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Abstract

The aim of this project was to investigate to what extent some machine learning methods are able
to classify chromosome reads from plasmid reads based on K-mer statistics. Both short Illumina
HiSeq 2500 reads and medium-length Nanopore reads were simulated in silico from fully assembled
E.coli chromosome and plasmid sequences. Both canonical and non-canonical K-mers were counted
on all categories of sequence lengths. Working with in silico simulation data like this is different to
a real-world experiment in that sequencing simulators like ART has arbitrary categorical simulation
statistics, e.g. boolean presence of sequencing error, which were adjusted to find optimal combinations.
K-mer methods worked great for fully assembled genome sequences, in terms of binary classification
accuracy, decreasing substantually to 61 % for the Illumina sequences, while maintaining a fairly high
level at 87 % for the Nanopore sequences. Wrongly classified reads mainly gets classified as plasmids.
A 37X increase in sequence length1 leads to a 42 % increase in accuracy2.

1from 150 b to 5.8 kb
2from 61 % to 87 %
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Sammendrag

Målet med prosjektet var å undersøke i hvilken grad visse maskinlærings-metoder vil kunne klas-
sifisere kromosom-reads fra plasmid-reads, basert på K-mer statistikk. Både korte Illumina HiSeq
2500 reads, og mellomlange Nanopore reads ble simulert in silico fra komplett assemblerte E.coli
kromosom- og plasmid-sekvenser. Både kanoniske og ikke-kanoniske K-merer ble talt for alle kat-
egorier av sekvenslengder. Det å arbeide med in silico simulaterte data som disse er ulikt fra
ikke-simulerte data ved at sekvens-simulatorer som ART har arbitrære, kategoriske simulerings-
statistikker, f.eks. boolsk tilstedeværelse av sekvenserings-feil, som ble justert for å finne optimale
kombinasjoner. K-mer metoder fungerte veldig bra for fullstendig assemblerte genom-sekvenser, med
hensyn til binær klassifikasjons-nøyaktighet, substansielt minkende til 61 % for Illumina-sekvensene,
men opprettholder en temmelig nøyaktighet på 87 % for Nanopore-sekvensene. Feilklassifiserte reads
blir hovedsakelig klassifisert som plasmider. En 37X økning i sekvenslengde3 fører til en 42 % økning
i nøyaktighet4.

3fra 150 b til 5.8 kb
4fra 61 % til 87 %
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Glossary

ABR Antibiotic resistance. A subset of AMR, applying only to bacteria becoming resistant to
antibiotics. 2

ACC Accuracy. Defined in equation 24 on page 17 as TP+TN
TP+TN+FP+FN . 17

AMR Antimicrobial resistance. 1

ANOVA ANalysis Of VAriance. 21, 22, 24, 26, 28, 31, 32

ART An open source set of in silico simulation tools for generating whole genome sequencing reads,
art_Illumina being the binary for generating Illumina reads [1]. 1, 4–6, 28, 29

BLAST Basic Local Alignment Search Tool. 7, 14

bp base pairs. 12, 19

CART Classification And Regression Tree. 16

cf. confer/conferatur, latin abbreviations both meaning “compare”, used to refer to other material
when writing about a topic. 27, 34

contig Set of overlapping DNA segments that together represent a consensus region of DNA. 1, 2,
13, 35

DeepSimulator An open source in silico simulator of Oxford Nanopore reads [2]. 19, 28, 29

e.g. exempli gratia, latin abbreviation meaning “for example”, indicating example scenario. i, 1, 4–6,
9, 11, 14–16, 18, 30, 34

FA Fully assembled whole genome sequences, i.e. fully assembled chromosomes and plasmids
available from the NCBI Prokaryote database. v, vi, 2, 21, 28, 29, 34

FN False negative. 16, 29, 34

FP False positive. 16, 29, 32–34

FreeBSD Afree and open source operating systemdescended from theBerkeley SoftwareDistribution
(BSD), which in-turn was based on Research Unix from Bell Labs. 5, 11

git A fast, scalable, distributed revision control system with an unusually rich command set that
provides both high-level operations and full access to internals. vi

graphviz A set of open-source tools initiated by AT&T Labs Research for drawing graphs specified
in DOT language scripts. 3
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i.e. id est, latin abbreviation for “that is”, might be thought of as a forward pointing implication arrow.
2, 4–6, 9, 12, 15, 20, 28, 32

IQR The interquartile range. 18, 34

KNN K-nearest neighbour algorithm. 14, 31, 32

Linux A family of operating system distribution based on the free, open source, and Unix-like Linux
kernel first released by Linus Thorvalds back in 1991. 5, 11

Nanopore sequencing A third generation approach used in the sequencing of biopolymers- specifi-
cally, polynucleotides in the form of DNA or RNA. i, ii, v, vi, 1, 19, 24–30, 33, 34

NCBI National Center for Biotechnology Information. 4, 5

PCA Principal component analysis, as provided by the R function stats::prcomp. 26, 34

PCN plasmid copy number. 6, 7, 12

Φ The Normal distribution’s distribution function. Is solved in R using stats::pnorm. 18

Φ−1 The Normal distribution’s quantile function. Is solved in R using stats::qnorm. 18

PPV Positive predictive value. Precision. Defined in equation 27 on page 17 as TP
TP+FP . 17

Python programming language An interpreted, general-purpose programming language. Python
can be said to be less abstracted (high-level) compared to the R programming language. 7, 8, 16

R programming language A programming language for statistical computing. 18

σ standard deviation. Is solved in R using stats::sd. 18

TN True negative. 16, 29, 32, 34

TNR True negative rate. Specificity. Selectivity. Defined in equation 26 on page 17 as TN
TN+FP . 17

TP True positive. 16, 29, 32, 33

TPR True positive rate. Sensitivity. Recall. Hit rate. Defined in equation 25 on page 17 as TP
TP+FN .

17

WGS Whole Genome Sequencing. A sequencing process where the entire genome of an organism is
sequenced without using methods for sequence selection. 1, 2, 5
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1 INTRODUCTION

1 Introduction

1.1 Antimicrobial resistance

Antimicrobial resistance (AMR) occurs in nature independent of human interaction [3]. Organisms
harbouring antimicrobial resistance existed long before humans evolved, and have been found inside
30 000 year old Beringian permafrost, from long before humans evolved [3]. However, human in-
teraction promotes the spread of antimicrobial resistant organisms, e.g. from poultry farms through
squirrels back around to humans [4]. Antimicrobial resistance remains an increasing issue, e.g. annu-
ally causing more than 23 000 deaths out of two million infected people in the United States, mostly
in healthcare settings [5]. Antimicrobial resistance mechanisms are often associated with plasmids in
the bacterial cell making them easier to transfer between the cells [6].

1.2 Whole Genome Sequencing

Whole Genome Sequencing (WGS) is a a sequencing process where the entire genome of an organism
is sequenced without using methods for sequence selection [7, page 338].

Redundancy of coverage was defined by Lander et al. [8] as the expected number of reads covering
a given position on a genome. Given a sample, a sequencing machine is able to attain different levels
of redundancy of coverage. If a plasmid occurs X times, this will become apparent after assembly
in that contig islands belonging to the plasmid will have X times greater coverage compared to the
chromosomal coverage. In these cases, plasmids and chromosomes can be easily distinguished based
on coverage.

The traditional Illumina HiSeq 2500 sequencing machine uses a sequencing-by-synthesis cyclic
reversible termination approach. Hundreds of millions of short templates copied from a sample are
housed in clusters on a so-called flow cell. A mixture of 3′-blocked, individually labeled deoxynu-
cleotides (dNTPs) are added to the flow cell. Fluorescent dyes and computer analysis of photographies
of each of the clusters of the flow cell is used to identify the sequence of four dNTPs incorporated to
each elongating complementary strand on the flow cell [7, 9].

Through art_Illumina [1] version 2.5.8, WGS reads of 11 Illumina WGS sequencing systems
can be simulated in silico, the Illumina HiSeq 2500 being one such machine to choose among others.
Specifying parameters such as redundancy of coverage, presence of a sequencing error profile, and read
length to art_Illumina makes it possible to explore specific parameter combinations, e.g. exploring
presence/absence of sequencing error profile.

Through the DeepSimulator [2], nanopore sequencing can be simulated in silico. The Nanopore
technology is a new way of sequencing which we presume will become more and more common in
the near future. The main differences from the Illumina data the ART art_Illumina simulates are

(1) Single reads instead of paired-end reads (no R1/R2 output file pairs)

(2) Much longer reads (thousands of bases)

(3) More sequencing errors, at least at present

1



1 INTRODUCTION

1.3 K-mer frequencies

Methods of classification relies on numbers. Thus, when classifying text, such as nucleotide sequences,
conversion from text to numbers will hopefully describe how the bodies of text differ from one another.
One such method is to determine the occurence of K-mers in a sequence.

Given a nucleotide sequence of length L, it is possible to identify L −K + 1 number of nucleotide
subsequences of length K. These nucleotide subsequences are also known as oligonucleotides, or K-
mers. For a sequence composed of only the four nucleotide letters A, C, G, and T, there are 4K number
of unique K-mers. For odd values of K, the expected number of unique canonical K-mers becomes
4K/2, for even values of K, slightly higher due to palindromes. The sets of unique K-mers defines the
dimensions (columns in a spreadsheet) of a dataset reporting the K-mer occurence of a set of nucleotide
sequences (one data point [row] per sequence). Given a set of unique K-mers to look for, the number
of K-mers in a nucleotide sequence can be identified. If the sequences in a set of sequences to be
compared are of different lengths (different number of nucleotides within each nucleotide sequence),
it makes sense to compare their K-mer frequencies, as opposed to comparing their K-mer counts,
which would only indirectly be a comparison of sequence length, and not sequence structure in terms
of K-mer occurrence. E.g. when comparing fully assembled (FA), whole chromosome and plasmid
sequences, chromosome nucleotide sequences are always longer than plasmid nucleotide sequences,
but when comparing reads from aWGS read simulation, the length of output sequences (reads) remains
constant, removing the demand to calculate K-mer frequencies.

