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Abstract 

We use a field experiment to estimate the risk preferences of 945 youth and young adult members of 116 

rural business groups organized as primary cooperatives in a semi-arid risky environment in northern 

Ethiopia. Multiple Choice Lists with binary choices between risky prospects and varying safe amounts are 

used to identify the certainty equivalent for each risky prospect. Rank Dependent Utility Models with 

alternatively Wilcox’ (2011) Contextual Utility or Busemeyer and Townsend (1992, 1993) Decision Field 

Theory heteroskedastic error specifications are  used to estimate risk preference parameters and 

parametrized model noise. The study aims to a) assess potential biases associated with Choice List design; 

b) assess a time-saving elicitation method; c) inspect the explanatory power of the predicted risk preference 

parameters for respondents’ investment, income and endowment variables; d) assess how the predictive 

power is associated with model noise and the addition of two low probability high outcome risky prospects 

that may help to capture utility curvature more accurately. Substantial risk parameter sensitivity to Choice 

List design was detected. The rapid elicitation method appears attractive as it facilitates use of a larger 

number of Choice Lists with variable attributes although it is sensitive to bias due to random error 

associated with randomized starting points. The addition of the two Choice Lists with low probability high 

                                                 
1 This research has been partly funded by the NORAD capacity building program NORHED under the project 

“Climate Smart Natural Resource Management and Policy” (CLISNARP), own research funds of the first author and 

serves as a preparation for the research project “Youth Business Groups for Sustainable Development: Lessons from 

the Ethiopian Model” (Youthbus) under the Research Council of Norway research program NORGLOBAL2. We 

thank Mekelle University for facilitation and our field team for good cooperation during data collection. Special thanks 
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outcomes substantially enhanced the explanatory power of the predicted risk preference parameters and 

resulted in substantially higher estimates of the utility curvature parameter (higher risk aversion).  

Key words: Risk preferences, rank dependent utility, probability weighting, measurement error, 

predictive power, field experiment, Ethiopia.  

JEL codes: C90; C93; D14, D81; D90.  
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1. Introduction 

Risk and risk preferences are fundamentally important for the survival strategies of resource-poor 

people living in risky environments. Risk preferences are latent variables that may be revealed 

through experiments or survey questions. However, it is challenging to identify and measure such 

preferences accurately (Choi et al. 2014; Loomes & Pogrebna 2014); Dohmen et al. 2018). No 

consensus exists on the best way to measure risk preferences and there is large variation in the 

methods used (Zhou and Hey 2018). Based on expected utility theory (EUT) risk preferences are 

associated with the curvature of the utility function (Arrow 1965; Pratt 1964). Under rank 

dependent utility (RDU) (Quiggin 1982) and cumulative prospect theory (CPT) (Tversky and 

Kahneman 1992) risk preferences are also associated with probability weighting, while CPT also 

includes loss aversion as a specific form of risk preference associated with losses.  

Potential measurement errors associated with measuring the alternative representations of risk 

preferences have recently received attention by researchers and may be an important reason for 

the large heterogeneity in findings (Chuang and Schechter 2015; Schildberg-Hörisch 2018; 

Dohmen et al. 2018). Especially cognitive ability and the design of the different tools used for 

eliciting risk preferences have been subject to recent research and have revealed new insights 

(Andersson et al. 2016; Benjamin et al. 2013; Burks et al. 2009; Dohmen et al. 2010; 2018; Oechler 

et al. 2009; Vieider 2018). Earlier studies have found that there can be order effects and these may 

be due to learning and fatigue when a large number of cognitively demanding questions have to 

be answered (Harrison et al. 2005; Andersen et al. 2006). The responses to Choice Lists (CLs) may 

also depend on the magnitude levels and the distribution of the part of the CLs that is varying 

(Andersen et al. 2006). There can be anchoring effects and bias towards the middle for 

psychological reasons in such lists if the respondents have to go through the whole lists from the 

top to the bottom (or bottom-up) (Andersen et al. 2006). Recently, more focus has been on the 

possibility of bias due to random choice in CLs (Andersson et al. 2016). Such random choice may 

cause biases if the correct choice is close to one end of the list because of the implied censoring of 

the error distribution. Andersson et al. (2016) found that cognitive ability was confounded with 

such errors and resulted in biased estimates of risk preferences but the extent and direction of such 

bias depended on the design of the CL and the position of the risk-neutral task in the list. 
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We aim to contribute to this literature based on a field experiment where we demonstrate that the 

estimated risk preference parameters and their predictive power can be highly sensitive to the 

design of the CL included in the field experiment. The field experiment used a sample of 945 youth 

and young adults that have joined 116 youth business groups to develop a joint business as a 

complementary livelihood strategy in a risky environment in rural Ethiopia. The respondents have 

limited education with a median of six years completed education.  

We assess how the order of the CLs (we randomized the order), the position of the (randomly) 

chosen starting point in each CL, and the position of the risk-neutral row in the CLs affected the 

estimated noise parameter as well as the estimated risk preference parameters. This allowed us to 

critically examine possible design errors and their bias implications and these lessons can be 

helpful for improving future designs. This is our first contribution. 

We test a rapid elicitation method that may hold the potential to reduce some types of bias in 

addition to being time saving, and inspect its sensitivity to random error bias. Earlier studies have 

revealed problems with anchoring, bias towards the middle and fatigue associated with exposing 

respondents to MCLs involving a large number of questions (Andersen et al. 2006). We use series 

of paired gambles where each requires a choice between a risky prospect and varying sure amounts 

to identify the certainty equivalent for the risky prospect. Multiple Choice Lists (MCLs) with 

varying probabilities for high and low outcomes for the risky prospects are the organizing tool for 

the experimental enumerators but are not presented as lists to the respondents. Our approach with 

randomly selecting a starting row in each choice list (CL) and quickly narrowing in towards a 

switch point aimed to reduce these sources of bias and test potential biases associated with our 

approach. This is the second contribution of this paper. 

Our third contribution relates to CL and MCL design. We build on the approach of l‘Haridon and 

Vieider (2019) and Vieider et al. (2018) and systematically vary the probabilities across the CLs 

and only vary the sure amounts within lists. We aimed thereby to get good estimates of the 

probability weighting function, and particularly so in the area with low and medium probabilities 

for the low outcome in the risky prospect. The semi-arid environment with frequent droughts and 

other shocks in which the respondents live and try to establish their livelihoods is likely to have 

formed their risk preferences in this probability region. At the same time, their joint businesses 

require them to make risky investments such that their risk preferences are expected to affect both 
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individual and group livelihood strategies. Our specific contribution is that we added two choice 

lists in the region with low probability high outcomes in the risky prospect to better map the 

probability weighting function in this probability region and to get more variation in the outcome 

levels that were within our budget and thereby get better estimates of the utility curvature. The 

estimations without and with these two additional CLs and with controls for CL design 

characteristics, random starting point and order of CLs and their impact on the estimated risk 

preference parameters is the third contribution. For this we use two alternative approaches to 

control for the context of CLs, Wilcox’ (2011; 2015) Contextual Utility (CU) and Busemeyer and 

Townsend’s (1992; 1993) Decision Field Theory (DFT) that use the distance between the upper 

and lower limits of the risky prospects as reference points. The advantage of these is that they relax 

the homoscedasticity assumption that is associated with the standard binary choice models (Wilcox 

2011; 2015). 

Our fourth contribution is that we assess the explanatory power of the alternative predicted 

measures of risk preferences in form of their degree of correlation with a number of respondent 

investment, income and endowment variables. We utilize the random CL design characteristics as 

instruments to predict the risk preference parameters and parametrized noise. We use the degree 

of correlation between the predicted risk preference parameters and the real economic variables as 

indicators of the predictive power in line with economic theory without imposing any strong 

causality assumptions. Inconsistencies in signs and low and insignificant correlations are 

potentially indicators of weak designs and estimation methods. Our main finding is that the 

inclusion of the two extra CLs with low probability high outcome risky prospects substantially 

improved the predictive power of the estimated risk preferences.  

We regard the study as exploratory but think that a number of valuable insights were gained that 

can help ourselves and others to design better experimental instruments for future field 

experiments in challenging environments with low resource respondents.  

2. Literature review 

The optimal choice of experimental approach to elicit respondents’ risk preferences depends on 

the respondents’ characteristics, such as cognitive ability, their motivation and willingness to set 

aside time for the experiments, as well as researchers’ resources and objectives. Much of this 

experimental research was implemented with university students as respondents in laboratory 
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experiments. It is not obvious that the best tools used in such contexts also are the best tools for 

eliciting risk preferences from a broader sample of respondents that has less education. We first 

review literature to gain insights about how context and cognitive ability may constrain or 

influence measures of risk preferences. Second, we review how experimental designs may 

influence the measurement of risk preferences.   

2.1.Cognitive Limitations, Measurement Error and Potential Biases 

Burks et al. (2009) and Benjamin et al. (2013) found that individuals with lower cognitive ability 

respond less consistently in risk experiments. Dave et al. (2010) assessed simpler versus more 

complex and sophisticated devices for elicitation of risk preferences. They found that the simpler 

devices were preferable for respondents with lower numeracy skills. A more sophisticated tool 

resulted in more noise for respondents with lower numeracy skills but gave superior predictive 

power for respondents with better numeracy skills. Chuang and Schechter (2015) found weak 

correlations between choices in risk experiments repeated over time for the same respondents in 

field experiments in rural Paraguay. They proposed that this may be due to the low level of 

education of their sample. Choi et al. (2014) proposed that lower decision-making ability may be 

associated with lower decision-making quality. It is, however, challenging to separate the true 

preferences from decision-making ability and quality (Dohmen et al. 2018; Zhou and Hey 2018). 

Choi et al. (2014) proposed to measure the decision-making quality by the degree of consistency 

of choices with economic rationality in terms of completeness and transitivity. They assessed the 

correlations between responses in lab experiments in form of heterogeneity in decision-making 

ability and quality, and how the variations in these are systematically correlated with a 

socioeconomic characteristic in form of wealth. They found an economically large and statistically 

significant correlation between consistency in the experiment and household wealth. A standard 

deviation difference in consistency score for the person in the household in charge of financial 

matters was associated with a 15-19 percent more household wealth.  

Risk preference experiments take many formats and there is yet no consensus on what is the best 

design of risk preference elicitation tasks (Zhou and Hey 2018). Multiple Choice Lists2 (MCLs) 

represent a popular format and include a number of variants from the famous Holt and Laury 

(2002) format with choice between a less risky and more risky lottery where the probabilities of 

                                                 
2 Often called Multiple Price Lists but we think Choice List is a better name for it than a Price List. 
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good and bad outcomes change systematically through the list. A second MCL approach for risk 

preference elicitation compares a risky prospect with a constant probability with a safe option and 

varies the safe option to identify the certainty equivalent amount (Abdellaoui 2011; Vieider et al. 

2018). A third MCL option varies the high or low outcome in the risky prospect but keeps the 

probability constant in each choice list (e.g. Tanaka et al. 2010). 

An increasing number of studies have compared alternative designs and found that the elicited risk 

preferences are sensitive to the design characteristics. For example, Bruner (2009) found that the 

elicited risk preferences are sensitive to whether one varies the probabilities or the outcomes in the 

paired choices in the MCLs. Hey et al. (2009) compared four methods of eliciting risk preferences 

including pairwise choices, certainty equivalent elicitation through willingness to accept second 

price auctions, certainty equivalent elicitation through willingness to pay second price auction, and 

the certainty equivalent elicitation using the Becker-DeGroot-Marschak mechanism. They found 

that the pairwise choice approach was associated with less noise and less bias than the other 

methods. Csermely and Rabas (2016) made a comprehensive assessment of MCL risk preference 

eliciting approaches with a within-subject design using nine different variants of MCLs while 

using the Holt and Laury (2002) design as the benchmark. They found that the paired game 

changing the high reward performed the best. Csermely and Rabas (2016) found that varying the 

potential minimum payoff resulted in more risk averse behavior while including certainty 

equivalents stimulated risk taking. Similarly, Freeman et al. (2019) found that MCLs with a risky 

and a sure option lead to significantly more risky choices.  

