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Abstract

Statnett is in a process to improve their algorithms for predicting the need for
electrical power. In this thesis I tested the possibility of using machine learning
to predict the active and reactive load for transformers up to 48 hours ahead in
the future, and see how accurate predictions it creates. This was done by using
Gradient Boosting Regression, where the model predicts one hour ahead at a time,
and then uses the previously predictions to predict even further ahead.

The data used in the model consisted of weather, calendar, and electrical demand
data from the time period 2013 – 2018.

The model outperformed the baselines for 1, 24, and 48 hours ahead for predicting
active effect. It did not for reactive effect.

The model performs well when the load follows a recurring pattern, but struggles
to predict irregularities and sudden magnitude shifts.
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Chapter 1

Introduction

Statnett have the responsibility of making sure that everyone in Norway have
constant access to electrical power at all time [1]. This is a complex job that
demands a lot of planning. A big part of this is trying to predict how much power
is going to be needed in the future. This prediction is called a forecast.

The forecast is used by Statnett to keep the electric frequency at 50 Hz. It is
important to keep the electric frequency constant, because all electronics in Norway
is based on a constant frequency of 50 Hz [2]. To keep the electric frequency stable
at 50 Hz, the power producing companies are informed of how much they should
produce short-term at a given time to match the expected consumption.

However, a long-term forecast is also necessary for the production planning and
maintenance. With an accurate long-term forecast, an abrupt increase or decrease
in power demand will already be predicted and facilitated towards. Addition-
ally, check-ups and maintenance of electrical equipment can also organised to be
executed at appropriate times.

Statnett use algorithms to predict the future power demand. These predictive al-
gorithms are very simple and use few variables, such as very recent power demand
data. In other words, the algorithms used today are oversimplified. Although
the algorithms implemented by Statnett do a decent job of predicting the power
demand, they want to explore whether new technologies could improve the pre-
diction performance. A predictive method they wish to explore is by the use of
machine learning.

SAS defines machine learning as [3] ”(...) a method of data analysis that automates

1



2 CHAPTER 1. INTRODUCTION

analytical model building (...) based on the idea that systems can learn from data,
identify patterns and make decisions with minimal human intervention”. In other
words, machine learning is useful for discovering patterns in large data sets that is
otherwise difficult for humans to find. Therefore, Statnett wants to research the
potentiality of using machine learning as a tool for predicting power consumption.

The goal of this thesis is to explore the possibility of using machine learning and
historical data to predict the average power consumption. The predictions made
are done for each hour for the next 48 hours. In collaboration with Statnett, this
hypothesis will be tested using a machine learning model for a single transformer,
and compare the model’s predictions with the true power consumption to calculate
the accuracy of the machine learning model.



Chapter 2

Theory

2.1 Electric load

An electric load refers to any type of electric device where power is consumed [4, p.
127]. This can be anything from a glowing light bulb to a big electric motor. It can
also refer to the entire power consumption of an area. As load is a measurement
of energy, we have chosen to use MW (Mega Watts) as the unit for resistive loads
and MVAr (Mega Volt Ampere reactive) as the unit for inductive/capacitive loads
[4, p. 136].

Power is produced at a very high voltage, and is transported for very large distances
to cities. The power is transformed to lower voltage when getting close to cities
and households. This thesis focuses on the last step of the power before it is
transformed to a low voltage.

2.1.1 Transformers

A transformer is an electrical device that is used for transforming the voltage
up or down in an AC circuit [4, p. 168]. An ideal transformer does this while
transmitting all the power, which means that the transformer lowers the current
to raise the voltage and vice versa [see equation 2.1]. P1 is the power coming into
the transformer, and P2 is the power coming out. I is the current, and V is the
voltage.
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4 CHAPTER 2. THEORY

P1 = P2

I1V1 = I2V2

(2.1)

When transmitting power, the goal is to minimize energy loss. This is called
resistive heating [4, p. 15] and is calculated as in equation 2.2. As resistance (R)
is mostly constant, we want to minimize the current (I). To do this, while keeping
the amount of power transmitted constant, we have to raise the voltage (V).

P = IV

= I2R
(2.2)

2.2 Machine learning

Machine learning is a method of using algorithms to learn patterns in data sets.
In this thesis the type of machine learning used is called supervised learning.

