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The nonlocal van der Waals density functional (vdW-DF) has had tremendous success since its inception in
2004 due to its constraint-based formalism that is rigorously derived from a many-body starting point. However,
while vdW-DF can describe binding energies and structures for van der Waals complexes and mixed systems
with good accuracy, one long-standing criticism—also since its inception—has been that the C6 coefficients that
derive from the vdW-DF framework are largely inaccurate and can be wrong by more than a factor of 2. It has
long been thought that this failure to describe the C6 coefficients is a conceptual flaw of the underlying plasmon
framework used to derive vdW-DF. We prove here that this is not the case and that accurate C6 coefficients
can be obtained without sacrificing the accuracy at binding separations from a modified framework that is fully
consistent with the constraints and design philosophy of the original vdW-DF formulation. Our design exploits
a degree of freedom in the plasmon-dispersion model ωq, modifying the strength of the long-range van der
Waals interaction and the crossover from long to short separations, with additional parameters tuned to reference
systems. Testing the new formulation for a range of different systems, we not only confirm the greatly improved
description of C6 coefficients, but we also find excellent performance for molecular dimers and other systems.
The importance of this development is not necessarily that particular aspects such as C6 coefficients or binding
energies are improved, but rather that our finding opens the door for further conceptual developments of an
entirely unexplored direction within the exact same constrained-based nonlocal framework that made vdW-DF
so successful in the first place.
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I. INTRODUCTION

Materials in which van der Waals interactions, i.e., London
dispersion forces, play a crucial role for cohesion and binding
properties now stand at the forefront of a number of major
scientific and technological advances. Examples include gas
storage and filtering in supermolecular complexes and porous
materials [1–3], organic electronic and optoelectronic appli-
cations [4,5], and pharmaceutical [6], ferroelectric [7,8], and
photovoltaic molecular crystals [9,10]. Common to several of
these developments is the increasing role of first-principles
electronic-structure calculations at the density-functional the-
ory (DFT) level—serving not only to gain insight into their
functionality, but also to predict new materials and function-
ality prior to experimental synthetization [5]. As the ability
to design and analyze materials often hinges on the ability
to accurately predict energetic and structural properties, over
the years great effort has been made to improve DFT. In
this regard, a major development was the inclusion of van
der Waals interactions by various means during the previous
decade [11–24]. However, unfortunately, current methods to
treat van der Waals interactions still have not achieved the
same level of accuracy and reliability for such noncovalently
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bonded systems as what is now typical for covalently bonded
ones.

Amongst the various methods to capture van der Waals
interactions within DFT, the van der Waals density functional
(vdW-DF) method developed by Langreth, Lundqvist, and
coworkers [14–16,25–29] stands out in that it is a true density
functional, i.e., it can be evaluated from knowledge of the
density alone, and employs a nonlocal correlation functional
Enl

c [n] to account for dispersion forces. The tremendous suc-
cess of vdW-DF is rooted in its plasmon dispersion formalism
that is rigorously derived from a many-body starting point and
adheres to a number of exact physical constraints [14,30]. This
nonlocal correlation functional has since become the corner-
stone of several higher-level improvements that, e.g., adjust
the exchange functional that is being used in conjunction with
Enl

c [n] [31–34]. However, despite its success and widespread
use, further conceptual development of vdW-DF has come to
a halt—although around the turn of the last decade, vdW-DF
inspired the related and well-crafted functionals by Vydrov
and Voorhis (VV) [21–24], its fundamental framework has not
changed since 2004. Furthermore, one common criticism has
also plagued vdW-DF for almost the same time span, i.e., the
often poor C6 coefficients that derive from it [23,27,35], which
has been thought to be a conceptual flaw in the underlying
framework. The poor C6 coefficients in vdW-DF themselves
bare little to no effect on the vdW-DF performance for binding
energies and structures, but they are a formal shortcoming
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nonetheless. We prove here that this is not a conceptual flaw
of the framework and that a modification of the underlying
plasmon dispersion model corrects the C6 coefficients and
opens the door for utilizing an entirely unexplored degree
of freedom that may be used for further improvements—all
while adhering to the same physical constrains that made the
original vdW-DF formalism so transferable and successful.

To understand which changes are necessary inside vdW-
DF, we review in the next section the underlying frame-
work but defer the reader to in-depth discussions elsewhere
[14,16,26–28]. The nonlocal correlation functional Enl

c [n] in
vdW-DF can be derived as a systematic expansion of the
adiabatic connection formula (ACF) [36–38] in terms of an
effective plasmon propagator S, which has poles for real
frequencies at the effective plasmon frequency ωq, where q
is the momentum of the plasmon. A number of exact phys-
ical constraints on S and ωq explain the transferability and
success of vdW-DF in describing diverse classes of materials
[15,16,27,39]. However, the C6 coefficients in vdW-DF arise
exclusively from the q → 0 limit of the plasmon dispersion
ωq, which is not constrained in vdW-DF and arises merely as a
byproduct of the particular parametrization of ωq. As a result,
vdW-DF typically exhibits inferior C6 coefficients compared
to other methods.

Here, we modify the vdW-DF framework, fully consistent
with the original constraints and design philosophy, but with
a new and more flexible parametrization of the plasmon
dispersion ωq. This flexibility is exploited to provide accurate
C6 values, resulting in a mean absolute relative deviation
(MARD) of the C6 coefficients of 11% compared to 20%
for the original formulation, which we refer to here as vdW-
DF1 [14], and 56% for vdW-DF2 [25]. In addition—although
not the primary purpose of this paper—the form of ωq is
also tuned to provide noticeable improvements for binding
energies of several molecular dimer systems, making the
functional a contender for applications to this class of systems.
Finally, the new formulation is also trivial to implement in
compute codes with existing vdW-DF implementations.

