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ABSTRACT In this paper we propose a Bayesian multi-output regressor stacking (BMORS) model that is a
generalization of the multi-trait regressor stacking method. The proposed BMORS model consists of two
stages: in the first stage, a univariate genomic best linear unbiased prediction (GBLUP including genotype ·
environment interaction GE) model is implemented for each of the L traits under study; then the predictions
of all traits are included as covariates in the second stage, by implementing a Ridge regression model.
The main objectives of this research were to study alternative models to the existing multi-trait multi-
environment (BMTME) model with respect to (1) genomic-enabled prediction accuracy, and (2) potential
advantages in terms of computing resources and implementation. We compared the predictions of the
BMORS model to those of the univariate GBLUP model using 7 maize and wheat datasets. We found that
the proposed BMORS produced similar predictions to the univariate GBLUP model and to the BMTME
model in terms of prediction accuracy; however, the best predictions were obtained under the BMTME
model. In terms of computing resources, we found that the BMORS is at least 9 times faster than the
BMTME method. Based on our empirical findings, the proposed BMORS model is an alternative for pre-
dicting multi-trait and multi-environment data, which are very common in genomic-enabled prediction in
plant and animal breeding programs.
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Genomic selection (GS), first described by Meuwissen et al. (2001), is a
plant and animal breeding methodology that is revolutionizing the
selection of superior genotypes because it increases the rate of annual
genetic gain by accelerating the breeding cycle and reducing the time
and cost of phenotyping. GS assumes that a representative number of
markers across the whole genome captures most of the diversity of the
genome to estimate breeding values without the need to know where

specific genes are located. In addition to markers, GS implementation
relies on genomic-enabled prediction (GP) models that combine geno-
mic (or pedigree) information and phenotypic data. Then the predic-
tion equation of the implemented GPmodel is applied to a set of plants
(or animals) for which genotypes (but not phenotypes) are available, to
obtain the predicted breeding values (or phenotypes); finally, the best
lines (plants or animals) are selected for breeding. For these reasons, it
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is obvious that GP models are a key element for successfully imple-
menting GS. Considerable research has been done in recent years for
improving the prediction accuracy of GP models; however, better pre-
diction models to be able to implement the GS methodology more
accurately are still lacking. Most of the research that has been done
has been aimed at developing univariate-trait (UT) models and very
little at developing multi-trait (MT) models. UT models are trained to
predict the value of a single continuous (or categorical) phenotype in a
testing dataset, whileMTmodels are trained to predict at least two traits
simultaneously.

In general, MT models are preferred over UT models because MT
models: 1) represent complex relationships between traits more effi-
ciently, 2) exploit not only the correlation between lines, but also the
correlation between traits, 3) improve the selection index because they
allow more precise estimates of random effects of lines and genetic
correlationbetween traits, 4) can improve indirect selectionbecause they
increase the precision of genetic correlation parameter estimates be-
tween traits, and 5) improve the power of hypothesis testing better than
UT models. For these reasons, MT models produce more accurate
parameter estimates and better predictions than UT models, as docu-
mented by Montesinos-López et al. (2016, 2018a-b). For example,
Schulthess et al. (2017) found empirical evidence that MT models
improve parameter estimates. Calus and Veerkamp (2011), Jia and
Jannink (2012), Jiang et al. (2015), Montesinos-López et al. (2016),
He et al. (2016) and Schulthess et al. (2017) found that MT models
outperformUTmodels in terms of prediction accuracy. However, these
authors also found that when the correlation between traits is low using
MT models, it is not advantageous (Montesinos-López et al., 2016,
2018a-b), since the lower the degree of relatedness between traits, the
lower the benefits of MT models (Montesinos-López et al., 2016,
2018a-b). In a recent review of statistical models for genomic-enabled
prediction including G·E and for different heritability values, the
authors (Crossa et al., 2017) did not report very high genomic-
enabled prediction accuracies. However, it is recognized that from
the computational resources perspective, fitting MTmodels is much
more demanding than fitting UT models.

Multi-trait models are also known as multivariate analyses in
statistical literature, and due to their clear advantages over UT models,
they have been applied for solving a great diversity of problems in areas
like environmental science, education, chemistry, telecommunications,
psychology, medicine, communications, engineering and food science,
among others. However, the use of MT models is not as popular as the
use of UT models due to the following reasons: 1) there is less software
available for performing MT analyses, 2) fitting MT models is compu-
tationally intensive andmuchmore demanding than fittingUTmodels,
3)MTmodelsarecomplex,as traitsandvariableshavedifferent response
patterns in different environments and therefore create very complex
genotype·environment interactions (G·E), 4) MT results are based on
more assumptions than UT results and may be difficult to assess and

achieve, and 5) MT models increase the problems of convergence
when they are fitted with classic methods like maximum likelihood
or restricted maximum likelihood, among others.

Recent literature on MT models has emphasized the use of multi-
output regression (also known as multi-target, multi-variate, or multi-
response regression) that aims to predict multiple continuous variables
using a set of input variables. The output variables may also be binary
(multi-label classification) or discrete (multi-dimensional classification)
(Borchani et al., 2015; 2016). Several real-world applications of multi-
output regression have been studied in ecological models for assessing
concentrations of species in natural populations, and in chemometric
models for inferring concentrations of several substances from multi-
variate calibration using multivariate spectral data. Obviously, these
applications give rise to many challenges such as missing data, the
presence of noise that is typical due to the multivariate nature of the
phenomenon, and the inevitable compound dependencies between
multiple variables. Multi-output regression methods have the
advantage of providing realistic methods for modeling multi-output
datasets by considering the underlying relationships between the
output variables, and thus give a better representation and interpre-
tation of real-world problems (Borchani et al., 2015). A further
advantage of multi-output regression approaches is that they may
produce simpler models that are computationally very efficient
compared to other multi-trait models.

Borchani et al. (2015; 2016) present the multi-output regression
approach as a problem transformation method where the multi-output
problem is transformed into independent single-output problems, each
of which is solved using a single-output regression algorithm and finally
concatenating all the predictions. However, the problem with this
method is that the relationships among output variables are ignored
and thus predicted independently, and this can certainly affect the pre-
diction accuracy. However, Spyromitros-Xioufis et al. (2012; 2016) re-
cently extended the multi-output regression problem transformation
method to target the dependency of the variables by introducing a
novel multi-output regression approach called multi-output regressor
stacking (MORS) (also called stacked single-target). The MORS
method consists of two stages: in the first stage, a certain number of
independent single-target models are fitted; however, those values are
not used as final predictions but rather included in a second training
stage where a second set of meta models is learned. In other words,
the multi-output prediction problem is transformed into several
single-target problems where any regression model could be used
(e.g., a separate ridge regression for each variable, a regression tree,
support vector regression, etc.). Then, according to Spyromitros-
Xioufis et al. (2012; 2016), the second stage includes using as pre-
dictor variables the predictions of the target variables obtained from
the first-stage model. The second-stagemodel is expected to correct the
predictions of the first-stage model using the information from the
first-stage model.

Recently, Montesinos-López et al. (2019) presented an R package
for analyzing breeding data with multiple traits and multiple envi-
ronments that is an improved version of the original BMTME of
Montesinos-López et al. (2016). This improved version of BMTME
used the matrix variate normal distribution of Montesinos-López
et al. (2018c) and the appropriate priors of Montesinos-López et al.
(2018a) and Montesinos-López et al. (2018b). Interestingly the
R package of Montesinos-López et al. (2019) evaluates the prediction
performance of multi-trait multi-environment data in a user-friendly
way. Also this R package introduced the Bayesian multi-output re-
gressor stacking (BMORS) functions that are considerably efficient in
terms of computational resources. For large datasets, the BME() and
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BMTME() functions of the BMTME R package are very intense
in terms of computing time; however functions BMORS() and
BMORS_Env() of BMORS (also included in the BMTME package)
are less intensive in terms of computing time and produce similar
genome-based prediction accuracies as the BMTME.

