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Abstract

Invisible to the naked eye, but present everywhere. Microbial organisms live and repro-
duce in almost any conceivable environment on the planet. In recent years, researchers
have started to gain quantified information of the microscopic world, fueled by the tech-
nical advances in sequencing technology. From the presence of microbes in environmental
samples (metagenomics) to the processes within a cell (transcriptomics), omics data has
revolutionized our understanding of the microcosmos.

One of the places that microbial communities inhabit is the intestines of animals. Many
studies have shown that host-associated microbes have a crucial role in the development
of the host and are vital for critical functions within many animals. Many studies focus
their attention on the microbiota of mammals, and there has been less focus on animals in
aquatic environments.

The farmed Atlantic salmon is of great importance for the Norwegian economy. The
Atlantic salmon is also an exciting study object due to the dramatic environmental change
the fish experiences during its lifetime. The transition from freshwater to saltwater would kill
most other fish and is an extreme barrier for the proliferation of the salmon’s gut microbiota.

In this thesis, we developed a pipeline using the R-package weighted-correlation-network-
analysis (WGCNA) to create networks and detect modules in data from a long-term feeding
trial of farmed Atlantic salmon. Through the use of representative profiles for each mod-
ule, this network-based dimensionality reduction approach gives a holistic approach to the
discovery of potential host symbionts.

Complex behaviors emerge from the pairwise interactions of individual objects on every
level (genes, proteins, metabolites, cells, animals). Network analysis differs from traditional
methods of data analysis by analyzing all relations between objects and studying how they
behave together.

In this thesis, we analyze two datasets: one of the host gene expression (RNAseq) and
another for the microbial abundance (16S rRNA amplicon sequencing), both of which were
previously analyzed separately. We found confirmation of the central status of several
bacteria as potential host-symbionts but was limited in our ability to link these bacteria to
specific sets of genes by the strong effect of the freshwater-saltwater transition.

A method for regressing out principal components was used to remove large effects in
the data in the hopes that it would reveal the subtle interactions. Although the method
was successful in discovering genes involved in lipid metabolism, the analysis showed no
positive correlation between any group of genes and microorganisms. This lack of positive
relationship goes against the established literature on the subject; however, there are some
limitations of the method. We discuss these challenges and potential improvements to the
pipeline for future studies.
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Sammendrag

Usynlig for det blotte øye, men til stede overalt. Mikrobielle organismer lever og repro-
duserer i nesten alle tenkelige omgivelser på planeten. De siste årene har forskere begynt å
få kvantifisert informasjon om den mikroskopiske verden, drevet av tekniske fremskritt in-
nen sekvenseringsteknologi. Fra tilstedeværelsen av mikrober i miljøprøver (metagenomikk)
til prosessene i en celle (transkriptomikk), omics-data har revolusjonert vår forståelse av
mikrokosmos.

Et av stedene hvor mikrobielle samfunn bor i er tarmene til dyr. Mange studier har vist at
vertsassosierte mikrober har en avgjørende rolle i utviklingen av verten og er avgjørende for
kritiske funksjoner i mange dyr. Mange studier fokuserer oppmerksomheten mot mikrobiota
hos pattedyr, og det har vært mindre fokus på dyr i vannmiljøer. Oppdrett av atlanter-
havslaks er av stor betydning for norsk økonomi. Atlanterhavslaksen er også et spennende
studieobjekt på grunn av den drastiske endringen i miljø som laksen opplever i løpet av
sin levetid. Overgangen fra ferskvann til saltvann vil drepe de fleste andre fisker og er en
ekstrem barriere for spredning av laksens tarmmikrobiota.

I denne avhandlingen utviklet vi en pipeline ved bruk av R-pakken weighted-correlation-
network-analysis (WGCNA) for å lage nettverk og oppdage moduler i data fra et langvarig
fôringsforsøk med atlanterhavslaks fra oppdrett. Gjennom bruk av representative profiler
for hver modul gir denne nettverksbaserte dimensjonalitetsreduksjonsmetoden en helhetlig
tilnærming til oppdagelsen av potensielle vert symbionter.

Kompleks atferd oppstår fra parvise interaksjoner mellom individuelle objekter på alle
nivåer (gener, proteiner, metabolitter, celler, dyr). Nettverksanalyse skiller seg fra tradis-
jonelle metoder for dataanalyse ved å analysere alle forhold mellom objekter og studere
hvordan de oppfører seg sammen.

I denne oppgaven analyserer vi to datasett: ett av vertsgenekspresjonen (RNAseq) og
ett annen for mikrobiell tallrikhet (16S rRNA amplicon sekvensering), begge har tidligere
blitt analysert separat. Vi fant bekreftelse av den sentrale statusen til flere bakterier som
potensielle vert-symbionter, men var begrenset i vår evne til å koble disse bakteriene til
spesifikke sett med gener av den sterke effekten av overgangen til ferskvann og saltvann.

En metode for å fjerne prinsipalkomponenter ved regresjon ble brukt for å fjerne store
effekter i dataene i håp om at de ville avsløre de subtile interaksjonene. Selv om metoden
lyktes i å oppdage gener involvert i lipidmetabolisme, viste analysen ingen positiv sam-
menheng mellom gen-grupper og grupper av mikroorganismer. Denne mangelen på positive
forhold går mot den etablerte litteraturen på emnet; Imidlertid er det noen begrensninger
i metoden. Vi diskuterer disse utfordringene og potensielle forbedringer til pipeline-en for
fremtidige studier.
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Chapter 1

Introduction

Microbes are everywhere. Entire unseen communities that live among us, on us and within
us. Some microbes have adapted to live almost anywhere, making microbes a genuinely
ubiquitous part of nature.

1.1 Microbiomes
Most, if not all, plants and animals have associated Bacteria, archaea, fungi, protozoa and
viruses, which make part of the multicellular host their home (Sommer and Bäckhed 2013).
Collectively all these microscopic creatures are referred to as the microbiota of that host,
whereas specific localized communities are known as microbiomes.

Where researchers previously considered microbes for the diseases they caused, today
most have come to appreciate the mainly beneficial influence that host-associated micro-
biomes have (Sommer and Bäckhed 2013).

The formation and preservation of healthy gut microbiota contribute, in addition to the
extraction of nutrients, to the normal physiological development of the host; The develop-
ment of the gastrointestinal tract, other organs, and the immune system are some broad
examples (Sommer and Bäckhed 2013). While healthy flora contributes towards normal
development, imbalances in the gut microbiome have been associated with everything from
obesity and diseases like irritable bowel syndrome, to asthma, arthritis, and even anxiety-like
behavior (in mice) (Sommer and Bäckhed 2013).

The "Holobiont" theory of evolution considers the host and its microbiome as a single
unit of selection (Zilber-Rosenberg and Rosenberg 2008; Bordenstein and Theis 2015). This
view is, however, not without its critics (Moran and Sloan 2015). Nonetheless, the debate
regarding the Holobiont theory illustrates the increased awareness of the role that microbes
play in shaping both animals and plants.

Although interconnections between host and microbiota has been studied intensively in
many model animals and in humans; and many extremely close interconnections have been
found between those hosts and their microbiota (Rudman et al. 2019; Dominguez-Bello et al.
2019; Desbonnet et al. 2014). A greater diversity of host organisms is needed to understand
general and fundamental principles of beneficial microbe-host-interactions.

It is, for example, not clear-cut that all animals are dependent on their microbiota
(Hammer, Sanders, and Fierer 2019). Only a small proportion of species have been shown
to depend on a microbiome directly, and as such dependence should not be the default
assumption (Hammer, Sanders, and Fierer 2019). While it may be the case that all ver-
tebrae, for example, form important mutualistic relationships with their microbiota, such
claims can only come from extensive studies of many species. We still know very little about
gut microbiota in aquatic environments (Rudi et al. 2018; Jin et al. 2019) including in fish
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(Egerton et al. 2018). To truly understand what is specific and what is general in the world
of host-microbe interactions would require examination of many different organisms with
very different lifestyles.

1.2 The Atlantic Salmon
The Atlantic salmon is most notable for living in rivers while young, heading to the ocean
to mature, and then returning to the same river to breed.

Differences between freshwater and saltwater environments act as a barrier that usually
stops any fish from inhabiting both. For fish that live in saltwater, its gills actively get rid
of salt. For fish that live in freshwater, gills actively take up salt through its gills. A fish
with the wrong osmotic regulation will not be able to maintain a stable internal condition
(homeostasis) for the chemical and physiological processes of its body. As a consequence,
the fish would die.

The Atlantic salmon, however, does this switch more than once in its life. The process,
known as smoltification, involves changing the regulation of its body chemistry to adapt to
the different environments.

In addition to changes of osmoregulation, the Atlantic salmon also needs deal with a
drastically different availability of dietary lipids. Juvenile fish, called parr, mostly eats
invertebrates which are low in long-chained poly unsaturated fatty acids (LC-PUFA) such
as omega-3. Because of this salmon has developed an ability to produce this in their own
bodies (Gillard et al. 2018). In the post-smolt fish, after smoltification, the fish heads out
to sea, where there is a high availability of LC-PUFA in the form of other fish and krill
(Gillard et al. 2018).

It is theorized that the abilities of salmon to adapt to these changes has come about
because of an ancestral whole-genome duplication event that happened some 80 million
years ago (Gillard et al. 2018).

In contrast to mammals, which keep a steady temperature in their bodies, poikilother-
mic ectotherms or ’cold-blooded’ animals, like the Atlantic salmon, do not regulate their
body temperature in any way. So their internal temperature fluctuates depending on the
environment. Changing temperatures leads to a unique challenge for the gut microbiota of
these animals, that is not present in endothermic (’warm-blooded’) animals (Kokou et al.
2018a).

All fish does the majority of their digestion in their mid-gut (Egerton et al. 2018). In
addition some fish also has a pyloric caeca, a collection of finger like protuberances right
before the start of the large intestine, that is thought to help the fish retain more bacteria
and increase feed abortion by increasing the surface area (Egerton et al. 2018). Its been
known for a long time that the colonisation of the gut by microbes are specific for each
species (Egerton et al. 2018) and that the microbial composition of the fish gut is very
different from the environmental microbial composition (Lokesh et al. 2019).

It has been found that the most abundant phylum in the gut of fish in late stage fresh-
water are Firmicutes (Lokesh et al. 2019). While bacteria from the phylum Proteobacteria
gain dominance when the fish enter saltwater.

For farmed Atlantic salmon, fish raised with low LC-PUFA had a microbial community
that was dominated by Firmicutes just as in the wild Atlantic salmon (Jin et al. 2019). For
those that were given high LC-PUFA the community was dominated by Proteobacteria. This
shows that the diet given to juvenile Atlantic salmon can influence the microbial composition
after the fish has entered saltwater, and that the gut microbiome of fish given low LC-PUFA
most resemble that of the wild gut microbiome after transition to saltwater (Jin et al. 2019).

2



1.3 A revolution in molecular biology tools
Since the rise of molecular biology more than 80 years ago, our knowledge of the molecular
biology of the cell has revolutionized the way we understand living systems, and how they
function.

As the development of tools and subsequent discoveries gave rise to new and improved
methods and tools, increasingly detailed observations about the structure and function of
the cellular components were made. This research has concluded that the building blocks
of life are more or less identical across the kingdoms of life; All cells have DNA, RNA, and
proteins, and they all have the same role in all living systems.

It is this universality of building blocks that has allowed us to understand the structure
of genomes, the regulation of gene activity (transcription) and the synthesis of proteins
(translation), which are the ultimate determinants of cell function.

The revolution in high throughput DNA-sequencing, ever since the completion of the
human genome project two decades ago, has truly been a game changer in molecular cell bi-
ology research. We can now easily, and at low cost, quantify the activity and composition of
the molecular cellular universe that surrounds us, from the presence of microbes in environ-
mental samples to the cellular processes within the cell. However, the scale at which these
new sequencing technologies generate data has overwhelmed traditional approaches for han-
dling (storing and retrieving) and analyzing such data types, making applied mathematics,
statistics, and computer science increasingly important components in modern molecular
biology research. Bioinformatics is at the intersection of all these disciplines – using com-
putational approaches to organize and extract biological insights from (mostly) the vast
amounts of sequencing data that quantifies DNA, RNA or proteins.

1.4 Cellular processes
A living cell is a self contained system that can respond to outside stimuli and internal
demands. All the genes of a cell control the metabolic processed that happens in a cell. The
genes are all part of the gene regulatory network (GRN). Transcription factors are proteins
that recognize specific sections of the DNA by binding to them and in so doing initiating
the transcription of a nearby gene. As many as 10% of genes are transcription factors (TF)
(Alberts et al. 2015, p. 373). Most genes are controlled by more than one TF (Alberts et al.
2015, p. 373). Gene expression can be seen as the output of the GRN.

1.4.1 Transcription and regulation of transcription
A simplistic example of a response to stimuli can start with a cascade, which results in a
transcription factor (TF) initiating transcription of a gene into many identical RNA tran-
scripts. These transcripts then get translated into many identical proteins. Each specific
protein typically only has one function (Alberts et al. 2015). Still, a collection of different
proteins can accomplish more complicated tasks e.g., making a fatty acid, initiating cell
division, or organize bilateral symmetry during embryo development. The beginning of the
cascade can be initiated by a receptor on the cell surface, detecting a hormone. Interven-
ing many of these steps are mechanisms that regulate the final expression, see figure 1.1,
although most regulation happens at the transcriptional stage (Alberts et al. 2015, p. 373).
Other factors, like the lifetime of the produced molecules, can also affect the direct rela-
tionship between transcript expression and protein abundance. As a result, the expression
of a gene does not necessarily correspond to the expressed level of the related protein. It is
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estimated that only about 40% of the variation in protein level can be explained by know-
ing the mRNA transcript level (Vogel and Marcotte 2012). Still, changes in the expression
of genes can indicate patterns of gene behavior and give insight into the status of cellular
processes (Eisen et al. 1998). And measuring the expression of genes allows us to discover
these variational/dynamic groups of genes.

Figure 1.1: Six steps at which eukaryotic gene expression can be controlled. Adapted from Molecular
Biology of the Cell, Alberts et al. (2015, p. 373, Figure 7-5).

1.4.2 Modularity
Modularity is a well established phenomenon in biology (Wagner, Pavlicev, and Cheverud
2007). The modular nature of genes, proteins and metabolites, gives rise to complex phys-
iological processes. Gene expression is organized with groups of genes that have a high
within-group connection, and lower between-group connection, i.e. Some genes are more
connected to each other than they are to the rest of the network. Co-expression patterns
are variational modules, a representation of the structure that the gene regulatory network
outputs.

1.5 Network analysis
Networks offers a way of precisely describing relations between objects. Network analysis
is a conceptually different framework to modelling compared to many other methods. In
network analysis the relations between variables are in focus (A. L. Barabási and Oltvai
2004). This separates it from more traditional analysis where variables are considered by
themselves or as a combination of a few variables (multivariate analysis).

The main goal of a network analysis is to understand the structure and dynamics of
complex systems (A. L. Barabási and Oltvai 2004). One of the earliest and most widespread
scientific adopters of network analysis has been sociology, where the relationships between
people is studied. It has also increasingly been used to understand complex systems in
biology (Dong and Horvath 2007) as well as many other areas of science (A. L. Barabási
and Oltvai 2004).

Complex behavior emerges from simple rules of pairwise interactions (A. L. Barabási
and Oltvai 2004). An emergent system can be described as a system which is more than
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the sum of its parts. As detailed above in section 1.4, even seemingly simple ’machines’
that does one thing each, can in conjunction with other machines produce results that are
seemingly outside the capabilities of single entities.

Because complex biological networks often have modular properties, a property that they
share with other complex networks (A. L. Barabási and Oltvai 2004). Studies of complex
systems can gain insights from a wide range of scientific fields. Modularity and the concepts
of connectivity provide a useful theoretical framework from which the analysis of interacting
parts can be better understood (Dong and Horvath 2007).

1.6 Studying host-microbe systems
The advent of massively parallel sequencing opened up a whole new world of derivative
technologies. Technologies that, by and large, have created entirely new ways of studying
biological systems.

RNA-seq increased the possible detection range for the quantification of transcript ex-
pression, but also reduced the cost and need for specially produced microarrays (Shendure
2008; Wang, Gerstein, and Snyder 2009). These improvements opened up the possibility
of studying gene expression for animals and plants that had never been sequenced before
(Shendure 2008; Wang, Gerstein, and Snyder 2009).

The reduced cost of sequencing also meant that taxonomic marker gene studies, such as
16S rRNA amplicon sequencing, now could be applied wholesale to environmental samples.

Generally we think it is useful to differentiate between two types of approaches, non-
network methods and network methods. Within each approach there are many different
assumptions and practises. Approaches differ on the intent end result, some are fine mining
for direct interactions, others try to gain a more holistic overview. Many also differ in the
extent at which they integrate data from both host and microbiome. For some, studying
pathogens the main culprit(s) are usually already known or suspected, and therefore such
studies use only data specific for these organisms. However, such singular focus could easily
miss important aspects of the system which only a more complete omics approach could
identify. Network methods, in contrast to non-network methods also allows for the study of
emerging properties which only come into view when studying the system as a whole.

1.6.1 Non network methods
Non-network methods are the more traditional approach to data analysis. Here each variable
is treated as if it is independent from all others.

• Dimension reduction, like Principal component analysis (PCA)

• Correlation based methods

• Regression based methods

For plants and animals that cannot regulate their internal temperature, both the host
and its microbiome are presented with challenges during temperature changes. Kokou et al.
(2018a) used a trans-generational study of cold-resistant blue tilapia (Oreochromis aureus)
to show that the genetics of the fish influenced the composition and the response of the
gut microbiota to cold. For their study they used, among other methods, PCA to calculate
how much of the variance in the microbiota could be explained by the gene expression of
the host. Cold-resistant fish had gut microbiota that were more stable (less variation) even
under optimal non stressed conditions.
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1.6.2 Network approaches
Even though network analysis is relatively new in both transcriptomics and metagenomics
studies, there are already many different measures and models (Faust and Raes 2012;
Layeghifard, Li, et al. 2019).

Complex models have a higher chance of overfitting data. A detailed model that captures
all interesting data in one dataset can be an exceedingly poor predictor for future datasets.
This apparent contradiction comes from the fact that complex models more easily can
capture particularities and noise from the training dataset. Even though there are many
potential complex interactions between microbes, it is thought that most dynamics can
be explained through pairwise interactions. Evidence for this mostly-pairwise-interactions
hypothesis has been found through systems biology modeling, which showed that the growth
and pairwise interaction of ecological driver species exhibit the most substantial impact on
the community structure.Venturelli et al. (2018)

• Dissimilarity based methods

• Correlation based methods

• Regression based methods

• Probabilistic Graphical Models *

* (Layeghifard, Hwang, and Guttman 2017)
In many ways, methods within network analysis mirror non-network methods. The

reason is simple; Network analysis is really about shifting perspective, it is not how it is
measured, but instead what we measure for that matters. As listed above, both pairwise
similarity/dissimilarity measures and other more complex measures like multiple regression
and rule-based interactions can be used to create networks (Faust and Raes 2012; Layeghi-
fard, Li, et al. 2019).

