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Abstract

Joint health is vital for mobility and well being of all people. In an EU
project called Miracle, a mid-infrared arthroscopic probe for diagnosis of
joint diseases during surgery is being developed. The focus is mid infrared
measurements of cartilage tissue. To deal with instrumental spatial issues,
the probe will emit only a few single wavenumbers, thus presenting a chal-
lenge for data preprocessing. The state of the art preprocessing technique
Extended Multiplicative Signal Correction (EMSC) is a well established tech-
nique which corrects for physical effects such as scaling and different types of
baseline variations in the data. The method is built on broad-band spectra,
and for data with few wavenumber channels the stability of the EMSC can not
be guaranteed. In thesis, this issue was investigated further. As the Miracle
project is an ongoing project, and the final probe was not ready for operation
during this master thesis, measurements employing the probe were not avail-
able. Therefore, we simulated a data set in order to develop a preprocessing
strategy. The simulation was based on applying PCA on a data set of exist-
ing broad-band spectra measurements that were obtained from healthy and
diseased samples by various project groups and on different conventional lab
instruments. We identified several interference and measurement variations
from the experimental broad-band data, including variations in water va-
por, carbon dioxide, noise and cartilage signal strength. Spectra completely
without cartilage signal was also found, which were linked with high degra-
dation cartilage samples. However, it was shown that the high-degradation
class membership for such spectra is not guaranteed in practice, and there-
fore it is concluded that such spectra will not give any meaningful value to
classification tasks of healthy and diseased cartilage. This demonstrates the
importance of the development of an automatic detection algorithm for mea-
surements which deviates highly from the expected cartilage signal. Further,
it was suggested that physical effect can carry discriminative information
about healthy and diseased cartilage for broad-band spectra. It was however
shown, that for the seven wavenumber channel data, corresponding EMSC
type correction methods was not as accurate for seven wavenumber chan-
nels data as for broad-band spectra, and that the difference increased with
the complexity of the EMSC model. Therefore, it is concluded that the
estimated physical effects baseline parameters from the EMSC correction
of seven wavenumber channels data most likely does not correctly describe
physical phenomena in the sample, but may in stead express a trend in the
relationship between absorbance levels for the seven wavenumbers. In total
11 EMSC type preprocessing strategies for seven wavenumber channels data
were suggested, and validated using the simulated data set. The best perfor-
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mance across four tested classifiers was obtained by using the conventional
MSC. The inclusion of the estimated MSC parameters as extra input vari-
ables to the classifier led to further increase in accuracy, though marginal. In
combination with the Random Forests classifier, the maximum accuracy of
81,2 % was achieved, which represented an increase of 6,2 % with respect to
classification based on raw data. Lastly, we demonstrated that water vapor
is disturbing for classification based on seven wavenumber channels data. By
including water vapor in simulation, we found that the classification accuracy
(Random Forest) decreased by 5 %. Based on this, it is recommended that
instrumental precautions are made to try and minimize presence of water
vapor.
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Sammendrag

Leddhelse er viktig for alle menneskers mobilitet og velvære. I et EU-
prosjekt kalt Miracle, utvikles et midt-infrarødt kikkertinstrument for diag-
nostisering av leddsykdommer under operasjoner. Fokuset er IR m̊alinger p̊a
bruskvev. For å h̊andtere instrumentale utfordringer vil kun noen f̊a utvalgte
bølgelengder utstr̊ales, og dermed føre til en utfordring for preprosessering av
data. Den moderne forbehandlingsteknikken Utvidet Multiplikativ Signalko-
rreksjon (EMSC) er en veletablert teknikk som korrigerer for fysiske effekter
som skalering og forskjellige typer baseline-variasjoner i spektre. Metoden er
bygget p̊a kontinuerlige spektre med bredt spektralomr̊ade, og for data med
f̊a bølgetallkanaler kan ikke stabiliteten til EMSC garanteres. Denne prob-
lemstillingen ble undersøkt nærmere i masteroppgaven. Ettersom Miracle-
prosjektet er et p̊ag̊aende prosjekt, og det endelige kikkertinstrumentet er
ferdigstilt, var ikke målinger fra instrumentet tilgjengelige. Derfor simulerte
vi et datasett for å utvikle en forbehandlingsstrategi. Simuleringen var basert
p̊a anvendelse av PCA p̊a et datasett med eksisterende bred-omr̊ade spektre
som ble oppn̊add fra friske og skadede bruskprøver av forskjellige prosjekt-
grupper og med forskjellige konvensjonelle laboratorieinstrumenter. Vi iden-
tifiserte flere interferens- og målevariasjoner fra eksperimentelle bred-omr̊ade
data, inkludert variasjoner i vanndamp, karbondioksid, støy og signalstyrke
fra brusk. Spektra helt uten brusksignal ble ogs̊a funnet, og ble koblet til
bruskprøver med skade. Det ble imidlertid vist at ikke alle spektre uten
brusksignal stammet fra prøver med stort skadeomfang, og derfor konklud-
eres det med at slike spektra ikke vil gi noen meningsfull verdi i klassifisering-
soppgaver av friskt og skadet brusk. Dette demonstrerer ogs̊a viktigheten av
utviklingen av en automatisk deteksjonsalgoritme for målinger som avviker
sterkt fra forventede brusk-signal. Videre ble det foresl̊att at fysiske effekter
kan gi diskriminerende informasjon om friskt og skadet brusk. Det ble imi-
dlertid demonstrert at for data med kun syv bølgetallkanaler, var korrespon-
derende EMSC-type korreksjonsmetode ikke like nøyaktig som bred-omr̊ade
spektre, og at forskjellen økte med inkludering av bølgetall-avhengige bese-
lines til EMSC-modellen. Derfor konkluderes det med at estimerte fysiske
effekter fra EMSC-korreksjon av syv bølgetallkanaldata mest sannsynlig ikke
beskriver fysiske fenomener i prøven korrekt, men likevel uttrykker en trend i
forholdet mellom absorbansniv̊aer for de syv bølgetallene. Totalt 11 EMSC-
type forbehandlingsstrategier for syv bølgetallkanaldata ble foresl̊att og valid-
ert ved bruk av det simulerte datasettet. Den beste ytelsen over fire testede
klassifiseringsalgoritmer ble oppn̊add ved bruk av MSC. Inkluderingen av de
estimerte MSC-parameterne som ekstra variabler for klassifikatoren førte til
ytterligere økning i suksessrate, men marginal. I kombinasjon med klassifis-
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eringsalgoritmen Random Forest oppn̊adde vi en maksimal nøyaktighet p̊a
81,2 %, noe som representerte en økning p̊a 6,2 % med hensyn til klassifiser-
ing basert p̊a r̊adata. Til slutt demonstrerte vi at vanndamp er forstyrrende
for klassifisering basert p̊a syv bølgetallkanaldata. Ved å inkludere vanndamp
i simuleringen gikk suksessraten til klassifikatoren (Random Forest) ned med
5 % i sammenlikning med simulering som ikke inkluderte vanndamp. Basert
p̊a dette anbefales det at det tas instrumentelle forholdsregler for å prøve å
minimere tilstedeværelsen av vanndamp.
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Chapter 1

Introduction

1.1 Motivation

Joint health is vital for mobility and well being of all people. Each and every-
day our joints are carrying the load of our body, and are going through high
strains such as heavy lifting and sports activities. The articular cartilage
tissue in the joints may be subject to small or major trauma, and as a result
suffer small or major damages. If cartilage damages are not treated or incor-
rectly treated, the damage can develop through time and ultimately lead to
chronic diseases such as Osteoarthritis (OA). OA is a chronic joint disease
characterized by degenerative changes to the bones, cartilage, menisci, liga-
ments, and synovial tissue [1]. It was estimated in 2010 that 4.7 % of the
global population suffer from osteoarthritis (hip and knee), of which 3.8 %
represent knee osteoarthritis [1]. The current evaluation methods for articu-
lar cartilage during surgery have been reported to be subjective and invasive.
In addition, the current evaluation methods do not allow discovery of degen-
eration on an early stage. It is thus desirable to develop new tools for aiding
the evaluation of articular cartilage, which will be objective and noninvasive.
This is the aim of an ongoing ICT Horizon 2020 EU project (Miracle, ICT-
30-2017: Photonics KET 2017: Mid-infrared arthroscopy innovative imaging
system for real-time clinical in depth examination and diagnosis of degener-
ative joint diseases).

1.2 The Miracle project

In the Miracle project, a mid-infrared arthroscopic probe for diagnosis of
joint diseases during surgery is developed. The main focus is examination
of articular cartilage in knee joints. To this purpose, Quantum Cascade
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(A) (B) (C)

Figure 1.1: This figure illustrates the probe system which is under develop-
ment in the Miracle project. The system consists of a mid infrared probe
providing an in-situ measurement (A), real-time preprocessing (B) and clas-
sification (C) of cartilage damage.

Laser (QCL) elements are employed together with lasers which emit selected
wavelengths for producing a frequency combination structure. For coupling
these selected wavelengths into the input waveguide of the actual probe, an
on-chip beam combiner based on thin-film semiconductor waveguide tech-
nology is used. The final aim is a system illustrated in Fig. 1.1, where the
Miracle probe can provide in-situ measurements (A) which subsequently are
preprocessed (B) and used for classification (C) of cartilage damage degree,
providing the surgeon with objective insights. The Miracle probe will provide
a seven wavelength absorbance signal based on the ATR sampling technique.
Feature selection for determination of these seven wavelengths was done by
Partial Least Squares Discriminant Analysis (PLS-DA) and Sparse Partial
Least Squares Discriminant Analysis (SPLS-DA) prior to this thesis.

1.3 Data preprocessing challenge

It is well established that preprocessing is an important part of IR-spectroscopy.
For applications of mid-infrared spectroscopy, employing radiation sources in
the region 2,5 µm - 25 µm, typical effects that interfere with informative sig-
nals are signals from water, baseline shifts and scaling effects due to variations
in the contact between the probe and the sample. In conventional IR spec-
troscopy of biological materials, these effects are commonly removed from
absorbance spectra by the model-based preprocessing technique Extended
Multiplicative Signal Correction (EMSC) [2, 3, 4, 5, 6], which is a state of
the art preprocessing technique. This technique is built on spectra for which
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whole spectral ranges are available, in essence for cases where a large number
of wavenumbers are probed (>1000). In such data, there is a high co-linearity
between variables. This co-linearity is not present in QCL-based waveguide
data, and thus the stability of the EMSC used as preprocessing for such
seven wavenumber channels data can not be guaranteed. Consequently, for
preprocessing the infrared spectra produced by the Miracle-probe, prepro-
cessing approaches must be investigated in greater detail.

1.4 Scope of thesis

The Miracle project is an ongoing project, and, according to the plan, the fi-
nal probe was not produced and ready for operation during the master thesis.
Thus, measurements employing QCL lasers were not available at the begin-
ning of the Miracle project. The Miracle QCL lasers were expected to be
finished after half of the project time. However, it was vital for the project to
start investigating the consequences for the availability of just a few number
of wavelengths for the preprocessing strategies. Therefore, it was decided to
simulate a data set in order to develop a preprocessing strategy. The idea
was to base the simulation on a data set that could be used for developing a
preprocessing strategy, on existing spectra measurements that were obtained
from healthy and diseased samples by various project groups and on differ-
ent conventional lab instruments, that allow to acquire spectra over the full
spectral range (broad-band spectra). Therefore the aim of this thesis was to
(i) explore interferent and measurement variability in broad-band spectra,
(ii) establish routines for detection of low quality broad-band spectra, (iii)
use only selected wavelengths from the broad-band spectra (the wavelengths
that were selected for the QCL lasers) and investigate preprocessing strate-
gies based on only few wavelengths, (iv) to suggest preprocessing strategies
for data with few wavelength channels, and finally (v) to simulate a data set
based on the knowledge about interference effects from broadband spectra
and use the simulated data set for validation of the suggested preprocessing
strategies.
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Chapter 2

Theory

2.1 Vibrational spectroscopy

In this section, the reader is provided with background material for the field
of Vibrational Spectroscopy. This section is based on [7]. Vibrational spec-
troscopy, or infrared spectroscopy is a widely used tool in chemistry research
[8, 9, 10]. It is a non-destructive tool, which can help scientists identify func-
tional groups in both organic and inorganic samples by taking advantage of
quantized absorption by the compounds in the sample. When a sample is
measured in vibrational spectroscopy, radiation in the infrared region of the
electromagnetic spectrum is sent through the sample, for which present func-
tional groups absorb characteristic wavelengths and give rise to changes in
molecule vibrations, in essence transitions in vibrational energy states. The
absorbed wavelengths are recorded by spectroscopic instrumentation, creat-
ing a so called fingerprint for the given sample. There are several ways to
measure such characteristic absorption in molecules. Some possible instru-
mental setups are FTIR, Raman or AFMIR. In the following sections, the
main focus is FTIR spectroscopy.

2.1.1 Molecule absorption of IR radiation

Absorption of IR radiation mainly cause changes to molecule vibrations.
In this section, different types of vibrations molecules can have are shortly
introduced. The vibrational modes are defined by stretching and bending
modes. Stretching is when the atoms moves along the axis of the chemical
bond between them. There are two types of stretching modes; asymmetric
and symmetric. Bending is when the angle between two chemical bonds is
continuously changing. There are four types of bending modes; wagging,
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twisting, rocking and scissoring. For diatomic and triatomic molecules, these
are easily understood, but for more complex compounds, interactions be-
tween different modes of vibrations becomes very complicated and unique.
The vibration of a molecule exist in quantized energy levels or so called vi-
brational energy states. The vibrational energy states Viν of chemical bonds
can be described as anharmonic oscillations [7], by the following equation

Viυ = hνi

(
υi +

1

2

)
+ hνixi

(
υi +

1

2

)2

(2.1)

, where h is Planck’s constant, νi is the characteristic frequency of vibra-
tional mode i, υi is the vibrational quantum number of mode i (υi = 0,1,2,...)
and xi is the dimensionless anharmonicity constant for mode i. The first
term is the energy states of harmonic oscillations, and the second term is the
anharmonicity contribution. The energy difference between the fundamental
state (i = 0) and the first excited state (i = 1) often correspond with fre-
quencies in the mid infrared region. Thus, when bonds are illuminated by
IR radiation, the bonds will absorb it. Notably, transitions between modes
with larger energy gaps does not in general produce high signals in the mid
infrared spectrum. However, absorption in the sample is not strictly lim-
ited to to vibrational energy transitions. Liquid and solid samples can have
vibrational energy transitions, but small gaseous molecules such as water
vapor and carbon dioxide can in addition have rotational transitions when
illuminated by IR radiation. Spectra of such small molecules in the vapor
phase show considerable fine structure because transitions between quantized
rotational energy levels occur at the same time as vibrational transitions.

2.1.2 Lambert-Beer’s law

Lambert-Beer’s law is one of the most fundamental relations/equations in
vibrational spectroscopy. While transmittance T (ν̃) of a sample at a given
wavenumber ν̃ can experimentally found given by the ratio of the radiant
power emerging from the rear face of the sample at that wavenumber I(ν̃) to
the power of the radiation at the front face of the sampleI0(ν̃), the Lambert-
Beer’s law provide a useful approximation of how absorbance in the sample
can be described. For a pure component sample, the Lambert-Beer’s law
takes the form in equation 2.2 [7], which is the simplest form of the equation.