Given the previous considerations in terms of model prediction
accuracy and the necessary computing resources required tofit different
univariate andmultivariate models, the main objectives of this research
were: (1) to extend the theory of the multi-output regressor stacking
model (MORS) to a Bayesian framework in the context of genomic
selection; the resulting model is called Bayesian multi-output regressor
stacking (BMORS), (2) to apply the BMORS model to seven extensive
maize and wheat datasets from plant breeding programs, (3) to
compare the prediction accuracy of the BMORS model with the
accuracy of the most popular univariate trait (UT) model: the
genomic best linear unbiased prediction (GBLUP) model and
its multivariate version, called the Bayesian multi-trait multi-
environment (BMTME) model, and (4) to compare the comput-
ing resources employed by BMORS vs. BMTME and the GBLUP.
This comparison will determine the usefulness of the BMORS
model compared with other analytical options with much heavier
computing time.

MATERIALS AND METHODS

Implemented models

Multiple-environment genotype 3 environment Genomic Best
Linear Unbiased Predictor (GBLUP) model: This model is the one
proposed and described by Montesinos-López et al. (2018a). To imple-
ment this model, the genomic relationship matrix (GRM) was calcu-
lated as suggested by VanRaden (2008). This model is the conventional
GBLUP that includes genotype · environment interaction; it was
implemented in the Bayesian Generalized Linear Regression (BGLR)
R-package of de los Campos and Pérez-Rodríguez (2014). Briefly, the
model can be described as follows

yij ¼ Ei þ gj þ gEij þ eij (1)

where yij is the response of the j th line in the i th environment
(i ¼ 1; 2; . . . ; I, j ¼ 1; 2; . . . ; JÞ. Ei is the fixed effect of the ith envi-
ronment, gj denotes the random genomic effect of the jth line, with
g ¼ ðg1; . . . ; gJÞT � Nð0;s2

1 GgÞ; s2
1 is the genomic variance and

Gg is the genomic relationship matrix (GRM) and is calculated
(VanRaden 2008) as Gg ¼ WWT

p , where p represents the number of
markers and W is the matrix of markers. The Gg matrix is con-
structed using the observed similarity at the genomic level between
lines. Further, gEij is the random interaction term between the ge-
nomic effect of the jth line and the ith environment; let
gE ¼ ðgE11; . . . ; gEIJÞT � Nð0;s2

2 II5GÞ, where s2
2 is the interac-

tion variance, and eij is a random residual associated with the jth line
in the ith environment distributed as Nð0;     s2Þ; where s2 is the
residual variance.

Since thismodelwas implementedunderaBayesian framework,next
weprovide thepriorsused for theparameters. For the beta coefficientsof
the environments we used a normal distribution with mean 0 and very
large variance 1010, that is, Nð0; 1010Þ: For the genomic variance com-
ponent, s2

1, we used a scaled inverse Chi-square with shape and scale
parameters, v1 ¼ 5 and S1 ¼ VarðYÞ·R2 · ðvb þ 2Þ, respectively,
where the proportion of total variance ðR2Þ was set to 0.5, and
VarðYÞ is the phenotypic variance of the response variable of the
training set. Also, for the error variance component, we used a

scaled inverse Chi-square with shape and scale parameters, ve ¼ 5 and
Se ¼ VarðYÞ· 0:25 · ðvb þ 2Þ; respectively.

Bayesian multiple-trait multiple-environment (BMTME) model:
The BMTME model is a multivariate version of the model given in
equation (1) defined as follows:

Y ¼ Xbþ Z1b1 þ Z2b2 þ E (2)

where Y is of dimension n · L, with L the number of traits and
n ¼ J · I, where J denotes the number of lines (genotypes) and I
the number of environments, X is of order n · I, b is of order I · L,
sinceb ¼ fbilg for i ¼ 1; ::; I and l ¼ 1; ::; L; Z1 is of order n · J , b1 is
of order J · L and contains the genotype·trait interaction term since
b1 ¼ fgtjlg where gtjl is the effect of genotype·trait interaction term
for j ¼ 1; ::; J and for j ¼ 1; ::; L. Z2 is of order n· IJ , b2 is of order
IJ · L and contains the genotype·environment·trait interaction, since
b2 ¼ fgEtjilg, where gEtjil is the effect of genotype·environment·trait
interaction for j ¼ 1; ::; J , for i ¼ 1; ::; I and for j ¼ 1; ::; L. Vector
b1 is distributed under a matrix-variate normal distribution with
NMJ·Lð0;Gg ;ΣtÞ; Σt is the unstructured genetic (co)variance matrix
of traits of order L· L, b2 � NMJI·Lð0; ΣE 5Gg ;ΣtÞ, where ΣE is
an unstructured (co)variance matrix of order I · I and E is the
matrix of residuals of order n· L with E � NMn·Lð0; In;ReÞ, where
Re is the unstructured residual (co)variance matrix of traits of order
L· L, and Gg is the genomic relationship matrix described above.

TheBMTMEmodel resulting fromequation(2)was implementedby
Montesinos-López et al. (2016). It is important to point out that model
(2) takes into account the genotype·environment terms in the (Z2b2Þ
term, and for comparison purposes, we also ran the model in equation
(2) but without the (Z2b2Þ term to study the effect on prediction
performance with and without the genotype·environment term. The
information of the Gibbs sampler for implementing the BMTME
model is found in Montesinos-López et al. (2018b), and the priors of
this model are given in detail in Montesinos-López et al. (2018c).

Bayesian multi-output regressor stacking (BMORS): The proposed
BMORS is a Bayesian version of the multi-trait regressor stacking
method proposed by Spyromitros-Xioufis et al. (2012; 2016). The train-
ing of BMORS consists of two stages. In the first stage, L single uni-
variate models are implemented using the GBLUP model given in
equation (1) of Montesinos-López et al. (2018a), but instead of using
the resulting predictions directly as the final output, the BMORS in-
cludes an additional training stage where a second set of Lmeta-models
are implemented for each of the L traits under study using a Ridge
regression model. Each meta-model is implemented with the following
model:

yij ¼ b1Ẑ1ij þ b2Ẑ2ij þ . . .þ bLẐLij þ eij (3)

where the covariates Ẑ1ij; Ẑ2ij; . . . ; ẐLij, represent the scaled predic-
tions of each trait obtained with the GBLUP model in the first-stage
analysis and b1; . . . ;bL, the corresponding beta coefficients. The
scaling of each prediction was performed by subtracting its mean
(mlij) and dividing by its corresponding standard deviation (slij), that
is, Ẑlij=ðŷlij 2mlijÞs21

lij , for each l ¼ 1; . . . ; L. Therefore, the BMORS
model contains as predictor information the scaled predictions of its
response variables yielded by the first-stage models. In other words,
the BMORS model is based on the idea that a second-stage model is
able to correct the predictions of a first-stage model using informa-
tion about the predictions of other first-stage models (Spyromitros-
Xioufis et al., 2012; 2016).
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n Table 1 Average Pearson’s correlation (APC), mean arctan absolute percentage error (MAAPE) and their standard deviation (SD) for
each trait (grain yield, GY, Plant height, PH, anthesis silking interval, ASI, days to heading, DTHD, plant height, PTHT, days to maturity,
DTMT) and each maize and wheat dataset under study for three models, BMTME, BMORS and UT

