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Abstract 21 

Polar cod (Boreogadus saida) has been used as a model Arctic species for hazard assessment of 22 

environmental stressors such as polycyclic aromatic hydrocarbons (PAHs). However, most of the PAH 23 

studies using polar cod rely on targeted biomarker-based analysis thus may not adequately address the 24 

complexity of the toxic mechanisms of the stressors. The present study was performed to develop a 25 

broad-content transcriptomic platform for polar cod and apply it for understanding the toxic mechanisms 26 
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of a model PAH, benzo(a)pyrene (BaP). Hepatic transcriptional analysis using a combination of high-27 

density polar cod oligonucleotide microarray and quantitative real-time RT-PCR was conducted to 28 

characterize the stress responses in polar cod after 14d repeated dietary exposure to 0.4 (Low) and 20.3 29 

µg/g fish/feeding (High) BaP. Bile metabolic analysis was performed to identify the storage of a key 30 

BaP hepatic biotransformation product, 3-hydroxybenzo(a)pyrene (3-OH-BaP). The results clearly 31 

showed that 3-OH-BaP was detected in the bile of polar cod after both Low and High BaP exposure. 32 

Dose-dependent hepatic stress responses were identified, with Low BaP suppressing genes involved in 33 

the defense mechanisms and High BaP inducing genes associated with these pathways. The results 34 

suggested that activation of the aryl hydrocarbon receptor signaling, induction of oxidative stress, DNA 35 

damage and apoptosis were the common modes of action (MoA) of BaP between polar cod or other 36 

vertebrates, whereas induction of protein degradation and disturbance of mitochondrial functions were 37 

proposed as novel MoAs. Furthermore, conceptual toxicity pathways were proposed for BaP-mediated 38 

effects in Arctic fish. The present study has for the first time reported a transcriptome-wide analysis 39 

using a polar cod-specific microarray and suggested novel MoAs of BaP. The analytical tools, 40 

bioinformatics solutions and mechanistic knowledge generated by this study may facilitate 41 

mechanistically-based hazard assessment of environmental stressors in the Arctic using this important 42 

fish as a model species. 43 

 44 
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1. Introduction 50 

Climate change in combination with anthropogenic activities have brought new challenges to the Arctic 51 

ecosystems. Elevated levels of persistent organic pollutants (POPs) and hydrocarbons are found in the 52 
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Arctic due to river discharges, freshwater run-off from melting sea-ice, oil and gas exploration, and 53 

maritime shipping (Macdonald et al., 2005; Harsem et al., 2011; Smith and Stephenson, 2013). Increased 54 

contamination may thus pose risk to living organisms in the Arctic. Polar cod (Boreogadus saida) is a 55 

keystone fish species in the Arctic marine ecosystem due to its abundance, pan-Arctic distribution and 56 

central role in the food web (Bradstreet and Cross, 1982; Hop and Gjosaeter, 2013). In the past decade, 57 

polar cod has been extensively studied with regards to its sensitivity toward petroleum related 58 

contaminants (Geraudie et al., 2014; Bender et al., 2016; Nahrgang et al., 2016; Vieweg et al., 2018) 59 

and considered as an Arctic indicator species for environmental monitoring (Nahrgang et al., 2009; 60 

Jonsson et al., 2010; Nahrgang et al., 2010a; Nahrgang et al., 2010b).  61 

Benzo(a)pyrene (BaP) is a five-ring polycyclic aromatic hydrocarbon (PAH) that has been widely 62 

used as a prototypical compound for understanding the effects and modes of action (MoAs) of PAHs 63 

(Collins et al., 1991). It is a highly toxic chemical to many organisms and classified as one of the priority 64 

pollutants by U.S. Environmental Protection Agency (https://www.epa.gov/eg/toxic-and-priority-65 

pollutants-under-clean-water-act). The toxicity of BaP in mammals and several fish species has been 66 

extensively studied, including developmental toxicity, reproductive toxicity, immunotoxicity and 67 

carcinogenicity (Carlson et al., 2004; Busquet et al., 2007; Yuen et al., 2007; Seemann et al., 2015; EPA, 68 

2017). The main MoAs of BaP are well characterized in model vertebrates, with activation of the aryl 69 

hydrocarbon receptor (AhR) leading to genotoxicity being the most commonly recognized MoA. Other 70 

known MoAs include modulation of hormone receptor signaling pathways, induction of oxidative stress, 71 

DNA damage, apoptosis and immunosuppression (Carlson et al., 2004; EPA, 2017). It has been widely 72 

recognized that the compound itself has relatively low toxicity, whereas its primary and secondary 73 

metabolites generated by biotransformation are highly genotoxic. Phase I biotransformation of BaP is 74 

mediated by cytochrome P450 (CYP) enzymes and produces highly reactive metabolic intermediates, 75 

such as 3-hydroxybenzo(a)pyrene (3-OH-BaP) (Zhu et al., 2008; Rey-Salgueiro et al., 2011) and BaP-76 

quinones (BPQs). The 3-OH-BaP metabolite can covalently bind to DNA and protein, and form harmful 77 

adducts (Godschalk et al., 2000; Tzekova et al., 2004; Marie-Desvergne et al., 2010), while BPQs 78 

undergo one electron redox cycling and subsequently lead to formation of reactive oxygen species (ROS) 79 

through Fenton type reactions (Lorentzen and Ts'o, 1977; Flowers et al., 1997). Phase II 80 

https://www.epa.gov/eg/toxic-and-priority-pollutants-under-clean-water-act
https://www.epa.gov/eg/toxic-and-priority-pollutants-under-clean-water-act
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biotransformation is mediated by epoxide hydrolases which convert the metabolic intermediates of BaP 81 

to diol epoxide derivatives, such as benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) (Karle et al., 82 

2004), an ultimate form of BaP metabolite and a potent mutagen which can bind to the exocyclic amino 83 

group of purines or guanine nucleobases in DNA and form BPDE-DNA adducts (reviewed in Shimada 84 

and Fujii-Kuriyama (2004)). In fish, most of the BaP metabolites are produced in the liver, secreted into 85 

the bile, concentrated in the gallbladder, and excreted into the intestine (Ferreira et al., 2006; Zhu et al., 86 

