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Abstract 13 

Waste tanks at the nuclear facility located at Sellafield, UK, represent a nuclear source which could 14 

release radionuclides to the atmosphere. A model chain which combines atmospheric transport, 15 

deposition as well as riverine transport to sea has been developed to predict the riverine activity of 16 
137Cs. The source term was estimated to be 9×104 TBq of 137Cs, or 3 % of the assumed total 137Cs 17 

inventory of the HAL (Highly Active Liquid) storage tanks. Air dispersion modelling predicted 18 
137Cs deposition reaching 127 kBq m-2 at the Vikedal catchment in Western Norway. Thus, the 19 

riverine transport model predicted that the activity concentration of 137Cs in at the river outlet could 20 

reach 9,000 Bq m-3 in the aqueous phase and 1,000 Bq kg-1 in solid phase at peak level. The lake 21 

and river reaches showed different transport patterns due to the buffering effects caused by dilution 22 

and slowing down of water velocity.  23 
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1. Introduction 27 

Nuclear accidents like the Chernobyl accident in 1986 and the Fukushima accident in 2011 cause 28 

acute release of hazardous radionuclides, such as 131I, 134Cs, 137Cs, 239,240Pu, 238Pu and 241Am into 29 

terrestrial, aquatic and marine environments (Reponen et al. 1993; Shozugawa et al. 2012; Zheng 30 

et al. 2012). 137Cs,  a radioactive isotope of cesium mostly formed as the fission products of 235U 31 

in nuclear reactors and weapons, is of particular environmental concern (Miro et al. 2012). Cs is 32 

relatively soluble compared to other radionuclides (Ciffroy et al. 2009) and its 30 year decay half-33 

life causes Cs to persist in the aquatic environment. The Chernobyl accident prompted a large effort 34 

to quantify the radionuclides transport, including 137Cs, from catchment to freshwater (Monte 1997; 35 

Monte 1998; Zheleznyak et al. 1997; Zheleznyak et al. 1992).  36 

The investigation of the impacts to the environment under hypothetical accident is a common 37 

practice for the Norwegian Environmental Agency and Norwegian Radiation Protection Authority 38 

(NRPA) in order to develop accident preparedness plan (Thørring et al. 2010). Those agencies 39 

identified that the Sellafield nuclear waste storage site posed a potential risk to terrestrial 40 

environment in Norway, an accident might occur at the facility. Given the mobility and 41 

environmental relevance of 137Cs, we focus our risk assessment exercise on this element, and assess 42 

its residence-time and distribution in a river basin after fallout of 137Cs under such a scenario. In 43 

order to evaluate of the impacts following accidental contamination in a timely manner, models for 44 

predicting the behavior of radionuclide transport in rivers basins arose as essential tools for 45 

prioritizing and implementing effective risk management strategies, many progresses have been 46 
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made to develop tools for understanding and predicting the behavior of radionuclides in 47 

environment (Monte et al. 2004). There are usually two types of modelling approaches, namely 48 

‘holistic’ and ‘reductionistic’. The holistic approaches tend to describe the processes based on 49 

empirical equations by first order compartment systems, for instance, the MARTE model (Monte 50 

2001) and the ECOPRAQ model (Hakanson et al. 2002). While the reductionistic approaches are 51 

instead aimed at describing the processes in great details according to primary laws from 52 

fundamental disciplines such as physics and chemistry, for instance BIOMOVS II (Konoplev et al. 53 

1996). Although the reductionistic models are good tools for the understanding of the overall 54 

migration process but it can be difficult for practical purposes due its high requirements for site 55 

specific data. The combination of both approaches usually stands as a good compromise between 56 

fast computation time and good process-oriented understanding. We thus introduce the semi-57 

distributed processes-oriented model based on the already established catchment model platform – 58 

INtegrated CAtchment model (INCA) (Whitehead et al. 1998a; Whitehead et al. 1998b), the 59 

purpose of the study is to provide a tool for fast evaluation of the potential risk for a freshwater 60 

ecosystem under a hypothetical nuclear accident.  61 

2. Materials and methods 62 

2.1. Study site receiving 137Cs fallout after an accident at Sellafield Nuclear Facility 63 

It is not straightforward to formulate a set of objective criteria for the definition of hypothetical 64 

accidents. Considering the problem from the environmental perspective, maximum deposition over 65 

