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Abstract
Objective. Mechanistic modeling of neurons is an essential component of computational 
neuroscience that enables scientists to simulate, explain, and explore neural activity. The 
conventional approach to simulation of extracellular neural recordings first computes 
transmembrane currents using the cable equation and then sums their contribution to 
model the extracellular potential. This two-step approach relies on the assumption that the 
extracellular space is an infinite and homogeneous conductive medium, while measurements 
are performed using neural probes. The main purpose of this paper is to assess to what extent 
the presence of the neural probes of varying shape and size impacts the extracellular field and 
how to correct for them. Approach. We apply a detailed modeling framework allowing explicit 
representation of the neuron and the probe to study the effect of the probes and thereby 
estimate the effect of ignoring it. We use meshes with simplified neurons and different types 
of probe and compare the extracellular action potentials with and without the probe in the 
extracellular space. We then compare various solutions to account for the probes’ presence 
and introduce an efficient probe correction method to include the probe effect in modeling of 
extracellular potentials. Main results. Our computations show that microwires hardly influence 
the extracellular electric field and their effect can therefore be ignored. In contrast, multi-
electrode arrays (MEAs) significantly affect the extracellular field by magnifying the recorded 
potential. While MEAs behave similarly to infinite insulated planes, we find that their effect 
strongly depends on the neuron-probe alignment and probe orientation. Significance. Ignoring 
the probe effect might be deleterious in some applications, such as neural localization and 
parameterization of neural models from extracellular recordings. Moreover, the presence of 
the probe can improve the interpretation of extracellular recordings, by providing a more 
accurate estimation of the extracellular potential generated by neuronal models.
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1.  Introduction

Huge efforts have been invested in computational modeling 
of neurophysiology over the last decades. This has led to the 
development and public distribution of a large array of realistic 
neuron models, for example from the Blue Brain Project (bbp.
epfl.ch [1, 2]), the Allen-Brain Institute brain cell database 
(celltypes.brain-map.org [3]), and the Neuromorpho data-
base (neuromorpho.org [4, 5]). As experimental data become 
available, these models become both more elaborate and more 
accurate. However, some of the assumptions underlying the 
most commonly used models may not allow the accuracy nec-
essary to obtain good agreements between models and experi-
ments. For instance, it was pointed out in Tveito et al [6] that 
assumptions underlying the classical cable equation and the 
associated method for computing the extracellular potential, 
lead to significant errors both in the membrane potential and 
the extracellular potential. In the present paper we investigate 
whether the classical modeling techniques used in compu-
tational neurophysiology are sufficiently accurate to reflect 
measurements obtained by different types of probes, such as 
microwires/tetrodes, and larger silicon multi-electrode arrays 
(MEAs). Traditionally, these devices are not represented in 
the models describing the extracellular field, and our aim is to 
see if this omission introduces significant errors and how this 
mismatch could be accounted for in modeling of extracellular 
activity.

The most widely accepted and used modeling framework 
for computing the electrophysiology of neurons is the cable 
equation [7–12], which is used to find current and membrane 
potentials at different segments of a neuron. One straightfor-
ward and computationally convenient way to model the extra-
cellular electric potential generated by neural activity is to sum 
the individual contributions of the transmembrane currents 
(computed for each segment) considering them as point current 
sources or line current sources [7, 11] using volume conductor 
theory. Although this approach represents the gold standard in 
computational neuroscience, there are some essential assump-
tions that need to be discussed. First, (i) the neuron is repre-
sented as a cable of discrete nodes and the continuous nature 
of its membrane is not preserved. Second, (ii) when solving 
the cable equation, the extracellular potential is neglected, 
but the extracellular potential is computed a posteriori.  
Third, and foremost, (iii) when computing extracellular 
potentials, the tissue in which the neuron lies is modeled as an 
infinite medium with homogeneous properties. The validity of 
these assumptions must be addressed in light of the specific 
application under consideration. The first assumption (i) can 
be justified by increasing the number of nodes in the model, 
but assumption (ii) is harder to relax since it means that the 

model ignores ephaptic effects. Therefore, this assumption 
has gained considerable attention [6, 13–18]. However, the 
main focus of the present paper is assumption (iii). More spe-
cifically our aim is to study the effect of the physical pres-
ence of a neural probe on the extracellular signals. Can it be 
neglected in the mathematical model, or should it be included 
as a restriction on the extracellular domain? Specifically, is 
the conventional modeling framework, ignoring the effect of 
the probes, sufficient to yield reliable prediction of extracel-
lular potentials? Finally, what can modelers do in order to rep-
resent and include the effect of recording probes? 

In order to investigate this question, we have used the 
extracellular-membrane-intracellular (EMI) model [6, 19, 20].  
The EMI model allows for explicit representation of both the 
intracellular space of the neuron, the cell membrane and the 
extracellular space surrounding the neuron. Therefore, the 
geometry of neural probes can be represented accurately in 
the model. We have run finite element simulations of simpli-
fied pyramidal cells combined with different types of probes, 
such as microwires/tetrodes, and larger silicon multi-electrode 
arrays (MEAs).

Our computations strongly indicate that the effect of the 
probe depends on several factors; small probes (microwires) 
have little effect on the extracellular potential, whereas larger 
devices (such as multi-electrode arrays, MEAs) change the 
extracellular potential quite dramatically, resembling the 
effect of a non-conductive infinite plane in the proximity of 
the neuron. The effect, however, depends on the neuron-probe 
alignment and orientation. We then compare the EMI results 
with conventional cable equation-based techniques, such as 
the current summation approach [11, 20], the hybrid solution 
[20–23], and the method of images [24, 25] and introduce 
the probe correction method, which allows to reach a hybrid 
solution accuracy leveraging on a pre-mapping of the probe-
specific effect and the reciprocity principle.

The results may aid in understanding experimental data 
recorded with MEAs, it may improve accuracy when extra-
cellular potentials are used to parameterize membrane models 
as advocated in [26], and to localize and classify neurons from 
MEA recordings [27, 28].

The rest of the article is organized as follows: in section 2 
we describe the methods used throughout the paper, with 
particular focus on the EMI model (section 2.1), the meshes 
(section 2.2), the finite element framework (section 2.3), 
and modeling approaches used for comparison (section 2.4). 
In section 3 we present our findings related to the effect of 
probes of different geometry on the extracellular recordings 
(section 3.1), the variability of our simulations depending on 
geometrical parameters of the mesh (section 3.2), before com-
paring them with results obtained from other computational 
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approaches (section 3.3) and the relative computational costs 
of these methods (section 3.4). Finally, we discuss and contex-
tualize the work in section 4.

2.  Methods

In this section we introduce the modeling frameworks used to 
investigate the effect of the probes on the extracellular poten-
tial. In particular we first describe the EMI model, the meshes, 
and the membrane and finite element modeling. Then, we 
describe the conventional modeling based on the cable equa-
tion solution: the current summation approach (CS), the hybrid 
solution (HS) and the method of images (MoI). Finally, we 
introduce the probe correction method (PC), which reaches 
the hybrid solution accuracy in a more efficient and computa-
tionally-cheap way.

2.1. The extracellular-membrane-intracellular model

The purpose of the present report is to estimate the effect of 
introducing a probe in the extracellular domain on the extra-
cellular potential. This can be done using a model discussed 
in [6, 19, 29–31] referred to as the EMI model. In the EMI 
model the extracellular space surrounding the neuron, the 
membrane of the neuron and the intracellular space of the 
neuron are all explicitly represented in the model. The model 
takes the form

∇ · σi∇ui = 0 in Ωi,� (1)

∇ · σe∇ue = 0 in Ωe,� (2)

ue = 0 at ∂Ωe,� (3)

σe∇ue · ne = 0 at ∂Ωp,� (4)

ne · σe∇ue = −ni · σi∇ui
def
= Im at Γ,� (5)

ui − ue = v at Γ,� (6)

∂v
∂t

=
1

Cm
(Im − Iion) at Γ.� (7)

In the simplified geometry sketched in figure  1, Ω denotes 
the total computational domain consisting of the extracellular 
domain Ωe and the intracellular domain Ωi , and the cell mem-
brane is denoted by Γ. ni and ne are the vectors normal to Γ 
pointing out of the intra- and extracellular domains, respec-
tively. ui and ue denote the intra- and extracellular potentials, 
and v = ui − ue denotes the membrane potential defined at the 
membrane Γ. The intra- and extracellular conductivities are 
given respectively by σi and σe and in this work we assume 
that the quantities are constant scalars. The cell membrane 
capacitance is given by Cm, and the ion current density is 
given by Iion. Im is the total current current escaping through 
the membrane.