T (ν̃) =
I(ν̃)

I0(ν̃)
= e−α(ν̃)b (2.2)
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, where b is the sample thickness and α(ν̃) is the linear absorption coeffi-
cient at ν̃. From this relation the absorbance of the sample can be calculated.
Taking into account that most samples are mixtures of several components
which absorbs at ν̃, the absorbance can be expressed as

A(ν̃) ≈
J∑
j=1

[kj(ν̃)bcj] (2.3)

, where J is the number of absorbing constituents at ν̃, kj(ν̃) is the ab-
sorptivity at ν̃ of component j, and cj is the concentration of component
j.

2.1.3 Fourier transform infrared spectroscopy

In the FTIR spectroscope, a transmission spectrum for a sample is obtained
by utilising the Michelson’s interferometer [11] to produce an interferogram,
and subsequently turned this into a transmission spectrum by utilising the
Fourier transform. There are several ways to obtain a measurement of a
sample with an FTIR spectrometer, and the sampling technique of choice
depends on the application. The main possibilities include Transmission,
Attenuated Total Reflection (ATR)[12] , Diffuse Reflectance [13, 14] and
Specular Reflectance [15]. The most classical sampling technique in FTIR
spectroscopy is the transmission sampling technique. However, the trans-
mission sampling technique does not allow in-situ applications since samples
must be very thin( ∼10 µm [7]) and require careful sample preparation, tech-
niques utilising reflection instead of transmission have an advantage in this
area. In the next paragraph, the ATR sampling technique, which is one
of the techniques which utilise reflections on the sample surface, is shortly
explained.

ATR sampling technique

The ATR sampling technique is based on the phenomenon of total internal
reflection, and the sampling setup of a single-bounce system is illustrated in
Fig. 2.1. In this setup, the changes which occur in an internally reflected
infrared beam (1 reflection for single bounce system) which comes in con-
tact with the sample through a crystal or diamond (high refractive index)
is measured. Upon contact with the sample, an evanescent wave, which ex-
tends into the top surface of the sample (∼1-2 µm), is generated. Thus, the
evanescent wave will be attenuated by absorption of chemical bonds in the
sample surface [16]. The exact penetration depth depends on the particular
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wavelength in the beam and several other factors, such as the difference in
refractive indices of the sample and the crystal, the angle of incidence of the
beam, the number of reflections [17]. Since the penetration depth is only
around ∼1-2 µm, for measurements of solids it is important that the ATR
diamond tip is applied with pressure on the sample. Comparison between
spectra of different sampling techniques should be made with caution, since
different techniques will involve different types of physical phenomena. For
example, it should be noted that ATR spectra have a shift to lower frequen-
cies compared to transmission spectra [18].

Diamond

Sample

*

Iin Iex

d

Figure 2.1: This figure shows a simple schematic of a single bounce ATR
system. The incident beam Iin is reflected once on the sample. An evanescent
wave* penetrates the sample with depth d, resulting in an attenuated exit
beam Iex.

2.1.4 The infrared absorbance spectrum

The mid infrared region is often divided into a so called functional region
above 1500 cm−1 and the fingerprint region below 1500 cm−1. The functional
region is the region including absorbance of separate functional groups within
the molecule, while the fingerprint region contain absorption due to complex
deformations of the molecule. However, this assignment is not strict, since
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the two region in practice will overlap. For the purpose of this thesis, we
consider the cartilage IR spectrum which will be encountered in this thesis.
As a comparative note, the IR spectra of bone is also considered in this
section. For a full overview of absorption peaks in the fingerprint region
associated with cartilage tissue, see table 2.1. Some main peaks expected are
collagen-associated peaks, protein-associated peaks (Amide I- III) and peaks
associated with proteoglycans. As representatives for cartilage information,
the 7 preselected wavenumbers for the laser sources in the Miracle project
are 1800 cm−1 (Background), 1745 cm−1 (Lipids), 1620 cm−1 (Amide I),
1560 cm−1(Amide II), 1210 cm−1 (Amide II), 1080 cm−1 (Collagen) and 850
cm−1 (Water/COS). Lipids and water bands are not included as cartilage
components in table 2.1 but they are still present in synovial fluid and cells
(chondrocytes) in the cartilage [19], and are thus in practice expected to be
measured as well. In figure 2.2 [20], the qualitative differences between bone
and cartilage is highlighted by showing typical IR transmission spectra for the
two. As can be seen, for the protein associated peaks Amide I, II and III are
present for both bone and cartilage, although for cartilage, the peaks are in
general stronger. In the region 1000-1100 cm−1, the most apparent difference
occurs. While bone tissue is characterised by steep phosphate associated
peaks, the corresponding cartilage signal is expected to be considerably lower,
and is dominated by Proteoglycan (PG) absorption. As noted in section 2.1.3,
for ATR spectra, exact match of peak positions should not be expected. The
main phosphate peak for bone in FTIR-ATR instrumentation is seen at 1010
cm−1 [21]. As a last remark, the Miracle laser with radiation of wavenumber
850 cm−1, may be a measure of water or carbonyl sulfide, but if cartilage
is so worn out that we measure in stead bone like tissue, it may include
information about carbonate content, as seen from figure 2.2 (left).

2.2 Disturbances in IR spectra

For optical instruments and other types of sensors, there will always be fac-
tors disturbing the desired signal. It may be that there are chemical signals
we measure in our samples that we are not interested in, or there may be
physical effects in either the instrumentation or in the sample itself augment-
ing the recorded absorbance signal. In chemometrics, the desired information
is more often than not to obtain pure chemical information by using optical
instruments, for instance the FTIR spectrometer. However, for such instru-
mentation and the sample of interest, there can be physical phenomena such
as scattering, interference of IR waves [31] and variations in optical path
which may cause the recorded spectrum to take on different characteristics,
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Table 2.1: This table shows assignments of absorption peaks to bond vibra-
tions for cartilage tissue in fingerprint region.

Frequency Vibration
(cm−1)
1700-1600 C=O stretch (Amide I) [22, 23, 24, 25, 26]

Frequency (cm−1) Secondary structure of collagen
1691 β-turns
1679 β-sheets
1669 β-turns
1658 α-helix
1647 unordered
1637 triple helix
1626 β-sheets
1608 side chains

1600-1500 C-N stretch and N-H bend (Amide II) [26]
1480-1440 CH3 and CH2 deformations [27, 28]
1400 COO- stretch of amino side chains [27]
1375 CH3 symmetric deformation of glycosaminoglycans [29]
1335 CH2 deformations of collagen side chains [27]
1300-1200 O=C-N-H stretch and bending (Amide III) vibration with

significant mixing with CH2 wagging vibration from the
glycine backbone and proline side chain [27]

1250-1220 S=O stretch (SO3-) of sulphated glycosaminoglycans [26, 30]
1200-900 C-O-C, C-O, C-C ring, C-OH vibrations [27, 28, 30]

Frequency (cm−1) Vibrations
1160 C-O-C stretch
1120 C-O-C antisymmetric stretch
1080 C-O stretch of the carbohydrate

residues in collagen and proteo-
glycans

1064 C-O stretch of the carbohydrate
residues in proteo-
glycans

1032 C-O stretch of the carbohydrate
residues in collagen and proteo-
glycans

1065 SO3 symmetric stretch of sulphated glycosaminoglycans [30]
850 C-O-S stretch [26]
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Figure 2.2: This figure shows the expected difference in the FTIR spectrum of
cortical bone and articular cartilage, using instrumentation in transmittance
mode. (Left) Healthy cortical bone and (Right) bovine articular cartilage.
Reprinted from FT-IR imaging of native and tissue-engineered bone and car-
tilage by A. Boskey, and N. Camacho, 2007, Biomaterials, 28. Copyright
2006 by Elsevier Ltd.

such as multiplicative effects and baseline shifts. The disturbance of physical
effects on the spectra may be more or less complicated, depending on the type
of sample. For biological tissues, which are in general inhomogeneous, con-
centration differences of compounds may be one source of variability, and the
presence of spherical structures such as cells may lead to specific scattering
types, such as the Mie Scattering [3]. It can be noted that the Attenuated to-
tal reflection sampling technique is known to elliminate several of the spectral
disturbances which are seen for other sampling techniqes [32], and the main
issue is that radiation has increased penetration depth for lower wavenum-
bers. A spectrum which is not yet corrected for such physical effects is often
called an apparent absorbance spectrum. After correction, the spectrum is
referred to as pure absorbance spectrum. In to physical phenomena effects,
random fluctuations in the spectrometer may disturb the recorded spectra in
varying levels for different instruments.

In addition to physical effects, chemical information in itself can be seen as
disturbances for a given application. In IR spectroscopy, one main concern
are water signals. The water molecule is a polar molecule which has very
high attenuation coefficient in the IR region. The exact absorption depends
on the phase of the water. For liquid water, absorption due to vibrational
transitions can often end up dominating the IR spectrum. The IR spectrum
of water is shown in Fig. 2.3. High absorption bands are present at at
3500 cm−1 and 1635 cm−1 , which are caused by respectively O-H stretching
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and O-H-O scissor bending. Further a smaller band is located centred at
2120 cm−1, which is the result of coupling of the scissors-bending and a
broad liberation band in the near-infrared. The small absorption peak is
for this reason called a combination band [17]. Often, challenges in sample
preparation are due to high water content. For instance for measurements
employing transmission mode of the FTIR instrument, it is required that such
samples are very thin to not saturate the signal. For ATR measurements, the
problem is not as pronounced because the penetration depth of the evanescent
wave is typically very low, limiting the effective sample thickness. However,
variability in water concentrations in the sample may still be a source of
uncertainty. The Amide I is a known peak associated with protein absorption,
and is expected for cartilage spectra as can readily be seen from figure 2.2.
If the spectrum of liquid water is inspected in Fig. 2.3,it is also seen that
one of the peaks are expected in the Amide I region. This is a good example
of how water can disturb our spectra in perspective of further analysis. In
the Amide I region it is hard to separate out signals we are interested in
because of significant overlap of absorption bands, and whether a change in
Amide I level originates from the sample constituents of interest or from less
interesting constituents such as for example water, is difficult to determine.
Other absorbing molecules of disturbance may be water vapor and carbon
dioxide, which is often measured because air resides inside the instrument.
Water vapor bands and carbon dioxide are shown in Fig. 2.4. As can be seen,
water vapor (A) has to absorption regions, namely 3231 - 4000 cm−1 and
1205 - 2072 cm−1 originating from respectively stretching and bending. For
carbon dioxide also two region exist, although only one is shown here. The
one shown in Fig. 2.4 (B), namely in the region 2208 - 2442 cm−1 originates
from asymmetric stretching and the second region 600 - 914 cm−1 originates
from bending of the molecule [33]. Signals from carbon dioxide and water
vapor are often measured due to air in the instrumentation, and in this case
do not represent information about the sample itself. Such interference of the
sample signal may disturb further analysis and preprocessing because of the
sharp characteristic peaks associated with rotational transitions of small gas
molecules. From this section it is understood that it is important to be aware
of signals and phenomena that may disturb further analysis so that proper
preprocessing of the spectra can be applied and limitations in analyses are
known. In this section some common physical and chemical interferents were
presented. In the next section, ways of preprocessing spectra to deal with
such effects in spectra are introduced.
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Figure 2.3: This figure shows a plot of the IR spectrum of liquid water,
obtained by FTIR-ATR. Courtesy of Nebojsa Perisic and Achim Kohler.

A

B

A

Figure 2.4: This figure shows a plot of the IR spectrum, obtained by FTIR-
ATR, of water vapor (A) and carbon dioxide (B), which are interferents that
can be associated with air inside the spectroscope. Courtesy of Nebojsa
Perisic and Achim Kohler.
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2.3 Preprocessing techniques for spectral data

To handle physical effects and intereferences as described in section 2.2, sev-
eral common preprocessing methods can be mentioned, including Normal-
isation, derivative calculations (e.g. Savitsky-Golay), background subtrac-
tion, Standard Normal Variate (SNV), and Multiplicative Signal Correction
(MSC) [34, 35]. In this section we consider an extended version of the MSC
in more depth.

2.3.1 Extended Multiplicative Signal Correction

Extended Multiplicative Signal Correction (EMSC) is a well established al-
gorithm for correction of physical effects in infrared spectra [3, 4, 2, 5]. It is
a model based approach which can be used to correct both instrumental in-
terference and interference in sample. It is a Least Squares method, where a
predefined number of model component are fitted to the measured spectrum.
These model components usually include both constant and wavenumber-
dependent baselines and it is stabilised by using a reference spectrum, often
chosen to be the mean spectrum in the data set. The general formulation of
the EMSC model is summarized in equations 2.4 and 2.5.

Aapp(ν̃) = a+ b ·
J∑
j=1

cj · kj(ν̃) + d · ν̃ + e · ν̃2 + · · ·+ ε (2.4)

, where Aapp(ν̃) is the apparent absorbance spectrum, a is a constant baseline
shift, b is a multiplicative effect representing effective optical thickness, cj is
the constituent concentrations in the sample, kj(ν̃) is the constituent’s char-
acteristic absorptivities, J is the number of absorbing species in the sample,
d is linear baseline shift, and lastly e is a quadratic basline shift. This can
be rewritten with respect to a reference spectrum m(ν̃), by

Aapp(ν̃) = a+ b ·m(ν̃) + d · ν̃ + e · ν̃2 + · · ·+ E (2.5)

, where the information about the chemical differences between the reference
spectrum and the measured apparent spectrum is assumed to be captured
in the residual E. The larger b, the higher the probability that light is ab-
sorbed by a molecule. The parameters a, d and e is normally associated with
scattering effects. This model is closely related with Lambert-Beer’s law, as
the description of absorption in the sample (sum term) in 2.4 is analogous
to 2.3 as can be readily seen. The model components are fitted to the given
spectrum by the Least Squares method, and the parameters are estimated
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and subsequently the physical effects can readily be separated from chem-
ical information in the spectrum. If we only include the constant baseline
(a term) and the multiplicative effect (b), the correction is referred to as
Multiplicative Signal Correction (MSC). In theory, we can add any types of
term to the model, such as polynomials or sinusoidal terms [36] [31]. In this
thesis, only the addition of linear (d) and quadratic (e) terms are considered.
It is distinguished between an EMSC model including only a linear term and
a model including both linear and quadratic terms by referring to these as
respectively MSC-L and EMSC.

2.4 Machine learning algorithms

Machine learning is the study of algorithms and statistical models which can
be used for the purpose of learning dependencies and pattern in acquired data
in order to make predictions for class membership of future observations.
Data on which such learning algorithms are built is called a training set.
Data, on which the learning algorithms are tested, is referred to as the test
set. In this section, different Machine Learning algorithms used in this thesis
are shortly presented to provide the reader with an overview. The methods
are not explained in mathematical details. The section is based on [37, 38,
7, 39], and the main source used for each section is given at the end of the
respective section. In addition to the below mentioned Machine Learning
algorithms, PLS-DA is used for classification in this thesis. PLS-DA is a
special case of Partial Least Squares Regression (PLSR), where the PLSR
output is simply mapped into classes. It is assumed that the reader is familiar
with PLSR.