Weighted co-expression networks

Co-expression networks have been useful for describing pairwise relationships among tran-
scripts (Langfelder and Horvath 2008). WGCNA has been used in several highly cited
studies and is well proven for microarray and RNAseq data (IWGSC 2018; Xue et al. 2014;
Hawrylycz et al. 2012; Voineagu et al. 2011; Oldham et al. 2008).

In standard WGCNA procedure eigengenes can be correlated to sample traits via simple
correlation. The relationships of eigengenes has also been further explored showing that
there are meta-structures in transcriptomics data, and that these modules can be compared
across datasets (Langfelder and Horvath 2007). This lays the ground work for working with
eigengenes across datasets also across the datasets of different omics-types.

WGCNA has been applied to both metabolomics and proteomics (Pei, L. Chen, and
W. Zhang 2017; DiLeo et al. 2011). The R-package has also been applied to 16S rRNA
amplicon sequencing data (16S-seq) (McHardy et al. 2013; Duran-Pinedo et al. 2011; Geng
et al. 2016).

Many approaches that have used weighted networks for the integration of host and
microbes have either used very limited data correlating only a few OTUs at a time. Previous
studies using WGCNA and associating single bacteria, or using a measure of bacterial
community complexity like beta-diversity to asses the influence that the host transcriptome
has on these factors and vice versa. There has also been studies where WGCNA has been
used on bacteria and associated those with some trait of the host. But as far as we know none
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have used WGCNA network analysis on both host transcriptomics data and metagenomics
abundance data simultaneously and correlated the resulting modules to each other.

This is exemplified by a study on pulmonary fibrosis where microbial traits and phe-
notypic traits of interest were correlated to MEs found on DE genes related to the disease
(Molyneaux et al. 2017).

Some that do use weighted network approach and WGCNA on bacterial data often asso-
ciate to only one trait, or a limited number of traits. Likewise studies into the transcriptome
usually try to find genes correlated to bacteria, but focus on a limited number of predefined
bacteria .

Huang et al. (2017) found gene modules and correlated MEs with bacterial community
variables and individual OTUs. But did not perform any network analysis on the OTUs.

The studies mentioned above fall short of any ’complete’ exploratory data analysis about
the connections between host and microbiomes. As far as I can tell, few network approaches
rely on both transcriptomics data and metagenomics data or use them to their full potential.

All these previously mentioned papers, use in some way the WGCNA package, and the
weighted network methodology it provides. But the most common type of network analysis
is unweighted.

The Transkingdom pipeline uses unweighted network analysis to associate bacterial genes
with genes from the host. It also depends on the use of Differential Expression to reduce
the number of host genes and microbial genes. The approach integrates networks but is
dependent on different programs for the selection of modules (Rodrigues, Shulzhenko, and
Morgun 2018). Genes from the gene network are then correlated to the microbial gene
network. A measure of bipartite betweenness centrality is used to find bottleneck microbes
genes (Rodrigues, Shulzhenko, and Morgun 2018). It has also been used on microbial
abundances from 16S data (Greer et al. 2016). The Transkingdom pipeline relies heavily on
setting thresholds for inclusion throughout the pipeline. Unweighted networks are highly
dependent on the threshold for which they are constructed (Horvath 2011). The pipeline
also involves manual work to get all parts set together.

In this thesis the focus will be on the application of weighted network analysis for inte-
grating host-microbiome data.

Earlier work on host-microbe interactions using weighted network analysis has often been
limited in scale either focusing on a few microbes, or a few host traits. Methods that do
integrate and look at large scale interactions have to my knowledge only used unweighted
networks and depend on limiting the analysis on just the most differentially expressed genes
and the most differentially abundant microbes.

1.7 Study aims
The first aim of this thesis is to develop a pipeline for the network-based dimension reduction
of host-microbe multi-omics data. Relating modules from the host organism with modules
from the microbiome and identifying potential interaction between them. A sub-goal is to
find good ways to represent this data and give a holistic overview of the data at hand.

The second aim is to apply this pipeline to discover interactions between the Atlantic
salmon and its microbiome.

The third aim is to discover potential challenges and propose future improvements.
Additionally, as our intention is for the improvement and reuse of this pipeline, the code

will be made available as a GitLab repository. Finally, for reproducibility, the code will be
written almost exclusively in R-markdown.
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Chapter 2

Background

2.1 16S rRNA amplicon sequencing – Quantified Tax-
onomic profiling

The 16S rRNA gene is essential for protein synthesis within the prokaryotic cells. Because
of this, the gene is highly conserved allowing phylogenetic (what is related to what) com-
parisons between very different prokaryotes (Weisburg et al. 1991). The 16S rRNA gene is
essentially >97% identical within prokaryotic species (Woo et al. 2008).

Of course, the 16S rRNA gene is not the only gene that can be used for comparing
microbial species. As there are many genes that can be used as marker genes. For example,
for nitrogen-fixing prokaryotes, the nifH gene is highly conserved, and is therefore used
to identify and compare nitrogen-fixing bacterial and archaeal species (Gaby and Buckley
2012).

Polymerase Chain Reaction (PCR) is a method that allows for the amplification of DNA
sequences. A repeatedly copied genetic sequence is referred to as an amplicon.

The use of 16S amplicon sequencing has made possible the discovery of many new species
and also resulted in many taxonomic re-classifications of already known species(Woo et al.
2008). For species that have unusual phenotypes, grow slowly in laboratory conditions
or simply cannot be cultured at all, using sequencing based technologies have made their
discovery and classification possible (Woo et al. 2008).

16S amplicon sequencing, illumina protocol(Illumina n.d.):

1. Data that is sampled from a site must first be made ready for sequencing, by first
breaking up the cells and amplify part of the 16S rRNA sequence using degenerate
primers.

2. 1. Amplicon Primers (interest specific, choice of primers introduce bias, there are no
perfectly universal primers available)

3. 2. PCR amplify

4. 3. Add barcodes and adapters.

5. 4. Sequence using pair end reads

Data processing
1. Demultiplex, samples are usually sequences together because of cost.
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2. Remove redundancy but counting identical reads and keeping only one representative.

3. Look for and remove wrong hybridisation’s, called chimeras, that happened during
the PCR step.

The most common approach to dealing with 16S amplicon sequencing data is based on
comparing and dividing these sequences based on their sequence identity. Because of the
high degree of noise both due to the necessary laboratory steps for preparing samples and
for sequencing, the output data from such efforts are highly diverse but this diversity does
not represent the true underlying biological variation. One thing that defines amplicon
data, apart from the fact that it allows for discovery of unculturable species of bacteria and
archaea, is that it has very large levels of systematic and random noise. To combat such
noise, a cutoff of 97% sequence identity, i.e. 3% dissimilarity, is used to define what is called
Operational Taxonomic Units (OTUs). Why 97%? Most likely because it corresponded
to already defined species classifications. As such an OTU should roughly correspond to
a prokaryotic species. Classification of such OTUs are usually done by matching centroid
sequences to sequences in one or more databases that has associated sequences with taxo-
nomic classifications. It is the OTUs that are the basis for all downstream analysis within
this thesis.

2.2 RNAseq – Capturing a snapshot of cell expression
The transcriptome of a cell is all RNA transcripts expressed in that cell. As previously
discussed, the transcription and regulation of transcription in a cell is a highly dynamic
process because it is the cells responses to internal and external stimuli. As such, any
measurement of the transcriptome is a snapshot of the processes that are happening in that
cell in response to some condition.

RNA-seq is a method for measuring the transcriptome, which started replacing older
methods like microarrays around 2008 (Shendure 2008).

One of the drawbacks of using microarrays, especially for non-model organisms, was
the need to know the genome sequence to design probesets for which the transcripts could
hybridize. The reliance on hybridisation also meant that microarrays had fundamental
problems with background noise, because the probes, and especially short probes, tended to
hybridize to more than one gene product (Wang, Gerstein, and Snyder 2009). This cross-
hybridization and the use of light intensity to measure abundance meant that microarrays
had a limited dynamic range (Wang, Gerstein, and Snyder 2009), i.e. they could not measure
either very low expression or very high expression. RNA-seq in contrast works by sequencing
transcripts, in the form of cDNA (Wang, Gerstein, and Snyder 2009). This results in very
low background noise and no upper limit on quantification (Wang, Gerstein, and Snyder
2009).

For microarrays, many normalisation methods became increasingly difficult and compli-
cated, and initial proclamations of the ability of RNA-seq to effectively measure absolute
quantity lead some like Wang, Gerstein, and Snyder (2009) to believe that RNA-seq would
itself require little to no normalization. This however, turned out not to be the case. RNA-
seq also has to deal with technical and biological biases like library preparation, laboratory
specific practices, sequencing depth, gene length, GC content, transcript lengths etc. (Bal-
louz, Verleyen, and Gillis 2015).

RNAseq: Illumina protocol:

1. Isolate the RNA
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2. Break into smaller segments

3. Convert to double stranded DNA via reverse transcription

4. Add sequencing adaptors

5. PCR amplify

6. Verify concentration and fragment length

7. Sequence on an illumina sequencer

Data processing
Raw sequencing results require computationally intensive mapping to either a reference
genome or by de novo reconstruction to be useful as quantitative data on the transcriptome.

For complex genomes, such as multicellular eukaryotic species, the presence of introns,
non coding segments of genes that facilitate alternative splicing of genes into gene isoforms,
different versions of the same gene. This complicates the quantification process for such
organisms, by making mapping reads to gene ambiguous. Many sequence mappers deal
with this problem in various ways.

With the advent of longer sequencing read technologies, such problems might one day
become a problem of the past. Longer reads that span entire exons and introns, or even
multiple exon-intron barriers would be needed to get non-ambiguous results.

2.3 Pre-processing of high throughput sequencing data

2.3.1 Normalization
The idea of normalization is to remove any systematic bias from the data. Data appropriate
normalization is a critical part of any analysis, and network analysis is no exception.

TSS and TPM

A common way of normalizing is to divide each sample by their total sum. This often the
simplest method for normalizing any sample. An additional requirement for genes is to also
to account for gene length by the same procedure. The order of operation separates Reads
Per Kilobase Million (RPKM) from Transcript per million (TPM).

TMM

Trimmed mean of M values (TMM) is a normalization method for gene expression data. It
works by estimating global fold change and adjusting samples under the assumption that
most genes should not be differentially expressed (Robinson and Oshlack 2010).

CSS

CSS was developed specifically for gene marker data, based on the use of quantile normal-
ization approaches in RNAseq (Paulson et al. 2013). One of the defining characteristics of
marker gene data is as noted earlier the extreme sparsity: most variables are rare because of
a combination of true zeros and under-sampling (Paulson et al. 2013). CSS normalizes the
raw data by dividing the raw counts by the ’Cumulative sum of counts’ up to a percentile
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that is determined directly from the data (Paulson et al. 2013). It has worked well when
tested for differential abundance effects, but depends on a large set of samples to work, and
fails for low sample data (Pereira et al. 2018). Pereira et al. (2018) found that CSS nor-
malization was particularly good at controlling the false discovery rate (FDR) when other
normalization techniques had problems with unbalanced effects, i.e. one group has a large
amount of differential abundances compared to other groups.

2.3.2 Transformations
Both low variance and low expression is usually filtered out before further processing, be-
cause it is thought to mostly represent noise. Transformations are usually done to reduce
the variance of highly expressed genes.

2.4 Correlation
Correlation is a measure of association between two variables that is independent of the
unit-scale. There are many types of correlation coefficients, but the most common and
most straightforward is the Pearson correlation. Pearson correlation, however, has some
underlying assumptions that are not always met. Pearson correlation is meant to measure
linear relationships between independent continuous and normally distributed variables.

The strength of the measured relationship is between -1 and 1, where a correlation of
0 means no association and a correlation of either -1 or 1 means a complete negative or
positive correlation, respectively.

Spearman correlation is a rank-based version of the Pearson correlation. It is, therefore,
able to measure non-linear relationships and can handle that one or both of the variables
are skewed and non-normally distributed (Mukaka M.M. 2012). It does, however, require
that the relationship between the variables is monotonic.

Mutual information can detect relationships between variables that are non-monotonic.
There also exist other types of correlation coefficients, one of which will be discussed later
in this thesis.

2.5 PCA – Principal component analysis
PCA is a simple and therefore commonly used method in modern data analysis that can
extract relevant information from complex and confusing datasets without the need for
tweaking parameters(Shlens 2014).

For statistical learning methods we distinguish between two types; The supervised kind
were we already know what groups we are looking for, and the unsupervised kind were the
method discovers groups without any prior knowledge (also referred to as clustering). PCA
is the latter.

PCA works by first finding which linear combination (y = w1 ·gene1 +w2 ·gene2 + · · · ) of
the original variables captures the largest possible variance (Shlens 2014). This new variable,
called the first principal component (PC), now captures the most variance in the data of
all such possible linear combinations. After this variation has been "captured", the second
PC is found that captures the most variance not captured by PC1, and so on until all the
variation of the data has been captured. Each of these new latent variables are orthogonal
to each other, which means that they are uncorrelated i.e. don’t capture the same variance.
If the underlying structure is related to the property we are interested in, the first couple
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of variables will hopefully capture all needed signal and the remaining structure is noise
(Shlens 2014).

If the property we are interested in examining is the reason for this variance, this hidden
(latent) variable now reveal a structure that is related to this property, but fails to reveal
the desired structure if the largest variance corresponds to some thing else (Shlens 2014).

2.6 Hierarchical clustering
Hierarchical clustering is a greedy algorithm for clustering objects based on measured dis-
similarity. The algorithm can either be agglomerative, where all objects are separate and
then combined until all objects are clustered; Or, divisive, where all objects start out in one
large cluster that gets divided into smaller groups.

The hierarchical clustering algorithm needs to have a dissimilarity (i.e. distance) measure
to compare objects. Some common distance measures include Euclidean, Manhattan and
binary, but there are many more. It is also possible to create distance measure from a
similarity measures like Pearson and Spearman correlation by subtracting one from the
result: 1-correlation.

Comparing single objects is trivial, but comparing groups depends on using a clustering
rule, which can be either: Single linkage, closest members of each group are compared,
Complete linkage, the most distant members of each group, or Average distance, which is
the distance between the arithmetic mean also called the centroid of each group.

An agglomerative hierarchical clustering algorithm starts by comparing all objects, lets
now call them clusters, to every other object/cluster. The two clusters that are closest
together, as determined by the distance measure and the clustering-rule, are merged to
become a new cluster. Then the process repeats until there is only one cluster left. The
result is a hierarchical grouping of clusters which can be viewed as a tree-like structure, where
connections between groups split into two for each step. Such a structure is appropriately
called a dendrogram. The number of clusters you get is defined by cutting the dendrogram
at different heights.

The algorithm is deterministic, which means that repeating the process with the same
data results in the same dendrogram. However, because the algorithm only chooses the first
and best merging, it can miss better mergers that result in more optimal groups (Black
2005). It also means that adding or removing objects can have a big impact on the final
dendrogram and therefore the resulting groups. Changing between distance measures and
clustering rules also change the resulting dendrogram and therefore also the resulting groups.

2.7 Graph theory and Networks
Nodes and edges

A graph is a mathematical structure, consisting of both vertices, often called nodes, and
edges. More precisely, a graph is an ordered pair, see eq. 2.1, consisting of a nonempty set
of vertices V eq. 2.2 , and a set of edges E eq. 2.3 that contain two-element subsets of V .
(Levin n.d.; Freeman 1978)

G = (V,E) (2.1)

V = {A,B,C,D,E} (2.2)
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E =
{
{A,B}, {A,C}, {A,D}, {A,E}, {B,C},

{B,D}, {B,E}, {C,D}, {C,E}, {D,E}
} (2.3)

Two nodes are adjacent if they are connected by an edge. An adjacency matrix is the
collection of all pairwise relations between nodes. Such a matrix is called a square matrix
because it has an equal number of rows and columns. Because the order of each row and
each column can be changed there exists many adjacency matrices that describe the same
graph. Likewise, a graph will also have many graphical representations that are all equally
valid.

Directed and undirected graphs

Figure 2.1: Examples of graphs: U - Unweighted and undirected graph. D - Unweighted and directed
graph. W - Weighted and undirected graph.

Figure 2.1 shows three different graphs with different properties. Graph U is what is
called a simple or strict graph, because it is unweighted, has no direction, contains no loops
and has no more than one edge between nodes. In undirected graphs like U and W, the
direction of the relationship is not specified, and the corresponding adjacency matrix is
symmetrical. For directed graphs, the direction of the relationship does matter, and the
corresponding adjacency matrix is unsymmetrical. All graphs drawn are also connected
which means that it is possible to reach any node from any other node. (Levin n.d.)

Paths

The basis for graph theory was established by mathematician Leonhard Euler when he tried
to answer the Seven bridges of Königsberg problem: Can you devise a walk through the
city that would cross each bridge once and only once? In abstract terms: Can you traverse
through every edge in a graph exactly once. Traversing from node to node via edges is called
a path. Calculating paths can be useful for measures of centrality as we will see below.
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The shortest path between two nodes is the path that includes the fewest number of
edges. In a weighted graph, it is the path that has the lowest sum of edges from one node
to another.

Centrality measures and scale free networks

There are three fundamental measures of centrality (Freeman 1978):

• The degree centrality: The number of edges that are connected to a given node.

• Betweenness centrality: Counts the number of times a node is part of the
shortest path between other nodes.

• Closeness centrality: Reciprocal of the sum (i.e 1
sum) of the length of the shortest

path between a node and all other nodes in the graph.
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Figure 2.2: Centrality measures. From the left: Degree, Betweenness & Closeness. These centrality measures
are a measure of node importance. Many nodes that have a high score in one centrality measure also has a
high score in another. However, there are some nodes that are deemed important by one centrality measure
that do no receive equally high score in another.

The graph in figure 2.2 is a random graph. A random graph follows a Poisson dis-
tribution, assuming that the probability of connecting two nodes is random and uniform.
Traditionally, many theoretical properties of graphs were described by the random graph
theory of Erdős and Rényi (A.-L. Barabási and Albert 1999). With the increased availabil-
ity of large real world networks A.-L. Barabási and Albert (1999) showed that real world
large-scale properties of complex networks have a high degree of self-organisation, and that
independent of the system and what it described, the degree distribution of the nodes fol-
lowed a power law distribution, see equation 2.4.

P(k) ∼ k−γ (2.4)
A network with this degree distribution is referred to as being scale-free, because the

distribution of the local connectivity (Degree) is free of scale (A.-L. Barabási and Albert
1999). The degree distribution naturally generalizes to a weighted graph where k is a non-
negative weight (B. Zhang et al. 2005).