Lévy-Garboua et al. (2012) tested the effect of sequential versus simultaneous presentations of the 

Holt and Laury MCL as well as increasing, decreasing and random probabilities in the MCL. They 

found that the responses were sensitive to these variations. Inconsistency errors were more 

common in sequential than in simultaneous presentations and in decreasing and random than in 

increasing probabilities of winning. Risk aversion was significantly higher in sequential than in 

simultaneous framing, in decreasing and random than in increasing probabilities of winning, and 

when stakes were higher.  Similarly, Friedman et al. (2019) found that a monotone sequencing of 

probabilities and prices across MCLs rather than random order resulted in less risk averse 

responses.  
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Bosch-Domènech et al. (2013) assessed the effect of removing some of the rows in the Holt and 

Laury (2012) MCL. The concluded that removal of good pairs where most subjects choose the 

risky option resulted in significantly fewer safe choices implying lower risk aversion. They also 

assessed this for the alternative approach of Abdellaoui et al. (2011) where a risky prospect is 

compared to sure amounts and found that this MCL was less sensitive to the removal of pairs (no 

significant effect). It is likely that comparing two risky prospects is cognitively more demanding 

than comparing one risky prospect with constant probability with varying safe amounts. The latter 

approach (which we also use in this paper) may therefore be less sensitive to such framing effects.  

Drichoutis and Lusk (2012; 2016) indicated that the Holt and Laury (2002) MCL is less suitable 

to identify utility curvature than probability weighting and is confounding these. They suggested 

it may do a better job in identifying the probability weighting function because it varies the 

probabilities within CLs. They proposed and tested an alternative CL, which keeps the probability 

constant (at 0.5) and varies the payoffs of the risky prospects. It is better at capturing utility 

curvature when multiple lists cannot be used3. Still a single list cannot be used to separate the 

utility curvature and probability weighting components for each respondent. Tanaka et al. (2010) 

used three CLs to elicit three parameters, one for utility curvature, one for probability weighting, 

and one for loss aversion. Errors in elicitation with such an approach also leads to correlated errors 

due to their exact identification requirement. More CLs than parameters to be estimated are needed 

to get statistical measures of measurement error. Variants of such MCLs have become common 

and have also resulted in more focus on measurement errors related to risk preference elicitation.  

Another issue is how the MCL information is presented to the respondents. Habib et al. (2017) 

used the Holt and Laury (2002) game as a base and compared alternative approaches to presenting 

the MCL information in form of pairwise text versions and alternative graphical pie charts. They 

hypothesized that the graphical pie charts may convey clearer information and that the respondents 

would appear less risk averse due to a better ability of calculating expected returns with the 

graphical presentation (reduced ambiguity for ambiguity averse individuals). Their results 

supported this hypothesis but the statistical significance was weak due to noise and small samples.  

                                                 
3 Holt and Laury (2002) used multiple lists with varying payoffs.  
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2.2.Choice List Design and Measurement Error 

Poulton and Poulton (1989) and Andersen et al. (2006) found that there is a tendency towards 

anchoring towards the middle of CLs. With the risk neutral task placed in the middle of a list this 

could thus also pull towards more risk-neutral responses. With the risk neutral task placed towards 

one end of the list and a more risk averse task placed in the middle it could lead to a bias in direction 

of risk aversion also for risk neutral respondents.  

Andersson et al. (2016) assessed how limited cognitive skills could contribute to random choice 

in MCLs and how this in interaction with the CL design could lead to biased estimates of risk 

preferences. They found that bias due to random choice was more important than bias towards the 

middle (not significant) in their study. They suggested that the correlations found between 

cognitive skills and risk aversion found in some earlier studies could be due to measurement errors 

creating spurious correlations.  

Early experiments found that decision makers tend to be more risk averse when a riskless option 

is available compared to when a certain alternative is unavailable and this has been called the 

“certainty effect” or “preference for certainty” associated with the common ratio effect (Allais 

1953; Camerer 1995).  

Callen et al. (2014) used two CLs in a study in Afghanistan and found a “preference for certainty” 

as a risky prospect was compared to a certain amount in one CL and with another risky prospect 

in another CL while changing the probabilities for good and bad outcomes of the first risky 

prospect in both CLs. This result is puzzling because several other studies that use CLs comparing 

a risky prospect with sure amounts tend to find less risk averse responses than for other CL designs 

(Csermely and Rabas 2016; Vieider et al. 2018; L’Haridon and Vieider 2019; Freeman et al. 2019). 

Vieider (2018) proposed that this puzzling reversal is due to the specific design of the two CLs of 

Callen et al. (2014) and suggested that the “preference for certainty” is driven by random errors 

by the respondents. He also proposed an alternative design which should result in the opposite 

“preference for uncertainty” if random error and not “preference for certainty” is the underlying 

explanation. He implemented both experiments and found what he predicted. He also found 

indications of reference dependence and loss aversion being invoked in the CLs of Callen et al. 

(2014) where probabilities were changed instead of sure amounts and this may have resulted in 

bias towards higher levels of risk aversion being measured.  
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Freeman et al. (2019) found that embedding a pairwise choice in a CL increases the fraction of 

subjects choosing the riskier lottery from 23% to 45% when the safer alternative is certain, while 

this did not affect the choices when the safer alternative is risky. They suggested that the 

introduction of the CL eliminates the “certainty effect” by introducing the risk from the random 

incentive mechanism associated with only one task being randomly chosen for real payout.  

 

3. Choice lists and elicitation procedure 

3.1.Risk preference experiment 

We used a series of Multiple Choice Lists (MCLs) where each choice list (CL) was designed with 

a risky prospect that did not vary within the CL. We used the certainty equivalent approach. The 

risky prospect was compared to varying certain amounts to identify the certain amount where the 

respondents preferred to switch between the risky prospect and the certain amount. The experiment 

was incentivized by drawing one of the CLs randomly to be played for real and randomly drawing 

a row in that CL. If the certain amount was chosen for this row, respondents received this amount. 

If the risky prospect was chosen, the die is used to identify the outcome, see Appendix 2 for details. 

CL design 

We gave emphasis to careful mapping of the probability weighting function in the area with 5-

50% probabilities of bad outcome (low probability negative outcomes) because of our focus on 

livelihood risks that our sample respondents are exposed to, such as climate risks. The risks of 

drought for example are within this probability range in this semi-arid area. Other production risks 

or health risks also fall in this category of low probability bad outcome risks that typically have 

been associated with risk aversion. The two last series are included to capture the responses to low 

probability high gain opportunities and to map out that part of the weighting function (although a 

lower precision can be expected there) and to get a better estimate of the utility curvature by 

including larger good outcome values.  

Table 1 gives an overview of the 12 CLs used in the risk experiment. The order of the CLs was 

randomized. By including the order of each CL in the estimation, we could test for order effects 

such as learning and fatigue. In the estimation, we tested for the order effect on the noise parameter 

as well as the risk preference parameters.  



11 

 

 

Table 1. Overview of risky prospects in risk game 

Choice 

List 

Prob(bad outcome) Bad outcome, 

ETB 

Good outcome, 

ETB 

1 1/20 0 100 

2 1/10 0 100 

3 2/10 0 100 

4 3/10 0 100 

5 5/10 0 100 

6 1/20 20 100 

7 1/10 20 100 

8 2/10 20 100 

9 3/10 20 100 

10 5/10 20 100 

11 15/20 20 300 

12 19/20 20 1500 

Note: ETB=Ethiopian Birr. 

 

Use of such MCLs may create bias for various reasons as they imply a very large number of binary 

choices with small differences from row to row in each list. This can make respondents bored and 

reduce their effort in identifying switch points that accurately reflect their preferences. This could 

lead to random choices, starting point bias or bias towards the middle (Andersen et al. 2006; 

Andersson et al. 2016). Freeman et al. (2019) have also found that such CLs with a choice between 

a risky and a sure option can lead to significantly more risky choices compared to isolated binary 

choices.  

The position of the risk-neutral task row based on linear probability weighting (EUT) varied across 

the CLs. We tested for potential bias due to the positioning of the risk-neutral row in each CL. 

This was done for the noise parameter as well as the risk preference parameters.  

Elicitation procedure 

We used a procedure to reduce the number of questions and reduce the risk of starting point bias 

and bias towards the middle. This procedure may also reduce the tendency towards higher 

probability of choice of the risky lottery (Freeman et al. 2019). Our procedure was as follows: 

The MCLs were not shown to the respondents but were the guiding tool for the experimental 

enumerators. The amount of money for the risky prospect (good and bad outcome) for the CL was 

put on the table in front of the respondents. A 20-sided die was used to explain the probabilities 
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that varied across CLs. For the initial question in each CL a randomized (in advance by the 

experimental enumerator) row on the CL was identified as the first binary choice between the row-

specific certain amount to be compared with the risky prospect and the given probability for the 

good versus the bad outcome for the risky prospect in the CL. The respondent answered whether 

s/he prefers the risky prospect or the certain amount. If the certain amount is preferred, the 

instructions to the enumerator were to go to the bottom of the list and ask the preference for the 

risky prospect versus the lowest certain amount. This is likely to lead to a preference for the risky 

prospect. Then the enumerator was guided to go to the middle between the randomly chosen first 

row/certain amount and the lowest amount, and so on to rapidly narrow in towards the switch 

point. This implied that maximum one switch point was identified in each CL. It also implied a 

more specific focus on a sequence of more isolated binary choices. Random errors in each binary 

choice may, however, also lead to substantial errors. We tested for starting point bias associated 

with the random starting row in each CL as a potential source of bias in the first decision in each 

CL. This was done for the noise parameter as well as the risk preference parameters.  

 

3.2. Sample and data 

Table 2 provides distributional information about some key respondent characteristics potentially 

indicative of cognitive ability and economic indicators that may be correlated with risk 

preferences. The gender dummy variable was included as quite a few studies have identified a 

gender difference in risk preferences.  

Figures 1a and 1b give an overview of the distribution of the switch points in the first 1-10 CLs 

and CL 11 and 12. We observe a weakness in the design of CLs 11 and 12 as there is a substantial 

share (20-25%) having no switch point. This may have resulted in bias in our estimation due to 

censoring of the error distribution. We attempt to test and partially control for this by specifying 

the position of the risk neutral row in the CLs. We assess this also by including the probability of 

bad outcome in the parametrized error specification. The error should increase with this 

probability. This error may also have reduced the value added of these two CLs in terms or their 

added contribution to the predictive power. This is one of the issues we assess. 
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Table 2. Basic sample characteristics. 

Stats Male 

head, 

dummy 

Age, 

years 

Education 

years 

Other 

individual 

income, 1000 

ETB 

Durable 

assets, 

number 

Investments 

last year, 

1000 ETB 

Tropical 

livestock 

units 

p10 0 19 0 0 0 0.43 0 

p25 0 22 2 1.2 0 1.4 0 

p50 1 27 6 5 1 4.12 0.7 

p75 1 35 9 10 2 10.5 2.1 

p90 1 42 10 18 3 20.1 3.3 

mean 0.68 29.37 5.38 7.68 1.33 9.42 1.24 

se(mean) 0.02 0.32 0.13 0.33 0.05 0.57 0.05 

N 945 945 945 945 945 945 945 

 

 

Figure 1a and 1b. Cumulate switch point distributions for the 1-10 CLs and CL 11 & 12. 
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4. Estimation methods 

4.1. Estimation of risk preference parameters 

Each choice of the respondent is between a risky and a safe option. The risky option gives a high 

outcome (x) with probabilility p and a low outcome (y) with probability 1-p. We call the safe 

amount s. We place the choice between the risky and safe prospect into a Rank Dependent Utility 

(RDU) framework (Quiggin 1982). The net utility or value return for a specific risky and a safe 

option can then be formulated as: 

(6)          1RDU w p u x w p u y u s         

where w(p) is the probability weighting function. This model also nests the EU model with linear 

probability weighting. Since we only allow non-negative outcomes this model is also consistent 

with Cumulative Prospect Theory (CPT) (Tversky and Kahneman 1992)4.  

We use the two-parameter Prelec 2 probability weighting function (Prelec 1998) to capture the 

behavioral phenomenon that decision makers typically overweight low probabilities and 

underweight high probabilities: 

(7) ( ln )( ) , 0, 0pw p e
        

This is a strictly increasing and continuous function      : 0,1 0,1w p   with an inverse, 1w , that 

is also a probability weighting function. 