2.2.1 Supervised learning

The main goal of supervised learning is to make a model that can be used to
predict the label/value of unseen data. [5, p. 3] Supervised learning use attributes
of a data set, called features, to predict the target variable. The target variable
is the attribute of a data set one wants to predict. An example could be to use
the height and weight of a person (features) to predict the person’s age (target
variable).

Before learning an algorithm, one divides a data set into training, validation and
test set [5, p. 191]. The training set is used for learning the model. The validation
set is used for checking the performance. The test set is for estimating the fit of
the model.

If there is a large difference in performance between the training and test sets, this
might indicate that the model is overfitting [5, p. 73]. An overfitted model is able
to accurately predict a very specific pattern, but does not accurately predict for a
general trend.
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In this thesis the goal is to predict a continuous value (load). That means a
subcategory of supervised learning, called regression, is used.

Measuring regression performance

As in all categories of supervised learning, a measurement of performance is needed
to. In this thesis the Root Mean Squared Error (RMSE, see Equation (2.3)) is
used.

RMSE =

√
Σ(ŷ − y)2

N
, (2.3)

where ŷ is the estimated value, y is the true value, and N is the total number of
values.

RMSE is a useful metric for estimating performance when large errors can lead
to impractical and expensive consequences. This is because large errors have a
greater impact on the score than smaller ones. RMSE also has the same unit as
the value (y), making the RMSE estimation easy to interpret.

Additionally, Mean Absolute Percentile Error (MAPE, see Equation (2.4)) is used
as a measurement in graphs. This makes it easier to compare the quality of
predictions from different magnitudes.

MAPE =
1

N
Σ
|ŷ − y|

y
(2.4)

2.2.2 Machine learning methods

There are many different methods available for training a model. They all have
advantages and disadvantages, and one does rarely know what method is going
to perform best on a given assignment. This is often called the ”No free lunch
theorem” [5, p. 12] Hence, I have compared the quality of these different methods:

• Gradient Boosting Regression uses multiple weak models, where the average
output of the models becomes the final output of the model. [6]
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• Random Forest Regression is an ensemble of decision trees. The output from
the decision trees becomes variables in a linear function that produces the
final output of the random forest. The weights of the trees are adjusted in
the training of the model. [7]

• AdaBoost Regression uses multiple weak models, where a weighted average
output of the models becomes the final output of the model. The weights
are adjusted during the training of the model. [6]

• Lasso Regression is a form of linear regression, where the weights are optim-
ized by minimizing the squared error of the current model. [8]

• Elastic Net Regression is a compromise between lasso and ridge regression.
This means that it is form of a linear regression that is optimized by min-
imizing a weighted sum of the squared and the absolute error of the current
model. [9]

• Ransac Regression starts each training iteration by selecting a random subset
of the training data. Then it creates a linear model by using the least mean
squared on the current subset. The method does this multiple times, and
uses the best scoring model. [10]

• Linear Support Vector Regression maps the data into a higher dimensional
features space before doing linear regression. [11]



Chapter 3

Method

3.1 The data set

The data set I was given from Statnett consists of a time series from the period
2013 - 2018 for two transformer stations, each with two transformers. The time
series has a resolution of one hour. The data set contains both active and reactive
effect for each transformer. I have not received any information of which kinds of
areas the transformers are connected to (for example if it is connected to a rural,
industry, or farming area).

I have merged the data set from Statnett with weather and calendar data. The
resulting data set is what I have used in this thesis.

Each transformer has its own time series, where active/reactive effect are divided
into separate time series. They have been given code names where A/B are two
different transformer stations, T1/T2 are the two different transformers, and P/Q
tells if the time series contains active- or reactive load. For example AT1P and
AT2P are both at station ’A’ and describes active load.

T1/T2 are connected in parallel. This means that they distribute power to a
portion of an area each, for example T1 distributes 40% of an area while T2
distributes 60%. The portion can be changed manually.

I have split the data into training-, validation-, and test data as such:

Training data: January 2013 – November 2016

7



8 CHAPTER 3. METHOD

Validation data: December 2016 – November 2017

Test data: December 2017 – November 2018

These periods have been chosen such that the training data is the largest, and
such that all data sets contain all months.