For scale free networks, a majority of nodes have few connections, while a minority
has many. The origin of such networks can best be described by i) continual growth, that
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the number of nodes increases throughout the lifetime of the network, and ii) preferential
attachment, that new nodes are more likely to attach to nodes that already have many
connections (A.-L. Barabási and Albert 1999). An example of preferential attachment is
that a new author is more likely to cite a well known paper that is already heavily cited,
than that author is likely to cite a less known and less cited paper (A.-L. Barabási and
Albert 1999).
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Figure 2.3: Degree distributions, generated in R and visualized in R with igraph.
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Figure 2.4: Centrality measures. Degree, Betweenness & Closeness

As you can see in the figure 2.4, only a few nodes are highly connected.
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2.8 WGCNA –Weighted Gene Co-expression Network
Analysis

WGCNA exists as a stand-alone R-package, with available tutorials and proper documenta-
tion. WGCNA was developed for microarray data but has also been used for RNA-seq data
(Langfelder and Horvath 2014). The WGCNA R-package has functions that can be used
to create a network and detect modules within that network. WGCNA can be used as a
biologically-motivated network-based reduction method by using a representative expression
profile for each module (Langfelder and Horvath 2008; Horvath 2011). This representative
can either be a central hub gene or a sort of weighted average called the module eigengene,
i.e., the first principal component of the expression in a module. WGCNA has primarily been
used to analyze genomics data, from brain cancer to yeast cell cycle to plants (Langfelder
and Horvath 2008).

The authors of the WGCNA R-package usually use specific words like gene expression,
eigengene, etc. in their tutorials and articles. Here, however, because I will also include
microbial abundances, I will try to use more general words; node profile, eigennode, etc.

2.8.1 Making a correlation network
We start out with an M x N data matrix, where M is the number of samples, and N is
the number of variables. In WGCNA, we want to create a graph from this data by relating
(correlating) every variable to every other variable. The collection of all pairwise correlations
are stored in a N x N similarity matrix, and since correlation does not depend on the order
of variables, i.e., cor(A,B) = cor(B,A), the relations do not have any direction, and the
resulting similarity matrix is symmetric.

• sij is the similarity between node i and node j

• S = [sij] is the entire similarity matrix

2.8.2 Setting a threshold
In WGCNA, there are two different options for how you would create an adjacency matrix
from this similarity matrix. Option one: Use a hard threshold τ , or option two: Use a soft
threshold β. Both of these options make use of a scale-free criterion for choosing a value
for their respective parameters. When applying the scale-free criterion, the assumption
is that the underlying network has a scale-free topology. As previously mentioned, this
means that only a few nodes are highly connected while the majority have few connections.
The assumption of scale-free topology as a commonly shared property of complex networks
is not without its critics; And in reality, there might be other degree distributions that
describe the network better (Broido and Clauset 2019). For our purposes, however, even
if many complex networks only satisfies the scale-free topology approximately, simple and
close enough is good enough (B. Zhang et al. 2005).

How close the distribution is to a scale-free distribution can be calculated as the square
of the correlation between log P(k) and log k (B. Zhang et al. 2005), where k is the degree
and p(k) is the degree distribution. A distribution is approximately scale-free when this
value is close to one (B. Zhang et al. 2005).

For the hard threshold, getting an adjacency matrix means setting a value τ were all
correlations above or equal to that value is 1, and everything below is 0.
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aij =

1 if sij ≥ τ ;
0 otherwise

(2.5)

• aij is the adjacency between node i and node j

• A = [aij] is the entire adjacency matrix

A question worth asking is how good a network with discrete on-off connections is at
describing the underlying biological system (B. Zhang et al. 2005). What would, for example,
be the biological difference between a correlation of 0.79 and 0.8 (B. Zhang et al. 2005)?
The binary nature of a hard threshold also means that the resulting network, although
very intuitive, is highly dependent on the choice of this threshold and and that setting
an ’incorrect’ threshold could entail information loss (B. Zhang et al. 2005), e.g., missing
genes/bacteria interaction because it was just below the threshold.

Weighted correlation networks avoid this distinction by applying a function that scales
the correlations continuously. Because the transformation is gradual, the soft threshold is
more forgiving with regards to choosing slightly ’incorrect’ thresholds (B. Zhang et al. 2005).
In WGCNA, using a soft threshold means finding a value β for which all correlations should
be raised.

Use a Signed or Unsigned Weighted Network?

aij = |sij|β (2.6)

aij = (0.5 + 0.5 · sij)β (2.7)
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Figure 2.5: Effect of raising a correlation [-1,1] to a power β and the effect of a hard threshold τ = 0.8.
Adapted from figure 5.1 in (Horvath 2011).

In an unsigned weighted network, see equation 2.6 and figure 2.5, both high positive
and high negative correlations result in a high adjacency. In a signed weighted network, see
equation 2.7 and figure 2.5, negative correlations gets low to no adjacency, with a correlation
of -1 giving an adjacency of 0 (Horvath 2011). By raising the correlation to a power, low
correlations get penalized harder than high correlation values.

17



So what is best? A signed or unsigned network? A signed network groups only those
genes/OTUs that are positively correlated, which is beneficial for biological interpretation,
because positive and negative correlation have different meaning in biological systems e.g.
a beneficial symbiosis can only be a positive correlation; Negative correlations also tends to
come from other biological categories (Langfelder 2018). So, for gene ontology enrichment
(detailed in section 2.9.1 on page 20) a signed network makes more sense. It is therefore
recommended by the authors of the WGCNA R-package themselves to use a signed net-
work (Langfelder 2018). As we will see later modules can be inter-correlated to connect
negative and positively correlated genes/OTUs later.

A weighted network approach has the advantage of preserving the continuous nature
of the connections, and can therefore avoid the loss of information that selecting a hard
threshold brings (Horvath 2011). B. Zhang et al. (2005) show, using empirical and simulated
data, that weighted networks can give more robust results than unweighted networks.

2.8.3 A measure of interconnectedness
It is possible to cluster and detect modules directly on the adjacency matrix, but standard
procedure in WGCNA is to first transform this adjacency matrix into a Topological Overlap
Measure (TOM) matrix.

The Topological Overlap defined by Ravasz et al. (2002) gives a measure of how close two
nodes are to each other by comparing how many 1-step neighbours they have in common
(Yip and Horvath 2007). Ravasz et al. (2002) found that a high topological overlap between
substrates in an Escherichia coli metabolic network indicated an increased likelihood of
belonging to the same functional class. Yip and Horvath (2007) and B. Zhang et al. (2005)
generalized this measure for use with weighted networks. Weighted topological overlap
measure leads to more cohesive modules than its unweighted counterpart (B. Zhang et al.
2005)

TOMij =
∑
u6=i,j aiuauj + aij

min(ki, kj) + 1 + aij
(2.8)

DistTOMij = 1− TOMij (2.9)

2.8.4 Clustering & Module detection
The module detection in WGCNA is unsupervised based on the hierarchical clustering of the
dissimilarity TOM see equation 2.9. The resulting branches of the dendrogram corresponds
to network modules (Langfelder and Horvath 2008). There are many ways to proceed from
here, either cutting at a static height, or as is the default in WGCNA, use the Dynamic Tree
Cut method implemented in the package (Langfelder and Horvath 2008). The dynamic Tree
cut method uses the shape of the branches as guides for how to best cut them (Langfelder,
B. Zhang, and Horvath 2008).

The function blockwiseModules is a higher-level function that implements a fast and
crude clustering method to split variables into a predefined number of clusters. These
subsets (blocks) can then be analysed by complete pairwise correlation independently, as
opposed to complete pairwise correlation between all genes. After this is done similar
modules across the blocks are merged and module membership recalculated. So for the user
there is no difference. Except for that there are now as many dendrograms as there are
blocks. Although this results in non-optimal modules, the benefit is dramatically reduced
computational demand; Making it possible to analyze 30000 + genes with under 4GB of
RAM in under 2 hours. Something that would normally use 18-20 GB of RAM and >24
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hours. This is the difference between running the analysis on a standard laptop or needing
a high performance stationary computer or server.

After module discovery there are two options for summarizing the collective behaviour of
the nodes in the module. 1) Find a highly connected node via the intramodular connectivity
measure and use that as the modules representative, or 2) calculate the module eigennode,
the first principal component of the expression/abundance of the nodes. The eigengene can
be thought of as a weighted average expression/abundance profile (Langfelder and Horvath
2008). The intramodular hub nodes are highly correlated to the module eigennode (Horvath
and Dong 2008).

2.8.5 Correlating modules to each other and to traits
How connected a node is in a module, its membership status, is called the intramodular
connectivity of that node, kIM (Langfelder and Horvath 2008). But the membership to a
module can be defined for all nodes, not only those that were original members (Langfelder
and Horvath 2008).

How significant an association between a gene and a trait is, is called the gene significance
(Langfelder and Horvath 2008). Modules significance is the absolute average of the gene
significance within that module (Langfelder and Horvath 2008). When we use correlation
the eigengene/OTU tends to be highly related to this module significance and can therefore
be used as an approximation (Langfelder and Horvath 2008). This also means that modules
can be related to one another by correlating the module eigennodes (Langfelder and Horvath
2008). Those modules that are highly correlated can be merged (Langfelder and Horvath
2008).

Genes/OTUs that have a high membership, i.e. correlates highly to the eigengene/OTU
they are candidates for further validation (Langfelder and Horvath 2008).

2.9 Gene Ontology
The observation that many organisms have very similar genes (orthologs), and that these
genes share the same function, lead to the development of a shared central resource with
structured and controlled vocabulary for describing gene function (Plessis, Skunca, and
Dessimoz 2011). By using Gene Ontology (GO) terms it is possible to use knowledge
gained in one organism to infer the function in another (Plessis, Skunca, and Dessimoz
2011). The GO project is the largest and most widely used resource for cataloguing gene
function and gene products. Equally, or arguably of more importance, its structure allows
for computational inference – paramount for modern biological research (Ashburner et al.
2000; The Gene Ontology Consortium 2019).

Gene ontology terms are structured in a directed acyclic graph that starts with three
non-overlapping ontologies:

• CC: Cellular Component which represent locations in the cell where the gene product
is active.

• BP: Biological Processes describes series of interacting physiological and biochemical
events.

• MF: Molecular Function describes what mechanisms or roles a gene product may
perform.

19



2.9.1 GO enrichment analysis
GO enrichment is a statistical analysis of over-representation of GO terms. E.g. How many
genes from a specific term is observed compared to how many was expected to be observed.
In addition to the classic over-representation test, R-packages like topGO include many
other methods that use the structure of the directed acyclic graph, to inform the method
and make better over-representation estimates (Alexa and Rahnenfuhrer 2018).

2.10 PC-correction – Regressing out global effect vari-
ables

The PC-correction method of Parsana et al. (2019) from the R-package sva is intended
to remove all latent confounding artifacts from a co-expression dataset so that better co-
expression networks can be made. How many such latent variables that should be removed
is estimated by an permutation based approach in the num.sv function (Parsana et al.
2019). The function sva_network is then used to remove that number of estimated latent
variable from the data. PCA has been previously used to correct batch effects and other
unwanted sources of variation (Leek et al. 2012). Note that this is from the same research
group.

The PC-correction method depends on the idea that most broad correlation, i.e those
that affect many genes, is due to confounding variables, and that the majority of genes are
only connected to a limited number of other genes i.e scale-free topology. Because of this,
principal components can safely be removed without removing any real relationship between
genes (Parsana et al. 2019). Parsana et al. (2019) find that this approach can reduced the
number of false positives when constructing gene correlation networks.

The effect is achieved through ’regressing out’ the PC. Because only a number, how
many PCs to remove is given to the svanetwork-function it can also be used to manually
remove the most influential variables.
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Chapter 3

Material and methods

3.1 Materials
The data used in this thesis comes from a long term feeding trial of farmed Atlantic salmon
(Salmo Salar) see figure 3.1. The salmon were raised on two contrasting diets, one with
low amounts of long chained polyunsaturated fatty acids (LC-PUFA), containing a 1.8:1
ratio of linseed oil and palm oil, and one high in LC-PUFA, based on North Atlantic fish
oil (Gillard et al. 2018; Rudi et al. 2018). The feeds will from here on out be the referred
to as vegetable oil feed (VO) and fish oil feed (FO).

There are two types of omics data from this feeding trial. From the Atlantic Salmon
host we have RNA-seq from the gut and liver. Salmon (Patro et al. 2017) was used to
quantify the expression of transcripts from the RNAseq reads. Details about the sampling
and sequencing, as well as data processing can be found in Gillard et al. (2018).In this thesis
we will only make use of the gut transcripts.

From the gut microbiota we have metagenomics – 16S rRNA amplicon sequencing (16S-
seq, V3-V4). Details about the collection of the samples and sequencing can be found in
Rudi et al. (2018). The 16S sequences were made into OTUs with the USEARCH pipeline
using 97% identity. NB! OTU-construction was not done by me but by one of the co-authors
of the Rudi et al. (2018)-paper; Classification was done with the R-package microclass.

Links to the raw data can be found in both their their respective papers.
Figure 3.2 shows which time-points (Day) in combination with feed that was sampled.

For each combination there several replicates, but not all replicates are available for every
combination. Figure 3.2 shows the available samples.

Previous analysis of the transcriptomics (RNA-seq) has shown that the host’s lipid
metabolism is plastic and adaptable to changes in dietary lipid when the fish is pre smolt
(before smoltification, see section 1.2 on page 2), but that the fish loses this plasticity after
smoltification (Gillard et al. 2018).

Previous analysis of the metagenomics (16S-seq) has shown that there is a dramatic shift
in microbial composition as a consequence of the salmon’s habitat transition from freshwater
to saltwater, but that there is no significant effect of feed on the microbiota (Rudi et al.
2018). A majority of operational taxonomic units (OTUs) showed decreases in saltwater (>
75% ), while OTUs with a high relative quantity increased (Rudi et al. 2018). Rudi et al.
(2018) conclude that it is unlikely that the gut microbiota has a role in compensating for
the low levels of LC-PUFA in freshwater. But they do describe a set of four OTUs that were
stable across the freshwater-saltwater divide. All these OTUs were placed in the phylum
Firmicutes (Rudi et al. 2018).

Dominance of Firmicutes at both parr and postsmolt stages while Wild salmon is dom-
inated by Proteobacteria (Rudi et al. 2018). Freshwater and saltwater environments share
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Figure 3.1: Overview of experimental set up and timeline (a) Atlantic salmon fry was reared in four different
tanks which each had two compartments. Fish in two tanks halves were continuously fed feed with vegetable
oil as its lipid source (VO), fish in the the other two tank halves were fed feed with fish oil (FO). Switching
feed involved taking fish from VO and FO tanks and moving them to empty tank haves with the opposite
feed regimen. Only fish from the non-switched tanks were transferred to new tanks containing saltwater
after smoltification – There the same process was repeated. (b) Experiment and sampling timeline. In total
the experiment lasted ∼47 weeks. There are two sampling times each lasting 20 days, one in freshwater 26
weeks after hatching and one three weeks after introduction to saltwater. Figure taken from Gillard et al.
(2018).

818 OTUs, roughly 69% of total (Rudi et al. 2018). There was a higher number of unique
OTUs in freshwater than for saltwater (Rudi et al. 2018).

Traits/external variables of the samples are as follows:

• Environment: transition from freshwater (FW) to saltwater (SW).

• Day: Time in days since start of the sampling. Starts at 0 (D0) and ends at 20 (D20)
for freshwater and saltwater independently.

• Feed: There are two different feeds; Fish oil (FO) a diet rich in long chained poly
unsaturated fatty acids (LC-PUFA); Vegetable oil (VO) a diet with low amounts of
LC-PUFA.

3.2 Methods
The main aim of this thesis was to apply the WGCNA framework as a way to integrate
multi-omics data to analyse host-microbiota data. Although WGCNA was developed for
analysing gene expression, and more specifically microarray data, there is nothing that
fundamentally stops this approach from working with other types of data.

It is important to note here that causal relationship can not be inferred with this ap-
proach. Only correlations. This approach also deals with the collective behavior of objects,
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Freshwater, 196 samples
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Saltwater, 171 samples
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Figure 3.2: Sample overview. VO: Vegetable oil, low LC-PUFA. FO: Fish oil, high LC-PUFA. Red indicates
that there is a sample, white indicates that there is not.

in this case gut microbes and host genes. This allows us to gain a more global view of the
data.

The WGCNA package contains higher level functions for network creation and the de-
tection of modules, but there also exists lower level functions for fine tuning parameters,
and functions that allows you more direct control of similarity measures.

The function pickSoftThreshold, gives a data frame output for which the choice of soft
threshold can be picked. The power at which the distribution is ≥ 0.8 or more without the
mean connectivity becoming to low is chosen as the appropriate threshold (Langfelder and
Horvath 2008).

The function blockwiseModules, wraps all needed functions from data matrix to module
classification. It also implements a way of crudely pre-clustering the data into a predefined
number of groups. Full calculation of similarity can then be calculated separately on each
group dramatically reducing the computational resources needed. Modules will not be as
good as when all data is analyzed together, but are often close enough to the result you
would get doing the calculation on the entire dataset.

For both the RNAseq and the marker gene data a signed network was used, with "bicor"
as correlation function.

3.2.1 Applying PC-correction

Here the PC-correction method described in section 2.10 on page 20 was applied to try to
regress out dominant features of the data that is thought to not be related to host-microbe
interactions. Two variations of the approach was 1) The removal of only one PC 2) Estimate
the number of PCs to remove from each dataset (RNA-seq, 16S) and remove those. The
validity of such efforts is discussed in the discussion.

3.2.2 Outlier detection

Samples where first normalized with a min-max normalization, known to be very sensitive
to outliers (Cao, Stojkovic, and Obradovic 2016), then clustered with average distance to
identify possible outliers.

There might sometimes be no obvious technical reason for the outliers, but because such
samples can have undue influence on the results it does not matter what they represent,
they should be removed before continuing the analysis.
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3.2.3 Intersection of samples

Samples from the RNA-seq and the 16S-seq was intersected so that there was a one-to-one
correspondence.

3.3 Description of the general pipeline

The figure below 3.3 illustrates the general pipeline of this thesis. The pipeline is intended
as a frame work

Part 1. Pre-processing

Part 2. Data appropriate processing

Part 3. Network construction and module detection

Part 4. Pre-processing of non-omics data

Part 5. Visualization of correlations

Part 6. Detailed exploration of selected modules.
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Figure 3.3: General pipeline schematic. Numbers indicate the progression of the pipeline. 1. Input
and preparation of data, 2. Normalization and transformation, 3. Block-wise construction of a weighted
network or customized weighted network construction, 4. Processing of non-omics data. 5. Visualization of
correlations between modules and sample traits, 6. Detailed exploration, or selected modules.
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3.4 Application of pipeline

3.4.1 Part 1-3 – RNAseq – Host transcriptomics
Part 1 – Set up

The quantified transcripts were reduced to gene level.
A few reasons why reduction to gene-level is preferable:

• Quantification of gene isoforms is still uncertain; Especially for non-model organisms
like the Atlantic salmon (Salmo Salar).

• It will make using and interpreting Gene ontology enrichment easier.

• It will reduce the number of variables in the data and speed up data processing.

For the Atlantic salmon, conversion between transcript ids and gene ids was done with
the R package Ssa.RefSeq.db, an R package that provides annotations for the Atlantic
salmon genome ICSASG_2.