2008; Rey-Salgueiro et al., 2011). The bile concentrations of BaP metabolites thus have been widely 87 

used as indicators of BaP exposure and biotransformation in fish (Meador et al., 1995; Moller et al., 88 

2014; Baali et al., 2016; Kammann et al., 2017). 89 

 Although the mechanistic understanding of BaP biotransformation and toxicity is relatively abundant 90 

for several model vertebrates, knowledge is limited for non-model but ecologically important Arctic 91 

species. Current approaches for understanding the effects of BaP and other PAHs on Arctic fish are 92 

mainly biomarker-based, such as that using the cytochrome P450 genes/enzymes as indicators of AhR 93 

activation, and antioxidant enzymes as markers for oxidative stress (Nahrgang et al., 2009; Nahrgang et 94 

al., 2010b; Nahrgang et al., 2010c; Vieweg et al., 2017). Although the main MoAs of BaP can be 95 

captured using such approaches, the mechanistic knowledge gained is restricted to a few pre-defined 96 

toxicological functions being studied. Development and application of broad-content tools such as 97 

transcriptomics and other toxicogenomic (OMIC) tools are thus increasingly implemented in un-biased 98 

characterization of toxicity mechanisms, identifying relevant MoA and link these to adverse effects 99 

relevant for successful survival, development and reproduction of keystone species. Such hypothesis-100 

generating tools can thus be key to developing suitable biomarkers for environmental monitoring 101 

purposes, hazard and risk assessment for Artic species.  102 

The present study addresses this issue specifically by developing and evaluating the performance of 103 

a custom high-density (180,000 features) oligonucleotide microarray by characterizing the hepatic 104 

transcriptomic responses in polar cod after dietary exposure to two doses of BaP. The main objectives 105 

were to: 1) develop a polar cod transcriptomics (analytical and bioinformatics) platform for 106 

ecotoxicological studies; 2) characterize the MoAs of BaP in polar cod based on global transcriptional 107 

responses; 3) investigate the biotransformation of BaP in polar cod based on the bile concentrations of 108 
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3-OH-BaP; and 4) propose a set of toxicity pathways relevant to understand the potential hazards of 109 

PAHs to Arctic fish. 110 

 111 

 112 

2. Materials and Methods 113 

2.1 Field sampling and maintenance 114 

Polar cod were caught with a Campelen bottom trawl on board R/V Helmer Hanssen in Svalbard waters 115 

(78°N). The samples were transported to the marine biological station of the UiT-The Arctic University 116 

of Norway in Kårvika and maintained in 300 L holding tanks with running seawater at 3°C and constant 117 

dimmed light until the exposure experiment. During acclimation, polar cod were fed three times weekly 118 

ad libidum with frozen Calanus spp. (Calanus AS, Tromsø). 119 

 120 

2.2 Experimental design, feed preparation and exposure 121 

The experimental design consisted in force-feeding adult polar cod for 14 days and three times weekly, 122 

to 2 doses of dietary BaP (Sigma-Aldrich, St. Louis, USA) and the solvent (acetone) control. The feed 123 

preparation consisted in the addition of BaP from a stock solution (10 mg BaP/mL acetone) to thawed 124 

Calanus spp., to yield final doses of either 0, 10 or 480 µg BaP per g feed (final acetone concentration: 125 

50 µL/g feed) for Control, Low and High BaP, respectively. The doses to each fish were chosen to be 126 

in the range of those used in the study by Wu et al. (2003) in which alterations of biomarkers at the 127 

cellular and physiological levels were identified. In addition, water (200 µL/g feed) was added to the 128 

preparation to adjust the consistency of the feed for the force-feeding. All feed preparations were then 129 

stirred for 2.5 hours at approximately 50°C to remove acetone. Finally, 1mL Luer-lok™ syringes 130 

(Becton, Dickinson and Company, Franklin Lakes, USA) were filled with 0.5 g of the feed and frozen 131 

at -80°C until exposure started.   132 

Polar cod (n=30, total length 13.2 ± 1.2 cm, total weight 13.2 ± 3.8 g) were weighed and transferred 133 

to three experimental tanks (300 L). Fish were force-fed 0.5 g feed, corresponding to 4 ± 1 % body 134 
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weight and final doses of 0, 0.4 ± 0.16 and 20.3 ± 5.6 µg BaP per g fish. The feeding took maximum 20 135 

sec. and each fish was observed for 3 minutes upon feeding to control for regurgitation. Force-feeding 136 

was repeated 6 times until final sampling on the 12th of January 2013. Experimental condition 137 

(photoperiod and water temperature) were the same as during acclimation. Oxygen levels were daily 138 

measured and stayed above 90% saturation. 139 

Polar cod were sampled at exposure start (holding tanks, n=10) and after 14 days of exposure (n=10 140 

per treatment). Sampling occurred three days following the last feeding event to ensure accumulation of 141 

bile. Total length (cm), total, somatic (g, without guts, liver and gonads), gonad and liver weight (g) 142 

were recorded. Liver and bile were sampled, snap frozen in liquid nitrogen and stored at -80°C for 143 

further analyses. Hepatosomatic index (HSI) and gonadosomatic index (GSI) were determined by the 144 

following equations: 145 

 146 

GSI (%) = gonad weight/somatic weight × 100                                                                                 Eq (1) 147 

HSI (%) = liver weight/somatic weight × 100                                                                                   Eq (2) 148 

 149 

2.3 Measurement of BaP metabolite 150 

One of the most abundant BaP metabolites, 3-OH-BaP, was measured in the bile of each individual 151 

polar cod. Preparation of hydrolysed bile samples was performed as described in Krahn et al. (1992). 152 

Briefly, bile (1-20 µL) was mixed with an internal standard (triphenylamine) and diluted with 153 

demineralised water (10-50 µL) and hydrolysed with -glucuronidasearylsulphatase (20 µL, 1 h at 154 

37C). Methanol (75-200 µL) was added and the sample was mixed thoroughly before centrifugation. 155 

The supernatant was then transferred to vials and analysed. High pressure liquid chromatography 156 