2.4.1 Random Forests

The Random Forests (RF) classifier belongs to the Decision tree family. It
sets up multiple decision trees, usually referred to as an ensemble of trees,
where each tree is built from a random selection of samples from the origi-
nal data (i.e by bootstrapping) and each node is optimised using a random
subset of variables. After a tree is built on a random subset of samples,
the remaining samples which the tree was not built on (called out of bag) is
passed through the tree to obtain a classification. After this is done for all
trees, the overall classification of the samples is determined from a majority
voting among all trees [38, 37].
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2.4.2 Artificial Neural Networks

Artificial Neural Networks (ANN) are based on designing a system of artificial
neurons. An artificial neuron consists of a weighted summation of inputs
from the data variables or other neurons and an activation function. If the
weighted sum exceeds the threshold given by the activation function of choice,
an output is provided. Examples of activation functions are Sigmoid function,
Hyperbolic tangent function, Rectified linear unit function and the Softmax
function. An artificial neural network consists of an input layer, hidden layers
and an output layer. The input layer consists of the actual variable values
in the data set, and in the hidden layers, we can find the system of neurons.
The first hidden layer takes input from one or more variables in the input
layer and provides an output which can be passed on to one or more neurons
in the next hidden layer, and so forth. In each hidden layer there can be
several neurons, but these do not interact with each other. In the output
layer, an overall prediction is produced from the output of the neurons in the
last hidden layer [37, 7].

2.4.3 Support Vector Machines

The Support Vector Machines (SVM) learning algorithm is a soft margin
classifier. It constructs a decision boundary to separate the classes by max-
imising the margin. The margin is defined as the distance between the de-
cision boundary and the samples (in the training data set) that are closest
to the decision boundary. These samples which are closest to the decision
boundary are called the support vectors. However, in construction of the de-
cision boundary, some misclassifications are allowed which is why the margin
is called soft This prevents the method from being very sensitive to outliers
[37].

2.4.4 Evaluation metrics

In classification tasks, one predicts the class of a sample with more or less
success. If reference data is at hand, one can evaluate the given classifier
quantitatively, for instance by cross validation. In this section, different
metrics for describing success and failure of a classifier in a certain task is
presented. To understand the classification metrics, the concept of True
positives(TP) and True negatives(TN) as well as False positives(FP) and
False negatives(FN) must be explained. In binary classification, there are
two classes to be predicted. In terms of prediction of class 1, we predict that
the samples either belongs to class 1 (positive prediction) or that it does
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Table 2.2: This table shows an overview of classification metrics defined in
terms of counts of True positives (TP), True negatives (TN), False positives
(FP) and False negatives (FN). These counts can be defined for binary clas-
sification.

Name Definition

Specificity (True negative rate) TNR =
FP

FP + TN

Sensitivity (Recall) REC =
TP

FN + TP

Precision PRE =
TP

FP + TP

F1 score F1 = 2 · PRE ·REC
PRE +REC

Accuracy (Success rate) ACC =
TP + TN

FP + FN + TP + TN

Prediction error ERR =
FP + FN

FP + FN + TP + TN

not belong to class 1 (negative prediction). A sample belonging to positive
class which is predicted as positive class is called a True positive, while a
sample belonging to positive class and is predicted as negative class, it is
called a False negative. Correspondingly, a sample belonging to negative
class which is predicted as negative class is called a True negative, while a
sample belonging to negative class and is predicted as positive class is called
a False positive. Metrics are often summarized in a confusion matrix, for
easy comparison, where the counts of TP, TN, FP and FN are given. In
this thesis, values printed in the diagonal entries of the confusion matrices
are the recall values for the given class. The definition of recall and other
classification metrics commonly used are summarised in table 2.2 [37].
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Chapter 3

Method

3.1 Available data

The analyses performed in this thesis are based on FTIR-ATR measurements
of hydrated articular cartilage sections from knee joints in human, bovine and
equine cadavers. The data consists of broad-band spectra, unlike the data
that will be available from the Miracle imaging probe. In this section, we
describe each data set and point out differences between them. For the anal-
yses in this thesis, the main focus is human and bovine data while equine
data is used for secondary purposes.

We start by defining what is considered as a sample in our data sets.
We consider one sample as one location on the cartilage for a given leg and
a given cadaver. Firstly, it should be noted that this means we have more
samples than cadavers. Furthermore, the number of samples in each data set
is not the same as the number of spectra, since there are technical replicas
for each sample. The number of cartilage locations and number of replicas
taken vary across data sets and will be specified in the upcoming subsections
in which each data set type is considered in depth. A comparison of the data
sets are summarised in table 3.1. All instruments used are run in ATR mode
for comparability with the Miracle probe which is based on ATR instrumen-
tation.

For grading of cartilage damages in the samples, there are many possible
systems available for articular cartilage tissue, and one of the most used as-
sessment systems for cartilage damage is the OARSI grading. This cartilage
pathology assessment system is based on histology of small extracted sections
of cartilage tissue. It is a grading system based on six grades, which reflect
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depth of the lesion and the extent of osteoarthritis over the joint surface [40].
Other often used grading systems are for example Mankin and ICRS [41]
grading systems. ICRS grading is based on 3 grades and thus shows a less
nuanced cartilage assessment than OARSI grading system. For the data in
this thesis, samples are graded by OARSI or ICRS. This will be specified in
the upcoming sections.

3.1.1 Bovine data as a model system

One bovine data set was available for this thesis, acquired by research group
at Oulu University, using a Thermo Fischer Nicolet i5 with AP pyramidal
diamond probe run in ATR mode. The bovine data set can be regarded
a model system, and stands out from the other available data sets in the
sense that different bovine cartilage samples are subjected to different kinds
of treatment. In this way, a variation of artificial damages are created. It is
a high control data set, since the damage ”ground truth” is known. OARSI
and Mankin grading of the samples are also available, but not focused on
in this thesis. The bovine data set consists of measurements of 72 samples,
distributed across 10 bovine cadaver knees. There are 3 technical replicates
per sample. For each cadaver, only one knee joint is available. So we do not
for instance have both right and left leg from same cadaver. In addition, as
shown in figure 3.1, each knee is divided in two main sections: lateral and
medial. For two of the cadavers, experiments/measurements are run on both
section, while for the rest only one of the sections are used. This is done to
ensure complete balance in our data set with regards to treatment groups.

There are in total 396 spectra in the data set, and two types of control
measurements are available , including i) control at same location as treat-
ment measurement (prior to treatment) and ii) control at different location.
See figure 3.1 for sample locations on bovine cartilage. Locations 1 and 7 are
used for ”control at different location” for respectively the medial and lat-
eral cartilage section. In the analysis for this thesis, only control at different
location is used, because it is treated as a complete separate group. After
these control measurements have been discarded, the total number of spec-
tra is 216. These spectra are divided equally between the treatment groups.
There are in total 6 different treatment groups G1-G6, where G1 is the con-
trol group consisting of measurements of untreated cartilage samples. The 5
remaining treatment groups consists of two mechanical damage groups and
three enzymatic damage groups. These are respectively damages induced by
impact (G3), abrasion (G5), trypsin treatment (G6), collagenase 1.5h treat-
ment (G4) and collagenase 24h treatment (G2). Each treatment happens at
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assigned locations on the cartilage for the lateral and medial sections, as can
be seen from figure 3.1.
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Figure 3.1: This figure illustrates the sample locations for bovine carti-
lage. Certain treatment groups are associated with certain sample locations.
Treatment G2 (Collagenase 24 h) is applied to locations [2,8]. Treatment G4
(Collagenase 1,5 h) is applied to locations [4,10]. Treatment G6 (Trypsin)
is applied to locations [6,12]. Treatment G3 (Impact) is applied to locations
[3,9]. Treatment G5 (Abrasion) is applied to locations [5,11], and lastly no
treatment is applied to locations [1,7] (control measurements).

3.1.2 Human data

At the time of this thesis, there were five available data sets of measure-
ments on human articular cartilage. They are referred to as Human1-3 and
Human11-12. The spectra are acquired by research groups at Ulm Uni-
versity (UULM), Art Photonics (AP) or Oulu University (UOULU) using
different FTIR instruments. For specifications of instruments used for spec-
trum acquisition, the reader is referred to the summary table 3.1. For the
human samples, no artificial damages are induced prior to measurements as
for the bovine data set. This mean that these samples represent more realis-
tic damages than the bovine samples. While the Human1-3 data sets contain
measurements of the same two cadavers, data sets Human11-12 contain mea-
surements of the same 9 cadavers including the two from data set 1-3. The
human sample measurement locations are more detailed than for the bovine
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samples, as can readily be seen from figure 3.2. Data sets Human1-3 consists
of measurement of 76 samples, distributed across two cadavers with ID tags
KPO8 and KPO9. These data sets contains in total respectively 232, 226 and
228 spectra. Data sets Human11-12 consists of measurement of 282 samples
distributed across 9 cadavers with ID tags KPO1-9. The total number of
spectra are respectively 838 and 836.

Figure 3.2: This figure shows the sample locations used on the human carti-
lage, for the right leg as an example. The corresponding locations are used
for the left leg.
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For reference data for damage degree of all human samples, an OARSI
consensus grading is used. All samples are graded by three different ex-
perts independently, and later on an agreed OARSI grading is concluded.
The OARSI grading is provided by reaserach group at University of Oulu
(UOULU). For Human11 and Human12, some samples were ungraded. These
were removed from further analysis, resulting in the final data set sizes of
respectively 274 and 275 samples which yielded the total number of spectra
respectively 802 and 797.

3.1.3 Equine data

There was one equine data set used in this thesis, acquired by research group
at Ulm University using a Bruker Alpha 2 FTIR with Platinum ATR cell (sin-
gle bounce diamond). No comprehensive analysis is executed on this data
set, but it is used in tests of quality-check methods, to increase the variety
of spectra for which the method performance is evaluated. There are mea-
surements of 180 samples with three technical replicates distributed across
24 equine cadavers with ID tags H01-24. In total, there are 542 available
spectra. It varies how many samples are measured from each cadaver(3-10
per horse). For equine articular cartilage damage degree, the reference data
consists of the commonly used ICRS grading system.
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Table 3.1: This table shows an overview of the available data sets for this
thesis by summarising data set ID, how many cadavers were available in the
data set, the total number of samples, the FTIR-ATR instrument the data
set was acquired with and the type of available reference data.

Data set Cadavers Num. Instrument Reference
ID IDs samples data
Bovine1 KBOV1-10 72 Thermo Fischer Nicolet Treatment

i5 with AP pyramidal groups,
diamond probe OARSI

Human1 KPO8-9 76 Bruker Alpha 1 FTIR OARSI
with Platinum ATR cell
(single bounce diamond)

Human2 KPO8-9 76 Bruker Matrix FTIR OARSI
with AP Fiber probe
head (diamond pyramid
tip)

Human3 KPO8-9 76 Bruker Alpha 1 FTIR OARSI
with Platinum ATR cell
(single bounce diamond)

Human11 KPO1-9 282 Bruker Alpha 1 FTIR OARSI
with Platinum ATR cell
(single bounce diamond)

Human12 KPO1-9 282 Bruker Alpha 2 FTIR OARSI
with Platinum ATR cell
(single bounce diamond)

Equine4 H01-24 180 Bruker Alpha 2 FTIR ICRS
with Platinum ATR cell
(single bounce diamond)
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3.1.4 Balance of reference data

For classification tasks, balance in the data set with respect to reference data
is important. In this thesis, the reference data are labels we can attach to
the spectra which describes the damage degree of the cartilage tissue. In Fig.
3.3 we can see the distribution of samples with respect to the corresponding
classes and treatment groups for the available data sets. The bovine data set
is balanced by design with respect to treatment groups. In general, one note
to make is that there are few OARSI grade 6 (high damage) samples.

3.2 Thesis pipeline

This section provides an overview of the data analysis steps and investigations
making up this thesis. As described in the introduction, the sub goals was
to (i) explore interferent and measurement variability in broad-band spectra,
(ii) establish routines for detection of low quality broad-band spectra, (iii)
use only selected wavelengths from the broad-band spectra (the wavelengths
that were selected for the QCL lasers) and investigate preprocessing strate-
gies based on only few wavelengths, (iv) to suggest preprocessing strategies
for data with few wavelength channels, and finally (v) to simulate a data set
based on the knowledge about interference effects from broadband spectra
and use the simulated data set for validation of the suggested preprocessing
strategies.

In this pipeline, all broad-band data sets first went through a quality
check, where general quality measures such as signal to noise ratios and in-
strumental interferences were mapped. The quality check was concluded by
running through developed routines for detection of spectra with low carti-
lage signal. These routines are explained further in the following subsection
3.3. Subsequently, an EMSC investigation was executed. This firstly in-
cluded an investigation of different EMSC models for continuous broadband
spectra, which resulted in the conclusion of an EMSC model which were ap-
plied for all broad-band spectra. In extension of this, EMSC for continuous
spectra and EMSC correction for only the seven wavenumbers emitted by
the QCL lasers developed in the Miracle project, were compared to demon-
strate stability of EMSC correction for such data. Based on experience from
this EMSC investigation, suggestions for preprocessing strategies for seven
wavenumber channels data were made.

Subsequently, healthy and diseased cartilage spectra were simulated by a
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(a) Bovine1 (b) Bovine1

(c) Human1-3 (d) Human11-12

(e) Equine4

Figure 3.3: These plots show the distribution of samples across reference data
for the available data sets. We show (a) the distribution of samples across
different treatment groups for Bovine1, (b) the distribution of samples across
OARSI grades for Bovine1, (c) the distribution of samples across OARSI
grades for Human1-3,(d) the distribution of samples across OARSI grades
for Human11-12 and (e) the distribution of samples across ICRS grades for
Equine4.
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PCA based method. Data set variability of experimental broadband spectra
Human12 with respect to damage degree was thus exploited. This simulation
approach is described in more detail in subsection 3.4. Subsequently, the sim-
ulated data set was used to validate the suggested preprocessing strategies
by classification using Random Forest (RF), Partial Least Squares Discrim-
inant Analysis (PLS-DA), Artificial Neural Network (ANN) and Support
Vector Machines(SVM). For Random Forest 150 trees was used. For SVM a
polynomial kernel was applied, and ANN used 10 neurons with the Softmax
activation function. Since the data set is simulated and do not distinguish
between replicates and cadavers, cross validation with 20 random folds was
used. It must be noted that for cross validation tasks, correction was done
prior to, and completely separately, from the classification. As a remark,
the conceptually correct method it is to perform correction of each test set
separately in the cross validation. However, it is not expected that this will
greatly effect the results. As a final step in this thesis, the simulated data
set was used to investigate the influence of water vapor on classification per-
formance of healthy and diseased samples.

3.3 Detection of Low absorbance spectra

Three methods for detection of spectra with low cartilage signals are tested
for broad-band spectra. The three approaches are based on (i) absolute
absorbance levels, (ii) derivative absorbance levels and (iii) exploitation of
EMSC. The approaches are presented on a conceptual level in the following
sections. All exact cutoff limits used for the respective methods are discussed
in the Result and discussions section.

3.3.1 Absolute absorbance approach

This approach sets a criterion for absolute absorbance levels A in the spectra
in the region 1100 - 1400 cm−1. The applied definition of absolute absorbance
is,

Abs = Max(A|1100−1400cm−1)−Min(A|1100−1400cm−1) (3.1)

, which is in accordance with the methodology in the Opus quality check
developed by Bruker [42]. Before calculation of the absorbance from equation
3.1, MSC-L correction is run with a normalised mean as reference. Thus a
simple criterion is set for categorisation as spectrum with low absorbance
signal, by Abs < limit, where the limit is tuned.
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3.3.2 Derivative absorbance approach

This approach is analogous to the absolute absorbance approach. It sets a
criterion for the 1st derivative of absorbance levels, Ȧ, for the spectra in the
region 1100-1400 cm−1. The applied definition of criterion metric for this
approach is thus,

Abs = Max(Ȧ|1100−1400cm−1)−Min(Ȧ|1100−1400cm−1) (3.2)

, which is also in accordance with methodology in the Opus quality check
developed by Bruker [42]. The derivative is found by applying Savitsky-
Golay method. Before calculation of the criterion metric from equation 3.1,
MSC-L correction is run with a normalised mean as reference. Thus a simple
criterion is set for categorisation as spectrum with low absorbance signal, by
Abs < limit, where the limit is tuned.