The EMI model is here considered with grounding 
(Dirichlet) boundary conditions, i.e. ue  =  0, on the boundary 
of the extracellular domain (∂Ωe) while insulating (Neumann) 

boundary conditions, i.e. σe∇ue · ne = 0, were prescribed at 
the surface of the probe (∂Ωp). Note that the latter is a suit-
able boundary condition also for the conducting surfaces of 
the probe [25, 32]. The resting potential (see table 1) is used 
as initial condition for v.

2.2.  Meshes

In order to implement the EMI model described above, the 
computational domain was discretized by unstructured tetra-
hedral meshes generated by gmsh [33]. We used a simplified 
neuron model similar to a ball-and-stick model [34, 35], with 
a spherical soma with 20 µm diameter—whose center is in 
the origin of the axis—an apical dendrite of length Ld = 400 
µm and diameter Dd = 5 µm in the positive z direction and 
an axon of length Ld = 200 µm and diameter Dd = 2 µm in 
the negative z direction. Both the axon and the dendrites are 
connected to the soma via a tapering in the geometry. On the 
dendritic side, the diameter at the soma is 8 µm and it lin-
early reduces to 5 µm in a 20 µm portion. On the axonal side, 
the axon hillock has a diameter of 4 µm at the soma and it is 
tapered to 2 µm in 10 µm.

The neuron was placed in a box with and without neural 
probes to study the effect of the recording device on the 
simulated signals. We used three different types of probes:

	Microwire:  the first type of probe represents a microwire 
type of probe (or tetrode). For this kind of probes we used 
a cylindrical insulated model with 30 µm diameter. The 
extracellular potential, after the simulations, was esti-
mated as the average of the electric potential measured at 
the tip of the cylinder. The microwire probe is shown in 
figure 2(A) alongside with the simplified neuron.

	Neuronexus (MEA):  the second type of probe model 
represents a commercially available silicon MEA (A1x32-
Poly3-5mm-25s-177-CM32 probe from Neuronexus 
Technologies), which has 32 electrodes in three columns 
(the central column has 12 recording sites and first and 
third columns have 10) with hexagonal arrangement, a 
y -pitch of 18 µm, and a z-pitch of 22 µm. The electrode 
radius is 7.5 µm. This probe has a thickness of 15 µm 
and a maximum width of 114 µm, and it is shown in 
figure 2(B).

	Neuropixels (MEA):  the third type of probe model represents 
the Neuropixels silicon MEA [36]. The original probe has 
more than 900 electrodes over a 1 cm shank, it is 70 µm 
wide and 20 µm thick. In our mesh, shown in figure 2(C) 
we used 24 12 × 12 µm recording sites arranged in the 
chessboard configuration with an inter-electrode-distance 
of 25 µm [36].

In order to evaluate the effect of the described probes 
depending on the relative distance to the neuron (x direction), 
we generated several meshes in which the distance between 
the contact sites and the center of the neuron was 17.5, 22.5, 
27.5, 37.5, 47.5, and 77.5 µm. Note that these distances refer 
to the beginning of the microwire tip (which extends in the x 
direction for 30 µm) and to the MEA y   −  z plane (for the MEA 
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probes the recording sites do not extend in the x direction). 
When not specified, instead, the distance for the microwire 
probe was 25 µm, 32.5 µm for the Neuronexus MEA probe, 
and 30 µm for the Neuropixels probe (center of the probe tip 
at 40 µm).

To investigate if and how the bounding box size affects 
the simulation, since the electric potential is set to zero at its 
surface, we generated meshes with five different box sizes. 
Defining dx, dy, and dz as the distance between the extremity 
of the neuron and the box in the x, y , and z directions, the three 
box sizes were:

	size 1:	� dx  =  80 µm, dy  =  80 µm, and dz  =  20 µm
	size 2:	� dx  =  100 µm, dy  =  100 µm, and dz  =  40 µm
	size 3:	� dx  =  120 µm, dy  =  120 µm, and dz  =  60 µm
	size 4:	� dx  =  160 µm, dy  =  160 µm, and dz  =  100 µm
	size 5:	� dx  =  200 µm, dy  =  200 µm, and dz  =  150 µm

Moreover, we evaluated the solution convergence depending 
on the resolution by generating meshes with four different 
resolutions. Defining rn, rp , and rext as the resolutions/typical 
mesh element sizes for the neuron volume and membrane, for 
the probe, and for the bounding box surface, respectively, the 
four degrees of coarseness were:

	coarse 0: � rn  =  2 µm, rp   =  5 µm, and rext  =  7.5 µm
	coarse 1: � rn  =  3 µm, rp   =  6 µm, and rext  =  9 µm
	coarse 2: � rn  =  4 µm, rp   =  8 µm, and rext  =  12 µm
	coarse 3: � rn  =  4 µm, rp   =  10 µm, and rext  =  15 µm

At the interface between two resolutions, the mesh size was 
determined as their minimum. Further, having instructed 
gmsh to not allow hanging nodes the mesh in the surround-
ings of the neuron and probe is gradually coarsened to rext 
resolution.

For each of the mesh configuration with varying probe 
model, box size, and coarseness we simulated the extracel-
lular signals with and without the probe in the extracellular 
space and sampled the electric potential at the recording site 
locations (even when the probe is absent).

2.3.  Membrane model and finite element implementation

On the membrane of the soma and the axon, the ionic current 
density, Iion, is computed by the Hodgkin–Huxley model with 
standard parameters as given in [37]. On the membrane of the 
dendrite, we apply a passive membrane model with a synaptic 
input current of the form

Iion = Ileak + Isyn,� (8)

Ileak = gL(v − vrest),� (9)

Isyn = gs(x)e−
t−t0
α (v − veq),� (10)

where

gs(x) =
{

gsyn, for x in the synaptic input area,
0, elsewhere.� (11)

Figure 1.  Sketch of the simplified neuron geometry and its surroundings. The intracellular domain is denoted by Ωi , the cell membrane is 
denoted by Γ, and the extracellular domain is denoted by Ωe. The boundary of the probe is denoted by ∂Ωp and the remaining boundary 
of the extracellular domain is denoted by ∂Ωe. The normal vector pointing out of Ωi  is denoted by ni, and ne denotes the normal vector 
pointing out of Ωe. L and D are the length and diameter of neural segments, respectively, and D1 is the diameter of the hillocks in 
correspondence of the soma. In our simulations, we consider three types of probe geometry (see figure 2). Note that the probe interior is 
not part of the computational domain.

Table 1.  Model parameters used in the simulations. The parameters 
of the Hodgkin–Huxley model are given in [37].

Parameter Value Parameter Value

Cm 1 µF cm−2 gsyn 10 mS cm−2

σi 7 mS cm−1 veq 0 mV
σe 3 mS cm−1 t0 0.01 ms
gL 0.06 mS cm−2 α 2 ms
vrest −75 mV
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The parameters of the dendrite model are given in table 1, and 
the synaptic input area is defined as a section of the dendrite 
of length 20 µm located 350 µm from the soma, as illustrated 
in figure 1.

The EMI model (1)–(7) is solved by the operator splitting 
scheme and the H(div) discretization proposed in [20]. In 
this scheme a single step of the EMI model consists of two 
sub-steps. First, assuming the current membrane potential v is 
known, the ordinary differential equations (ODE) of the mem-
brane model are solved yielding a new membrane state and 
the value of v. Next, equation (7), discretized in time with Iion 
set to zero, is solved together with equations (1)–(6) using the 
computed value of v as input. This step yields the new values 
of intra/extra-cellular potentials ui, ue and the transmembrane 
potential v. The H(div) approach then means that the EMI 
model is transformed by introducing unknown electrical fields 

σi∇ui and σe∇ue in addition to the potentials ui, ue and v. 
Thus more unknowns are involved, however, the formulation 
leads to more accurate solutions, see [20, section 3].