Although it is usual for K-mer based classification not to yield 100 % accurate classifications—at
leastwhen classifying using a neural network classifier fromGoogleBrain’sTensorFlow [10]—classifying
WGS reads, as well as longer, partly assembled contigs, on the basis of K-mer frequencies has been
shown to work better than redundancy of coverage, as well as sequence alignment [11].

1.4 Aim of this project

To be able to study the ABR mechanisms, we need to puzzle together the reads after sequencing,
i.e. perform a sequence assembly. The reads we are faced with is a mixture of reads from the
chromosome and the plasmids that may be there. The sequence assembly is challenging as long as
we have such mixtures, especially when the plasmids have a low copy number, leading to a similar
coverage as the chromosome. Thus, it would be very beneficial if we could separate reads that came
from the chromosome from those from plasmids, based on K-mer statistics. The aim of this project is
to investigate to what extent some machine learning methods are able to classify chromosome reads
from plasmid reads based on such K-mer statistics.

2



2 METHODS

2 Methods

start

NCBI prokaryote database

Complete sequences [fasta]

Assembly level: Complete
Organism name: Escherichia coli

Count K-mers
using microclass::KmerCount v1.1

Clean sequences using Perl v5.26.2 pipe
perl -pe 's/[^ACGT\n]/N/g'

Simulate Illumina HiSeq 2500 reads using
ART_Illumina v2.5.8 gsl v2.4

w/wo error profile, D=10

XTRAIN data.
Counted K-mer proportions [csv.xz]

Per-assembly
Cross-validation

loop

XTRAIN

50%/50%-sampled chromosome-plasmid
K-mer proportions from Assemblies with at 

least one chromosome and one plasmid

XTRAIN

Classify xtest using xtrain. conda v4.5.11, python v3.6.7, numpy v1.16.3, pandas v0.24.0, sklearn v0.20.3

Predicted class labels of xtest [csv.xz]

Cleaned sequences [fasta]

Simulate Nanopore reads using
DeepSimulator v2018-10-02

conda v4.5.11, python v2.7.13
Sample 1000 reads

Simulated reads [fastq]

Sample 500 reads per NCBI Accession per param tuple.
Count K-mers using microclass::KmerCount v1.1

XTEST data.
Counted K-mer proportions [csv.xz]

XTEST_NanoPore XTEST_Illumina

Figure 1: Flowchart of the simulation and classification pipeline

The graphviz [12] flowchart in
figure 1maps out the processes
of the scripting pipeline cre-
ated for the project.

3



2 METHODS

2.1 Data

We use simulated data in this project, because this allows us to create data sets where we know the
origin of all reads, i.e. we know which reads are from a chromosome and which are from plasmids. In
this way, we can evaluate methods by computing accuracies or other statistics revealing how close the
classifications are to to the true statistics.

2.1.1 NCBI downloads and prepping

To train and test the model, data from 454 Escherichia coli genomes, were downloaded from the
National Center for Biotechnology Information, NCBI, archives in the United States of America. An
E. coli genome always contains one chromosome, and some genomes have one or more plasmids. We
focused only on genomes with plasmids. A search of the NCBI prokaryote genome database website,
https://www.ncbi.nlm.nih.gov/genome/browse#!/prokaryotes/, was done on 2019-04-07 using the criteria: (i)
organism name set to Escherichia coli, and (ii) checkboxing complete in category assembly level.
The search result was downloaded as a comma-separated values file (csv file). The results were
filtered in R using using regular expressions. During filtering, it was assumed results with the word
“plasmid” in the Replicons column has its chromosome listed first in the colon separated sequence
of associated accession numbers. After determining all accession numbers, the associated sequences
were downloaded using the R function micropan::entrezDownload [13].

Figure 2 shows how the plasmid count given the 454 chromosomes and 1219 plasmids downloaded
from NCBI (blue crosshatch bars) at least exactly one chromosome, and less than 13 plasmids, i.e. a
mean of 3 ± 2 plasmids per genome, with 0 %, 25 %, 50 %, 75 %, and 100 % number of plasmids
quantiles of 1, 1, 2, 4, and 12, respectively. Some of the downloaded sequences contained characters
which made it impossible to simulate in silico Whole Genome Sequencing reads from them, thus
the whole genome was omitted. The red crosshatch dotted bars show the plasmid count in the new
“ART” genome set, 1150 plasmids distributed over 433 genomes, e.g. the number of genomes with
three plasmids in them decrease from 86 to 84. Quantile-wise, the decrease affects the 75 % quantile
to decrease from 4 to 3.

1 2 3 4 5 6 7 8 9 10 11 12

136
116

86

48

15
1

13
6

11
6

86

48 37

15 8 6 1 1

13
1

11
0

84

46 35

13 8 4 1 1

Number of plasmids per genome

N
um

be
ro

fg
en
om

es training
ART

Figure 2: How the 1219 plasmids are distributed over the 454 genomes.
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2 METHODS

2.1.2 Discrimination based on whole chromosomes and plasmids

Classification based on relative K-mer frequency data of whole nucleotide sequences, as opposed to
in silico WGS reads simulated from the completely assembled nucleotide sequences, is considered a
“best-case scenario” in the sense that longer sequences of text is more probable to contain a greater
number of subtle differences for precise classification. Classifying nucleotide sequences in a “best-case
scenario” of long sequences makes sense to do before classifying shorter subsequences, to determine
how great any upper threshold of classification accuracy can be attained, as the accuracy is expected
to decrease when the length of nucleotide sequences decrease, as the difference in number of subtle
differences decreases.

Each genome set was 454-fold cross-validated against the other 453 genomes, whichmeans leaving
out one genome “fold” to predict its response based on how its feature matrix matches to the feature
matrix composed of all the 453 other genomes, in such a way that all the genomes are “left out” as a
test set exactly once. As stated in section 2.1.1 on page 4, any genome chosen can not be expected to
have a constant number of plasmids associated with it, greater than zero, less than 13; thus the number
of rows of the feature matrix varies from 1660 to 1671 depending upon the number of nucleotide
sequences (number of NCBI accession numbers) associated with the genomes of the “fold” being “left
out.”

Relative occurrence of both canonical K-mers and the complete set of K-mers were used for
prediction.

2.1.3 Simulation of reads with ART

Given a nucleotide sequence and a set of parameters, the art_Illumina [1] simulation program can
generate sequence read data of Illumina sequencers. As specified in the art_Illumina README
updated on the 6th of June 2016, included within version 2.5.8 of the program suite, art_Illumina
generates these reads “according to the empirical read quality profile summarized from large real read
data.”

Sequencing technology, or sequencing machine, i.e. sequencing system is specified using the
--seqSys flag, e.g. --seqSys HS25 indicates the Illumina HiSeq 2500 machine.

The length of reads to be simulated by art_Illumina is declared by providing an integer to the
--len flag, e.g. --len 150 means a read length of 150 bp. When another operating system than
Linux is used for running the simulation, e.g. FreeBSD/amd64 12.0-RELEASE, specifying --len

150 might mean the resulting reads might end up being of a different length, e.g. 147 bp or 151 bp.
Paired-end reads can be simulated by art_Illumina providing the --paired boolean flag.
If fragment length in a paired-end simulation is assumed to be normally distributed, the mean and

standard deviation of this normal distribution can be provided to art_Illumina through the --mflen
and --sdev flags, respectively. The mean of the fragment length normal distribution is called the
insert size.

The position of a fragment along the genome length ideally follows the uniform distribution,
position ∼ uniform(α,β). The uniform distribution has two parameters, α and β, which can be thought
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of as starting position and stopping position along a line. So along the genome length, parameter α
might be though of as the first nucleotide in the genome, position 1, and parameter β then becomes the
last nucleotide in the genome, position G. The probability density function of the uniform distribution
is

f(x) =
1

β − α
, α < x < β, −∞ < α < β < ∞ (1)

Redundancy of coverage, also known as fold coverage or sequencing depth, can be specified in
art_Illumina by providing an integer to the --fcov flag, e.g. --fcov 100 means 100X coverage.
Redundancy of coverage is explained further in section 2.3.1 starting on page 12.

As per equation 3 on page 12, the number of reads, N, is a combination of genome length, G, read
length, L, and nucleotide coverage. Number of reads ideally attains either a binomial distribution, or a
Poisson distribution. An alternative to specifying nucleotide coverage in art_Illumina is specifying
the number of reads using the --rcount flag, which means nucleotide depth varies if genome length
varies, as opposed to number of reads varying when genome length varies.

By providing the --noALN flag, art_Illumina does not output a ClustalW ALN alignment file.
art_Illumina uses the system time measured in seconds as the seed for its random number

generator. As of version 2.5.8, the system time is obtained by including the first available time.h

header file (at compilation)5 and calling time(NULL) (at runtime), if no fixed seed was provided. A
fixed seed can be provided to art_Illumina by using the --rndSeed flag.

art_Illumina ultimately outputs simulated reads in FASTQ format [16] to the file prefix provided
to the --out flag. Each sequence is labeledwith a unique FASTQ sequence identifier, e.g. if the FASTA
title line in the input file in the path provided to the --in flag is

>CP009104.1 Escherichia coli strain RM9387, complete genome

the prefix identification tag for read ID provided to the --id flag is data/ncbi/art/tmp, a possible
FASTQ sequence identifier could be

@CP009104.1-data/ncbi/art/tmp321840

To simulate readswithout errors, the --errfree boolean flag is provided. The zero-error readswill
end up in a SAM file, which has to be converted to R1 and R2 FASTQ files later using SAMtools [17]
or similar tooling, to make the output in line with the regular (error containing) reads.

2.1.4 Plasmid copy number

An E. coli genome consists of a chromosome as well as a number of unique plasmids each having its
own plasmid copy number (PCN), i.e. expected number of observed copies of a given plasmid within a
cell. A plasmid having a low PCN is considered a rare plasmid, e.g. IncI plasmids, which are potential
carriers of antibiotic resistance, thus being important to discover. A low PCN implies low nucleotide

5which normally would be provided by the glibc library [14], if not a more exotic C library like musl [15] is used
instead.
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coverage, which makes low PCN plasmids hard to detect using nucleotide coverage statistics, which
forms the basis of the plasmidSPAdes [18, page 3] algorithm (see page 12). A worst-case situation
like this, where all of the possible plasmids of all of the known E. coli genomes have a PCN of 1, is
the focus of this study.