3.3.3 EMSC approach

This approach applies a different methodology than the two former low-
cartilage-signal detection methods. Here MSC-L correction is run for spectra
by i) using a normalised water spectrum as reference and ii) using a nor-
malised mean as reference. From each of these correction methods, there are
residuals from the model fitting, and the Root Mean Square Error (RMSE)
is calculated from these (for each spectrum) in the region 980 - 1500 cm−1.
We call the two RMSEs respectively RMSEw and RMSEm. The criterion
metric of this approach is thus,

RMSEdiff = RMSEw −RMSEm (3.3)

, which is expected to be a negative value if the spectrum is more similar
to the water spectrum than the mean spectrum. The categorisation of a
spectrum as low-cartilage-signal is thus RMSEdiff < limit, where the limit
should be some negative value tuned for the specific use.

3.4 Simulation method

In this thesis, we simulate a data set based on Principal Component Analy-
sis (PCA). In this section, the simulation is explained on a conseptual level,
and it is assumed that the reader is familiar with the statistical method of
PCA. Otherwise the reader is referred to litterature such as [39]. The simu-
lation method exploits variations in experimental broad-band data sets and
establishes a simulated data set of healthy and diseased spectra. The ground
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idea is to run PCA on an experimental data set of choice to obtain loadings
(principal components) and scores which carry information about the spec-
tral variations in healthy and diseased cartilage groups. The loadings are
subsequently recombined with new scores, which are drawn from a normal
distribution defined by the mean and standard deviation of scores from the
experimental data set. Moreover, group specific perturbation by physical
effects are added in the simulation by using estimated parameters from Ex-
tended Multiplicative Signal Correction on the experimental data set. Thus,
the result is one unperturbed simulated data set X̃pure and one perturbed
version of the same data set X̃app. The approach is described in more detail
in the following paragraphs.

Firstly, we note that when PCA is applied on a data set X of spectra, the
spectral data block is decomposed by,

X = x̄+ TP
′
+ E (3.4)

, where x̄ is the mean spectrum, T is the score matrix, P is the loading
matrix consisting of orthogonal components (principal components), and E
is the residuals matrix. This is thus the basis for the data set simulation
in this thesis. The simulation approach is summarized in Fig. 3.4. First,
MSC-L correction was applied on the full data set X. After correction, a
set β of estimated MSC-L parameters were obtained for each spectrum in
the data set. The parameters belonging to respectively group healthy and
group diseased were put in separate pools βi, from which mean and standard
deviation was calculated. This formed the basis of two separate normal
distributions for the MSC-L parameters, representing group specific physical
effects in spectra. These distributions were saved for later perturbation of
simulated data set. Subsequently, the full MSC-L-corrected data set block
Xcorr were further altered by setting irrelevant absorbance bands in region
1780 - 2600 cm−1 to zero by applying a window function based on Tukey
[43]. The data set was split into healthy and diseased categories. From each
of these data set groupsof experimental data, denoted by i, new healthy and
diseased groups were simulated by

1. Running PCA to find scores (Ti) and loadings (Pi) corresponding to
equation Xi = x̄+ TiP

′
i + Ei.

2. Calculating mean µTi (i.e 0) and standard deviation σTi of scores Ti for
A number of loadings, where A is the number of loadings chosen to be
included in simulation.
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3. Drawing new scores T̃i for each loading included in simulation (1:A)
randomly from respective normal distributions found in experimental
data set, T̃i ∼ N(µTi , σTi). The random drawing has a feedback loop
which is activated if scores higher than maximum or lower than min-
imum scores obtained in experimental data set are drawn. This is to
prevent very unrealistic score values being drawn.

4. Recombining the A first loadings of Pi from experimental data set with
newly drawn scores (T̃i), in accordance with equation 3.4.

After the recombination of scores and loadings for healthy and diseased
groups respectively, the groups are merged into one data set again, and a
new MSC-L correction is run on the data set. This is done to make sure
no artificial physical effects were created by the random recombination of
loadings in the simulation. If this is the case, it would not be a pure ab-
sorbance spectrum, and the high control environment the simulation shall
provide with respect to physical interferents would be compromised. The
resulting data set is the final simulated pure absorbance spectrum found by
merging the group-wise simulated pure absorbance data sets,

X̃pure,i = x̄i + T̃iP
′

i (3.5)

Subsequently the the simulated pure absorbance data set is perturbed by
group specific MSC-L parameters β̃i drawn from the distributions calculated
from the experimental data set. White noise vectors w is also added by ran-
domly drawing from a uniform distribution with level similar to experimental
data set (not group specific). The resulting data set is a simulated apparent
absorbance spectrum,

X̃app,i = f(X̃pure,i, β̃i, w)

β̃i ∼ N(µβi , σβi)

w ∼ U(−b, b)
(3.6)

, where [-b, b] is the chosen range from which noise levels are drawn. The
physical effects perturbation is achieved by first multiplying the obtained
pure absorbance spectra with the newly drawn multiplicative parameters.
Subsequently for the baseline effects, model vectors from the MSC-L which
were applied on the experimental data set, is reused and multiplied by the
new drawn baseline parameters. Lastly the white noise drawn is simply
added to the spectra. Thus, the result is two corresponding versions of the
simulated data set X̃pure and X̃app.
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f(X̃pure,i, β̃i, w)

Last group?

Simulated
dataset:

[X̃pure, X̃app]

i=1
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Figure 3.4: This figure shows a flowchart for the PCA simulation. Blue
blocks denote data sets, green blocks denote an action and yellow blocks
denote results from the belonging green block.
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Chapter 4

Results and discussion

4.1 Evaluation of quality and interference in

broad-band spectra

In this section, we evaluate the quality of the available broad-band spectra
and identify interference characteristics in the spectra. This is done by vi-
sual inspection of the raw spectra and calculations of mean noise and mean
signal strength for each data set. We discuss some conditions which may
marginalise the information in a spectrum. Before further processing a data
set of infrared spectra, it is vital to know the quality of the spectra and to
remove spectra with too low quality. Spectra may need to be removed if they
do not contain relevant information or if the relevant information is marginal.
In many cases it is possible to use preprocessing strategies to enhance the rel-
evant information in the spectra and to remove non-relevant effects. Whether
information in infrared spectra is relevant or not, depends on the purpose of
the infrared analysis. Therefore, it depends on the final goal of the analysis
if spectra will be considered as high quality spectra or not. Since one of the
goals of the thesis is to create a realistic simulated data set for IR spectra
of cartilage tissue, we aim at establishing a set of nearly pure absorbance
spectra that can be used as a starting point for the simulation study. To
obtain nearly pure absorbance spectra we wanted to select only high quality
spectra from the measured spectra. All physical and scatter effects can be
added later to the pure absorbance spectra in a controlled way for future
studies of how they effect the classification for broad-band spectra and for
spectra with only a limited number of wavenumbers e.g. when a number of
QCL lasers are used such as in the Miracle project.
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As a starting point, we want to inspect raw spectra from the different data
sets visually. Different data sets of Bovine and Human samples obtained from
different research groups in the Miracle project are presented in figure 4.1.
In addition to these, one data set was available for equine samples. The raw
equine data set is included in the appendix (Fig. 1). As there are many
equine spectra with very high absorbance in the carbohydrate/phosphate re-
gion and there was a very high variation in this region which could not be
explained, we have not focused on it in further analysis. For the remain-
ing data sets shown in Fig. 4.1, we observe that the data sets obtained a
large variety of cartilage and interferent features. We can for instance see
that the Bovine1 data set (top left) contain high amplitude noise features in
the region 3000 - 4000 cm−1 in comparison to the other data sets, and we
observe across data sets a high absorbance variations in region 1850 - 2300
cm−1. For instance the Bovine1 data set has again very disturbing charac-
teristics in this region, while data set Human2 has more defined absorbance
characteristics. The remaining data sets contain only minor absorbance in
this region. In addition, we observe varying absorbance in region 2300 - 2400
cm−1 consistent with carbon dioxide for all data sets. For example the CO2
signal is stronger in Human12 data set than Human11 data set. On a related
note, we see varying signal of water vapor. This can most clearly be seen by
inspecting region 3700 - 4000 cm−1 for all data sets. For Human2, the water
vapor signal is nearly non-existent, while for data sets such as Human11 and
Human12, water vapor is clearly seen. There can also be seen variability
in the cartilage signal itself, as wee can see by inspecting the fingerprint re-
gion. One main observation is that the levels and ratio of the levels of the
absorption peaks at 1032 cm−1 and 1080 cm−1 varies internally in data sets
and between data sets. For Human11 and Human12, the absorbance in the
carbohydrate region for many of the spectra is dominated by the peak at
1032 cm−1, while for data sets Human2 and Human3, the ratio between the
two peaks are closer to one for all spectra. In addition, we see variability
in the amount of signals from liquid water versus cartilage signals, which is
evident from the variations in band height in region 3000 - 3500 cm−1. These
observed interferences and variations are commented in more depth in the
following sub sections.

Furthermore, it is evident that several data sets contain some spectra that
have very low absorbance in the fingerprint region, where we expect strong
signals from cartilage, while the typical bands for water are strong. This can
for instance clearly be seen for instance for Bovine1 (top left) and Human1
(top right) data set. We assume that the low cartilage signal in the spectrum
and the high signal from water is due to the pressure used when the probe
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is put in contact during measurements. The pressure might have been too
low. The spectra may contain too little information about the cartilage and
consequently in the perspective of this thesis we consider these spectra as
low-quality spectra. Since we apparently can obtain completely flat spectra
in the region 1000 - 1500 cm−1 due to too low pressure, we expect any degree
of peak weakening in the same region when different probe pressures are used.
This is in agreement to what we observe in the figure 4.1, particularly for
the data sets Bovine1 and Human2. Since such spectra are characterized by
having much lower, but in general the same informative peaks as the rest of
the spectra, it can further be hypothesised that spectral correction by EMSC
can standardize these spectra. Therefore, provided that the difference from
the reference spectrum, for which we use the average spectrum, is not too
big, we can use the spectra. However, if spectra are nearly flat in the region
1000 - 1500 cm−1, we discard the spectra because it is very different from the
average spectrum. In the further paragraphs, we will consider the quality
of spectra in grater detail by comparing noise levels in the experimental
data sets and running developed detection algorithms for low cartilage signal
spectra.

4.1.1 Comparison of noise levels

In this section we compare the noise levels in the broad-band experimental
data sets, and discuss how this may effect our decision for which data set to
base simulation on. As can be seen from table 4.1, the bovine data set has
considerable higher noise levels than the Human data sets and therefore lower
signal to noise ratios. Data sets Human1-3 have the highest signal to noise
ratios, but while this is the case, Human11 and Human12 are much larger
data sets. This is prioritized, and we choose therefore Human12 data set as a
base for the simulation, since this data set have higher signal to noise ratios
than Human11. The Bovine1 data set has particularly high noise levels, but
it has approximately the same level of AmideII/Noise ratio, which indicate
that the cartilage signal is still comparable to the other data sets. The
Equine4 data set has also high quality with respect to noise, but as there are
many equine spectra with very high absorbance in carbohydrate/phosphate
region and there was a very high variation in this region which could not be
explained, we have not focused on it further. However, equine and other data
sets are used for illustrations and tests of robustness of low-cartilage-signal
detection methods precisely because they have a large variability in quality.

Additionally, it is observed in the Fig. 4.1 that the Bovine data has in
general higher absorbance levels than the other data sets. This means that
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(a) Bovine1 (b) Human1

(c) Human2 (d) Human3

(e) Human11 (f) Human12

Figure 4.1: In this figure, we show raw cartilage spectra of human and bovine
data sets.
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Table 4.1: This table shows the mean noise levels and signal to noise ratios for
all available data sets. Noise is defined as the difference between maximum
and minimum derivative in region 1800-1850 cm−1. *It should be noted
that the region used to calculate this noise value can include some rotational
transitions from water vapor. Thus the term noise is slightly misleading.

noise* AmideI/noise* AmideII/noise*
Bovine1 0.000112 48.7 27.5
Human1 0.000068 95.9 32.0
Human2 0.000094 94.5 36.0
Human3 0.000068 95.4 31.5
Human11 0.000086 73.90 23.0
Human12 0.000089 78.7 26.7
Equine4 0.000074 95.7 37.0

when cutoff limits for distinction between high and low noise spectra are
chosen, they should not be chosen based on absolute noise values. To strive
for methods generalisation across different types of instruments, we identify
high noise spectra, by using signal-to-noise ratios. Criteria for categorisation
as high noise spectra is investigated, including i) AmideI/noise < 50 and ii)
AmideII/noise < 10. Noise is defined as the difference between maximum
and minimum derivative in region 1800 - 1850 cm−1. This methodology is
in correspondence with the Opus quality test designed by Bruker [42]. The
region 1800 - 1850 cm−1 is chosen because it avoids the absorption bands
that are clearly present in the spectra around 2000 - 2400 cm−1, and is the
region free of any broad absorbance bands which is closest to the fingerprint
region. The quality of the fingerprint region is our main concern, and it is
assumed that using the disturbance level here is the best possible measure
for the disturbance in the fingerprint region, at least in the perspective of
comparison between different spectra in a data set. It should be noted, how-
ever, that in this region bands associated with rotational transitions in water
vapor are expected. Thus, in practice it may be a measure of water vapor
disturbance of the signal. The spectra shown in Fig. 4.2 are identified as
high noise spectra in accordance to criteria i), and spectra shown in Fig. 4.3
correspondingly for criteria ii). As we see, most bovine spectra are cate-
gorised as high noise, using the global criteria i) and ii) for all data sets. It
is thus clear that we cannot exclude spectra based on criteria i) and ii) for
the bovine data set. We can also observe that the no-cartilage-signal spec-
tra (visually looks like water spectra) are categorised as high-noise spectra
by criteria B (AmideII/noise). It seems like spectra with no cartilage signal
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have low amide signals while noise levels are in the same order as the other
measurements. Since these are also assumed to be uninformative about car-
tilage tissue and we wish to detect them and remove them, this is a useful
observation. In the Miracle imaging system, we might want to detect water
spectra, and provide a feedback if the measurement lacks cartilage signal,
encouraging the surgeon to remeasure. However, it cannot be trusted that
low-absorbance spectra will always be noisy (i.e. for future data). Conse-
quently, tools should be developed specifically for detecting such spectra. In
section 4.2, some possible approaches are investigated for broadband spectra.

In the data sets, one can also see a variation of noise levels for different
regions of the spectral range. For bovine data in particular, high noise levels
are associated with absorption above 3100 cm−1. For this reason, this region
should be excluded in further analysis. For the remaining data sets, mea-
surements below approximately 600 cm−1 are also associated with high noise
levels. To prevent this disturbing further data preprocessing, the spectral
region below approximately 600 cm−1 were excluded from further analysis,
although the exact boundary for exclusion is individual for each data set.