II. THEORY

The nonlocal correlation in vdW-DF is given by the
second-order expansion of the ACF in terms of a plasmon
propagator S, describing virtual charge-density fluctuations of
the electron gas, as follows:

Enl
c [n] =

∫ ∞

0

du

4π

∫
d3q

(2π )3

d3q′

(2π )3

× [1 − (q̂ · q̂′)2]Sq,q′ (iu) Sq′,q(iu) , (1)

where S is given by

Sq,q′ (iu) = 1

2
[S̃q,q′ (iu) + S̃q′,q(iu)], (2)

S̃q,q′ (iu) =
∫

d3r
4π n(r) e−i(q−q′ )·r

(iu + ωq(r))(−iu + ωq′ (r))
. (3)

Here, ω = iu is the imaginary frequency, n(r) is the electron
density, and 4πn(r) is the square of the plasmon frequency.
This particular form of S as been chosen because it fulfills four

exact physical constraints [14], making vdW-DF such a pow-
erful and transferable tool. In our modification of the method,
we retain the same model of S as in earlier versions, but
update the plasmon dispersion ωq(r) = q2/[2 h(q/q0(r))] by
modifying the dimensionless switching function h(q/q0(r)),
which controls the relative strength of the density response at
different length scales. The function q0(r) parameterizes the
local response of the electron gas and is determined by the
requirement that the first-order term in S in the ACF expansion
reproduces a general gradient approximation-type exchange-
correlation (XC) functional [16,27,30]. This XC functional,
which is generally not the same as in the total energy func-
tional, is named the internal functional εint

xc [14,16,40]. q0(r)
is related to the exchange-correlation per particle through this
first-order expression in S as follows:

εint
xc (r) = π

∫
d3q

(2π )3

[
1

ωq(r)
− 2

q2

]

= 2π

∫
d3q

(2π )3

1

q2
[h(q/q0(r)) − 1]

= − 1

π
q0(r)

∫ ∞

0
dy [1 − h(y)] . (4)

If we constrain the remaining integral to be

∫ ∞

0
dy [1 − h(y)] = 3

4
, (5)

then q0(r) can conveniently be expressed as a modu-
lated Fermi wave vector k3

F(r) = 3π2n(r), i.e., q0(r) =
−(4π/3) εint

xc (r) = (εint
xc (r)/εLDA

x (r)) kF(r).
The vdW-DF framework dictates three constraints on

h(y), but also leaves considerable freedom. First, the inte-
gral over h(y) should be constrained by Eq. (5). Second, a
quadratic small-y limit in h(y) = γ y2 + . . . (where γ is a con-
stant) ensures the appropriate C6/r6 long-range limit. In fact,
Hyldgaard et al. [30] pointed out that h(0) = 0 corresponds
to charge conservation of the spherical XC hole model of the
internal functional, which is given by a Fourier transformation
of h(q/q0(r)). Third, h(y) is required to increase monotoni-
cally to a large-y limit of limy→∞ h(y) = 1, corresponding to
ωq → q2/2 in the limit of large q. This allows S to cancel the
self-interaction divergence, i.e., the 2/q2 term in Eq. (4), in
the ACF formula [14,39]. The standard switching function in
vdW-DF1 and vdW-DF2 was chosen within these constraints
as

hstd(y) = 1 − exp(−γ y2) , (6)

where the value of γ = γstd = 4π/9 ≈ 1.3963 is determined
by Eq. (5). Note that hstd(y) includes only one parameter,
which is fully constrained.

Dispersion forces in vdW-DF can be viewed as arising
from a coupling of semilocal XC holes of separated bodies
[30]. For two such bodies A and B far apart, the C6 coefficient
is given by

C6 = 3

π

∫ ∞

0
du αA(iu) αB(iu) , (7)
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with the far-field polarizability of body A (and likewise for B)
given by

αA(iu) =
∫

A
d3r

n(r)

ω2
0(r) + u2

, (8)

where ω0(r) = limq→0 ωq(r) = q0(r)2/2γ for any h function
with the required small-y limit from the second constraint. It
is very interesting to see that the first constraint is a condition
for the integral over all values of y, but the asymptotic limit
that determines the C6 coefficients is determined exclusively
by the small-y limit in the second constraint. Crucially, there
is significant residual freedom in the form of possible h(y)
functions that still fulfill all three constraints. Specifically,
from the second constraint it follows that γ = limy→0h(y)/y2,
which could take almost any number. Moreover, as C6 ∝ γ 3,
controlling the value of γ is paramount to securing accurate
C6 values.

At the heart of our modification is a new switching function
that still fulfills all three constraints, but that is also crafted to
improve the description of C6 coefficients. In particular, we
propose

hnew(y) = 1 −
(

1 + (α − γ )y2 + A(α, γ , β )y4

1 + A(α, γ , β )y2

)
exp(−αy2),

(9)

where A(α, γ , β ) = (β + α(α/2 − γ ))/(1 + γ − α). This
three-parameter function hnew(y) provides significantly more
freedom than hstd(y). We get the required small-y limit of
hnew(y) = γ y2 − βy4 + . . . , or equivalently

y2

hnew(y)
= 1

γ
+ β

γ 2
y2 + O(y4) , (10)

which shows that—while γ controls the magnitude of the
asymptote and C6 coefficients—β/γ 2 is the leading order
term determining how van der Waals interactions are re-
duced at shorter separations. We found the optimal values
to be α = 2.01059, β = 8.17471, and γ = γnew = 1.84981,
as described below. The functions hnew(y) and hstd(y) are
plotted in Fig. 1 for comparison. The nonlocal correla-
tion energy in Eq. (1) can also be written as Enl

c [n] =
1
2

∫
d3r d3r′ n(r) φ(r, r′) n(r′), where the kernel φ(r, r′) is

fully determined through Eqs. (1)–(3); the two switching
functions hnew(y) and hstd(y) result in two different kernels
φnew(r, r′) and φstd(r, r′), the difference of which is plotted in
Fig. S1.

The value of γnew = 1.84981 was determined by mini-
mizing the MARD of a set of 34 closed-shell atoms and
small molecules compiled by VV [23]; computational details
are provided in Appendix A. For a given internal func-
tional, tuning the γ parameter corresponds to scaling the C6

coefficients by γ 3. Note that vdW-DF1 and vdW-DF2 use
different internal functionals, as described in Appendix B.
If we use the internal functional of vdW-DF2, the optimal
scaling (γnew/γstd )3 = 2.32529, resulting in a MARD for the
C6 coefficients of 11.13%. If one instead tried to optimize
C6 coefficients with the vdW-DF1 internal functional, the
lowest achievable MARD would be 18.56%—hence, our
modified version of vdW-DF utilizes the vdW-DF2 internal
functional. The value of β = 8.17471, with a corresponding

FIG. 1. Comparison of the standard switching function hstd (y)
used in vdW-DF1 and vdW-DF2 and the new switching function
hnew(y). The upper panel shows h(y), while the lower panel shows
y2/h(y), which is proportional to the plasmon pole ωq. Somewhat
surprisingly, the overall shape of both functions is strikingly similar,
which is related to the fact that they obey the same underlying
constraints. However, in the y < 0.4 region there are significant
differences, most visible in the bottom panel.