3.1.1 Data sources

The load data for each transformer was loaded from Statnetts internal commu-
nication platform; ”Innsikt”. It was given in the form of an xlsx-file, and then
converted and cleaned into a csv-file by using my own Python script as described
bellow.

The weather data was collected from Meteorologisk institutts weather data service
eKlima. It was given as an xlsx-file, and then transformed and cleaned into a
csv-file by using my own Python script.

3.2 Features

3.2.1 Calendar features

Seasons

The active power changes seasonally over the year (see Figure 3.6). To be able to
store the seasonality factor to the machine learning model I made a function that
creates a new feature containing the defined season for each time stamp.

As the meteorologic definition of the seasons is not strictly defined [12], I have
chosen to use the astronomical definitions of the seasons:

Spring 20.March to 20.June

Summer 21.June to 21.September

Fall 22.September to 20.December
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Winter 21.December to 19.March

[13]

Day off

day off is a binary feature that tells if people have the day off, as people use power
differently based on what day of the week it is. A typical week can be seen in
Figure 3.1 and Figure 3.2, where the load is largest during the weekdays (Monday
to Friday), and lower in the weekend.

Figure 3.1: A week of active effect from transformer ’A’. The figure shows a weekly
pattern (Monday to Sunday).

In Figure 3.1 it looks like workdays (Monday to Friday) have a similar pattern,
while Saturday and Sunday have a similar pattern. This gave me the idea that the
main factor separating the different types of day was whether people where going
to work or not. To test this hypothesis I compared the weekdays to the official
Norwegian holidays (collected from https://www.timeanddate.no/kalender/) .

Another idea was that people take a day off when there is a work day squeezed in
between two off-days. I made a function that find work-days where both the day
before and the day after are off-days. There were few days like this, but compared
to work days and off-days it seemed like they where similar in magnitude to off-
days.
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Figure 3.2: A week of reactive effect from transformer ’A’. The figure shows a
weekly pattern (Monday to Sunday).

When trying to categorize the day types, I tried clustering by using k-means. I did
by collecting data for each day (mean/max/min load, hour when max/min, month,
weekday etc), and by having 24 columns containing the load of that hour where
each day was a data sample. Both these methods resulted in clustering based on
either if mean load was high/low, or what day of the week it was. This did not give
any more information than I already had in the data set, and I therefore concluded
only to categorize the dates by day off.

Circular time features

Time cycles are important for describing the load patterns.For example you can
see that each day has a similar pattern (see Figure 3.1). To get these patterns as
a feature, I have chosen to use a method from [14], which describes circular time
features.

Underneath you can see the pseudo-code for getting the month in year as a circular
time feature.

sin month = sin(2∗pi∗month
12

)

cos month = cos(2∗pi∗month
12

)

I have chosen three cycles: daily, weekly, yearly. This means I assume that the
load is dependent on what time of day it is, which weekday it is, and what month
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it is.

Disabled

The transformers are sometimes disabled for different interval lengths. In these
intervals the load drops to zero. This can be because of maintenance on the
transformer, or other reasons that I don’t have the data to explain.

Sometimes the load is close to, but not zero. At some of these timestamps I
have gotten conformation from Statnett that the transformer was disconnected.
Because of this I have chosen to mark all active loads where P ≤ 5MW as disabled.

Parallel disabled

Par disabled is a bi-nominal feature that tells if the connected transformer is dis-
abled. This is important information, as we are only predicting for one transformer
at a time. Without this feature, a sudden disabling of the connected transformer
would seem random.

The load on ’AT1P’ suddenly jumps when ’AT2P’ is disabled as can be seen in
Figure 3.3. This happens because the total load on the transformer station remains
the same, so the other transformer has to carry the load that previously was shared.