(Waters 2695 Separations Module) was used to separate 3-OH-BaP in a Waters PAH C18 column (4.6 157 

×250 mm, 5 µm particle size). The mobile phase consisted of a gradient from 40:60 158 

acetonitrile:ammonium acetate (0.05 M, pH 4.1) to 100 % acetonitrile at a flow of 1 mL/min, and the 159 

column was heated to 35°C. A 2475 Fluorescence detector measured fluorescence at the optimum for 160 

each analyte (excitation/emissions: 380/430). A total of 25 µL extract was injected for each analysis. 161 
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The results were calculated by use of the internal standard method (Grung et al., 2009). The calibration 162 

standards utilized were obtained from Chiron AS, Trondheim, Norway, and were in the range 0.2-200 163 

ng/g. Some gallbladder samples were too small to allow the extraction of enough material and ensure 164 

data quality. In this case, samples were removed from the dataset. The final number of samples analysed 165 

per treatment is presented in Table 1. 166 

 167 

2.4 Transcriptional analyses 168 

A combination of optimizing RNA isolation procedures, performing RNA sequencing of pooled RNA 169 

for de novo (multi-tissue) transcriptome assembly, developing an oligo nucleotide array (microarray) 170 

for global transcriptomics analysis and identifying suitable biomarker genes for qPCR and developing 171 

a suitable bioinformatics pipeline, were performed to provide a suite of tools for rapid, cost-efficient, 172 

and reliable characterization of transcriptional responses in polar cod. 173 

 174 

2.4.1 RNA isolation 175 

Total RNA was extracted from 20-30 mg frozen liver tissues from each individual fish using RNeasy 176 

Plus Mini Kit (Qiagen, Hilden, Germany), as previously described (Song et al., 2014). The RNA yield 177 

(>2 µg) and purity (260/280 >1.8, 260/230>2) was measured using Nanodrop® spectrophotometer ND-178 

1000 (Nanodrop Technologies, Wilminton, Delaware, USA). The RNA integrity (RIN>8) was assessed 179 

using Agilent Bioanalyzer RNA 6000 Nano chips (Agilent technologies, Santa Clara, California, USA).  180 

 181 

2.4.2 RNA sequencing and microarray design 182 

RNA from various tissues (muscle, liver, heart, gills, brain, and spleen) were sampled from a separate 183 

fish group, snap frozen in liquid N2, subjected to RNA extraction and RNA quality control as previously 184 

described (see 2.4.1). Pooled RNA from different tissues were subjected to poly(A)(+) mRNA 185 

enrichment by Oligo(dT), RNA fragmentation, cDNA synthesis by reverse transcriptase using random 186 
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hexamer, cDNA size selection, PCR amplification and RNA deep sequencing by Illumina HiSeq 2000 187 

by Beijing Genome Institute (BGI, Hong Kong, China). De novo transcriptome assembly of resulting 188 

68 million raw reads yielded 82,900 consensus sequences (Unigenes) that were separated into 21,463 189 

distinct clusters (nt size>300 nucleotides) and 61,437 singletons (nt size>200 nucleotides). A total of 190 

53,812 Unigenes were successfully mapped to other fish species and multiple functional categories 191 

annotated into COG and GO classifications. Where possible, protein coding regions (CDS) were 192 

predicted by blasting the sequences against protein databases (BlastX and ESTScan) and RNA sequence 193 

translated into an amino acid sequences. Of the total transcripts obtained, 82,000 sequences with 194 

annotations (approx. 50,000 CDS) yielded high-quality probes that were randomly positioned on a 195 

180,000 feature, 60-mere oligo nucleotide array (in duplicate) using Agilent Earray 196 

(https://earray.chem.agilent.com/earray). The resulting custom microarray was manufactured by Agilent. 197 

The detailed descriptions of the RNA sequencing, annotation and microarray design can be found in 198 

Appendix A. 199 

     200 

2.4.3 Microarray analysis 201 

Microarray gene expression analysis was conducted using 50 ng hepatic total RNA (n=4) according to 202 

the “Agilent One-Color Microarray-Based Gene Expression Analysis (v6.5)” protocol, as previously 203 

described (Song et al., 2016). The raw data was extracted using the Feature Extraction software v10.7 204 

(Agilent), and corrected for background signal, flagged for low quality/missing features, normalized 205 

(quantile method) and log2 transformed using GeneSpring GX v11.0 (Agilent). One-way analysis of 206 

variance (ANOVA) followed by Tukey posthoc test was used to determine differentially expressed 207 

genes (DEGs) by comparing the exposed groups to the control. The Benjamin Hochberg (BH) multiple 208 

testing correction was applied to the statistical analysis to eliminate false positives (adjusted p-value 209 

<0.05). 210 

To understand the functions of the DEGs, gene ontology (GO) functional enrichment analysis was 211 

performed using the Cytoscape v2.8 application Bingo v2.4. A hypergeometric test in combination with 212 

BH multiple testing correction was used to identify overrepresented GO functions (adjusted p-value 213 

https://earray.chem.agilent.com/earray
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<0.05). The polar cod DEGs were further mapped to the orthologs of model organisms, including human 214 

(Homo sapiens), mouse (Mus musculus), common rat (Rattus norvegicus), zebrafish (Danio rerio) and 215 

Atlantic cod (Gadus morhua) using a two-pass BLAST approach implemented in Inparanoid 7 (Ostlund 216 

et al., 2010), as previously described (Song et al., 2014). The mapped ortholog DEGs were used for gene 217 

network and pathway analyses (Fisher's exact test, p-value <0.05) for species such as humans, mouse 218 

and rat, as well as supported orthology functionality for species such as zebrafish in Ingenuity Pathway 219 

Analysis (IPA, Ingenuity®Systems, www.ingenuity.com). No multiple testing correction was applied to 220 

the ortholog-based functional analyses to avoid loss of significant biological information. The enriched 221 

pathways were anchored to existing knowledge on the MoAs of BaP in fish and mammals to avoid false-222 

positive conclusions. Venn diagram analysis was performed using Venny 223 

(bioinfogp.cnb.csic.es/tools/venny/).  224 

 225 

2.4.4 Quantitative real-time RT-PCR 226 

To measure a selection of biomarker gene responses and validate the microarray results, quantitative 227 

real-time reverse transcription polymerase chain reaction (qPCR) was conducted as previously described. 228 