Dataset Model Trait APC SD MAAPE SD

Maize dataset 1 BMORS ASI 0.4263 0.0569 0.4024 0.0261
Maize dataset 1 BMORS GY 0.3449 0.0391 0.1142 0.0055
Maize dataset 1 BMORS PH 0.4683 0.0279 0.0395 0.0013
Maize dataset 1 BMTME ASI 0.4338 0.0509 0.3944 0.0228
Maize dataset 1 BMTME GY 0.3504 0.043 0.1112 0.0051
Maize dataset 1 BMTME PH 0.4502 0.0366 0.0392 0.0013
Maize dataset 1 UT ASI 0.4281 0.0525 0.3918 0.0226
Maize dataset 1 UT GY 0.3522 0.0368 0.1095 0.0054
Maize dataset 1 UT PH 0.4787 0.0281 0.0385 0.0013
Wheat dataset 2 BMORS DTHD 0.8533 0.0378 0.5625 0.0253
Wheat dataset 2 BMORS PTHT 0.4657 0.0434 0.6023 0.0234
Wheat dataset 2 BMTME DTHD 0.8716 0.0287 0.4633 0.0234
Wheat dataset 2 BMTME PTHT 0.4782 0.0419 0.6013 0.0203
Wheat dataset 2 UT DTHD 0.8557 0.0368 0.5405 0.0252
Wheat dataset 2 UT PTHT 0.4617 0.044 0.5935 0.0228
Wheat Iranian dataset 3 BMORS DTHD 0.5862 0.0166 0.0392 4.00E-04
Wheat Iranian dataset 3 BMORS DTMT 0.4288 0.0224 0.0605 8.00E-04
Wheat Iranian dataset 3 BMTME DTHD 0.5918 0.0155 0.0389 5.00E-04
Wheat Iranian dataset 3 BMTME DTMT 0.5182 0.0217 0.056 8.00E-04
Wheat Iranian dataset 3 UT DTHD 0.5863 0.0173 0.0393 4.00E-04
Wheat Iranian dataset 3 UT DTMT 0.4854 0.0208 0.0569 8.00E-04
EYT dataset 4 BMORS DTHD 0.8149 0.0105 0.0356 0.001
EYT dataset 4 BMORS DTMT 0.7768 0.0131 0.023 6.00E-04
EYT dataset 4 BMORS GY 0.4444 0.0224 0.0736 0.0021
EYT dataset 4 BMORS Height 0.5455 0.0207 0.0381 7.00E-04
EYT dataset 4 BMTME DTHD 0.8363 0.0075 0.0303 6.00E-04
EYT dataset 4 BMTME DTMT 0.7973 0.012 0.0212 5.00E-04
EYT dataset 4 BMTME GY 0.4311 0.0234 0.0734 0.0021
EYT dataset 4 BMTME Height 0.5728 0.0156 0.0374 8.00E-04
EYT dataset 4 UT DTHD 0.8161 0.0101 0.0341 8.00E-04
EYT dataset 4 UT DTMT 0.7726 0.013 0.0228 5.00E-04
EYT dataset 4 UT GY 0.4551 0.0231 0.0713 0.0018
EYT dataset 4 UT Height 0.5483 0.0182 0.0378 7.00E-04
EYT dataset 5 BMORS DTHD 0.8519 0.0154 0.0241 8.00E-04
EYT dataset 5 BMORS DTMT 0.7928 0.0165 0.016 6.00E-04
EYT dataset 5 BMORS GY 0.5589 0.0269 0.0694 0.0019
EYT dataset 5 BMORS Height 0.5563 0.0232 0.0349 0.001
EYT dataset 5 BMTME DTHD 0.8596 0.0132 0.0217 6.00E-04
EYT dataset 5 BMTME DTMT 0.8112 0.0153 0.0149 6.00E-04
EYT dataset 5 BMTME GY 0.5486 0.0257 0.0698 0.0019
EYT dataset 5 BMTME Height 0.563 0.0244 0.0348 0.0011
EYT dataset 5 UT DTHD 0.8519 0.0152 0.0237 7.00E-04
EYT dataset 5 UT DTMT 0.7902 0.0159 0.016 6.00E-04
EYT dataset 5 UT GY 0.5621 0.0271 0.0684 0.002
EYT dataset 5 UT Height 0.5591 0.0244 0.0346 0.001
EYT dataset 6 BMORS DTHD 0.8416 0.0104 0.0203 6.00E-04
EYT dataset 6 BMORS DTMT 0.7292 0.0128 0.0161 3.00E-04
EYT dataset 6 BMORS GY 0.4855 0.0206 0.0779 0.0025
EYT dataset 6 BMORS Height 0.5093 0.0198 0.0434 9.00E-04
EYT dataset 6 BMTME DTHD 0.8278 0.0095 0.0204 7.00E-04
EYT dataset 6 BMTME DTMT 0.7525 0.0116 0.0151 3.00E-04
EYT dataset 6 BMTME GY 0.5043 0.0195 0.0755 0.0022
EYT dataset 6 BMTME Height 0.5077 0.0232 0.0425 8.00E-04
EYT dataset 6 UT DTHD 0.8425 0.0101 0.0201 6.00E-04
EYT dataset 6 UT DTMT 0.731 0.0127 0.016 3.00E-04
EYT dataset 6 UT GY 0.489 0.0183 0.0774 0.0023
EYT dataset 6 UT Height 0.514 0.0187 0.0424 9.00E-04
EYT dataset 7 BMORS DTHD 0.8406 0.0098 0.0314 6.00E-04
EYT dataset 7 BMORS DTMT 0.8576 0.0082 0.0174 4.00E-04
EYT dataset 7 BMORS GY 0.512 0.0226 0.0686 0.0016

(continued)
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Thismethod can be implementedwith the BMORS() function in the
BMTME package in the R statistical software (R Core Team 2017), as
shown in Appendices A and B. The R package BMTME is available at
the following link: https://github.com/frahik/BMTME and it is de-
scribed inMontesinos-López et al. (2019). The priors for implementing
this second step were: a normal with mean zero and variance s2

b for the
beta coefficients while for the variance component s2

b and the error
variance (s2Þ we used the scaled inverse Chi-squares with shape and
scale parameters, vb ¼ v1 ¼ 5 and Sb ¼ S1 ¼ VarðYÞ·R2 · ðvb þ 2Þ
respectively, where the proportion of total variance ðR2Þ was set to 0.5
for the beta coefficients, equal to 0.25 for the error variance component,
and VarðYÞ is the phenotypic variance of the response variable of the
training set. Finally, it is important to point out that the underlying
method of inference for all the Bayesian methods implemented was
based on Markov Chain Monte Carlo.

Experimental datasets
A total of seven real datasets were analyzed, one dataset comprising
maize lines and six datasets comprising wheat lines. All seven datasets
include several environments and traits and were previously used in
several studies.

Maize dataset 1: This dataset has 309 maize lines and was used by
Crossa et al. (2013) and Montesinos-López et al. (2016). Traits grain
yield (GY), anthesis-silking interval (ASI), and plant height (PH) were
evaluated and measured in three environments (E1, E2, and E3). Phe-
notypes are best linear unbiased estimates (BLUEs) obtained after
adjusting for the experimental field design. After filtering for missing
values and minor allele frequency, the number of single nucleotide
polymorphisms (SNP) was 158,281. Filtering was first done by remov-
ing markers that had more than 80% of the maize lines with missing
values, and then markers with minor allele frequency lower than or
equal to 0.05 were deleted.

Wheat dataset 2: This wheat dataset is composed of 250 wheat lines
that were extracted from a large set of 39 yield trials grown during the
2013-2014 crop season in Ciudad Obregon, Sonora, Mexico (Rutkoski
et al., 2016). The measured traits were plant height (PTHT) recorded in
centimeters, and days to heading (DTHD) recorded as the number of
days from germination until 50% of spikes emerged in each plot, in the
first replicate of each trial. Each trait was measured on 250 lines and
three environments. Phenotypes were also BLUEs adjusted by the ex-
perimental design. Genomic information was obtained by genotyping-
by-sequencing (GBS) and we used a total of 12,083 markers that
remained after quality control. Three environments were included:
bed planting with 2 irrigation levels (Bed2IR), bed planting with 5 irri-
gations levels (Bed5IR), and drip irrigation (Drip). Filtering also was
done by removing markers that had more than 80% of the wheat lines

with missing values, and markers with minor allele frequency lower
than or equal to 0.01 also were deleted.

Wheat Iranian dataset 3: This dataset consists of 2374 wheat lines
evaluated in a drought environment (D) and a heat environment (H)
at the CIMMYT experiment station near Ciudad Obregon, Sonora,
Mexico, during the 2010-2011 cycle; it was used in Crossa et al.
(2016). Two traits were measured: days to heading (DTHD) and
plant height (PTHT). Both traits were measured in the two envi-
ronments (Env1 and Env2) on the same 2374 lines. Of a total of
40,000 markers after quality control, we used 39,758 markers. In this
dataset, markers with more than 80% of missing values were re-
moved and markers with minor allele frequency lower than or equal
to 0.05 were deleted.

Elite wheat yield trial (EYT) datasets 4-7: These four datasets were
planted at the Norman E. Borlaug Research Station, Ciudad Obregon,
Sonora, Mexico, and correspond to elite yield trials (EYT) planted in
four different cropping seasons with 4 or 5 environments in each crop-
ping season. The lines that were included each year in each of the envi-
ronmentsare the same,but those indifferentyears aredifferent lines.EYT
dataset 4 was planted in 2013-2014 and contains 767 lines, EYT dataset
5 was planted in 2014-2015 and contains 775 lines, EYT dataset 6 was
planted in 2015-2016 and contains 964 lines, and EYT dataset 7 was
planted in 2016-2017 and contains 980 lines. An alpha lattice design
wasusedand the lineswere sown in39 trials, eachcomprising28 linesand
two checks, with three replications and six blocks. In each dataset, four
traits were recorded for each line: days to heading (DTHD, number of
days from germination to 50% spike emergence), days to maturity
(DTMT, number of days from germination to 50% physiological ma-
turity or the loss of green color in 50% of the spikes), plant height (in
centimeters,measured from the ground to the topof the spike), and grain
yield (GY).