4.1.2 Effects on spectra due to ATR crystal distur-
bance

In the region 2100 - 2400 cm−1 there are different types of absorption and
noise levels for different data sets. It appears that data sets that were ac-
quired with the same instrumentation have the same type of effects in this
region. This suggests that this is an instrumental issue, perhaps caused by
the specific ATR tip used. Comparing data sets Human1-3, which are data
sets obtained from the same cadavers but measured by different instrumen-
tation, we see clear differences in spectra in this region. It is concluded that
this is indeed some sort of absorption caused by instrumentation, and in this
perspective should be considered disturbance. This needs to be taken into
account in further analysis, and not be mistaken for chemical variations in
cartilage. In particular, it is not desirable to recreate these effects in simu-
lated spectra, or let these effects influence the simulation in any way. In ad-
dition, high noise in this region which is observed particularly for the bovine
data set, may interfere with preprocessing approaches such as EMSC when
spectra are not down-weighted in this region. It is thus desirable to weight
down this area in further analysis. This will be further discussed in section
4.3.2. It should also be noted that this region is also associated with a CO2
absorption band and water combination band. See section 2.2. As carbon
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(a) Bovine1
(b) Human1

(c) Human2 (d) Human3

(e) Human11 (f) Human12

Figure 4.2: These plots show spectra which are categorised as high-noise with
respect to the signal to noise criterion AmideI/noise < 50, in the respective
data sets.
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(a) Bovine1 (b) Human1

(c) Human2 (d) Human3

(e) Human11
(f) Human12

Figure 4.3: These plots show spectra which are categorised as high-noise with
respect to the signal to noise criterion AmideII/noise < 10, in the respective
data sets.
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dioxide is also an interferent which very likely originates from air inside the
instrumentation, we do not loose any relevant information if down weighting
of this region is implemented. The signal strength for carbon dioxide may
depend on the instrument.

4.1.3 Classification value of spectra with no cartilage
signal

In this section, spectra with no cartilage signal are commented further, and
consequences of retaining such spectra for further analysis are discussed. As
mentioned, one possible explanation is that spectra with low to none cartilage
signal are due to non-optimal measurements when the applied probe pressure
is too low. A different explanation for low cartilage signal is that such spectra
are associated with high damage of cartilage. If we assume that structural
changes in cartilage caused by degradation lead too a more rough surface,
we would expect that water may be pooled up inside small cavities in the
surface, making it more likely to obtain measurement with high content of
water. While the two possible interpretations for increased water signals are
so far motivated by considerations of the physical conditions of the measure-
ment itself, we like to further discuss these interpretations by highlighting
some observations from the available experimental data sets. This can give us
further evidence for the one or other interpretation. Firstly, Fig. 4.4 shows
a spectrum with no cartilage signal (blue) plotted together with its three
technical replicates. It can clearly be seen that one of the replicate spectra is
dominated by water, while all other replicate spectra are spectra with clear
cartilage signals. This indicates that the experimental setup can in principal
be adjusted in a way that allows to obtain spectra with high cartilage signal.
While spectra used in this study are obtained under laboratory conditions,
we expect that the situation when a surgeon uses the Miracle probe by hand
will be comparable. It is suggested that this challenge can be solved by im-
plementing a mechanism for maintaining constant probe pressure. In order
to collect more evidence for that high water signals in spectra may be caused
by the experimental setup we compare the Human2 data set (Fig. 4.1c) with
Human1 (Fig. 4.1b) and Human3 (Fig. 4.1d) data sets. These data sets
are measurements of the same cadavers and sample locations. It can be seen
that Human2 data contains more low absorbance spectra than Human1 and
Human3 data sets. This indicates as well, that differences in the water signal
and the cartilage signal are due to the operator and measurement routines
for the different data sets.
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Figure 4.4: This figure
shows the spectrum with
no cartilage signal (blue)
in the Human1 data set,
plotted together with its
technical replicates.

Figure 4.5: This fig-
ure shows the ab-
sorption levels of the
Amide I peak plot-
ted against absorption
levels of Amide II, for
the Bovine1 data set.
Samples belonging to
treatment group G2
(24h collagenase) is
marked in red, as rep-
resentatives for high
degradation samples.
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To investigate if it is more likely to acquire spectra with no cartilage signal
for high damage cartilage samples, we have a closer look at the Bovine1 data
set for which we can find a high number of low cartilage signal spectra. In Fig.
4.5 we show a plot of the absorbance level for amide I versus the absorbance
level for Amide II for the Bovine1 data set. Since low-absorbance spectra
are expected to have low values for both peaks, we use this plot to check
if low-absorbance spectra can be associated to samples with a high degree
of damage. In this plot, treatment group G2 (24h collagenase treatment) is
shown in red as a representative of high damage samples. We observe that all
spectra of the lowest absorbance value belong to this treatment group, which
supports our hypothesis. However it should be noted that this is the most
extreme of the treatment groups, and probably does not represent a very
realistic damage type. We can summarize that spectra that are completely
without cartilage signal, will not give any meaningful value to further clas-
sification or simulation tasks, and they should be removed. Spectra with no
cartilage signal may be more likely to obtain for high degradation samples,
but as seen from Fig. 4.4, membership of such a class is not guaranteed.
In terms of the Miracle system, this shows that development of an auto-
matic detection algorithm for no-cartilage-signal measurements will be vital
for robust implementation.

4.1.4 Consequence of not discarding low cartilage sig-
nal spectra

In the previous section, we found that spectra with no cartilage signal will
not be of value for further classification or simulation tasks. In the follow-
ing, we consider spectra with very low cartilage signals closer. We want to
investigate the consequence of including such spectra in the further analysis.
When low absorbance spectra are caused by too low probe pressure, there is
a small space between the probe and the sample which is filled by water, i.e.
synovial fluid, and consequently higher levels of absorption bands associated
with water are measured. If the probe pressure is decreased further, we as-
sume that the water-filled space between the probe and the sample becomes
bigger, and that the absorption bands associated with water increase fur-
ther. Simultaneously the absorption bands associated with cartilage signal
will decrease because the penetration depth into the cartilage correspond-
ingly becomes lower. For peaks which can be associated with both water
and cartilage, such as the Amide I peak, these two mechanisms will mix.
Consequently if the cartilage signal decreases because of lower pressure, the
cartilage-contribution to Amide I levels will be lowered, but the total effect
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on Amide I level of this mechanism will be counteracted by the increase in
water peaks which coincide with Amide I. The decrease in Amide I levels due
to decreased pressure will thus be a trade off between these two mechanisms.
For the peaks which are not associated with both water and cartilage, such
as Amide II or any other peak in the region 1000 - 1590 cm−1, there will
not be a corresponding trade off. In Fig. 4.5 the absorbance levels of Amide
I are plotted against the absorbance level of Amide II. Hence we plot one
peak which is affected by the two trade off mechanisms against a peak which
is not affected by the two trade off mechanisms. It could be argued that
such a trade off mechanism may cause EMSC correction to be erroneous, by
obtaining the estimation of a too low multiplicative parameter in the least
squares fitting. This would mean that the multiplicative parameter does not
restore the cartilage signal to its full power in the EMSC. In the analysis of
this thesis, only the spectra with no cartilage signal are removed, but it is
noted from this discussion, that including very low absorbance signal spectra
may be a source of error, even if the spectra contain all the peaks which
are associated with cartilage signal in the fingerprint region due to water
disturbance.

4.2 Detection of low quality spectra

In this section, three methods for detection of spectra with low cartilage
signal will be presented. The three methods are based on evaluating i) the
absolute absorbance levels, ii) the derivative levels of the absorbance and iii)
the residuals from an EMSC model with mean reference in comparison to
an EMSC model with water spectrum reference, respectively. For more in
depth description, the reader can consult section 3.3. Such an investigation
across different detection strategies is also useful to motivate future ideas for
how such low absorbance signals can be detected for the seven wavenumber
channels data.

To illustrate robustness of each method, we set a goal for this paragraph
to only detect spectra with no cartilage signal. Such spectra can be visu-
ally identified as being completely flat in the region 1000 - 1500 cm−1. For
applications of such detection methods, it is desirable that the cutoff value
will provide an as precise separation as possible. The aim of this section is
thus to tune one single cutoff limit per method for separation of flat and
non-flat spectra to work across all available data sets, hence forth referred
to as a global cutoff limit. Prior to running the detection algorithm, all
spectra which have no cartilage signal in the data sets were manually identi-
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fied. Subsequently, the global cutoff limit was tuned while inspecting results
visually with the aim to detect all spectra predefined as no-cartilage-signal
spectra across all data sets. Thus, the number of surplus spectra detected,
presumably containing cartilage signal, can be regarded as a measure of the
method’s robustness and give an indication of whether automation of the
detection process is feasible. We aim that the methods, for a tuned global
cutoff limit, will not detect any additional spectra than the predefined no-
cartilage-signal spectra.

For the three detection methods, visual tuning of global cutoff limit
yielded respectively the criteria i) absolute absorbance value in region 1100-
1400 cm−1 is less than 0.035, ii) derivative absorbance value in region 1100-
1400 cm−1 is less than 0.00065 and iii) the difference in RMSE (of the model)
in region 1100-1400 cm−1 between respectively an EMSC correction using a
water spectrum as reference and an EMSC correction using the mean spec-
trum as reference is less than -0.055. In Fig. 4.6, spectra which are detected
for these cutoff limits are shown for the data sets Bovine1, Human12 and
Equine4 as examples. By design, all no-cartilage-signal spectra are detected.
We consider the method more successful if it does not detect any extra spec-
tra, since the global cutoff limits were tuned with this specific aim. In Fig.
4.7, we show how many non-flat spectra which were detected in additional
to the completely flat spectra for each data set. We desire these to be as
few as possible. Firstly we can see that none of the methods works best for
all data sets simultaneously, thus all methods have some weaknesses. We
can however see that across all data sets, the derivative absorbance met-
ric (red) detect the fewest additional spectra, followed by the RMSE based
method. Thus, we can conclude that the absorbance-derivative approach is
the most precise and robust approach. For instance, it was observed dur-
ing visual tuning of the global cutoff limit for the two other methods, that
the no-cartilage-signal spectra which contained water vapor (e.g blue spectra
in Human12) were the reason for the need to increase the cutoff limit, and
thus leaded to detection of more non-flat spectra. The water vapor peaks
are clearly observed for instance for the blue spectrum of Human12 (middle
row) in the region 1350 - 1600 cm−1. Evidently, the water vapor peaks can
be a disturbing factor for the separation precision of the global cutoff limit.
The derivative-absorbance check was thus most preferable of the three tested
methods, but as mentioned none of the methods performed perfectly for all
data sets, and therefore adjustments needs to be done for future data sets.
All detected spectra should be confirmed by manual inspection, but the sug-
gested methods here are useful tools to narrow down the manual inspections
considerably. It should also be noted that if such an automatic detection
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(a) Bovine1 (b) Bovine1 (c) Bovine1

(d) Human12 (e) Human12 (f) Human12

(g) Equine4 (h) Equine4 (i) Equine4

Figure 4.6: These plots show spectra which were categorised as spectra with
no cartilage signal by three different methods, using one global cutoff limit
per method. The methods used were based on absolute absorbance levels
(left column), derivative absorbance levels (column in the middle) and RMSE
from EMSC (right column). The global cutoff limits are tuned such that all
spectra without cartilage signal are detected for all data sets. The mean
spectrum is shown in black. Results are shown for only three of the data
sets, including Bovine1, Human12 and Equine4.
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Figure 4.7: This figure
shows how many spectra
were detected in addition to
the predefined no-cartilage-
signal spectra for the global
cutoff limit of the respec-
tive methods and data sets.
We show results for meth-
ods based on absolute ab-
sorbance (blue), derivative
absorbance (red) and RMSE
from EMSC (yellow).

algorithm was to be implemented in any real system, the differences we see
in absorbance levels across data sets may not be devastating, because there
would be a calibration data set at hand, making sure the cutoff limits are
tuned correctly for the given instrumentation.

Lastly, some notes should be made on the subject of transferability of
the three methods tested for broad-band spectra to data with few wavenum-
ber channels. Firstly, we note that the absorbance derivative approach (ii),
which had the highest precision, is not a viable option for the seven wavenum-
ber channels data because it will not be possible to calculate any derivatives
based on point measurements. Furthermore, the absolute absorbance method
(i) is not directly transferable either, because it is based on calculating the
difference between the maximum and minimum absorbance levels in the fin-
gerprint region. Thus, to describe the height of a peak, it relies on having
one measurement point which is not situated at a cartilage peak. This is
not the case for any of the seven wavenumbers chosen for the Miracle lasers.
Thus, the most applicable approach for data with few wavenumber channels
is the RMSE based approach (iii).
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4.3 Extended multiplicative signal correction

for spectral data with few spectral chan-

nels

Extended Multiplicative Signal Correction is a model based preprocessing
technique utilizing Least Squares fitting of a measured spectrum to a set of
model spectra including a reference spectrum and several other model com-
ponents as described in section 2.3.1. For application on seven wavenumber
channels data, it may be expected that the low collinearity between the quasi
spectrum measurements is detrimental to the stability of the approach. How
the use of a few selected wavenumbers affects the EMSC model parameter
estimation compared to the situation where broad-band spectra are available
is an interesting question. We performed therefore a study of the reliabil-
ity of the Extended Multiplicative Signal Correction both for application to
the broadband experimental data sets and for application to measurements
of selected QCL wavenumbers was carried out. The objective was both to
design a reliable EMSC model to use for all further corrections of the ex-
perimental spectra, and to motivate suggestions for preprocessing strategies
for quasi spectra. In this section, no spectra are removed from the data sets
unless otherwise specified. This is because all spectra and present spectrum
characteristics represent types of readings that may occur using the Miracle
probe. It is of interest to investigate these as well.

4.3.1 A simple demonstration of MSC limitations for
broad-band spectra

The rationale of using infrared spectroscopy for diagnosis of cartilage damage
is that healthy tissue and diseased tissue have chemical differences that show
distinct chemical features in infrared spectra. Such distinct chemically differ-
ent features are expected in both existing broad-band experimental data sets
and in future measurements using the Miracle probe. As a simple demon-
stration of how preprocessing may be impacted by such chemical differences
within a data set, an apparent spectrum consisting of two Lorentzian bands
and a constant baseline was constructed, as shown in Fig. 4.8 (left, red). A
simple multiplicative signal correction (MSC) was performed using a chem-
ically different reference, also shown (left, black). The reference spectrum
is constructed by the same Lorentzian band as the left peak of the appar-
ent spectrum. Except for the extra Lorentzian band, the apparent spectrum
differs from the reference only by a constant shift and a multiplicative con-
stant. Using the chemically different reference, the resulting correction of
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the apparent spectrum is shown (right). As can be seen, the correction is
not optimal.The baseline is brought below zero, thus showing that the con-
stant baseline parameter is wrongly estimated, which implicates that the
multiplicative parameter must be wrong as well. It is evident that the Least
Squares method has compensated for the unmodelled chemical differences,
and the correction is erroneous. This phenomena is referred to as statistic
interference, and is a well known problem discussed in literature, for instance
by Martens [44].

The simple example shows that with a simple correction model consisting
only of a reference spectrum, the multiplicative parameter and a constant
baseline, the correction of spectra which are chemically different from the
reference (i.e mean in experimental data sets) may be erroneous. It possi-
ble that by increasing the model complexity, for instance with wavenumber
dependent baselines, the Least-squares algorithm may fit these to the un-
modelled chemical variations. In this case, more obvious disturbing effects
may be introduced to the corrected spectrum and chemical information may
be lost or disturbed significantly. The degree of disturbance will naturally
depend on how well the model component fits to the chemical deviations
from the reference, and the apparent spectrum’s degree of deviation from
the reference. In the next section, the degree of such behaviour is investi-
gated carefully for the experimental data sets at hand.