In our implementation the ODE solver for the first step of 
the operator splitting scheme is implemented on top of the 
computational cardiac electrophysiology framework cbc.
beat [38]. For the second step, the H(div) formulation of the 
EMI model, see [20, section 2.3.3], is discretized by the finite 
element method (FEM) using the FEniCS library [39]. More 
specifically, the electrical fields are discretized by the lowest 
order Raviart–Thomas elements [40] while the potentials 
use piecewise constant elements. The linear system due to 
implicit/backward-Euler temporal discretization in equation 
(7) and FEM is finally solved with the direct solver MUMPS 
[41] which is interfaced with FEniCS via the PETSc [42] 
linear algebra library.

Figure 2.  Visualization of simplified neuron and probe meshes. (A) Microwire: the probe has a 15 µm radius and it is aligned to the 
neuronal axis (z direction) and the center of the probe tip is at (40, 0, 0) µm (the soma center is at (0, 0, 0) µm). The axon and soma of 
the neuron are depicted in yellow, the dendrite is orange, and the axon and dendritic hillock are in cyan. (B) Neuronexus MEA: the probe 
represents a Neuronexus A1x32-Poly3-5mm-25s-177-CM32 with recording sites facing the neuron. The MEA is 15 µm thick and the center 
of the bottom vertex is at (40, 0, −100) µm. The maximum width of the probe is 114 µm, which makes it almost four times larger than the 
microwire probe. (C) Neuropixels MEA: this probe [36] has a width of 70 µm, a thickness of 20 µm, and the center of the bottom vertex is 
at (40, 0, −100) µm. All meshes represented here are built with the finest coarseness described in the text (coarse 0).
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2.4.  Other modeling approaches

2.4.1.  Current summation (CS), method of images (MoI), 
and scaled current summation (SCS).  The cable equation  
[43–45] is of great importance in computational neuroscience, 
and it reads,

Cm
∂v
∂t

+ Iion = η
∂2v
∂x2 ,

�
(12)

where v is the membrane potential of the neuron, Cm  is the 
membrane capacitance, Iion is the ion current density and 
η = hσi

4 , where h is the diameter of the neuron, and σi denotes 
the intracellular conductivity of the neuron [43].

This equation is used to compute the membrane potential 
of a neuron and the solution is commonly obtained by dividing 
the neuron into compartments and replacing the continuous 
model (12) by a discrete model [43]. In order to compute the 
associated extracellular potential, it is common to use the 
solution of the cable equation to compute the transmembrane 
currents densities in every compartment, and then invoke the 
classical summation formula,

ue(x, y, z) =
1

4πσe

∑
k

Ik

|r − rk|
.� (13)

Here, σe is the constant extracellular conductivity (in all the 
implemented models, the milieu is assumed to be linear by 
using a constant σe), rk is the center of the kth compartment 
of the neuron, |r − rk| denotes the Euclidean distance from 
r = r(x, y, z) to the point rk, and Ik denotes the transmem-
brane current of each compartment. This solution assumes 
that the extracellular milieu is purely conductive, infinite, and 
homogeneous. We denote this method as current summation 
approach (CS) [6].

As the silicon probes are made of insulated material, they 
could be approximated with the method of images (MoI) [12, 
24, 25]. With the MoI the probe is assumed to be an infinite 
insulating plane, effectively increasing the extracellular 
potential by a factor of 2. Using the MoI, the factor 2 can 
be explained as follows: for each current source, an image 
current source is introduced in the mirror position with respect 
to the insulating plane, effectively doubling the potential in 
proximity of the plane and canceling current densities normal 
to the plane. For the MoI, the summation formula (equation 
13) reads:

ue(x, y, z) =
1

2πσe

∑
k

Ik

|r − rk|
.� (14)

As will be shown section 3.1, the peak scaling factor (1 and 
2 for the CS and MoI solutions, respectively) of the modeled 
probes is modulated by the neuron-probe alignment, rotation, 
and by the probe type and it can be a value between 0 and 2 
depending on these factors. Therefore, we also propose and 
compare a third current summation-based approach, namely 
scaled current summation (SCS), in which the scale factor 
is set to match the peak ratio between the hybrid solution 
(section 2.4.2) and the CS solution on the electrode with 
largest amplitude (e.g. 1.65 is used in section 3.3.1).

We implemented the same simulations presented in sec-
tion 2.1 using the conventional modeling approach described 
above (CS) to compare them with the EMI simulations. We 
used LFPy [11, 12], running upon Neuron 7.5 [9, 10], to 
solve the cable equation and compute extracellular potentials 
using equation (13). As morphology, we used a ball-and-stick 
model with an axon with the same geometrical properties 
described in section  2.2. Similarly to the EMI simulations, 
we used a synaptic input in the middle of the dendritic region 
activated in the EMI simulation (z  =  360 µm) to induce a 
single spike and we observed the extracellular potentials on 
the recording sites. The synaptic weight was adjusted so that 
the extracellular largest peak was coincident in time with the 
one from the EMI simulation. To model the spatial extent of 
the electrodes, we randomly drew 50 points within a recording 
site and we averaged the extracellular potential computed at 
these points [11]. We used the same parameters shown in 
table  1 (note that in Neuron conductances are defined in  
S cm−2 so we set gL = gpas = 0.06 · 10−3 S cm−2) and we used 
an axial resistance Ra of 150 Ω cm−1. The fixed_length 
method was used as discretization method with a fixed length 
of 1 µm, yielding 658 segments (23 somatic, 422 dendritic, 
and 213 axonal). Transmembrane currents were considered 
as current point sources in their contributions to the extracel-
lular potential, following equation (13) (using LFPy point-
source argument of the RecExtElectrode class). The 
MoI and SCS solutions were calculated by multiplying the CS 
solution by a factor 2 and 1.65 (optimized scale factor using 
the hybrid solution).

2.4.2.  Hybrid solution (HS).  The hybrid solution (HS) 
[21–23] combines the transmembrane currents for each 
neural segments computed with the cable equation  and a 
finite element modeling for the extracellular space. The 
transmembrane currents are used as source terms in a finite 
element solution of the Poisson Equation  in the extracel-
lular space (equation (2), using an iterative solver for the 
Poisson problem, specifically, preconditioned conjugate 
gradients with algebraic multigrid preconditioning). With 
this approach, the probe can be explicitly modeled using 
insulating (Neumann) boundary conditions at the surface 
of the probe (equation (5)) and the differences between the 
HS and the EMI solution lie in differences regarding the 
modeling of the neuron dynamics, such as the self-ephaptic 
effect. The HS requires that a FEM simulation is run for 
each timestep of the transmembrane currents, each time 
setting the source terms with the currents at the specific 
timestep. This makes it computationally expensive, espe-
cially, for long simulations. Alternatively, one could run a 
single FEM simulation for each neural segment with a uni-
tary test current and then use the potentials computed at the 
recording sites as a static map for summing the contribution 
of all currents at each timestep. The latter approach can be 
also computationally complex, as the number of segments 
in the multi-compartment simulation can be quite high and 
it would require to store in memory a large number of finite 
element solutions.
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2.4.3.  Probe correction (PC).  The hybrid solution is a good 
and widely used approach to model a non-homogeneous 
extracellular space, especially in the peripheral nervous sys-
tem literature [21–23]. However, it requires to run a finite 
element simulation for every neuron simulation, as transmem-
brane currents are located in different positions for different 
neurons.