Figure 3.3: Two connected transformers when one gets disconnected
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Weather features

The weather can affect the load (low temperature makes people use more heating).
I chose to try many weather features, to see if there could be some information
hidden in them. Unfortunately some of the features I was looking for did not have
data far back. These are the features I ended up using in the data set:

DD wind direction (degrees)

DX 1 wind direction of the most powerful wind the last hour (degrees)

FF wind speed 10 m above ground level (m/s)

FX 1 most powerful wind the last hour (m/s)

PO air pressure (hPa)

TA air temperature (◦C)

All weather data is the recorded weather, as opposed to the predicted weather.
One would have to rely on weather predictions when predicting load in the future,
therefore using the predicted weather would be preferable for this thesis. Unfor-
tunately, historical weather prediction data was difficult to find, so I have chosen
to use the recorded weather.

Lagging features

Lagging features tell what the load was h-hours ago. This means that ’h-1’ means
the load for 1 hour ago, ’h-12’ means the load 12 hours ago, and ’d-1’ means 24
hours ago.

These features are created by simply shifting the load by h-hours, such that the
timestamp matches the current lag.

In this thesis I chose to use h-1, h-2, h-3, and d-1, and later systematically see if
adding more lagging features gives better predictions.
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3.3 Cleaning the data

When I converted the raw xlsx-files into csv-files I did some adjustments to the
load data:

The first thing I did with the load data was converting the time features (hour,
date) into a single time feature(datetime). After that I was now able to fill in
missing timestamps with a ’NaN’ value, so that it would be easier to interpolate
afterwards. Additionally, I chose to change the sign of the load of transformer
station ’B’, so that both ’A’ and ’B’ had a positive direction. This is done because
active effect is positive per definition.

3.3.1 Missing data

To get a complete time series, I wanted to check for missing data in the data sets.
I looked for both missing values, and missing time stamps. In the weather data I
found no missing data, but I found some in the load data.

I counted and plotted the missing data. In transformer station ’A’ I found that
246 time stamps where not recorded in the load data (See Figure 3.4). There is
supposed to be 52 584 time stamps in this period, so the amount of missing data
is relatively low (0.47%). For transformer station ’B’ there where 212 missing time
stamps (See Figure 3.5), which is 0.40% of the expected amount of time stamps.

Figure 3.4: All missing time stamps between 2013 and 2018. Each line is a missing
time stamp. The colour of each line is to make it easier to separate each timestamp.

By plotting the missing data for transformer station ’A’, I saw that most of the
missing data (180 / 246) was in December 2018 (See Figure 3.4). December is
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Figure 3.5: All missing time stamps between 2013 and 2018. Each line is a missing
time stamp. The colour of each line is to make it easier to separate each timestamp.

supposed to contain 744 time stamps, so this means that December 2018 is missing
24.19% of the time stamps. As December 2018 is the last month of the data set,
excluding it does not make any holes in the data, only shortens it. Therefore I
chose to exclude December 2018 from the data set for both transformer stations.

There is also a batch of missing data in June 2014 (33) for transformer station ’A’.
A lot of these time stamps have a value close to or equal to 0 MW. According to
Statnett this is because the transformer was disabled during these time periods.
Therefore I assumed that all points where 0MW ≤ P ≤ 5MW , where P is the
mean load, the transformer is disabled. Hence, all these missing values were set
to 0, and the time stamp is market by the feature ”Disabled” as 1.

Outliers

The load data is periodical, therefore what classifies as extreme value varies an-
nually. The algorithm I created therefore works as a sliding window that uses the
standard deviation of the current window to define the limit of what is considered
an outlier.

The window is defined for each time stamp as ± 350 hours (approximately a
month), and I have chosen to define an outlier within this window as:

Not disabled

Not parallel disabled

Outside the limit: mean load ± 4*Standard Deviation
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Disabled and par disabled time stamps are kept in the data set, as they can be
explained. 4*standarad deviation was chosen as I wanted to keep as much data as
possible, but still removing the clearly extreme values.

The result of this can be seen in Figure 3.6

When the outliers have been defined, they where removed, and the now missing
time stamp is interpolated by using Pandas ’time’ interpolation tool.

Figure 3.6: Defined inliers, outliers, and disabled/parallel disabled loads for AT1P

Interpolate

Interpolation is a useful tool for filling out missing data. In this case it also is used
for replacing outliers, as if the time stamp was missing. This was important as
there where some loads that was far higher or lower than the other loads around
the time stamp. These values could not just have been removed, as I used lagging
features that depended on continuous data.