4.3.2 Using EMSC approaches to correct broad-band
spectra

In the previous subsection, it could be seen that statistical interference is
a challenge for the multiplicative signal correction and implicitly the same
issue may persist for extended versions of the EMSC preprocessing algo-
rithm. Thus, it was desirable to map if such effects arise in the broadband
experimental data sets. Literature, such as Kohler et al [4], suggests that
such statistical interference can be avoided by implementing weighting of
chemically inactive regions or include known absorbance bands of deviation
as model components. Thus, in this section we study different EMSC-type
models, and the need for weighting of chemically inactive regions was inves-
tigated as a possible remedy for statistical interference.

Firstly, EMSC correction of different complexities is run on experimental
data sets. Corrected spectra are presented for the data set Human2 in Fig.
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Figure 4.8: In this figure, a simulated apparent spectrum (red) and an MSC
reference spectrum (black) are plotted together (left). The reference spec-
trum is chemically different from the apparent spectrum. The resulting
MSC correction of the apparent spectrum applying this reference spectrum
is shown (right).

4.9. It was also suspected that the width of the spectral range would affect
the correction, thus three different ranges are tested, including 700 - 1900
cm−1, 700 - 2700 cm−1, and 700 - 4000 cm−1. It can be seen that when
using only region 700-1900 cm−1 spectra are not properly corrected in the
region 1800 - 1900 cm−1, while they should be on top of each other since this
region is chemically inactive. How well the spectra are corrected depends on
the EMSC model. For the EMSC model with linear and quadratic effect it
is evident that the fingerprint region is not corrected as well. Particularly
the correction by EMSC appears very different from the corrections by MSC
and MSC with linear effect (MSC-L). It is natural to expect that by includ-
ing a larger absorption free spectral region in the estimation of the EMSC
parameters, the least squares method may give a better estimate for this
region as well. By extending the region to 700 - 2700 cm−1 it can be seen
that the correction works better in the chemically inactive regions for MSC
and MSC-L, but for EMSC the issue is persistent. Using the full spectral
range 700 - 4000 cm−1, EMSC performs better. However, none of the EMSC
model results in a satisfactory correction of the absorption inactive regions.
Although not included in this thesis, the same was done for all available data
sets, and yielded the same observations. Hence, it should be considered to
implement weighting of the absorption inactive regions. It can also be made
a remark that, since we see less optimal corrections for smaller wavenumber
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regions, we should at least expect similar effects for the measurements for the
selected QCL wavenumbers in the Miracle project which are all in proximity
of the fingerprint region.

Further in this paragraph, we investigate different weighting possibilities
for our spectra. There are mainly two sub goals for the weighting investiga-
tion. Firstly we aim that all corrected spectra within a data set overlap in all
absorption inactive regions. Secondly we aim for down-weighting of high in-
terference regions, in essence the region 2100 - 2400 cm−1 which is associated
with ATR crystal disturbance and carbon dioxide absorption as discussed in
section 4.1.2. Therefore it is in this section studied how different weighting
schemes influence the EMSC correction. Weighting up absorption inactive
regions in the EMSC will allow less deviance from the reference spectrum in
this region, which will promote the possibility that the corrected spectra will
overlap in this region. To prevent EMSC to model interference and produce
unpredictable corrections of spectra, it is desirable to weight down the region
2100 - 2400 cm−1, which means that EMSC algorithm will not attempt to
minimize residuals between the measured spectrum and the reference spec-
trum in this region. In addition to the above mentioned weighting functions,
an up-weighting of the absorbance region 750 - 800 cm−1 is investigated. All
weighting schemes are shown in Fig. 4.10. The idea of weighting up the
absorbance region 750 - 800 cm−1 is that this may function as a standardis-
ation of the correction across the fingerprint region of the spectrum, giving
the EMSC correction of chemically different spectra firm reference points in
the correction. Since region 750 - 800 cm−1 is part of an absorbance peak
associated with water, one may argue that it would be a standardization
with respect to water content, which might be advantageous since water is a
source of variability in the data. To check if this indeed has value in practice,
classification is run on MSC-L corrected data with and without up-weighting
at 750 - 800 cm−1. The confusion matrices for classification on Human2 data
are shown in figure 4.12. It can be seen that up-weighting does in general not
improve classification. Therefore we will not use up-weighting in the region
750 - 800 cm−1 in the further analysis.

It is important to note, that EMSC is also run in the quality check for the
detection algorithm for no-cartilage-signal spectra. Here, the main goal is not
classification, but robust detection of no-cartilage-signal spectra. Therefore,
we study now closer how spectra with particularly high chemical variability
such as no-cartilage-signal spectra versus spectra with strong cartilage sig-
nals are impacted by weighting of the region 750 - 800 cm−1. In Fig. 4.13
one bovine spectrum with high cartilage signal (HCS) and one spectrum with
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(a) MSC (b) MSC (c) MSC

(d) MSC-L (e) MSC-L (f) MSC-L

(g) EMSC (h) EMSC (i) EMSC

Figure 4.9: These plots show the EMSC corrected Human2 data set for three
different spectral regions and three different EMSC-type models. We show
respectively, from left to right, regions 700 - 1900 cm−1, 700 - 2700 cm−1 and
700 - 4000 cm−1. The regions are combined with, respectively from top to
bottom, correction models MSC, MSC-L and EMSC
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no cartilage signal are shown using this weighting strategy. It can be seen
that up-weighting of the region 750-800 cm−1 by scheme (iii) does not seem
to make any notable differences with respect to weighting scheme (ii). Thus
up-weighting of the region 750 - 800 cm−1 is not done for any purpose in
further work. From the results in Fig. 4.13, we should note the consequences
for running EMSC with down-weighting only of the region 2100 - 2400 cm−1

which is shown in the top row. For MSC and MSC-L, we see a erroneous ele-
vation of the spectrum with no cartilage signal, but for EMSC it is clear that
the down-weighting of this region makes it possible for the quadratic baseline
effect to be fitted, introducing a large bulge in the spectra. The effect is very
visible for the spectra with no cartilage signal, but it may implicate that
spectra with low absorbance may also deviate enough from the mean spec-
trum to introduce similar effects. It is thus concluded that down-weighting
should not be done alone alone. In the middle row, where up-weighting of
absorption inactive regions is done simultaneous to down-weighting of region
2100 - 2400 cm−1, we see that such effects are avoided, and it is concluded
that for all further EMSC, weighting scheme (ii) is implemented.

Indeed we have seen in the section that a weighting scheme can solve
EMSC correction challenges caused by statistical interference in the exper-
imental broad-band spectra. We now consider which EMSC complexity to
run for the final preprocessing of spectra for future classification tasks and
simulation. Looking again at the middle row of Fig. 4.11, we see that when
weight are implemented, the corrections across EMSC complexities visually
look the same. As described in the theory section 2.2, we expect ATR spec-
tra to have higher penetration depth for lower wavenumbers. This means
that the lower wavenumber peak levels will be exaggerated, which motivates
the usage of a wavenumber dependent baseline. This behaviour has been
reported by other data preprocessing papers as well, such as the study by
Lee [35]. Among the EMSC models we are testing, the most relevant model
component accounting for such behaviour is the linear baseline. However,
it is possible that the wavenumber dependence is not strictly linear. In this
case, the quadratic baseline could together with a linear baseline, produce
some combination baseline which in total may be more correct. To com-
ment if this is likely, correlation plots between parameters from EMSC is
included in Fig. 4.14. The correlation plot is shown for two different data
sets and sample types; Human12 and Equine 4. We see that the linear (d)
and quadratic (e) parameters are highly negatively correlated for both data
sets, which supports the hypothesis. The quadratic baseline is also highly
negatively correlated with the multiplicative parameter for both data sets.
These high correlations may indicate that the quadratic baseline compete
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(a) Weighting scheme (i)

(b) Weighting scheme (ii)

(c) Weighting scheme (iii)

Figure 4.10: These plots show three different weighting schemes (i)-(iii) which
were tested in the EMSC-type correction algorithms for broad-band spectra.
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(a) MSC (b) MSC-L
(c) EMSC

(d) MSC (e) MSC-L (f) EMSC

(g) MSC (h) MSC-L (i) EMSC

Figure 4.11: These plots show corrections of the Human2 data set for three
different weighting schemes shown in figure 4.10 combined with three different
EMSC models. We show, respectively from left to right, correction models
MSC, MSC-L and EMSC. The models apply, respectively from top to bottom,
weighting scheme (i),(ii) and (iii).
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(a) No up-weight, RF (b) No up-weight, PLS-DA

(c) Up-weight, RF (d) Up-weight, PLS-DA

Figure 4.12: This figure shows classification impact, represented by confu-
sion matrices, for healthy and diseased groups in Human12 by weighting up
(w=20) region 750 - 800 cm−1. We show confusion matrices correspond-
ing to preprocessed data without up-weighting of the region 750 - 800 cm−1

(top row) and confusion matrices corresponding to preprocessed data with
up-weighting (bottom row). Results are show for Random forests (left) and
PLS-DA (right) for comparison. All spectra which have no cartilage signal
were removed before classification.
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(a) MSC (b) MSC-L (c) EMSC

(d) MSC (e) MSC-L (f) EMSC

(g) MSC (h) MSC-L (i) EMSC

Figure 4.13: These plots show different EMSC-type corrections for one high
cartilage signal (HCS) spectrum and one spectrum with no cartilage signal
(NCS) for weighting schemes (i)-(iii). We show corrections MSC (left col-
umn), MSC-L (middle column) and EMSC (right column), which are com-
bined with respectively weighting schemes i (top row), ii (middle row) and
iii (bottom row).
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with the other effects in the Least Squares fitting in the EMSC and it is pos-
sible that this is a sign of statistical interference. This is a motivation for not
including the quadratic parameter in the EMSC. Even if we consider the case
that there is some trade off between the linear and quadratic effects which
better explain the ATR penetration depth dependence on wavenumbers, it
is desirable to avoid spreading information about the same phenomena over
several parameters. For comparison, we look also at the parameter correla-
tions for MSC with linear effect baseline included for the same two data sets.
These can be seen in Fig. 4.15 that in the case the parameter correlations
are very low, which indicate that our parameters are now more independent
and do not explain the same phenomena. It shows that reducing the model
complexity to a Multiplicative signal correction including linear baseline ef-
fect is safer. We thus conclude that for correction of the broadband spectra,
we apply multiplicative signal correction with linear baseline effect.

4.3.3 Comparison of EMSC correction for broad-band
spectra and 7 selected wavenumber channels

In the former sub sections, we have developed a pre-processing strategy for
broad-band spectra by Extended Multiplicative signal correction. In this sec-
tion we focus on preprocessing strategies for the seven selected wavenumber
channels for the QCL lasers in the Miracle project. To evaluate preprocessing
strategies for selected wavelength we will consider the correction of the broad-
band spectra with the suggested weighting scheme of section 4.3.2 as a golden
standard and compare correction strategies using only seven wavenumbers
with this golden standard. For each spectrum in the broad-band data sets,
we pick out the absorbance values for the seven wavenumbers. Correction by
MSC, MSC-L and EMSC is subsequently run for the broad-band spectra with
the suggested weighting scheme and for the corresponding seven wavenumber
version of the spectrum without any weights implemented. The Root Mean
Square error, RMSEcorr, between the two corrections is then calculated based
on absorbance levels of the seven wavenumbers. In Fig. 4.16 (bottom) the
mean value of this RMSE of correction for each data set is plotted. As seen,
the correction of seven wavenumber channel data shows a clear tendency to
increase the RMSE of correction for higher complexity EMSC models. For a
visual aid, the correction of an arbitrary spectrum based on the full broad-
band region (blue) and the corresponding correction of seven wavenumber
data (red) is shown (top row), for MSC, MSC-L and EMSC. As seen, none
of the EMSC complexities give satisfactory results for the seven wavenumber
data.

58



(a)

(b)

Figure 4.14: This figure includes correlation plots between estimated EMSC
parameters for data sets Human12 (top) and Equine4 (bottom). Spectra
with no cartilage signal are removed prior to correction.
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(a)

(b)

Figure 4.15: This figure includes correlation plots between estimated MSC-
L parameters for data sets Human12 (top) and Equine4 (bottom). Spectra
with no cartilage signal are removed prior to correction.
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At this point, some comments about the EMSC parameters as describors
of physical phenomena in the sample should be made. In general, diseased
cartilage has different morphology than healthy cartilage. For instance soft-
ening of the tissue is associated with diseased cartilage [45]. We can hy-
pothesise that such difference in morphology leads also to optically different
properties and physical effects in the spectra , e.g. due to variations in the
penetration depth of the infrared radiation. The physical effects are expected
to result in discriminative information in the spectra. For classification tasks,
it may thus be desirable to exploit this. However, as concluded from the
previous paragraph, we can not guarantee that correction of 7 wavenum-
ber channel data to be as accurate with respect to retrieving pure chemical
information as for broad-band spectra. Implicitly, the estimated physical
baseline effect parameters from the EMSC correction of seven wavenumber
channel data does most likely not exclusively describe physical phenomena
in the sample, but may in stead express a trend in the relationship between
absorbance levels for the 7 wavenumbers. Nevertheless, it may be of value
to exploit such a trend in classification tasks of healthy and diseased cartilage.

4.3.4 Suggestions for preprocessing strategies for 7 se-
lected wavenumber channels data

In the sections leading up to this point, EMSC correction for broad-band
spectra and the corresponding corrections for seven wavenumber channels
data was discussed. In this section we exploit these observations to motivate
preprocessing strategies for spectral data with the seven wavenumber chan-
nels for which QCL lasers are being developed in the Miracle project.

We have seen that corrections are more comparable between the two types
of data with simpler EMSC complexities. MSC is considered more correct
than MSC-L, and correspondingly MSC-L is considered more correct than
EMSC. In addition, it was argued that even though EMSC corrections of
seven wavenumber channels data is not guaranteed to be as accurate as for
broad-band spectra, it may identify important trends in the data. Naturally,
different trends can be identified by using different EMSC models, which
means that even though MSC is concluded to be more accurate, it is still of
value to investigate all EMSC models. By including EMSC parameters as
extra variables in classification, we can make sure the classifier will have the
opportunity to use them separately from the chemical information. Further-
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Figure 4.16: This figure summarises the comparison of EMSC-type correction
models applied for broad-band spectra and 7 wavenumber channels data.
The top row shows the corrections for i) an arbitrary broad-band spectrum,
xcorr,cont (blue line) and ii) the corresponding correction, xcorr,7wn, based on
the 7 wavenumbers only (orange). We show, respectively from left to right,
corrections by MSC, MSC-L and EMSC. The bottom row compares the mean
RMSE difference between the corresponding corrections in all given data sets.

more, using raw data without any further consideration may be dangerous
since physical effects may lead to uncontrollable interferences. When physi-
cal effects as estimated by EMSC model parameters and chemical effects are
used for a classifier,differences in the actual values of the data may bias the
model if the classifier is not scaling-invariant. In this case, it may be advan-
tageous to standardise the variables (by subtracting mean and dividing by
standard deviation) before classification. Based on these observations, the
following suggestions for preprocessing and classification strategies for the
seven wavenumber channel data were evaluated.

1. Establishment of a classifier with non-preprocessed data.

2. Establishment of a classifier with constant baseline corrected data, by
using background measurement at 1800cm−1.
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3. Establishment of a classifier with MSC/MSC-L/EMSC corrected data.

4. Establishment of a classifier with non-preprocessed data and estimated
MSC/MSC-L/EMSC parameters for weighting of trends

5. Establishment of a classifier with MSC-corrected spectra as a best pos-
sible correction, and estimated MSC/MSC-L/EMSC parameters for
weighting of trends.