There are three options regarding the reduction to gene-level; Either use the longest
transcript, Ssa.RefSeq.db has this option as default; Take the average/median, etc., or
summarize genes by adding together the expression of each gene isoform. For this pipeline
summation to gene level was chosen.

Part 2 – Data appropriate processing

Filtration
Filtration of low counts is important because low counts can increase the number of spu-

rious correlations. Genes and OTUs with low variance are less likely to have any biological
importance.

Figure 3.4: Histograms of the standard deviation of each gene, Median absolute deviation of each gene and
the expression of all genes before filtering

For the RNA-seq data, genes with expression less than a maximum of 1 and then those
with a standard deviation less than 0.15 was removed. The thresholds came from visualiza-
tion of the expression distribution of counts on a +1 shifted log 2 scale. See figure 3.4. The
effect of removing those genes can be seen in figure 3.5.

Normalization and transformation
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Figure 3.5: Histograms of the standard deviation of each gene, Median absolute deviation of each gene and
the expression of all genes after filtering

For the RNA-seq data, the results returned from the mapper is output as transcripts
per million (TPM), which is adjusted for the length of genes and library sizes. For using
other normalization techniques that are based on raw counts, the R-package tximport can
recalculate "raw" counts from the salmon-mapper output (Soneson, Love, and Robinson
2016). Here, tximport was used to create "raw" counts, while still adjusting for the length
of each gene (lengthscaledTPM). From this "raw" count the normalization method TMM
was used 2.3

Part 3 – Network construction and module detection

Standard procedure using the function blockwiseModules. Defaults are used if not specified
below. Refer back to Background section 2.8.2 for details about signed or unsigned networks.

• networkType = "signed"

• TOMType = "signed"

• maxPOutliers = 0.05

• pamStage = F

maxPOutliers was set to 0.05, to allow for correlation to binary traits.

3.4.2 Part 1-3 – 16S rRNA - Microbiome marker gene survey
data

Part 1 – Set up

It is preferable to "fill in" the taxonomy table with all available information leaving no
taxonomic rank Not Available (NA). Making the taxonomy table complete helps keep all
OTUs whether they are classified or not. The reason for this is that R remove NA "values"
for some plots, even though R often gives a warning. Removing an OTU just because it is
not classified is not logical choice in an exploratory analysis.
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Figure 3.6: Drop off of number of OTUs, total abundance and percentage of zeros in the dataset as a
consequence of filtering. The red vertical line shows the cut off at 0.005% of total relative abundance.

Part 2 – Data appropriate processing

Pre-filtering:
The OTU data contains a lot of zero abundances, OTUs that are present in one sample

not in another, in fact, in relative percentage over 75% of the entries in the data matrix are
zeros.

In figure 3.6, it is clear that many OTUs contain a lot of zeros and contribute little to the
total abundance. By choosing a cutoff where we only keep OTUs that contribute 0.005% or
more of the total abundance, the percentage of zeros is reduced to ∼50%. And only around
25% of the total number of bacteria remain, corresponding to 296 OTUs – down from 1152
in the original OTU-table.

Normalization and Transformation:
The remaining OTU data matrix was normalized with Cumulative Sum Scaling (CSS)

from the Bioconductor package metagenomeSeq which by default also log2 transforms the
data.

Part 3 – Network construction and module detection

Some adjustments have been made to accommodate the OTU data. i) The minimum module
size has been reduced from the default of 20, to 5. ii) Pam stage is set to FALSE

The community structure, or what you can see from 16S data, is smaller with OTUs,
and there does not seem to be any benefit of using the partitioning around medoids (PAM)
step. In using this step, the eigenOTU became very influenced by OTUs that were not very
central to the module. This is in contrast to the gene data, where PAM seemed to have no
real influence, most likely because the eigengene there was more stable to the inclusion of a
smaller number of peripheral genes.

• networkType = "signed"

• TOMType = "signed"

• maxPOutliers = 0.05

• pamStage = F
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All other parameters were kept at the default. maxPOutliers is set to 0.05, to allow for
correlation to binary traits.

3.4.3 Part 4 - Correlation of module eigennodes
The quantified expression/abundance of the transcriptomics and metagenomics data are
discrete, but because both have a large range and have been log2 transformed and averaged
they can be treated as if they are continuous.

The resulting eigengene/OTU modules are centered and scaled, with "normal" distribu-
tion.

Choosing the correct correlation measure

All values will be averaged to avoid underestimating the p-value (overestimating significance
of correlation).

The base R function cor.test was used with default settings unless otherwise noted.
The null hypothesis can be stated as such: The correlation coefficient is not significantly

different from 0, that the co-variation is likely to happen due to chance. The alternative
hypothesis is that there is a sufficiently large positive or sufficiently large negative coefficient
that not not likely to happen due to chance.

Module eigenOTUs are correlated to the module eigengenes. Both are continuous with
normal distributions. Therefore Pearson correlation was the best choice as correlation coef-
ficient:

Let hMEi be the i-th host (gene expression) Module Eigengene.
Let mMEj be the j-th microbe (Abundance) Module EigenOTU.

cor(hMEi,mMEj)

for all i in i = 1,2, ..., Ni, and for all j in j = 1, 2, ..., Nj.

Traits/external variables are correlated to the module eigengenes. When it comes to
these non-omics variables there are more considerations to be made. To obtain correct
results we need to be aware of the assumptions that underlie the correlation test. To
correctly measure any correlation on the non-omics data we first identify what type of
variable they are.

We can separate our external variables and traits into categories.
There are four categorical variables: Day, host_sex, environment and Feed. Categorical

variables are variables that can be divided into categories, either naturally (apple, orange,
...) or imposed through subdivision of a continuous variable e.g. price groups: cheap,
average or expensive.

Of those four categorical variables, three are nominal and one ordinal. The difference
between nominal and ordinal is that the ordinal variable has a natural ordering. Day is one
such variable, e.g., day one comes before day two, which comes before day three etc.

Of the three that do not have any natural ordering two are naturally dichotomous i.e.
there are only two levels possible. The sex of the host fish is either female or male. The
environment, or ’Water’ as it will later be called, is either freshwater or saltwater. These
variables can be directly encoded by replacing either of the levels with 0 or 1. What gets
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encoded as a 0 or 1 will change whether correlations with other variables are positive or
negative.

The last categorical nominal variable is Feed. Although there are only two possible feed
types for this experiment vegetable oil (VO) and fish feed (FO), some fish also experienced
perturbations in their feed changing to the opposite feed at different time-points. This
variable can to simplify be divided in four different categories VO and FO, including change
from VO to FO and FO to VO. For variables like this, the simplest approaches to calculate
a correlation coefficient, and one that is often used in machine learning, is to dichotomize
the variable with a one hot encoding. A one hot encoding considers each level against every
other level, encoding one level as 1 and all others as 0. This means that we now instead of
one Feed variable have four, which can then be correlated in the same way as the naturally
dichotomous variables above.

Last but not least we have two continuous variables, host weight and host length. These
variables are however highly correlated with each other and including to Day and Water.
Instead of adding host weight and length directly we can instead calculate the condition
factor (CF) of the fish (Barnham and Baxter 1998; Alne et al. 2011). The new variable
CF is also a continuous variable. The CF can be thought of as an indirect measure of fish
fatness (Barnham and Baxter 1998).

CF = 10N ·W
L3

Where: W is the weight of the fish in grams, L is the length of the fish in millimeters
and N is a constant used to bring the range of output values close to 1. The value of N
differs from N = 2 in Alne et al. (2011) to N = 5 in Barnham and Baxter (1998). When
calculating the CF we find that only a value of N = 4 gives the expected range, while the
values used in Alne et al. (2011) and Barnham and Baxter (1998) do not. Note here that
this scaling is irrelevant for the correlation and as such any scaling is purely cosmetic.

In summation, all module eigengenes are correlated with every trait/external variable:

Let Tk be the k-th trait or external variable.

cor(hMEi, Tk)

for all i in i = 1,2, ..., Ni, and for all k in k = 1, 2, ..., Nk.

• All hMEi are continuous.

• For cases where TK is also continuous −→ Pearson correlation

• For cases where TK is ordinal −→ Spearman correlation

• For cases where TK is nominal:

– And naturally dichotomous −→ Point biserial
– Not dichotomous −→ one hot encoding −→ Point biserial

Point biserial is a special case of the pearson correlation and as such all these vari-
ables can use cor.test with the default Pearson correlation. Spearman correlation uses
cor.test(method = ”spearman”).
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3.4.4 Part 5 - Visualization of correlations
Correlations from the previous section are then gathered into one figure consisting of three
heatmaps. This "Split heatmap" places the host gene expression module eigengenes at the
center, with correlation values of the non-omics variables to the left and correlation values
of the microbial abundance module eigenOTUs to the right. In this way the figure gives
an overview of the entire dataset. The center heatmap is the expression of the host gene
modules eigengenes (hME), this represent the general behaviour of the host genes in each
module.

To get common dimensions with the Host Module Eigengenes (hME), sample character-
istics and Microbe Module Eigengenes (mME)/EigenOTUs were correlated to the hME as
detailed in the section above. In each cell of the correlation heatmaps the p-value signifi-
cance of the correlation is marked with stars. One star (*) represents a p-value below or
equal to 0.05, two stars (**) a p-value below or equal to 0.01 and three stars (***) a p-value
below or equal to 0.001. P-values are not corrected and should be seen as indications of
strength rather than rigorous hypotheses tests.

3.4.5 Part 6 - Detailed exploration of selected modules
GO enrichment analysis

The R package TopGO (Alexa and Rahnenfuhrer 2018) was used to test for gene enrichment.
TopGo creates an object which contains all necessary information needed to do the GO

enrichment analysis.
Here the both the classic algorithm + fisher statistic, and weight01 + fisher statistic

was used in the TopGO object. For the classic method "Each GO category is tested inde-
pendently" (Alexa and Rahnenfuhrer 2018). The Weight01 method is a combination of the
elim and the weight algorithms, which were both introduced in Alexa, Rahnenführer, and
Lengauer (2006).

Gene universe, also called the background set, is the set of all feasible genes i.e. all genes
that were used as input in the network and module construction step.

Selection of the genes to be tested for over-representation was not chosen based on
direct output membership but instead all genes in the gene universe were correlated to the
eigengene of the module selected, creating a fuzzy set. Such a fuzzy set could be used for a
Gene Set Enrichment Analysis (GSEA), by looking for enrichment of function in either end
of the weighted (correlation) list. Here, however, GO enrichment type analysis was chosen
instead as the implementation was easier. By restricting the set of genes to those with a
correlation of >= 0.8 we get a set of genes for which we can look for over-representation.
This strict selection of 0.8 ensures that the genes that are chosen are central to the module,
but this threshold is arbitrary, and any threshold could be used given some justification.
The set of genes that remained after selection was then used in the GO enrichment analysis.

The GO enrichment results are visualized in a bubble plot, directly inspired by the
bubble plot of the GOplot-package (Walter, Sánchez-Cabo, and Ricote 2015).

3.5 Comparison to principal component analysis
Results from the PCA went though the same steps as those of weighted network analy-
sis. The base R function prcomp was used to calculate principal components for both the
transcriptomics and the metagenomics.
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3.6 Randomizing data
A simple non-parametric approach was used to investigate the base correlation level, as it
is expected that some sources of variance skew the correlation. Using the base R function
sample with argument ’replace = TRUE’ on the OTUs of the OTU-table result in an
overall distribution that is identical to the real distribution. The same approach, but a
more extensive version was used by Friedman and Alm (2012). On average there should
after such a redrawing of abundances be no correlation between OTUs outside of random
chance.

3.7 Reproducibility
All analysis was done in R version 3.5.0 "Joy in Playing" (R Core Team 2018). All analy-
sis were run as R-markdown files which are numbered after the order they should be run
in. This means that result figures and tables in this thesis will be presented alongside the
code that generated them. Some self-made functions are sources in R-scripts to keep the
R-markdown files from becoming to large.

The R-markdown files and R-scripts are available at:
https://gitlab.com/M.Strand/Weighted_Host_Microbiome_Correlation_Network

Plot are either made in ggplot2 (Wickham 2016) or with base R graphics. Any editing
of figures was done in Inkscape version 0.92. General method schema and the eukaryotic
gene expression regulation diagrams were created in lucid chart (www.lucidchart.com).

Because some of these scripts take a long time to run, and might require more RAM than
is available at a standard laptop or stationary computer (depending on the parameters set),
R-markdown files were run on the NMBU computational cluster via the SLURM workload
manager. For those that want to replicate this, there is a bash-script in appendix .1 on page
78.
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Chapter 4

Results

4.1 General overview

This chapter describes the use of our developed pipeline to discover new putative functional
interactions between the host and its microbial communities. See an overview of the pipeline
on page 25.

As detailed in the pipeline schema, we first construct networks separately for each data
type; One for the host gut gene expression and one for the gut microbiome abundance
data. We then find network modules and module eigennodes. The module eigennodes are
correlated between both data types and to any non-omics variables, as described in section
3.4.3.

The dataset used in this thesis contained samples taken both in freshwater and saltwater.
This transition is associated with a massive shift in both host gene expression and microbial
community composition, which could overwhelm all other more subtler effects, e.g., the
effects of the microbial community impact on host gene expression in a few pathways. To
look beyond this dominating fresh-salt transition, we could have considered the data from
salt and fresh water as two subsets and analyzed them separately. However, having smaller
datasets will possibly also impact our ability to build biologically relevant networks. An
alternative to analyzing the salt and freshwater samples separately would be to apply a
computational method to remove large effect variables (e.g., freshwater-saltwater transition
in this study), enabling us to utilize the full dataset for network construction. In our case
these large effect variables can be referred to as “confounding factors”, because even though
the fresh-saltwater transition is an integral part of our experimental design, they could
confound our ability to identify smaller effects such as those of the different feeds.

With this in mind and no prior experience in analyzing this type of data with our
pipeline, we decided to try keeping the data as is, and to remove large effect variables and
compare their performances. We, therefore, analyzed two versions of the dataset:

• All data (without removal of large effect variables)

• All data with the removal of large effect variables

The removal of confounding variables was done with the PC-correction method from
Parsana et al. (2019), because this method pertains directly to co-expression networks.
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4.2 All data (without removal of large effect variables)

4.2.1 Network characteristics
The WGCNA authors recommend to always adapt parameters of the WGCNA functions to
fit the data in order to obtain more biologically relevant modules than those obtained by
default values. In this regard, to better understand the module characteristics, a six-part
figure was created to summarize some of the essential aspects of the network construction.

Figure 4.1 and figure 4.2 show the network diagnostics for the host gut gene-expression
network and gut microbiome abundance network, respectively. The following text explains
the layout for both these figures, as well as other network diagnostic plots presented in later
sections.

Part-A: Scale independence measure. Scale-free topology fit index as a function of
the soft-thresholding power (β). The plot shows how well the degree distribution at
different powers of beta fits (R2) with a scale-free degree distribution. A model fit of
1 means that the network has a degree distribution that perfectly matches a power-
law distribution (scale-free topology). For our purposes, a network can be said to
be approximately scale-free if it achieves a model fit of > 0.8 for a reasonable power
β. What is and is not a reasonable power is judged in connection with the mean
connectivity in part B.
Part-B: Mean connectivity measure. Mean connectivity as a function of the soft-
thresholding power β. Mean connectivity should not be too low, or the module
detection might not work (Langfelder and Horvath 2014).
Part-C: Module size. The bar plot shows the number of nodes (genes/OTUs) in each
module. WGCNA assigns a number and colors to each module. The first module is
module 1 (Turquoise); it contains the largest number of nodes. The next largest
module is named module 2 (Blue), then 3 (Brown), et cetera. Those nodes that do
not fit into any module is left unassigned in the grey/0 ’module;’ As such, the grey/0
’module’ cannot be interpreted as a proper module.
Part-D: ME-correlation density plot. The figure shows the correlation between
module eigennodes (MEs). Although each module contains a distinct set of nodes
(genes/OTUs), the eigenvector profiles of each module can still have similarities. The
important aspect to look for here is that the mean correlation should be approximately
zero.
Part-E: ME-correlation heatmap. The figure shows the same information as part C
but as a heatmap. The heatmap makes it possible to see which module eigennodes
correlates and if there are large groups of module eigennodes that strongly correlate.
Part-F: Within module correlation. The plots show the correlation of the nodes in
each module to the eigenvector (density plots). Although WGCNA uses connectivity
on TOM networks to define module membership, the intra modular membership can
be approximated by correlation to the eigenvector when the measure used to make
the network is correlation. This means that the eigennodes can be used as a proxy for
working directly with the modules. The density plots are all for individual modules,
including the improper module grey/0.

The method outlined in this thesis deals primarily with module eigennodes (eigengenes
and eigenOTUs). Because of this, these module eigennodes (MEs) must be acceptable
representatives of their respective modules. The correlation of nodes to the respective MEs
measures how well the MEs represents the module (part F). The stronger the (positive)
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correlation, the better. Also, the MEs must not be strongly correlated to each but instead
have a mean correlation of zero (part-D, and -E).

Figures 4.1 and 4.2 show the properties of the networks for host gene expression and
microbial abundances, respectively.

The diagnostic plot for the host gene-expression network (Figure 4.1A) shows that the
network has approximately scale-free topology at β = 3 with a relatively high mean con-
nectivity ∼ 5600 (Figure 4.1B). The module eigengene diagnostics (Figure 4.1D and 4.1E)
show that most eigengenes are not highly correlated . WGCNA detected 15 modules in
the uncorrected host gene-expression data. The module sizes (Figure 4.1C) range from
49-9121 genes, while 11251 genes were not assigned to any specific module (grey bar in
Figure 4.1C). Figure 4.1F shows how genes in each module correlate to their respective
module eigengenes (MEs). The figure shows how the grey unassigned genes do not have
any structure as the genes within that module do not correlate with the eigengene hME0.
Other module eigengenes behave as expected, where the intramodular correlation is strong
and positive.

The microbial co-abundance network properties (Figure 4.2) were distinctly different
from the gene-expression network analyses (Figure 4.1). At β = 8, the network reaches
approximate scale-free topology (Figure 4.2A). Mean connectivity is 6.44 at β = 8 (Fig-
ure 4.2B). Compared to the host gene network, the mean is much lower, but the size of
the microbiota network is also much smaller. Comparing the networks on a more equal
basis, mean connectivity divided by all possible pairwise combinations of nodes, the mean
connectivity is still smaller for the gut microbiome network: Host gene expression network
5622.64/

(
37408

2

)
≈ 8.04e−4, gut microbiome network 6.44/

(
296
2

)
≈ 1.15e−4.

Only four co-abundance modules were identified, ranging from 13-36 OTUs per module.
The unassigned group (grey ’module’) was large relative to the other modules and compared
to the gene co-expression network, containing 70% of all OTUs (Figure 4.2C). The limited
number of modules and the fact that most OTUs falls outside of any module indicates that
there is not much structure in the microbiota data compared to the gene expression data.
This lack of structure indicates that many bacterial species have variation in abundance
across the samples, or that the correlation between OTUs was in groups of less than five
since that was the minimum module size set for the microbial abundance data.