The qPCR assay was run using the BioRad CFX384 platform, as previously described (Song et al., 229 

2016). Briefly, 2 μg hepatic total RNA (identical as used for microarray analysis) was reversely 230 

transcribed to complementary DNA (cDNA) using the High Capacity cDNA Archive Kit (Applied 231 

Biosystems, Foster City, California, USA). The cDNA template (n=5) was then amplified in technical 232 

duplicates using the PerfeCTa® SYBR® Green FastMix® (Quanta BioSciencesTM, Gaithersburg, MD, 233 

USA) in combination with 400 nM forward/reverse primers (Invitrogen™,Carlsbad, USA) in a 20 μL 234 

reaction. The primers were designed using Primer3 v0.4.0 (frodo.wi.mit.edu/primer3), purchased from 235 

Invitrogen™ (Carlsbad, USA) and optimized for annealing temperatures (Table A1). Standard curves 236 

were generated for each gene using pooled cDNA from all test samples to calculate amplification 237 

efficiencies (90%-105%). Non-template controls (NTCs) and no-reverse-transcriptase controls (NRCs) 238 

were also included in the qPCR reactions for quality assurance. The relative expression of target genes 239 

were calculated based on the quantification cycle (Cq) values using the Pfaffl Method (Pfaffl, 2001) and 240 

http://www.ingenuity.com/
http://frodo.wi.mit.edu/primer3
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normalized to the geometric mean expression of three housekeeping genes using the ΔΔCq method 241 

(Vandesompele et al., 2002). The relative expression of target genes in the exposed groups were further 242 

normalized to that in the control group to calculate fold changes (FC). Prior to statistical analysis using 243 

Graphpad Prism v5.0 (Graphpad Software, Inc., San Diego, CA, USA), the normalized data was checked 244 

for outliers using Grubb’s test (Grubbs, 1950). One-way ANOVA in combination with Tukey posthoc 245 

test was used to determine the statistical difference between the exposure groups when the assumptions 246 

of normality and equal variance were met. Otherwise, Kruskal-Wallis non-parametric test followed by 247 

a Dunn’s post-hoc test was used. 248 

 249 

 250 

3. Results 251 

3.1 Exposure and chemistry 252 

Polar cod were exposed to 0 (Control), 0.4 ± 0.16 (Low) and 20.3 ± 5.6 µg (High) BaP per g fish, 253 

respectively. The concentrations of BaP metabolites (1.54 ± 0.96 and 120.3 ± 64.70 µg BaP per g bile 254 

in Low and High groups, respectively) measured in bile after 2 weeks of exposure were in accordance 255 

with the ingested doses (Table 1).  256 

The sizes of the exposed fish were similar across the groups and in gonadal maturing stages with 257 

high GSI, except for one female in the high treatment (2.1%). Length, weight, GSI, and HSI were not 258 

significantly different between treatments and gender. The sex ratio in the experimental tanks was 259 

unbalanced, with majority of males in the Control and High BaP groups. 260 

 261 

Table 1. Overview of benzo(a)pyrene (BaP) doses in prepared feed and received by polar cod, concentration of 3-OH-BaP metabolites in bile 262 

as well as morphometric (total length, weight, sex ratio, GSI, and HSI) of analyzed samples (n=10). Data is presented as mean and standard 263 

deviation. LOD is below limits of analytical detection. Numbers in parentheses are n samples when different from 10. 264 

Exposure 

duration 

(week) 

Treatment N 
BaP dose in 

feed 

BaP dose in fish per 

feeding 
3-OH-BaP 

Total 

length 

Total 

weight 
Sex ratio GSI HSI 

   µg/g µg/ fish µg/ g fish µg/ g bile cm g Male:Female % % 
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0 Control 10    <LOD (6) 12.5 ± 1.3 11.1 ± 3.1 8:2 
16.4 ± 

6.1 

6.6 ± 

1.8 

2 Control 10 0 0 0 <LOD (8) 12.9 ± 0.8 12.7 ± 2.4 9:1 
18.9 ± 

5.2 

7.1 ± 

2.3 

2 Low 10 10 5 0.4 ± 0.16 
1.54 ± 0.96 

(7) 
13.4 ± 1.4 14.2 ± 4.9 5:5 

17.0 ± 

7.7 

6.9 ± 

2.2 

2 High 10 480 240 20.3 ± 5.6 
120.3 ± 

64.70 (7) 
13.2 ± 1.3 12.7 ± 1.3 7:3 

14.9 ± 

4.8 

7.6 ± 

1.8 

 265 

3.2 Transcriptomic responses 266 

3.2.1 Differentially expressed genes 267 

The microarray analysis identified a total of 747 (246 up- and 501 down-regulated) and 2190 (1453 up- 268 

and 737 down-regulated) DEGs after dietary exposure to Low and High BaP, respectively (Appendix B, 269 

Table A1). Among these, 232 DEGs were commonly regulated by Low and High BaP, whereas the 270 

majority was dose-specific (Figure 1).  271 

 272 

 273 

Figure 1. Differentially expressed genes (DEGs) in the liver (n=4) of polar cod (Boreogadus saida) after 14d repeated dietary exposure to 0.4 274 

(Low) and 20.3 ug/g fish (High) benzo(a)pyrene (BaP).  275 

 276 

3.2.2 Gene ontology enrichment 277 

Gene ontology analysis showed that a total 107 and 309 GO terms were overrepresented after exposure 278 

to Low and High BaP, respectively (Appendix B, Table A2). Twenty-five GO functions were commonly 279 

affected by both Low and High dose BaP, whereas the majority was dose-specific (Figure 2A). Exposure 280 

to Low BaP mainly affected DEGs involved in biological processes such as transmembrane transport, 281 
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DNA repair and amino acids metabolism, whereas exposure to High BaP affected DEGs associated with 282 

apoptosis, macromolecule metabolism, immune response, regulation of catabolic processes, cell cycle 283 

regulation and DNA repair and transmembrane transport (Figure 2B). In terms of molecular functions, 284 