α = 2.01059, was determined by minimizing the MARD of
the binding energies of the S22 data set with separations
optimized along the center-of-mass coordinates, which results
in a MARD value of 5.72%. In the optimization, for each
value of β, α was adjusted to fulfill Eq. (5).

Finally, the nonlocal correlation energy from Eq. (1) has to
be combined with a (semi)local functional to give the entire
exchange-correlation energy Exc[n]:

Exc[n] = E sl
xc[n] + Enl

c [n] . (11)

Only local density approximation (LDA) correlation is in-
cluded in E sl

xc[n] as in all standard vdW-DF variants, whereas
for the exchange contribution of E sl

xc[n] we employ the B86R
functional of Hamada [34]. Note that our choice for the β

parameter is dependent on the exchange functional employed.
Since β is optimized for a reference set of systems, the
binding energies are less sensitive to the exchange functional
choice than in standard vdW-DF. Nonetheless, the exchange
has a strong impact on binding separations [39–43]. vdW-DF
variants based on soft exchange functionals, such as C09 [31],
optB86b [33], and cx13 [40] have generally been found to
be more versatile than those based on the harder revPBE
[44] and PW86r [45] originally employed in vdW-DF1 [14]
and vdW-DF2 [25]. The B86R [34] functional of Hamada
was chosen because it was constructed for vdW-DF2 and we
retain the same internal functional as vdW-DF2. vdW-DF2-
B86R provides accurate binding separations for layered and
adsorption systems, molecular dimers, and lattice constants of
solids. Moreover, the B86R exchange functional goes as s2/5

in the large-s limit, where s is the reduced gradient, which
Murray et al. [45] argued to be a suitable choice as it avoids
spurious long-range binding effects in the exchange channel.
The cx13 exchange functional used in vdW-DF1-cx was not
employed because this functional was originally constructed
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for consistency with the internal exchange functional of vdW-
DF1.

III. RESULTS

The parameters in our new switching function have been
chosen to provide accurate C6 coefficients and a low MARD
for the S22 set. We first present here values for the C6

coefficients of our new framework, followed by a systematic
test of the performance of our new modification to ensure that
the improved C6 coefficients do not come at the detriment
of worse performance in other areas. As such, we consider
a range of standard test systems—specifically, the S66 set
of molecular dimers relevant for biomolecular systems, the
X40 set of halogenated molecules, and 23 solids. However,
more in-depth testing, also considering challenging extended
systems such as molecular crystals and surface adsorption,
would be necessary if we were to release our new formu-
lation as a general purpose functional—but that is not the
intent and we merely want to show that the improved C6

coefficients come with reasonable performance in other areas.
To assess strengths and weaknesses of our modifications, we
also applied a number of other commonly employed van
der Waals functionals to the same systems. Details on our
computational approach can be found in Appendix A. See also
Supplemental Material (SM) for detailed results for all the in-

dividual systems presented in this paper [46], which includes
Refs. [14,27,33,47,49,73].

A. C6 coefficients

The improvement in C6 values are illustrated in Fig. 2,
with numerical data provided in Appendix C, for a set of
34 systems compiled by VV [23]. Figure 2 shows that—
while vdW-DF2 consistently underestimates C6 coefficients
by a factor of approximately 2—their trends are far more
accurately described than in vdW-DF1, which overestimates
the C6 coefficients of small molecules. This behavior is the
reason for the choice of the internal functional of vdW-DF2
for our new formulation, allowing for a smaller MARD with
a common scaling factor (γnew/γstd )3 that corrects the C6

coefficients for a wide range. Overall, we find the expected
improvement of the MARD value for C6 coefficients, which
now drops to 11.13% for our new formulation compared to
19.97% for vdW-DF1 and 55.64% for vdW-DF2. This value is
on par with the very best of all functionals tested, i.e., 10.73%
for rVV10 in Appendix C, albeit the VV formalism has been
derived either by relaxing some of the original constraints
of vdW-DF or, in the case of the widely employed VV10
functional [24], through heuristic rationalization.

FIG. 2. Relative deviations of C6 coefficients of vdW-DF1 (filled squares), vdW-DF2 (triangles), and our new framework (circles) for a
set of 34 systems compiled by Vydrov and Voorhis, with reference data from a variety of sources [23]. The C6 coefficients are calculated
from Eqs. (7) and (8). Selected systems are labeled along the upper x axis. The corresponding MARD values are 19.97% (vdW-DF1), 55.64%
(vdW-DF2), and 11.13% (new), showing the drastic improvement of C6 values. Explicit values for all C6 coefficients—also including other
functionals for comparison—can be found in Appendix C.
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FIG. 3. MARD of the binding energy for the S22 data set, split
into the characteristic hydrogen- and dispersion-bonded systems and
mixtures of these bonding types.

B. Molecular dimers

1. The S22 set

Figure 3 shows the MARD of the binding energies of the
S22 set of molecular dimers. More detailed data is available in
Appendix C. The fact that vdW-DF1-optB88, rVV10, and our
new development has a MARD smaller than ∼7% is a result
of optimizing either the exchange (in vdW-DF1-optB88) or
correlation (in rVV10 and our new development) to this data
set. Because of this bias, we will not further analyze the results
for the S22 data set.

2. The S66 set

The S66 set of molecular dimers is larger and more diverse
than the S22, featuring several dimers involving nonaromatic
molecules and double-hydrogen bonds. Moreover, reference
binding separations are more accurate [47].