The intramodular correlation is high (Figure 4.2D and 4.2E) and we only see two types
of relative abundance behavior. Most likely, this reflects the freshwater-saltwater transition.
Module eigenOTUs represent their modules well, with a high average mean correlation
∼ 0.75 (Figure 4.2F). Surprisingly, the OTU correlations to mME0 are shifted towards
low positive correlations, which indicates that there is some similarity among these OTUs,
although not strong enough to form proper modules. For all the following analyses, the
eigennodes of the grey ’unassigned’ groups are omitted (except in section 4.3 – Comparison
to Principal Component Analysis).
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Figure 4.1: Diagnostic plots for host gene co-expression network – All data. A) Scale independence.
Shows how the degree distribution of networks at different betas fits a scale-free distribution. Arrow shows
the beta value chosen for the network. B) The mean connectivity of the network. Should monotonically
decrease and should not be too low. Mean connectivity as chosen beta value is marked with an arrow,
and the numerical value of the means is shown in the title of the plot. C) Shows the size of modules i.e.
how many genes each module contains. D) Density plot of the correlation between host module eigengenes
(hMEs), peak of the density should be at zero. E) hME correlation heatmap. A strong positive correlation
is deep red, and a strong negative correlation is deep blue. A correlation of 0 is white. F) Correlations of
genes within each module to their respective hME. Because the network is signed all genes within a module
should have strong positive correlations i.e. have a peak above 0 and preferably > 0.5. The unassigned
genes in grey should have an average correlation of zero.
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Figure 4.2: Diagnostic plots for gut microbiome co-abundance network – all data. A) Scale
independence. Shows how the degree distribution of networks at different betas fits a scale-free distribution.
Arrow shows the beta value chosen for the network. B) The mean connectivity of the network. Should
monotonically decrease and should not be too low. Mean connectivity as chosen beta value is marked with
an arrow, and the numerical value of the means is shown in the title of the plot. C) Shows the size of
modules i.e. how many OTUs each module contains. D) Density plot of the correlation between microbial
module eigenOTUs (mMEs), peak of the density should be at zero. E) mME correlation heatmap. A strong
positive correlation is deep red, and a strong negative correlation is deep blue. A correlation of 0 is white.
F) Correlations of OTUs within each module to their respective mME. Because the network is signed all
OTUs within a module should have strong positive correlations i.e. have a peak above 0 and preferably
> 0.5. The unassigned OTUs in grey should have an average correlation of zero.
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4.2.2 Hub nodes
A Hub node is the most connected node in a module. Table 4.1 lists hub genes for all host
gene expression modules. Table 4.2 lists hub OTUs for all microbial abundance modules.

Table 4.1: Hubgenes, the most connected gene in each host gene expression module.

Module Gene id Gene name Gene product
1 gene31966:106570826 LOC106570826 MAM domain-containing protein 2-like
2 gene56602:100380491 clrn3 Clarin-3
3 gene12190:106605532 LOC106605532 Protein LYRIC-like
4 gene21074:106560259 LOC106560259 Uncharacterized LOC106560259
5 gene32398:100194994 rir2 Ribonucleoside-diphosphate reductase ...
6 gene4299:106583279 smpdl3b Sphingomyelin phosphodiesterase ...
7 gene16457:106609569 LOC106609569 Protein BTG1-like
8 gene4583:106585643 LOC106585643 Beta-2-glycoprotein 1-like
9 gene23589:106562741 LOC106562741 Golgin subfamily B member 1-like
10 gene42553:106581405 LOC106581405 arf-GAP with Rho-GAP domain ...
11 gene2952:100196361 rpl12 Ribosomal protein L12
12 gene68501:106590896 LOC106590896 Uncharacterized LOC106590896
13 gene14495:106607713 mdn1 Midasin AAA ATPase 1
14 gene38234:106577118 LOC106577118 Ubiquitin-40S ribosomal protein S27a
15 gene14018:106607375 LOC106607375 Hemoglobin subunit alpha-4
16 gene31978:106570885 LOC106570885 Perforin-1-like

Table 4.2: Hub-OTUs, the most connected OTUs in each microbial abundance module.

Module OTU Phylum Genus
1 OTU_10 Firmicutes Enterococcaceae
2 OTU_20 Proteobacteria Vibrionaceae
3 OTU_207 Proteobacteria Litoricolaceae
4 OTU_30 Proteobacteria Halomonadaceae

4.2.3 Correlations between host and microbial network modules
and to traits

Following network construction, network modules were correlated between data types to
identify putative interactions between microbe abundances and host genes. Figure 4.3
shows both correlations between expression eigengenes and experimental variables and cor-
relations between host expression eigengenes and microbial eigenOTUs. As expected, the
correlation between host modules and experimental variables are almost exclusively driven
by the freshwater-saltwater transition (arrow D). Host module eigengene 2 (hME2) has the
strongest positive correlation to the transition (arrow A), while hME1 has the strongest
negative correlation to the transition (arrow B). Furthermore, the correlations between mi-
crobial modules and host modules show that the same host modules with associations to
experiment also has significant associations to microbes (arrow C); All gut microbiota abun-
dance module eigenOTUs (mMEs) respond almost exclusively to the freshwater-saltwater
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transition. mME4 has the strongest positive correlation, as can be seen at the intersection
of arrow A and arrow C. mME3, left of mME4, has the opposite response. From these two
observations, we can indirectly infer that OTUs in module 4 (which correlate strongly to
mME4) increase in saltwater and that OTUs in module 3 decrease in saltwater. The vari-
able Day is difficult to separate from the freshwater-saltwater transition. As seen in Figure
4.3 Day responds almost exactly like WaterSW. There is no significant correlation between
Feed and hMEs in Figure 4.3. The effect of the fresh-saltwater transition overwhelms/over-
shadows subtler signals related to feed.
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Figure 4.3: A split heatmap that shows the correlation of the host gene expression module eigengenes
(hME) with the microbiome abundance module eigenOTUs (mME) and non-omics data such as traits and
external variables. The central heatmap shows the mean ‘expression’ for each hME, each column is a
sample group, organized by feed then water then day. The figure should be read horizontally, with each
row constituting a new hME, e.g., hME2 is marked with arrow A, and hME1 is marked with arrow B. The
leftmost heatmap shows the correlation strength between hMEs and non-omics traits/external variables. The
rightmost heatmap shows the correlation strength between each hME and each mME. Every correlation is
based on the mean of each sample group i.e. the mean of biological replicates. A strong positive correlation
is deep red, and a strong negative correlation is deep blue. A correlation of 0 is white. In each of the
correlation-heatmaps the p-value of the correlation is marked with increasing number of stars as it reaches
certain thresholds: * p <= 0.05, ** p <= 0.01, *** p <= 0.001. p-values are not corrected for multiple
comparisons and should the interpreted as confidence strengths rather than rigorous hypotheses tests.

4.2.4 Selected GO enrichment
Gene ontology (GO) enrichment analysis was done on selected host expression modules
to explore the contents of these modules further. Over-representation of a group of genes
gives us an indication of what the specific module does. For the GO enrichment, genes
were selected based on their correlation to specific module eigengenes. This correlation also
ranks the centrality of the genes to the eigengenes’ module. The maximum and median
correlation in each GO-term is included in the results table.

40



Table 4.3 shows that host gene expression module 1 is enriched for genes involved in the
extracellular matrix organization and disassembly, breaking down of collagen, building up of
blood vessels (angiogenesis), endodermal cell differentiation and somatic stem cell division.
As can be seen in the max correlation column, several terms (1-4) have the same maximum
correlation. This is because they all contain the same gene. GO enrichment works with
terms that are subgroups of other terms, and therefore genes can and often will show up in
different significant terms.

Table 4.3: GO enrichment of genes that correlate more than 0.8 to hME1. Table shows the top 20
most significantly enriched GO terms in descending order of significance starting with the most significant.
Observed = the number of genes that are annotated with the given GO term that also correlate ≥ 0.8 to
hME1. Expected = the expected (i.e. expected by chance) number of genes that are annotated with the
given GO term that also correlate ≥ 0.8 to hME1. P-value is calculated with the weight01 algorithm and
fisher statistic. Median corr. is the median correlation to the respective eigengene for genes that correlate
≥ 0.8 to hME1. Max corr. is likewise based on eigengene correlation but shows the maximum correlation of
any gene in the GO term i.e. the strongest correlation of any one gene. The highest maximum and median
correlation is marked in red.

GO.ID Term Observed Expected p-value Median corr. Max corr.
1 GO:0030198 Extracellular matrix organization 138 28.38 2.2e-28 0.867 0.962
2 GO:0022617 Extracellular matrix disassembly 47 7.32 6.5e-26 0.89 0.962
3 GO:0030574 Collagen catabolic process 28 3.7 8.5e-16 0.901 0.962
4 GO:0001525 Angiogenesis 109 38.99 1.7e-12 0.845 0.962
5 GO:0030199 Collagen fibril organization 22 3.81 3.5e-11 0.896 0.952
6 GO:0001657 Ureteric bud development 34 8.37 4.3e-11 0.834 0.921
7 GO:0010812 Negative regulation of cell-substrate ad... 30 6.14 4.9e-11 0.858 0.952
8 GO:0001501 Skeletal system development 127 45.81 1.2e-10 0.852 0.952
9 GO:0008285 Negative regulation of cell proliferatio... 120 58.18 2.5e-10 0.844 0.953
10 GO:0007155 Cell adhesion 215 91.39 2.7e-10 0.853 0.96
11 GO:0035987 Endodermal cell differentiation 27 5.28 9.3e-10 0.865 0.962
12 GO:0048103 Somatic stem cell division 18 4.23 1.0e-09 0.841 0.943
13 GO:0071230 Cellular response to amino acid stimulus 21 4.12 1.1e-09 0.89 0.96
14 GO:0021915 Neural tube development 46 18.46 1.2e-09 0.844 0.943
15 GO:0008360 Regulation of cell shape 42 15.36 2.1e-09 0.858 0.915
16 GO:0070208 Protein heterotrimerization 12 1.23 2.2e-09 0.892 0.952
17 GO:0060346 Bone trabecula formation 11 1.02 3.2e-09 0.892 0.952
18 GO:0042476 Odontogenesis 44 11.84 5.1e-09 0.846 0.936
19 GO:0007411 Axon guidance 116 53.74 5.3e-09 0.854 0.962
20 GO:0031960 Response to corticosteroid 31 16.01 1.2e-08 0.851 0.935
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Table 4.4 shows that host gene expression module 2 is enriched for genes involved in in-
tracellular protein transport. While this general term is the most significant, the term with
the most highly connected gene is phosphatidylethanolamine biosynthesis – i.e. the pro-
duction of a class of phospholipids. The enrichment analysis also identifies many associated
with cholesterol transport and homeostasis.

Table 4.4: GO enrichment of genes that correlate more than 0.8 to hME2. Table shows the top 20
most significantly enriched GO terms in descending order of significance starting with the most significant.
Observed = the number of genes that are annotated with the given GO term that also correlate ≥ 0.8 to
hME2. Expected = the expected (i.e. expected by chance) number of genes that are annotated with the
given GO term that also correlate ≥ 0.8 to hME2. P-value is calculated with the weight01 algorithm and
fisher statistic. Median corr. is the median correlation to the respective eigengene for genes that correlate
≥ 0.8 to hME2. Max corr. is likewise based on eigengene correlation but shows the maximum correlation of
any gene in the GO term i.e. the strongest correlation of any one gene. The highest maximum and median
correlation is marked in red.

GO.ID Term Observed Expected p-value Median corr. Max corr.
1 GO:0006886 Intracellular protein transport 113 68.07 4.3e-21 0.864 0.958
2 GO:0006646 Phosphatidylethanolamine biosynthetic pr... 14 0.95 1.8e-13 0.923 0.971
3 GO:0006890 Retrograde vesicle-mediated transport, G... 19 2.22 6.2e-13 0.840 0.895
4 GO:0006888 ER to Golgi vesicle-mediated transport 46 6.89 5.7e-11 0.855 0.958
5 GO:0006891 Intra-Golgi vesicle-mediated transport 16 1.90 8.1e-11 0.834 0.895
6 GO:0018279 Protein N-linked glycosylation via aspar... 29 6.92 9.5e-11 0.863 0.958
7 GO:0019432 Triglyceride biosynthetic process 22 4.55 9.5e-11 0.879 0.969
8 GO:0032482 Rab protein signal transduction 23 4.50 1.5e-10 0.872 0.954
9 GO:0048205 COPI coating of Golgi vesicle 12 1.00 1.6e-10 0.837 0.895
10 GO:0065005 Protein-lipid complex assembly 18 1.65 2.2e-10 0.885 0.943
11 GO:0032374 Regulation of cholesterol transport 17 2.67 3.1e-10 0.898 0.943
12 GO:0042632 Cholesterol homeostasis 22 4.52 1.1e-09 0.888 0.956
13 GO:0016042 Lipid catabolic process 45 15.61 1.5e-09 0.877 0.956
14 GO:0006654 Phosphatidic acid biosynthetic process 13 1.50 2.3e-09 0.896 0.956
15 GO:0048208 COPII vesicle coating 11 1.02 3.5e-09 0.864 0.958
16 GO:0007030 Golgi organization 31 9.39 1.1e-08 0.858 0.948
17 GO:0036150 Phosphatidylserine acyl-chain remodeling 8 0.55 3.4e-08 0.933 0.956
18 GO:0010873 Positive regulation of cholesterol ester... 6 0.25 4.6e-08 0.900 0.935
19 GO:0006657 CDP-choline pathway 8 0.60 7.5e-08 0.924 0.943
20 GO:0046470 Phosphatidylcholine metabolic process 33 4.30 1.5e-07 0.922 0.971

4.2.5 Microbial relative abundance heatmap
To further elucidate the underlying patterns within each microbe-network module, we per-
formed an exploratory analysis of the relative abundance data by plotting the data directly
as a heatmap with the TOM dendrogram (Figure 4.4). Previous work using this exact
metagenomics (16S) dataset (and OTU clustering) found four OTUs more likely to be in-
volved in host-microbe interactions based on their persistence across the freshwater-saltwater
transition (Rudi et al. 2018) – See table 4.5. Information about these OTUs in the context
of co-abundance modules was therefore included in the microbial network analysis. In this
analysis, only the most abundant OTUs, those that contributed more than 0.005% to the
total abundance, were included. In the heatmap (Figure 4.4), abundance values are relative
to the total sample wise abundance of these included 296 OTUs.

Although most OTUs in module 1 (Turquoise) and some OTUs in module 2 (Blue) can
be seen to persist across the entire experiment, the phylum of most central OTUs of each
module differ (Arrow A and B). Module 1 contains a majority of Firmicutes (Arrow A),
while module 2 contains both, Firmicutes and Proteobacteria (Arrow B). The core OTUs
found by Rudi et al. (2018) (highlighted in red) are all clustered together and at the center of
module 1 (Turquoise) (Arrow A). Just as an aside, a dendrogram sometimes does a terrible

42



job at showing which OTUs are the most connected. Note that the ordering of a dendrogram
can be changed within the constraints set by the dendrogram.

Furthermore, visual inspection of the OTU heatmap demonstrates that more subtle
patterns are picked up in the network analyses. In Figure 4.4(Arrows marked C) we can
observe the underlying abundance shifts that result in modules 3 (Brown) and 4 (Yellow)
being oppositely correlated with transition from fresh- to saltwater in Figure 4.3. Some
samples, or sample groups in this case, behave strangely see arrows marked D. Especially
the leftmost arrow which is a VOFO transition, saltwater sample group. Here OTUs that
are relatively rare in other sample groups have a relatively large relative abundance.

Although it does not belong to any module, one bacterium, genus Corynebacterium
(OTU_8, arrow E), appears highly prominent in late stage freshwater samples but is almost
gone from saltwater samples. The reason for its lack of a module is related to this unique
behavior, which it seems only this bacterium has. As previously seen in Figure 4.3, there is
no clear effect of diet on any bacteria. This is also clear from the heatmap in Figure 4.4.

Figure 4.4: A heatmap of the relative abundances – All data. OTUs are rows and samples are
columns (mean values of replicates). The color scheme has been adjusted so that zero abundance is light
grey, while any abundance >0 is colored with interval which emphasises the low end of the abundance.
There are three row-annotation-bars: The first shows in red the four core OTUs found in Rudi et al.
(2018), the second shows the determined phyla of the OTU, the third shows module membership. The
three column-annotation-bars are identical to column-bars in figure 4.3, but organized with ward’s method.
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4.2.6 Taxonomy for selected microbial abundance modules
From the work done in Rudi et al. (2018) we know of four interaction candidate OTUs.
Their taxonomy can be seen in table 4.5. Tables 4.6 and 4.7 lists all OTUs in microbial
abundance module 1 and 2 respectfully. As can be seen by the ordering of the tables, and
the location of the (m); Here both the most connected OTU and the OTU that correlates
strongest to the eigenOTU is the same.

Table 4.5: The four putative core bacteria. (OTU 5 here is OTU 6 in Rudi et al. (2018))

Phylum Class Order Family Genus
OTU_1 Firmicutes Clostridia Clostridiales Peptostreptococcaceae Peptostreptococcus
OTU_2 Firmicutes Clostridia Clostridiales Peptostreptococcaceae Peptostreptococcus
OTU_5 Firmicutes Clostridia Clostridiales Peptoniphilus
OTU_10 Firmicutes Bacilli Lactobacillales Enterococcaceae Vagococcus

Table 4.6: OTUs in microbial abundance module 1. (hub) means that the OTU is the hub OTU having the
highest connection strength in the module. All OTUs are ordered after correlation to the module eigenOTU.
Correlation means the correlation of the OTU to the module eigenOTU.