In order to overcome this issue, we designed the probe cor-
rection method (PC) that relies on the reciprocity principle 
[46] and the principle of superimposition (given the assump-
tion of linearity of the milieu expressed in section  2.4.1). 
The reciprocity principle states that if a current I1 in a posi-
tion (x1, y1, z1) generates a potential u1 in a second position 
(x2, y2, z2), then the same current I1 placed in (x2, y2, z2) will 
result in a potential u1 in (x1, y1, z1)

6. Using this principle, we 
first simulated with a finite element method the extracellular 
potential generated by a test current (1 nA) from each elec-
trode i of a specific probe (e.g. Neuronexus) in any point of the 
extracellular space and define it as ui(xi, yi, zi), where (xi, yi, zi) 
is the relative position with respect to the electrode i. Also in 
this case we used an iterative solver for the Poisson problem 
(preconditioned conjugate gradients with algebraic multigrid 
preconditioning). Then, leveraging on the reciprocity and 
superimposition principles, we mapped the contribution of 
each transmembrane current to the potential at each electrode 
i as: uik = Ikui(xk, yk, zk), where (xk, yk, zk) is now the relative 
position between the kth neural segment and the electrode i, 
and Ik is the transmembrane current for the kth neural seg-
ment. The potential at each electrode i can be computed as:

ui =
∑

k

uik =
∑

k

Ikui(xk, yk, zk).

The PC method allows to pre-compute the effect of a probe 
in the extracellular space and then use this mapping for any 

neural model, without the need to run a full FEM simulation. 
The number of FEM solutions that need to be computed and 
stored during the pre-mapping is equal to the number of elec-
trodes in the probe.

3.  Results

In this section we present results of numerical simulations 
which quantify the effect of introducing probes in the extra-
cellular domain on the extracellular potential. We show how 
this effect depends on the distance between the neuron and 
the probe, their lateral alignment, and the probe rotation. 
The evaluation of the probe effect (section 3.1) is carried 
out using the EMI simulation framework. Furthermore, we 
evaluate the numerical variability of the EMI solutions (sec-
tion 3.2), we compare with other modeling schemes (section 
3.3), and finally report CPU-efforts for the simulations (sec-
tion 3.4).

3.1. The probe effect

3.1.1. The geometry of the probe affects the recorded sig-
nals.  The first question that we investigated is whether the 
probes have an effect and, if so, how substantial this effect is 
and if it depends on the probe geometry. In order to do so we 
analyzed the extracellular action potential (EAP) traces with 
and without placing the probe in the mesh.

In figure 3 we show the EAP with and without the microwire 
probe (A), the Neuronexus probe (B), and the Neuropixels 
probe (C). The blue traces are the extracellular potentials 
computed at the recording sites when the probe was removed, 
while the orange traces show the potential when the probe is 
present in the extracellular space. In this case the probe tip 
was placed 40 µm from the soma center, we used a box of 
size 2 and coarse 2 resolution. It is clear that the probe effect 

Figure 3.  Extracellular action potentials (EAPs). (A) EAPs without (blue) and with (orange) the microwire probe (single recording site) 
in the extracellular space. The amplitude difference in the largest peak is only 1.03 µV, which is negligible for most applications. (B) Same 
as (A) but with the Neuronexus MEA probe. For this probe, the difference in amplitude is 20.17 µV (the solution with the MEA is almost 
twice as large as the one without the MEA in the extracellular space). (C) Same as (A) but with the Neuropixels MEA probe. For this probe, 
the difference in amplitude is 23.16 µV.

6 The reciprocity principle was originally derived for static charges and 
extended here to static currents.
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is more prevalent for the MEA probes than for the microwire, 
suggesting that the physical size and geometry of the probe 
play an important role. In particular, for the Neuronexus probe 
the minimum peak without the probe is  −21.09 µV and with 
the probe it is  −41.26 µV: the difference is 20.17 µV. For the 
Neuropixels probe the peak with no probe is  −21.2 µV, with 
the probe it is  −44.36 µV and the difference is 23.16 µV. In 
case of the microwire type of probe, the effect is minimal: 
the minimum peak without the probe is  −16.85 µV, with the 
probe it is  −15.82 µV, and the difference is about 1.03 µV 
(the peak without the probe is even larger than the one with 
the probe). Note that the values for the microwire are slightly 
lower than the MEAs because even if the microwire tip center 
is at the same distance (40 µm), it extends for 30 µm in the 
x direction, effectively lowering the recorded potential due to 
the fast decay of the extracellular potential with distance. The 
recording sites of the MEAs, instead, lie on the y   −  z plane, 
at a fixed distance.

The MEAs, electrically speaking, are like insulating walls 
that do not allow currents to flow in. The insulating effect can 

be appreciated in figure 4, in which the extracellular poten-
tial at the time of the peak is computed in the [10, 100] µm 
interval in the x direction and in the [−200, 200] µm interval 
in the z direction (the origin is the center of the soma). Panel A 
shows the extracellular potential with the probe (Neuronexus) 
and panel B without the probe. The currents are deflected 
due to the presence of the probe, and this causes an increase 
(in absolute value) in the extracellular potential between the 
neuron and the probe, as shown in panel C, where the differ-
ence of the extracellular potential with and without probe is 
depicted. The substantial effect using the MEA probe prob-
ably also depends on the arrangement of the recording sites: 
while for the MEAs, the electrodes face the neuron (they lie on 
the y   −  z plane) and currents emitted by the membrane cannot 
flow in the x direction due to the presence of the probe, for the 
microwire, the electrode is at the tip of the probe (at z  =  0, 
extending in the x  −  y  plane—see figure 2) and currents can 
naturally flow downwards in the x direction, yielding a little 
effect (figure 4(C) shows that the effect at the tip of the MEA 
probe is almost null).

Figure 4.  Extracellular potential distribution on the x  −  z plane with the Neuronexus MEA probe (A) without the probe (B), and their 
difference (C). The images were smoothed with a gaussian filter with standard deviation of 4 µm. The color code for panel A and B is the 
same. The isopotential lines show the potential in µV. The probe (white area) acts as an insulator, effectively increasing the extracellular 
potential (in absolute value) in the area between the neuron and the probe (panel C, blue colors close to the soma and red close to the 
dendrite) and decreasing it behind the probe of several µV. The effect is smaller at the tip of the probe (the green color represents a 0 µV 
difference).
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3.1.2. The amplitude ratio is constant with probe distance.  In 
this section we analyze the trend of the probe-induced error 
depending on the vicinity of the probe. We swept the extracel-
lular space from a closest distance between the probe and the 
somatic membrane of 7.5 µm to a maximum distance of 67.5 
µm.

In figures  5(A)–(C) we plot the absolute peak values 
with (orange) and without probe (blue), as well as their dif-
ference (green) for the microwire (A), Neuronexus (B) and 

Neuropixels (C) probes. For the microwire (A), as observed 
in the previous section, the probe effect is small and the max-
imum difference is 1.97 µV, which is 10.1% of the amplitude 
without probe, when the probe is closest. For the Neuronexus 
MEA probe (B), at short distances the difference between 
the peaks with and without probe is large—40.5 µV (88.8% 
of the amplitude without probe) at 7.5 µm probe-membrane 
distance—and it decreases as the probe distance increases. At 
the farthest distance, where the probe tip is at 75 µm from the 

Figure 5.  Differences in EAP maximum absolute value peak with and without probe depending on distance. (A) Microwire probe: 
maximum peak without probe (blue), with probe (orange), and their difference (green). The difference is small even when the probe is close 
to the neuron. (B) Neuronexus MEA probe: maximum peak without probe (blue), with probe (orange), and their difference (green). The 
difference is large at short distances and it decays at larger distances. (C) Neuropixels MEA probe: maximum peak without probe (blue), 
with probe (orange), and their difference (green). Also for this probe the difference is large at short distances and it reduces at further away 
from the neuron. (D) Ratio between peak with and without probe for the Neuronexus (red), the Neuropixels (blue) and the microwire probe 
(grey). The ratio is almost constant at different distances and the average value is 1.9 for the Neuronexus, 1.91 for the Neuropixels, and 1.05 
for the microwire probe.
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somatic membrane, the difference is 4.38 µV, which is 90.2% 
of the amplitude without probe. For the Neuropixels MEA 
probe (C) the effect is in line with the Neuronexus probe, with 
a maximum difference of 41.07 µV (95.9% of the amplitude 
without probe) when the probe is closest and a minimum of 
5.08 µV, which is still 116.1% of the amplitude without probe, 
when the probe is located at the maximum distance. Note 
that the peak amplitudes on the microwire probe are smaller 
than the one measured on the MEAs at a similar distances. 
At the closest distance, for example, the Neuronexus MEA 
electrodes lie on the y   −  z plane exactly at 7.5 µm from the 
somatic membrane. For the microwire, instead, 7.5 µm is the 
distance to the beginning of the cylindrical probe, whose tip 
extends in the x direction for 30 µm. The simulated electric 
potential is the average of the electric potential computed on 
the microwire tip and it results in a much lower amplitude due 
to the fast decay of the extracellular potential with distance 
(see equation (13)).