Figure 4 shows the MARD of the binding energies of the
S66 set and Appendix C provides details on their statistical
properties. In addition, Fig. 5 depicts a violin plot overlaid on
a box plot showing the distribution of deviations in separation
(upper panel) and energy (lower panel). Overall, we find ac-
ceptable performance for binding energies for all functionals
and one can see that all successor functionals indeed improve
on the original vdW-DF1 functional to varying degrees. The
good performance of our new formulation does carry over
from the S22 data set and we find a median and mean
deviation very close to zero. We note that all functionals have
outliers, with the binding energy of the neopentane dimer
being overestimated for all but the vdW-DF2-B86R, which,
on the other hand, tends to underestimate binding energies
of systems involving aromatic dimers. We also note that
the MARD of the S66 set is smaller than that of S22 for
all nonreference system optimized methods, i.e., vdW-DF1,
vdW-DF1-cx, vdW-DF2, and vdW-DF2-B86R, as well as for
our new modification, with a MARD of 4.62% compared
to 5.72% for S22. For the case of vdW-DF1-optB88, the
increased MARD for the S66 set compared to S22 is due

FIG. 4. MARD of the binding energy for the S66 data set, split
into the characteristic hydrogen- and dispersion-bonded systems and
mixtures of these bonding types.

to a reduced accuracy for dispersion-bonded systems; in par-
ticular the binding energies of dimers involving pentane and
neopentane, which are not in the S22 set, are significantly
overestimated. The binding energies of these dimers are also
overestimated to a smaller extent with rVV10, but the reduced
accuracy is also due to overestimated binding energies of
double-hydrogen bonded dimers.

Looking at the upper panel of Fig. 5, we find that vdW-
DF1-optB88 and rVV10 have the most accurate binding sepa-
rations; however, in essence all but vdW-DF1 and vdW-DF1-
cx show good separations, both of which also show a sig-
nificant spread. Overestimated separations are a well-known
shortcoming of vdW-DF1. The overestimation of vdW-DF1-
cx stems from dimers where at least one molecule is an alkane.
This result can be related to the fact that this functional was
not constructed to provide accurate performance for systems
with large reduced gradients s [40].

3. The X40 set

The X40 set is a set of noncovalently bonded dimers
involving halogenated molecules. They span a wide variety of
different bond characteristics, such as dispersion-dominated
F2-methane binding, dipole-dipole bonds, and hydrogen and
halide bonds [49]. Figure 6 shows a violin/box plot for the
X40 set, with statistical data for binding energies summarized
in Appendix C. The binding separations exhibit similar trends
as for S66, but with decreased deviations due to the generally
shorter dimer separations. Overall, we find that the binding
energies of vdW-DF1-optB88 and our new formulation have
the best agreement with the reference data. Like for the
S66 data set, our new method follows the same trends as
vdW-DF2-B86R but avoids the net underestimation of binding
energies exhibited by vdW-DF2-B86R. In general, the binding
energy MARD is larger for the X40 set than the S66. The
rVV10 functional has the largest increase in MARD when
going from the S66 to X40, from 6.19% to 15.0%. In contrast,
our new modification merely increases from 4.62% to 7.06%.
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FIG. 5. Visualization (violin plot overlaid on a box plot) of the
deviations from reference data of the different functionals for the
S66 data set. The upper panel gives deviations in separations and
the lower panel shows the relative deviation of the binding energy.
The violin plots (transparent color) represent the data distribution and
are based on a Gaussian kernel density estimation using the Scott’s
rule [48] as implemented in MATPLOTLIB. In the box plot, the boxes
hold 50% of the data, with equal number of data points above and
below the median deviation (full black line). The whiskers indicate
the range of data falling within 1.5×box-length beyond the upper
and lower limits of the box. Outliers beyond this range are indicated
with circular makers and are identified in the SM [46]. The diamonds
mark the mean deviation.

C. Solids

The original vdW-DF1 and its successor vdW-DF2 both
overestimated lattice constants of solids. However, combining
vdW-DF correlation with soft exchange functionals with a
small “PBEsol”-type enhancement factor [39,50], i.e., with
a Taylor expansion of the form Fx(s) ≈ μPBEsols2 + . . ., sig-
nificantly improves solid lattice constants [29,33,39,40,51,52]
and, in fact, can also improve atomization energies compared
to the generalized-gradient approximation [29,33].

Figure 7 shows results of our performance testing for the
same set of 23 solids as considered by Klimeš et al. [33], with
further numerical data provided in Appendix C and Tables
S7 and S8 in the SM [46]. The reference data are based
on zero-point corrected experimental lattice constants and
atomization energies, as detailed in Ref. [33] and references
therein. All the functionals with soft exchange, i.e., vdW-DF1-
cx, vdW-DF2-B86R, and our new modifications, give a mean
absolute deviation (MAD) for the separations of less than 0.06
Å, whereas vdW-DF2 is the least accurate. All functionals,
except vdW-DF1 and vdW-DF2, also have an atomization

FIG. 6. Violin/box plots for deviations in separation and binding
energy for the X40 set, see caption of Fig. 5 for further details.

energy MARD smaller than 5% and our new modification and
rVV10 have mean and median deviations close to zero. Fur-
thermore, as expected, our modification gives lattice constants
that are similar to those of vdW-DF2-B86R, which employs
the same exchange functional; atomization energies are also
similar but our new formulation shows slightly improved
values on average.

IV. DISCUSSION

Our study highlights the importance of the specific form
of the wave-vector dependence in ωq through its switching
function h(y). In doing so, we open the door for develop-
ments around this so far unexplored degree of freedom within
powerful physical constraints. Exploiting this freedom trough
a judicious choice of the switching function h(y), we have
demonstrated how accurate C6 coefficients are fully compat-
ible with the constraints of the original vdW-DF, which has
been a major criticism of vdW-DF in general and vdW-DF2 in
particular. At the same time, we exploited the fact that vdW-
DF2 predicts trends in the C6 coefficients more accurately than
vdW-DF1.