2.1.5 Choice of Genomes

Due to the stacked prediction probability dataframe becoming dauntingly long for the 43 million
combinations of

1000 classified reads per genome harbouring probabilities

× 454 genomes

× 3 K-mer levels

× 2 canonical levels

× 16 method levels

after classification of the simulated sequences, only classification results of the 50 first genomes6
were further analyzed in the accuracy analysis as well as the prediction probability boxplot (which
were further narrowed down to the intercept of each ANOVA accuracy analysis). That said, the
classification of each genome were of course cross-validated towards all the other 453 genomes as
they were classified. Keep this in mind when reading table 5 and 7 on pages 24 and 26.

2.2 K-mer statistics

Krawczyk et al. [11] showed in 2018 that classifying nucleotide sequences based on frequencies
of a carefully selected set of oligonucleotides (K-mers) and deep neural network methods provided
by Google Brain Team’s software suite TensorFlow is able to provide a greater level of precision
compared to previous BLAST (PlasmidFinder), coverage (Recycler), or sequence length (cBar) based
methods, as long as the sequences to be classified are of sufficient length to be able to contain enough
subtle differences to be distinguished from one another. In this project we decided to focus on the
discrimination of plasmids from chromosomes based on K-mer statistics. In order to classify a DNA
sequence, we need to convert the sequence information to numerical data in one way or another, since
all classification methods are based on data as numbers. One way of converting text data to numerical
data is to count K-mers. A string of length L can be sliced into

N = L − K + 1 (2)

possible K-mers of length K. Three simple and straightforward ways of determined this set of K-mers
might be either (1) through a Python programming language list comprehension in listing 1, (2)
through a numpy vectorized anonymous function in listing 2, or (3) through a sapply call in R in listing

6thus reducing the number of combinations above to 4.8 million ...
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3.

Listing 1: Finding the L-K+1 long set of K-mers in a string, seq, through Python programming language3 list compre-
hension.

[seq[i:(i+k)] for i in range(len(seq)-k+1)]

Listing 2: Finding the L-K+1 long set of K-mers in a string, seq, through a numpy vectorized anonymous function.

np.vectorize(lambda i: seq[i:(i+k)])(np.arange(len(seq)-k+1))

Listing 3: Finding the L-K+1 long set of K-mers in a string, seq, through a R sapply call.

sapply(seq(nchar(seq)-k+1), function(i) { substr(seq , i, i+k-1) })

2.2.1 Choice of K

Different values of K (word lengths) were tried out, as it is impossible to know the optimal word
length. An upper limit of K = 8 was chosen, mostly due to memory usage and runtime. Word length,
K, and four possible nucleotides yields 4K possible combinations of K-mers, thus directly influencing
memory usage and runtime.

2.2.2 Pseudo counts

To be able to calculate the binary log-ratio distance in equation 15 on page 15, the row from the
training matrix, X0, can not contain zeroes, which would cause a division by zero, as well as the
logarithm of zero remaining not applicable. To remedy this, a pseudo count, α, can be added to every
value of the count matrix right before calculating the relative K-mer occurrence. Adding a pseudo
count of α = 0.5 makes sense because 0.5 being half of a possible count-based increase of 1. Because
whole plasmid sequences are shorter than chromosomes, a frequency previously being zero will after
the pseudo count increase become greater than a zero from a chromosome.

2.2.3 Canonical K-mers

The main reason for counting canonical K-mers instead of counting all possible K-mers is to reduce
the computing load the pipeline puts on the operating system, and hopefully use less runtime. Given a
read and its reverse complentary sequence from a set of sequenced reads from a chromosome. Ideally,
K-mers are to be counted in such a way that the K-mer frequency is equivalent for the read and its
reverse complementary version, such that they will eventually be classified to the same object class.
One way of doing this is to sum the K-mer count of the read and its reverse complement version. An
alternative to this, would be to reduce any of the two possible sets of K-mers to the canonical set. E.g.
given the sequence CATTC, the set of 2-mer counts becomes what is displayed in figure 3.

Figure 3: The set of 2-mer counts of the sequence CATTC.

AT CA TC TT
1 1 1 1
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Its reverse complementary sequence is GAATG, which has a set of 2-mer counts of what is displayed
in figure 4.

Figure 4: The set of 2-mer counts of the sequence GAATG.

AA AT GA TG
1 1 1 1

Thus the sum of the set of 2-mers for the sequence and its reverse complementary becomes what is
displayed in figure 5.

Figure 5: The sum of the sets of 2-mer counts of the sequences CATTC and GAATG.

AA AT CA GA TC TG TT
1 2 1 1 1 1 1

In comparison, the set of canonical 2-mers for both the sequence and its reverse complementary
sequence becomes what is displayed in figure 6.

Figure 6: The canonical set of 2-mer counts for both of the sequences CATTC and GAATG.

AA AT CA GA
1 1 1 1

As described in section 2.2.1, memory usage and runtime is directly influenced by the choice of K
because it determines the number of K-mers. The canonical set of K-mers has fewer K-mer instances
to be counted, thus reducing overhead when storing the counts in memory. The K-mers on the reverse
complementary string is not necessary to count to achieve equivalence in K-mer counts between a
sequence and its reverse complementary string, thus reducing runtime when counting.

For odd values of K, the number of unique canonical K-mers is exactly 4K/2. For even values of
K, due to some K-mers being palindromes of their reverse complementary sequence, the number of
unique canonical K-mers is greater than 4K/2, e.g. the reverse complementary sequence of the 4-mer
CCGG is also CCGG. These two facts are illustrated in table 1 on page 10, and figure 7 on page 10.

A K-mer being its own palindrome is equivalent on both sides of the DNA backbone, no side being
the canonical version in favour of the other. The count of a palindromic K-mer “not going anywhere”,
i.e. being unchanged from what it was in the complete set, can also be thought of as the palindromic
count already being a sum of K-mer occurences, which thus can be expected to be greater than other
K-mer occurences having a possible reverse complementary counterpart.
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Table 1: How number of words, N, increases as word length, K, increases.

K Ncanonical Nall

1 2 4
2 10 16
3 32 64
4 136 256
5 512 1024
6 2080 4096
7 8192 16384
8 32896 65536

1 2 3 4 5 6 7 8
2

4096
8192

16384

32896

65536

Word length, K

N
um

be
ro

fW
or
ds
,N

all
canonical

Figure 7: How number of all possible words and canonical words increases as word length increases.
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2.2.4 Efficient multi FASTA K-mer counting using fastatuples.c

fastatuples.c7 is a portable, 1403 lines of code long, C program which works on both the authors
Linux version 5.0.2 laptop and his FreeBSD/amd64 12.0-RELEASE r341666 “counting” server.
On Linux at least, the C program’s only dependencies seems to be glibc [14], e.g. string.h.
fastatuples.c is simple to compile anywhere using an arbitrary version of the GNU C compiler by
issuing something like

Figure 8: Compiling fastatuples.c using an arbitrary version of the GNU C compiler.

gcc -Wall -std=c99 -pedantic -O3 -o fastatuples fastatuples.c

fastatuples.c is a very flexible program in that it reads multi FASTA input from standard input,
meaning it can be used in a UNIX pipeline like

Figure 9: Multi FASTQ 8-mer counting using fastatuples.c in a UNIX pipeline.

xz -cd CP012633.1_errFree.R1.fq.xz | \
sed '/^@/!d;s//>/;N' | \
fastatuples -w 8 -s | \
sort | \
uniq -c | less

The -w flag is mandatory, and specifies K-mer length, e.g. -w 8 means 8-mers will be extracted.
The -s flag is optional, and includes the sequence index before every word, e.g. a line 17AGGATAAA
means the 8-mer AGGATAAA was found in sequence number 17 in the input FASTA lines.

7fastatuples.c was written in 2016 by David Mathog <mathog@caltech.edu> of the Biology Division at The
California Institute of Technology, and is made publicly available at http://saf.bio.caltech.edu/pub/software/
molbio/fastatuples.c. Version 1.0.19 was released on 2017-02-03.
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2.3 Classification

2.3.1 Redundancy of coverage

Redundancy of coverage is the expected number of reads covering a given position on a genome, and
was defined by Lander and Waterman back in 1988 [8, page 232] [19] as

c = LN/G (3)

where c is nucleotide coverage, L is read length in base pairs (bp), N is number of reads, and G is
genome length in bp. E.g. when sequencing N number of reads of length L = 300 bp of an E. coli
genome, G, consisting of just one chromosome (no additional plasmids) of length C = 5 Mbp, the
coverage becomes 6 × 10−5N because

c =
300 bp · N

5 Mbp
= 6 × 10−5N (4)

Likewise, for a plasmid of length P = 0.1 Mbp, the coverage becomes 3 × 10−3N because

c =
300 bp · N
0.1 Mbp

= 3 × 10−3N (5)

which means ∂G < 0 ⇐⇒ ∂N < 0, i.e. as genome length G decreases, a lower number of reads N
is needed to obtain the same coverage.

If a plasmid has a PCN greater than 1, this becomes reflected in the number of reads if nucleotide
coverage, genome length, remains constant, i.e.

∂PCN > 0 =⇒ ∂N > 0, ∂G = ∂c = 0, PCN > 1 (6)

Continuing the E. coli example from above, when the genome additionally consists of 10 copies
(PCN = 10) of a plasmid of length P1 = 0.1 Mbp, the PCN does not reflect the total length of the
genome, the length of the genome increases 2 % only by the 0.1 Mbp plasmid length to 5.1 Mbp
because

G = χ + P1 = 5 Mbp + 0.1 Mbp = 5.1 Mbp (7)

thus the coverage decreases 1.7 % by 6 × 106N to 5.9 × 10−5N because c = 300 bp·N
5.1 Mbp = 5.9 × 10−5N.