We use a constant partial relative risk aversion (CPRRA) utility function: 

(8)       1 1
1 1

r
u x r b x

 
      

where r is the constant partial relative risk aversion (CPRRA) coefficient5 and b is a base 

consumption level set at a daily wage rate rather than wealth. This implies that we assume limited 

                                                 
4 L’Haridon and Vieider (2019) elicited probability weighting functions also in the loss domain but found that the 

shape of the probability weighting function in the loss domain was quite close to that of the gain domain function in 

a large multi-country sample.  
5 This implies that we assume partial asset integration and relate the risky prospects with a small base consumption 

level, based on empirical evidence of limited asset integration (Binswanger 1981; Rabin 2000; Wik et al. 2004; 

Andersen et al. 2008). 
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asset integration and this is in line with empirical evidence (Binswanger 1981; Rabin 2000) and 

assumptions made by others (e.g. Andersen et al. 2008).  

As our respondents have limited education, they may have problems understanding the games or 

making calculations correctly in the games, we expect errors in their responses, and such errors 

may imply violations of consistency. Experimental enumerators may also be a source of error and 

there may be starting point bias or bias associated with the random order of the CLs. The data from 

these experiments are therefore noisy and such noise needs to be taken into account in the 

estimation. Each decision between a risky and a sure amount may thus be subject to such errors. 

As a first step to factor in the CL design we draw on the contextual utility models of Wilcox (2011; 

2015) and the decision field theory (DFT) of Busemeyer and Townsend (1992; 1993).  

The suitability of random utility models (RUM) for estimating risk preferences has recently been 

questioned (Apesteguia and Ballester 2018). Apesteguia and Ballester (2018) claim that non-

monotonicity may cause bias and therefore recommend the use of random parameter models 

(RPM) instead. However, Conte and Hey (2018) question the monotonicity argument and find that 

RUM performs as well as RPM in a set of simulations with RUM and RPM models. RPM may 

work well and be preferable in the case of the simpler EU model with only one parameter capturing 

risk preferences. Vieider (2019, pers. com.) notes that Apesteguia and Ballester’s (2018) point 

does not apply to Certainty Equivalents as long as utility is compared to monetary amounts. 

The contextual utility (CU) model of Wilcox (2011) does not suffer from the monotonicity 

problem in our case with simple prospects and allows joint estimation of utility curvature and a 

two-parameter probability weighting function and a noise parameter that can be made dependent 

on prospect and respondent characteristics. The CU model in the case of RDU implies that the 

probability of the choice of the risky prospect over the safe prospect is: 

(9)  
   

Pr
RDU

Risky F
u x u y

 
    

  

This implies a standardization to the utility difference of the high versus low outcomes of the risky 

prospect, where the safe outcome falls between these, and with weighting through the utility and 

probability weighting functions. A limitation of this approach may be that it only weighs in the 
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utility and not the probability weighting. The following approach may therefore be more 

appropriate in the case of RDU6: 

The decision field theory (DFT) adjustment based on Busemeyer and Townsend (1992; 1993) and 

Wilcox (2015) brings the probability weighing into the denominator as well as follows: 

(10)    
       

Pr
1

RDU
Risky F

u x u y w p w p


 

 
         

  

Both these approaches have the common property that a higher level of risk aversion will lead to 

a lower probability of choosing the risky prospect. The DFT approach also has the advantage that 

as p approaches 0 or 1 the probability of choosing the stochastically dominating alternative 

approaches certainty (Wilcox 2015). 

We estimate these models by specifying them as probit normal probability density functions for 

respondents i and CLs m and include a heteroskedastic Fechner error im with contextual utility: 

(11)       
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and the DFT approach with heteroskedastic Fechner error im : 

(12)    
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The errors allow for within respondent errors in identification of switching points and thereby the 

CL-level estimates of the weighting function and utility curve parameters. The models are 

estimated by maximum likelihood for the log likelihood functions for these density functions that 

are related to the switch point in each CL: 

(13)  

                                                 
6 We also tested models with “Contextual Income” where the utility difference was replaced by income difference in 

the risky prospect. However, these models did not perform as well due to convergence problems when making the 

noise and risk preference parameters linearly dependent on CL design and respondent characteristics.  
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We allow the total likelihood to depend linearly on CL design characteristics (m), risk preference 

parameters ( , ,i i ir  ), individual observable characteristics ( iz ), enumerator dummies (
k ), and 

noise that varies systematically across respondents and CLs (
im ). We cluster standard errors at 

the individual respondent level.  

4.2. Assessment of predictive power of alternative estimated risk preference 

parameters 

We assess the predictive power of the alternative estimates of the risk preference parameters by 

assessing their correlations with four investment (individual investment during last year), income 

(individual income during last year) and endowment variables (number of durable assets and 

livestock endowment measured in Tropical Livestock Units). We represent all of these in the 

vector Yi below. Equations 14a-d show the four specifications with the four alternative predicted 

risk preference parameters as well as the predicted noise parameters. The randomized CL design 

characteristics have served as instruments in the identification of the risk preference variables. 

These design characteristics are not directly correlated with the investment, income and 

endowment variables. A high level of significance of these design characteristics in the previously 

outlined regressions for risk preference parameters is a requirement for these instruments to be 

considered strong, see Tables 6-8 for the evidence. These variables do not only pick up noise, they 

also directly improve the estimates of the preference parameters. 

The models were estimated as GLM with a log link which assumes ln(E[y|X]) = Xb. This 

specification is suitable for regressions with nonnegative skewed dependent variables (Nichols 

2010). It allows Y to be censored at zero and we had such observations for all four dependent 

variables. We estimated the following four alternative models for each of the four Y variables: 
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As an additional robustness check, these models were run without the predicted noise parameters 

as well. Experimental enumerator fixed effects were included in all models. Standard errors were 

bootstrapped, resampling youth groups with 500 replications. The AIC (Akaike Information 

Criterion) and BIC (Bayesian Information Criterion) measures of model fit were used to compare 

the different specifications without and with the predicted noise parameters and models with 10 

CLs vs. models with 12 CLs. The significance and stability of the risk preference parameters were 

used as additional indicators of the predictive power. As additional robustness checks, random 

effects panel Poisson models were used for the number of durable assets variable and random 

effects panel Tobit models were used for the livestock endowment variable. In terms of parameter 

signs and significance, the key results were very robust to these alternative specifications, see 

Appendix Tables 11A and 12A for the results of the additional Poisson and Tobit specifications. 

5. Results and discussion 

5.1.Parameter distributions by CL inclusion and error specification 

Structural models were estimated without and with the two last CLs (11 and 12) which included 

lower probability higher gain outcomes. This was done with the two alternative approaches to 

capture the contextual variation in CLs to allow heteroskedastic errors (CU of Wilcox 2011; 2015; 

and DFT of Busemeyer and Townsend 1992; 1993) where we have included controls for CL 

specific and individual characteristics. The models include experimental enumerator and district 

fixed effects as well. We first get an overview by looking at the predicted parameter distributions 

before we go to the tables with more detailed econometric results for the alternative models. 

Figures 2a and 2b present the predicted parameter distributions with the DFT and CU 

specifications for models based on the first 10 CLs. We see that the distributions are quite similar 

and with the utility curvature (CPRRA parameter) distributed around risk neutrality. However, 

with the very limited variation and relatively small outcome levels in the 10 first series, we may 
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not expect to detect much utility curvature. The distribution of the Prelec 2 alpha parameter has 

the main peak around 0.5-0.6 and a smaller peak around 1 showing that the large majority of the 

respondents have the inverted S-shaped probability weighting function while a small group has 

close to linear probability weighting like for EUT. These results are quite in line with several 

studies utilizing large student samples. Bruhin et al. (2010) found that about 80% of their student 

samples from Switzerland and China had non-linear probability weighting while about 20% had 

more EUT like preferences with linear probability weighting. We see that the Prelec 2 beta 

parameters had the peak slightly above 1, indicating a weak pessimistic tendency for the majority.  

In a cross-country study of risk preferences among university student samples that included 

Ethiopia, l’Haridon and Vieider (2019) found the Prelec 2 alpha parameter to be somewhat higher 

(just above 0.6) and the Prelec 2 beta parameter to be substantially lower (about 0.73), signaling 

more optimistic preferences. Vieider et al. (2018) assessed the risk preferences of a representative 

sample of 500 farmers in Ethiopia and found a high level of risk tolerance and high level of 

optimism also in their sample of farmers similar to that in the Ethiopian student sample. They had 

7 CLs with probabilities varying from 0.05 to 0.95 and the good outcome was constant at 40 ETB 

and bad outcome at 0 across the CLs. The respondents were presented the full CL in each case and 

the CLs used 1 ETB intervals for the sure amounts. Our estimates for the low resource rural youth 

and young adult sample in Figures 2a and 2b for the 10 CLs are similar as those in the above 

studies for risk tolerance and probabilistic insensitivity but our sample is less optimistic than in 

their studies. The picture changes, however, when we add the two extra CLs with low probability 

high payouts (see Figures 3a and 3b). 
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Figures 2a and 2b. Risk preference parameter distribution with 10 CLs and DFT versus Wilcox 

contextual utility (CU). 

In Figures 3a and 3b the data for all 12 CLs have been included, otherwise they are estimated in 

the same way as in Figures 2a and 2b. We see a remarkable change in the distribution of the utility 

curvature (CPRRA) parameter with the peak now around 1, indicating substantial risk aversion. 

There is still a minority that is risk neutral or risk loving.  This shows that the parameter estimates 

are very sensitive to the construction of CLs and the range of outcome values in these. The 

inclusion of the two CLs with low probability high gains gave more outcome variation that could 

pick up more utility curvature. But here is also another potential driver of the change related to the 

design of these two CLs. Figure 1b illustrated the cumulative distribution of switch points in the 

sample and we see that about 25% of the sample never switched for these two CLs, implying a 

censoring of the responses. This in combination with random choices could possibly explain biased 

estimates of risk aversion for a substantial share of the sample. This requires further examination. 

When it comes to the Prelec 2 alpha parameter distribution, it was not much affected by the 

addition of the two extra CLs, while the Prelec 2 beta parameter distribution has shifted towards 



21 

 

 

the left in both Figures 3a and 3b, indicating more optimistic expectations while there is also a 

smaller group with more pessimistic expectations that is more pronounced in Figure 3b than in 3a. 

  

 

Figures 3a and 3b. Risk preference parameter distributions with 12 CLs and DFT vs. Wilcox 

contextual utility (CU). 

Next, we assess the error distributions in the four model alternatives. Due to the differences in 

weighting in the CU and DFT models the errors in these are not directly comparable. We therefore 

compare pairwise the DFT10 and DFT12 error distributions and the CU10 vs. CU12 error 

distributions in Figures 4a and 4b. We suspect that the addition of the two last CLs has resulted in 

a wider spread in the errors, particularly given the extent of corner outcomes in Figure 1b. Figure 

4a, with the DFT specifications, indicates that the spread may have increased but that the error size 

has been reduced for the majority of the sample. We see a weaker tendency of the same also in 

Figure 4b, with the CU specifications. We see that there is a share of the observations with errors 

that are two times or more the size of the peak of the distributions. Note that this is after we have 

controlled for potential order effects, the random starting point row number, the risk neutral task 
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number in the CL, the probability of bad outcome, the number of years of completed education, 

and experimental enumerator fixed effects in the error part of the structural models.   

 

Figures 4a and 4b. Error distribution in RDU-DFT10/DFT12 versus RDU-CU10/CU12 models 

5.2.Assessment of the stability and sensitivity of risk preference parameters to 

CL design and contextual econometric framing 

We will now look more closely at the econometric model results. We start by inspecting the four 

models for the parsimonious specifications without any controls. These are presented in Table 3. 

We see the same sharp increase in the utility curvature parameter (CPRRA) from -0.19-0.03 to 

0.80-0.98 after adding CL 11 and 12 with low probability high outcomes. However, we should 

keep in mind that these parameters may be biased due to order effects, random choices, the 

positions of the risk neutral task in each CL, and the random starting point in each CL. 

Furthermore, the Prelec 2 alpha parameter is increased from 0.45 to 0.57-0.60 with the addition of 

the two extra CLs while the Prelec 2 beta is reduced from 0.96-1.06 to 0.82-0.85 (more optimistic). 

Figure 5 illustrates the probability weighting functions for these four models. 
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Table 3. CU and DFT models with 12 and 10 Choice lists (without CL 11 and 12). 

