain the initial 80% of observations (11774 data
points) leaving the test dataset with the final 20% of observations, i.e. 2943 data points.
The number of observation in the small dataset is 4247, with a corresponding split into

3398 training data points and 849 test data points.

By using the variogram() function from the ctmm package (39), an empirical variogram for
the training dataset is created. Fitting a semivariance model to an empirical variogram via

interactive sliders on a plot using the ctmm.fit() function provides us with some rough
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initial parameters for the movement model. Thereafter, an appropriate movement model
using maximum likelihood and AIC (Akaike Information Criterion)-based model selection

is calculated.

The top panel of Figure 4 shows the empirical variogram (black signal) and the fitted
semivariance function (red curve) obtained from the training part of the whole dataset for

sheep#10001.
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Figure 4. The fitted semivariance function (red curve) against the empirical variogram (black curve) of sheep#10001 for
the whole monitoring period (top), and two zoomed in views produced by the ctmm package with the range of 30 minutes
(bottom left) and 5 hours (bottom right). The y-axis shows the samivariance estimate (Equation 1) at different time lags,
represented on the x-axis. The gray shade shows the confidence interval of estimation.

The selected model is an OUF type of model which is the only alternative that fits the entire
variogram (while the other model alternatives listed in Table 1 are missing at least one of
the variogram’s key features). Note that the shortest lags represent the most reliable
semivariance estimations, so one should pay most attention to shorter time-lags when

selecting a model, see the bottom panel of Figure 4.

The selected movement model is shown by the red curve in Figure 4. This model is used to
simulate coordinate values at various (sub)sampling frequencies (as described in 4.3) to be

compared with the test dataset at corresponding (sub)sampling frequencies.
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We subsampled the test dataset into 2, 3,4, 5, 6,7, 8,9 and 10 minute intervals by including
every 2nd, 3rd 4th Sth 6th 7th 8th gth and 10th of the observed points, respectively. For each
subsample, we simulated trajectories for the corresponding sampling intervals. For each
choice of sampling interval, we then calculated the observed speed for each segment of the
associated observed trajectory dataset and the average of the corresponding simulated
trajectory speeds. Then, we compared their distribution statistically to test for statistical

significance in the differences between the two.

Because there is temporal autocorrelation in the speed values obtained from the samples,
the assumption of independence which underlies most of the traditional statistical test
(such as t-test) is violated. Alternative non-parametric statistical tests of significance such
as the Wilcoxon-Mann-Whitney test (51) do not assume any specific distribution, and are
therefore more useful for our purposes. We have therefore used the Wilcoxon-Mann-
Whitney test with a ranked comparison of two independent samples in our analysis. We
tested sampling intervals with data point sequences ranging from 1 minute to 10 minutes
(in steps of 1 minute) to explore the difference between the mean simulated speed values
and observed speed values at the corresponding sampling frequency when using a
significance level of 0.01. The null hypothesis (Ho) is that the distributions of the observed
speed values and the average of simulated speed values for the various segments are
indistinguishable. The alternative hypothesis (H1) is that the distributions of the observed

speed values and the mean simulated speed values are distinguishable.

Table 2 shows the result of the Wilcoxon-Mann-Whitney test for the whole dataset at
different sampling intervals. At sampling intervals shorter than 8 minutes we reject the null
hypothesis and accept the alternative hypothesis, meaning there is a significant difference
in the distribution of observed and simulated speed values (p-value < 0.01). The shortest
sampling interval in which the Wilcoxon-Mann-Whitney test results in not rejecting the
null hypothesis (p-value>0.01) is 8 minutes. Therefore, we conclude that a temporal
sampling frequency of 7.5 fixes per hour (8 minute time interval) is the RTSF for the

particular animal, habitat and accuracy of measuring device.
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Table 2. The result of the Wilcoxon-Mann-Whitney test at different sampling intervals for sheep#10001 for the whole
monitoring period

Sampling interval (in minutes) Ho= The distributions of the observed and simulated speed
values are indistinguishable

Hi= The distributions of the observed and simulated speed
values are distinguishable

1,2,3,4,5,6,7 p-value<0.01

8+ p-value>0.01

Large datasets are currently not available, but we were able to explore the potential of our
method for smaller datasets by using the tracking data of four consecutive days (between

2016 July 28th and July 31st). Figure 5 shows the ctmm model obtained from the training

dataset.
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Figure 5. The fitted semivariance function (red curve) against the empirical variogram (black curve) of sheep#10001 for
the short monitoring period (2016 July 28th-July 31st) (top), and two zoomed in views produced by the ctmm package
with the range of 30 minutes (bottom left) and 2 hours (bottom right). The definition of the x-axis and y-axis are as in
Figure 4.