Low BaP caused transcriptional responses associated with transferase activity, oxidoreductase activity, 285 

hydrolase activity, transporter activity, antioxidant activity and hormone receptor binding processes, 286 

whereas High BaP exposure led to differential gene expression linked to extracellular receptor binding, 287 

peptide activity, antioxidant activity and oxidoreductase activity (Figure 2C). Low BaP regulated genes 288 

mainly involved in cellular components such as electron transport chain and ATP synthase and 289 

mitochondrial membrane, whereas High BaP affected genes involved in the cell membrane, nucleus and 290 

proteosome (Figure 2D). Several GO terms such as oxidoreductase activity, cell redox homeostasis and 291 

antioxidant activity were identified to be commonly regulated by both Low and High BaP.  292 

 293 

 294 

Figure 2. Overrepresented gene ontology (GO) functions that were affected in the liver (n=4) of polar cod (Boreogadus saida) after 14d repeated 295 

dietary exposure to 0.4 (Low) and 20.3 ug/g fish (High) benzo(a)pyrene (BaP). A: Venn diagram analysis of common and unique GO functions; 296 

B: Overrepresented biological processes; C: Overrepresented molecular functions; D: Overrepresented cellular components. 297 

 298 

3.2.3 Pathway analysis 299 
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The ortholog mapping showed that 41.8% (Low) and 32.6% (High) of the polar cod DEGs had orthologs 300 

in the model organisms used in IPA (Appendix B, Table A3). Enrichment analysis  using ortholog DEGs 301 

showed that Low BaP uniquely affected DEGs related to 2 toxicity endpoints such as CAR/RXR 302 

activation, High BaP uniquely affected DEGs related to 23 toxicity endpoints such as AhR signaling, 303 

mitochondrial membrane potential, oxidative stress responses, lipid metabolism and liver damage 304 

(Appendix B, Table A4). Both Low and High BaP commonly affected DEGs involved in mitochondrial 305 

dysfunction (Figure 3). 306 

  307 

 308 

Figure 3. A selection of toxicity lists that were enriched by differentially expressed genes in the liver (n=4) of polar cod (Boreogadus saida) 309 

after 14d repeated dietary exposure to 0.4 (Low) and 20.3 ug/g fish (High) benzo(a)pyrene (BaP).  310 

 311 

The ortholog DEGs were further mapped to the curated mammalian canonical pathways in IPA to get 312 

more mechanistic insight into the toxicity of BaP. The results clearly showed that the majority of the 313 

enriched canonical pathways were dose-specific, with Low BaP uniquely affected 7 pathways mainly 314 

related to immune response and endocrine regulation, High BaP uniquely affected 60 pathways mainly 315 

related to biotransformation, oxidative stress response, apoptosis, protein degradation, lipid metabolism, 316 

immune response and endocrine regulation (Appendix B, Figure A5). Both Low and High BaP exposure 317 

commonly affected 3 pathways mainly related to mitochondrial dysfunction. A selection of 318 

toxicologically relevant canonical pathways and associated DEGs is listed in Table 2. 319 

 320 
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Table 2. A selection of toxicologically relevant canonical pathways that were affected in the liver (n=4) of polar cod (Boreogadus saida) after 321 

14d repeated dietary exposure to 0.4 (Low) and 20.3 ug/g fish (High) benzo(a)pyrene (BaP). The full gene names can be found in Appendix B 322 

(Table A3). ↑: up-reguation; ↓: down-regulation. 323 

Functional category Canonical Pathways p-value 

Pathway 

coverage 

Supporting differentially expressed genes 

Low     

Oxidative 

phosphorylation/Apoptosis 

Mitochondrial dysfunction 5.75E-05 5% 

ndufa10↓, atp5f1↓, psenen↓, atp5l↓, 

ndufa6↓, glrx2↓, atp5a1↓, cox6c↓, atp5g3↓ 

Immune response Lipid antigen presentation by CD1 2.29E-02 8% ap2a2↓, ap2m1↓ 

Endocrine regulation Estrogen receptor signaling 2.95E-02 3% g6pc3↓, med10↓, polr2g↓, taf11↓ 

High     

Biotransformation Xenobiotic metabolism signaling 2.14E-04 5% 

mapk14↓, abcc2↑, cyp1a1↑, map3k12↓, 

cyp3a4↑, camk1d↓, prkcd↑, ugt2b15↑, 

hs6st2↑, gstp1↑, map3k4↑, hsp90aa1↑, 

keap1↑, cyp1b1↑, rbx1↑ 

Biotransformation Aryl hydrocarbon receptor signaling 4.37E-03 5% 

faslg↓, nfix↓, cyp1a1↑, ccna2↓, gstp1↑, 

hsp90aa1↑, nedd8↑, cyp1b1↑ 

Antioxidant defence 

NRF2-mediated oxidative stress 

response 

1.58E-04 6% 

prkcd↑, mapk14↑, abcc2↑, usp14↑, cbr1↑,  

txn↑, sod1↑, gstp1↑, prdx1↑, keap1↑, rbx1↑, 

dnajb14↑ 

Antioxidant defence Glutathione redox reactions II 7.94E-03 25% glrx↑, txndc12↑ 

Antioxidant defence Thioredoxin pathway 4.07E-04 33% txn↑, txnrd2↑, txnrd3↑ 

Antioxidant defence Antioxidant action of vitamin C 8.91E-04 7% 

mapk14↑, glrx↓, txn↑, plce1↓, plcl2↓, 

txnrd2↑, pla2g3↑, txnrd3↑ 

Apoptosis Apoptosis signaling 4.90E-03 7% 

capn3↑, faslg↓, capn1↑, casp9↑, casp3↑, 

sptan1↑ 

Apoptosis Death receptor signaling 5.75E-03 6% 

tiparp↑, cflar↑, faslg↓, casp9↑, casp3↑, 

sptan1↑ 

Oxidative 

phosphorylation/Apoptosis 

Mitochondrial dysfunction 1.23E-04 6% 

ndufb6↑, cyb5a↑, psenen↑, glrx2↑, casp9↑,  

atp5a1↑, casp3↑, txnrd2↑, prdx3↑, fis1↑, 

cox6c↑, atp5g3↑ 

Protein degradation/Post-

translational modification 

Protein ubiquitination pathway 2.00E-21 13% 

psmb1↑, psma2↑, psmb3↑, psmc4↑, psmb5↑, 

psmb6↑, psmd7↑, psmd10↑, psmd12↑, 

psmd14↑, dnajc2↑, hspa4l↑, usp5↑,  

hsp90aa1↑, dnajb14↑, usp14↑, ube2v1↑, 

uchl3↑, psmd13↑, rbx1↑, usp33 
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Lipid metabolism PPARα/RXRα activation 4.47E-02 4% 