 
(1) (2) (3) (4) 

 
CU 12 CU 10 DFT 12 DFT 10 

CPRRA 0.798*** -0.186** 0.983*** 0.0345 
 

(0.059) (0.067) (0.035) (0.071) 

Prelec 2 alpha 0.574*** 0.454*** 0.596*** 0.446*** 
 

(0.008) (0.007) (0.008) (0.007) 

Prelec 2 beta 0.851*** 1.055*** 0.822*** 0.961*** 
 

(0.024) (0.030) (0.021) (0.030) 

CU/DFT Noise 0.152*** 0.168*** 0.444*** 0.450*** 
 

(0.004) (0.004) (0.010) (0.012) 

N 116577 98911 116577 98911 

Note: Standard errors in parentheses, corrected for clustering at respondent level. * p<0.05, ** p<0.01, *** p<0.001 

 

Figure 5. Probability weighting functions based on estimates in Table 3 
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Table 4 gives an overview of CL characteristics that have been included as controls. As an extra 

test for possible errors associated with cognitive ability, the number of years of completed 

education was included. We also included the probability of bad outcome as we put more emphasis 

on CLs with relatively low probability bad outcomes given our context. We therefore expect errors 

to be higher when the probability of bad outcome is higher. We expected that the majority of 

respondents would be in the risk averse zone for most of the CLs (assuming linear probability 

weighting), based on earlier studies of risk preferences in developing countries in general and 

Ethiopia in particular (Binswanger 1981; Wik et al. 2004; Yesuf et al. 2009) which found quite 

high levels of risk aversion. This is also due to the inverted S-shape of the probability weighting 

function, given that most of our CLs focused on the region with high probability of good outcomes 

(low probability of bad outcome). In the estimation we included the task row number where the 

linear-probability risk neutral row is located in the CL as a control variable to assess the potential 

bias associated with this position (Andersson et al. 2016), including the squared of this row number 

as well, to test for an eventual non-linear effect.  

It is important to remember that we did not present the full CL to the respondents, just the binary 

choice associated with a randomly chosen starting row in the CL. The position of the risk neutral 

row is therefore only affecting the probability that it is inside or outside the region of the list 

determined by the random starting row and the decision made at that row.  

Table 4. CL characteristics and education included as controls in the error specification 

Variable Obs Mean Std. Dev. Min Max 

Page number (order of CL) 112,606 3.45 1.69 1 6 

Starting point task number 112,606 0.54 1.84 0 10 

Risk neutral task number 112,606 3.09 1.83 1 8 

Prob. of Bad outcome 112,606 0.32 0.27 0.05 0.95 

Education, years completed 112,606 5.39 3.96 0 17 

Note: We made some robustness checks for the position of the risk neutral row relative to the starting point task 

number and for the starting point being in the risk-loving zone. These are included in Appendix 1. 

Table 5 presents the results for the correlations between these controls and the noise parameter in 

the four models. First, we see a significant order effect for the errors as the errors decline with 

page number (indicating the sequence of the CLs). This may indicate a learning effect with 
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exposure to multiple CLs. We tested for a non-linear order effect as well but it was insignificant. 

Second, there is an effect of the position of the random starting point in the CLs. With a starting 

point further down in the list, the error is higher. This is an indication of random error in the first 

decision in each list. We will return to how this may have resulted in bias in the risk preference 

parameters below. Third, there is a significant non-linear effect of the position of the linear 

probability risk neutral row in the CL. The error is larger with a placement higher up on the list 

but the effect is declining as evidenced by the significant positive parameter for the quadratic 

variable. We interpret this as there being higher likelihood of random errors when the risk-neutral 

row is placed close to the top of the CLs. This is also in line with the findings of Andersson et al. 

(2016). Fourth, there is a tendency towards larger errors when the probability of bad outcome is 

higher even though this is only significant in one of the CU models, CU12, after the two high 

probability of bad outcome CLs were included. Adding those two CLs substantially increases the 

positive error correlation with this probability as we suspected. This also implies that we should 

expect higher accuracy for the predicted probability weighting function in the low probability of 

bad outcome region. Fifth, the education variable only became significant in the models with all 

12 CLs but the signs in all models were negative. This is in line with our expectation that less 

education is associated with higher likelihood of error commitments. The lack of significance in 

two of the models indicates that the other sources of potential bias are more important than the 

general low and variable education level in our sample. Risk perceptions may be conceptually well 

understood also by individuals with limited education as they have grown up in this kind of risky 

environment. They may, however, be less used to assessing prospects with low probabilities of 

high gains and that may be why education is more important for the comprehension of the last two 

CLs. Andersson et al. (2018) suggested that age may be associated with cognitive ability model 

noise. We tested this as well but found no such significant correlation. This could be because our 

sample consists of young adults while age-related cognition problems tend to appear at older age.  
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Table 5. Model error and error sources in CU and DFT models 

Noise DFT10 DFT12 CU10 CU12 

Page number -0.0113*** -0.0067** -0.0032*** -0.0038*** 
 

(0.003) (0.002) (0.001) (0.001) 

Startp. Taskno 0.0059*** 0.0091*** 0.0021*** 0.0029*** 
 

(0.002) (0.001) (0.001) (0.000) 

Risk neutral Taskno -0.103*** -0.0882*** -0.0322*** -0.0268*** 
 

(0.006) (0.006) (0.003) (0.002) 

Risk neutral Taskno, squared 0.0100*** 0.0092*** 0.0035*** 0.0030*** 
 

(0.001) (0.001) (0.000) (0.000) 

Prob. Bad outcome 0.102*** 0.268*** -0.016 0.0451*** 
 

(0.022) (0.018) (0.012) (0.008) 

Education, years -0.003 -0.0036* -0.001 -0.0012*   

 (0.002) (0.001) (0.001) (0.000) 

Enumerator FE Yes Yes Yes Yes 

Constant 0.590*** 0.470*** 0.208*** 0.170*** 
 

(0.033) (0.028) (0.012) (0.010) 

N 95600 112606 95600 112606 

Note: Standard errors in parentheses, corrected for clustering at respondent level. * p<0.05, ** p<0.01, *** p<0.001. 

Tables 6, 7 and 8 present the results for the structural models for each risk preference parameter. 

We have included the tests for order effects, random starting point row and the position of the 

linear probability risk neutral row in each CL, that we suspect may bias the parameter estimates. 

In addition, we included age, gender dummy, education, birth rank, and number of brothers as 

person characteristics and district fixed effects as controls for broader economic characteristics. 

We start by inspecting their correlations with the utility curvature parameter (Table 6).  

Table 6 indicates a weak order effect, significant at 5% level in two out of the four model 

specifications and with positive signs in all four models. This tendency may also be a result of the 

learning that caused a reduction in the noise parameter as we saw in Table 5. It may indicate a 

weak tendency to underestimate the CPRRA parameter in the first CLs compared to later CLs. 

Second, the starting point task row number was significant to highly significant and with a positive 

sign in all models. This implies that a starting point further down in the list was associated with a 
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higher measured risk aversion parameter. This may indicate errors associated with the random 

starting point being near the top of the list and resulting in a movement to the top of the list in the 

second choice while the latent parameter is located below the starting point. The addition of the 

last two CLs reduced this upward starting point bias in risk aversion estimates, as it can be seen 

that the size of the parameter for starting point row is much reduced from the 10 CL to the 12 CL 

models. This is, however, more than compensated for with the much higher constant terms in the 

12 CL models. Third, the linear probability risk neutral row number is significant in three of the 

four models but the signs are changing from positive in the 10 CL models to negative in the 12 CL 

models. We interpret this as an indication that placing the risk neutral row further down in the list 

in the first 10 CLs leads to a weak tendency towards higher estimates of risk aversion (the 

parameter was significant at 5% level only in one of these two models. The parameter for the risk 

neutral row number was, however, highly significant and with negative sign in both the 12 CL 

models. We interpret this as a strong indicator of bias towards overestimated risk aversion with 

these lists included if this bias is not corrected for. Many of the respondents are likely to be more 

willing to take risk in this probability region. The censoring of the safe amounts in these CLs lead 

to a bias in the CPRRA distribution, at least for a part of the sample (close to 25% appeared to be 

censored in Figure 1b). The inclusion of the risk neutral row number in these models may only 

partly have reduced this bias. Furthermore, we see very weak correlations between the CPRRA 

parameter and the observable individual characteristics and this was also the case for the district 

fixed effects. Finally, after the inclusion of the bias correction variables for CL design and the 

socioeconomic variables, we still see a large variation in the constant terms in the models, which 

may be an indicator of remaining uncorrected biases that vary across models.   
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Table 6. Utility curvature estimates (CPRRA) in CU and DFT models 

CPRRA DFT10 DFT12 CU10 CU12 

Page number 0.0596* 0.019 0.039 0.0564*   
 

(0.027) (0.026) (0.025) (0.022) 

Startp. Taskno 0.0641*** 0.0388** 0.0644*** 0.0222*   
 

(0.013) (0.012) (0.011) (0.009) 

Risk neutral Taskno 0.0856* -0.170*** 0.070 -0.173*** 
 

(0.038) (0.026) (0.045) (0.021) 

Age, years 0.001 0.005 0.003 0.005 
 

(0.007) (0.006) (0.008) (0.005) 

Male, dummy 0.054 -0.013 -0.021 -0.117 
 

(0.108) (0.104) (0.115) (0.081) 

Education, years 0.003 0.021 0.011 0.020 
 

(0.024) (0.024) (0.026) (0.016) 

Birth rank 0.011 0.026 0.016 0.024 
 

(0.028) (0.022) (0.030) (0.021) 

Number of brothers 0.050 0.034 0.068 0.0600*   
 

(0.035) (0.026) (0.039) (0.027) 

District Fixed Effects Yes Yes Yes Yes 

Constant -0.605* 1.123*** -0.583* 0.763**  

 (0.297) (0.296) (0.296) (0.271) 

Note: Standard errors in parentheses, corrected for clustering at respondent level. * p<0.05, ** p<0.01, *** p<0.001. 

Number of observations are the same as in Table 4. 

 

The correlations between the Prelec 2 alpha parameter and the CL and socioeconomic observables 

are presented in Table 7. First, we see a significant order bias in the 12 CL models unlike in the 

10 CL models, but the coefficients are positive in sign in all models. Learning may therefore have 

a tendency to reduce our measure of probabilistic insensitivity. Second, for the random starting 

point task row we have a strongly significant positive effect of higher task row number in the 10 

CL models but not in the 12 CL models. This seems to be due to the same type of random error 

effect as we saw for the CPRRA parameter. A starting point high up in the list (small row number) 

may have increased the probability of random error and going towards the risk neutral/higher alpha 
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parameter region in the list and thereby leading to an upward bias in the Prelec 2 alpha parameter. 

It is intriguing that this significant bias has disappeared when adding the last two CLs. Third, the 

linear probability risk neutral row position was highly significant and positively associated with 

the Prelec 2 alpha parameter in all models. This may imply that having positioned the risk neutral 

row too high in the CLs may have resulted in a downward bias in the Prelec 2 alpha parameter in 

all models. This illustrates the sensitivity to the CL design even when the full CL is not presented 

to the respondents because the randomly sampled rows combined with random choice errors can 

lead to bias.  

Table 7. Prelec 2 alpha estimates in DFT and CU models 

Prelec 2 alpha DFT10 DFT12 CU10 CU12 

Page number 0.006 0.0094* 0.005 0.0077**  
 

(0.003) (0.004) (0.003) (0.003) 

Startp. Taskno 0.0069*** -0.003 0.0091*** 0.000 
 

(0.002) (0.002) (0.002) (0.001) 

Risk neutral Taskno 0.0758*** 0.0877*** 0.0725*** 0.0727*** 
 

(0.006) (0.004) (0.006) (0.005) 

Age, years -0.0017* -0.0027** -0.0023* -0.0026*** 
 

(0.001) (0.001) (0.001) (0.001) 

Male, dummy 0.006 0.010 0.014 0.022 
 

(0.015) (0.016) (0.016) (0.013) 

Education, years -0.003 -0.004 -0.004 -0.003 
 

(0.002) (0.003) (0.002) (0.002) 

Birth rank -0.007 -0.006 -0.008 -0.005 
 

(0.004) (0.004) (0.004) (0.003) 

Number of brothers 0.005 -0.002 0.004 -0.002 
 

(0.005) (0.005) (0.005) (0.005) 

District Fixed Effects Yes Yes Yes Yes 

Constant 0.443*** 0.470*** 0.468*** 0.488*** 
 

(0.042) (0.047) (0.049) (0.040) 

Note: Standard errors in parentheses, corrected for clustering at respondent level. * p<0.05, ** p<0.01, *** p<0.001. 