2.3.2 Decision rule

A decision rule, δ(θ), is defined [20, page 376] as a function of an observed value of a statistic
becoming a point estimate of a parameter, θ, of a statistical distribution, f(x; θ), of the discrete or
continuous type.
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2.3.3 The decision rule of plasmidSPAdes

The decision rule, δc(E), in plasmidSPAdes [18, page 3] for a long edge, E, in the assembly graph
being classified as a chromosomal edge, χ, is

δχ(E) =
Coverage(E)

medianCoverage ∈ (1 ±D) (8)

whereD is the maximum deviation, defaulting to 0.3, and medianCoverage is the maximum coverage
for which the collection of all long contigs of that coverage or greater covers at least half of the total
length of the collection of all long contigs in the SPAdes assembly graph. [18, page 2]

2.3.4 Response and predictors

The term response is used in the modern language of machine learning and pattern recognition
literature to describe what in classic statistical literature is known as a dependent variable [21, page 9].
Likewise, a predictor or feature indicates what was classically known as an independent variable.

2.3.5 Prediction probability

A prediction probability signifies how sure the classifier is on the predicted class (response). E.g. for
a random forest classifier using 100 trees, a prediction probability of 0.68 means 68 trees voted for the
predicted class. A practical example would be to think of a case where one asks random passersby
in a foreign, unfamilliar town for the way to specific locations (the predicted class), and then asks a
second question of how sure the person is that his answer is correct (the prediction probability).

2.3.6 Training set and test set

A training set is a set of example responses and predictors used to fit a classifier to predict the responses
of new unseen objects with the same predictors. [21, page 1 and 2] A test set should ideally be some
known example observations8 independent of the training and validation sets, used at the end of the
data analysis, after a model has been selected, to assess the generalization error. [21, page 222]

2.3.7 Evaluation of classifiers, cross-validation

Cross-validation is a method for estimating prediction error. By splitting scarce9 training data into K
number of roughly equally sized parts, calculating the prediction error for every kth part based on a
model fitted to the other K − 1 parts of the training data, a combined prediction prediction error can
be established [21, page 241 to 243].

8E.g. 25 % of the original example data, the rest 75 % used for training and test set during model selection
9having few observations
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2.4 Selected methods

2.4.1 K-Nearest Neighbours and distances

A Bayes classifier [22, page 52] assigns a test observation with predictor vector x0 to a class j which
maximizes the conditional probability

P(Y = j |X = x0) (9)

e.g. for two classes, chromosomes or plasmids, Y ∈ {chromosomes , plasmids}, class chromosomes
is predicted if P(Y = chromosomes|X = x0) > 0.5, and class plasmids otherwise. The conditional
probability equation 9 can be estimated through a number ofmethods, one of easiest to understand being
the K-nearest neighbour (KNN) classifier. A lower threshold of the Bayes classifier can be set to reduce
the number of false predictions by not classifying any prediction below the threshold, e.g. Krawczyk
et al. [11, page 7] does this to compare their proposed pipeline PlasFlow (kmer frequency based)
to cBar [23] (nucleotide sequence length based), PlasmidFinder [24] (BLAST based), Recycler [25]
(coverage based), and others.

This paragraph explains how equation 9 can be predicted using a non-parametric method such
as the KNN classifier. As per James et al. [22, page 39], the KNN Bayes classifier prediction is a
two-step process, (1) given the neighbour count, K > 0, and training data, X, a “neighbourhood,”
N0, is identified as the K number of points closest to x0; (2) the conditional probability for class
chromosomes becomes the fraction of points in the neighbourhood, N0, whose response equals
chromosomes, otherwise class plasmids is predicted. Written in condensed mathematical notation
this becomes:

P(Y = chromosomes|X = x0) = K−1 ∑
i∈N0 I(yi = chromosomes) (10)

otherwise class plasmids is predicted, where yi is the response of a neighbour in the neighbourhood,
N0, I(yi = chromosomes) is an indicator variable [22, page 37] equaling 1 if yi = chromosomes, and
zero if yi , chromosomes, much like when converting a boolean value to a numeric value in R10 will
return either 0 or 1. What we see in equation 10 is the response of an unkown point of the test set
being predicted based on a majority vote of what the K neighbouring points identify themselves as; the
proportion of votes for each of the classes becoming their conditional probability. The distances from
the unknown point of the test set to all of the points in the training set to determine the K nearest points
belonging to the neighbourhood N0 can be calculated according to a number of different metrics, the
most popular ones being Euclidean, Manhattan, and Chebyshev.

The Minkowski distance between two points X and Y becomes

DMinkowski(X, Y) =
©«

n∑
i=1

��xi − yi

��pª®¬
1/p

(11)

10E.g. as.numeric("chromosomes"=="plasmids") returns 0 (numeric zero)

14



2 METHODS

where p is the power parameter, a constant integer. Given values of p, theMinkowski distance defines a
family of distancemetrics consisting ofManhattan, Euclidean, and Chebyshev; i.e. Manhattan distance
for p = 1, Euclidean for p = 2, and Chebyshev distance when p → ∞. Thus the Manhattan distance
between two points X and Y becomes

DManhattan(X, Y) =
n∑

i=1

��xi − yi

�� (12)

The Euclidean distance between two points X and Y becomes

DEuclidean(X, Y) =

√√ n∑
i=1
(xi − yi)

2 (13)

The Chebyshev distance between two points X and Y becomes

DChebyshev(X, Y) = lim
p→∞

©«
n∑

i=1

��xi − yi

��pª®¬
1/p

=
nmax

i=1
(|xi − yi |)

2 (14)

A fifth distance metric, unrelated to the Minkowski distance, a binary log-ratio distance becomes

DLogRatio(X, Y) =
n∑

i=1

����log2
yi

xi

���� , xi , 0 (15)

xi can never be 0, as division by zero is mathematically undefined, causing the computation to
segmentation fault. This can be resolved using pseudo counts. If the use of the binary log-ratio distance
metric enables a successful classification using the K-nearest neighbour classifier, this indicates that
rare K-mers are more important than frequent occurring K-mers for separating classes, e.g. given
two points of two dimensions, [0.05,0.50] and [0.10,0.40], the distance from 0.05 to 0.10 in the first
dimension becomes greater than from 0.50 to 0.40 in the second dimension with the binary log ratio,
but lesser with the Euclidean distance, because����log2

0.05
0.10

���� > √
(0.05 − 0.10)2 (16)����log2

0.50
0.40

���� < √
(0.50 − 0.40)2 (17)

2.4.2 Random forests

A random forest classifier can be defined as [26, page 6] a collection of tree-structured classifiers
{h(x,Θk), k = 1, . . .} where the {Θk} are independent identically distributed random vectors, and
each tree casts a unit vote for the most popular class at input x.

From training data, a random sample with replacement is drawn with replacement (an element
may appear more than once in the sample), forming the building blocks of every tree.

The randomness in the random forest classifier is due to a subset of m number of variables being
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chosen from p number of possible features for to determine the best variable to split from [21, page
588]. In classification problems with p number of features, the m number of features chosen at each
split is typically √p, but can be as low as 1 [21, page 589].

In the Classification And Regression Tree (CART) [27] decision tree algorithm, within each tree of
the random forest, the variable with the lowest node impurity, provides the best split of a node into two
daughter nodes, given the set of m possible varibles to split from. For classification problems, node
impurity can either bemeasured through the Gini impurity, or cross-entropy/information gain/Shannon
entropy [21, page 309]. At version 0.20.3 of the scikit-learn Python programming language library, its
random forest classifier (sklearn.ensemble.RandomForestClassifier) defaults to using the Gini
impurity to determine the quality of split.

The impurity function, iG(x), based on the Gini index [28] [21, page 309] [29, page 45] is

iG(x) =
J∑

k=1
P(ck |x)[1 − P(ck |x)] (18)

The impurity function, iH(x), based on the cross-entropy/information gain/Shannon entropy [30] [21,
page 309] [29, page 45] is

iH(x) = −
J∑

k=1
P(ck |x) log2[P(ck |x)], P(ck |x) , 0 (19)

In both equation 18 and 19, P(ck |x) is the probability of an item with label ck being chosen among
J number of possible labels (J = 2 in this case, ck ∈ {chromosomes, plasmids}).

2.5 Analysis

2.5.1 The 2x2 confusion matrix—the end product of the binary classification test

For the binary classification of this text, let the plasmid class be the positive class (P) among the
two classes plasmids and chromosomes, chromosomes thus being the negative class (N). A vector
of correct responses for a set data points of to be classified is available. Correct response in hand,
the true positives (TP) is the number of plasmids correctly classified as a plasmid. In a traditional
binary classification sense, where the positive class is actively sought after, e.g. being a diagnosis of
some sort, the TP is also known as the number of hits (being achieved by a given test). The false
positives (FP) is the number of plasmids that was falsely classified as a chromosomes. Also known as
the number of false alarms, or numbers of Type I errors. The true negatives (TN) is the number of
chromosomes correctly classified as a chromosome. Also known as the number of correct rejections.
The false positives (FN) is the number of chromosomes falsely classified as a plasmid. Also known
as the number of misses, or number of Type II errors. These four numbers11 are usually displayed in
a 2 × 2 confusion matrix, like the one in table 2.

11TP, FP, TN, and FN
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Table 2: 2 × 2 confusion matrix for classification of chromosomes and plasmids

predicted
true plasmids chromsomes

plasmids TP FP
chromosomes FN TN

2.5.2 Accuracy, sensitivity, specificity, and precision—metrics for comparison of 2x2 confusion
matrices

To analyze a 2 × 2 confusion matrix, the result of binary classification problem, accuracy, sensitivity,
and specificity are common measures. Precision being a fourth.

Accuracy (ACC), equation 24, is the proportion of correctly classified data points among all
possible data points. In this case: the proportion of correctly classified plasmids and chromosomes
among all sequences in the test set. In a medical setting: the proportion of sick and healthy patients
correctly diagnosed with a specific condition.

Sensitivity, equation 25, also known as recall, hit rate, as well as the true positive rate (TPR), is
the proportion of true positives among all positives. In this case: the proportion of correctly classified
plasmids among all possible plasmids. In a medical setting: the proportion of sick patients correctly
classified as having a specific condition.