Norwegian territory has been used as the main criterion, to represent a worst case scenario. Western 66 

Norway is identified as the most seriously affected region under the hypothetical accident 67 

(Thørring et al. 2010; Ytre-Eide et al. 2009). The Vikedal River Catchment in Western Norway 68 

discharging into the North Sea (Fig. S2) was chosen for calibrating and testing the model. Vikedal 69 

is an important salmon river in Norway (Hesthagen et al. 1999),  the coastal area which receives 70 

runoff from Vikedal River is also an important aquaculture area. This site is relevant because a 71 

potential nuclear accident and subsequent fallout could seriously damage the local environment 72 

and harm the local economy. The Vikedal Catchment has a total surface area of 118 km2. 30% is 73 

covered by forests, 7% is cropland and 63 % is mountain shrub. The model describes a simplified 74 

river network structure which is then divided into 5 reaches (Fig. S2). The five reaches represent 75 

the five divisions of the river which drains the five corresponding sub-catchments (VK1, VK2, 76 

VK3, VKT and VKM). 77 

2.2. Modelling methods  78 

We built the INCA-RAD model based on previously developed INCA platform (Supplementary 79 

Material). Briefly, after its deposition on the land, it will be distributed among soil water and soil 80 

particles. The surface and subsurface flow will carry the dissolved partitions of 137Cs in the stream 81 

and 137Cs bonded to soil particles will be transported by flow following erosion. 137Cs in-stream 82 

processes contain mainly sorption and desorption between suspended particulate matters (SPM) 83 

and aqueous phase, SPM sedimentation and resuspension (Fig. S1), more detailed description of 84 

the model is provided in Supplementary Material. To consider 137Cs fate and transport, the mineral 85 

fraction of the soil is considered relevant for 137Cs sorption, where the partitioning between water 86 

and particles is given by the partition coefficient KD (Eq. 1): 87 

KD =
𝐴𝑖

𝐶𝑖
 m3 kg-1 (1) 88 

where KD = partition coefficient, m3 kg-1 89 

           Ci = total dissolved adsorbate remaining in water at equilibrium, Bq m-3 90 

           Ai = amount of adsorbate on the solid at equilibrium, Bq kg-1 91 
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A decay constant is obtained by using the half-life of 137Cs of 30.17 years (Eq. 2):  92 



)2(Ln
kdecay =  d-1 = 6.2 × 10 -5 d-1 (2) 93 

2.3. Source term development  94 

Sellafield is a nuclear fuel reprocessing and nuclear decommissioning site located in Northwest 95 

UK (Fig. S2). There have been 21 major incidents in the past half a century which resulted in off-96 

site radiological releases with a rating on the International Nuclear Event Scale (INES) above level 97 

3 (Webb et al. 2006). Total activity of 137Cs is assumed to be between 1.9*10⁶ – 3.0*10⁶ TBq 98 

(Supplementary Material).  99 

3. Results and discussion 100 

3.1. Atmospheric deposition of 137Cs 101 
137Cs is assumed to be in aqueous state during the transport as the source tank contains liquid 102 

wastes. Fig. 1 shows the total predicted deposition during transport of 137Cs from Sellafield to 103 

Norway. It is shown that the highest deposition (>500 kBq m-2) happens within UK. The 104 

Norwegian west coast receives deposition between 50 and 500 kBq m-2 (yellow areas in Fig. 1). 105 

Specifically, the study sites Vikedal catchment received a total of 127 kBq m-2 during the 48-hour 106 

period, which is of similar magnitude to what was received in Norway after the Chernobyl accident 107 

(50-200 kBq m-2 deposition over Norway). After the Chernobyl accident, central Norway and 108 

especially mountainous regions were affected by relatively high levels of 137Cs deposition. The 109 

maximum, above 50 kBq m-2 137Cs, was observed in the Valdres and Jotunheimen areas (Baranwal 110 

et al. 2011). The helicopter measurements made in 2011 over Jotunheimen have revealed that the 111 

deposition in 1986 was above 200 kBq m-2 in the most contaminated areas (Skuterud et al. 2014).  112 