In panel (D) of figure  5 we show the ratio between the 
peak with probe and without probe depending on the probe 
distance for the Neuronexus (red), Neuropixels (blue), and the 
microwire (grey) probes. The ratio for the microwire probe 
varies around 1 (average  =  1.05), confirming that the probe 
effect can be neglected for microwire-like types of probe, 
due to their size and geometry. Instead, when a MEA probe 
is used, the average ratio is around 1.9 and its effect on the 
recordings cannot be neglected.

3.1.3. The probe effect is reduced when neuron and probe are 
not aligned.  So far, we have shown results in which the neu-
ron and the probe are perfectly aligned in the y  direction, but 
the probe effect is likely to be affected by the neuron-probe 

alignment, since the area of the MEA probe (we focus here 
on the Neuronexus and Neuropixels MEA probes as the effect 
using the microwire is negligible) facing the neuron changes 
depending on the lateral shift in the y  direction and probe 
rotation.

To quantify the trend of the probe effect depending on the 
y  shift, we ran simulations moving the probes at different y  
locations (10, 20, 30, 40, 50, 60, 80, and 100 µm) and com-
puted the ratios between the maximum peak with and without 
the MEA in the extracellular space. The simulations were run 
with coarse 2 resolution and boxsize 5 and the probe tip was at 
40 µm from the center of the neuron. In figure 6(A) we show 
the peak ratios depending on lateral y  shifts. The ratio appears 
to decrease almost linearly with the shifts, from a value of 
around 1.8–1.9 when the probe is centered (note that the peak 
ratio slightly varies depending on resolution and size, as cov-
ered in section 3.2) to a value of around 1.2 when the shift is 
100 µm (the half width of the probe is 57 µm for Neuronexus 
and 35 µm for Neuropixels).

In order to evaluate the effect of rotating the probes, 
we ran simulations with the probe at 70 µm distance (to 
accommodate for different rotations), coarse 2 resolution,  
boxsize 4, and rotations of 0, 30, 60, 90, 120, 150, and 180°. 
In figure 6(B) the peak ratios depending on the rotation angle 
are shown. For small or no rotations (0, 30°) the value is 
around 1.7 (note that we always selected the electrode with 
the largest amplitude, which might not be the same electrode 
for all rotations). For a rotation of 90° the peak ratio is around 
1 (the probe exposes its thinnest side to the neuron) and for 
further rotations the probe’s shadowing effect makes the peak 
with the probe smaller (as observed in figure 4(C)), yielding 
peak ratio values below 1. These results demonstrate that the 

Figure 6.  Effects of neuron probe alignment. (A) Amplitude ratio for different y  lateral shifts for the Neuronexus (red) and Neuropixels 
(blue) probes. The ratio decreases almost linearly with the y  shift. (B) Amplitude ratio for different probe rotations for the Neuronexus (red) 
and Neuropixels (blue) probes. At small rotations, the peak ratio is between 1.6 and 1.8, at 90° rotation (when the probe exposes its thinnest 
side to the neuron) it is around 1, and between 90° and 180° the shadowing effect of the probe makes the ratio lower than 1.
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relative arrangement between the neuron and the probe play 
an important role in affecting the recorded signals.

3.2.  EMI solution dependence on domain size and resolution

We generated meshes of four different resolutions and five dif-
ferent box sizes, as described in section 2.2, in order to inves-
tigate how the resolution and the domain size affect the finite 
element solutions. Since we are mainly interested in how the 
probe affects the extracellular potential and we showed that 
only for MEA probes this effect is large, we focus on the 
extracellular potential at the recording site with the maximum 
negative peak. We used the Neuronexus MEA probe for this 
analysis and the distance of the tip of the probe was 40 µm  
(the recording sites plane is at 32.5 µm from the somatic 
center). The recording site which experienced the largest 
potential deflection was at position (32.5, 0,−13) µm, i.e. the 
closest to the neuron soma in the axon direction. For a deeper 
examination of convergence of the EMI model refer to [6]. For 
resolutions coarse 0 and coarse 1 the box of size 4 and 5, and 
of size 5, respectively, were too large to be simulated.

In table 2 we show the values of the minimum EAP peak 
with and without the Neuronexus probe, their difference, and 
their ratio grouped by the domain (box) size and averaged 
over resolution. Despite some variability due to the numer
ical solution of the problem, there is a common trend in the 
peak values as the domain size increases: the minimum peaks 
tend to be larger in absolute values, both when the probe is 
in the extracellular space (from  −40.12 µV for box size 1 
to  −43.09 µV for box size 5) and when it is not (from  −20.64 
µV for box size 1 to  −23.71 µV for box size 5). This can 
be explained by the boundary conditions that we defined for 
the bounding box (equation (3)), which forces the electric 
potential at the boundaries to be 0. For this reason, a smaller 
domain size causes a steeper reduction of the extracellular 
potential from the neuron to the bounding box, making the 
peak amplitude, in absolute terms, smaller. The peak differ-
ence with and without the MEA probe appears to be rela-
tively constant, but the peak ratio tends to slightly decrease 
with increasing domain size for the same reason expressed 
before (from 1.95 for box size 1 to 1.82 for box size 5). The 
solutions appear to be converging for box sizes 4 and 5, but 
the relative error (difference between box 1 and box 5 values 
divided by the value of box 5) is moderate (6.89% for the 

peak with probe, 12.95% for the peak without probe, and 
4.14% for the peak ratio). Nevertheless, the 1.8–1.85 peak 
ratio values obtained with larger domain sizes should be a 
closer estimate of the true value.

Table 3 displays the same values of table 2, but with a fixed 
box size of 2 and varying resolution (Coarseness). The rela-
tive error (maximum difference across resolutions divided by 
the average values among resolutions) of the peak with the 
MEA is 3.3%, without the probe it is 6.65%, and for the peak 
ratio it is 3.53%.

Because the main purpose of this work was to qualitatively 
investigate the effect of various probe designs and the effect 
of distance, alignment, and rotation on the measurements, we 
used resolution coarse 2 and box size 2, which represented 
an acceptable compromise between accuracy and simulation 
time. For investigating the effect of probe rotation and side 
shift we increased the box size to 4 and 5, respectively, to 
accommodate the position of the neural probe. Finally, in sec-
tion 3.3 we increased the resolution to coarse 0 and used box 
size 3 to obtain more accurate results for the comparison with 
the cable equation simulations.

3.3.  Comparison with other approaches

After having investigated how an extracellular probe affects 
the amplitude of the recorded potentials and how this ampl
itude is modulated with distance, alignment, and rotation 
between the neuron and the probe, we now compare the EMI 
solution to other modeling approaches. We first analyze the 
differences between the EMI solution without the probe and 
the cable equation  / current summation approach (CS) and 
between the EMI solution with the probe and the hybrid solu-
tion (HS). Then we focus on the HS, which combines a cable 
equation  solution and an explicit model of the extracellular 
space, including the probe, in a FEM framework, and com-
pare its solution to three correction strategies: the method of 
images (MoI), the scaled current summation (SCS), and the 
probe correction (PC).

In all the following simulations we used a mesh with 
coarse 0 resolution and box size 3. The distance between the 
neuron soma center and the probe tip was 40 µm, resulting in 
recording sites on the x  =  32.5 µm plane.

3.3.1.  EMI, CS, and HS comparison.  In order to compare 
the EMI simulations to conventional modeling, we built the 

Table 2.  Solution variability depending on box (domain) size. 
The columns contain the maximum peak with the Neuronexus 
(MEA) probe, without the probe, the difference and ratio of the 
amplitudes with and without probe. The values are averaged over all 
resolutions.