mapk14↑, ap2a2↓, lpl↓, adipor2↓, plce1↓, 

plcl2↓, hsp90aa1↑ 

Immune response Antigen presentation pathway 2.82E-02 8% psmb6↑, hla-doa↑, psmb5↑ 

Endocrine regulation Androgen signaling 3.63E-02 4% 

shbg↑, prkcd↑, gnb5↑, polr2j↑, polr2g↑, 

hsp90aa1↑ 

 324 

3.3 Biomarker gene responses 325 

No significant difference in expression was found for the reference genes tested between Low and High 326 

BaP. The qPCR results clearly showed that for the 18 genes representative of different toxicological 327 

functions, the transcriptional responses were in general consistent between that measured using qPCR 328 

and microarray (Figure 4).  329 
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 330 

Figure 4. Biomarker gene responses in the liver (n=5) of polar cod (Boreogadus saida) after 14d repeated dietary exposure to 0.4 (Low) and 331 

20.3 ug/g fish (High) benzo(a)pyrene (BaP), measured by quantitative real-time RT-PCR and microarray. Ahr2: aryl hydrocarbon receptor 2; 332 

ahrr: aryl-hydrocarbon receptor repressor; cyp1a1: cytochrome P450 family 1 subfamily A member 1; cyp1b1: cytochrome P450 family 1 333 

subfamily B member 1; nfe2l1: nuclear factor erythroid 2-like 1; gstp1: glutathione S-transferase P; txn: thioredoxin; prdx1: peroxiredoxin 1; 334 

casp3: caspase 3; casp9: caspase 9; bax: apoptosis regulator BAX; rad51: RAD51 recombinase; cdc50c: cell cycle control protein 50C; atp5a1: 335 

ATP synthase F1 subunit alpha; cox6c: cytochrome c oxidase subunit Vic; ubp14: ubiquitin carboxyl-terminal hydrolase 14; sult1st3: 336 

sulfotransferase family 1 cytosolic sulfotransferase 3; gat2: solute carrier family 6 member 13. a: not significantly different from the 337 

corresponding control (either qPCR or microarray); b: significantly different from the corresponding control (either qPCR or microarray); c: 338 

significantly different from Low BaP treatment (either qPCR or microarray). 339 

 340 
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 341 

4. Discussion 342 

As an Arctic keystone species, polar cod is an indicator species for ecosystem health in the Arctic, 343 

notably in relation to aquatic pollution. The present study thus used polar cod as a representative Arctic 344 

fish species to study the molecular responses and to characterize the toxic MoAs of the model PAH, 345 

BaP. Benzo(a)pyrene is an extensively studied toxicant in vertebrates and is considered a model 346 

compound for PAHs due to its well-characterized MoA and well-documented adverse effects in 347 

temperate fish (EPA, 2017). The levels of BaP in the feed used in the present study were chosen to 348 

mimic that found in mussels from contaminated areas (Olenycz et al., 2015) and were in the range of 349 

that used in other dietary exposure studies with different fish species (Wu et al., 2003; Au et al., 2004; 350 

Costa et al., 2011). However, these levels are in the high end of those likely encountered in many Arctic 351 

species such as polar cod, as these Arctic fish species feed on pelagic zooplankton from relatively 352 

pristine environments. Nevertheless, the stress responses to BaP and a range of other pollutants at the 353 

molecular level are poorly characterized in this Arctic fish, and effort to characterize the global 354 

transcriptional responses to this pyrogenic PAH is thus the first in its kind. Although an earlier effort 355 

has been made to characterize the transcriptomic response in polar cod after crude oil exposure and 356 

under elevated temperature, the analytical tool used in this study was indeed an Atlantic cod (Gadus 357 

morhua) microarray, and the results obtained were based on cross-hybridization between the two fish 358 

species (Andersen et al., 2015). The novel polar cod microarray used in this study was developed based 359 

on the polar cod-specific sequences, and displayed good reproducibility across biological replicates and 360 

coverage of genes in the stress-responsive transcriptome of polar cod. Although a number of DEGs were 361 

excluded in the functional analysis due to limitations in ortholog mapping (e.g. peroxisome proliferator-362 

activated receptor gamma/ppar-g), the results generated provided substantial knowledge on known and 363 

novel toxicity mechanisms of BaP which will be discussed in detail below. 364 

 365 

4.1 Aryl hydrocarbon receptor signaling and biotransformation 366 
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It is well known that PAHs such as BaP can bind to the AhR and trigger phase I and phase II 367 

biotransformation in fish (Hahn, 1998; Karchner et al., 2005). Biotransformation, in many cases, is 368 

beneficial for detoxification and rapid elimination of xenobiotic substances. However, evidence from 369 

multiple species has demonstrated that several BaP metabolites such as 3-OH-BaP, BPQs and BPDE 370 

are more toxic than the parent compound and are directly associated with the genotoxicity of BaP 371 

(Lorentzen and Ts'o, 1977; Flowers et al., 1997; Godschalk et al., 2000; Tzekova et al., 2004; Marie-372 

Desvergne et al., 2010). In the present study, the polar cod ahr2 gene and its transcriptional regulator, 373 

AhR repressor (ahrr) were up-regulated by exposure to High BaP treatment, indicating activation of the 374 