I created a function for filling missing data as an alternative to interpolation, so
that I could have something to compare the quality of the interpolation function



16 CHAPTER 3. METHOD

from the Pandas package. The alternative function replaces the missing time stamp
with the values from 1 week back. This was done to see if a simple algorithm like
this would be better than the Pandas method.

To measure the quality of the interpolation and my own function I used a meas-
urement defined bellow. I tested the methods by selecting a week with no missing
values or outliers (6 June – 12 June 2016, transformer AT1P), and then removing
one time stamp at a time. For each time stamp removed, we interpolate (with
both methods) and record the error compared to the real value. When all time
stamps have been interpolated, the RMRSE is calculated. In this example the
results where:

Pandas interpolation = 0.025

Replacement function = 0.072

From this we conclude that Pandas interpolation is better than the replacement
function.

Root Mean Relative Squared Error = RMRSE

RMRSE =
√

Σ( (ŷ−y)
y

)2

(3.1)

3.4 Finding the best model

I have chosen to find an optimal model for transformer AT1P, and assume that
these hyper parameters and features will be sufficient for training models for the
other transformers.
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3.4.1 Predicting 48 hours ahead

The trained model uses recent loads as features (lagging features) for prediction.
As we don’t have the loads after the current time, we chose to assume that the
predicted loads are correct. This means that we predict one hour ahead at a time,
and then update the lagging features with the predicted values.

3.4.2 Choosing the best machine learning method

The first step is to find which machine learning methods are most suited for this
assignment. To do this I have chosen a handful of regression methods, with their
own set of hyper parameters.

To make the process faster, I only test for predicting 1 hour ahead, and assume
that this correlates to being able to predict up to 48 hours ahead.

The selection is done one model type at a time, where each model type performs
a grid search for the optimal hyper parameters. The model score is based on the
RMSE of the validation set. The results from this selection can be seen in results.
The best scoring models are used in the next steps.

3.4.3 Feature selection

Choosing the best features is hard, and can be a very computing heavy problem
if you want to find the absolute optimal features. To make this process easier I
have assumed that some of the features are essential (see list below), and divided
the selection process in 2 parts: Lagging features, and weather features.

Calendar features (day off etc)

Circular time features

Lagging features (h-1, h-2, h-3, d-1)

For feature selection I use the mean RMSE for all hours ahead predicted as a
quality measure.
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Lagging features

For selecting the number of lagging features I add one feature at a time (one more
hour further back (h-4, h-5, ...)), and test the quality of the 48 hour prediction
for the validation set for each added feature. Once the extra added features stops
improving the quality, I stop adding features, and continue with the currently
added features.

Weather features

For selecting the optimal weather features I try all possible combinations of weather,
with the essential features and the optimal number of lagging features.

3.4.4 Testing the model

When we have chosen model and features, we predict for all timestamps in the
test set. If the quality of the prediction of the validation set is not too different
from the quality of the predictions done on the test set, we can say that the model
is not over fitted.

3.5 List of used software

• Python 3.7.1

• Numpy 1.15.1

• Pandas 0.23.4

• Matplotlib 2.2.3

• Seaborn 0.9.0

• Scikit-Learn 0.19.2



Chapter 4

Results

4.1 Finding the best model

In this section you will find the results from the different stages for finding the
best model.

4.1.1 Choosing machine learning model

RMSE for each model predicting 1 hour ahead

RandomForestRegression 2.388

GradientBoostRegression 2.301

AdaBoostRegression 6.054

LassoRegression 6.031

ElasticRegression 5.672

RansacRegression 4.205

LinearSVR 5.251

GradientBoostingRegressor and RandomForestRegression gave the lowest/best scores.
They were so similar in quality, that I chose to try both methods for predicting
48 hours ahead. In this step, GradientBoostingRegressor outperformed Random-
ForestRegression, therefore I have only included the results of GradientBoostin-

19
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gRegressor.

Optimal features

Lagging features: h-1, h-2, h-3, h-4, d-1

Weather features: PO, TA, FF

Core features: disabled, par disabled, day off, sin month, cos month, sin week,
cos week, sin hour, cos hour, weekend

The features mentioned above together with the core features where used in the
final 48h prediction model.