Number of observations are the same as in Table 4. 
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Among the respondent characteristics, it is only age that is significant and with a negative sign in 

all four models. Older age is therefore associated with a stronger inverted-S shape of the 

probability weighting function. Finally, we see that there is limited variation in the constant term 

for the parameter across the models. This may indicate that the bias correction terms have been 

able to correct much of the bias variation across models for the Prelec 2 alpha parameter. 

Table 8 presents the correlations for the Prelec 2 beta parameter, which captures the elevation of 

the probability weighting function. First, we see no sign of order bias for this parameter but there  

Table 8. Prelec 2 beta estimates in DFT and CU models 

Prelec 2 beta DFT10 DFT12 CU10 CU12 

Page number -0.016 0.009 -0.007 -0.008 
 

(0.013) (0.013) (0.012) (0.009) 

Startp. Taskno -0.0239*** -0.0264*** -0.0215*** -0.0159*** 
 

(0.005) (0.005) (0.005) (0.003) 

Risk neutral Taskno -0.0428*** 0.0449*** -0.0390** 0.0375*** 
 

(0.011) (0.008) (0.014) (0.007) 

Age, years -0.002 -0.004 -0.004 -0.004 
 

(0.004) (0.003) (0.005) (0.003) 

Male, dummy -0.044 -0.004 0.003 0.045 
 

(0.058) (0.059) (0.065) (0.040) 

Education, years -0.011 -0.016 -0.016 -0.015 
 

(0.013) (0.013) (0.015) (0.008) 

Birth rank -0.014 -0.015 -0.017 -0.013 
 

(0.014) (0.012) (0.016) (0.010) 

Number of brothers -0.018 -0.019 -0.027 -0.0286*   
 

(0.017) (0.015) (0.020) (0.013) 

District Fixed Effects Yes Yes Yes Yes 

Constant 1.414*** 0.889*** 1.465*** 0.967*** 
 

(0.160) (0.165) (0.181) (0.124) 

Note: Standard errors in parentheses, corrected for clustering at respondent level. * p<0.05, ** p<0.01, *** p<0.001. 

Number of observations are the same as in Table 4. 

is a highly significant effect of the position of the starting row, which is a sign of random choice 

error associated with the first decision in each CL. Such errors have in this case resulted in a 
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stronger downward bias (optimism bias) when the random starting point was further down in the 

CL. Or, it could have been associated with a pessimism bias if the starting point is high in the list 

(low row number). Third, we see that the position of the risk neutral task row is highly significant 

in all models but with opposite signs in the 10 CL versus the 12 CL models. As the risk neutral 

task row number is low in CLs 11 and 12, this seems to have created a downward (optimism bias) 

that has more than counteracted the pessimism bias associated with average low risk neutral task 

row number in the 10 CLs.   

Finally, we see that none of the observable respondent characteristics were significantly correlated 

with the Prelec 2 beta parameter (except number of brothers in one model). It is perhaps surprising 

that the gender dummy variable was not significantly correlated with any of the risk preference 

parameters given that many studies have found women to on average to be more risk averse than 

men. E.g. Vieider et al. (2018) found such a gender difference in their sample of Ethiopian farmers. 

As only one third of our sample are women, there may have been a stronger selection for women 

such that the more risk tolerant women have joined these youth business groups. We are unable to 

test this with our data, however. In general, our study is in line with other studies that find limited 

correlation between observable individual characteristics and risk preference parameters (von 

Gaudecker et al. 2011; l’Haridon and Vieider 2019).  

 

5.3.Correlations between risk preference parameters and investment, income 

and endowment variables: CL design and predictive power 

We will now investigate the degree of correlation between the alternative predicted risk preference 

parameters with 10 versus 12 CLs for the CU and DFT contextual framing alternatives and a set 

of four investment, income and endowment variables. Many studies have found weak and unstable 

predictive power of risk preferences and recent studies have found that design errors may be one 

important source of these confusing and inconclusive findings (Chuang and Schechter 2015; 

Andersson et al. 2016; Vieider 2018). Our study is exploratory and investigates the predictive 

power after controlling for potential biases due to CL design, without and with the addition of the 

two extra low probability high return CLs, without and with the predicted errors, and with the 

alternative CU versus DFT contextual framing approaches (Wilcox 2011; 2015; Busemeyer and 

Townsend 1992; 1993). 
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Given the weak predictive power of elicited risk preference estimates in earlier studies and the 

insignificant correlation with observable respondent characteristics in the previous section, our H0 

hypothesis is that “Our predicted risk preference parameters are uncorrelated with investment, 

income and endowment variables of the respondents”. We test a set of alternative hypotheses 

against this H0 hypothesis. Our H1 hypothesis states that “The predicted CPRRA parameter is 

negatively correlated with investment, income, and endowment variables”. Our H2 hypothesis 

states that “The Prelec 2 alpha parameter is positively correlated with investment, income and 

endowment variables (a lower alpha indicates a more probabilistically risk averse individual who 

invests less and therefore makes less income)”. Our H3 hypothesis states that “The Prelec 2 beta 

parameter is negatively correlated with the investment, income and endowment variables (more 

optimistic respondents invest more, have higher income and more endowments)”. Hypothesis H4 

states that “A higher noise parameter is associated with lower investment, income and endowment 

variables (more noise is associated with lower cognitive ability and lower cognitive ability is 

associated with poorer economic performance)”. On the 10 CL vs. 12 CL basis for the estimated 

parameters we test the following two hypotheses; H5 states that “The addition of the two low 

probability high return outcome CLs improves the predictive power of the predicted risk 

preference parameters and particularly so for the utility curvature parameter in line with 

hypothesis H1”; and H6 states that “Addition of the extra CLs is associated with more measurement 

error and does not add to the predictive power of the predicted parameters”. For the CU versus 

DFT contextual framing approaches we do not have any hypothesis about which one is better. 

We assess these hypotheses for four variables; a) the log value of investments last year (Table 9); 

b) the log value of individual income during last year (other than group income) (Table 10); c) the 

number of durable assets owned by the individual (Table 11); and d) the livestock endowment of 

the individual measured in Tropical livestock units (Table 12).  

We see from Tables 9-12 that there is strong support for hypothesis H1. The hypothesis has strong 

support for all the dependent variables. The CPRRA parameter has a negative sign in all models 

and is significant in 31 of 32 models. Hypothesis H2 (Prelec 2 alpha parameter) has to be rejected. 

The parameter is negative in most cases and even significant and negative in many cases. Stronger 

probabilistic insensitivity (lower alpha) is associated with higher endowments and income, but was 

only significant in two of the eight investment models. Hypothesis H3 (Prelec 2 beta parameter) 
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is also strongly supported by the results. All models give negative parameter estimates and these 

are significant in 28 out of 32 models. More pessimistic preferences are associated with lower 

investments, income and endowment levels. Hypothesis H4 (noise as sign of limited cognitive 

ability and poor economic performance) has to be rejected. Surprisingly, the noise parameter has 

positive sign in all models. It is insignificant in two of  the four investment models (Table 9) but 

is significant in all the remaining 12 models. This is a puzzling result that we do not have good 

explanations for. It is all the more puzzling as other studies using larger and broader samples with 

more heterogeneity have found stronger effects of cognitive ability and measurement error 

(Andersson et al. 2018; Dohmen et al. 2010; 2018). 

Hypothesis H5 states that the two extra CLs add to the predictive power of the models cannot be 

rejected. In fact, the predictive power for the models with the 10 CLs was weak and it was 

substantially improved by adding the two extra CLs for all four outcome variables in Tables 9-12. 

Adding the noise parameter improved the fit of almost all model, with the exception of the 12 CL 

investment models in Table 9, as evidenced by the AIC and BIC fit characteristics. The coefficients 

on the CPRRA parameter became larger in absolute value and in many cases more significant in 

the models with 12 CLs compared to the matched 10 CL models. The coefficients on the noise 

parameters were lower in the 12 CL versus 10 CL models, and the parameters on the predicted risk 

preference parameters were more stable in the 12 CL models than the 10 CL models when 

comparing the models without and with the predicted noise parameters. This is indicating that the 

measurement error problem did not get worse with the addition of the two extra CLs, rather the 

opposite. The additional controls for potential design weaknesses appear to have worked well. The 

identification strategy using the randomization of order and starting point variables as instruments 

appears also to have worked well, and particularly so in the 12 CL models. We therefore have to 

reject hypothesis H6. Finally, when we compare the Wilcox Contextual Utility (CU) and the DFT 

models, both perform well in the 12 CL cases and give similar results.  
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Table 9. Correlations between investment and predicted risk preference parameters from models with 10 CL vs. 12 CL with DFT and 

CU specification, models without and with predicted noise parameters.  
 

(1) (2) (3) (4) 
 

(5) (6) (7) (8) 

loginvest DFT10 DFT10+e DFT12 DFT12+e loginvest CU10 CU10+e CU12 CU12+e 

Rrdu-DFT10 -0.520*** -0.619*** 
 

             Rrdu-CU10 -0.613*** -0.679*** 
 

              
(0.127) (0.132) 

 
             

 
(0.122) (0.122) 

 
             

Ardu-DFT10 -0.096 -0.452 
 

             Ardu-CU10 0.119 -0.131 
 

              
(0.255) (0.255) 

 
             

 
(0.219) (0.225) 

 
             

Brdu-DFT10 -0.572** -0.848*** 
 

             Brdu-CU10 -0.643*** -0.884*** 
 

              
(0.203) (0.217) 

 
             

 
(0.174) (0.191) 

 
             

Nrdu-DFT10 
 

2.477** 
 

             Nrdu-CU10 
 

6.919** 
 

               
(0.910) 

 
             

  
(2.591) 

 
             

Rrdu-DFT12 
  

-1.428*** -1.429*** Rrdu-CU12 
  

-1.012*** -1.015***    
(0.232) (0.242) 

   
(0.171) (0.171) 

Ardu-DFT12 
  

-0.884*** -0.918*** Ardu-CU12 
  

-0.366 -0.433    
(0.214) (0.240) 

   
(0.246) (0.252) 

Brdu-DFT12 
  

-1.933*** -1.937*** Brdu-CU12 
  

-1.625*** -1.640***    
(0.334) (0.344) 

   
(0.312) (0.312) 

Nrdu-DFT12 
   

0.184 Nrdu-CU12 
   

1.530     
(0.594) 

    
(1.881) 

Constant 2.717*** 2.282*** 5.451*** 5.408*** 
 

2.678*** 2.169*** 4.397*** 4.264***  
(0.304) (0.339) (0.553) (0.561) 

 
(0.235) (0.324) (0.481) (0.500) 

AIC 4275.9 4270.6 4236.4 4238.3  4258 4251.6 4227.6 4229 

BIC 4348.6 4348.2 4309.2 4316.0  4330.8 4329.2 4300.4 4306.6 

N 945 945 945 945  945 945 945 945 

Note: Glm log link models. Dependent variable: Log of individual investment last year. Bootstrapped standard errors in parentheses, resampling youth groups, 

500 replications. * p<0.05, ** p<0.01, *** p<0.001. Rrdu=CPRRA parameter, Ardu=Prelec 2 alpha parameter, Brdu=Prelec 2 beta parameter, Nrdu=Noise 

parameter. All models with experimental enumerator fixed effects. Model fit characteristics: AIC (Akaike Information Criterion) = -2*ln(likelihood) + 2*k.  BIC 

(Bayesian Information Criterion) = -2*ln(likelihood) + ln(N)*k.
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Table 10. Correlations between income and predicted risk preference parameters from models with 10 CL vs. 12 CL with DFT and 

CU specification, models without and with predicted noise parameters. All models with experimental enumerator fixed effects.  