AhR signaling pathway. The ahr2 gene, encoding for the ligand-activated transcription factor involved 375 

in regulation of biological responses to PAHs, polychlorinated biphenyls (PCBs), 2,3,7,8-376 

tetrachlorodibenzo-p-dioxin (TCDD) and polychlorinated diphenylsulfides (Roy et al., 2018; Zhang et 377 

al., 2018), is involved in a number of toxicity pathways associated with xenobiotic metabolism, 378 

mitochondrial dysfunction, cardiovascular abnormality, hepatic injury and DNA methylation inhibition 379 

in fish (Du et al., 2017; Knecht et al., 2017; Roy et al., 2018). The ahrr gene encodes a protein, which 380 

competes with the binding site of the AhR and suppresses the receptor signaling through a negative 381 

feedback mechanism (Evans et al., 2008). The induction of ahrr in this study may indicate demand for 382 

compensatory response to hyperactivation of the AhR by BaP. In addition, functional analyses in the 383 

present study suggest that besides activation of the AhR, the AhR-mediated xenobiotic metabolism 384 

pathways were activated. Differentially expressed genes involved in phase I biotransformation, such as 385 

cytochrome p450 1a1 (cyp1a1), cyp1b1, and phase II biotransformation, such as glutathione s-386 

transferase p (gstp1) (Sarasquete and Segner, 2000; Schlenk et al., 2008) were up-regulated by exposure 387 

to High BaP. Induction of cyp1a1 and gst has previously been observed in polar cod after exposure to 388 

6.6-378 µg/kg (16h-7d) BaP (Nahrgang et al., 2009) and petroleum related mixtures (Nahrgang et al., 389 

2010c; Vieweg et al., 2018). Genes involved in the AhR signaling and biotransformation pathways, such 390 

as cyp1a, cyp1b1 and gst were also induced in zebrafish larvae after 96h exposure to 42±1.9 mg/l BaP 391 

(Fang et al., 2015). Induction of cyp1b1 has also been reported in zebrafish (Danio rerio) after 24h 392 

injection with 1 mg/kg BaP (Bugiak and Weber, 2009) and after 96h waterborne exposure to 50 μg/L 393 

BaP (Corrales et al., 2014), in rainbow trout (Oncorhynchus mykiss) after 14d injection with 100 mg/kg 394 
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BaP (Phalen et al., 2017), and channel catfish (Ictalurus punctatus) after 4d injection with 20 mg/kg 395 

BaP (Willett et al., 2006). In addition to up-regulation of genes involved in the biotransformation 396 

processes, increase in the bile 3-OH-BaP concentration suggest that biotransformation was indeed 397 

causing potentially toxic metabolites as observed in other fish species (Rey-Salgueiro et al., 2011; 398 

Moller et al., 2014). On the contrary, no genes related to the AhR signaling were differentially expressed 399 

in polar cod after exposure to Low BaP in this study, albeit detectable concentration of 3-OH-BaP was 400 

identified in the bile after 14d exposure. Moreover, sulfotransferase family 1 cytosolic sulfotransferase 401 

3 (sult1st3), a gene involved in the CAR/RXR-mediated phase II biotransformation of PAH metabolic 402 

intermediates (Falany and Wilborn, 1994; Glatt, 2000; Meland et al., 2011), was up-regulated by Low 403 

BaP. These findings taken together suggested that either a dose threshold was required for BaP to induce 404 

AhR-mediated biotransformation in this Arctic species as seen for dioxin-like compounds (Hailey et al., 405 

2005), or an alternative xenobiotic metabolic pathway was induced to transform BaP at this low 406 

exposure dose. 407 

 408 

4.2 Oxidative stress  409 

Induction of oxidative stress is considered a major MoA of BaP. Biotransformation of BaP by CYP 410 

isozymes and peroxidases may generate highly reactive intermediates, such as BPQs which may produce 411 

ROS through participation in the one electron redox cycling and induce oxidative stress (Lorentzen and 412 

Ts'o, 1977; Flowers et al., 1997). Induction of antioxidant (AOX) biomarkers as indication of oxidative 413 

stress has been documented in a number of fish species after exposure to BaP (Nahrgang et al., 2009; 414 

Curtis et al., 2011; Palanikumar et al., 2012). Results from the present study also suggest that both Low 415 

and High BaP exposure modulated oxidative stress responses in polar cod, however, through different 416 

mechanisms. Exposure to Low BaP affected DEGs involved in several GO functions related to oxidative 417 

stress responses, such as AOX activity, thioredoxin-disulfide reductase activity and cellular redox 418 

homeostasis. Supporting DEGs, such as thioredoxin domain-containing protein 12 (txndc12) and 419 

thioredoxin reductase 3 (txnrd3) were mainly related to the thioredoxin-mediated AOX defense (Arner 420 

and Holmgren, 2000) and found to be down-regulated after exposure to Low BaP, possibly indicating 421 
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reduced demand for antioxidant (AOX) enzymes. It is not clear how the AOX defense mechanism in 422 

polar cod was suppressed by Low BaP. However, reduction in AOX enzymes, such as glutathione 423 

peroxidase (gpx) and catalase (cat), has been associated with decreased endogenous ROS production as 424 

a result of reduced metabolic activities in fish (Janssens et al., 2000). It is therefore possible that in 425 

response to Low BaP exposure, the metabolic (and AOX) levels were reduced to avoid massive 426 

production of endogenous ROS. In contrast to Low BaP, exposure to High BaP induced multiple types 427 

of AOX pathways in polar cod, such as NRF2-mediated oxidative stress response (transcriptional 428 

regulation of AOX), glutathione redox reaction 2 (enzymatic AOX), thioredoxin pathway (enzymatic 429 

AOX) and antioxidant action of vitamin C (non-enzymatic AOX), thus indicating BaP-induced 430 

oxidative stress. Supporting DEGs such as nuclear factor erythroid 2-like 1 (nfe2l1), a sensor of 431 

oxidative stress and master transcription regulator of AOX (Kaspar et al., 2009), and kelch-like ech-432 

associated protein 1 (keap1), the dimerization partner of nfe2 (Kobayashi and Yamamoto, 2005), were 433 

up-regulated, indicating the initiation of upstream transcriptional regulation in response to oxidative 434 

stress. Downstream AOX DEGs widely used as oxidative stress biomarkers, such as superoxide 435 

dismutase (sod1), thioredoxin (txn), and peroxiredoxin 1 (prdx1) (Arner and Holmgren, 2000; 436 