For sampling intervals up to and including 6-minutes there is a significant difference (p-
value<0.01) in the distribution of observed speed values and mean simulated speed values
(Table 3) due to measurement error. However, for sampling interval longer than 6 minutes
our tests conclude no significant difference (p-value>0.01) in the distribution of observed
speed values and mean simulated speed values. We therefore conclude the RTSF is 8.6 fixes

per hour (time interval of 7 minutes).
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Table 3. The result of the Wilcoxon-Mann-Whitney test at different sampling intervals for sheep#10001 for the specific
observation period (2016 July 28th-July 31st)

Sampling interval (in minutes) Ho= The distributions of the observed and simulated speed
values are indistinguishable

Hi= The distributions of the observed and simulated speed
values are distinguishable

1,2,3,4,5,6 p-value<0.01

7+ p-value>0.01

We have compared these results with similar results obtained for the other three available
sheep. They all suggests that 7 or 8 minutes is the appropriate sampling interval for this

specific type of sheep in this habitat with our measuring device.

5.3 Speed calculation

In order to demonstrate the influence of sampling interval on calculated speed, we decided
to investigate the trajectory of sheep #10001 for one specific day (2016-07-29), see the
right panel of Figure 2. Figure 6 shows the daily temporal variation of speed for the
indicated sampling time intervals. The y-axis represents the speed of the sheep. The x-axis
represents the time of day. Figure 6 shows that by increasing the sampling interval, the
level of detail for speed variation and the magnitude of speed values decreases (Figure 6 (a,
b, ¢, d)). The magnitude is clearly reduced by at least 50% when the sampling interval is
increasing from 1 minute (Figure 6 (a)) to 10 minutes (Figure 6 (d)). This does not
necessarily mean that the speed variation at higher sampling frequencies is representative
of the truth. For example, Figure 6 (a) indicates fluctuations in speed at all times, but there
should be at least some consecutive zero speed values corresponding to resting periods
during a typical day. Non-zero speed values during a whole day are not reasonable.
According to our analysis and simulations, the representative temporal sampling frequency
for the combination of this type of sheep in its specific habitat and with our measuring

device is 8.6 or 7.5 fixes per hour (time intervals of 7 or 8 minutes).
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Figure 6. The daily speed variation for sheep#10001 on a specific date (2016_07_29) for four selected sampling intervals:
(a) 1-minute time interval, (b) 5 minutes time interval, (c) 7 minutes time interval and (d) 10 minutes time interval

6 Conclusion

Densely sampled data allows detailed insight into fine-scale behaviors, but are more
sensitive to potential measurement errors. In contrast, too coarsely sampled data will lose
fine-scale behaviors but be less affected by measurement error. The measurement error at
high sampling frequencies and interpolation error at lower sampling frequencies cause the
speed to be overestimated and underestimated, respectively. Finding a Representative
Temporal Sampling Frequency (RTSF) that avoids both over- and under-sampling in terms

of speed calculation was the motivation behind this article.

By viewing animal movement paths as realizations of a continuous stochastic process, we
were able to incorporate the effects of position autocorrelation, velocity autocorrelation,
range residency and measurement error in the movement model selection. By using the
selected movement model as a simulation device, we have been able to demonstrate how

to calculate Representative Temporal Sampling Frequency for a combination of a specific
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species in its habitat given a specific type of tracking device. The calculated sampling
frequency reflects the scale of the animal movement in general, the degree of

autocorrelation in its movements and the accuracy of the tracking device.

Our approach is quite simple and general, thus it could also be useful for other animal
movement data and tracking devices. The strength of our approach is that the model is
parameterized using tracking data of the animal of interest in its habitat. By assuming that
the movement behaviors persist over longer spans of time, the resulting movement

model(s) should be appropriate for the design of sensible and useful logging schedules.

We believe that our method should also be useful for investigating the impact of sampling

frequency on other movement parameters such as turning angle.
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