 
(1) (2) (3) (4) 

 
(5) (6) (7) (8) 

loindinc DFT10 DFT10+e DFT12 DFT12+e loindinc CU10 CU10+e CU12 CU12+e 

Rrdu-DFT10 -0.323 -0.781***               Rrdu-CU10 -0.538** -0.814***                
(0.221) (0.185)               

 
(0.192) (0.162)               

Ardu-DFT10 -0.677 -2.229***               Ardu-CU10 -0.503 -1.526***                
(0.350) (0.341)               

 
(0.390) (0.328)               

Brdu-DFT10 -0.387 -1.691***               Brdu-CU10 -0.565 -1.646***                
(0.352) (0.340)               

 
(0.294) (0.269)               

Nrdu-DFT10  12.00***               Nrdu-CU10  33.59***                

 (1.543)               
 

 (3.853)               

Rrdu-DFT12   -2.387*** -2.325*** Rrdu-CU12   -1.724*** -1.678***  

  (0.299) (0.317) 
 

  (0.226) (0.198) 

Ardu-DFT12   -2.340*** -3.314*** Ardu-CU12   -1.948*** -2.651***  

  (0.399) (0.459) 
 

  (0.438) (0.446) 

Brdu-DFT12   -3.388*** -3.376*** Brdu-CU12   -3.016*** -3.050***  

  (0.416) (0.457) 
 

  (0.408) (0.357) 

Nrdu-DFT12   
 6.299*** Nrdu-CU12    21.52***  

  
 (1.120) 

 

   (3.342) 

Constant 2.990*** 0.725 8.595*** 6.822*** 
 

3.103*** 0.407 7.250*** 5.005***  
(0.480) (0.554) (0.749) (0.863) 

 
(0.391) (0.498) (0.663) (0.657) 

AIC 4993.4 4925.6 4920.1 4880.8  4984.4 4904.7 4926.3 4880 

BIC 5066.1 5003.2 4992.8 4958.5  5057.2 4982.3 4999.1 4957.6 

N 945 945 945 945  945 945 945 945 
Note: Glm log link models. Dependent variable: loindinc=Log of other individual income last year. Bootstrapped standard errors in parentheses, resampling 

youth groups, 500 replications. * p<0.05, ** p<0.01, *** p<0.001. Rrdu=CPRRA parameter, Ardu=Prelec 2 alpha parameter, Brdu=Prelec 2 beta parameter, 

Nrdu=Noise parameter. All models with experimental enumerator fixed effects. 
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Table 11. Correlations between number of durable assets and predicted risk preference parameters from models with 10 CL vs. 12 CL 

with DFT and CU specification, linear panel models with enumerator fixed effects, without and with predicted noise parameters.  

 
(1) (2) (3) (4) 

 
(5) (6) (7) (8) 

durassetno DFT10 DFT10+e DFT12 DFT12+e durassetno CU10 CU10+e CU12 CU12+e 

Rrdu-DFT10 -2.296** -3.319***               Rrdu-CU10 -2.838*** -3.254***                
(0.719) (0.399)               

 
(0.630) (0.358)               

Ardu-DFT10 -1.231 -5.624***               Ardu-CU10 -1.237 -3.553***                
(1.022) (0.951)               

 
(0.900) (0.601)               

Brdu-DFT10 -1.068 -4.792***               Brdu-CU10 -2.933** -5.508***                
(1.029) (0.712)               

 
(0.987) (0.571)               

Nrdu-DFT10  34.62***               Nrdu-CU10  99.68***                

 (3.739)               
 

 (8.164)               

Rrdu-DFT12   -7.548*** -6.579*** Rrdu-CU12   -5.664*** -4.746***  

  (0.660) (0.637) 
 

  (0.536) (0.499) 

Ardu-DFT12   -5.847*** -8.202*** Ardu-CU12   -5.518*** -6.692***  

  (0.763) (0.795) 
 

  (0.847) (0.870) 

Brdu-DFT12   -10.50*** -9.241*** Brdu-CU12   -9.975*** -8.529***  

  (0.981) (0.920) 
 

  (0.994) (0.899) 

Nrdu-DFT12   
 17.80*** Nrdu-CU12    64.49***  

  
 (2.313) 

 

   (6.640) 

Constant 2.321 -4.312*** 19.40*** 12.37*** 
 

4.321*** -4.772*** 16.43*** 7.203***  
(1.422) (1.211) (1.645) (1.603) 

 
(1.295) (1.075) (1.474) (1.463) 

AIC 3289.9 3113.5 3126.5 3022  3269.4 3040.3 3134 2998.4 

BIC 3362.7 3191.2 3199.3 3099.6  3342.1 3118 3206.8 3076 

N 945 945 945 945  945 945 945 945 
 Note: Glm log link models. Dependent variable: durassetno=Number of durable assets. Bootstrapped standard errors in parentheses, resampling youth groups, 

500 replications. * p<0.05, ** p<0.01, *** p<0.001. Rrdu=CPRRA parameter, Ardu=Prelec 2 alpha parameter, Brdu=Prelec 2 beta parameter, Nrdu=Noise 

parameter. All models with experimental enumerator fixed effects. 
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Table 12. Correlations between livestock endowment and predicted risk preference parameters from models with 10 CL vs. 12 CL 

with DFT and CU specification, glm log link models with enumerator fixed effects, without and with predicted noise parameters. 

 
(1) (2) (3) (4) 

 
(5) (6) (7) (8) 

TLU DFT10 DFT10+e DFT12 DFT12+e TLU CU10 CU10+e CU12 CU12+e 

Rrdu-DFT10 -1.820* -2.862***               Rrdu-CU10 -2.862*** -3.337***                
(0.869) (0.623)               

 
(0.709) (0.650)               

Ardu-DFT10 0.753 -3.169               Ardu-CU10 1.035 -1.350                
(2.529) (3.520)               

 
(2.079) (2.758)               

Brdu-DFT10 -1.267 -5.471**               Brdu-CU10 -2.917** -5.767***                
(1.124) (1.845)               

 
(0.989) (1.633)               

Nrdu-DFT10  38.06***               Nrdu-CU10  107.8***                

 (6.978)               
 

 (17.850)               

Rrdu-DFT12   -9.677*** -8.395*** Rrdu-CU12   -7.181*** -6.339***  

  (1.392) (1.309) 
 

  (1.052) (0.943) 

Ardu-DFT12   -4.422*** -6.735*** Ardu-CU12   -2.972* -4.002***  

  (1.165) (0.968) 
 

  (1.439) (1.216) 

Brdu-DFT12   -13.55*** -11.82*** Brdu-CU12   -12.33*** -10.91***  

  (1.910) (1.795) 
 

  (1.746) (1.552) 

Nrdu-DFT12   
 18.86*** Nrdu-CU12    68.52***  

  
 (3.522) 

 

   (12.030) 

Constant 1.504 -6.182* 23.07*** 14.94*** 
 

3.184 -6.636* 18.18*** 8.462***  
(1.882) (2.915) (2.703) (2.337) 

 
(1.740) (2.634) (2.122) (2.029) 

AIC 3606 3498.5 3441.3 3375.1 AIC 3579.7 3439.9 3450.2 3358.4 

BIC 3678.8 3576.1 3514.1 3452.7 BIC 3652.5 3517.5 3523 3436 

N 945 945 945 945 N 945 945 945 945 
Note: Dependent variable: TLU=Livestock endowment (Tropical livestock units Bootstrapped standard errors in parentheses, resampling youth groups, 500 

replications.  * p<0.05, ** p<0.01, *** p<0.001. Rrdu=CPRRA parameter, Ardu=Prelec 2 alpha parameter, Brdu=Prelec 2 beta parameter, Nrdu=Noise 

parameter. See Table 12A in the appendix showing the results from alternative panel Tobit models with enumerator random effects. 
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Finally, we wanted to assess the robustness of the predictions to the inclusion of additional controls 

and the correlations between the investment, endowment and income variables. This assessed in 

Table 13 for the DFT models with 12 CLs. Model (1) is the last model in Table 9, while we have 

included the durable assets and livestock endowment variables from Tables 11 and 12 as RHS 

variables in model (2) in Table 13. We see that the coefficients for risk preference parameters are 

reduced but retain the same signs and the coefficient for Prelec 2 alpha becomes insignificant. The 

CPRRA and Prelec 2 beta results remained signifant also after the inclusion of income in model 

(3) and other respondent charactersiticst in model (4). Figure 6 shows the predictived marginal 

effects for the three risk preference parameters for models (1) -(3). 

Table 13. DFT-CL12 Investment models with additional controls 
 

(1) (2) (3) (4)  
DFT_CL12a DFT_CL12b DFT_CL12c DFT_CL12d 

Rrdu-DFT12 -1.429*** -0.963*** -0.909*** -1.467**   
(0.253) (0.206) (0.217) (0.491) 

Ardu-DFT12 -0.918*** -0.299 -0.219 -1.429  
(0.260) (0.241) (0.232) (0.811) 

Brdu-DFT12 -1.937*** -1.285*** -1.205*** -2.102**   
(0.360) (0.305) (0.315) (0.723) 

Nrdu-DFT12 0.184 -1.041 -1.186* -0.716  
(0.619) (0.578) (0.588) (1.419) 

Tropical livestock units  0.003 0.003 0.001  

 (0.008) (0.008) (0.007) 

Durable assets, number  0.0331*** 0.0311*** 0.0349***  

 (0.008) (0.008) (0.008) 

Log individual income   0.004 0.003  

  (0.004) (0.004) 

Male, dummy   
 0.0898***  

  
 (0.022) 

Age, years   
 -0.00654*    

  
 (0.003) 

Education, years completed   
 -0.008  

  
 (0.006) 

Enumerator fixed effects Yes Yes Yes Yes 

Constant 5.408*** 4.455*** 4.308*** 6.328***  
(0.586) (0.498) (0.528) (1.343) 

N 945 945 945 945 

Note: Dependent variable: Log of individual investment last year. Bootstrapped standard errors in parentheses, 

resampling youth business groups, 500 replications. * p<0.05, ** p<0.01, *** p<0.001. Rrdu=CPRRA parameter, 

Ardu=Prelec 2 alpha parameter, Brdu=Prelec 2 beta parameter, Nrdu=Noise parameter. All models with experimental 

enumerator fixed effects. 
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Figure 6. Predicted marginal responses to risk preference parameters for DFT models with 12 CL 

with additional controls: a) error & enumerator FE, b) & endowments, c) & income. 

5.4. Does loss aversion make a difference? 

We did not measure loss aversion in the same comprehensive way as the other risk preference 

measures. However, we included one CL to get a measure of loss aversion, see Appendix 3. This 

CL allowed choice between two risky prospects at each low in the list with 50% chance of negative 

outcomes, and 50% chance of positive outcomes. The two risky prospects on each row differ in 
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size of negative outcomes and expected value. A switch point further down in the list (higher row 

number) indicates higher loss aversion (a preference of prospect A with smallest loss even though 

expected return is lower than for prospect B. We used the row number just below the switch point 

as a measure of loss aversion rank. Also for this CL the rapid elicitation method was used. We ran 

a separate regression to assess whether the loss aversion rank was correlated with the predicted 

risk preference and noise parameters, the random starting point in the loss aversion CL and 

observable respondent characteristics. 

In Table 14 we included to row number for random starting row in the loss aversion CL. This CL 

was not included for about 10% of the sample. In Table 14 we have included models to first inspect 

the effect of this loss of observations although we did not expect it to affect the results significantly. 

Then we have included the loss aversion variable with the control for potential starting point bias 

in the third model of each of the DFT12 and CU12 model versions, and, finally, we have included 

additional respondent characteristics as controls. 

Table 14 shows that the key parameters only changed slightly for the reduced sample. The key 

finding is that loss aversion was significant (at 1% level) and negatively correlated with 

investment. Higher levels of loss aversion seem to be associated with less investment. This result 

is robust to the inclusion of additional controls and is similar in the DFT and CU specifications. 