We do not expect the improvement of C6 coefficients to
carry over to large nanostructures where local-field effects
can be important, such as fullerenes [53–55], which would
require higher-order terms in S within vdW-DF. However,
at binding separations, such higher-order terms are generally
less crucial, at least within vdW-DF [30,56], as multipole
effects are described to second order in S. Moreover, vdW-DF
includes nonadditive effects originating from changes in the
electronic density [57].
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Drawing attention to the possibility of adjusting h(y)
within vdW-DF introduces a measure of flexibility that so
far has been missing in standard vdW-DF. In fact, since the
release of vdW-DF1 in 2004 [14], a number of exchange
functionals have been proposed that aim both to improve
binding energies and remedy the notorious overestimation of
binding separations present in vdW-DF1 and to some extent
in vdW-DF2. This practice has recently been criticized [58]
as the large exchange term is fitted to match the smaller non-
local correlation term; colloquially, the “tail wags the dog.”
Two extreme cases of such a practice are (i) the Bayesian-
error-estimation-vdW functional (BEEF-vdW) [59], in which
machine learning was used to determine a semilocal exchange
functional for the vdW-DF2 nonlocal correlation employing
diverse training sets and (ii) the vdW-DF1-cx functional
[40], in which the exchange was designed to be formally as
consistent with the vdW-DF1 nonlocal correlation as feasi-
ble. Because of its flexibility, VV10 (or rVV10) has seen
many adaptions both to different semilocal XC functionals
and to different benchmark sets [58,60–63]. The vdW-DF
flexibility is more limited than that of VV10 both because
of the constraints inherit to the method and the fact that
the exchange functional must still be a good match with the
semilocal correlation description of vdW-DF, which gives a
strong preference for “soft” exchange functionals [39,50].

In our new formulation, we optimized the parameters of
the proposed hnew(y) not only to improve the C6 coefficients
but also to improve the binding energies of the S22 set of
molecular dimers. This improvement carries over to accurate
molecular binding properties of the S66 set and the X40 set.
With the choice of B86R, our new formulation also provides
accurate lattice constants for solids. While the performance
on molecular dimers is encouraging, we emphasize that our
new proposed switching function is not necessarily the very
best choice for a versatile performance for different classes of
systems as our focus was on improving C6 coefficients and the
S22 set of molecular dimers was used to adjust the plasmon
model. As a simple test on different classes of systems, we
also studied adsorption of small molecules in metal organic
frameworks and on surfaces. In particular, for CO2 adsorption
in MOF-74, our binding energy shows a 20% overestimation
of experiment compared to DF1: 8%, DF1-optB88: 26%,
DF1-cx: 14%, DF2: 6%, DF2-B86R: 4%, and rVV10: 16%.
For the case of benzene on the Au(111) surface, we also
find a significant overestimation of binding energy of 22%,
compared to DF1: −20%, DF1-optb88: 10%, DF1-cx: 9%,
DF2: −23%, DF2-b86R: −7%, and rVV10: 15%. Although
these are challenging systems, these tests indicate that there
is still room for improvement of our new formulation. We
thus fully expect that new and potentially better forms of h(y)
with significant performance increase over a wide array of
systems will be developed by us or others in the near future
and enjoy widespread usage. For this reason, we do not give
our modified formulation a new name or number within the
lineup of vdW-DF1 and vdW-DF2 functionals.

V. SUMMARY

We present a reformulation of the plasmon model that
underpins the popular vdW-DF exchange-correlation func-

FIG. 7. Violin/box plots for deviations in lattice constants a and
atomization energies of a set of 23 solids, see Tables S7 and S8 for
further numerical details and see caption of Fig. 5 for a description
of violin and box plots.

tional. Our reformulation is entirely within the constraint-
based framework of the original vdW-DF and thus inherits
its good transferability. Our formulation takes advantage of
some freedom concerning the choice of a switching function
that connects two constrained limits. We use this additional
freedom to correct a long-standing criticism of vdW-DF, i.e.,
the often wrong C6 coefficients that derive from it. Our work
thus proves that this formal shortcoming is not an inherent
flaw of the vdW-DF formalism, but merely the byproduct
of a particular choice in its parametrization. We test our
updated formalism and find the expected improvement in the
C6 coefficients, but we also find good overall performance
with regard to binding energies and separations for a range
of systems. While we have used this previously unexplored
degree of freedom to improve the C6 coefficients, we see the
main importance of our work in that this freedom may also
be used for further conceptual developments of vdW-DF and
improvements of other properties.
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APPENDIX A: COMPUTATIONAL DETAILS

Our new vdW-DF formulation has been implemented in—
and all our calculations have been performed with—the QUAN-
TUM ESPRESSO package [64]. The C6 coefficients were calcu-
lated directly from Eqs. (7) and (8). For all our calculations,
we have used the PBE GBRV ultrasoft pseudopotentials due
to their excellent transferability [65]. However, that database
did not include potentials for He, Ne, Ar, and Kr; for those
elements, we used the standard PBE RRKJ ultrasoft potentials
provided by QUANTUM ESPRESSO. In all calculations, the wave
function and density cutoff were ∼680 eV (50 Ryd) and
∼8200 eV (600 Ryd), respectively. We used an energy con-
vergence criterion of ∼1.36 × 10−5 eV (1 × 10−6 Ryd) for
molecular systems and ∼1.36 × 10−7 eV (1 × 10−8 Ryd) for
solids. For metals and semiconductors, a Gaussian smearing
was used with a broadening of ∼0.1 eV (0.00735 Ryd).
Lattice parameters and cohesive energies of solids were deter-
mined from the Birch-Murnaghan equation of state [66,67].
For comparison and to assess the performance of our new
formulation, we performed calculations with the following
exchange-correlation functionals: vdW-DF (also called vdW-
DF1 here) [14], vdW-DF1-optB88 [32], vdW-DF1-cx [40],
vdW-DF2 [25], vdW-DF2-B86R [34], and rVV10 [24,68].
The corresponding short names we may use in tables and
figures are DF1, DF1-optB88, DF1-cx, DF2, DF2-B86R, and
rVV10, respectively.

For the various molecular dimer data sets (S22 [69], S66
[47], X40 [49]), calculations were performed at the 	-point
with molecules in a box surrounded by at least 15 Å of vacuum
to minimize spurious interactions with periodic replica. To
test the performance of a given functional on a given data
set, we followed commonly accepted procedures for those
data sets. In particular, the monomers were considered frozen
and a fixed number of geometries—representing different
separations—were generated by moving one monomer along
an axis specified through the optimal structure provided by

that data set. For the S22 data set, a center-of-mass axis
was used as suggested by Molner et al. [70]; for the S66
and X40 data sets, an “interaction coordinate” was used as
suggested in the corresponding original works [47,49]. Single
point calculations were then performed on those geometries
to generate binding energy curves, from which we extracted
the binding energy minima and binding separations through
fitting to a Lagrange polynomial near the minimum.