OTU Correlation Phylum Class Order Family Genus
1 OTU_10 (hub) 0.958 Firmicutes Bacilli Lactobacillales Enterococcaceae Vagococcus
2 OTU_2 0.935 Firmicutes Clostridia Clostridiales Peptostreptococcaceae Peptostreptococcus
3 OTU_1 0.933 Firmicutes Clostridia Clostridiales Peptostreptococcaceae Peptostreptococcus
4 OTU_14 0.933 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus
5 OTU_11 0.925 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus
6 OTU_5 0.908 Firmicutes Clostridia Clostridiales Peptoniphilus
7 OTU_13 0.905 Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus
8 OTU_15 0.872 Actinobacteria Actinobacteria Coriobacteriales Coriobacteriaceae Denitrobacterium
9 OTU_19 0.863 Firmicutes Bacilli Lactobacillales Carnobacteriaceae Carnobacterium
10 OTU_24 0.852 Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus
11 OTU_21 0.845 Firmicutes Clostridia Clostridiales Lachnospiraceae Robinsoniella
12 OTU_6 0.830 Firmicutes Clostridia Clostridiales Gallicola
13 OTU_35 0.829 Actinobacteria Actinobacteria Coriobacteriales Coriobacteriaceae Atopobium
14 OTU_71 0.823 Firmicutes Clostridia Clostridiales Mogibacterium
15 OTU_22 0.810 Firmicutes Clostridia Clostridiales Clostridiaceae Clostridium
16 OTU_27 0.799 Firmicutes Bacilli Lactobacillales Carnobacteriaceae Granulicatella
17 OTU_429 0.794 Firmicutes Bacilli Lactobacillales Enterococcaceae Vagococcus
18 OTU_65 0.787 Firmicutes Clostridia Clostridiales Clostridiaceae Clostridium
19 OTU_1045 0.780 Firmicutes Bacilli Lactobacillales Carnobacteriaceae Carnobacterium
20 OTU_1684 0.773 Firmicutes Clostridia Clostridiales Peptoniphilus
21 OTU_77 0.768 Firmicutes Bacilli Bacillales Bacillaceae Lysinibacillus
22 OTU_46 0.761 Firmicutes Bacilli Lactobacillales Carnobacteriaceae Trichococcus
23 OTU_45 0.755 Firmicutes Clostridia Clostridiales Ruminococcaceae Faecalibacterium
24 OTU_115 0.740 Firmicutes Bacilli Lactobacillales Enterococcaceae Enterococcus
25 OTU_674 0.737 Firmicutes Clostridia Clostridiales Anaerovorax
26 OTU_76 0.736 Actinobacteria Actinobacteria Actinomycetales Pseudonocardiaceae Saccharopolyspora
27 OTU_85 0.735 Firmicutes Bacilli Lactobacillales Leuconostocaceae Weissella
28 OTU_64 0.725 Firmicutes Clostridia Clostridiales Peptococcaceae Peptococcus
29 OTU_62 0.714 Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus
30 OTU_108 0.714 Firmicutes Clostridia Clostridiales Anaerovorax
31 OTU_91 0.695 Firmicutes Bacilli Bacillales Planococcaceae Kurthia
32 OTU_63 0.677 Firmicutes Bacilli Lactobacillales Leuconostocaceae Weissella
33 OTU_116 0.664 Firmicutes Bacilli Bacillales Planococcaceae Sporosarcina
34 OTU_40 0.651 Firmicutes Clostridia Clostridiales Peptostreptococcaceae Peptostreptococcus
35 OTU_102 0.644 Firmicutes Clostridia Clostridiales Eubacteriaceae Pseudoramibacter
36 OTU_61 0.632 Firmicutes Clostridia Clostridiales Anaerovorax

4.2.7 Graph model of microbiome network
Both dendrograms and tables do not represent the relationships between OTUs in a very
spatial way. Figure 4.5 is a more traditional representation of the topological overlap mea-
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Table 4.7: OTUs in microbial abundance module 2. (hub) means that the OTU is the hub OTU having the
highest connection strength in the module. All OTUs are ordered after correlation to the module eigenOTU.
Correlation means the correlation of the OTU to the module eigenOTU.

OTU Correlation Phylum Class Order Family Genus
1 OTU_20 (hub) 0.893 Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Photobacterium
2 OTU_7 0.874 Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Tropicibacter
3 OTU_4 0.84 Cyanobacteria Oscillatoriales Planktothrix
4 OTU_82 0.788 Proteobacteria Gammaproteobacteria Alteromonadales Moritellaceae Moritella
5 OTU_141 0.785 Fusobacteria Fusobacteriia Fusobacteriales Fusobacteriaceae Fusobacterium
6 OTU_37 0.77 Fusobacteria Fusobacteriia Fusobacteriales Fusobacteriaceae Psychrilyobacter
7 OTU_104 0.76 Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides
8 OTU_1386 0.752 Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Photobacterium
9 OTU_25 0.747 Fusobacteria Fusobacteriia Fusobacteriales Fusobacteriaceae Cetobacterium
10 OTU_154 0.712 Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides
11 OTU_94 0.688 Fusobacteria Fusobacteriia Fusobacteriales Fusobacteriaceae Fusobacterium
12 OTU_132 0.662 Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Bulleidia
13 OTU_214 0.646 Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides
14 OTU_169 0.643 Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides
15 OTU_136 0.638 Firmicutes Clostridia Clostridiales Lachnospiraceae Oribacterium
16 OTU_461 0.616 Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Myroides
17 OTU_98 0.611 Proteobacteria Gammaproteobacteria Aeromonadales Aeromonadaceae Aeromonas
18 OTU_498 0.583 Bacteroidetes Sphingobacteriia Sphingobacteriales Sphingobacteriaceae Sphingobacterium
19 OTU_384 0.581 Cyanobacteria Oscillatoriales Planktothrix
20 OTU_641 0.576 Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter
21 OTU_170 0.56 Firmicutes Negativicutes Selenomonadales Acidaminococcaceae Phascolarctobacterium
22 OTU_3 0.517 Cyanobacteria Oscillatoriales Planktothrix

sure that the dendrogram ordering the relative abundances in figure 4.4 was based on.
Because this is a weighted network, the lines between OTUs represent the strength of the
topological overlap measure (TOM),

Figure 4.5: Two representations of the same OTU network. The left most graph shows module membership,
the rightmost graph shows taxonomic classification of the phylum level. Each circle represents an OTU, a
larger circle means it is part of a module. Squares are hub OTUs. Lines between OTUs are drawn based
on the strength of the connection (TOM) – The more pronounced the line the stronger the connection.
Layout with the Fruchterman-Reingold layout algorithm (Fruchterman and Reingold 1991), implemented
in the R-package igraph (Csárdi and Nepusz n.d.).
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4.3 Comparison to principal component analysis (PCA)
WGCNA uses singular value decomposition to find module eigengenes (MEs) (or eigenO-
TUs) for each module. A ME is the first principal component (1st PC) of the expression
data for each module. In a PCA analysis a common approach to summarize the information
content of PCs is to calculate the proportion of variance that each PC captures. This nat-
urally leads to the question of how well the MEs explain the variance within a module and
how this compares to a ’whole data’ PCA. Figure 4.6 and Figure 4.7 shows how a principal
component analysis relates to the MEs produced by WGCNA. Figure 4.6A shows that PC1
of the 16S rRNA gene amplicon relative abundance PCA explains 27.6% while PC2 explains
6.9%. PC1 and PC2 together separate fresh and saltwater samples. Saltwater samples are
clustered more tightly than freshwater samples. Figure 4.6B shows that PC1 of the host
gene expression PCA explains 26.1% of the variation in the host salmon gene expression.
PC2 explains 7.1%. Also, here, PC1 and PC2 explains enough variation to separate fresh
from saltwater samples. We observed the concentration of FO and later stage VOFO feed
samples in the bottom right corner of the biplot. It also shows how the feed switches have
started to look like their unchanged counterparts i.e. VOFO starts to look like FO. Figure
4.6C shows that the module eigengenes are different to the whole data PCs. For one, the
module eigengenes can have similar expression profiles even when they are based on different
sets of genes. Most of the strong correlations are present in the first 3 PCs. The genes and
OTUs within their respective modules can be ranked within the module similarly to the
loading’s in a PCA. This centrality measure carries with it the interpretation that the nodes
have a central placement in the module and is important for how that module behaves
expression-wise. In Figure 4.6C we see that the first “whole data” principal component
(PC) corresponds as expected to all the module eigenOTUs (‘OTUs section’), the strongest
correlation, however, is with mME0 which is eigenOTUs of the unassigned ‘module’. In the
‘Host genes: PCA vs modules’ section, we see that hME1 and hME2 corresponds strongest
to the first “whole data” PC. hME6 and hME10 to PC2, and the unassigned ‘module’ hME0
has a strong positive correlation to PC3.
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Figure 4.6: Comparison of PCA and Module eigenvectors. A and B shows biplots. X-axis is PC1 and y-axis
is PC2. Points are the response of samples to the new PC1 and PC2 coordinate system, were the shapes
signify whether the sample is from fresh or saltwater. Arrows are loadings i.e. how the original variables
influence PCs, only the ten most influential variables are chosen based on the Euclidean distance they span
between the two axes. C shows the correlation between “all data” PCs and the Modules eigengenes/eigenO-
TUs we found earlier. Deep blue indicates a strong negative correlation, while deep red indicates a strong
positive correlation.

Figure 4.7 shows that most of the variance is captured by PC1, but also that dividing the
data into subsets of genes and subsets of OTUs found by network module analysis of each
dataset increases the explained variance for PC1. As can be seen in Figure 4.7A and 4.7B,
both eigenOTUs and eigengenes, respectively, are better representatives of the variance in
these subsets than PC1 is for the whole data (all OTUs, all genes). The figure also shows
that the other PCs contain very little information compared to the first PC.
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Figure 4.7: PCA of OTU subsets in A, and genes subsets in B. The first principal component (PC1) corre-
sponds to the module eigengene (ME) hence the PC1/ME label. Y-axis of both figures show the proportion
of explained variance. For all modules, and for the whole data, principal components 1-5 are shown. In
WGCNA only the first PC, the eigengene, is used as a representative, all other PCs are disregarded.

4.4 All data with the removal of large effect variables

4.4.1 Network characteristics
As expected, using all data with the network correlation approach simply resulted in the
detection of the large and biologically un-surprising effects of transition between fresh- and
saltwater. Hence, we next used a method to remove the most extreme variance structures
in the data, to potentially reveal more subtle correlations between host gene expression and
microbial community shifts. And, potentially allowing us to identify associations between
fish that gets diets with slightly different lipid content (FO vs VO) or fish that had been
switching diets (VO->FO, FO->VO). The results from the network constructions can be
seen in Figure 4.7 and Figure 4.8.

The PC-corrected host gene expression network has approximately scale free topology
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(>0.9) at beta = 18 (Figure 4.7A), which was drastically different from the uncorrected
data at beta = 3 (Figure 4.1). Interestingly, for the gene expression data, the removal of
the major principal components (16 PCs) reduced the module sizes dramatically from 49-
9121 genes down to 30-206 genes. Most genes are now in the ‘unassigned’ module (36805
genes). However, this is not surprising since we already showed that most genes change
expression between salt and fresh water, and removing this effect thus leaves most genes
with an uninformative expression profile across these samples. Unsurprisingly the mean
connectivity is very low (0.52), but the connectivity within each module is high.

For the microbial abundance data, the removal of major principal components (5 PCs)
unexpectedly did not change the number of modules the same way it did for the gene
expression data. For the microbial abundance data, the number of modules instead increased
from 4 to 7. Module sizes now range from 5 to 22 OTUs (Figure 4.8C) compared to 13 to 36
OTUs (Figure 4.2C). In the initial analyses (Figure 4.2D), most MEs were extremely highly
correlated. The application of the PC-correction method removed the high intramodular
correlation improving the modules which now represent more distinct abundance-behavior
(Figure 4.8D). Correlation to mME0 has an expected peak at zero, which is what you would
want from the mME0, while all genes in other modules have a positive correlation to their
respective mMEs. The correlation is however lower than it was in the uncorrected data,
averaging around 0.5.
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Figure 4.8: Diagnostic plots for the host gene co-expression network – PC-correction. A) Scale
independence. Shows how the degree distribution of networks at different betas fits a scale-free distribution.
Arrow shows the beta value chosen for the network. B) The mean connectivity of the network. Should
monotonically decrease and should not be too low. Mean connectivity as chosen beta value is marked
with an arrow, and the numerical value of the means is shown in the title of the plot. C) Shows the size
of modules i.e. how many genes each module contains. D) Density plot of the correlation between host
module eigengenes (hMEs), peak of the density should be at zero. E) hME correlation heatmap. A strong
positive correlation is deep red, and a strong negative correlation is deep blue. A correlation of 0 is white.
F) Correlations of genes within each module to their respective hME. Because the network is signed all
genes within a module should have strong positive correlations i.e. have a peak above 0 and preferably
above 0.5. The unassigned genes in grey should have an average correlation of zero.
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Figure 4.9: Diagnostic plots for the microbial co-abundance network – PC-correction. A) Scale
independence. Shows how the degree distribution of networks at different betas fits a scale-free distribution.
Arrow shows the beta value chosen for the network. B) The mean connectivity of the network. Should
monotonically decrease and should not be too low. Mean connectivity as chosen beta value is marked with
an arrow, and the numerical value of the means is shown in the title of the plot. C) Shows the size of
modules i.e. how many OTUs each module contains. D) Density plot of the correlation between microbial
module eigenOTUs (mMEs), peak of the density should be at zero. E) mME correlation heatmap. A strong
positive correlation is deep red, and a strong negative correlation is deep blue. A correlation of 0 is white.
F) Correlations of OTUs within each module to their respective mME. Because the network is signed all
OTUs within a module should have strong positive correlations i.e. have a peak above 0 and preferably
above 0.5. The unassigned OTUs in grey should have an average correlation of zero.
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4.4.2 Correlations between host and microbial network modules
and to traits

After correcting for PCs containing information from the dominating freshwater-saltwater
transition, the correlations between network modules are as predicted much less dramatic
(Figure 4.10). The analysis reveals significant associations between different feed types (VO:
arrow A and FO: arrow B) and the gene expression network module hME2, hME7 and hME8
(Figure 4.10). Moreover, two microbial abundance modules, mME2 (arrow C) and mME6
(arrow D), correlate with two gene expression modules hME3 and hME9.

Figure 4.10: Split heatmap of PC-corrected data. The split heatmap shows the correlation of the host
gene expression module eigengenes (hME) with the microbiome abundance module eigenOTUs (mME) and
non-omics data such as traits and external variables. The central heatmap shows the mean ‘expression’ for
each hME, each column is a sample group, organized by feed then water then day. The figure should be read
horizontally, with each row constituting a new hME. The leftmost heatmap shows the correlation strength
between hMEs and non-omics traits/external variables. The rightmost heatmap shows the correlation
strength between each hME and each mME. Every correlation is based on the mean of biological replicates.
A strong positive correlation is deep red, and a strong negative correlation is deep blue. A correlation of 0 is
white. In each of the correlation-heatmaps the p-value of the correlation is marked with increasing number
of stars as it reaches certain thresholds: * p <= 0.05, ** p <= 0.01, *** p <= 0.001. P-values are not
corrected for multiple comparisons and should the interpreted as confidence strengths rather than rigorous
hypotheses tests. Letters A-D mark interesting columns.

In each module there is a number of genes, and each gene can be ranked according to
how connected it is. The most connected gene of each module is called the hub gene, which
is presented below in Table 4.8.

Table 4.8: shows the gene in each module with the highest connectivity.

Module Gene id Gene name Gene product
1 gene41808:106580649 LOC106580649 60S ribosomal protein L35a
2 gene49988:106588568 LOC106588568 lanosterol 14-alpha demethylase
3 gene28947:106567942 LOC106567942 cytoskeleton-associated protein 2-like
4 gene31337:106570212 LOC106570212 alpha-N-acetylgalactosaminide alpha-2,6-sialyltransferase 1-like
5 gene9067:106602547 glb1 galactosidase, beta 1
6 gene50894:106589386 LOC106589386 interferon-induced protein with tetratricopeptide repeats 5-like
7 gene4092:106580834 LOC106580834 protein S100-A1-like
8 gene35477:106574241 LOC106574241 desmin-like
9 gene28231:106567109 LOC106567109 G0/G1 switch protein 2-like

Because there were so few modules after PC-correction
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The most connected gene in host expression module 2 is LOC106588568. This gene
has, as is the case for many genes in the Atlantic salmon genome, been computationally
classified and assigned membership to a defined protein family (UniProt 2015; The UniProt
Consortium 2019), what UniProt calls “Protein inferred from homology”. LOC106588568
most resembles and is believed to be an ortholog of Lanosterol 14-alpha demethylase which
in humans (Uniprot:Q16850) and zebrafish (Uniprot:Q1JPY5) is part of steroid biosynthesis,
more specifically the first step of synthesizing zymosterol from lanosterol. Zymosterol is an
intermediate in cholesterol biosynthesis.

For host expression module 7 the most connected gene is LOC106580834. This gene is
also inferred by homology to be Protein S100-A1-like which in humans “probably acts as
a CA2+ signal transducer.” It has its highest expression level in the heart. The hub gene
of host expression module 8 is LOC106574241, inferred to be Desmin-like, a muscle specific
type III intermediate-sized filament which is essential for proper muscular structure and
function (Uniprot:P17661). The highest expression level is in the esophagogastric junction
muscularis propria.

Host expression module 3 has LOC106567942 as its most central gene. Inferred by
homology: Cytoskeleton-associated protein 2-like. This protein has its highest expression
level in the testis and its expression is dependent on the cell-cycle with strong expression at
the metaphase to telophase(Uniprot:Q8IYA6).

Presentation of host expression module 9 is dropped because the correlation is later
shown to be caused by only one sample.

To further look into the correlations identified in Figure 4.10 we visualized the response
of selected hMEs between different feeds. Since Feed is a nominal categorical variable and
the hMEs are continuous the most natural visualization is a boxplot/stripchart combination.

In Figure 4.11A, we observed step like increases from FO to VO where VOFO and
FOVO are intermediates. This step-like response is not observed in hME7 (Figure 4.11B)
or hME8 (Figure 4.11C), but both these hMEs, however, also have higher expression in VO
than the other feed categories. Using replicates instead of averages does not change the
interpretation.

Figure 4.11: Boxplot of hME2, hME7 and hME8 response to different feeds. Y-axis is the ‘expression’ of
the hME. X-axis divides this response into the various feed groups.

As was seen in table 4.8 above, each module has, in addition to an eigengene, a way
to rank genes within the module. The gene with the highest connectivity is called the
hub gene. Here the hub genes of modules 2, 7, and 8, were selected and their expression
plotted as boxplots for the different types of feed. As expected, the response of the hub
gene in modules 2 and 7 show the same expression behavior as their respective module
eigengenes. The hub gene of module 8, however, is quite different from its eigengene, as
seen in figure 4.12C the expression of this gene is highly influenced by two VO samples. The
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mean expression between different feeds are not as large as the one observed in the mean
expression of the module eigengene in figure 4.11C.

Figure 4.12: shows the expression response of specific hub genes for host expression modules 2, 7 and 8
respectfully. Because of the PC-correction approach the expression levels have been centered around zero.
The figures also plot the biological replicates in contrast to figure 10 that plots only the sample group
averages, i.e., the average of biological replicates.

In Figure 4.13A it is clear that only one sample group is responsible for the significant
correlation. This correlation can therefore be discarded. In Figure 4.13B the correlation
seems more robust and is not dependent on one sample group.

Figure 4.13: Two scatter plots with regression lines. Microbial abundance modules on the y-axis, host gene
expression modules on the x-axis.

4.4.3 Selected GO enrichment
To investigate the link between expression modules and function in the host, we investi-
gated the GO term enrichment in hME2, hME3, and hME7. hME2 has a strong positive
correlation to the VO feed (Figure 4.10 and 4.11A) which is rich in vegetable oil (and low
in LC-PUFA) and a strong negative correlation to FO feed (rich in LC-PUFA) (Figure 4.10
and 4.11A). In accordance with this, GO enrichment (only genes in module with correlation
of >0.8 to the module eigengene is included) showed that the functions of these genes are
linked to lipid and fatty acid metabolism (Table 4.9).