The best hyper parameters for the best performing model is listed underneath, as
well as the parameter grid I used for finding the optimal hyper parameters.

Optimal hyper parameters for GradientBoostingRegressor

learning rate: 0.1

loss: ’huber’

max features: ’auto’

min samples split: 4

n estimators: 500

Hyper parameter grid search for GradientBoostingRegressor

learning rate: 1, 0.1, 0.01

loss: ’ls’, ’lad’, ’huber’, ’quantile’

max features: ’auto’, ’sqrt’, ’log2’

min samples split: 2, 4, 8

n estimators: 100, 200, 500



4.1. FINDING THE BEST MODEL 21

 

 

 
            

 

 

 

 

 

 

 

 

 

Figure 4.1: Overview of the test data set (December 2017 – Novemeber 2018 for
AT1P)

4.1.2 Results for 48 hours predictions for each transformer

The results are based on predicting 48 hours ahead on the test set (see Figure 4.1).
The test set has some sudden magnitude shifts because the parallel transformer
gets disabled/abled (see the the sudden drop between April and May), while some
shifts have other unexplained origins (see the small shift between July and August).
There are also some magnitude spikes for which I do not have an explanation (see
the two spikes in early September)

The weeks in Figure 4.2 show examples of predictions for 1, 12, and 48 hours
ahead. The example week in Figure 4.2a, Figure 4.2b, Figure 4.2c, are examples
of bad predictions, and Figure 4.2d is an example of a good prediction. Looking at
the true values, it shows that sudden changes makes it hard to predict far ahead.

From Figure 4.3 we can see that the predictions have similar error distributions.
As we try to predict further ahead, the predictions are gradually getting worse.
Everyone except for d) is distributed around 0. This means that d) has a bias
towards predicting a higher value than the actual value. This bias is increasing
the further ahead we try to predict.

Looking at Figure 4.5 we can see that the quality decreases similarly for all trans-
formers with the number of hours ahead.
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Figure 4.2: Example weeks showing good and bad predictions for AT1P
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(a) Error distribution for at1p
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Figure 4.3: These plots (violin plots) show the distribution of errors for active effect
for all transformers. A narrow distribution means that the error size is consistent
and vice versa. If the distribution is centered around 0, then it indicates that the
model has no bias. If it centers above 0, then it has a bias towards predicting too
high, and vice versa.
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(a) Error distribution for at1q
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(d) Error distribution for bt2q

Figure 4.4: Error distribution for reactive effect for all transformers
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(a) RMSE for all active effect transformers.
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(b) RMSE for all reactive effect trans-
formers.
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(c) MAPE for all active effect transformers.
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(d) MAPE for all reactive effect trans-
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RMSE-baseline: h+1: 4.18, h+24: 13.60, h+48: 19.32
MAPE-baseline: h+1: 0.039, h+24: 0.118, h+48: 0.187

Figure 4.5: Scores for all trafos for all hours ahead predicted.
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(b) Relative error

Figure 4.6: Error per time of day, for different hours ahead

In Figure 4.5c we can see that the transformers for active effect have similar quality.
The transformers for reactive effects in Figure 4.5d are worse. This might be
because they have a much lower magnitude.

4.1.3 Analysis of the prediction model for ’AT1P’

Mean absolute error per time of day

For all hours ahead in Figure 4.6 we can see a peak starting at 06:00 – 08:00. This
indicates that the model is at its worst in the morning for all predicted intervals.

In Figure 4.7 we see that the error distribution gets wider for each hour ahead
predicted. For all hours ahead the smallest distribution is in the weekend.

In Figure 4.8 there doesn’t seem to be any seasonal pattern for the error distri-
bution. The most noticeable effects seem to be that June, October, and April are
the months with the largest distribution.
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Error distribution per weekday
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(c) 4 hours ahead
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(g) 48 hours ahead
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Figure 4.7: Error distribution per weekday per hours ahead
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Error distribution per month
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(c) 4 hours ahead
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(e) 24 hours ahead
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(g) 48 hours ahead
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Figure 4.8: Error distribution per month per hours ahead
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Discussion

As seen in Figure 4.5, we can see that all the models for active effect outperformed
the baseline for both RMSE and MAPE.