In EYT datasets 4 and 7, the lines under study were evaluated in
4 environments, while in EYT datasets 5 and 6, the lines were evaluated
in 5 environments. For EYT dataset 4, the environments were: bed
planting with 5 irrigations (Bed5IR), early heat (EHT), flat planting and
5 irrigations (Flat5IR), and late heat (LHT). For EYT dataset 5, the
environments were: bed planting with 2 irrigation levels (Bed2IR), bed
plantingwith5 irrigations levels (Bed5IR),earlyheat (EHT),flatplanting
with 5 irrigation levels (Flat5IR) and late heat (LHT). For EYT dataset 6,
the environments were: bed planting with 2 irrigation levels (Bed2IR),
bed planting with 5 irrigations levels (Bed5IR), flat planting with 5 irri-
gation levels (Flat5IR),flatplantingwithdrip irrigation(FlatDrip), and late
heat (LHT). Finally, for EYT dataset 7, the four environments were: bed
planting with 5 irrigations (Bed5IR), early heat (EHT), flat planting with
5 irrigation levels (Flat5IR) and flat planting with drip irrigation
(FlatDrip).

n Table 1, continued

Dataset Model Trait APC SD MAAPE SD

EYT dataset 7 BMORS Height 0.3994 0.0258 0.048 0.0013
EYT dataset 7 BMTME DTHD 0.8549 0.0092 0.0291 8.00E-04
EYT dataset 7 BMTME DTMT 0.8674 0.0083 0.0163 5.00E-04
EYT dataset 7 BMTME GY 0.468 0.0274 0.0714 0.0014
EYT dataset 7 BMTME Height 0.4306 0.0276 0.0468 0.0014
EYT dataset 7 UT DTHD 0.8403 0.0097 0.0307 7.00E-04
EYT dataset 7 UT DTMT 0.8582 0.0079 0.0172 5.00E-04
EYT dataset 7 UT GY 0.5132 0.024 0.0684 0.0016
EYT dataset 7 UT Height 0.4006 0.0263 0.0468 0.0014
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Genome-widemarkers for the 4,368 lines in the four datasetswere
obtained using genotyping-by-sequencing (GBS) (Elshire et al.,
2011; Poland et al., 2012) at Kansas State University using an Illu-
mina HiSeq2500. After filtering, 2,038 markers were obtained. Im-
putation of missing marker data were done using LinkImpute
(Money et al., 2015) and implemented in TASSEL (Bradbury
et al., 2007), version 5. Markers that had more than 50% missing
data, less than 5% minor allele frequency, and more than 10% het-
erozygosity were removed, and 3,485 lines were obtained (767 lines
in dataset 1, 775 lines in dataset 2, 964 lines in dataset 3 and 980 lines
in dataset 4).

Evaluation of prediction performance: The prediction accuracies of
the three models under study (BMORS, BMTME and UT) were
evaluated with 10 random cross-validations (CV): the whole dataset
was divided into a training (TRN) and a testing (TST) set; 80%
(or 60%) of the whole dataset was assigned to TRN and the remaining
20% (or 40%) was assigned to TST. Since we used sampling with
replacement, one observation (line) may appear in more than
one partition. The CV implemented mimics a prediction problem
faced by breeders in incomplete field trials, where some lines may be
evaluated in some, but not all, target environments. Since N ¼ J · I
denotes the total number of records per each available trait, then to
select lines in the TST dataset, we fixed the percentage of data to be
used for TST [PTesting = 20% (or 40%)]. Then 0.20 (or 0.4) ·N
(lines) were chosen at random, and subsequently for each of these
lines, one environment was randomly picked from I environments.
The cells selected through this algorithm were allocated to the
TST dataset, while the cells (ijÞ that were not selected were assigned
to the TRN dataset. Lines were sampled with replacement if
J, 0:20ðor 0:4Þ ·N , and without replacement otherwise. The pre-
diction accuracy was evaluated with the average Pearson’s correla-
tion (APC) and mean arctan absolute percentage error (MAAPE) of
the testing sets of the 10 random partitions that were generated with
the implemented CV. It is important to point out that the first
3 datasets were implemented with 80% and 20% for TRN and
TST, respectively, while the last 4 datasets were implemented with
60% and 40% for TRN and TST, respectively. It is important to point
out that performance via cross-validation was based on the mean
sample from the posterior distribution of predicted values. To make
the models comparable in their prediction accuracy as well as on
their computing time, exactly the same random cross-validations
were used for the three models.

The MAAPE is computed as the arctan of the absolute value of the
differencebetween the observedvalueminus the predicted value divided
by the observed value. Its advantage is that it is defined in radians and
therefore scale-free and can include observations with missing values.
Another advantage is that it approaches Pi over 2 for dividing by zero.

Data availability
All seven datasets (Maize dataset 1, Wheat dataset 2, Wheat Iranian
dataset 3, EYT datasets 4-7), including phenotypic and genotypic data,
can be downloaded from the following link: hdl:11529/10548141
(http://hdl.handle.net/11529/10548141).

RESULTS
The results of this paper are presented in seven sections, each of which
corresponds to a different dataset. Genomic-enabled prediction accu-
racy is presented in Table 1 for each model (BMORS, BMTME, and
UT), trait, and dataset combination as average Pearson correlations
(APC) andmean arctan absolute percentage error (MAAPE) with their
corresponding standard deviations. Table 2 shows the time in minutes
for fitting the three models for each trait and dataset.

Maize dataset 1
In this dataset we compare the prediction accuracy of the three models
(BMORS, BMTME and UT).We did not find large differences in terms
of prediction accuracy between the three models (Figure 1) across
environments. The predictions in terms of APC for trait GY were
0.3449, 0.3504, and 0.3522 for models BMORS, BMTME, and UT.
The APC for ASI was around 042-0.43 for the three models, and for
trait PTHT, the range was between 0.4502 and 0.4787 (Table 1). In
terms of MAAPE, the range of predictions was between 0.1095 and
0.1142 for trait GY. In summary, we found only slight differences in the
APC and MAAPE of the three models for each trait.

For the whole dataset without cross-validation, we also compared
the implementation time (computational resources) between the three
methods and found that the slowest was the BMTME, while the fastest
was theUT implemented in the BGLR package; BMTMEwas 13.09 and
72.42 times slower thanUTandBMORS, respectively,while theBMORS
method was only 5.53 times slower than UT (Table 2).

Wheat dataset 2
In terms of APC,we did find somedifferences between the threemodels
for both traits included in this dataset (Figure 2). The BMTME gave the
highest APC for trait DTHD (0.8716) and PTHT (0.4782), followed by
BMORS and UT with APC around 0.85 for DTHD. The range of
predictions in terms of APC for trait DTHD was between 0.8533 and
0.8716, and between 0.4617 and 0.4782 for trait PTHT. However, for
MAAPE, we found small differences in prediction accuracy only in trait
DTHD, and the best model was the BMTME, which, on average, was
better than the BMORS and UT models by 17.63% and 14.28%, re-
spectively. The predictions for trait DTHD ranged between 0.4633 and
0.5625, while for trait PTHT, the predictions ranged between 0.5935
and 0.6023 (Table 1).

We also compared the implementation time (computational
resources) between the three methods for the whole dataset, without

n Table 2 Time in minutes for fitting models BMTME, BMORS and UT for each dataset. BMTME/BMORS is the ratio of the time for
implementing BMTME model vs. BMORS; BMTME/UT is the ratio of the time for implementing BMTME vs. UT model and BMORS/UT is the
ratio of the time for implementing BMORS vs. UT model

Dataset BMTME BMORS UT BMTME/BMORS BMTME/UT BMORS/UT

Maize dataset 1 1240.722 94.761 17.131 13.09 72.42 5.53
Wheat dataset 2 436.005 47.315 7.724 9.21 56.45 6.13
Wheat Iranian dataset 3 8569.043 831.946 151.263 10.30 56.65 5.50
EYT dataset 4 3175.780 277.315 52.305 11.45 60.72 5.30
EYT dataset 5 4884.547 420.583 80.833 11.61 60.43 5.20
EYT dataset 6 8040.091 657.109 127.833 12.24 62.90 5.14
EYT dataset 7 5713.488 436.653 82.771 13.08 69.03 5.28
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cross-validation, and againwe found that the slowestwas theBMTME,
while the fastestwasBMORS.BMTMEwas9.21 and56.44 times slower
than BMORS and UT, respectively, while the UT method was only
6.12 times slower than BMORS (Table2).