Specificity, equation 26, also known as selectivity, and the true negative rate (TNR), is the
proportion of true negatives among all negatives. In this case: the proportion of correctly classified
chromosomes among all possible chromosomes to be classified. In a medical setting: the proportion
of healthy people correctly classified as not having a specific condition.

Precision, equation 27, also known as the positive predictive value (PPV), is the proportion of true
positives among positives. In this case: the proportion of actual plasmids among data points classified
as plasmids. In a medical setting: the proportion of patients actually having a condition among sick
and healthy patients diagnosed with the condition. Combinations of low/high bias/variance in the case
of a shooting disc is illustrated in figure 10.

TP = true positives = hit (20)

TN = true negatives = correct rejection (21)

FP = false positives = false alarm = Type I error (22)

FN = false negatives = miss = Type II error (23)

Acc = Accuracy =
TP + TN

TP + TN + FP + FN
(24)

TPR = sensitivity = recall = hit rate =
TP

TP + FN
(25)

TNR = specificity = selectivity =
TN

TN + FP
(26)

PPV = precision =
TP

TP + FP
(27)
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Figure 10: Shooting disc scenarios showing the four combinations of low/high variance/bias [31]. (a) shows
low variance and low bias, (b) shows high variance and low bias, (c) shows low variance and high bias, and (d)
shows high variance and high bias. It can be said that (c) is a case of underfitting, while (b) as well as (d) might
be called cases of overfitting.

2.5.3 Boxplots

A boxplot is a way to visualise, and thus more easily compare to another sample, the median, quartiles,
and outliers of a sample of data points. The interquartile range (IQR), is the difference between the
75th and 25th percentiles, representing 50 % of the data points, illustrated in the plot by a box. Inside
the box, the sample’s median value is marked by a broad line. Outside the box, a set of whiskers
might be observed. The whiskers might represent different things, e.g. the 0th and 100th percentile.
In the R function graphics::boxplot, the whiskers marks 1.5IQR out from each side of the box.
The data points in this range outside the box, is also known as the lower and upper suspected outliers
of the sample. The short perpendicular line at the end of each whisker, is also known as the lower
and upper fence. The data points outside the lower and upper fence are denoted as outliers, usually
marked as small dots or circles, like in a scatterplot. The underlying sample of data points of a boxplot
might follow a host of different distributions, or none at all. Such distributions might be the Normal,
Laplace, or Cauchy. The IQR may already be further defined in such a case. E.g. when a sample has
a Normal distribution, the IQR becomes equivalent to 1.35 times the standard deviation, 1.35σ, due to
equation 28. [32] The median becomes equivalent to the mean. In the type of boxplot defined by the
R function graphics::boxplot, 99.3 % of the data points are expected to reside between the lower
and upper fence (including the box) due to equation 29, and 0.698 % of the data points are expected
to be outliers because of equation 30.

2Φ−1(0.75)σ ≈ 1.35σ (28)

2Φ
(
Φ
−1(0.75) · (2 · 1.5 + 1)

)
− 1 = 0.99302 = a (29)

1 − a = 0.00698 (30)
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3 Results

3.1 Length distribution histograms

Figure 11 shows histograms of how the sequence lengths, measured in base pairs (bp), are distributed
across the four sequence types analyzed in the text: whole plasmid sequences (11a), whole chromo-
somal sequences (11b), in silico simulated Illumina (ART) sequences (11c), and in silico simulated
Nanopore (DeepSimulator) sequences (11d).
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Figure 11: Length distribution histograms of the four main types of sequences used in the classification pipeline.
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3.2 Expected K-mer occurrences

Figure 12 and 13 shows the first and last five data points in three distributions of decreasing occurrence
for canonical 4- and 5-mers, respectively, i.e. the (a) subplots show the occurrence of plasmid K-mers,
the (b) subplots show the occurrence of chromosomal K-mers, and the (c) subplots show the difference
in occurrence of K-mers from chromosomes to plasmids.

AA
AA

CA
GC

CT
GA

GA
AA

CT
GC

TA
GA

GT
AC

TC
GA

CC
TA

CT
AG

4 · 10−4

3.9 · 10−3

7.4 · 10−3

1.1 · 10−2

1.4 · 10−2

1.8 · 10−2

O
cc
ur
re
nc
e

(a) plasmids class

CA
GC

AA
AA

CG
CC

CC
AG

GC
CA

GT
AC

TA
GA

TA
TA

CC
TA

CT
AG

2 · 10−4

3.4 · 10−3

6.5 · 10−3

9.7 · 10−3

1.3 · 10−2

1.6 · 10−2

O
cc
ur
re
nc
e

(b) chromosomes class

CG
CC

GC
GA

AC
GC

AT
CG

CC
GC

CA
GA

CT
CC

AA
AA

CT
GA

AC
AG

−2.7 · 10−3

−1.2 · 10−3

2.7 · 10−4

1.7 · 10−3

3.2 · 10−3

4.6 · 10−3

O
cc
ur
re
nc
e

(c) Difference from chromosomes
to plasmids class

Figure 12: First and last five data points in the distribution of occurrence of canonical 4-mers in the training
data.
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Figure 13: First and last five data points in the distribution of occurrence of canonical 5-mers in the training
data.

3.3 ANOVA on the initial genome-wise cross-validated training data classifica-
tion using the classification accuracy as the response

Before we try to classify reads, it is important to first investigate if it is at all possible to discriminate
chromosomes from plasmids, based solely on K-mer statistics. Thus, we start out by classifying full
genome sequences in a way similar to that we use for the reads later.

A genome-wide cross-validation was performed, i.e. each genome (chromosome + plasmids) were
used as test set, and all other as training set. For each test set a range of methods were tested. In
table 3 and figure 14 on page 21 is displayed the classification accuracy for the various methods, after
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cross-validation, presented as the coefficient summary of a ANOVA analysis. Linear model formula
of the intercept in table 3 on page 21 is displayed in equation 31.

Accuracy ∼ K(4) +Method(9NN.chebyshev) + Canonical(No) (31)

Table 3: Anova coefficient summary for the fully assembled (FA) genome-wise cross-validated training data
classification using accuracy as the response, sorted in decreasing order in terms of the estimated coefficient
column, Estimate.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1 2.1 · 10−3 476.25 0
K5 −1.87 · 10−4 1.72 · 10−3 −0.11 0.91
K3 −1.87 · 10−4 1.72 · 10−3 −0.11 0.91
K6 −4.67 · 10−4 1.72 · 10−3 −0.27 0.79
Method3NN.euclidean −6.72 · 10−4 2.43 · 10−3 −0.28 0.78
Method9NN.euclidean −7.47 · 10−4 2.43 · 10−3 −0.31 0.76
Method3NN.chebyshev −8.97 · 10−4 2.43 · 10−3 −0.37 0.71
Method3NN.manhattan −8.97 · 10−4 2.43 · 10−3 −0.37 0.71
Method3NN.minkowski −8.97 · 10−4 2.43 · 10−3 −0.37 0.71
K2 −9.9 · 10−4 1.72 · 10−3 −0.58 0.56
Method3NN.BinaryLogRatio −1.12 · 10−3 2.43 · 10−3 −0.46 0.64
Method9NN.minkowski −1.31 · 10−3 2.43 · 10−3 −0.54 0.59
Method9NN.manhattan −1.31 · 10−3 2.43 · 10−3 −0.54 0.59
K7 −1.42 · 10−3 1.72 · 10−3 −0.83 0.41
Method9NN.BinaryLogRatio −1.79 · 10−3 2.43 · 10−3 −0.74 0.46
Method1NN.euclidean −3.06 · 10−3 2.43 · 10−3 −1.26 0.21
Method1NN.chebyshev −3.14 · 10−3 2.43 · 10−3 −1.29 0.2
CanonicalYes −3.2 · 10−3 8.58 · 10−4 −3.73 2.42 · 10−4

Method1NN.minkowski −3.29 · 10−3 2.43 · 10−3 −1.35 0.18
Method1NN.manhattan −3.29 · 10−3 2.43 · 10−3 −1.35 0.18
Method1NN.BinaryLogRatio −3.29 · 10−3 2.43 · 10−3 −1.35 0.18
MethodRandomForest −3.55 · 10−3 2.43 · 10−3 −1.46 0.14
K8 −4.97 · 10−3 1.72 · 10−3 −2.9 4.15 · 10−3

K1 −8.11 · 10−2 1.72 · 10−3 −47.28 4.41 · 10−121
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Figure 14: Classification accuracy for the various methods, after cross validation. The coefficient estimates of
table 3 are plotted against the row names, with three levels of p-value as meta, as shown in the legend.
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3.4 The in silico simulated Illumina read sequence data classification results

3.4.1 ANOVA on the Illumina test data and classifier parameter combinations using the binary
classification class label accuracy as the response

The short paired-end reads from Illumina sequencing is what we meet in most practical cases. We
wanted to test if it is possible to discriminate read-pairs coming from a plasmid from those coming
from a chromosome.

Again, we used a genome-wise cross-validation, where each test set consisted of 50 % chromo-
some based read-pairs, and 50 % plasmid based read-pairs, a maximum of 500 read-pairs from the
chromosome, and 500 read-pairs from the plasmid for a genome with one sufficiently long plasmid.
The training set was the full length sequences, as before.

In table 4 and figure 15 on page 23, is displayed the classification accuracy for the various
methods, we show how accuracies vary by the various method combinations in the ANOVA analysis
of the accuracy of the binary classification on the Illumina sequences. Linear model formula of the
intercept in table 4 on page 23 is displayed in equation 32.