The models for reactive effect outperformed the RMSE baseline, but not the
MAPE. As the reactive effect has a much smaller magnitude than the active effect,
this shows that the performance for predicting reactive effect was quite bad.

5.1 Discussing the method

The load data was given with a measuring frequency of an hour. This means
that there is a whole hour where a change in the load can go unregistered. If the
frequency was higher, a lot of these changes could have been picked up on. This
is especially the case where there are sudden jumps up or down.

If the historical records of the load is not recorded in a higher frequency, then there
is little to be done. But if it is possible to get records with a higher frequency, this
could help getting better predictions for areas with sudden changes.

The chosen weather station was a central station from the same area as all the
transformers. It was assumed that the one weather station would give sufficient
accuracy for all transformers, but it might seem that selecting weather stations
that were closer to the areas the transformers provided for would be more accurate.
For example could the precise temperature of the areas possibly explain small shifts
in the load.

29
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There were weather features that I tried to collect, that were not available. One
of these were the amount of direct sunlight. This feature, among others, could
possibly help predicting the load. I would therefore assume that more weather
features could make the forecast more accurate.

As seen in Figure 4.1 there are sudden shifts, were the magnitude of the load
changes unannounced. As seen in the bad weeks in Figure 4.2 these shifts often
result in a bad prediction. This is especially true for long term predictions.

If these shifts are explainable, it could be a great help. Then it would be possible
to make a feature that told if a shift was happening. This would be similar to the
par disabled and disabled features, which have proven to work.

A good way of selecting the best features would be to complete a Sequential
Backwards Selector (SBS). As I had to use a function for predicting 48 hours after
the model was done training for predicting one hour ahead, this would had to be
done manually. This could have been done, but then I would have to change the
function for updating lagging features, in such a way that it always knew what
lagging features where in the model at the time. This is absolutely possible, but I
did not have time to create it.

Even though I did not complete an SBS, I am still confident that all the necessary
features available were present in the model. The model would probably still
benefit from testing removing some features, as they could be more noise than
beneficial.

- Optimize for each transformer When cross validating the model to find the op-
timal hyper parameters, I chose to do this for only one transformer (at1p). I
assumed that this would be sufficient for at least the other transformers with act-
ive effect. As seen in Figure 4.5, the hyper parameters for at1p seem to be good
for the other active effect models.

As I was asked to focus on predicting active effect, I prioritized in such a way that
I did not have time to do the same optimization for reactive effect. This would
be done with the same method as in this thesis, but for a transformer for reactive
effect.
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5.2 Discussing the results

A common factor for the bad predictions is sudden changes, and irregular loads.
As seen in the bad weeks in Figure 4.2 the predictions have great errors after
sudden shifts, and struggle to predict small irregularities.

The models perform well in time periods without sudden changes (see Figure 4.2d),
and where the load follows a smooth curve. The long term predictions for these
time periods are also not far off from the short term predictions.

Looking at Figure 4.8, we can see that the distributions becomes wider and more
biased the further ahead it is predicted.

In Figure 4.8h some of the months are are much worse than the others, specially
May and June. This might be explained be comparing it to Figure 4.1. This time
period has a lot of sudden magnitude shifts, and as previously stated, the models
generally have a large error around these shifts. It should also be mentioned that
May has a lot of holidays, which might cause some greater errors.

The opposite can be said for the months with the most narrow distribution (Janu-
ary, February, March, November, and December); there is few magnitude shifts in
these time periods.

It is important to notice that there is only one sample for each month in the test
set. This means that any conclusions drawn about a specific month is only relevant
for that instance of that month. If given more data, containing more instances of
each month, it could be possible to tell if any trends were relevant for all instances
of a month.

There does not seem to be any difference in quality for predicting different week-
days. Looking at Figure 4.7, the relative error distribution seem to be equal for
all weekdays for all hours ahead predicted. The error distribution is more narrow
in the weekend, but this is most likely because the weekends have a lower mag-
nitude. Hence, the conclusion from looking at the relative error distribution is
most relevant.

In the absolute error graph in Figure 4.6 the model seem to start having larger
errors in the morning (06:00 – 09:00). This is the case for almost all hours ahead
predicted.