Wheat Iranian dataset 3
For this dataset we foundmore differences inAPCbetween the traits for
DTMT than for DTHD (Figure 3). In trait DTMT the best predictions
were observed in model BMTME (0.5182) and the worst in model
BMORS (0.4288) (Table 1). The average superiority of BMTME was
17.25% and 6.33% with regard to the BMORS and UT models, re-
spectively. The predictions in terms of APC for trait DTHD ranged
between 0.5862 and 0.5918, while for trait DTMT, they ranged be-
tween 0.4288 and 0.5182.

In terms of MAAPE, we only found differences between the three
models for trait DTMT (Figure 3); the best predictions were observed
in models BMTME and UT and the worst in model BMORS, but no
significant differences were observed between the BMTME and UT
models. The BMTME model was superior by 7.438% to the BMORS
model. The predictions in terms of MAAPE for trait DTHD ranged
between 0.039 and 0.039, while for trait DTMT, they ranged between
0.056 and 0.061 (Table 1).

Regarding the computer resources used when fitting eachmodel
to this dataset, the BMTME was the slowest in terms of implemen-
tation time, for it was 10.3 and 58.65 times slower than the BMORS

method and UT model, respectively; the UT was 5.5 times faster
than the BMORS (Table 2).

EYT dataset 4
Figure 4 shows that although no large differences were found between
the three models in DTHD, DTMT, and Height, the best predictions
were observed in model BMTME with gains of 2.559%, 2.571% and
4.767% for traits DTHD, DTMT and Height, respectively (Table 1),
compared to the BMORS model, and gains of 2.415%, 3.098% and
5.567%, respectively, compared to the UT model. However, for trait
GY, the worst predictions were observed under the BMTME (0.4311),
and models BMORS and UT were better than the BMTME model by
around 3% and 5%, respectively. Values of APC ranged from 0.8149
to 0.8363 for DTHD, from 0.773 to 0.797 for DTMT, from 0.431
to 0.455 for GY, and from 0.546 and 0.573 for Height.

For the MAAPE criterion, there were differences between the three
models in traitsDTHDandDTMT, and thebestmodelwas theBMTME
with gains of 14.888% (DTHD) and 7.826% (DTMT) over the BMORS
model and gains of 11.144% (DTHD) and 7.018% (DTMT) for those
traits over the UT model (Figure 4). The predictions under MAAPE
ranged between 0.0303-0.0356 for DTHD, 0.0212-0.0230 for DTMT,
0.0713-0.0736 for GY, and 0.0374-0.0381 for Height (Table 1).

The implementation time between the threemethodswas as follows:
the slowest was BMTME, the fastest was BMORS and UT was in-
termediate.BMTMEwas11.45and60.72 times slower thanBMORSand

Figure 1 Maize dataset 1. Performance of three models
(BMTME, BMORS and UT) under study in terms of average
Pearson’s correlation (APC) and mean arctan absolute
percentage error (MAAPE) for three traits: anthesis-
silking interval (ASI), grain yield (GY) and plant height
(PH) in three environments, E1, E2, and E3.

Figure 2 Wheat dataset 2. Performance of three models
(BMTME, BMORS and UT) under study in terms of average
Pearson’s correlation (APC) and mean arctan absolute
percentage error (MAAPE) for two traits: days to head-
ing (DTHD) and plant height (PTHT). Three environ-
ments were included: bed planting with two irrigation
levels (Bed2IR), bed planting with 5 irrigations levels
(Bed5IR), and drip irrigation (Drip).
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UT, respectively, while the UT method was only 5.30 times faster than
BMORS (Table 2).

EYT dataset 5
No important differences between the three models in any of the four
traits in terms ofAPC (Figure 5)were found.However, somedifferences
were found for MAAPE in traits DTHD and DTMT with gains of
9.959% (DTHD) and 6.875% (DTMT) compared to the BMORS
model, and gains of 8.439% (DTHD) and 6.875% (DTMT) compared
to the UT model (Figure 5). The predictions in terms of APC for trait
DTHD were around 0.85, between 0.7902 and 0.8112 for trait DTMT,
between 0.5486 and 0.5621 for GY, and around 0.55-0.56 for Height
(Table 1).

In terms ofMAAPE, the range for trait DTHDwas between 0.02170
and 0.02410, between 0.01490 and 0.01600 for trait DTMT, between
0.0684and0.0698 for traitGYandbetween0.03460 and0.03490 for trait
Height. For this data set, the BMTME method was the slowest in
implementation time, while the fastest was UT. BMTME was 11.61
and 60.43 times slower than BMORS and UT, respectively, while the
BMORS method was only 5.2 times slower than UT (Table 2).

EYT dataset 6
In terms of APC andMAAPE,we did not find large differences between
the threemodels in any of the three traits (Figure 6). However, although
large differences between models in terms of APC were not found for
traits DMT and GY, the BMTME model was better than the BMORS

and UT models for traits DTMT and GY, whereas for DTHD the best
model was BMORS (0.8412) and for Height the best model was UT
(0.514) (Table 1). In terms of MAAPE, the BMTME was superior by
6.211% (DTMT) and 3.081% (GY) compared to the BMORS, and by
5.625% (DTMT) and 2.455% (GY) compared to the UTmodel (Figure 6).
For this dataset, the BMTME method was the slowest in implementa-
tion time, while the fastest was UT. BMTMEwas 12.24 and 62.89 times
slower than BMORS and UT, respectively, while the BMORS method
was only 5.14 times slower than UT (Table 2).

EYT dataset 7
Figure 7 and Table 1 show that the best predictions were observed in
model BMTME for traits DTHD (0.8549), DTMT (0.8674), and
Height (0.4306). However, for trait GY, the worst predictions were
observed under the BMTME model, and models BMORS and UT
were better than the BMTME model by around 8%. In terms of
MAAPE, we only found differences between the three models for
traits DTHD and DTMT, and the best model was the BMTME
compared to the BMORS and UT models. However, for trait GY,
models BMORS and UT were the best, with a superiority of around
4% compared to the BMTME model, but no relevant difference was
observed for this trait between the BMORS and UT models. Finally,
concerning computational resources between the three methods for
fitting the whole dataset, without cross-validation, we found that the
slowest was the BMTME, while the fastest was UT. BMTME was
13.08 and 69.03 times slower than BMORS and UT, respectively,

Figure 3 Wheat Iranian dataset 3. Performance of three
models (BMTME, BMORS and UT) under study in terms
of average Pearson’s correlation (APC) and mean arctan
absolute percentage error (MAAPE) for two traits: days
to heading (DTHD) and days to maturity (DTMT) in two
environments (Env1 and Env2).

Figure 4 EYT dataset 4. Performance of three models
(BMTME, BMORS and UT) under study in terms of average
Pearson’s correlation (APC) and mean arctan absolute
percentage error (MAAPE) for four traits: days to head-
ing (DTHD), days to maturity (DTMT), grain yield (GY)
and Height, evaluated in 4 environments: bed planting
with 5 irrigations (Bed5IR), early heat (EHT), flat planting
and 5 irrigations (Flat5IR), and late heat (LHT).
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while the UT method was only 5.27 times slower than BMORS
(Table 2).

DISCUSSION
In this study, we propose the BMORS model that basically consists of
a two-stage univariate process, where a conventional univariate model
is applied to the training set in the first stage, and those values are
used in the second stage (for training and testing); here again a
univariate model is implemented with the modified training set
from which the final predictions are obtained. In the first stage, a
GBLUP model was trained with features of the original dataset. Next,
GBLUP’s first-stage predictions were used to build a meta-prediction
model using the predictions of the first stage as features, but in
the second stage, a Ridge regression method was used. This meta-
prediction model was employed to obtain the final predictions.