In genes that correlate (>0.5) to hME3, the module that corresponds to the microbial
abundance module 6, there is enrichment for mitosis genes (Table 4.10). The most correlated
gene is a gene involved in cell division and centrosome cycle. While the GO term with the
highest median correlation is involved in control of the mitotic spindle.
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Table 4.9: GO enrichment of genes that correlate more than 0.8 to hME2. Table shows the top 20
most significantly enriched GO terms in descending order of significance starting with the most significant.
Observed = the number of genes that are annotated with the given GO term that also correlate ≥ 0.8 to
hME2. Expected = the expected (i.e. expected by chance) number of genes that are annotated with the
given GO term that also correlate ≥ 0.8 to hME2. P-value is calculated with the weight01 algorithm and
fisher statistic. Median corr. is the median correlation to the respective eigengene for genes that correlate
≥ 0.8 to hME2. Max corr. is likewise based on eigengene correlation but shows the maximum correlation of
any gene in the GO term i.e. the strongest correlation of any one gene. The highest maximum and median
correlation is marked in red.

GO.ID Term Observed Expected p-value Median corr. Max corr.
1 GO:0006695 Cholesterol biosynthetic process 21 0.09 1.0e-30 0.906 0.962
2 GO:0016129 Phytosteroid biosynthetic process 11 0.02 9.3e-16 0.906 0.948
3 GO:0006696 Ergosterol biosynthetic process 6 0.02 3.9e-15 0.926 0.948
4 GO:0045540 Regulation of cholesterol biosynthetic p... 8 0.05 2.6e-13 0.911 0.962
5 GO:0045338 Farnesyl diphosphate metabolic process 4 0 3.7e-12 0.915 0.934
6 GO:0055114 Oxidation-reduction process 13 2.15 3.2e-10 0.906 0.962
7 GO:0019287 Isopentenyl diphosphate biosynthetic pro... 3 0.01 1.7e-08 0.863 0.94
8 GO:0016114 Terpenoid biosynthetic process 4 0.05 1.3e-07 0.925 0.934
9 GO:0008299 Isoprenoid biosynthetic process 10 0.09 2.0e-06 0.915 0.954
10 GO:0006489 Dolichyl diphosphate biosynthetic proces... 2 0.01 1.9e-05 0.901 0.94
11 GO:0071398 Cellular response to fatty acid 4 0.23 7.3e-05 0.929 0.954
12 GO:0061051 Positive regulation of cell growth invol... 2 0.02 1.1e-04 0.929 0.934
13 GO:0009753 Response to jasmonic acid 2 0.02 1.6e-04 0.939 0.948
14 GO:0033574 Response to testosterone 4 0.15 1.9e-04 0.929 0.954
15 GO:0045542 Positive regulation of cholesterol biosy... 2 0.02 2.5e-04 0.929 0.934
16 GO:0015936 Coenzyme A metabolic process 2 0.03 3.2e-04 0.861 0.869
17 GO:0070723 Response to cholesterol 4 0.09 7.0e-04 0.929 0.954
18 GO:0044182 Filamentous growth of a population of un... 2 0.04 8.6e-04 0.939 0.948
19 GO:0046490 Isopentenyl diphosphate metabolic proces... 4 0.01 8.7e-04 0.88 0.94
20 GO:0071397 Cellular response to cholesterol 2 0.04 9.0e-04 0.901 0.954

Table 4.10: GO enrichment of genes that correlate more than (>0.5 because they were so few)
to hME3. Table shows the top 20 most significantly enriched GO terms in descending order of significance
starting with the most significant. Observed = the number of genes that are annotated with the given GO
term that also correlate ≥ 0.5 to hME3. Expected = the expected (i.e. expected by chance) number of
genes that are annotated with the given GO term that also correlate ≥ 0.5 to hME3. P-value is calculated
with the weight01 algorithm and fisher statistic. Median corr. is the median correlation to the respective
eigengene for genes that correlate ≥ 0.5 to hME3. Max corr. is likewise based on eigengene correlation but
shows the maximum correlation of any gene in the GO term i.e. the strongest correlation of any one gene.
The highest maximum and median correlation is marked in red.

GO.ID Term Observed Expected p-value Median corr. Max corr.
1 GO:0000236 Mitotic prometaphase 18 0.69 8.7e-21 0.661 0.799
2 GO:0000088 Mitotic prophase 13 0.48 1.8e-15 0.549 0.799
3 GO:0000087 Mitotic M phase 29 1.7 1.1e-13 0.646 0.799
4 GO:0000281 Mitotic cytokinesis 15 0.72 1.5e-12 0.582 0.753
5 GO:0051301 Cell division 43 4.98 6.0e-12 0.605 0.809
6 GO:0007077 Mitotic nuclear envelope disassembly 9 0.28 9.5e-12 0.584 0.799
7 GO:0090307 Mitotic spindle assembly 15 0.58 8.8e-11 0.639 0.809
8 GO:0007147 Female meiosis II 5 0.03 1.1e-10 0.646 0.737
9 GO:0043987 Histone H3-S10 phosphorylation 5 0.04 3.0e-10 0.639 0.735
10 GO:0007098 Centrosome cycle 12 0.81 4.6e-10 0.624 0.809
11 GO:0051255 Spindle midzone assembly 10 0.14 9.0e-10 0.581 0.753
12 GO:0000086 G2/M transition of mitotic cell cycle 19 2.03 1.0e-09 0.64 0.799
13 GO:0007080 Mitotic metaphase plate congression 9 0.27 2.3e-09 0.702 0.76
14 GO:0007094 Mitotic spindle assembly checkpoint 9 0.35 5.2e-09 0.717 0.749
15 GO:0034501 Protein localization to kinetochore 6 0.14 6.6e-09 0.658 0.799
16 GO:0032467 Positive regulation of cytokinesis 11 0.44 7.3e-09 0.605 0.79
17 GO:0001556 Oocyte maturation 8 0.37 7.9e-09 0.684 0.737
18 GO:0000090 Mitotic anaphase 11 1.13 1.7e-08 0.639 0.76
19 GO:0007264 Small GTPase mediated signal transductio... 24 7.15 3.7e-08 0.648 0.799
20 GO:0000022 Mitotic spindle elongation 11 0.45 3.9e-08 0.601 0.753
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From figure 4.10 we see that the module eigenOTUs of microbe abundance module 6 is
negatively correlated to the eigengene of host gene expression module 3. From figure 4.13B
we see that this correlation looks promising.

In table 4.11 we can see the five OTUs in the module, three are Cyanobacteria, of which
two are from the genus Planktothrix. In addition to the three cyanobacteria there are two
proteobacteria.

Table 4.11: OTUs in microbial abundance module 6. (hub) means that the OTU is the hub OTU having the
highest connection strength in the module. All OTUs are ordered after correlation to the module eigenOTU.
Correlation means the correlation of the OTU to the module eigenOTU.

OTU Correlation Phylum Class Order Family Genus
1 OTU_7 (hub) 0.816 Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Tropicibacter
2 OTU_3 0.801 Cyanobacteria Oscillatoriales Planktothrix
3 OTU_4 0.725 Cyanobacteria Oscillatoriales Planktothrix
4 OTU_20 0.678 Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Photobacterium
5 OTU_9 0.283 Cyanobacteria Oscillatoriophycideae Chroococcales Xenococcaceae Chroococcidiopsis

The eigengene of host gene expression module 7 correlated with feed. As such it would be
interesting to see what genes what terms that this module was enriched in. Unfortunately,
even with a relaxed inclusion criterion, enriched GO terms for module 7 only had one gene.
Therefore, the GO enrichment was dropped for this module.

Figure 4.14 shows a visual representation of the microbial abundance modules found.
Compared to figure 4.5, there is much less structure in the graph.

Figure 4.14: Two representations of the same OTU network. The left most graph shows module membership,
the rightmost graph shows taxonomic classification of the phylum level. Each circle represents an OTU, a
larger circle means it is part of a module. Squares are hub OTUs. Lines between OTUs are drawn based
on the strength of the connection (TOM) – The more pronounced the line the stronger the connection.
Layout with the Fruchterman-Reingold layout algorithm (Fruchterman and Reingold 1991), implemented
in the R-package igraph (Csárdi and Nepusz n.d.).
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4.5 Comparison to principal component analysis (PCA)
A comparison between PCA and module eigennodes was also done for data that had been
PC-corrected.

Figure 4.15 shows the biplots of both the microbial abundance A data and the gene
expression data B after PC-correction has been applied. Compared to figure 4.6 we can
see that very little is explained by each principal component. Interestingly enough, there
seems to be a little separation between feeds where VO and FOVO tends towards the top
right corner, and FO and VOFO tends towards the left bottom corner. Although there is
no clean separation between them.
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Figure 4.15: Comparison of PCA and Module eigenvectors. A and B shows biplots. X-axis is PC1 and y-
axis is PC2. Points are the response of samples to the new PC1 and PC2 coordinate system, were the shapes
signify whether the sample is from fresh or saltwater. Arrows are loadings i.e. how the original variables
influence PCs, only the ten most influential variables are chosen based on the Euclidean distance they span
between the two axes. C shows the correlation between “all data” PCs and the Modules eigengenes/eigenO-
TUs we found earlier. Deep blue indicates a strong negative correlation, while deep red indicates a strong
positive correlation.

After applying the PC-correction we want to see what impact it has had on the explana-
tory power of the module eigennodes. Figure 4.16 shows how the eigengenes of the gene
expression data has great levels of explained variance, but that the eigenOTUs no longer
are good representations of the abundances in the module.
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Figure 4.16: PCA of OTU subsets in A, and genes subsets in B. The first principal component (PC1) corre-
sponds to the module eigengene (ME) hence the PC1/ME label. Y-axis of both figures show the proportion
of explained variance. For all modules, and for the whole data, principal components 1-5 are shown. In
WGCNA only the first PC, the eigennode, is used as a representative, all other PCs are disregarded.
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Chapter 5

Discussion

5.1 Concept
In this thesis, we have developed a pipeline that uses the WGCNA package as a network-
based dimensionality reduction approach to analyze host-microbiome multi-omics data. The
resulting eigennodes can be used to relate groups of genes and groups of microbes to each
other and other non-omics data variables. The result is a holistic view of the entirety of the
data.

Beyond that, network statistics, such as the weighted degree, lets us rank members of
modules according to their centrality.

5.2 Steps made to adapt WGCNA to 16S data
One of the characteristics that define 16S data is sparsity. In contrast to RNAseq data, where
most genes are expressed throughout the experiment, most taxonomic variables appear
only sporadically (Paulson et al. 2013). In an attempt to limit the number of zero values
in the data, the microbial abundance data was filtered heavily. As the structure of the
relationships between OTUs is affected by this, this is not an ideal approach. For proteomics
and metabolomics data where the sparsity is also a problem, imputation has been used to
correct for missing values (Pei, L. Chen, and W. Zhang 2017). However, when the percentage
increases above a certain threshold, the imputation methods no longer work (Pei, L. Chen,
and W. Zhang 2017). For OTU tables, the number of zero values can be even higher. It
is also difficult to know whether zero-values are a result of data loss, or if it reflects actual
absence. No imputation was therefore attempted.

Two parameter changes were necessary to use WGCNA on 16S data. The first is the
reduction of the minimum module size from 30 to 5. This reduction of the minimum module
size is justified by the low number of variables that are present in the microbial abundance
data.

For the network construction and module detection of the 16S data, the use of partition-
ing around medoids (PAM) drastically changed the eigenOTU values. For modules where
the size is limited, the PAM step is therefore not recommended. For module detection in
the host gene expression network, there was no effect of turning PAM on or off.

5.3 Analysis (without removal of large effect variables)
Firstly, network and module creation was successful for both the host gene expression data
and the microbial relative abundance data. Although the eigenOTUs displayed a very
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strong inter-correlation. We will often merge such strong correlated modules. However, in
this case, modules were kept as they were because there were so few of them. And because
the freshwater-saltwater transition was known to be the cause.

Some of the modules found in the gene expression network were large (Figure 4.1C) –
Containing several thousand genes. The large size of the modules is a direct result of the high
mean connectivity (Figure 4.1B). The presence of one or more highly influential external
variables can explain the high connectivity. For example, the transition from freshwater
to saltwater is one such influential variable that results in many genes changing expression
in the same direction and thus becoming co-expressed (Figure 4.3). This results in two
large modules with two eigengenes: one with a negative relationship to the environmental
transition (hME1 – host gene expression module eigengene 1), and one with a strong positive
relationship to the transition (hME2).

Although it is not easy to separate Day as a variable from Water, there are some subtle
differences. However, we will not go into more detail about these differences.

Using gene ontology enrichment, we found that host gene expression module 1 (hM1), for
which hME1 is the eigengene, is over-represented in genes we can unilaterally relate to some
aspect of growth and development. These development genes include genes for extracellular
matrix organization, cell attachment, genes involved in cell differentiation, their shape and
control of their growth rate, genes involved in the development of a skeletal system, and
the formation of new blood vessels (angiogenesis) among many others (see Table 4.3). It no
surprise then that this module, or rather its eigengene, has such a strong negative correlation
to the transition to saltwater. After all, such genes are needed most in freshwater when the
salmon is a juvenile.

During smoltification and transition to the saltwater life stage, the Atlantic salmon
undergoes dramatic shifts in its lipid metabolism (Gillard et al. 2018). While the most sig-
nificant GO-term for genes central to hM2 was intercellular protein transport, the GO-term
with the highest correlating gene was GO:0006646 – phosphatidylethanolamine biosynthetic
process. Phosphatidylethanolamine is the second most abundant phospholipid in the eu-
karyotic cell. In mammals, it is essential for a variety of cellular processes (Calzada, Onguka,
and Claypool 2016). Other terms related to lipid metabolism were also found within the
top 20 most enriched terms.

In freshwater, salmon has an endogenous production of LC-PUFA from other shorter
dietary lipids. In saltwater, the salmon does not need such endogenous production as the
lipids are readily available in its diet. There the salmon has instead adapted to take advan-
tage of this increased LC-PUFA. While the endogenous production of LC-PUFA happens
in the liver, the uptake of lipids must necessarily occur in the gut (Gillard et al. 2018).
Therefore, an increase in the expression of genes involved in both transport and lipid influx
is reasonable.

The GO enrichments in these two modules related to the fresh/saltwater transition are
consistent with some of the changes we would expect to see between freshwater and saltwater.

All module eigenOTUs have a strong correlation to hME1 and hME2, but the strongest
correlation is with mME4 (microbial module eigenOTU 4). From the relative abundance
heatmap, figure 4.4, it is clear why; mM4 has central OTUs that appear only in saltwater
(although some OTUs in the module have low abundances in freshwater). On the opposite
side of the spectrum are OTUs in mM3, which are present in freshwater but disappears in
saltwater. Both modules corroborate the correlations in figure 4.3, but are of little interest
as far as host-microbe interactions go. Of more interest to us are the modules of mME1 and
mME2.

The module mM2 has the greatest diversity of taxa among microbial abundance mod-
ules, as seen in figure 4.5. The module mM2 includes among its ranks, several Cyanobacteria
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of genus Planktothrix, a photosynthetic organism. The hub OTU of this module, OTU_20
photobacterium, is known for both its ubiquity in marine environments, and in the intesti-
nal contents of marine animals (Photobacterium - an overview | ScienceDirect Topics n.d.).
The genus includes some bacteria that form symbiotic relationships with some luminous
fish(Photobacterium - an overview | ScienceDirect Topics n.d.). This symbiosis, however,
is relegated to specialized luminous organs (Photobacterium - an overview | ScienceDirect
Topics n.d.) and not the fish gut. OTU_7 is also a Proteobacteria but in the genus Tropi-
cibacter. The genus Tropicibacter, or genera in close association, degrades organic acids and
are found in seawater all over the world from Indonesia (Harwati et al. 2009) and Japan
(Iwaki, Nishimura, and Hasegawa 2012) to Mediterranean Spain (Lucena et al. 2012). The
ubiquity of these bacteria, along with the presence of Cyanobacteria points to that this
module might contain bacteria from the salmon’s feed. Unfortunately, this study did not
take samples of the feed for comparison, and therefore we cannot say for certain that they
are.

By far the largest of the microbial abundance modules, mM1 has OTUs that persist
across the entire sample space (see figure 4.4, arrow A), crossing the freshwater saltwater
divide. The central OTUs in this module (table 4.6) are also consistent with the finds in
Rudi et al. (2018) (table 4.5).

The hub OTU in this module is OTU_10 (genus Vagococcus). The species is related
to another species that can utilize mucus in the host (Rudi et al. 2018). This ability can
determine how readily a bacterial species can colonize the mucosal surface (Tailford et al.
2015).

So why not just use prevalence and abundance to find interesting OTUs? What would
be the benefit of using network-based methods?

In a 2019 study, Layeghifard, Li, et al. (2019) compared three different approaches for
identifying significant OTUs related to the prediction of patient health in patients suffering
from cystic fibrosis. They found that network interconnectedness, identification of hub
OTUs, was better at predicting the progression of the disease than taxa found by either
high abundance or prevalence.

Agler et al. (2016) theorizes that the host controls the microbiota through hub microbes.
These microbes then influence other microbes, though microbe-microbe interactions ’down
the line’.Network analysis then gives a way of ranking these OTUs in a way that eases
the discovery of potential symbionts to the host. Species in microbial communities are
dependent on each other and should not be regarded as independent entities (Mallick et al.
2017)

As far as the correlations that the mME1 and mME2 have to the environmental shift,
this is most likely because of the increase in abundance that these bacteria have in saltwater
(Rudi et al. 2018). Because the transition from freshwater to saltwater dominates the data,
it is difficult to find correlations to host gene expression modules that are the result of
interaction instead of the influence of external variables. We have seen that mM2 and
especially mM1 contain interesting OTUs. Still, beyond that, the total dominance of the
freshwater-saltwater transition means that it is not possible with this pipeline to detect
more subtle interactions.

Therefore, as stated previously in the results section, a method for the removal of large
effect variables was used. This PC-correction had a massive impact on the creation of
modules, both for the host gene expression data and for the microbial abundance data.
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5.4 Comparison to PCA
Because a module eigennode in a network is the first principal component of the node profiles
in that module, in this case, the gene expression or relative abundance, it was of interest to
better understand the relationship between a principal component analysis and the module
eigennodes. In the context of a PCA, the only difference between a weighted network
analysis and a PCA is the subdivision of the omics variables, i.e. the WGCNA approach
uses network clustering to subdivide genes/OTUs into modules and then performs PCA on
each module while a normal PCA analysis performs a PCA on all variables.

For the analysis of the 16S data, there is hardly any difference in time usage between
a weighted network analysis and a principal component analysis. For the gene expression
data (RNAseq), however, tens of thousands of genes increase the computational resources
needed and time required dramatically between a simple PCA and WGCNA. Because a
weighted network analysis must calculate both a co-expression network (O(n2)) and a TOM
matrix (O(n3)), a PCA has the great advantage of being much quicker (Time usage in
section 2.8.4). What then are the benefits of subdividing the data into smaller groups based
on their correlation i.e., finding modules?