Box 
size

Vpeak with 
MEA (µV)

Vpeak without 
MEA (µV)

Difference 
(µV)

Peak 
ratio

1 −40.12 −20.64 19.48 1.95
2 −41.46 −20.91 20.55 1.98
3 −41.91 −23.83 18.07 1.77
4 −43.10 −23.35 19.75 1.85
5 −43.09 −23.71 19.38 1.82

Table 3.  Solution variability depending on resolution (Coarseness). 
The columns contain the maximum peak with the Neuronexus 
(MEA) probe, without the probe, the difference and ratio of the 
amplitudes with and without probe. The values are computed with a 
box size 2.

Coarseness
Vpeak with 
MEA (µV)

Vpeak without 
MEA (µV)

Difference 
(µV)

Peak 
ratio

0 −41.74 −20.67 21.07 2.02
1 −40.74 −20.25 20.49 2.01
2 −41.26 −21.09 20.18 1.96
3 −42.11 −21.64 20.46 1.95
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same scenario shown in figure  2(B) (Neuronexus probe) 
using Neuron and LFPy, as described in section  2.4. As 
conventional modeling assumes an infinite and homogeneous 
medium, we compared the EAPs obtained by combining the 
cable equation solution (equation (12)) and the current sum-
mation formula (equation (13)) with the EMI simulations 
without the probe. The extracellular traces for the current 
summation approach (CS, red) and the EMI model (blue) 
are shown in figure 7(A). The EAPs almost overlap for every 
recording site, despite some differences in amplitude. On the 
electrode with the largest peak, the value for the EMI solution 
is  −23.03 µV, while the value for the CS is  −27.95 µV (the 
difference is 4.91 µV). This difference, which has been pre-
viously observed, is intrinsic to the EMI model [6], and can 
be due to self-ephaptic effects [6, 13–18]. Note also that the 
condition that forces the extracellular potential to zero at the 
boundary of the domain causes a steeper descent in the extra-
cellular amplitudes, as discussed in section 3.2.

The hybrid solution (HS) uses currents computed with the 
cable equation and runs a FEM simulation of the extracellular 
space, including the probe. In figure 7(B) we show the extra-
cellular potential of the EMI simulation with probe (orange) 
and the HS (green). Also in this case we observe that the EMI 
solution yields slightly smaller amplitudes with respect to the 
HS (EMI peak:  −42.6 µV; HS peak  −46.15 µV; difference: 
3.55 µV) and these differences can be once again traced back 
to underlying differences of the neural solver.

3.3.2.  HS, MoI, SCS, and PC comparison.  After having 
shown that there are intrinsic differences between the EMI 
model and solutions based on the cable equation (CS, HS), we 

now compare two computationally less expensive strategies 
that could be used to account for the probe effect in modeling 
of extracellular potentials.

The MoI and SCS are attractive candidates due to their 
almost null computational cost, as they only multiply all 
values by a constant factor. The factor for infinite insulated 
planes, as described in section 2.4.1, is 2, but as shown in fig-
ures 5 and 6, for MEA probes it is somewhere between 0 and 
2 depending on the neuron-probe lateral shift and rotation. In 
this scenario, the neuron is perfectly aligned with the probe 
and there is no rotation. The peak ratio for the SCS was com-
puted by dividing the largest peaks of the HS and CS solutions 
and it was set to 1.65. In figure 8(A) the EAP from the HS 
(green), from the MoI (pink), and from the SCS with factor 
1.65 (grey) are displayed. The MoI (pink) overshoots the esti-
mation of the extracellular amplitudes (MoI peak:  −55.89 µV;  
HS  −46.15 µV; difference: 9.74 µV). The SCS solution, 
expectedly, results in the same amplitude as the HS on the 
electrode with the largest peak, as the scaling factor was com-
puted using the actual peak ratio between the HS and the CS 
solution. However, there are some discrepancies between HS 
and SCS. Figure 8(B) shows the distribution of peak ratios of 
all the 32 electrodes with respect to the HS peaks. The CS, 
MoI, and SCS solutions display a range of values in the peak 
ratios, showing that the amplitude modulation of the elec-
trodes is not a constant value. This can be traced back to the 
fact that a lateral shift of the neuron reduces the peak ratio 
(figure 6(A)): electrodes on the side of the probe yield a lower 
effect than the ones at the center of the probe. Due to this vari-
ability, a correction strategy based on a constant scaling will 
not be able to accommodate for this effect.

Figure 7.  Comparison of the EAPs (A) between the current summation approach (CS, red) and the EMI model without probe (blue), 
displaying a peak amplitude difference of 4.91 µV, and (B) between the hybrid solution (HS, green) and the EMI model with probe 
(orange), exhibiting a peak amplitude difference of 3.55 µV.
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The probe correction (PC) solution, based on the reci-
procity principle (section 2.4.3), results in a solution perfectly 
coincident to the HS, at a much smaller computational cost 
(see table 5). In figure 8(B) the PC ratios are depicted as a 
vertical line at 1 because the peak amplitudes are exactly the 
same as the HS. The PC approach, in fact, pre-maps the effect 
of each electrode on the extracellular domain, effectively 
modeling in an efficient way the distribution of peak ratios 
observed when using the CS, MoI, and SCS methods.

In table 4 we summarize the comparison results, showing 
maximum, minimum, average peak ratios and the peak ratio 
distribution standard deviation for all the pairwise comparisons 
analyzed in this section.

3.4.  CPU requirements

Whereas the EMI formulation represents a powerful and more 
detailed computational framework for neurophysiology simu-
lations, it is associated with a much larger computational load. 
The simulations were performed on an Intel(R) Xeon(R) CPU 
E5-2623 v4 @ 2.60 GHz machine with 16 cores and 377 GB 
RAM running Ubuntu 16.04.3 LTS.

Table 5 contains the coarseness, domain size, number of 
tetrahedral cells, number of mesh vertices, total number of tri-
angular cells (facets), facets on the surface of the neuron, the 
system size for the FEM problem, and the time in second (CPU 
time) to compute the solution for meshes without the probe in 
the extracellular domain. We show the results without probes in 
the extracellular domain, as they are they are computationally 

more intense due to the fact that the volume inside the probe 
is not meshed (although the resolution on the probe surface is 
finer, the resulting system size without the probe is larger than 
with the probe). The CPU requirements and the time needed 
to run the simulation strongly depend on the resolution of the 
mesh: the problem with coarseness 3 and box size 3 takes 
around 1 h and 20 min (system size  =  745 789), while for the 
same box size and coarseness 0, the time required is around 

Figure 8.  (A) EAPs of the Neuronexus probe as computed using the hybrid solution (HS, green), the Method of Images (MoI, pink) and 
the scaled current summation with factor 1.65 (1.65 SCS, grey). (B) Peak ratio distribution of the electrodes of the Neuronexus probe 
compared to the hybrid solution, from the current summation (CS, red), Method of Images (MoI, pink), the scaled current summation with 
factor 1.65 (1.65 SCS, grey), and the probe correction (PC, cyan) models. Note that the peak amplitudes computed from all the electrodes 
by the PC and HS approaches overlap perfectly, thus resulting in a single vertical line at peak ratio value 1.

Table 4.  Summary of comparison results showing, for each 
comparison, the maximum, minimum, and average peak ratio, as 
well as the standard deviation of the peak ratio (PR) distribution. 
The peak ratios are the electrode-wise division between the peaks of 
the first and second models listed in the Comparison tab. EMI (with) 
and EMI (no) indicate the EMI solution with and without the probe 
in the extracellular space, respectively.

Comparison
Maximum 
PR

Minimum 
PR

Average 
PR

PR standard 
deviation

EMI (with)—
EMI (no)

2.16 1.4 1.81 0.19

CS—EMI 
(no)

1.6 1.16 1.39 0.1

HS—EMI 
(with)

1.49 1.01 1.25 0.11

CS—HS 0.81 0.43 0.63 0.08
MoI—HS 1.61 0.87 1.25 0.15
1.65 SCS—
HS

1.33 0.72 1.03 0.13

PC—HS 1 1 1 0

J. Neural Eng. 16 (2019) 026030



A P Buccino et al

14

22 h (system size  =  5 271 370). The domain size also strongly 
affects the mesh size and computation time. For example, for 
the coarse 2 resolution, with respect to box 1, box 2 is 1.83× 
slower, box 3 4.16×, box 4 8.33×, box 5 20.51×.