We have considered 23 solids, semiconductors, and ionic
salts as listed in Klimeš et al. [32]. Periodic solids have
been calculated with a k-point mesh of 15 × 15 × 15 for
cubic systems and 10 × 10 × 10 for hexagonal/tetragonal
systems. To calculate the atomization energies, individual
atoms have been calculated in a box with at least 15 Å of
vacuum.

APPENDIX B: THE INTERNAL FUNCTIONAL εint
xc

In vdW-DF1 [14], the internal functional is given by the
LDA XC energy with Langreth-Vosko exchange gradient
corrections for a slowly varying electron gas [71], whereas in
vdW-DF2 [25] gradient corrections are given by the large-N
asymptote of neutral atoms [72]. In both cases, it takes the
form

εint
xc (r) = εLDA

c (r) + εLDA
x (r)[1 − (Zab/9)s(r)2] , (B1)

with Zab = −0.8491 in vdW-DF1 and −1.8867 in vdW-DF2.
For our modification, we employ the same large-N limit for
the internal functional as vdW-DF2 because in our construc-
tion it results in more accurate C6 coefficients than the internal
functional of vdW-DF1.

APPENDIX C: DATA

Statistical data supporting the figures are provided in
Tables I–V. Detailed data on individual systems are provided
in the SM [46].

TABLE I. C6 coefficients [Hartree atomic units] for a set of 34 closed-shell atoms and small molecules compiled by Vydrov and Voorhis
[23]. The C6 coefficients are calculated from Eqs. (7) and (8). For each data set, we give the mean deviation (MD), mean absolute deviation
(MAD), mean relative deviation (MRD), and mean absolute relative deviation (MARD). The first three data sets (vdW-DF1, vdW-DF1-optb88,
vdW-DF1-cx) all share the same nonlocal vdW-DF1 kernel and only differ in their choice of exchange—thus, their results are very close to
each other and the small differences are a measure of the effect of exchange on the C6 coefficients. Similarly, the next two data sets (vdW-DF2
and vdW-DF2-B86R) both use the vdW-DF2 kernel (with different exchanges) and produce very comparable results.

vdW-DF1 vdW-DF1-optB88 vdW-DF1-cx vdW-DF2 vdW-DF2-B86R rVV10 new Ref.

He 2.98 2.94 3.09 0.76 0.78 1.45 1.82 1.46
Ne 10.96 10.35 10.85 3.92 3.50 8.44 8.13 6.35
Ar 77.63 74.94 75.99 30.38 29.16 70.08 67.81 64.42
Kr 132.9 128.1 128.7 54.97 51.92 131.2 120.8 130.1
Be 304.6 296.7 310.3 106.4 108.9 186.0 253.1 214
Mg 723.0 671.5 727.6 246.9 243.9 425.0 568.0 627
Zn 271.6 244.3 256.3 79.23 78.66 163.0 183.3 284
H2 19.07 18.87 20.07 5.59 5.81 10.28 13.49 12.09
N2 91.92 89.32 91.02 37.48 36.16 88.70 84.07 73.43
Cl2 335.9 325.8 325.1 154.1 146.6 366.7 341.0 389.2
HF 27.99 27.00 27.80 9.59 9.28 21.13 21.59 19.00
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TABLE I. (Continued.)

vdW-DF1 vdW-DF1-optB88 vdW-DF1-cx vdW-DF2 vdW-DF2-B86R rVV10 new Ref.

HCl 133.6 129.8 131.4 54.88 53.19 124.6 123.7 130.4
HBr 218.4 209.9 212.5 91.89 85.78 200.2 199.6 216.6
CO 100.3 97.71 99.69 40.24 39.32 93.51 91.42 81.40
CO2 143.1 139.6 141.0 62.52 60.39 159.4 140.4 158.7
CS2 661.8 643.7 645.0 310.9 299.7 739.4 697.1 871.1
OCS 356.0 346.6 348.2 163.0 157.2 395.6 365.5 402.2
N2O 155.7 151.4 153.1 66.93 64.86 172.4 150.8 184.9
CH4 138.5 136.5 141.1 56.11 56.98 129.6 132.4 129.6
CCl4 1644 1600 1592 828.7 792.8 2044 1844 2024
NH3 107.6 103.8 108.1 39.99 39.22 82.78 91.19 89.03
H2O 59.24 57.08 58.94 21.21 20.52 44.95 47.72 45.29
SiH4 379.2 374.6 388.5 162.2 165.7 344.6 385.0 343.9
SiF4 416.2 404.7 408.1 187.0 182.1 455.8 423.5 330.2
H2S 217.7 211.9 215.8 90.59 89.21 200.3 207.4 216.8
SO2 274.8 266.5 268.5 123.5 118.5 305.2 275.6 294.0
SF6 655.3 634.9 635.3 319.5 307.9 869.9 716.3 585.8
C2H2 224.6 218.5 223.3 94.02 92.22 210.3 214.4 204.1
C2H4 297.4 291.0 298.1 127.4 127.0 297.3 295.1 300.2
C2H6 367.4 362.3 372.0 162.1 163.9 396.6 380.9 381.8
CH3OH 225.5 220.7 226.3 94.96 94.50 226.1 219.7 222.0
CH3OCH3 513.3 505.1 518.4 228.5 229.6 567.9 533.7 534.0
C3H6 534.9 527.6 538.6 250.6 251.6 632.6 584.8 630.8
C6H6 1411 1385 1403 701.5 694.0 1838 1614 1723

MD −20.23 −29.80 −24.05 −203.3 −206.5 2.42 −15.41 —
MAD 51.06 52.87 53.92 203.3 206.5 36.20 38.11 —
MRD [%] 11.36 8.02 10.91 −55.64 −56.58 1.24 0.97 —
MARD [%] 19.97 19.10 20.72 55.64 56.58 10.73 11.13 —

TABLE II. Statistical analysis of the performance of various van der Waals functionals for the binding energies of the S22 set, see Tables
S1 and S2 for details.

vdW-DF1 vdW-DF1-optB88 vdW-DF1-cx vdW-DF2 vdW-DF2-B86R rVV10 new

Hydrogen bonded
MD [meV] 103 14.7 34.9 58.0 25.1 −21.4 14.9
MAD [meV] 103 15.7 34.9 58.0 25.1 21.4 15.9
MRD [%] −17.2 −3.75 −7.67 −8.50 −4.72 4.50 −3.30
MARD [%] 17.2 3.88 7.67 8.50 4.72 4.50 3.43