There was no significant effect of the random starting point, a source of measurement error in loss 

aversion. This variable was significant when loss aversion rank was regressed on it, risk 

preferences, noise and other variables, see Appendix Table A14. The Appendix Table also shows 

that loss aversion rank was not significantly correlated with the other risk preference parameters 

or noise in the structural models. Men were significantly less loss averse than women, while we 

recall that we did not find such a significant gender difference for the other risk preference 

parameters in the structural models. However, we see in Table 14 that men also invested 

significantly more than women after we have controlled for loss aversion, other risk preferences, 

measurement error and other observable respondent controls.  
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Table 14. The additional value of loss aversion as a predictor of investment behavior 

 
DFT12-1 DFT12-2 DFT12-3 DFT12-4 

 
CU12-1 CU12-2 CU12-3 CU12-4 

Rrdu-DFT12 -1.429*** -1.375*** -1.354*** -1.478* Rrdu-CU12 -1.015*** -0.993*** -0.977*** -0.809*    
(0.246) (0.265) (0.253) (0.666) 

 
(0.166) (0.184) (0.172) (0.362) 

Ardu-DFT12 -0.918*** -1.121*** -1.108*** -1.662 Ardu-CU12 -0.433 -0.655* -0.670* -0.757  
(0.243) (0.308) (0.288) (1.063) 

 
(0.246) (0.297) (0.288) (0.752) 

Brdu-DFT12 -1.937*** -1.906*** -1.874*** -2.103* Brdu-CU12 -1.640*** -1.637*** -1.615*** -1.347*    
(0.354) (0.380) (0.364) (0.955) 

 
(0.299) (0.338) (0.315) (0.649) 

Nrdu-DFT12 0.184 0.500 0.456 0.850 Nrdu-CU12 1.530 1.779 1.754 6.918  
(0.608) (0.664) (0.617) (2.050) 

 
(1.917) (1.965) (2.027) (13.660) 

Loss aversion 
  

-0.0159** -0.0132** 
   

-0.0154** -0.0131**  

rank 
  

(0.005) (0.005) 
   

(0.005) (0.005) 

LA stp 
  

0.000 0.001 
   

0.000 0.001    
(0.004) (0.004) 

   
(0.004) (0.004) 

Tropical  
   

-0.003 
    

-0.003 

livestock units 
   

(0.008) 
    

(0.008) 

Durable assets,  
   

0.0357*** 
    

0.0348*** 

number 
   

(0.009) 
    

(0.009) 

Log individual  
   

0.002 
    

0.002 

income 
   

(0.004) 
    

(0.004) 

Male, dummy 
   

0.0801** 
    

0.0750*       
(0.028) 

    
(0.030) 

Age, years 
   

-0.006 
    

-0.003     
(0.004) 

    
(0.003) 

Education, years  
   

-0.002 
    

0.008 

completed 
   

(0.008) 
    

(0.017) 

Enumerator FE Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Constant 5.408*** 5.336*** 5.389*** 5.949*** 
 

4.264*** 4.338*** 4.409*** 3.377*    
(0.580) (0.675) (0.639) (1.752) 

 
(0.460) (0.557) (0.541) (1.668) 

AIC 4238.3 3792.7 3786.5 3765.3 
 

4229.0 3786.7 3781.2 3764.4 

BIC 4316.0 3868.5 3871.8 3879.0 
 

4306.6 3862.5 3866.5 3878.0 
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N 945 843 843 843 
 

945 843 843 843 

Note: Dependent variable: Log of individual investment last year. Bootstrapped standard errors in parentheses, resampling youth business groups, 500 replications. 
* p<0.05, ** p<0.01, *** p<0.001. Rrdu=CPRRA parameter, Ardu=Prelec 2 alpha parameter, Brdu=Prelec 2 beta parameter, Nrdu=Noise parameter. All models 

with experimental enumerator fixed effects. Loss aversion is measured as rank by the row number below the switch point in the CL. LA stp is a control for the 

randomized starting point row in the CL testing for starting point bias.   Models DFT12-1 vs DFT12-2 and CU12-1 vs CU12-2 assess the effect of attrition related 

to loss of observations when including the loss aversion variable (we do not have the loss aversion CL included for about 10% of the sample).  
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6. Conclusions 

Our study aimed to contribute to the literature on elicitation of risk preferences in a developing 

country setting for respondents with limited education and that are searching for better livelihoods 

in a risky environment. We elicited relatively comprehensive measures of risk preferences based 

on rank dependent utility and a Prelec 2-parameter probability weighting function based on a 

Multiple Choice List approach and a new approach to rapid pairwise elicitation of certainty 

equivalents of risky prospects. 

In line with Andersson et al. (2016) we found that the estimated risk preference parameters were 

sensitive to random errors and their interactions with the design of Choice Lists, and that these 

potentially can lead to substantial bias in the predicted parameters. The obvious solution may not 

be to place the linear probability risk neutral task in the middle of the list, however, when this is 

not a good representation of the average respondent. A two-stage approach may be recommended 

for the placement of the risk neutral row in each CL. A pilot study may help to identify a proxy 

probability weighting function. An identified inverted-S shaped probability weighting function 

implies that the middle row in a list should be in the risk-seeking area for low probability high 

outcome CLs while the middle row should be in the risk averse area for the low probability low 

outcome CLs. Still this kind of adjustment does not eliminate potential biases for respondents with 

tail-end preferences when random choice can cause censoring of the error distribution. Additional 

controls for CL design may help to control for such biases. 

We found that our approach with random starting point and quickly narrowing in on the switch 

point has several advantages. It reduces the number of questions needed to find the switch point in 

each CL. It identifies only one switch point per series. It should be less prone to bias towards the 

middle of the list or anchoring towards the top or bottom of the lists. The rapid approach still has 

some problems. It is sensitive to random choice bias associated with the randomized staring point 

in each CL. It is also sensitive to the CL format such as location of risk-neutral row which affects 

the probability whether the starting point falls above or below this point. Still, the time saved for 

each CL can be used to include more CLs within the same time and budget frame, with extra power 

to control for CL design bias and starting point bias during estimation. We therefore think there is 

a net gain from using this approach compared to going through each CL from the top to the bottom 



44 

 

 

or bottom-up. This may be particularly helpful in environments with computer-illiterate 

respondents where experimental enumerators are necessary. 

Ten of our CLs were designed to map the probability weighting function in the 5-50% probability 

of bad outcome region as these were the types of risks we though were most common in the 

environment of our respondents. However, we added two CLs with low probability high outcome 

risky prospects to assess whether this could help to better map the probability weighting function 

and separately identify the curvature of the utility function. We realized afterwards that we had 

not allowed sufficient variation in the risk loving zone for the safe amounts in these lists and this 

resulted in a share of respondents with no switch point. Random choice could therefore potentially 

contribute to more bias and weaker predictive power with the inclusion of these lists. The addition 

of these lists resulted in a sharp increase in the estimated utility curvature even after we attempted 

to control for CL design bias, which may not have been completely eliminated. However, the 

addition of these two CLs substantially improved the predictive power of the risk preference 

parameters in terms of their correlations with investment, income and endowment variables that 

also became less sensitive to the inclusion of the predicted noise parameters from the models.  

We did not find that the noise parameter was strongly correlated with education and poor economic 

performance, rather the contrary. This indicates that our CL design and elicitation approach works 

quite well also for respondents with limited education. We think our findings and the lessons from 

our design errors provide valuable insights for the future design of more optimal instruments. We 

suspect that the large variation in estimates of risk preferences and the weak predictive power that 

has been found in many other studies can be due to similar weaknesses in design (Chuang and 

Schechter 2015; Dohmen et al. 2018; Schildberg-Hörisch 2018; Vieider 2018; Zhou and Hey 

2018). More research is needed to further fine-tune experimental designs to different contexts in 

ways that still facilitate assessment of external validity. There are definitely still several devils 

hidden in the details.  
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Appendix 1. Additional tests for CL design biases: Starting point bias and position of 

risk neutral row 

Table A1. Checking for biases related to choice list design, ordering of choice lists, and location 

of random starting point 

Models with all 12 CLs (1) (2) (3) (4) (5) 

CPRRA 
    

                

Page number -0.0546* -0.0562** -0.0519* -0.0539* -0.0579**  
 

(-2.11) (-2.71) (-2.04) (-2.29) (-2.92)    

Starting point task number 0.0159 0.0331*** 0.043 0.0184 0.0216*   
 

(1.70) (4.27) (1.70) (1.57) (2.15) 

Risk neutral task number -0.0577* -0.379*** -0.0539* -0.0862** -0.170*** 
 

(-2.12) (-4.08) (-1.99) (-3.03) (-4.74)    

Risk neutral task number, squared 
 

0.0146 
  

                
  

(1.17) 
  

                

Starting point taskno-Risk neutral taskno 
 

-0.00296 
 

                
   

(-0.37) 
 

                

Dummy for starting point in risk loving zone 
  

1.099*** 0.963*** 
    

(4.17) (6.16) 

Enumerator FE No No No No Yes 

Constant 1.202*** 1.870*** 1.174*** 1.293*** 1.777*** 
 

(8.70) (13.16) (8.49) (10.79) (9.93) 

Prelec 2 alpha 
    

                

Page number 0.0164*** 0.0140*** 0.0161*** 0.0165*** 0.0156*** 
 

(3.52) (3.67) (3.49) (3.72) (4.38) 

Starting point task number 0.00347* 0.00139 0.0120* 0.00487** 0.00472**  
 

(2.22) (0.98) (2.41) (2.79) (2.95) 

Risk neutral task number 0.0796*** 0.289*** 0.0809*** 0.0803*** 0.0798*** 
 

(19.41) (15.28) (19.53) (19.74) (20.33) 

Risk neutral task number, squared 
 

-0.0334*** 
  

                
  

(-10.13) 
  

                

Starting point taskno-Risk neutral taskno 
 

-0.00437* 
 

                
   

(-2.06) 
 

                

Dummy for starting point in risk loving zone 
  

-0.552*** -0.483*** 
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(-8.85) (-6.92)    

Enumerator FE No No No No Yes 

Constant 0.337*** 0.0549 0.336*** 0.331*** 0.228*** 
 

(14.03) (1.78) (13.97) (14.63) (8.75) 

Prelec 2 beta 
    

                

Page number 0.0427** 0.0428*** 0.0410** 0.0421** 0.0401*** 
 

(2.79) (3.30) (2.73) (3.02) (3.79) 

Starting point task number -0.0149** -0.0229*** -0.0368*** -0.0161* -0.0160**  
 

(-3.17) (-5.54) (-3.65) (-2.52) (-3.19)    

Risk neutral task number -0.00363 0.230*** -0.00567 0.00692 0.0376**  
 

(-0.38) (6.09) (-0.60) (0.70) (3.06) 

Risk neutral task number, squared 
 

-0.0222*** 
  

                
  

(-5.25) 
  

                

Starting point taskno-Risk neutral taskno 
 

0.00238 
 

                
   

(1.17) 
 

                

Dummy for starting point in risk loving zone 
  

-0.276** -0.248*** 
    

(-2.63) (-5.15)    

Enumerator FE No No No No Yes 

Constant 0.772*** 0.362*** 0.789*** 0.733*** 0.529*** 
 

(10.77) (6.51) (10.94) (11.92) (6.11) 

DFT Noise 
    

                

Page number 0.00429 0.00108 0.00398 0.00464 0.00147 
 

(1.11) (0.35) (1.04) (1.22) (0.50) 

Starting point task number 0.0112*** 0.00962*** 0.0187*** 0.0127*** 0.0133*** 
 

(6.38) (5.43) (6.01) (6.26) (7.35) 

Risk neutral task number -0.009*** -0.156*** -0.009*** -0.008*** -0.0004 
 

(-4.32) (-13.92) (-4.28) (-3.85) (-0.15)    

Risk neutral task number, squared 
 

0.0175*** 
  

                
  

(11.69) 
  

                

Starting point taskno-Risk neutral taskno 
 

-0.00145* 
 

                
   

(-2.15) 
 

                

Dummy for starting point in risk loving zone 
  

0.158* 0.104 
    

(1.98) (1.84) 

Enumerator FE No No No No Yes 
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Constant 0.414*** 0.665*** 0.415*** 0.411*** 0.326*** 
 

(23.54) (28.94) (23.75) (24.46) (11.60) 

Number of observations 116577 116577 116577 116577 116577 

Note: t statistics in parentheses, * p<0.05, ** p<0.01, *** p<0.001 
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Table 11A. Correlations between number of durable assets and predicted risk preference parameters from models with 10 CL vs. 12 CL 

with DFT and CU specification. Poisson panel models with enumerator random effects, without and with predicted noise parameters.  