The relative error graph in Figure 4.6 have the same spike (06:00 – 09:00) for the
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short term predictions (1, 2, and 4 hours ahead) as the absolute error graph. The
long term predictions seem to be quite equal in quality throughout the day.

The morning spike is most likely caused by the sudden raise in load, as this is the
period when most people wake up. This is a reoccurring problem, as the model
has difficulties predicting sudden changes.

The model has input that tells the model what time of day it is (sin/cos hour).
This means that the model should be able to know what is a typical load for that
time of day. This could indicate that there is a lot of variance in the morning, or
that the model does not weigh these features enough to pick up on the trend.



Code appendix

May 5, 2019

1 Cyclical time features

In [ ]: def add_cyclical_month_column(df):
df_copy = df.copy()
months = 12
df_copy['sin_month'] = np.sin(2*np.pi*df_copy.index.month / months)
df_copy['cos_month'] = np.cos(2*np.pi*df_copy.index.month / months)

df_copy = df_copy.drop('season', axis=1)

return df_copy

def add_cyclical_week_column(df):
df_copy = df.copy()
days = 7
df_copy['sin_week'] = np.sin(2*np.pi*df_copy.index.weekday / days)
df_copy['cos_week'] = np.cos(2*np.pi*df_copy.index.weekday / days)

return df_copy

def add_cyclical_hour_columns(df):
df_copy = df.copy()
hours = 24
df_copy['sin_hour'] = np.sin(2*np.pi*df_copy.index.hour / hours)
df_copy['cos_hour'] = np.cos(2*np.pi*df_copy.index.hour / hours)

return df_copy

def add_weekend_column(df):
df_copy = df.copy()
weekday = pd.Series(df_copy.index.weekday.values)
df_copy['weekend'] = np.where(weekday < 4, 0, 1)

return df_copy

1



2 Predict 48 hours ahead

In [ ]: def _update_lagged_features(x, y, h, n_lagg):
"""
Return the updated lagging features for the current hour(h)
"""
for n in range(1,n_lagg):

x['h-'+str(n)][h] = y[h - datetime.timedelta(hours=n)]

x['d-1'][h] = y[h - datetime.timedelta(days=1)]
return x.loc[h]

def pred_48h(model, x_whole, y_true, start, n_lagg):
"""
Make a 48h prediction starting with start-date.
The function predicts one hour a head at a time,
where the lagging functions are updated for each prediction,
such that one can asume the prediction has no information
after the start timestamp.
"""
x = x_whole.copy()
y = y_true.copy()

end = start + datetime.timedelta(hours=48)

preds = []
dates = pd.date_range(start, end, freq='H')
for h in dates:

# update lagging functions

x.loc[h] = _update_lagged_features(x, y, h, n_lagg)
data = np.array(x.loc[h])
data = np.expand_dims(data, 0)
pred = model.predict(data)
y[h] = pred
preds.append(pred)

preds = pd.Series(preds, index=dates).astype(float)

return preds

2.1 Get quality of 48 hour predictions

In [ ]: def get_48h_quality(model, x_whole, y_true, start, end, n_lagg=4):
"""
Runs 48h predictions from start to end
Returns array with mean score for each hour ahead predicted
"""

2



scores = []
dates = pd.date_range(start, end, freq='H')

for h in dates:
forecast = pred_48h(model, x_whole, y_true, h, n_lagg)

y_period = y_true[h: h+datetime.timedelta(hours=48)]

score = y_period - forecast
scores.append(score)

scores = np.array(scores)

return scores

3
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[9] P. Waldmann, G. Mészáros, B. Gredler, C. Fuerst and J. Sölkner, ‘Evaluation
of the lasso and the elastic net in genome-wide association studies’, Frontiers
in genetics, vol. 4, p. 270, 2013.

[10] M. T. El-Melegy, ‘Model-wise and point-wise random sample consensus for
robust regression and outlier detection’, Neural Networks, vol. 59, pp. 23–35,
2014.

37

https://www.statnett.no/
https://snl.no/vekselstr%C3%B8m
https://www.sas.com/en_us/insights/analytics/machine-learning.html
https://www.sas.com/en_us/insights/analytics/machine-learning.html


38 BIBLIOGRAPHY
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