Dispersion bonded
MD [meV] 3.98 −20.4 3.95 8.17 20.5 2.98 −9.76
MAD [meV] 15.8 22.4 10.9 13.0 20.5 7.28 12.7
MRD [%] 9.26 9.95 3.82 2.88 −11.9 −1.54 3.43
MARD [%] 13.5 13.0 9.66 8.26 11.9 4.73 7.98

Mixed
MD [meV] 22.2 4.74 16.4 21.1 23.3 6.53 10.4
MAD [meV] 23.0 6.70 16.5 21.9 23.3 8.29 10.4
MRD [%] −10.2 −1.88 −8.16 −10.4 −13.2 −2.63 −5.40
MARD [%] 11.4 3.89 8.24 11.7 13.2 5.31 5.42

Full set
MD [meV] 41.4 −1.24 17.8 28.2 22.9 −3.64 4.49
MAD [meV] 46.0 15.3 20.3 30.2 22.9 12.1 13.0
MRD [%] −5.35 1.83 −3.65 −4.97 −10.0 0.04 −1.52
MARD [%] 14.0 7.19 8.58 9.42 10.0 4.84 5.72
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TABLE III. Statistical analysis of the performance of various van der Waals functionals for the binding energies of the S66 set, see Table
S3 and S4 for details.

vdW-DF1 vdW-DF1-optB88 vdW-DF1-cx vdW-DF2 vdW-DF2-B86R rVV10 new

Hydrogen bonded
MD [meV] 51.4 −1.47 14.6 19.9 6.92 −25.0 −0.45
MAD [meV] 51.4 8.50 17.4 20.6 13.1 25.0 9.11
MRD [%] −12.4 0.39 −4.34 −3.81 −2.00 7.06 0.10
MARD [%] 12.4 2.58 5.22 4.25 3.85 7.06 2.69

Dispersion bonded
MD [meV] −6.46 −20.9 2.02 −1.38 19.0 −2.50 −7.66
MAD [meV] 13.0 20.9 7.71 10.6 19.0 7.84 8.06
MRD [%] 8.11 15.6 0.77 4.22 −11.7 4.08 6.13
MARD [%] 10.4 15.6 5.12 7.82 11.7 6.21 6.39

Mixed
MD [meV] 13.7 −0.83 13.1 11.8 19.3 0.98 6.08
MAD [meV] 16.3 6.24 13.5 14.0 19.3 7.87 7.54
MRD [%] −7.70 0.63 −8.10 −6.70 −12.3 −0.46 −3.79
MARD [%] 9.83 4.15 8.49 8.60 12.3 5.15 4.80

Full set
MD [meV] 19.8 −8.05 9.75 10.0 14.9 −9.29 −0.99
MAD [meV] 27.4 12.1 12.9 15.1 17.0 13.8 8.27
MRD [%] −3.83 5.78 −3.71 −1.90 −8.51 3.74 1.02
MARD [%] 10.9 7.61 6.18 6.81 9.16 6.19 4.62

TABLE IV. Statistical analysis of the performance of various van der Waals functionals for the binding energies of the X40 set; see Tables
S5 and S6 for details.

vdW-DF1 vdW-DF1-optB88 vdW-DF1-cx vdW-DF2 vdW-DF2-B86R rVV10 new

MD [meV] 13.5 −6.74 2.41 2.47 3.99 −18.1 −4.53
MAD [meV] 19.9 10.4 14.1 9.86 11.9 19.2 9.46
MRD [%] −0.12 3.93 −0.95 5.11 −5.93 13.4 1.86
MARD [%] 15.6 7.79 12.4 10.2 9.90 15.0 7.06

TABLE V. Statistical analysis of the performance of various van der Waals functionals for the lattice constants and atomization energies
of a set of 23 solids assembled by Klimeš et al. [33].

vdW-DF1 vdW-DF1-optB88 vdW-DF1-cx vdW-DF2 vdW-DF2-B86R rVV10 new

Lattice constants
MD [Å] 0.09 0.01 0.01 0.09 0.01 0.02 0.002

MAD [Å] 0.10 0.07 0.06 0.12 0.06 0.09 0.06
MRD [%] 2.01 0.29 0.35 1.99 0.28 0.49 0.12

MARD [%] 2.12 1.43 1.13 2.71 1.14 1.77 1.15

Atomization energies
MD [eV] −0.32 −0.04 0.12 −0.45 −0.01 0.02 0.04

MAD [eV] 0.32 0.10 0.16 0.47 0.10 0.08 0.11
MRD [%] −10.3 −2.81 2.82 −15.8 −2.33 0.93 −0.52

MARD [%] 10.3 4.31 4.87 16.2 4.35 2.99 4.08

195418-10



VAN DER WAALS DENSITY FUNCTIONAL WITH … PHYSICAL REVIEW B 99, 195418 (2019)

[1] K. Tan, S. Zuluaga, E. Fuentes, E. C. Mattson, J.-F. Veyan, H.
Wang, J. Li, T. Thonhauser, and Y. J. Chabal, Nat. Commun. 7,
13871 (2016).

[2] H. Wang, X. Dong, J. Lin, S. J. Teat, S. Jensen, J. Cure, E. V.
Alexandrov, Q. Xia, K. Tan, Q. Wang, D. H. Olson, D. M.
Proserpio, Y. J. Chabal, T. Thonhauser, J. Sun, Y. Han, and J.
Li, Nat. Commun. 9, 1745 (2018).

[3] B. Li, X. Dong, H. Wang, D. Ma, K. Tan, S. Jensen, B. J.
Deibert, J. Butler, J. Cure, Z. Shi, T. Thonhauser, Y. J. Chabal,
Y. Han, and J. Li, Nat. Commun. 8, 485 (2017).

[4] P. J. Diemer, J. Hayes, E. Welchman, R. Hallani, S. J.
Pookpanratana, C. A. Hacker, C. A. Richter, J. E. Anthony,
T. Thonhauser, and O. D. Jurchescu, Adv. Electron. Mater. 3,
1600294 (2017).