All suggested strategies were tested with and without standardizing vari-
ables. In order to validate the suggested preprocessing strategies we establish
a simulated data set. In the next section we consider and discuss the estab-
lishment of this simulated data set, before the validation is run in section
4.5.

4.4 Simulation of spectra

In this section we discuss the simulation of cartilage spectra, and present
the resulting data sets. The simulation of the data set is based on a PCA
simulation approach which is described in more detail in the method section
3.4. In total 1000 spectra were simulated, of which 50% are spectra corre-
sponding to healthy cartilage and 50% are cartilage spectra corresponding
to diseased cartilage. The data sets were designed such that they contain
the same variability as present in the healthy and diseased groups of the
Human12 broad-band data set. We first simulate pure absorbance spectra
by running PCA on an EMSC corrected broad-band spectra and recombine
the principal components as described in the methods section. As described
in section 4.3.2, broad band spectra are corrected by Multiplicative Signal
Correction with the inclusion of a linear baseline in the model. This re-
sulting corrected data set is considered a pure absorbance spectral data set,
and is the basis for the simulation of the pure absorbance data set. Subse-
quently the simulated data set is perturbed by physical effects according to
the variability of physical effects present in the healthy and diseased groups
of the broad-band spectra. Thus the result is a data set with group specific
chemical variations and group specific perturbation of physical effects, which
is needed in order to validate the preprocessing-and-classification strategies
suggested in section 4.3.4.

For perturbing the simulated data set with white noise, which represents
random fluctuations in a spectrometer, random values is uniformly drawn
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from the interval 0 - 0.005. This level was chosen by inspecting the ab-
sorbance values in the absorption inactive region 2500-2550 cm−1, in all the
available data sets. The white noise levels range from 0.00078 for the Hu-
man12 data set to 0.016 for the Bovine data set, with Bovine having a par-
ticularly high noise level in comparison to the other data sets. Thus the level
of 0.005 was chosen as it is within this range. Moreover, it was necessary to
choose a cutoff value in the cartilage damage grade, represented by OARSI
grading, to define which spectra are in the category healthy and which are
in category diseased. The cutoff chosen was OARSI grade 1.5. This choice
was motivated by the fact that the Miracle project aims at detecting early
stage degradation of the articular cartilage tissue. As the OARSI grades
range from 0 to 6, a cutoff at 1.5 means that we aim at identifying diseased
samples from an early stage degradation on the strongly degrated cartilage.
However it should be noted that for this cutoff, the healthy and diseased
groups are not balanced with respect to each other. This is in general an
unfavorable situation, but what is most important for simulation purposes is
that the size of each group in the broad-band spectra is considerable enough
to give a realistic group variation. If there are too few spectra in one group,
the corresponding standard deviation of the spectral data has a high error.
This was one of the reasons why the large data set size for the Human12 data
was prioritized instead of choosing a data set with higher signal to noise ratio
in section 4.1.1. There are 248 healthy and 534 diseased spectra with the
chosen cutoff for the Human12 data set. Thus, there is still a reasonable
amount of spectra in the healthy group, and it is assumed that this is a
satisfactory amount to get a realistic group variation. In the following sub
sections, some further simulation specifications are considered.

4.4.1 Window function for weighting out irrelevant in-
terferents

For simulation, we do not desire to recreate the absorption peaks associated
with CO2 or the water combination band in region 1780 - 2600 cm−1. This
absorption is a source of variation in the data set, but we do not expect
it to carry any discriminative information for healthy and diseased carti-
lage. Moreover, because these absorbance peaks are located in an otherwise
absorption free region, we have the possibility to apply a window function
to filter it out, without disturbing any informative spectral variations. To
achieve this, a function for smoothly filtering out the peaks in region 1780
- 2600 cm−1 was constructed based on the the Tukey window function [43].
The Tukey window function, also called the tapered cosine function, is for
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Figure 4.17: This figure shows the window function (orange) used to weight
out water combination band and CO2 band in the simulation, together with
the mean spectrum (blue) for the Human12 data set.

this purpose augmented to the resulting function shown in Fig. 4.17 (red).
It should be noted that the function is applied after the MSC-L correction,
to avoid disturbance of the parameter estimation, since realistic values of the
parameters are important for the validation of the suggested preprocessing
strategies for seven wavenumber channels data.

4.4.2 Selection of principal components

In the simulation approach used in this thesis, the principal components
(loadings) for the PCA model are calculated and recombined into new spec-
tra for the construction of a healthy cartilage tissue group and a diseased
cartilage tissue group. The recombination of loadings was done separately
for healthy and diseased groups. In this section, we evaluate how many prin-
cipal components to include in the simulation model. To this end, PCA is run
on the MSC-L corrected broad-band Human12 data set, and the calculated
loadings are investigated. We use influence plots as an extra quality check for
the data on which the simulation model is built, and motivate the further re-
moval of some spectra. The goal is to include the components which contain
information about the between-class spectral variation as well as variability
that is common for the two classes, without introducing too many irrelevant
artefacts.

In the PCA simulation approach, we run PCA on healthy and diseased
groups separately, identifying the spectral variability in the data set within
each of these groups. We thus obtain two separate sets of loadings, shown
respectively in Fig. 4.18 and Fig. 4.19. Firstly, we note that the three first
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components appear smooth and free from physical and other interference
effects for both healthy and diseased groups. By including the three first
principal components, we explain 94,2% of the spectral variability for group
healthy and 95,2 % for group diseased, which we in general consider an ac-
ceptable amount for the purpose of simulation. However, whether to include
more than the first three components should be considered in more detail.
As we see for both the healthy and diseased group loadings, the 4th and 5th
components show signs of interference effects in the regions 3700-4000 cm−1

and 1700-2000 cm−1, which are attributed to water vapor rotational transi-
tions (see section 2.2, Fig. 2.4). Indeed component 5 accounts mainly for
water vapor interferences. Therefore we must consider whether water vapor
is something we want to include in the simulation. This is discussed in the
following paragraph. Although the 6th principal component also contains
some water vapor features, it is discarded because it explains only 0.8 % of
the variance in both groups.

We evaluate now if water vapor should be included in the simulation or
not. Firstly, the presence of water vapor in spectra is often an indicator
that there has been water vapor in the air inside the instrumentation during
measurements. To investigate if water vapor is associated with a limited
number of spectra, or if it is a common occurrence in most spectra, the
5th principal component from PCA is used, since this component contains
almost only signals from water vapor. In order to remove other possible
contributions, we set the regions not associated with water vapor to zero.
We recombine the the scores of the 5th components, t5, with the augmented
water vapor component p̃5 by,

Xwv,centered = t5p̃5
′

(4.1)

, where Xwv,centered is water vapor contributions (with respect to the mean
spectrum) for each spectrum. Xwv,centered is shown in Fig. 4.20, where we
have zoomed in at the water vapor absorbance peaks in region 1300 - 1900
cm−1. It can clearly be seen that many spectra contain more water vapor than
the mean spectrum. This motivates us to include the principal component
identifying water vapor variations in the simulation, since it is clearly an
interference which is always present, at least for the instrumentation used
for data set Human12. This may also be the case for the final Miracle probe
instrumentation, unless instrumental precautions are made. For classification
tasks such as in the following validation section, it should thus be desirable
that classifiers are able to handle these variations. We concluded that water
vapor components 4 and 5 should be included in the PCA simulation for
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PC1(  61.3%)

PC2(  29.8%)

PC3(   3.1%)

PC4(   2.4%)

PC5(   1.3%)

PC6(   0.8%)

Figure 4.18: The figure includes the six first PCA loadings (PCs) for the
healthy group in the broad-band data set Human12. The explained variance
by each component is marked in the legend.

healthy and diseased groups even though they represent interference effects.
Further, in section 4.6, we will see how classification results are impacted
by including versus not including water vapor in the simulation, for further
discussion on this topic.
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PC1(  54.6%)

PC2(  36.2%)

PC3(   4.4%)

PC4(   1.7%)

PC5(   1.2%)

PC6(   0.8%)

Figure 4.19: The figure includes the six first PCA loadings (PCs) for the
diseased group in the broad-band data set Human12.The explained variance
by each component is marked in the legend.

4.4.3 Thorough quality check for the data used for the
simulation

In this section we use the residuals and leverage plots for the final model
established for PCA and an additional PLS-DA model as an extra quality
check of the data on which the simulation will be based. We identify addi-
tional spectra with unsatisfactory cartilage signal. In Fig. 4.21 we present
influence plots for the final PCA simulation models for healthy (top) and
diseased (middle) cartilage spectra groups, as well as for the additional PLS-
DA model (bottom). For the PLS-DA model we use the three first PLS
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Figure 4.20: This figure shows the water vapor contribution calculated by
equation 4.1 for all spectra in Human12 experimental data set.

loadings. We consider first the influence plot for the PCA simulation model
for the healthy group. The three replicates with number 162 - 164 are char-
acterized by having both high leverage and high residuals. This means that
they considerably affect the model, but in addition are not well explained
by the model. This motivates us to investigate these measurement further.
The three high leverage and high residual spectra are shown in Fig. 4.22
(top row, left column). The ID tags for the sample are also included for
later comparison across PCA and PLS-DA influence plots, since the num-
bers in the influence plot refer to row number within each group data block
(i.e block healthy, block diseased or full data block). As we see, this sam-
ple shows considerable different features than what we expect from cartilage
tissue, as we see by qualitatively comparing the spectra with Fig. 2.2. The
absence of an Amide II peak in the region 1500 - 1600 cm−1 is particularly
notable. Consequently, it is concluded to discard this sample from the data
set before simulation. Furthermore, we can inspect the influence plot for the
PCA simulation model of the diseased group in Fig. 4.21 (middle). The
three replicates with number 1 - 3 clearly stands out from the rest of the
spectra, having both high leverage and high residuals. In addition, replicate
sets 55 - 57, 204 - 206 and 124 - 126 have higher residuals than the majority
of the spectra. All of these replicate sets are plotted inf Fig. 4.22 (row 1,
columns 2-3 and row 2,columns 1-2). It can be seen that all these replicate
sets, except 55 - 57, show high deviance from what we expect from cartilage
signal and are thus excluded from the data set. Replicates 55-57, however,
is kept.

Lastly, we consider the the influence plot for the PLS-DA model in Fig.
4.21 (bottom). It is observed that several replicate sets have both high
residual and high leverage, including 4 - 6, 354 - 356 and 533 - 535. Checking
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replicates 4 - 6 in Fig. 4.22 (row 2, column 3), we can readily see from the ID
tags that these replicates are the same as the replicates 1 - 3 identified from
the PCA simulation model (row 1, column 2). They were therefore already
decided to be excluded. This is also the case for replicates 533 - 535 (row
3,column 3) as can be seen by comparing ID tags with replicates 162 - 164
from PCA simulation model (row 1, column 1). The replicates 354 - 356
(row 3, column 2) show the same types of features as the ones we already
removed. Therefore, we remove them as well. In addition, the two spectra
375 and 376 have high leverage, while their residual is at the same order as it
is for the majority of the spectra. This means that the PLS-DA model highly
weight the spectral features seen in these spectra and successfully account
for these variations. We inspect the full replicate set 374 - 376 to check if
the spectral features seen for these spectra is something we want to account
for. As seen in Fig. 4.22, the sample is characterised by having high peaks in
the region 1000 - 1100 cm−1 in comparison to the healthy cartilage spectrum
(Fig. 2.2). This is clearly not a healthy cartilage spectrum. However, it
may represent a diseased cartilage spectrum and it is thus important to
keep it. For comparison, the main absorbance band for bone in this region is
associated with a phosphate peak at 1010 cm−1 [21]. Since our diseased group
consists of cartilage samples with both middle and high degeneration grades
(OARSI 1.5 - 6), the highest peaks in our simulated spectra for this region
may originate from bone. However, upon closer inspection of the peaks in
the Human12 data set, the most dominant peak in the carbohydrate region
is not located at 1010 cm−1, but closer to 1032 cm−1, which is an expected
peak for cartilage, as seen from table 2.1. By inspecting the raw Human11
and Human12 data sets shown in Fig. 4.1 in section 4.1, it is apparent
that there are many spectra which show a strong band at 1032 cm−1, which
may indicate that it is indeed an important characteristic to include in the
simulation. We kept therefore the replicates 374 - 376 in the simulation.

4.4.4 Simulation results

In this section, we present the simulation results. We discuss the quality
of the simulated data set, and link the apparent impairment to some sim-
ulation drawbacks. Results from the simulation are included in Fig. 4.23.
The most apparent difference between healthy and diseased groups are the
absorbance values in the region 950 - 1125 cm−1. Consulting table 2.1 in sec-
tion 2.1.4, we see that absorbance bands in this region are mainly associated
with collagen and proteoglycans for cartilage tissue, suggesting that healthy
and diseased cartilage can be discriminated from each other mainly based on
absorbance in this area. However, by inspecting the mean difference between
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Figure 4.21: This figure shows influence plots for the final PCA simulation
model of healthy group (top) and diseased group (middle) and the additional
PLS-DA model (bottom). Some spectra with high residuals and high leverage
can be seen.
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(a)
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2:KP01_L1_4M1__R2

3:KP01_L1_4M1__R3

(b)
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57:KP02_L6_4MP3_R3

(c)

204:KP04_R2_4CM__R1

205:KP04_R2_4CM__R2

206:KP04_R2_4CM__R3

(d)

124:KP03_R1_4L6__R1

125:KP03_R1_4L6__R2

126:KP03_R1_4L6__R3

(e)

4:KP01_L1_4M1__R1

5:KP01_L1_4M1__R2

6:KP01_L1_4M1__R3

(f)

374:KP05_L6_4MP3_R1

375:KP05_L6_4MP3_R2

376:KP05_L6_4MP3_R3

(g)

354:KP05_L4_4AC__R1

355:KP05_L4_4AC__R2

356:KP05_L4_4AC__R3

(h)

533:KP07_L2_4PC__R1

534:KP07_L2_4PC__R2

535:KP07_L2_4PC__R3

(i)

Figure 4.22: In this figure, we show the replicate sets of spectra that were
identified in Fig. 4.21 as having particularly high residual or high leverage
for the PCA based simulation model for respectively healthy and diseased
cartilage spectra as well as for the additional PLS-DA model. Replicates in
(a)-(b) were found by PCA in healthy group. Replicates in (d)-(f) were found
by PCA in diseased group, and replicates in (g)-(i) were found by PLS-DA
in the full data set including both healthy and diseased samples.
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Figure 4.23: These plots show the simulation results for the unperturbed
healthy (left) and diseased (right) groups.

the healthy and diseased groups from Fig. 4.24, we see that the difference
in average spectra of the healthy (green) and diseased (red) groups in region
950 - 1125 cm−1 is not as big as some of the simulated spectra suggests. This
may indicate that there is a large variety of signal strength in this region for
the diseased group, and furthermore that spectra with very high absorbance
levels in the collagen and proteoglycan region may belong to particular high
degradation cartilage as also discussed in section 4.4.3.