 
(1) (2) (3) (4) 

 
(5) (6) (7) (8) 

durassetno DFT10 DFT10+e DFT12 DFT12+e durassetno CU10 CU10+e CU12 CU12+e 

Rrdu-DFT10 -2.038*** -3.406***               Rrdu-CU10 -2.560*** -3.447***                
(0.296) (0.285)               

 
(0.338) (0.326)               

Ardu-DFT10 -0.392 -5.949***               Ardu-CU10 -0.547 -4.247***                
(0.481) (0.611)               

 
(0.408) (0.387)               

Brdu-DFT10 -0.646 -4.754***               Brdu-CU10 -2.390*** -5.962***                
(0.684) (0.529)               

 
(0.568) (0.488)               

Nrdu-DFT10  39.30***               Nrdu-CU10  116.4***                

 (3.139)               
 

 (9.253)               

Rrdu-DFT12   -8.534*** -8.257*** Rrdu-CU12   -5.892*** -5.673***  

  (0.497) (0.449) 
 

  (0.411) (0.332) 

Ardu-DFT12   -6.404*** -10.13*** Ardu-CU12   -5.917*** -8.746***  

  (0.450) (0.701) 
 

  (0.466) (0.666) 

Brdu-DFT12   -11.57*** -11.36*** Brdu-CU12   -10.29*** -10.27***  

  (0.740) (0.624) 
 

  (0.740) (0.562) 

Nrdu-DFT12   
 21.79*** Nrdu-CU12    80.52***  

  
 (2.497) 

 

   (8.650) 

Constant 1.503 -3.959** 21.67*** 16.20*** 
 

3.463*** -3.995** 17.24*** 9.706***  
(0.960) (1.283) (1.291) (1.368) 

 
(0.781) (1.337) (1.155) (1.434) 

Lnalpha -2.026 1.401*** -1.932 0.730 
 

-2.052* 1.482*** -1.896 1.050*    
(1.069) (0.319) (1.019) (0.519) 

 
(1.045) (0.345) (0.992) (0.443) 

N 945 945 945 945 N 945 945 945 945 
 Note: Dependent variable: durassetno=Number of durable assets. Bootstrapped standard errors in parentheses, resampling enumerators, 500 replications. * 

p<0.05, ** p<0.01, *** p<0.001. Rrdu=CPRRA parameter, Ardu=Prelec 2 alpha parameter, Brdu=Prelec 2 beta parameter, Nrdu=Noise parameter. All models 

with experimental enumerator fixed effects. 
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Table 12A. Correlations between livestock endowment and predicted risk preference parameters from models with 10 CL vs. 12 CL 

with DFT and CU specification. Panel tobit models with enumerator random effects, without and with predicted noise parameters. 

 
(1) (2) (3) (4) 

 
(5) (6) (7) (8) 

TLU DFT10 DFT10+e DFT12 DFT12+e TLU CU10 CU10+e CU12 CU12+e 

Rrdu-DFT10 -4.132*** -3.982               Rrdu-CU10 -5.772*** -5.658**                
(0.664) (2.256)               

 
(0.958) (2.050)               

Ardu-DFT10 0.588 1.052               Ardu-CU10 0.799 1.014                
(1.548) (6.435)               

 
(1.398) (4.767)               

Brdu-DFT10 -1.450 -1.129               Brdu-CU10 -5.043*** -4.759                
(1.367) (5.369)               

 
(1.356) (5.581)               

Nrdu-DFT10  -4.029               Nrdu-CU10  -9.699                

 (46.130)               
 

 (142.000)               

Rrdu-DFT12   -21.98*** -21.96*** Rrdu-CU12   -14.68*** -14.69***  

  (2.342) (2.695) 
 

  (1.637) (1.874) 

Ardu-DFT12   -15.89*** -15.30*   Ardu-CU12   -12.37*** -12.02*    

  (1.580) (6.135) 
 

  (1.616) (5.042) 

Brdu-DFT12   -29.73*** -29.71*** Brdu-CU12   -25.12*** -25.11***  

  (3.345) (4.041) 
 

  (2.935) (3.758) 

Nrdu-DFT12   
 -3.594 Nrdu-CU12    -10.480  

  
 (28.880) 

 

   (102.700) 

Constant 2.293 3.286 55.32*** 56.33*** 
 

6.156*** 7.076 41.05*** 42.24***  
(1.987) (8.378) (5.759) (6.573) 

 
(1.775) (10.510) (4.533) (8.424) 

Sigma_u 0.474 0.000 0.455 0.000 
 

0.426 0.000 0.471 0.000  
(0.272) (2.850) (0.246) (2.465) 

 
(0.251) (3.415) (0.261) (2.796) 

Sigma_e 2.523*** 2.535*** 2.279*** 2.293***  2.484*** 2.497*** 2.308*** 2.322*** 

 (0.157) (0.199) (0.163) (0.192)  (0.156) (0.235) (0.164) (0.207) 

N 945 945 945 945  945 945 945 945 
Note: Dependent variable: TLU=Livestock endowment (Tropical livestock units). Bootstrapped standard errors in parentheses, resampling enumerators, 500 

replications. * p<0.05, ** p<0.01, *** p<0.001. Rrdu=CPRRA parameter, Ardu=Prelec 2 alpha parameter, Brdu=Prelec 2 beta parameter, Nrdu=Noise param. 
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Appendix 2 

Risk preference Experiments 

Instructions to experimental enumerators:  

Explanation for risk experiments with money: 

Risk of starting point bias: Do as with the time preference series:  

a. Randomize the task you start with within each series (throw the die).  

b. This should be part of the pre-making of the questionnaires before you start.  

c. Next, you move towards the end point in the direction you expect a switch to check whether 

you get it.  

d. Narrow in quickly on the switch point by going to the middle task between the last two tasks 

that was assessed and within which the switch point is located (if consistent preferences are 

observed).  

 

With real money and varying probabilities of low and high outcomes 

a. The probability of low (bad) outcome for the risky prospect varies from game to game.  

b. You will identify the certain outcome that makes the respondent switch (switch point) between 

preferring the risky prospect to preferring the certain outcome.  

 

Instructions to respondents: 

1. You have the choice between a risky prospect which has a high (good) or a low (bad) 

outcome.  

2. There is in each game a certain probability (chance) of low (bad) outcome for the risky 

prospect.  

3. One of the gambles gives you ETB 100 if you are lucky and ETB 0 if you are unlucky and 

a chance/probability, say one out of ten (10% chance) of low (bad) outcome.  

4. You have the choice between this and a certain amount.  

5. We vary the certain amount till you switch from preferring one or the other.   

6. To determine whether you are lucky we will use a 20-sided die. 

 

Random sampling for payout: 

a. One of the experiments below will be randomly sampled for real payout.  

b. Your choice in the randomly sampled task in that game will be your payout.  

c. Your choices will there affect the outcome.  

d. Therefore, think carefully about your preferred choices. 

 

The order of the 5 pages with risk preference experiments was randomized to reduce bias 
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Example of MPL for risk preference elicitation: 

  
  Risk preference series 6 

  

S. 

no. 

Start 

point 

Task 

no. 

Prob-

bability 

of bad 

outcome 

 

Low 

outcome, 

ETB 

High 

outcome, 

ETB 

Choice Certain 

amount, 

ETB 

Choice 

6 
 

1 2/10 20 100 
 

100 
 

6 
 

2 2/10 20 100 
 

95 
 

6 
 

3 2/10 20 100 
 

90 
 

6 
 

4 2/10 20 100 
 

85 
 

6 
 

5 2/10 20 100 
 

80 
 

6 
 

6 2/10 20 100 
 

75 
 

6 
 

7 2/10 20 100 
 

70 
 

6 
 

8 2/10 20 100 
 

65 
 

6 
 

9 2/10 20 100 
 

60 
 

6 
 

10 2/10 20 100 
 

50 
 

 

 

 

Payment for Risk preference games:  

a. Use 20-sided die (in cup with cartoon) to identify which of the 10 risk series that will be 

used for payout (die numbers 1 and 11 for risk series 1, die numbers 2 and 12 for risk 

series 2, etc.), and similarly for the choice of Task (row) in the risk series identified.  

b. This should be done for each at the end of all games, while they are sitting at their place. 

Nobody should move from their spot till all have completed (no spectators allowed for 

each).  

c. Ensure privacy during the whole process.  

d. If some complete before others, they should not come close to or interact with those who 

have not yet completed.   

e. You use the Prospect they have chosen for that task, the risky prospect or the certain 

amount depending on their choice in that specific task. 
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f.  If they have chosen the risky prospect you identify the probability of Good (High)  and 

Bad (Low) outcomes and assign die numbers to each, e.g. 30% probability of Good 

outcome in Risk series 3 game implies that you assign die numbers 1, 2, 3, 11, 12, and 13 

to the low payout and the remaining die numbers to high (good) payout.  

g. The die has to be shaken under the cup only once to determine the number and identify 

whether they lost or won.  

h. If they for the randomly identified task chose the certain amount, you give them that 

certain amount.  

Payment in risk preference experiments: 

1. Risk series randomly assigned for payout:________________ 

2. Task row randomly assigned for payout:________________     

3. Identify whether the Respondent had chosen the Risky Prospect (=1) or the Certain 

Amount (=2) for that Task: Prospect chosen (circle):___   1______2_ 

4.  If the certain amount was chosen, write the amount below as amount recived. 

               Amount recieved: ____________________ 

5. If the risky prospect was chosen, assign die numbers to low and high payouts based on 

the probabilities in the identified risk series.  

             Die number outcome:_____ 

              Implication (circle): 1=High outcome, 0=Low outcome 

               Amount:__________ 

Signature for amount received:________________ 
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Loss Aversion Choice List: It was real and played after the other risk CLs 

LA1  
  

Prospect A: Outcomes in ETB       Prospect B: Outcomes in ETB 

Choi

ce 

series 

no 

Start 

point 

Task 

no. 

Prob. of 

bad 

outcome 

% 

Win Loss  Choice  Win Loss  Choice  

11  1 50 50 -10    60 -40  
 

11  2 50 30 -10   60 -40   

11  3 50 20 -10   60 -40   

11  4 50 10 -10    60 -40  
 

11  5 50 5 -10    60 -40  
 

11  6 50 5 -10    60 -30  
 

11  7 50 5 -15    60 -30  
 

11  8 50 5 -15    60 -25  
 

11  9 50 5 -15    60 -20  
 

 

 

Mark the task that was sampled to be real: Die outcome=Task no:______ 

Die outcome:           Game outcome (circle): 1=Win: die 11-20, 0=Loss: die 1-10 

Outcome of the game: Amount lost:_____________ Amount won:_________ 

 

Signature of player:_________________________ 
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Table A14. Correlations between loss aversion, risk preferences, noise and other variables 
 

Poisson XtPoisson, 

RE 

XtPoisson, 

FE 

XtPoisson, 

FE 

XtPoisson, 

FE  
(1) (2) (3) (4) (5) 

LA stp 0.0166** 0.0166** 0.0196*** 0.025 0.025  
(0.005) (0.005) (0.005) (0.029) (0.029) 

LA stp, squared 
   

0.000 -0.001     
(0.003) (0.003) 

Rrdu-CU12 -0.023 -0.023 -2.921 -11.410 -11.360  
(0.135) (0.134) (3.941) (6.082) (6.054) 

Ardu-CU12 -0.199 -0.199 7.359 31.350 31.220  
(0.347) (0.345) (10.790) (17.120) (17.060) 

Brdu-CU12 -0.018 -0.018 -5.818 -24.010 -23.910  
(0.223) (0.222) (8.427) (13.040) (12.980) 

Nrdu-CU12 -0.659 -0.659 24.550 -43.840 -42.510  
(3.297) (3.282) (36.000) (64.440) (64.440) 

Male, dummy -0.0733** -0.0733** -0.194 -0.663* -0.662*  
(0.026) (0.025) (0.210) (0.333) (0.332) 

Age, years 
   

0.004 0.004     
(0.004) (0.004) 

Education, years  
   

-0.174 -0.172 

completed 
   

(0.114) (0.114) 

Tropical  
    

0.010 

livestock units 
    

(0.011) 

Durable assets,  
    

-0.010 

number 
    

(0.016) 

Enumerator FE Yes Yes Yes Yes Yes 

Constant 1.962*** 1.962*** 
   

 
(0.355) (0.353) 

   

ln alpha 
 

-17.690 
   

  
(12.760) 

   

AIC 3614.9 3616.9 2910.7 2915.0 2918.5 

BIC 3700.1 3706.9 2991.1 3009.6 3022.6 

N 843 843 841 841 841 

Note: Dependent variable: Loss aversion rank. Model (1) is a Poisson model with robust standard errors, model (2) is 

a panel Poisson model with youth group random effects and cluster robust standard errors, models (3)-(5) are panel 

Poisson models with youth group fixed effects and cluster robust standard errors. * p<0.05, ** p<0.01, *** p<0.001. 
Rrdu=CPRRA parameter, Ardu=Prelec 2 alpha parameter, Brdu=Prelec 2 beta parameter, Nrdu=Noise parameter, LA-

stp is random starting point row in loss aversion CL.  
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