 113 
Fig. 1. Total deposition of 137Cs under worst case scenario in Bq m-2 simulated by the SNAP 114 

model 115 

3.2. 137Cs transport in the aquatic compartments 116 

The activity of 137Cs is simulated for both river water column and river bed sediment for all the 117 

five reaches (Fig. S2). The results show distinct differences of the transport patterns between the 118 

river reaches (VK1, VK2, VKT and VKM) and the lake reach (VK2) (Fig. 2). Fig. 2a shows the 119 



 
4 

137Cs activity of both water and sediment of VK2. The specific activity in water of VK2 reached ~ 120 

3800 Bq m-3 three months after the accident, and then decreased gradually to < 500 Bq m-3 after 121 

five years. Meanwhile, the specific activity in the sediment of VK2 reached 1100 Bq kg-1 after four 122 

years then progressively decreased. Fig. 2b shows the 137Cs activity in both water and sediment of 123 

VKM. Compared with the lake reach, activity in both water and sediment of the river reach shows 124 

a fast response to 137Cs deposition. The specific activity in water of VKM increased to its top about 125 

9000 Bq m-3 only 10 days after the accident, and the activity decreased by half only one year after 126 

the accident. The specific activity in sediment of VKM also shows a similar pattern as that in river 127 

water of VKM. In general, the activity in river reaches shows more dynamic fluctuations than that 128 

of the lake reach, consistent with the lake residence (~ 200 days) time buffering inflowing 137Cs. 129 

At the same time, activity in river reaches is heavily affected by the precipitation, as heavy rainfall 130 

generates high surface flow which carries much of particle-bound 137Cs into the river within a few 131 

hours. 132 

 133 
Fig. 2. Simulated specific activity of 137Cs in sediment (black lines) and water (gray lines) in 134 

Reach VK2 (panel a) and VKM (panel b), as well as comparison between 137Cs in water in reach 135 

VK2 (solid line) and VKM (dashed line) during the first year after the accident (panel c) 136 

3.3. Sensitivity analysis 137 

From the modelling results, the main key processes controlling the 137Cs transport in a watershed 138 

includes the partitioning of 137Cs between aqueous and solid phases, soil particles erosion, sediment 139 

transport in river and hydrologic processes. A sensitivity analysis exercise was therefore carried 140 

out to quantify the relative importance of the above-mentioned processes which translate into nine 141 

parameters (Table S1) in INCA model. A range of upper and lower boundaries of the parameters 142 

were given based on literature or previous INCA model experiences. For example, the most 143 

sensitive parameter is the partition coefficient between water and suspended particles (KD). Cs 144 

forms few stable complexes and is likely to exist in water as the free Cs+ ion, which adsorbs rather 145 

strongly to most minerals, especially clays (USEPA 1999). In the simulation, the KD value is 146 

determined based on geometric mean of 219 field experiments (IAEA 2010), the maximum and 147 
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minimum of the reported values were used to define the upper and lower boundary for the KD in 148 

sensitivity analysis to examine the variance of the results given the range of a selected parameter..  149 

The model results are also very sensitive to easily accessible fraction. This parameter describes 150 

how much percentage of particle complexation sites is easily accessible which is usually on the 151 

surface of particles, and the rest of sites are in the inner part of the particles which are less 152 

accessible. Bigger easily accessible fraction could result in the fast equilibrium of partitioning. 153 

Hydrologic residence time, which determines how fast the rainfall becomes surface and sub-surface 154 

flow, also influence model results. The current model is a generic tool to quickly evaluate the 155 

potential risks related to a hypothetical accident, it has limited information on site specific data, 156 

however better knowledge of mineralogy of the sediment grains, the organic matter content, Fe 157 

content in sediment and solute composition in water at the study site could further improve 158 

modelling results to be more accurate. 159 

3.4.  Comparison with past accidents  160 

Table 1 summarizes some of the reported 137Cs activity in lakes that were affected by the Chernobyl 161 

or Fukushima accident. The simulated results of this study show similar scale of water 137Cs activity 162 

to that of the Finnish lakes, at a comparable spatial scale. Four months after the Chernobyl accident, 163 
137Cs in Lake Päijänne water reached 1650 Bq m-3 (Vetikko and Saxen 2010). Here we predict 164 

3800 Bq m-3 in Lake Vikedal, which is of comparable magnitude. However, 137Cs activity in the 165 

sediments is predicted to be one order of magnitude lower than that observed in the Finnish lakes 166 