When comparing the prediction ability of the BMORSmodel to that
ofUT andmultivariate BMTMEmodels, we found inmost datasets, the
BMTMEmodel was better in terms of prediction accuracy than the UT
and BMORS models. The predictions of the proposed BMORS were
competitive since in general its prediction performance was similar to
those of the BMTME and UT models, which may be due in part to the
fact that the proposed BMORS model is a type of feature extraction
technique that combines information from multiple predictive models
to generate a newmodel. The main advantage of the proposed BMORS
model is that it is considerably faster in terms of implementation time
than theBMTMEmodel. For example, in dataset 1, theBMORSmethod

was 13.09 times faster than the BMTME, while in dataset 2, the BMORS
method was 9.21 times faster than the BMTME, and in the remaining
datasets (3 to 7), the BMORS was 10.3, 11.45, 11.61, 12.24 and 13.08
times faster than the BMTME, respectively, which allows its practical
implementation. When comparing the implementation time, the supe-
riority of the BMORS model is clear, since it was at least 9 times faster
than the BMTME model. For this reason, although the prediction
performance of BMORS is slightly lower than the prediction perfor-
mance of the BMTME, this is compensated for by the fast implementa-
tion timeeven formoderate and largedatasets,which isnotpossiblewith
theBMTMEmodel. In theproposedmethod,multipleweak learners can
formone learnerwith (expected) higher predictionperformance (strong
learner), as opposed to a weak learner that usually performs slightly
better than random guessing (Freund and Schapire 1997). However, the
key difference between this technique and conventional ensemble tech-
niques is that themultiple predictions are not from different models for
the same trait or response variable, but for different correlated traits
predicted with the same model. For this reason, the proposed model is
called the featured extraction method, and not an ensemble technique.
Also, in the second stage of the stacking process, we only included as
predictors the predictions of the first stage, although some authors
suggest including the original features plus the predictions of the first
stage. It is important to point out that we also tested this option, but we
got the worst predictions (results not presented). The proposed
BMORS model can outperform the individual models (in the first
stage) due to its smoothing nature and its ability to highlight each base

Figure 5 EYT dataset 5. Performance of three models
(BMTME, BMORS and UT) under study in terms of average
Pearson’s correlation (APC) and mean arctan absolute
percentage error (MAAPE) for four traits (DTHD, DTMT,
GY, Height) in five environments: bed planting with
2 irrigations (Bed2IR), bed planting with 5 irrigations
(Bed5IR), early heat (EHT), flat planting with 5 irrigations
(Flat5IR) and late heat (LHT).

Figure 6 EYT dataset 6. Performance of three models
(BMTME, BMORS and UT) under study in terms of average
Pearson’s correlation (APC) and mean arctan absolute
percentage error (MAAPE) for four traits (DTHD, DTMT,
GY, Height) in five environments: bed planting with
2 irrigations (Bed2IR), bed planting with 5 irrigations
(Bed5IR), flat planting with 5 irrigations (Flat5IR), flat
planting with drip irrigation (FlatDrip), and late heat (LHT).
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model where it performs best and mistrust each base model where it
performs poorly.

Our results are not in agreement with those of Li et al. (2017), who
used the multi-trait regressor stacking method for time series predic-
tion of drug efficacy and found that this method was considerably
superior with regard to univariate analysis in most datasets they eval-
uated. The results of the present study are in agreement with those of
Melki et al. (2017), who evaluated the multi-trait regressor stacking
method under the support vector regression framework and found
the trick of expanding the predictors in the second stage with the
predictions of the target traits in the first stage in order to improve
prediction accuracy. These authors also proposed making small mod-
ifications to this method in order to produce a performance similar to
that of the original multi-trait regressor stacking method. Our results
are also in agreement with those reported by Santana et al. (2017),
namely, that using the outputs (predictions of the first stage) as addi-
tional prediction features in the second stage helps to increase predic-
tion accuracy. However, it is important to point out that under the
BMOR model, the increase in prediction accuracy was very modest
only in some cases.

It is important topoint out that the proposedBMORSmethod canbe
used for predictingmaterial that has never been tested in the field, but of
course we need to have the complete genotypic information of the lines
to be predicted. Under this scenario, the implementation is the same as
those described in this paper, but care should be takenwhen creating the
design matrices to avoid problems in its implementation.

An advantage of the proposed BMORS model is that its implemen-
tation can be parallelized and implemented using current genomic-
enabled prediction software. In this study, we implemented the BMORS
model with the BGLR software developed by de los Campos and Pérez-
Rodríguez (2014) using a two-stage process. It is important to recall
that in the first stage, separate UT models were implemented for each
trait with its corresponding training set, and predictions were made for
each studied trait for both the training and testing sets, and then all
predictions of the traits were used as covariates in a second-stage uni-
variate analysis. With the same training set and with the predictions as
covariates (predictions of the traits) of the first stage, the final predic-
tions for each trait were performed. However, to successfully imple-
ment the BMORS model, the predictions of all traits used as covariates
in the second stage should be standardized by subtracting their mean
and dividing by their corresponding standard deviation.

Also it is important to point out that in the first stage, the proposed
BMORS method allows parametric and non-parametric approaches,
although here in the first stage we used the GBLUP with (co)variance
structures of lines and lines · environments. However, other covariance

structures are allowed that can be built with different types of kernels
that can capture in a better way existing non-linearity in the data.
Also, the first stage can be built using a pure parametric approach
with existing software for genomic selection, like BGLR and others.
However, in the second stage we used a Ridge regression approach,
but other types of parametric and non-parametric approaches could
be used; thus this method can be made more general in a very
straightforward manner.

The implementation of the BMORS model is not restricted to a
GBLUP in thefirst stage andRidge regression in the second stage, which
means that we can implement other types of models at each stage. For
example, when the BMORS model is implemented in the BGLR
statistical software, this allows using Bayesian Ridge regression,
Lasso, Bayes A, Bayes B, RKHS, or a mixture of models at each stage.
However, if the BMORS model is implemented in conventional
restricted maximum likelihood (REML) software used for geno-
mic-enabled prediction, then each stage can only be implemented
under a REML framework. This shows that the application of the
BMORS model is very flexible and can be implemented using the
existing genomic-enabled prediction software. Breiman (1996) sug-
gested that in the second stage, the beta (weights) coefficients of the
predictor variables should be restricted to positive values; however,
we tested this option by implementing the second stage with non-
negative least squares using the library nnls (Lawson and Hanson
1995; Mullen and van Stokkum 2015), but the prediction accuracy
was considerably worse. For this reason, both stages were imple-
mented under a Bayesian framework without restriction on the beta
coefficients.

One disadvantage of the proposed BMORS model compared to
conventional multivariate analysis, is that it does not allow estimating
genetic andresidualcovariances (andcorrelations)betweentraits.This is
because the BMORSmodel is implemented in a two-stage process with
separateUTmodels, which does not allow estimating these covariances.
That is, the BMORS model is less interpretable than conventional
multivariate analysis, which implies that the interpretation of beta
coefficients makes no sense. However, for scientific studies where pre-
diction is themaingoal, notmeasuring themagnitudeof the relationship
between traits is not critical. It is important topoint out that the BMORS
method is appropriate for multi-trait analysis and should be preferred
over the UT model when the correlation between traits is moderate or
large; however, when this correlation is weak or close to zero, the UT
model shouldbepreferredbecausemost of the time itwill producebetter
predictions than the BMORS method and in less computing time.

AnalyzingMTmodels in the context ofGS is very challenging due to
the size and complexity of the underlying datasets, which nowadays is

Figure 7 EYT dataset 7. Performance of three models
(BMTME, BMORS and UT) under study in terms of average
Pearson’s correlation (APC) and mean arctan absolute
percentage error (MAAPE) for four traits (DTHD, DTMT,
GY, Height) in 4 environments: bed planting system
with 5 irrigations (Bed5IR), early heat (EHT), flat planting
with 5 irrigations (Flat5IR) and flat irrigation with drip
irrigation (FlatDr).
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common in many breeding programs; for these reasons, MT models
require much more computational effort than UTmodels. However,
due to the advantages of MT models when improving parameter
estimates and prediction accuracy, and given the continued and
dramatic growth of computational power, MT models play an in-
creasingly important role in data analysis in plant and animal
genomic-assisted breeding for selecting the best candidate genotypes
early in time. For this reason, in plant and animal breeding the
BMORS model is an attractive alternative for selecting candidate
genotypes since it produces similar genomic-enabled predictions for
multi-trait and multi-environment data as other statistical models
butwithmuch less computing time, since across the sevendatasetswe
found that the BMORS model is at least 9 times faster than the
BMTME method. Although the three methods evaluated in this
article used the Markov Chain Monte Carlo method for Bayesian
inference, the differences with regard to the implementation time
thatwe found aremostly due to themodel itself, andhow themethods
were implemented in each library.