Accuracy ∼ K(5) +Method(9NN.minkowski) + Canonical(Yes) + Err(No) (32)

22



3 RESULTS

Table 4: Anova coefficient summary for simulated Illumina reads, sorted in decreasing order in terms of the
estimated coefficient column, Estimate.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.61 7.59 · 10−3 80.18 3.66 · 10−138

Method9NN.manhattan 2.94 · 10−17 9.6 · 10−3 3.07 · 10−15 1
ErrYes −6.11 · 10−4 3.39 · 10−3 −0.18 0.86
Method3NN.minkowski −7.59 · 10−3 9.6 · 10−3 −0.79 0.43
Method3NN.manhattan −7.59 · 10−3 9.6 · 10−3 −0.79 0.43
Method1NN.manhattan −8.99 · 10−3 9.6 · 10−3 −0.94 0.35
Method1NN.minkowski −8.99 · 10−3 9.6 · 10−3 −0.94 0.35
CanonicalNo −9.71 · 10−3 3.39 · 10−3 −2.86 4.75 · 10−3

Method9NN.euclidean −2.43 · 10−2 9.6 · 10−3 −2.53 1.21 · 10−2

Method1NN.euclidean −2.77 · 10−2 9.6 · 10−3 −2.88 4.45 · 10−3

Method3NN.euclidean −2.95 · 10−2 9.6 · 10−3 −3.07 2.5 · 10−3

Method9NN.BinaryLogRatio −2.97 · 10−2 9.6 · 10−3 −3.09 2.3 · 10−3

K2 −3.15 · 10−2 4.16 · 10−3 −7.57 2.13 · 10−12

Method3NN.BinaryLogRatio −3.58 · 10−2 9.6 · 10−3 −3.73 2.59 · 10−4

Method1NN.BinaryLogRatio −3.63 · 10−2 9.6 · 10−3 −3.78 2.19 · 10−4

Method1NN.chebyshev −3.92 · 10−2 9.6 · 10−3 −4.09 6.7 · 10−5

Method9NN.chebyshev −4.01 · 10−2 9.6 · 10−3 −4.18 4.67 · 10−5

Method3NN.chebyshev −4.29 · 10−2 9.6 · 10−3 −4.47 1.44 · 10−5

MethodRandomForest −5.13 · 10−2 9.6 · 10−3 −5.34 2.87 · 10−7

K8 −7.9 · 10−2 4.16 · 10−3 −19.01 3.88 · 10−44
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Figure 15: How accuracies vary by the various method combinations in classifying the in silico simulated
Illumina reads. The coefficient estimates of table 4 are plotted against the row names, with three levels of
p-value as meta, as shown in the legend.
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3.4.2 Stacked data forming the basis of the intercept combination in the ANOVA Illumina
accuracy analysis

Since the accuracy is now somewhat decreased from its earlier levels, we want to understand more
why we miss so many chromosomes or plasmids. In table 5 we have listed, for each of the methods
in table 4 with p-value greater than 0.05, the True Positive, False Positives, True Negatives, and False
Negatives, along with precision, sensitivity class, but the opposite choice is equally relevant.

Table 5: Classification summary given the intercept as well as the two next lines in terms of coefficient estimate
as the table stands in the Illumina accuracy ANOVA analysis in table 4 on page 23. K indicates K-mer length.
Method indicates classification method. Err indicates presence/absence of sequencing error. C indicates if the
K-mers are canonical or not. TP is the number of true positives. FP is the number of false positives. TN is the
number of true negatives. FN is the number of false negatives. Acc is the classification accuracy. TPR is the
sensitivity. TNR is the specificity. PPV is the precision.

K Method Err C TP FP TN FN Acc TPR TNR PPV
5 1NN.minkowski No Yes 206611 151253 59351 3993 0.63 0.98 0.28 0.58
5 1NN.manhattan No Yes 206611 151253 59351 3993 0.63 0.98 0.28 0.58
5 3NN.minkowski No Yes 208045 148703 61901 2559 0.64 0.99 0.29 0.58
5 3NN.manhattan No Yes 208045 148703 61901 2559 0.64 0.99 0.29 0.58
5 9NN.minkowski No Yes 207538 142256 68348 3066 0.65 0.99 0.32 0.59
5 9NN.manhattan No Yes 207538 142256 68348 3066 0.65 0.99 0.32 0.59
5 1NN.minkowski Yes Yes 210991 155346 59521 3876 0.63 0.98 0.28 0.58
5 1NN.manhattan Yes Yes 210991 155346 59521 3876 0.63 0.98 0.28 0.58
5 3NN.minkowski Yes Yes 212302 152550 62317 2565 0.64 0.99 0.29 0.58
5 3NN.manhattan Yes Yes 212302 152550 62317 2565 0.64 0.99 0.29 0.58
5 9NN.minkowski Yes Yes 211775 145749 69118 3092 0.65 0.99 0.32 0.59
5 9NN.manhattan Yes Yes 211775 145749 69118 3092 0.65 0.99 0.32 0.59

3.5 The in silico simulated Nanopore read sequence data classification results

We repeated the cross-validation exercise again for the Oxford Nanopore sequences, again using the
full genome sequences for training and a set of 500 reads from both chromosomes and plasmids as
test set for each genome.

3.5.1 ANOVA on the Nanopore test data and classifier parameter combinations using the
binary classification class label accuracy as the response

In table 6 and figure 16 on page 25, is displayed the classification accuracy for the various methods, we
show how accuracies vary by the various method combinations in the ANOVA analysis of the accuracy
of the binary classification on the Nanopore sequences. Linear model formula of the intercept in table
6 on page 25 is displayed in equation 33.

Accuracy ∼ K(5) +Method(3NN.euclidean) + Canonical(Yes) (33)
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Table 6: Anova coefficient summary for simulated Nanopore reads, sorted in decreasing order in terms of the
estimated coefficient column, Estimate.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.87 2.21 · 10−2 39.46 7.68 · 10−53

Method9NN.euclidean −3.95 · 10−3 2.86 · 10−2 −0.14 0.89
Method1NN.euclidean −9.09 · 10−3 2.86 · 10−2 −0.32 0.75
Method3NN.minkowski −1.2 · 10−2 2.86 · 10−2 −0.42 0.68
Method3NN.manhattan −1.2 · 10−2 2.86 · 10−2 −0.42 0.68
Method9NN.manhattan −1.69 · 10−2 2.86 · 10−2 −0.59 0.56
Method9NN.minkowski −1.69 · 10−2 2.86 · 10−2 −0.59 0.56
Method3NN.BinaryLogRatio −1.75 · 10−2 2.86 · 10−2 −0.61 0.54
CanonicalNo −1.91 · 10−2 1.01 · 10−2 −1.88 6.33 · 10−2

Method1NN.manhattan −1.95 · 10−2 2.86 · 10−2 −0.68 0.5
Method1NN.minkowski −1.95 · 10−2 2.86 · 10−2 −0.68 0.5
Method9NN.BinaryLogRatio −2.32 · 10−2 2.86 · 10−2 −0.81 0.42
Method1NN.BinaryLogRatio −2.42 · 10−2 2.86 · 10−2 −0.84 0.4
Method3NN.chebyshev −7.14 · 10−2 2.86 · 10−2 −2.49 1.48 · 10−2

Method1NN.chebyshev −7.44 · 10−2 2.86 · 10−2 −2.6 1.12 · 10−2

K2 −7.67 · 10−2 1.24 · 10−2 −6.18 2.82 · 10−8

Method9NN.chebyshev −7.73 · 10−2 2.86 · 10−2 −2.7 8.54 · 10−3

MethodRandomForest −9.19 · 10−2 2.86 · 10−2 −3.21 1.95 · 10−3

K8 −0.31 1.24 · 10−2 −24.97 1.15 · 10−38
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Figure 16: How accuracies vary by the various method combinations in classifying the in silico simulated
Nanopore reads. The coefficient estimates of table 6 are plotted against the row names, with three levels of
p-value as meta, as shown in the legend.
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3.5.2 Stacked data forming the basis of the intercept combination in the ANOVA Nanopore
accuracy analysis

Table 7 lists the data forming the basis for the combinations in table 6 with a p-value greater than 0.05.

Table 7: Classification summary given the intercept as well as the two next lines in terms of coefficient estimate
as the table stands in the Nanopore accuracy ANOVA analysis in table 6 on page 25. K indicates K-mer length.
Method indicates classification method. C indicates if the K-mers are canonical or not. TP is the number of
true positives. FP is the number of false positives. TN is the number of true negatives. FN is the number of
false negatives. Acc is the classification accuracy. TPR is the sensitivity. TNR is the specificity. PPV is the
precision.

K Method C TP FP TN FN Acc TPR TNR PPV
5 1NN.minkowski Yes 113817 25790 91513 3486 0.88 0.97 0.78 0.82
5 1NN.euclidean Yes 114251 28251 89052 3052 0.87 0.97 0.76 0.80
5 1NN.manhattan Yes 113817 25790 91513 3486 0.88 0.97 0.78 0.82
5 3NN.minkowski Yes 114109 23219 94084 3194 0.89 0.97 0.80 0.83
5 3NN.euclidean Yes 114572 25079 92224 2731 0.88 0.98 0.79 0.82
5 3NN.manhattan Yes 114109 23219 94084 3194 0.89 0.97 0.80 0.83
5 9NN.minkowski Yes 113384 22195 95108 3919 0.89 0.97 0.81 0.84
5 9NN.euclidean Yes 114063 24103 93200 3240 0.88 0.97 0.79 0.83
5 9NN.manhattan Yes 113384 22195 95108 3919 0.89 0.97 0.81 0.84
5 1NN.BinaryLogRatio Yes 113757 24507 92796 3546 0.88 0.97 0.79 0.82
5 3NN.BinaryLogRatio Yes 113789 22654 94649 3514 0.89 0.97 0.81 0.83
5 9NN.BinaryLogRatio Yes 113058 21593 95710 4245 0.89 0.96 0.82 0.84
5 1NN.minkowski No 113005 25132 92171 4298 0.87 0.96 0.79 0.82
5 1NN.euclidean No 112978 27789 89514 4325 0.86 0.96 0.76 0.80
5 1NN.manhattan No 113005 25132 92171 4298 0.87 0.96 0.79 0.82
5 3NN.minkowski No 113751 24224 93079 3552 0.88 0.97 0.79 0.82
5 3NN.euclidean No 114088 26771 90532 3215 0.87 0.97 0.77 0.81
5 3NN.manhattan No 113751 24224 93079 3552 0.88 0.97 0.79 0.82
5 9NN.minkowski No 113169 23190 94113 4134 0.88 0.96 0.80 0.83
5 9NN.euclidean No 113603 25343 91960 3700 0.88 0.97 0.78 0.82
5 9NN.manhattan No 113169 23190 94113 4134 0.88 0.96 0.80 0.83
5 1NN.BinaryLogRatio No 113677 26868 90435 3626 0.87 0.97 0.77 0.81
5 3NN.BinaryLogRatio No 114100 25602 91701 3203 0.88 0.97 0.78 0.82
5 9NN.BinaryLogRatio No 113593 24420 92883 3710 0.88 0.97 0.79 0.82