(Table 1). Our results are close to that from Japanese studies (Table 1), specifically those at Lake 167 

Akimoto (Matsuda et al. 2015), Lake Hibara, Lake Agari-Onuma, Lake Teganuma and Lake 168 

Inbanuma (Fukushima and Arai 2014). The reason for the different activity levels of 137Cs between 169 

our study and those on Finish lakes is likely caused by two main reasons. First of all, the Vikedal 170 

river is a very clear river where the SPM concentrations at most of the time are around 1 mg/L 171 

(https://vannmiljo.miljodirektoratet.no), the lack of SPM greatly limits the transport of 137Cs into 172 

sediment. Secondly, Lake Vikedal is located at relatively upper reach of the Vikedal River, which 173 

means that the lake doesn’t have a big catchment area. Therefore, the particle output from the 174 

catchment to Lake Vikedal is also relatively small compared with Finish Lake Päijänne. 175 

Environmental media concentration limits (EMCLs) represent, for a selected media (water or 176 

sediment) the activity that would result in a dose-rate to the most exposed organism equal to that 177 

of the selected screening dose-rate (10 µGy h-1 for ERICA). Recently, such values of EMCLs were 178 

updated for 137Cs, using the ERICA Integrated Approach (Andersson et al. 2009), to 51 Bq m-3 for 179 

water, and 1.75×104 Bq kg-1 for sediment (Brown et al. 2016). Under the hypothetical accident 180 

considered here, water 137Cs activities are in general over the EMCL, however sediment 137Cs 181 

activities are below the EMCL. This implies that the aquatic organisms such as insect larvae, which 182 

is the reference organism in ERICA for freshwater EMCLs, may be at eco-toxicological risk after 183 

exposure to aqueous 137Cs, while benthic organism may not.  184 

Table 1 Comparison of the activity predicted by INCA-RAD ad Vikedal with that observed 185 

following in Finland, Ukraine and Japan following actual accidents. 186 

Lake Time elapsed 

 (yr) 

Water 

(Bq m-3) 

Sediment 

(Bq kg-1 d.w.) 

References 

Simulated activity in Norway following hypothetical accident in Sellafield 

Vikedal  0.25 3800 250 This study 

Vikedal 4 500 1100 This study 

Measured activity in Finland following the Chernobyl accident 

Päijänne 0.33   1650 - (Vetikko and Saxen 2010) 
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Päijänne 10  - 18530 (Vetikko and Saxen 2010) 

Vehkajärvi 16  260 – 290 17000 – 20000  (Saxen 2007) 

Siikajärvi 16  290 – 320 13000 – 18000 (Saxen 2007) 

Measured activity in Ukraine following the Chernobyl accident 

Glyboke 30  4 126000 (Ganzha et al. 2014) 

Measured activity in Japan following the Fukishima accident 

Hayama 1 – 2  66.2 17340 (Matsuda et al. 2015) 

Akimoto 1 – 2  24.5 2357 (Matsuda et al. 2015) 

Tagokura 1 – 2  1.6 301 (Matsuda et al. 2015) 

15 lakes 0 – 2  - 23 – 26000 (Fukushima and Arai 

2014) 

4. Conclusions 187 

Environmental modelling is a powerful tool for authorities concerned with the environmental 188 

consequences of a low-frequency, high risk nuclear accident. Here, the hypothetical accident at 189 

Sellafield has shown to lead to elevated activity of 137Cs in both water and sediment in Western 190 

Norway. The levels of 137Cs specific activity are comparable to those measured in Norway and 191 

Finland after past accidents, and may pose a risk to aquatic organisms. 137Cs in sediment decreases 192 

more slowly than that in water phase due to strong adsorption of Cs 137 on particulate matters in 193 

the sediment.  194 

The combination of atmospheric dispersion modelling using SNAP and of catchment 195 

hydrochemical modelling using the augmented INCA model INCA-RAD proves a useful tool for 196 

supporting scientific research and management decision making on the interactions between 197 

climate events, land use, biogeochemistry and radionuclide deposition. These results further 198 

highlight the usefulness of parsimonious hydrochemical modeling to assess the risk posed by 199 

deposition of 137Cs. 200 
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