As previously mentioned in the introduction, Kokou et al. (2018b), found a link between
host genetics of cold-resistant fish and its gut microbiota. In their study, they analyzed the
gut microbiota composition using 16S and the liver gene expression of the host response
using RNAseq.

After finding the temperature to be a significant factor in shaping microbial composition
(diversity and richness) using linear mixed model analysis, they used Canonical correlation
Analysis on the top 5 principal components of the microbiome and the transcriptome. This
analysis showed that 80% of the variance in the microbiome could be explained by the
variance in the transcriptomics response.

For identifying influential OTUs, however, Kokou et al. (2018b) did not use the principal
component analysis. Instead, they used Indicator Species Analysis, a way of finding species
that are characteristic of a group of samples. The reason is simple: loadings, to what degree
the original variables influence a principal component, are difficult to interpret biologically.

In figure 4.7 we can see that even in data, which should favor the use of a global method
like PCA, because the saltwater transition dominates the entire data, the module eigennodes
explain more of the variance than the principal components. This variance explanation
illustrates both that the eigengene is a good representation of the expression/abundance in
a module, and that subdividing the data can increase the explanatory power of the analysis.

The statement above is true under certain circumstances but with ambiguous interpre-
tation. Because a PC is a PCA is a linear combination of all variables in the dataset, and
the MEs are only linear combinations of a subset of the variables, they are not directly
comparable. Using all components for both PCA and eigennodes, both will explain 100%
of the variation. Using all variables misses the point of a PCA. If we instead limit the
number of components, multiply each percentage of explained variance with the number of
genes/OTUs in the module. For the PCA, the amount will be constant. Then MEs always
have a slight lead. This total variance score includes the variance from the grey module. If
genes/OTUs from the present in the grey module is removed from the dataset before PCA,
the PCA will end up explaining more of the variance. That the PCA benefits from losing
these genes/OTUs illustrate that the genes present in the grey module limit the explained
variance of the PCA. Grey genes/OTUs contribute only noise to the data.

The above comparison considers the total explained variance of all components. How-
ever, this does not reflect the intended usage of MEs. Analysis in WGCNA only uses the
first principal component as the module eigennode. WGCNA also disregards the ME0. If

63



we focus only on the MEs, without ME0, and multiply these with the number of nodes
(genes/OTUs) in each module, the sum becomes a representative number for the variance
explained of these MEs. If all principal components in the PCA get multiplied by every
the number of gene/OTUs, the PCA will obviously "explain" more "variance." A fairer com-
parison will be one that divides the number of nodes equally between PCA components.
With this approach, MEs "explain more variance." Again, the comparison may be a little
unbalanced. We can, however, argue that a large percentage of known variance in a limited
number of variables is easier to understand and decipher than the linear combination of all
variables in the dataset.

A practical example of the difference between PCA and MEs can be seen in figure 4.6A.
The figure is a biplot of the microbial abundance, and shows how one OTU is especially
influential for the second principal component. OTU_8 Corynebacterium. The same OTU
was marked in figure 4.4 arrow E. While this OTU will undoubtedly help to differentiate
samples based on late-stage freshwater, the fact that it appears to do so alone indicates that
it is of little importance to the community structure as a whole. And since it does not form
any module, it "falls under the radar" in the network analysis.

Because of this difference in focus, genes, and OTUs that are deemed important in the
context of an eigennode will not be considered relevant in a PCA. They, therefore, may not
share any overlap in OTUs or genes. For the PCA, an OTU that is stable will contribute
very little to the overall variance of the data, because, on a global scale, these OTUs have
the least variation. In contrast, an OTU that appears only briefly like OTU_8 will, by its
very sporadic nature, contribute more to the overall variance. However, since this OTU is
not correlated to other OTUs, it will not form a module and will hence not be considered
in the WGCNA approach. PCA gives more a global overview. If we are interested in the
specific genes and microbes that are involved then network analysis offers greater insight.

5.5 Analysis – Removal of large effect variables
PC-correction (Parsana et al. 2019) was applied to both the gene expression data and to the
microbial abundance data. The PC-correction approach estimates the number of principal
components to remove using a permutation based approach from Buja and Eyuboglu (1992)
called parallel analysis (PA). PA was originally intended for finding how many components
to keep in a PCA, but the PC-correction approach instead uses the estimate to know how
many components to remove. This means that the PC-correction approach will remove
broad correlations, but should correlations that are caused by the influence between genes
(Parsana et al. 2019).

One question is if this is valid for the the microbial abundance data or not, it was certainly
not an explicit intent by Parsana et al. (2019). This might depend upon whether the reason
for the observed modularity in the microbial abundance data is caused by response to
external stimuli, or if it is caused by microbe-microbe interactions. It could also be the case
that the PC-correction removes variance were one microbe influences the whole community.

It is also of interest to see if this way of removing confounding variables/large effect
variables is useful for the pipeline, or if it just ends up removing the basis for why this
approach works. Or goal is only indirectly linked to inference of the networks, more critical
is the correlation of eigengenes to eigenOTUs and to external variables.

For the PC-corrected data network and module creation was successful for both the host
gene expression data (Figure 4.8) and the microbial relative abundance data (Figure 4.9).

As expected the module size of the gene expression network decreased dramatically.
which also unsurprisingly makes the mean connectivity very small. Just as an aside: One
remedy for the small module size can be to choose a smaller β-value in the network construc-
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tion. The PC-correction had less impact on the module sizes in the microbial abundance
network 4.9C. The correction even made the mean connectivity of the microbial abundance
network increase (Figure 4.9B). The intermodular correlation as seen in figure 4.9D, have
been reduced. But the intramodular correlations have deceased (Figure 4.9F). The modules
sizes in the microbial abundance network seems less affected by the PC-correction.

We will in the following paragraphs refer to the modules of the PC-corrected network
with the prefix pcc-, and the uncorrected network modules as all-.

Eigengene pcc-hME9 has a positive correlation to eigenOTU pcc-mME2, but this corre-
lation is only influenced by only one sample (Figure 4.13A). Disregarding this "significant"
correlation there was only one strong negative correlation left. For any symbiotic relation
the relation would be mutual and therefore the correlation should be positive. This could
leave us to conclude that there are in fact no interactions between the Atlantic salmon host
and the gut microbiota. Is this likely?

It is useful to recap some of what we know about the microbiome in fish and in the At-
lantic salmon. Host-associated microorganisms everywhere in nature (Sommer and Bäckhed
2013). We know that some fish are able to retain microbes, and that some fish might have
substantial number of symbionts (Sullam et al. 2012). We also know that feed has some
influence on the establishment of gut microbiota in the Atlantic salmon (Jin et al. 2019).
That different diets with low or high LC-PUFA content feed in freshwater influences the
microbial composition in saltwater.

There has been some attempts at elucidating what the core microbiota of the farmed
salmon gut might be, estimates of around 19-20 (Gajardo et al. 2016; Dehler, Secombes,
and Martin 2017) have been found by some. But as discussed in Rudi et al. (2018), the
farmed Atlantic salmon might have a potentially low number of host-associated bacterial
species but that this is only evident when the fish is followed trough the environmental shift
from freshwater to saltwater. Finding no interaction between the Atlantic salmon host and
its gut microbiota is therefore quite significant.

Besides the lack of any strong positive correlations between host and microbiota there
is a strong negative correlation between eigengene pcc-hME3 and eigenOTU pcc-mME6
(Figure 4.13B). Almost every OTU found in pcc-mM6 except OTU_9 (Table 4.11) was
present in all-mM2 (Table 4.7).

After PC-correction, the data should no longer have anything to do with the transition to
salt water, or day, or any other external influence, which significantly affects large numbers
of variables in the data.

Genes in pcc-hME2 have a strong positive correlation to vegetable feed (VO) and a strong
negative correlation to fish oil (FO) (Figure 4.10. The response can be seen to increase in
a step-wise manner (Figure 4.11A), the hub gene of this module shares the same response
(Figure 4.12A) although slightly less clear (Note that data point in Figure 4.12 are not the
averages but all replicates.)

The module is most enriched in different genes that are involved in the synthesis of
cholesterol (21/90). The most connected gene of the module, the hub gene, is lanosterol 14-
alpha demethylase (LOC106588568). This enzyme is the first step in synthesizing zymosterol
(an intermediate in cholesterol biosynthesis) from lanosterol by removing a C-14α-methyl
group, part of a highly conserved metabolic pathway (Lepesheva and Waterman 2007).
Cholesterol is essential in cell membranes and a precursor in the synthesis of bile acids
and steroid hormones (Cerqueira et al. 2016).The success of the PC-correction method in
revealing genes involved in the synthesis of cholesterol shows that the eigengenes can still
be related to external variables.

While the lack of a sharp drop after the ME in the scree plot of the PC-corrected
microbial abundance modules is purely circumstantial evidence figure 4.16 seems to show
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that PC-correction was not beneficial for network construction and module detection in
the microbial abundance data. The TOM matrix graph of the PC-corrected microbial
abundance data further emphasizes this point (Figure 4.14), as the modules seem chaotic.

In the uncorrected data, the network construction and module detection gave several
convincing candidate OTUs that corresponded with Rudi et al. (2018). This correspondence
suggests to us that it is the PC-correction approach does not work for microbial abundance
data.

It is undoubtedly true that the characteristics of the two datasets are wildly different.
For one, the structure of the host gene expression data is much more complex than the
community structure of the microbial community. The PC-correction method has some
assumptions that the microbial abundance data might not fulfill.

One of the fundamental assumptions made in the PC-correction method is that the
network to be inferred has scale-free topology (Parsana et al. 2019). The microbial network
did achieve scale-free topology both before (Figure 4.2) and after the PC-correction of the
data (Figure 4.9), which would exclude this as the reason for the method not working.

5.5.1 What are we measuring?
The use of the 16S gene to detail the complex microbial communities is challenging. The
technology is defined by its many problems (Brooks et al. 2015; Martinson et al. 2019).

For us, the correlation between OTUs can obscure the actual underlying system. OTUs
are imperfect representations of real microbes. While there exist methods that promise finer
resolution of the 16S gene (Callahan et al. 2016), the use of the 16S gene is in it self limiting.

An improvement could be the use of metatranscriptomics Aylward et al. (2015). Treating
the entire microbial community as one transcriptome mapping to orthologous genes Aylward
et al. (2015). While the increase in complexity and data size is dramatic, WGCNA is already
made for handling large data.

Eukaryotic gene regulation is complex. Only 40% of the protein level explained by mRNA
(Vogel and Marcotte 2012). For this thesis, we summarized genes, potentially obscuring gene
isoforms that have different functions. Overlapping transcription factors also means that we
cannot elucidate every behavior of the gene regulatory network from gene expression data
(Kel et al. 2006).

Going even further, true interactions between the host and its microbiome happens
primarily on the protein level. (Guven-Maiorov, Tsai, and Nussinov 2017). Pathogens,
for example, use molecular mimicry to hijack host pathways (Guven-Maiorov, Tsai, and
Nussinov 2016).

Including reference sequences, spike-ins, in future studies, both for RNA-seq and 16S-seq,
will reduce the complexities of data-specific normalization approaches. An RNA spike-in
is a quantity of known sequences that can be identified as separate from the data that is
being analyzed but still shares similar characteristics e.g., GC content, length (K. Chen
et al. 2016). There has also been some work developing a synthetic spike-in for 16S data
(Tourlousse et al. 2016). Spike-ins can give ground truth to the analysis, allowing absolute
quantification and improving reproducibility (Tourlousse et al. 2016).

5.5.2 Proportionality
There has been a discussion about the use of correlation measures on data that, in principle,
should be thought of as compositional (Erb and Notredame 2016; Lovell et al. 2015; Thomas
P. Quinn et al. 2017).
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Counts from sequencers are always proportions of reads, which means that we do not get
absolute counts but compositions. This composition means that what looks like a reduction
in one gene’s expression might instead be the increase of expression from other genes. The
same applies equally to the amplicon sequencing of 16S rRNA or other marker genes. This
fact calls into question the validity of using correlation coefficients such as Pearson or the
biweight midcorrelation on such data.

Avoiding compositions means that normalization methods like transcript per million
(TPM) should not be used for RNAseq data. Normalization techniques such as ’trimmed
mean of M-values’ (TMM) try to re-scale each sample with the assumption that most genes
are not differentially expressed (Robinson and Oshlack 2010). If the assumption holds,
expression values can now be used as if they are absolute values. For now, the pipeline uses
this normalization.

For the 16S data in this dataset we can clearly see in figure 4.4 that stability is the
exception and not the rule. This excludes the use of methods like TMM.

Many papers dealing with correlation of OTUs recommend using transformations such
as the centered log-ratio CLR or the additive log-ratio (ALR) transform (Thomas P Quinn
et al. 2018; Gloor et al. 2017). Both these transformations requires a reference but differ
in how it is found. CLR uses the geometric mean as a reference which means that CLR
also implicitly assumes that most variables remain unchanged (Erb and Notredame 2016).
Again, this is clearly not the case for this dataset. ALR depends on an unchanged reference
(Erb and Notredame 2016). In an exploratory analysis, this would be difficult to find.
Although a solution for this is using a spike-in as mentioned above.

The log-ratio variance (VLR) from compositional data analysis would make a good
measure of association were it not for the fact that it is not comparable between pairs of
variables (Thomas P. Quinn et al. 2017). This makes it unsuitable for correlation network
analysis.

There have been proposed at least three different measures related to proportionality
as substitute for correlation (Thomas P. Quinn et al. 2017). These coefficients offers a
potential to avoid spurious associations that happens when correlation is applied to relative
data (Thomas P. Quinn et al. 2017).

φ, ρp and φs, all are implemented in the R-package propr, see figure 5.1. Of the three, the
measure ρp seems to have the most proper properties of the proportion measures in propr.
It is worth noting that there is still no consensus on the analysis of relative abundance data
(Thomas P. Quinn et al. 2017).
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Figure 5.1: Characteristics of three proportionality measures detailed in Thomas P. Quinn et al. (2017).
From the left: phi = φ, rho = ρp and phs = φs.

Initial tests using ρp as a measure gave uncharacteristic behavior in the mean connec-
tivity plot – Whereas the mean connectivity is expected to monotonically decrease with the
increase of β (Horvath 2011, p.82), the mean connectivity with applied ρp instead gave an
unexpected rise then drop (Figure .4) in the appendix. Further work on the applicability of
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proportionality measures for WGCNA should be done before any conclusive statements are
made.

5.5.3 Experimental design
The evaluation of the pipeline in this thesis was limited to an experiment that was not
designed to answer the question of specific host-microbiome interaction. The main interest
of the study was to elucidate the regulation of lipid metabolism genes during freshwater
and saltwater stages by perturbing the feeds of the fish (Gillard et al. 2018). Because
the microbial data came as an afterthought, there was no analysis done of the microbial
composition of the feed.

While the computational removal of large effect variables worked to reveal genes involved
in response to different feeds, it did not reveal any positive correlations with any OTU
module. There can be several reasons for this finding, one of which is that the removal of 5
principal components was too harsh.

Controlling for large effect variables computationally like we have done in this thesis
should be the last resort. If it can be controlled for in the experimental design, then it
should be addressed there.

It could be that 16S data is not well suited for discovering such interactions. 16S data
has a lot of unfavorable characteristics, such as ill-defined species resolution and high degree
of sparsity. However, there are studies where 16S was used to find such interactions.

These studies however are usually done on much simpler systems with less heterogeneous
data. Such studies usually use mice that are raised germ-free, or mice that have been treated
with antibiotics to become germ-free (Kennedy, King, and Baldridge 2018).

It should be stated that where the Transkingdom approach has been successful is with
more suited experimental design, for example the use of knockout mice (Greer et al. 2016).
For a dataset as complicated and dominated as this, it is difficult to see how potential
interactions could make much impact on the data as a whole.

One way to side-step the problems created by the use of 16S data, is to expand the
experiment to use whole-community transcriptomics. One obvious drawback is the increased
cost and complexity this would add to the gathering of data. However, when correctly pre-
processed, this data could go directly into the pipeline with only slight adjustments to the
pipeline parameters. WGCNA can deal with such large datasets.

In their 2015 paper, Aylward et al. (2015) used WGCNA to analyze the day-night pho-
tosynthetic cycle of different ocean communities of bacteria. To study the transcriptional
regulation of the entire community, Aylward et al. (2015) mapped reads to ortholog protein
clusters, then analyzed the resulting data with WGCNA.

It is also crucial to keep in mind that the gut environment that the microbes inhabit
is very complex and can differ significantly by location (Donaldson, Lee, and Mazmanian
2015). Even on the local level, inter-fold regions of the intestine can have very different
microbes (Donaldson, Lee, and Mazmanian 2015). Keeping track of these locations will
undoubtedly increase the complexity of the sampling procedures. But, if we are to gain a
complete picture of host-microbial interaction, we cannot ignore such details.

5.5.4 Simulation
The only rigorous way to evaluate which settings and methods that give better results are
to know the real classifications and relations within the data. Users can know of such data,
or they can try to simulate it.
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This thesis and pipeline would benefit significantly from a simulated dataset where the
covariance structure is known. For this thesis, sufficiently realistic simulations were not
achievable within the allotted time.

There is a need for general simulators that has proper documentation and has been
benchmarked and validated through peer-review (Escalona, Rocha, and Posada 2016). For
this pipeline and others like it, the simulation would need to create covariance structures
that have has realistic network behavior. What this exactly entails is beyond the scope of
this thesis.

WGCNA has some simulation capability, it is, however, somewhat limited, and indepen-
dent simulation packages would be preferable as in-package-simulations are expected to be
over-optimized to recreate structures and characteristics that the method is sensitive for in
the data.

There exist quite a few simulations packages for simulating DNA sequences (Escalona,
Rocha, and Posada 2016). Unfortunately, most simulators for next-generation sequencing
data are simply intended for testing OTU clustering methods, differential abundance/ex-
pression, or for testing quantification pipelines. For this pipeline, however, emphasis should
be put on controlling the covariance structure of the data.
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.1 Bash script
#!/bin/bash
#SBATCH --ntasks=1 # Number of CPUs
#SBATCH --nodes=1 # Number of nodes
#SBATCH --job-name="name_of_job" # Name for the job
#SBATCH --partition=verysmallmem # verysamellmem < 10 GB RAM, smallmem 10-150GB
#SBATCH --mem=4G # Expected memory usage

module purge
module load anaconda3 # Has pandoc installed
module load R/3.5.0 # Correct R version
module list

Rscript -e "Sys.setenv(RSTUDIO_PANDOC=’/usr/lib/rstudio-server/bin/pandoc’); \
rmarkdown::render(’rna_makeModules_template.Rmd’, \
output_file=’rna_makeModules_template.html’)"

.2 Outlier detection

.3 Lineplots
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Figure .2: Sample clustering of the 16S metagenomics data. Notice that one sample, G_FW_D9_FOVO_2,
is different from all other 16S samples.
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Figure .3: Sample clustering of the RNA-seq transcriptomics data. Notice that one sample,
G_FW_D20_FOVO_2, is different from all other 16S samples.
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Figure .4: Scale free independence and mean connectivity plot. Use of ρp as a association measure on
saltwater samples.
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