The last four rows show the CPU requirements for the HS 
and the different steps of the PC solution. These simulations, 
despite having the same resolution and box size as the most 
intense EMI simulation (coarse 0 and box size 3), result in a 
much smaller system size, as they solve for the extracellular 
potential only (EMI also solves for intracellular potentials and 
currents in the entire domain). To perform a fair comparison 
with the EMI model, the computations were done in serial. 
Parallel solvers would likely speed up the HS and PC solu-
tions and could be easily implemented. Simulating 5 ms using 
the HS takes about 1 h, compared to the 22 h of the EMI solu-
tion. The PC performance is divided in three steps. PC (map) 
refers to the the computation of the 32 FEM solutions (one for 
each Neuronexus electrode), and it takes slightly more than 
30 min. Once the pre-map is computed it can be used for any 
neural model. Loading the FEM solutions in memory (PC 
(load)) requires around 7 min and once loaded, it takes a few 
seconds (3.51 s) to compute the extracellular potential. While 
the HS and EMI solutions computation time increases with 
the duration of the simulation linearly, as they iteratively solve 
each timestep, the PC solution multiplies each transmembrane 
current timeseries for a pre-defined mapping. When we ran a 
500 ms Neuron simulation and then computed the extracel-
lular potentials with the PC method the PC (run) step took 
only 5.38 s.

4.  Discussion

In this article, we have used a detailed modeling frame-
work—the extracellular-membrane-intracellular (EMI) model 
[6, 20]—to evaluate the effect of placing an extracellular 
recording device (neural probe) on the measured signals. We 
used meshes representing a simplified neuron and two dif-
ferent kind of probes: a microwire (a cylindrical probe with 
diameter of 30 µm) and multi-electrode arrays (MEAs), mod-
eling a Neuronexus commercially available silicon probe and 
the Neuropixels probe [36]. We quantified the probe effect by 
simulating the domain with and without the probe in the extra-
cellular domain and we showed that the effect is substantial for 
the MEA probes (figures 3(B) and (C)), while it is negligible 
for microwires (figure 3(A)). The amplitude of the largest 
peak using the MEA probes is almost twice as large (∼1.9 
times) compared to the case with no probe, and this factor is 
relatively independent of the probe distance (figure 5(D)), but 
it is reduced when the neuron and the probe are shifted later-
ally (figure 6(A)) or when the probe is rotated (figure 6(B)). 
Moreover, we discussed the effect of varying the mesh reso-
lution and of the size of the computational domain. We also 
compared our finite element solutions to solutions obtained 
by solving the conventional cable equation, and found that 
the latter gave result very similar to the finite element solu-
tion when the probe was removed from the extracellular space 
(figure 7(A)). Therefore, we suggest that the probe effect can 
be a key element in modeling experimental data obtained with 
MEA probes. However, clearly further analysis is needed to 

Table 5.  Model type, FEM system size, resolution (Coarseness), box size, mesh parameters (number of cells, number of facets, number of 
neuron facets, and vertices), and CPU time to run the simulations. Note that for coarse 2 and coarse 3 the resolution of the neuron (rn  =   
4 µm) is the same.

Model System size Coarse Box size Mesh Cells Total facets
Neuron 
facets Vertices T (s)

EMI 337 515 3 1 66 171 135 672 2552 12 400 1414.24
EMI 516 079 3 2 101 443 207 318 2552 18 628 2813.22
EMI 562 137 2 1 110 363 225 887 2480 20 420 2589.83
EMI 745 789 3 3 146 905 299 442 2552 26 540 4569.11
EMI 835 365 2 2 164 331 335 517 2480 29 940 4753.39
EMI 1 204 001 2 3 237 259 483 371 2480 42 666 10 797.78
EMI 1 225 082 1 1 241 402 491 840 3888 43 373 9593.98
EMI 1 254 096 3 4 247 514 503 291 2552 44 013 10 756.46
EMI 1 881 777 1 2 371 471 755 153 3888 65 867 18 880.78
EMI 1 983 058 3 5 391 986 795 536 2552 68 875 23 756.09
EMI 2 110 421 2 4 416 949 846 736 2480 73 535 21 582.90
EMI 2 532 813 0 1 501 235 1015 789 8376 87 535 27 676.91
EMI 2 728 288 1 3 539 518 1094 385 3888 94 417 45 430.64
EMI 3 486 058 2 5 689 996 1398 031 2480 119 968 53 132.75
EMI 3 810 512 0 2 755 076 1527 718 8376 130 389 52 495.76
EMI 4 802 239 1 4 951 245 1925 497 3888 164 359 68 474.42
EMI 5 271 370 0 3 1045 440 2112 965 8376 179 195 82 601.74
HS 403 085 0 3 2299 046 4665 105 — 403 085 3572.91
PC (map) 403 085 0 3 2299 046 4665 105 — 403 085 2015.02
PC (load) 403 085 0 3 2299 046 4665 105 — 403 085 409.91
PC (run) 403 085 0 3 2299 046 4665 105 — 403 085 3.51
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clarify this matter. At present the computational cost of the 
EMI model prevents simulations of neurons represented using 
realistic geometries. Thus, in an effort to offer less computa-
tionally expensive solutions to include the probe effect in sim-
ulations, we investigated various correction methods resulting 
in more accurate predictions and we proposed the probe cor-
rection method, which allows to obtain accurate solutions 
with reasonable computational cost and resources.

4.1.  Comparison with previous work

In this work we used a finite element approach [20] to sim-
ulate the dynamics of a simplified neuron and to compute 
extracellular potentials using the EMI model. The use of FEM 
modeling for neural simulations has been performed before 
[19, 29, 30, 47, 48], but mainly as an advanced tool to study 
neural dynamics and ephaptic effects. In Moffit et  al [47], 
the authors simulated, using the cable equation  approach, a 
neuron at 65 µm from a shank microelectrode with a single 
recording site, and then used the currents in a finite element 
implementation of the extracellular domain, including the 
shank microelectrode. They found that the amplitude of the 
recorded potential with the shank was 77-100% larger than the 
analytical solution, but the spike shape was similar to the ana-
lytical solution (equation (13)), in accordance with our results 
(figures 7(A) and (B)). The effects using MEA probes and 
varying distances, lateral shifts, and probe rotations were not 
investigated. In Ness et al [25], an analytical framework for  
in vitro planar MEA using the method of images [24] was 
developed. A detailed neural model was simulated using the 
cable equation  and transmembrane currents were used as 
forcing functions for a finite element simulation to validate the 
analytical solutions. In the in vitro case, in which the MEA is 
assumed to be an infinite insulating plane, the authors showed 
that the insulating MEA layer affects the amplitudes of the 
recorded potentials, effectively increasing it by a maximum 
factor of 2, which can be analytically predicted by the method 
of images (MoI).

In this study, we investigated how large the effect of com-
monly used in vivo probes is using the advanced EMI mod-
eling framework. Our results are in line with these previous 
findings and we also show that the geometry, in terms of size 
and alignment of the probe, plays a very important role. We 
show that large silicon probes can be almost regarded as insu-
lated planes when the neuron is aligned to them (potential 
increased by factor ∼ 1.9) for large ranges of distances (figure 
5(D)). An interesting effect following the reduction of the 
amplitude factor with lateral shifts (figure 6(A)) is that neu-
rons not aligned with the probe will be recorded with a lower 
signal-to-noise ratio (SNR) due to the smaller amplitude 
increase, assuming that other sources of noise are invariant 
with respect to the probe location (such as electronic noise 
and biological noise from far neurons). This might bias neural 
recordings towards identifying neurons that are closer to the 
center of the probe, rather than the ones lying at the probes’ 
sides. However, this conclusion is speculative and might be 
affected by other factors, such as the distribution of neurons 

around the probe and their morphology (which contributes 
to the EAP). Therefore, ground truth information about the 
position of the recorded neurons and their reconstructed mor-
phologies are needed for a quantitative evaluation of this 
phenomenon.