3.6 Principal component analysis on the K-mer occurrences of the training
data of the parameters partly forming the basis of the intercepts in all
three ANOVA analyses

The unique combinations of K (K-mer length) and C (canonical/non-canonical) from table 5 and 7
on page 24 and 26 are simply canonical and non-canonical 5-mers. Omitting the non-canonical bit,
letting K have a standard deviation of 1, yields canonical 4-, 5-, and 6-mers. Principal component
analysis (PCA), using the R function stats::prcomp, were performed on the training data for these
three K-mer combinations. The two classes within the first two principal components were plotted in
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light grey lower case letter p’s (plasmid class) and black uppercase K’s (chromosome class) in figure
17, 18, and 19 on page 27 to 28. Additionally, in figure 18, the classes of the Illumina (ART, figure
18b)12 and Nanopore (DS, figure 18c) test data, were plotted in cyan (Illumina plasmid class), red
(Illumina chromosome class), orange (Nanopore plasmid class), and blue (Nanopore chromosome
class). In both the Illumina and Nanopore case, the dimensions of each data point are the sample
mean drawn from the same dimension in the underlying 500 test data points. For the Illumina case,
this causes the number of K-mers to not always to be 2(150 bp − 5 + 1) = 292, cf. equation 2.

Figure 17: PCAplot of the plasmid and chromosome class for the first two components of a principal component
analysis of the canonical canonical 4-mer occurrence training dataset. The data points for the chromosomal and
plasmid classes are marked with black, uppercase K’s, and light grey, lowercase p’s, respectively.

(a) Training (b) Training & Illumina (c) Training & Nanopore

Figure 18: PCAplot of the plasmid and chromosome class for the first two components of a principal component
analysis of the canonical 5-mer occurrence training, Illumina, and Nanopore datasets. The data points for
the chromosomal and plasmid classes are marked with black, uppercase K’s, and light grey, lowercase p’s,
respectively. Additionally, marked in red, cyan, blue, and orange letters in the sameway, respectively, are plasmid
and chromosomal 5-mer occurrence data points of the Illumina (ART) and Nanopore (DS, DeepSimulator) test
data, summarized irrespectively of the boolean sequencing error level (error-free and non-error-free profiles are
summed) so as to be comparable to the training data.

12summarized irrespective of the boolean sequencing error level: error-free and non-error-free occurrences are summed,
a new occurrence profile are calculated from there
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Figure 19: PCAplot of the plasmid and chromosome class for the first two components of a principal component
analysis of the canonical canonical 6-mer occurrence training dataset. The data points for the chromosomal and
plasmid classes are marked with black, uppercase K’s, and light grey, lowercase p’s, respectively.

3.7 Prediction probability boxplot

Figure 20 on page 29 presents boxplots of the prediction probability for the positive class (P), the
plasmid class, of the data forming the basis for the intercept in the ANOVA analyses with accuracy as
the response in table 3 (FA), 4 (ART), and 6 (DS) respectively on pages 21, 23, and 25. The prediction
probabililty of the positive class is an output from a fitted classifier, as described in section 2.3.5 on page
13, and can be interpreted as the “probability of plasmid” for the intercepts, i.e. for the fully assembled
case (FA), equation 31 on page 21 signifies K = 4, Method = 9NN.chebyshev, and Canonical = No;
for the Illumina case (ART), equation 32 on page 22 signifies K = 5, Method = 9NN.minkowski,
Canonical = Yes, and Err = No; for the Nanopore case (DS), equation 33 on page 24 signifies K = 5,
Method = 3NN.euclidean, and Canonical = Yes; table 8 presents metrics relevant to the boxplot in
figure 20, on a per-box-basis, such as standard deviation and IQR.
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Figure 20: Prediction probability boxplot for the terms in the confusion matrix of the accuracy intercepts in
the ANOVA analyses of table 3, 4, and 6 respectively on pages 21, 23, and 25. The x-axis of the box plot
shows the combination of the four binary classification confusion matrix terms, true positive (TP), false positive
(FP), true negative (TN), and false negative (FN), and the three classes of sequence length classified, fully
assembled (FA), simulated Illumina reads (ART), and simulated Nanopore reads (DS). The y-axis of the box
plot shows the prediction probability, predict_proba, of the positive class (P), the plasmid class, and since
only two classes were classified, the prediction probability of the negative class (N, the chromosomes class) is
predict_proba(N) = 1 − predict_proba(P).

Table 8: Prediction probability (for the positive class, P) summary for the accuracy intercept in table 3, 4,
and 6 respectively on pages 21, 23, and 25. Column name descriptions: Task indicates either FA (fully
assembled sequences), ART (art_Illumina based sequences), or DS (DeepSimulator based sequences). Label
indicated either TP (true positive), FP (false positive), TN (true negative), or FN (false negative). x indicates
the sample mean. s indicates the sample deviation. n indicates number of observations. Columns Qϕ where
ϕ[%] ∈ {0, 25, 50, 75, 100} indicates percentiles. IQR indicates the interquartile range, Q75 % − Q25 %. LS
indicates lower suspected outliers, Q25 % − 1.5 · IQR. US indicates lower suspected outliers, Q75 % + 1.5 · IQR.
LO indicates lower outliers, Q25 % − 3 · IQR. UO indicates upper outliers, Q75 % + 3 · IQR.

Task Label x s n Q0 % Q25 % Q50 % Q75 % Q100 % IQR LS US LO UO
FA TP 1 0.02 1218 0.56 1 1 1 1 0 1 1 1 1
FA FP 1 0 2 1 1 1 1 1 0 1 1 1 1
FA TN 0 0.02 452 0 0 0 0 0.33 0 0 0 0 0
FA FN 0 N/A 1 0 0 0 0 0 0 0 0 0 0
ART TP 0.99 0.04 23984 0.56 1 1 1 1 0 1 1 1 1
ART FP 0.95 0.11 16326 0.56 1 1 1 1 0 1 1 1 1
ART TN 0.11 0.14 8054 0 0 0 0.22 0.44 0.22 N/A 0.56 N/A 0.89
ART FN 0.16 0.16 396 0 0 0.11 0.22 0.44 0.22 N/A 0.56 N/A 0.89
DS TP 0.99 0.06 24319 0.67 1 1 1 1 0 1 1 1 1
DS FP 0.95 0.12 5067 0.67 1 1 1 1 0 1 1 1 1
DS TN 0.03 0.09 19870 0 0 0 0 0.33 0 0 0 0 0
DS FN 0.11 0.16 618 0 0 0 0.33 0.33 0.33 N/A 0.83 N/A N/A
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4 Discussion

4.1 Length distribution histograms

The subfigures of figure 11 on page 19 indicates that fully assembled plasmids are roughly (81 ± 59) kb
long, fully assembled chromosomes being (5.0 ± 0.3)Mb long, in silico simulated IlluminaHiseq 2500
reads being 150 bp long, and in silico simulatedOxfordNanopore reads being (5.8 ± 3.7) kb long. This
means that the fully assembled chromosomes are 60X, 33531X, and 861X greater in length compared
to the fully assembled plasmids, ART reads, and Nanopore reads respectively. The fully assembled
plasmids are 2 % shorter than the chromosomes, and 540X and 12X greater in length compared to the
ART and Nanopore reads respectively. The Nanopore sequences are 37X greater in length compared
to the Illumina sequences.

Considering the four sequence lengths presented in figure 11 on page 19, and the fact that there exists
1024 unique 5-mers (table 1), equation 2 on page 7 will then yield 4900, 79, 0.29, 5.6 expected 5-mers
per unique 5-mer for the fully assembled chromosomal sequences, fully assembled plasmid sequences,
simulated Illumina reads (paired-end), and simulated Nanopore reads case respectively. E.g. for the
plasmid case, expected sequence length established earlier is 81 kb, which yields 81 × 103 − 5 + 1 ≈
81 × 103 5-mers. Every unique 5-mer is thus expected to be found 81 × 103/80994 = 79 times along
any one of the fully assembled plasmid sequences.

Later in the text, the implications thus far drawn from section 3.1, to the result sections 3.4 and 3.5
will be further discussed. It can be said that when comparing a longer sequence to a shorter one, the
deeper K-mer profile established from the longer sequence make sequence differences more evident
compared to a profile of lesser depth derived from a shorter sequence. A 37X increase in sequence
length13 leads to a 42 % increase in accuracy14.

4.2 Expected K-mer occurrences

The difference in occurrence subplots, figure 12c and 13c on page 20, shows that the plasmid inducing
K-mers has lower %GC content compared to their chromosomal counterparts. E.g. the plasmid
inducing 4-mer AAAA has 0 %GC, while the chromosomal inducing 5-mer CGCGC has 100 %GC.
Thus, it might seem GC-content becomes the most important property for separating plasmids from
chromosomes. However, in figure 12c and 13c we see that the 5-mers with the largest difference
in occurrence (the chromosome associated 4- and 5-mers) between chromosome and plasmids also
include some with a mix of AT and GC, e.g. ATCGC. Thus, a pure GC content classifier will probably
work to some degree, but will not utilize all discriminative information in K-mers. That said, K-mer
occurrence, e.g. GC-content, remains independent of classification methods for predicting plasmid
and chromosomal sequences.