CONCLUSIONS
In this research we proposed a Bayesian multiple-output regressor
stacking (BMORS) model applied in the context of genomic selection;
it is the Bayesian version of the multi-output regressor stackingmethod
proposed by Spyromitros-Xioufis et al. (2012; 2016). The BMORS
model was implemented using a two-stage process, where in the first
stage, a conventional univariate GBLUPmodel was implemented for its
corresponding training set, while in the second stage a Ridge regression
model was implemented for the same training set, but using as predic-
tors the predictions in the first stage of the L traits under study. We
found that the BMORS model was similar to the UT and BMTME
models in terms of prediction accuracy, but in general, the BMTME
model was the best. Finally, although more empirical evidence is
needed to confirm the prediction performance of the BMORS model,
the proposed BMORS model is another alternative for performing
multi-trait genomic-enabled prediction in plant and animal breeding
programswith significantly less computational time than is required for
other genomic-enabled statistical packages.

ACKNOWLEDGMENTS
We thank all scientists, field workers, and lab assistants from National
Programs and CIMMYT who collected the data used in this study. We
are also thankful for the financial support provided by CIMMYT
CRP (maize and wheat), the Bill & Melinda Gates Foundation, as
well the USAID projects (Cornell University and Kansas State
University) that generated the CIMMYT maize and wheat data
analyzed in this study. We acknowledge the financial support pro-
vided by the Foundation for Research Levy on Agricultural Prod-
ucts (FFL) and the Agricultural Agreement Research Fund (JA) in
Norway through NFR grant 267806.

LITERATURE CITED
Borchani, H., G. Vreanda, C. Bielza, and P. Larrañaga, 2015 A survey on

multi-output regression. WIREs Data Mining Knowl Discov 5: 216–233.
https://doi.org/10.1002/widm.1157

Borchani, H., P. Larrañaga, C. Bielza, and J. Gama, 2016 Mining multi-
dimensional concept-drifting data streams using Bayesian network
classifiers. Intell. Data Anal. 20: 257–280. https://doi.org/10.3233/
IDA-160804

Bradbury, P. J., Z. Zhang, D. E. Kroon, T. M. Casstevens, Y. Ramdoss et al.,
2007 TASSEL: Software for association mapping of complex traits in
diverse samples. Bioinformatics 23: 2633–2635. https://doi.org/10.1093/
bioinformatics/btm308

Breiman, L., 1996 Stacked Regressions. Mach. Learn. 24: 49–64. https://
doi.org/10.1007/BF00117832

Calus, M. P., and R. F. Veerkamp, 2011 Accuracy of multi-trait genomic
selection using different methods. Genetics, Selection, Evolution. GSE 43:
26. https://doi.org/10.1186/1297–9686–43–26

Crossa, J., Beyene, Y., Kassa, S., Pérez-Rodríguez, P., Hickey et al.
2013 Genomic prediction in maize breeding populations with geno-
typing-by-sequencing. G3 (Bethesda) 3: 1903–1926.

Crossa, J., P. Pérez-Rodríguez, J. Cuevas, O. A. Montesinos-López, D. Jarquín
et al., 2017 Genomic Selection in Plant Breeding: Methods, Models, and
Perspectives. Trends Plant Sci. 22: 961–975. https://doi.org/10.1016/
j.tplants.2017.08.011

Crossa, J., D. Jarquín, J. Franco, P. Pérez-Rodríguez, and J. Burgueño
2016 Genomic Prediction of Gene Bank Wheat Landraces.
G3 (Bethesda) 6: 1819–1834. https://doi.org/10.1534/g3.116.029637

de los Campos, G., and P. Pérez-Rodríguez, 2014 Bayesian Generalized
Linear Regression. R package version 1.0.4. http://CRAN.R-project.org/
package=BGLR.

Elshire, R. J., J. C. Glaubitz, Q. Sun, J. A. Poland, S. E. Kawamoto et al.,
2011 A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for
High Diversity Species. PLoS One 6: e19379. https://doi.org/10.1371/
journal.pone.0019379

Freund, Y., and R. E. Schapire, 1997 A decision-theoretic generalization of
on-line learning and an application to boosting. J. Comput. Syst. Sci. 55:
119–139. https://doi.org/10.1006/jcss.1997.1504

He, D., D. Kuhn, and L. Parida, 2016 Novel applications of multitask
learning and multiple output regression to multiple genetic trait predic-
tion. Bioinformatics 32: i37–i43. https://doi.org/10.1093/bioinformatics/
btw249

Jia, Y., and J.-L. Jannink, 2012 Multiple-Trait Genomic Selection Methods
Increase Genetic Value Prediction Accuracy. Genetics 192: 1513–1522.
https://doi.org/10.1534/genetics.112.144246

Jiang, J., Q. Zhang, L. Ma, J. Li, Z. Wang et al., 2015 Joint prediction of
multiple quantitative traits using a Bayesian multivariate antedependence
model. Heredity 115: 29–36. https://doi.org/10.1038/hdy.2015.9

Lawson, C. L., and R. J. Hanson, 1995 Solving Least Squares Problems.
Classics in Applied Mathematics, SIAM, Philadelphia. https://doi.org/
10.1137/1.9781611971217

Li, H., W. Zhang, Y. Chen, Y. Guo, G.-Z. Li et al., 2017 A novel multi-target
regression framework for time-series prediction of drug efficacy. Sci. Rep.
7: 40652. https://doi.org/10.1038/srep40652

Melki, G., A. Cano, V. Kecman, and S. Ventura, 2017 Multi-target support
vector regression via correlation regressor chains. Inf. Sci. 415–416: 53–
69. https://doi.org/10.1016/j.ins.2017.06.017

Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard, 2001 Prediction of
total genetic value using genome wide dense marker maps. Genetics 157:
1819–1829.

Money, D., K. Gardner, Z. Migicovsky, H. Schwaninger, G. Zhong,
S. Myles et al., 2015 LinkImpute: Fast and Accurate Genotype Impu-
tation for Nonmodel Organisms. G3 (Bethesda) 5: 2383–2390. https://
doi.org/10.1534/g3.115.021667

Montesinos-López, O. A., A. Montesinos-López, J. Crossa, F. Toledo,
O. Pérez-Hernández et al., 2016 A Genomic Bayesian Multi-trait and
Multi-environment Model. G3 (Bethesda) 6: 2725–2744.

Montesinos-López, A., O. A. Montesinos-López, D. Gianola, J. Crossa, and
C. M. Hernández-Suárez, 2018a Multi-environment genomic predic-
tion of plant traits using deep learners with a dense architecture. G3
(Bethesda) 8: 3813–3828. https://doi.org/10.1534/g3.118.200740

Montesinos-López, A., O. A. Montesinos-López, D. Gianola, J. Crossa, and
C. M. Hernández-Suárez, 2018b Multivariate Bayesian analysis of
on-farm trials with multiple-trait and multiple-environment data. Agron.
J. 111: 1–12. https://doi.org/10.2134/agronj2018.06.0362

Montesinos-López, O. A., A. Montesinos-López, J. Crossa, D. Gianola,
and C. M. Hernández-Suárez, 2018c Multi-trait, multi-environment
deep learning modeling for genomic-enabled prediction of plant
traits. G3 (Bethesda) 8: 3829–3840. https://doi.org/10.1534/
g3.118.200728

Volume 9 October 2019 | A Bayesian Genomic Multi-output Model | 3391

https://doi.org/10.1002/widm.1157
https://doi.org/10.3233/IDA-160804
https://doi.org/10.3233/IDA-160804
https://doi.org/10.1093/bioinformatics/btm308
https://doi.org/10.1093/bioinformatics/btm308
https://doi.org/10.1007/BF00117832
https://doi.org/10.1007/BF00117832
https://doi.org/10.1186/1297�9686�43�26
https://doi.org/10.1016/j.tplants.2017.08.011
https://doi.org/10.1016/j.tplants.2017.08.011
https://doi.org/10.1534/g3.116.029637
http://CRAN.R-project.org/package=BGLR
http://CRAN.R-project.org/package=BGLR
https://doi.org/10.1371/journal.pone.0019379
https://doi.org/10.1371/journal.pone.0019379
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1093/bioinformatics/btw249
https://doi.org/10.1093/bioinformatics/btw249
https://doi.org/10.1534/genetics.112.144246
https://doi.org/10.1038/hdy.2015.9
https://doi.org/10.1137/1.9781611971217
https://doi.org/10.1137/1.9781611971217
https://doi.org/10.1038/srep40652
https://doi.org/10.1016/j.ins.2017.06.017
https://doi.org/10.1534/g3.115.021667
https://doi.org/10.1534/g3.115.021667
https://doi.org/10.1534/g3.118.200740
https://doi.org/10.2134/agronj2018.06.0362
https://doi.org/10.1534/g3.118.200728
https://doi.org/10.1534/g3.118.200728