[5] R. Gomez-Bombarelli, J. Aguilera-Iparraguirre, T. D. Hirzel, D.
Duvenaud, D. Maclaurin, M. A. Blood-Forsythe, H. S. Chae,
M. Einzinger, D.-G. Ha, T. Wu, G. Markopoulos, S. Jeon, H.
Kang, H. Miyazaki, M. Numata, S. Kim, W. Huang, S. I. Hong,
M. Baldo, R. P. Adams, and A. Aspuru-Guzik, Nat. Mater. 15,
1120 (2016).

[6] A. M. Reilly and A. Tkatchenko, Phys. Rev. Lett. 113, 055701
(2014).

[7] K. Lee, B. Kolb, T. Thonhauser, D. Vanderbilt, and D. C.
Langreth, Phys. Rev. B 86, 104102 (2012).

[8] S. Ishibashi, S. Horiuchi, and R. Kumai, Phys. Rev. B 97,
184102 (2018).

[9] L. Kronik and A. Tkatchenko, Acc. Chem. Res. 47, 3208
(2014).

[10] T. Rangel, K. Berland, S. Sharifzadeh, F. Brown-Altvater, K.
Lee, P. Hyldgaard, L. Kronik, and J. B. Neaton, Phys. Rev. B
93, 115206 (2016).

[11] S. Grimme, J. Comput. Chem. 25, 1463 (2004).
[12] S. Grimme, J. Antony, T. Schwabe, and C. Mück-Lichtenfeld,

Org. Biomol. Chem. 5, 741 (2007).
[13] S. Grimme, Wiley Interdiscip: Rev. Comput. Mol. Sci. 1, 211

(2011).
[14] M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I.

Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).
[15] D. C. Langreth, B. I. Lundqvist, S. D. Chakarova-Käck, V. R.

Cooper, M. Dion, P. Hyldgaard, A. Kelkkanen, J. Kleis, L.
Kong, S. Li, P. G. Moses, E. D. Murray, A. Puzder, H. Rydberg,
E. Schröder, and T. Thonhauser, J. Phys. Condens. Matter 21,
084203 (2009).

[16] K. Berland, V. R. Cooper, K. Lee, E. Schröder, T. Thonhauser,
P. Hyldgaard, and B. I. Lundqvist, Rep. Prog. Phys. 78, 066501
(2015).

[17] A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005
(2009).

[18] A. Tkatchenko, R. A. DiStasio, R. Car, and M. Scheffler,
Phys. Rev. Lett. 108, 236402 (2012).

[19] A. Ambrosetti, A. M. Reilly, R. A. DiStasio, and A.
Tkatchenko, J. Chem. Phys. 140, 18A508 (2014).

[20] A. Ambrosetti, N. Ferri, R. A. DiStasio, and A. Tkatchenko,
Science 351, 1171 (2016).

[21] O. A. Vydrov and T. Van Voorhis, J. Chem. Phys. 130, 104105
(2009).

[22] O. A. Vydrov and T. Van Voorhis, Phys. Rev. Lett. 103, 063004
(2009).

[23] O. A. Vydrov and T. Van Voorhis, Phys. Rev. A 81, 062708
(2010).

[24] O. A. Vydrov and T. Van Voorhis, J. Chem. Phys. 133, 244103
(2010).

[25] K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and D. C.
Langreth, Phys. Rev. B 82, 081101(R) (2010).

[26] T. Thonhauser, V. R. Cooper, S. Li, A. Puzder, P. Hyldgaard,
and D. C. Langreth, Phys. Rev. B 76, 125112 (2007).

[27] E. Schröder, V. R. Cooper, K. Berland, B. I. Lundqvist, P.
Hyldgaard, and T. Thonhauser, in Non-covalent Interactions
in Quantum Chemistry and Physics: Theory and Applications,
edited by A. O. de la Roza and G. A. DiLabio (Elsevier,
Amsterdam, 2017), Chap. 8, pp. 241–274.

[28] T. Thonhauser, S. Zuluaga, C. A. Arter, K. Berland, E.
Schröder, and P. Hyldgaard, Phys. Rev. Lett. 115, 136402
(2015).

[29] K. Berland, Y. Jiao, J.-H. Lee, T. Rangel, J. B. Neaton, and P.
Hyldgaard, J. Chem. Phys. 146, 234106 (2017).

[30] P. Hyldgaard, K. Berland, and E. Schröder, Phys. Rev. B 90,
075148 (2014).

[31] V. R. Cooper, Phys. Rev. B 81, 161104(R) (2010).
[32] J. Klimeš, D. R. Bowler, and A. Michaelides, J. Phys. Condens.

Matter 22, 022201 (2010).
[33] J. Klimeš, D. R. Bowler, and A. Michaelides, Phys. Rev. B 83,

195131 (2011).
[34] I. Hamada, Phys. Rev. B 89, 121103(R) (2014).
[35] L. M. Woods, D. A. R. Dalvit, A. Tkatchenko, P. Rodriguez-

Lopez, A. W. Rodriguez, and R. Podgornik, Rev. Mod. Phys.
88, 045003 (2016).

[36] O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274
(1976).

[37] D. C. Langreth and J. P. Perdew, Solid State Commun. 17, 1425
(1975).

[38] D. C. Langreth and J. P. Perdew, Phys. Rev. B 15, 2884
(1977).

[39] K. Berland, C. A. Arter, V. R. Cooper, K. Lee, B. I. Lundqvist,
E. Schröder, T. Thonhauser, and P. Hyldgaard, J. Chem. Phys.
140, 18A539 (2014).

[40] K. Berland and P. Hyldgaard, Phys. Rev. B 89, 035412
(2014).

[41] E. Londero and E. Schröder, Comput. Phys. Commun. 182,
1805 (2011).

[42] K. Berland, Ø. Borck, and P. Hyldgaard, Comp. Phys. Commun.
182, 1800 (2011).

[43] K. Berland and P. Hyldgaard, Phys. Rev. B 87, 205421
(2013).

[44] Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998).
[45] E. D. Murray, K. Lee, and D. C. Langreth, J. Chem. Theory

Comput. 5, 2754 (2009).
[46] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.99.195418 which includes Refs.
[14,27,33,47,49,73].

[47] J. Řezáč, K. E. Riley, and P. Hobza, J. Chem. Theory Comput.
7, 2427 (2011).

[48] D. W. Scott, Biometrika 66, 605 (1979).
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