An artefact in our simulated spectra is the occurrence of below-baseline
features in the region 1720 - 1780 cm−1, seen particularly for the simulation
of healthy cartilage group seen in Fig. 4.23 (left) . This artefact is also
apparent in the diseased groups to some extent. This may be linked with
the simulation method itself. The simulation is based on drawing scores and
perturbation parameters from a normal distribution with mean and stan-
dard deviation calculated from the experimental data set. Drawing scores
for each principal component independently in this manner will most likely
create some unrealistic combinations of components. In fact, the assump-
tion that scores from PCA and PLS-DA are exactly normally distributed for
healthy and diseased cartilage spectra may be erroneous. For a quick check
of this, we present the distribution of the first three principal components
from PCA on Human12 data set in Fig. 4.25 plotted together with the fitted
normal distribution. As exemplified by the 2nd principal component (PC2)
for a PCA run on the healthy spectrum group (middle row, right column),
some components exhibit distributions which can not simply be explained by
a normal distribution defined from the mean and standard deviation parame-
ters. The histogram of the 2nd principal component for healthy group shows
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Figure 4.24: This plot shows the mean spectra for the unperturbed healthy
(green) and diseased (orange) groups from simulation.

a non-symmetrical shape, which means that there are no samples contained
in the right tail of the fitted normal distribution. Thus, the real distribution
may be skewed. When this is not accounted, it may ultimately lead to the
below-baseline artefacts in the region 1720 - 1780 cm−1 which are seen in
the simulated data set. For future work, this is thus an issue which should
be considered further. For the upcoming validation section, the spectra with
such artefacts were removed by a simple absorbance level criteria at 1750
cm−1 (Abs < 0.011), for which 20 spectra are discarded from the data set.
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(a) PCA, healthy (b) PCA,diseased

(c) PCA, healthy (d) PCA,diseased

(e) PCA, healthy (f) PCA,diseased

Figure 4.25: Distributions of the first three components of PCA scores in
the experimental data set Human12 are shown for healthy (left column) and
diseased (right column) groups. The fitted normal distributions for the scores
are shown by the black line.
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4.5 Validation of preprocessing strategies

In this section, we validate the preprocessing and classification strategies
for seven wavenumber channels data which were suggested in section 4.3.4.
This is achieved by applying a spectrum of classifiers to the simulated data,
namely Random Forest (RF), Partial Least Squares Discriminant Analysis
(PLS-DA), Artificial Neural Networks (ANN) and Support Vector Machines
(SVM). We tested 11 different variants of preprocessing strategies in combi-
nation with these classifiers. The different preprocessing strategies are

1. Non-preprocessed data

2. Constant baseline corrected data by subtraction of absorbance at 1800
cm−1

3. MSC corrected data

4. MSC-L corrected data

5. EMSC corrected data

6. Raw data and MSC parameters added

7. Raw data and MSC-L parameters added

8. Raw data and EMSC parameters added

9. MSC correction and MSC parameters added

10. MSC correction and MSC-L parameters added

11. MSC correction and EMSC parameters added

The 11 preprocessing strategies were in addition combined with stan-
dardisation of all classification variable inputs, yielding in total 22 different
preprocessing strategies. We present the classification accuracy results from
the exhaustive search among all suggested preprocessing-and-classification
strategies, using the simulated data set, in table 4.2. When we applied stan-
dardisation of all classification variable inputs, we denoted results in table 4.2
by (*). We see that results vary across classifiers and preprocessing strategies.
The Support Vector Machine (SVM) classifier is not scale-invariant, and thus
it does not perform well on data for which the variables are not standard-
ized. This is readily observed in our table by comparing SVM accuracy for
the standardized strategies (1* - 11*) with the non-standardised approaches
(1 - 11). For the results using non-standardised variable approaches, we thus
ignore the SVM. By inspecting the results for the non-standardised strategies
1-11, the best preprocessing approach across all classifiers is apparently a sim-
ple MSC with the estimated MSC parameters added as additional variables
for the classifiers (green row). However, a simple MSC correction without
the inclusion of estimated parameters as extra variables (blue row) leads to
a comparable accuracy. The inclusion of extra MSC parameters had most
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effect on the ANN classifier with 3,2 % increase in accuracy, and the dif-
ference is marginal for RF (+0.6 %.) and PLS-DA (+0.1 %). Comparing
these observations with the corresponding standardised strategies, the same
pattern is seen. Random Forest gave the highest accuracy of all tested classi-
fiers, and in comparison to no preprocessing (1), marked in grey, we achieved
a classification accuracy increase of 5,6 % for a simple MSC and 6,2 % for
an MSC correction with MSC parameters included as additional variables
(i.e weighting of trends in data). As Random Forest is a scaling invariant
method, it performs equally on standardised and non-standardised data.

We consider the impact of standardization of the input variables for the
classifiers further, by comparing non-preprocessed data (1) and standardized
data (1*). Across the four different classifiers, we do not see a general im-
provement in classification accuracy due to standardisation. However, the
effect varies. While Random Forests yields insignificant difference in accu-
racy, PLS-DA shows a marginal increase in accuracy of 1,8 % and for ANN
we see a marginal decrease of 1,0 %. The impact is, as mentioned earlier,
significant for SVM due to the classifier’s sensitivity to scales, and the accu-
racy increases by 21 %. By correspondingly comparing the non-standardised
version of highest accuracy preprocessing approach (9) with the standardised
version (9*) (both marked in green), we observe that the marginal differences
that was seen by comparing (1) and (1*), becomes even smaller. For ANN
and RF, there is no difference in accuracy and for PLS-DA there was an
accuracy increase of 0,5 %. Thus, standardisation had less impact for the
MSC preprocessed data than for the raw data. In the appendix we include,
correspondingly to table 4.2 for RF as a representative of the highest accu-
racy classifier in our case, other conventional classification metrics, to double
check that all metrics show the same pattern, and for instance that speci-
ficity or sensitivity are not critically affected for any preprocessing strategies.
From this table, we can see that none of the metrics (accuracy, true negative
rate, precision, recall or F1-score ) are critically different than the others for
the respective strategies. This is in accordance with what we would expect,
since we created a nearly perfectly balanced simulated data set. We can
summarise from this section that preprocessing by conventional MSC was
the most valuable preprocessing technique in combination with the Random
Forests classifier. The inclusion of the estimated MSC parameters as extra
input variables to the classifier led to further increase in accuracy, though
marginal of 0,6 %. Standardisation is not necessary in the case of Random
Forests.
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Table 4.2: Table showing different classifiers’ accuracy using the simulated
data for the main variants of preprocessing strategies (1-11) and the corre-
sponding versions with standardisation of variables (*).

Strategy RF PLS-DA ANN SVM
1 0.749480 0.735967 0.764033 0.573805
2 0.749480 0.748441 0.758836 0.567568
3 0.805613 0.747401 0.775468 0.515593
4 0.778586 0.745322 0.785863 0.515593
5 0.696466 0.699584 0.735967 0.515593
6 0.744283 0.734927 0.761954 0.608108
7 0.743243 0.738046 0.740125 0.613306
8 0.738046 0.732848 0.759875 0.618503
9 0.811850 0.746362 0.807692 0.604990
10 0.807692 0.750520 0.781705 0.607069
11 0.804574 0.741164 0.803534 0.610187

1* 0.747401 0.752599 0.753638 0.786902
2* 0.749480 0.749480 0.758836 0.801455
3* 0.805613 0.751559 0.775468 0.792100
4* 0.778586 0.737006 0.785863 0.796258
5* 0.696466 0.676715 0.735967 0.739085
6* 0.744283 0.737006 0.761954 0.786902
7* 0.743243 0.755717 0.740125 0.791060
8* 0.738046 0.745322 0.759875 0.770270
9* 0.811850 0.751559 0.807692 0.800416
10* 0.807692 0.743243 0.781705 0.800416
11* 0.804574 0.745322 0.803534 0.786902

4.6 Impact of water vapor interference on the

classification results

One interferent which is clearly present in cartilage spectra is water vapor,
which is associated with air inside the instrumentation. In this section, we
exploit the clear separability of water vapor, which was seen for the PCA
loadings in section 4.4.2, to investigate the impact of water vapor on classi-
fication. To achieve this, we simulated two data sets. One of the data sets
was constructed only from loading 1-4, which mainly contain non-interferent
features, and the other data set included in addition the 5th loading which
contains mainly water vapor. For this study, noise was not added to the
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(a) No water vapor: ACC=85% (b) With water vapor: ACC=80%

Figure 4.26: This figure shows the Random forests classification results for
the simulated dataset, where the 5th loading, which contains almost only wa-
ter vapor information, is (a) included and (b) not included in the simulation.
The Accuracy (ACC) when not including the water vapor component is 85
% and the accuracy when including the water vapor component is 80 %.)

perturbed spectra. Subsequently, Random Forest classification was run on
these data sets for performance comparison of a data set nearly free of water
vapor and a data set including water vapor. In figure 4.26, confusion matri-
ces for the two classifications are shown. It is seen that water vapor has an
impact on classification results, and there is a 5% decrease in classification
accuracy for the data set including water vapor. Thus, water vapor has a
significant effect on classification of healthy and diseased cartilage for the
seven wavenumber channels data. It is recommended that instrumental pre-
cautions are made to try and minimize this classification impairment. For
instance, a purging mechanism can be implemented.
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Chapter 5

Conclusion

The aim of this thesis was to (i) explore interferent and measurement variabil-
ity in broad-band spectra, (ii) establish routines for detection of low quality
broad-band spectra, (iii) use only selected wavelengths from the broad-band
spectra (the wavelengths that were selected for the QCL lasers) and investi-
gate preprocessing strategies based on only few wavelengths, (iv) to suggest
preprocessing strategies for data with few wavelength channels, and finally
(v) to simulate a data set based on the knowledge about interference effects
from broad-band spectra and use the simulated data set for validation of the
suggested preprocessing strategies.

In broad-band spectra of cartilage, several interference and measurement
variations were identified from the raw data, including variations in water
vapor, carbon dioxide, noise and cartilage signal strength. Spectra that did
not show cartilage signals at all could also be identified. We suggested that
this was due to the high degradation of cartilage in these samples. However,
it was shown that it is difficult to classify these samples based on the spec-
tral fingerprint and therefore it was concluded that such spectra will not give
any meaningful value to further classification tasks, and should be removed.
In terms of the Miracle probe system, this is an important observation be-
cause it shows that development of an automatic detection algorithm for no-
cartilage-signal measurements will be vital for robust implementation. Three
approaches for detection of spectra without cartilage signal was tested for the
broad-band spectra. The most robust approach for broad-band spectra was
calculating the difference between maximum and minimum of the absorbance
derivative in the fingerprint region. However, such an approach will not be
applicable to the Miracle probe data consisting only of seven wavenumber
channels. Of the tested approaches, an approach based on calculating the
residuals from an EMSC model with mean reference in comparison to an
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EMSC model with water spectrum reference, respectively is the most appli-
cable one for seven wavenumber channels data. This approach was shown to
successfully identify all low absorbance spectra in broad-band spectra, how-
ever not as precise as the two other approaches.

We suggested that spectral features that are due to physical effects can
carry discriminative information about healthy and diseased cartilage for
broad-band spectra. EMSC-type correction methods could successfully sep-
arate the physical features and the absorption features. However, for the
seven wavenumber channel data, corresponding EMSC-type correction meth-
ods were not as accurate as for broad-band spectra in separating physical and
chemical information. Due to the low number of variables, they could not be
separated completely since absorption features were modelled by the EMSC
model functions for physical effects. This problem increased with the com-
plexity of the EMSC model. Therefore, it is concluded that the estimated
physical effects described by the EMSC model in seven wavenumber channels
data most likely do not correctly describe physical phenomena in the sample.
Based on this, 11 EMSC type preprocessing strategies for seven wavenumber
channels data were suggested to test. To validate the suggested preprocess-
ing strategies, a simulated data set of healthy and diseased cartilage spectra
was established by exploiting broad-band spectra variability and using Prin-
cipal Component Analysis. After an exhaustive search among the suggested
preprocessing strategies, the best performance across all tested classifiers was
obtained by using conventional MSC. The inclusion of the estimated MSC
parameters as extra input variables to the classifier led to further increase in
accuracy, although the improvement was marginal. In combination with the
Random Forests classifier, the maximum accuracy of 81,2 % was achieved,
which represented an increase of 6,2 % with respect to classification based
on raw data. In conclusion, the preliminary study based on simulated data
done in this thesis, suggests that application of MSC for preprocessing is the
most promising approach for the seven wavenumber channels data which will
be acquired by the Miracle probe.

As an additional test, the simulation approach was used to investigate
how water vapor impact classification accuracy. By adding water vapor sig-
nals to the simulated data set for the seven wavenumber channels data in a
level which was adopted from the broad-band spectra, a decrease of 5 % in
classification accuracy was observed. Based on this, it is recommended that
instrumental precautions are made to try and minimize this classification im-
pairment. For instance, the possibility of implementing a purging mechanism
may be investigated.
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New interesting questions arose during the thesis which were outside the
scope of the thesis. Firstly, this thesis tested only detection algorithms for
low cartilage signal data for broad-band spectra. It is suggested that detec-
tion methods for seven wavenumber channels data are considered in future
research. Secondly, it is suggested that the established simulation frame-
work, which provides a controlled environment for testing algorithms, is used
further to investigate how the suggested preprocessing and classification ap-
proaches in general, react to noise and interferents.

This thesis has shown how viable the use of EMSC type correction meth-
ods are for preprocessing of IR data with few wavenumber channels, such as
the data which will be acquired by the Miracle probe. The Miracle system
aims for an in-situ application, where the goal is real-time evaluation of car-
tilage, and therefore all data processing must be automatic. In this situation
it will be particularly important that implemented preprocessing approaches
are reliable and promote high classification performance to make in-surgery
decisions safer.
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Chapter 6

Appendix - Additional figures
and tables

Figure 1: This figure shows the raw spectra of data set Equine4.
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Table 1: This table shows classification metrics from Random Forest vali-
dation of the suggested preprocessing strategies 1 - 11, using the simulated
data. The metrics included are accuracy (ACC), true negative rate (TNR),
precision (PRE), recall (REC) and the F1-score.

Strategy ACC TNR PRE REC F1
1 0.749480 0.751086 0.752769 0.751086 0.749283
2 0.749480 0.751021 0.752523 0.751021 0.749311
3 0.805613 0.806365 0.806327 0.806365 0.805613
4 0.778586 0.779766 0.780444 0.779766 0.778546
5 0.696466 0.697987 0.699242 0.697987 0.696244
6 0.744283 0.745591 0.746513 0.745591 0.744193
7 0.743243 0.744583 0.745572 0.744583 0.743143
8 0.738046 0.738829 0.738895 0.738829 0.738045
9 0.811850 0.812543 0.812434 0.812543 0.811848
10 0.807692 0.808251 0.808037 0.808251 0.807682

11 0.804574 0.805097 0.804865 0.805097 0.804560
1* 0.747401 0.748745 0.749751 0.748745 0.747303
2* 0.749480 0.751021 0.752523 0.751021 0.749311
3* 0.805613 0.806365 0.806327 0.806365 0.805613
4* 0.778586 0.779766 0.780444 0.779766 0.778546
5* 0.696466 0.697987 0.699242 0.697987 0.696244
6* 0.744283 0.745591 0.746513 0.745591 0.744193
7* 0.743243 0.744583 0.745572 0.744583 0.743143
8* 0.738046 0.738829 0.738895 0.738829 0.738045
9* 0.811850 0.812543 0.812434 0.812543 0.811848
10* 0.807692 0.808251 0.808037 0.808251 0.807682
11* 0.804574 0.805097 0.804865 0.805097 0.804560
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Lukacs, and Achim Kohler. Fringes in FTIR spectroscopy revisited:
Understanding and modelling fringes in infrared spectroscopy of thin
films. Analyst, 2015.

[32] Heather J. Gulley-Stahl, Sharon B. Bledsoe, Andrew P. Evan, and
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