Montesinos-López, O. A., A. Montesinos-López, F. Javier Luna-Vázquez,
F. H. Toledo, and P. Pérez-Rodríguez, 2019 An R Package for Bayesian
Analysis of Multi-environment and Multi-trait Multi-environment Data
for Genome-Based Prediction G3 (Bethesda) 9: 1355–1369. https://
doi.org/10.1534/g3.119.400126

Mullen, K. M., and I. H. M. van Stokkum, 2015 The Lawson-Hanson
algorithm for non-negative least squares (NNLS). R package.

Poland, J. A., P. J. Brown, M. E. Sorrells, and J. L. Jannink,
2012 Development of high-density genetic maps for barley and
wheat using a novel two-enzyme genotyping-by-sequencing ap-
proach. PLoS One 7: e32253. https://doi.org/10.1371/
journal.pone.0032253

R Core Team, 2017 R: A language and environment for statistical com-
puting. R Foundation for Statistical Computing. Vienna, Austria. ISBN
3–900051–07–0. URL http://www.R-project.org/.

Rutkoski, J., Poland, J., Mondal, S., Autrique, E., Crossa, J., Reynolds, M.,
Singh, R. 2016 Predictor traits from high-throughput phenotyping
improve accuracy of pedigree and genomic selection for yield in wheat.
G3 (Bethesda) 6: 2799–2808.

Santana, E. J., S. M. Mastelini, and S. Barbon, 2017 Deep Regressor
Stacking for Air Ticket Price Prediction. In: XIII Brazilian Symposium on
Information Systems: Information Systems for Participatory Digital
Governance, Brazilian Computer Society (SBC), pp. 25–31.

Schulthess, A. W., Y. Zhao, C. F. H. Longin, and J. C. Reif, 2017 Advantages
and limitations of multiple-trait genomic prediction for Fusarium head
blight severity in hybrid wheat (Triticum aestivum L.). Theor. Appl.
Genet. 131: 685–701. https://doi.org/10.1007/s00122-017-3029-7

Spyromitros-Xioufis, E., W. Groves, G. Tsoumakas, and I. Vlahavas,
2012 Multi-label classification methods for multi-target regression, ar-
Xiv preprint arXiv:1211.65811159–1168. Cornell University Library.

Spyromitros-Xioufis, E., G. Tsoumakas, W. Groves, and I. Vlahavas,
2016 Multi-target regression via input space expansion: treating tar-
gets as inputs. Mach. Learn. 104: 55–98. https://doi.org/10.1007/
s10994-016-5546-z

VanRaden, P. M., 2008 Efficient methods to compute genomic predictions.
J. Dairy Sci. 91: 4414–4423. https://doi.org/10.3168/jds.2007-0980

Communicating editor: E. Huang

3392 | O. A. Montesinos-López et al.

https://doi.org/10.1534/g3.119.400126
https://doi.org/10.1534/g3.119.400126
https://doi.org/10.1371/journal.pone.0032253
https://doi.org/10.1371/journal.pone.0032253
http://www.R-project.org/
https://doi.org/10.1007/s00122-017-3029-7
https://doi.org/10.1007/s10994-016-5546-z
https://doi.org/10.1007/s10994-016-5546-z
https://doi.org/10.3168/jds.2007-0980


APPENDIX A

R code for implementing the BMORS model in the BMTME package
rm(list=ls())
library(BMTME)
data(“WheatToy”) #########This data set is preloaded in the BMTME package#####
ls()
########Part a) Phenotypic data############################
phenoWheatToy ,- phenoWheatToy[order(phenoWheatToy$Env, phenoWheatToy$Gid),]
rownames(phenoWheatToy)=1:nrow(phenoWheatToy)
head(phenoWheatToy)
#########Part b) Design matrix######################################
LG ,- cholesky(genoWheatToy)
ZG ,- model.matrix(�0 + as.factor(phenoWheatToy$Gid))
Z.G ,- ZG %�% LG
Z.E ,- model.matrix(�0 + as.factor(phenoWheatToy$Env))
ZEG ,- model.matrix(�0 + as.factor(phenoWheatToy$Gid):as.factor(phenoWheatToy$Env))
G2 ,- kronecker(diag(length(unique(phenoWheatToy$Env))), data.matrix(genoWheatToy))
LG2 ,- cholesky(G2)
Z.EG ,- ZEG %�% LG2
Y ,- as.matrix(phenoWheatToy[, -c(1, 2)])
head(Y)
############Part c) Cross validation and predictor########################
pheno ,- data.frame(GID = phenoWheatToy[, 1], Env = phenoWheatToy[, 2],Response = phenoWheatToy[, 3])
ETA ,- list(Env = list(X = Z.E, model = “BRR”), Gen = list(X = Z.G, model = ’BRR’), EnvGen = list(X = Z.EG, model = “BRR”))
CrossValidation ,-CV.RandomPart(pheno, NPartitions = 10, PTesting = 0.2,set_seed = 123)
########### Part d) Implementing the BMORS model#############################
pm ,-BMORS(Y, ETA = ETA, nIter = 15000, burnIn = 10000, thin = 2, progressBar = TRUE, testingSet = CrossValidation, digits = 4)
summary(pm)
boxplot(pm,select=”MAAPE”,las = 2)

APPENDIX B

Explanation of code of Appendix A and the output of the BMORS model
Tobe able to implement theBMORSmethod, it is necessary to install theBMTME library,which in addition to implementing theBMTMEmodel

also allows implementing theBMORSmethod. It is important topoint out that thedataused for illustrating theBMORSmethod is a toywheat dataset
calledWheatToy that is preloaded in the BMTMEpackage. For running the code given in Appendix A, you only need to copy and page this code in
R and in this way you can run this in a straightforward way.

In Part a) Phenotypic data–we are ordering the data first by environment and then in each environment by the GIDs of lines. It is important to
have the same order of the design matrices (environments, lines and genotype by environment) with those of the genomic relationship matrix.

In Part b) Design matrix–we create the design matrices of environments, lines and of genotypes by environments interaction. Here we also
show how to incorporate the GRM into the design matrices of lines and genotype by environment interaction. At the end of this part the matrix of
response variables (Y) is selected for which we will be implementing the BMORS method.

In part c) Cross validation and predictor—the R code is provided for creating the training-testing sets using the CV.RandomPart, for which an
object called pheno is provided that contains information on environments, lines and response variables. In the CV.RandomPart() was specified
10 random partitions, with 20% for testing and 80% for training in each random partition. Then, also in this part of the code the predictor of the
model is created as a list, which in this case contains three components corresponding to environments, lines and genotype by environment
interactions. Finally, in part d) Implementing the BMORSmodel— the BMORS() function is used to implement the BMORSmethod that needs as
input the information of the predictor (ETA), the matrix of response variables (Y), the number of iterations (nIter), the burn-in (burnIn), the thin
value, and the information of the observations that will be used as testing (testingSet). The number of digits that should be used to print the results is
also specified, and a TRUE or FALSE value function is specified in progressBar, to print or not to print the progress of the training process. And
finally, with the summary(pm), we printed the output, which in this case is:

. summary(pm)

Environment Trait Pearson SE_Pearson MAAPE SE_MAAPE

1 Bed2IR DTHD 0.8839 0.0606 0.3720 0.0398
2 Bed2IR PTHT 0.6065 0.0867 0.7267 0.0444
3 Bed5IR DTHD 0.9352 0.0197 0.4403 0.0590
4 Bed5IR PTHT 0.2215 0.1534 0.3790 0.0543
5 Drip DTHD 0.9341 0.0312 0.5445 0.0548
6 Drip PTHT 0.6295 0.0733 0.7018 0.0278
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