13from 150 b to 5.8 kb
14from 61 % to 87 %
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4.3 ANOVA on the initial genome-wise cross-validated training data classifi-
cation (the fully assembled sequences (FA) case) using the classification
accuracy as the response

In the previous section, only K-mer occurrences in the training data were considered. This indicates
there are some differences in composition between chromosomes and plasmids, but in order to see
how well the sequences can be classified, some classifications methods based on K-mer data needs to
be implemented. K-mer occurrences were used as predictors in a range of machine learning methods
to see if they could predict the correct class15 for a number of test-set cases. For all selected methods,
all combinations of K-values16 and canonical17 were tried, see equation 31 and table 3 on page 21.

The results of the ANOVA analysis of the accuracies of the binary classification of the fully
assembled plasmid and chromosome sequences in table 3 and figure 14 on page 21, show extremely
good accuracy, very close to 100 % for almost all methods, no one method dropping substantially
below the others—even RandomForest and the KNN methods with K = 1. The plot along with table
3 shows how both the Canonical factor, as well as K-mer lengths 8 and 1, can be rejected, due to
p-values less than 0.05. The best method combination (K-mer length, classifier, canonical) is listed in
equation 31, but as we can see from figure 14, virtually all methods perform extremely well for these
data.

This result illustrates that the use of K-mer statistics extracts the information required to discrimi-
nate plasmids from chromosomes in E.coli. It is, however, a “best case scenario,” in the sense that the
data is full length genome sequences, generating a huge number of K-mers, and with no sequencing
errors. But, at least this tells us that K-mer methods have the potential we need.

4.4 The in silico simulated Illumina read sequence data classification results

4.4.1 ANOVA on the Illumina test data and classifier parameter combinations using the binary
classification class label accuracy as the response

In table 4 and figure 15 on page 23, we show how accuracies vary by the various method combinations.
There are two main differences from the previous section: (1) accuracies are now much lower, and (2)
there are larger differences between the method combinations. The best accuracy is just over 60 %.
Since we classify the exact same number of chromosome and plasmid read-pairs each time, a pure
guessing would result in around 50 % accuracy. Thus, none of the method combinations are able to
extract very much information from these short reads.

In equation 32 on page 22 is listed the bestmethod combination, K = 5, Method = 9NN.minkowski,
Canonical = Yes, and Err = No, and in table 4 is the result of an ANOVA, indicating which other
method combinations are performing equally well based on their cross-validated accuracy. The best
accuracy combination in equation 32 was used as a reference combination (Intercept), and all other

15chromosome or plasmid, plasmid being the positive class
16K-mer lengths, from 1 to 8
17canonical or non-canonical
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combinations are tested against this, the results displayed in table 4. The six first combinations do not
produce significantly poorer accuracy than the best. These include variations on the KNN algorithm
with one, three, and nine neighbours, either the Manhattan or the Minkowski distance metric, in
addition to toggling the sequence simulation error profile to the On state (Err = Yes).

4.4.2 Stacked data forming the basis of the intercept combination in the ANOVA Illumina
accuracy analysis

In this analysis we used equal proportions (1:1) of plasmid (positive class) and chromosome reads
as test sets during cross validation. This causes the number of True Positives and True Negatives to
remain comparable. From table 5, we observe that the number of TP is much greater than TN, and the
results are similar for all models listed. Thus, all models have the same tendency to classify reads as
plasmids, also when they are from chromosomes, i.e. the False Positive case.

4.5 The in silico simulated Nanopore read sequence data classification results

4.5.1 ANOVA on the Nanopore test data and classifier parameter combinations using the
binary classification class label accuracy as the response

In table 6 and figure 16 on page 25, we show how accuracies vary by the various method combinations.
There are two main differences from the previous two sections: (1) accuracies are on an in-between
level from the previous two sections, much higher than the Illumina case at least, (2) differences
between the method combinations have become more evened out, almost like the fully assembled
sequence case (first section).

The best accuracy is almost 90 %. Like in the previous section, we classify the exact same number
of chromosome and plasmid read-pairs each time, thus a pure guessing would result in around 50 %
accuracy. The method combinations seems to be able to extract a lot more information from these
longer reads, and also seem to be equally well-suited for the task.

In equation 33 on page 24 is listed the best method combination, K = 5, Method = 3NN.euclidean,
and Canonical = Yes, and in table 6 is the result of an ANOVA, indicating which other method
combinations are performing equally well based on their cross-validated accuracy. The best accuracy
combination in equation 33was used as a reference combination (Intercept), and all other combinations
are tested against this, the results displayed in table 6. The six first combinations do not produce
significantly poorer accuracy than the best. These include some, but not all of, the variations of the
KNN algorithm using one, three, and nine neighbours and the Euclidean (equation 13 on page 15),
Minkowski (equation 11 on page 14), Manhattan (equation 12 on page 15), or the binary log-ratio
(equation 15 on page 15) distance metric. Using canonical K-mers (Canonical = No) is also a valid
combinational choice, with the added benefit of saving computational runtime.
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4.5.2 Stacked data forming the basis of the intercept combination in the ANOVA Nanopore
accuracy analysis

Overall, the binary classification accuracy was much greater in the Nanopore case (equation 6 on
page 25) compared to that of the Illumina case (table 4 on page 23). This is due to the number
of falsely classified plasmids (FP) decreasing from the Illumina case (table 5) to the Nanopore case
table 7, leading to an increase in both precision and selectivity. The binary log ratio distance metric
(equation 15 on page 15) for nine neighbours yields the lowest number of false positives, thus being
the combination leading to the highest selectivity.

4.6 Principal component analysis on the K-mer occurrences of the training
data of the parameters partly forming the basis of the intercepts in all
three ANOVA analyses

Figure 17, 18, and 19 on pages 27 to 28, shows that the PC1 : PC2 ratio decreases as K increases.
The chromosomal data points marked as black uppercase letter K’s, are gathered close together, while
the plasmids marked with grey lowercase letter p’s are spread out around them18, and also under (in
the same coordinates as) the chromosomal grouping. For figure 18b the Illumina (ART) plasmid data
points are much more spread out compared to the training plasmids. The Illumina chromosomes has
greater volatility (standard deviation) compared to the training chromosomes, and the two groups also
seems to be quite some distance away from each other. This increased variance might explain the
high number of false positives for the Illumina case, in that underlying data cannot provide enough
information to predict the chromosomal class. For the Nanopore (DS, figure 18c) case, the opposite
seems to occur, i.e. the orange coloured Nanopore plasmid are positioned well inside the training
plasmid grouping, while the blue Nanopore chromosomal grouping only has a smaller bias to the
training chromosomes compared to the Illumina case in figure 18b. We also observe a bias, i.e. the
Illumina read data are re-located in comparison to the training data, and this might contribute to more
classification errors.

Upon further inspection of the data points underlying the plots, the single chromosomal outlier in
all five19 plots has an accession number of LR025099.1, a chromosome discovered by Aitor Gonzaga
Moltó at the German Collection of Microorganisms and Cell Cultures GmbH (DSMZ) on 2018-07-
11 [33]. It looks like this is either not an E.coli chromosome at all, or may be misassembled, perhaps
due to a mixup with plasmid reads.

4.7 Prediction probability boxplot

figure 20 and table 8 on page 29 shows that for Illumina data, the prediction probability can tell us
something about certainty, but only when predicting the chromosomal class. When the prediction is
plasmid, both true positives and false positive have very high probability of plasmid; but when the

18mostly to one side
19figure 17, 18a, 18b, 18c, and 19
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prediction is chromosome, the true negatives tend to have lesser prediction probability for the positive
class (probability of plasmid) than the false negatives. In the latter case the median is at zero, while in
the FN case the interquartile range is almost 0.22, while the standard deviation is 0.16, indicating the
underlying FN data points are close to being Normally distributed. For the Nanopore data the picture
is similar, but less pronounced. The results for the Full Assembly data are less informative, since the
number of misclassified sequences are extremely low, both ways.

5 Conclusion

The aim of the project was to investigate to what extent some machine learning methods are able to
classify chromosomal reads from plasmid reads based on K-mer statistics. It has been shown that
K-mer methods work extremely well for fully assembled genome sequences. For the in silico simulated
IlluminaHiSeq 2500 150 bp reads, the binary classification accuracy drops to just above 60 %. For the
in silico simulated Nanopore (5.8 ± 3.7) kb reads, the binary classification accuracy retains a far better
level right above 90 %. Falsely classified reads mainly gets classified as plasmids (false positives).
Two reasons for the positive class to mainly be the one being misclassified, might be:

(i) Chromosomes are quite similar to each other.

(ii) Plasmids are quite different from each other.

In terms of the biology of chromosomes and plasmids, the chromosomes are “the genomes,” already
containing vital genes. Chromosomal sequences has little room for difference between each other. All
variants of E. coli has to have a minimum of genetic machinery in order to be an E. coli. Although
this limits how much chromosomal sequences can vary, E. coli varies more than most bacteria. On
the other hand, plasmids are additional, non-vital sequences. Plasmids are thus able to vary greatly
in contents without harming the E. coli, thus plasmid derived K-mer occurrences also are able to
vary grately, cf. the K-mer occurrence PCA plots on figure 17, 18, and 19 on pages 27 to 28. Figure
18 shows Illumina plasmid reads might be overfitted due to the data point grouping having high
bias and high variance, cf. figure 10, while the Illumina chromosomes seems to be underfitted, at
least compared to the Nanopore chromosomes in figure 18c. Underfitted data cannot provide enough
information to predict the correct class. The underfitted Illumina chromosomes might thus explain
the greater number of false positives in the Illumina case compared to the Nanopore case20.

6 Further work

In a few years time, as more sequencing labs are able to get hold of third generation sequencers, longer
reads, such as Nanopore reads, will become common sightings in the lab. Thus, further work on
classifying these longer types of reads makes sense.

Using more complex “black-box” classifiers, such as prototype methods and adaptive nearest-
neighbour methods, e.g. the discriminant adaptive nearest-neighbor [21, 34] might increase the

20cf. table 5 and 7 on pages 24 and 26
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accuracy a few percentage points. Classification using partial least squares classification methods,
such as those provided by the R package pls [35], could also be investigated.

Classifying other types of plasmid data, such as linear plasmids, low quality assemblies, and
contigs as per Krawczyk et al. [11], might also be explored.
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