4.2.  Limitations and extensions

4.2.1.  Mesh improvements.  The EMI model is, in principle, 
able to accurately represent the neuron and the neural probe. 
However, the accuracy of the model comes at the cost of com-
putational resources. In order to be able to run simulations 
in a reasonable amount of time, the geometry of the neuron 
needed to be simplified considerably. First, we used a simple 
neuron in terms of a ball-and-stick with axon. This model 
is able to describe certain aspects of the neuronal dynamic 
[35], but it clearly cannot reach a level of detail of some more 
realistic morphologies, such as the reconstructed models 
made available by various initiatives [1–5]. We quantified the 
amplitude shift due to the probe in the extracellular domain 
(∼1.9 on average for the MEA probes when neuron and probe 
are aligned), but this factor most likely also depend on the 
specific cell morphology that we used, and not only on the 
probe design and geometry. Therefore, we aim at extending 
the framework [49] for generating finite element meshes from 
publicly available realistic morphologies [5], allowing us to 
explore the probe effect for more complex morphologies.

Furthermore, we assumed ideal recording sites with an 
infinite input impedance which does not allow any current 
to flow in. In reality, recording electrodes have a high, but 
not infinite impedance that could be modeled by considering 
electrodes as an additional domain with very low conductance, 
even if it has been shown that for normal electrodes’ impedance 
the effect of conductive and equipotential recording sites is 
negligible [32].

4.2.2.  Computational costs.  In section  3.4 we showed that 
the EMI model is much more computationally demanding than 
conventional modeling using cable and volume conduction 
theory. For the simplest simulation performed in this study 
(coarse 3 and box size 1), a system with 337 515 unknowns 
was solved in about 40 min. The Neuron simulations 
described in section 2.4 took  ∼0.59 s to run, about 2400 times 
faster than the simplest EMI simulation performed here. How-
ever, because of our implementation and solution strategy for 
FEM, this factor should be considered as a rather pessimistic 
upper bound. In particular, the employed version of FEn-
iCS (2017.2.0) does not allow for finite element spaces with 
components discretized on meshes with different topology. 
For example, the extra/intra-cellular potentials are defined on 
the entire Ω rather than Ωe and Ωi  only, while the domain for 
the transmembrane potential v is Γ, but the space for v is setup 
on all facets of the mesh. For simplicity of implementation, 
the v unknowns on facets outside of Γ are forced to be zero 
by additional constraints and are not removed from the linear 
system. The LU solver thus solves also for the unphysical/
extra unknowns and the memory footprint and solution times 
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are naturally higher. The number of unphysical unknowns can 
be seen in table 5 as a difference between total number of fac-
ets in the mesh and the number of facets on the surface of the 
neuron. For example, in the largest system considered here, 
avoiding the unphysical unknowns would reduce the system 
size by about 2 million.

In addition to assembling the linear system with only the 
physical unknowns, a potential speed up could be achieved 
by employing iterative solvers with suitable preconditioners. 
That is, fast PDE solvers for diffusion equations typically use 
around 1s per million degrees of freedom. As we here employ 
a H(div) formulation, we expect the solution to be computed 
in around 5 s per million degrees with multilevel methods. 
As shown in table 5, 500 timesteps of solving systems with 
around one million degrees of freedom takes 82 600 s, which 
means 165 s per time steps. Hence, we may expect to speed 
up the solving procedure by around a factor 30 with better 
solvers. If further speed-up is required then finite element 
based reduced basis function method provides an attractive 
approach that should be addressed in future research.

4.2.3.  Finite element methods are not alternatives to the con-
ventional cable equation.  The EMI framework, due to its 
computational requirements, is presently not an alternative 
to conventional modeling involving the cable equation (equa-
tion (12)) and the current summation formula (equation (13)). 
However, for specific applications, it can provide interest-
ing insights. The hybrid solution combines the cable equa-
tion solution to finite element modeling, in practice solving 
the FEM problem only for the extracellular space and using 
the transmembrane currents computed by the cable equa-
tion as forcing functions [21–23, 25, 47]. However, the HS is 
also computationally expensive and it increases in complex-
ity with longer simulation durations. Similar considerations 
can be made if Boundary Element Methods (BEM) [50] are 
employed instead of FEM ones, even though they are less 
computationally intense then the current FEM formulation. 
One possible drawback of BEM solvers is that they could not 
accommodate for anisotropic conductivity, while FEM solv-
ers could in principle solve meshes with non-homogeneous 
conductivity between surfaces [51].

Another much faster option could be using approaches 
based constant scaling, such as MoI and SCS. However, 
even correcting with a right factor smaller than 2, the these 
methods cannot account for the variability of peak ratios 
among the electrodes (figure 8(B)). Therefore, we suggested 
here the probe correction (PC) method, which combines a 
one-time finite element simulation to model how each elec-
trode of a specific probe affects the extracellular domain, and 
then uses the reciprocity principle to compute the potential 
on the recording sites arising from transmembrane currents. 
We showed that this method is able to reach the HS accuracy 
at a much smaller computational time (table 5), which is also 
not strongly dependent on the simulation duration. Moreover, 
the time required to compute the probe specific mapping (PC 
(map)) and loading the FEM solutions in memory (PC (load)) 
could be further reduced by decreasing the mesh resolution. 

This possibility should be further investigated with a conv
ergence analysis, similar to section 3.2 for the EMI model.

4.3.  Significance of the probe effect

The effect of the recording device has not been fully taken into 
consideration in mathematical models of the extracellular field 
surrounding neurons. The probe effect needs to be considered 
when modeling silicon MEA, whose sizes are significantly 
larger than the recorded neurons. The assumption of an 
infinite and homogeneous medium is in fact largely violated 
when such bulky probes are in the extracellular space in the 
proximity of the cells. Although the tissue can be regarded 
as purely conductive and with a constant conductivity [52], 
these probes represent clear discontinuities in the extracellular 
conductivity, which strongly affect the measured potential due 
to their insulating properties. While the probe effect is large 
for MEAs, we found that it was negligible for microwire-
type of probes, mainly for two reasons: first, the microwire is 
thinner and overall smaller than the MEA; second, the electric 
potential is sampled at the tip of the probe and in the entire 
semi-space below the microwire currents are free to flow 
without any obstacle.

When dealing with silicon MEAs, though, this effect could 
be crucial for certain applications that require to realistically 
describe recordings. For example, Gold et  al [26] used, in 
simulation, extracellular action potentials (EAP) to constrain 
conductances of neuronal models. Clearly, neglecting the 
probe effect would result in an incorrect parameterization of 
the models in this case.

Another example in which including this effect could be 
beneficial is when EAP are used to localize the somata position 
with respect to the probe. This is traditionally done by solving 
the inverse problem: a simple model, such as a monopolar 
current source [53–55], a dipolar-current source [53, 56, 57], 
line-source models [58, 59], or a ball-and-stick model [60], is 
moved around the extracellular space to minimize the error 
between the recorded potential and the one generated by the 
model. Ignoring the probe might result in larger localization 
errors.

Recently, we used simulated EAP on MEA as ground truth 
data, from which features were extracted to train machine-
learning methods to localize neurons [27, 28] and recognize 
their cell type from EAPs [28]. When training such machine-
learning models on simulated data and applying them to 
experimental data, neglecting the probe effect could confound 
the trained model and yield prediction errors.

Moreover, explaining experimental recordings on MEA 
without considering the probe might cause discrepancies 
between the modeling and experimental results hard to recon-
cile. On the other hand, in order to fully explain and validate 
our findings, an experiment with accurate co-location of extra-
cellular recordings and cell position (and ideally morphology) 
is required. For example, an experimental setup in which a 
planar MEA is combined with two-photon calcium imaging 
[61] could provide an accurate estimate of the relative position 
between the neurons and the MEA.
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In conclusion, we presented numerical evidence that 
suggests that the probe effect, especially when using multi-
electrode silicon probes, affects the way we model extra-
cellular neural activity and interpret experimental data and 
cannot be neglected for specific applications.
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