Valavanidis et al., 2006; Birben et al., 2012) were also up-regulated, indicating demand for increased 437 

AOX capacity. These transcriptional responses collectively suggested that exposure to High BaP caused 438 

excessive ROS production which likely overwhelmed the AOX cellular defense. This is confirmed by 439 

up-regulation of AOX genes such as sod, cat and gpx in Polar cod after exposure to 6.6-378 µg/kg (16h-440 

4d) BaP (Nahrgang et al., 2009) and BaP-containing petroleum products (Nahrgang et al., 2010b; 441 

Nahrgang et al., 2010c; Vieweg et al., 2017). Induction of key genes involved in the NRF2-mediated 442 

oxidative stress response pathway, such as nuclear factor erythroid 2-like 2b (nfe2l2b), and glutathione-443 

mediated detoxification pathway, such as gst has been documented in zebrafish larvae after 96h 444 

waterborne exposure to 42±1.9 mg/l BaP (Fang et al., 2015).  445 

 446 

4.3 DNA damage 447 
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DNA damage is considered another major MoA of BaP. Metabolism of BaP can lead to the generation 448 

genotoxic metabolites, such as BPDE (Karle et al., 2004) which can directly distort the structure of DNA 449 

by forming harmful BPDE-DNA adducts (Kucab et al., 2015; Long et al., 2016), thus causing 450 

genotoxicity in fish (Nishimoto and Varanasi, 1985; Smolarek et al., 1987; Dolcetti et al., 2002). Other 451 

reactive intermediates, such as 3-OH-BaP (Zhu et al., 2008; Rey-Salgueiro et al., 2011) has been 452 

strongly correlated with formation of DNA and haemoglobin adducts in mammals (Godschalk et al., 453 

2000; Tzekova et al., 2004; Marie-Desvergne et al., 2010). In addition, metabolic intermediates such as 454 

BPQs may also indirectly cause DNA damage through ROS (Regoli et al., 2003; Srut et al., 2015). 455 

Results from the present study clearly showed that the bile 3-OH-BaP was detected in polar cod in a 456 

dose-dependent manner, indicating an increased potential for formation of DNA adducts and associated 457 

DNA damage in the fish. Transcriptomic analysis further revealed that exposure to both Low and High 458 

BaP affected DEGs caused molecular responses related to DNA damage in polar cod, however, in 459 

different manners. Exposure to Low BaP mainly caused down-regulation of DEGs involved in DNA 460 

ligation during base-excision repair, such as high-mobility group protein B2 (hmgb2b), a key gene 461 

involved in DNA transcription, recombination, and repair in fish (Moleri et al., 2011). Similar to the 462 

down-regulation of AOX genes found in this study, the suppression of DNA repair genes may likely 463 

indicate reduced demand for DNA damage responses, possibly due to the suppression of oxidative stress 464 

as a result of reduced metabolic activities and ROS formation. On the contrary, exposure to High BaP 465 

led to up-regulation of DEGs mainly involved in the cell division regulation, such as  cell division 466 

control protein 42 (cdc42-cell cycle control), cdc50c (cell cycle control) (Langerak and Russell, 2011), 467 

and DNA excision repair, such as UV excision repair protein RAD23 homolog A (rad23a-nucleotide 468 

excision repair) (Dantuma et al., 2009). Surprisingly, no genes associated with DNA double-strand break 469 

(DSB) repair, such as RAD51 recombinase (rad51), were differentially expressed, possibly suggesting 470 

that the BaP-induced DNA damage did not sufficiently cause DSB in this study. Benzo(a)pyrene-471 

mediated DNA damage has been documented in polar cod after chronic (4-week) exposure to BaP-472 

containing crude oil (Nahrgang et al., 2010b), and in several other fish species, such as zebrafish (Srut 473 

et al., 2015), Chinese rare minnow (Gobiocypris Rarus) (Yuan et al., 2017), European eel (Anguilla 474 

anguilla) (Nigro et al., 2002) and the Atlantic Killifish (Fundulus heteroclitus) (Wills et al., 2010). 475 
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 476 

4.4 Mitochondrial dysfunction 477 

One of the novel findings was that exposure to BaP modulated genes involved in the mitochondrial 478 

electron transport chain (ETC) functions in a dose-dependent manner. Exposure to PAHs is known to 479 

cause mitochondrial dysfunction in higher vertebrates (Zhu et al., 1995; Li et al., 2003; Ko et al., 2004; 480 

Xia et al., 2004; Bansal et al., 2014). However, the mitochondrial toxicity of PAHs has not been well 481 

studied in fish. It is widely known that the mitochondrial ETC is a key component of the oxidative 482 

phosphorylation (OXPHOS) machinery and vital for ATP synthesis, antioxidant defense and apoptosis 483 

(Richter et al., 1996; Brookes et al., 2002; Orrenius, 2007; Hoye et al., 2008). Results from the present 484 

study clearly showed that both Low and High BaP affected the same targets (i.e. protein complex I, IV, 485 

V) in the mitochondrial ETC in polar cod, however, by different mechanisms. Exposure to Low BaP 486 

uniformly suppressed DEGs involved in the ETC, such as ndufa6 and ndufa10 (ETC complex I), cox6c 487 

(complex IV), atp5a1, atp5f1, atp5l and atp5g3 (complex V), likely due to the demand for reduced 488 

production of endogenous ROS by mitochondrial OXPHOS (Murphy, 2009). On the contrary, exposure 489 

to High BaP uniformly up-regulated DEGs in the ETC, such as ndufb6 (complex I), cox6c (complex 490 

IV), atp5a1 and atp5g3 (complex V). The toxicity mechanisms of BaP in the mitochondria of polar cod 491 

has not been well studied and is also poorly characterized in other vertebrates (Venkatraman et al., 2008; 492 

Du et al., 2015). However, since the mitochondrial ETC is a major source of endogenous ROS (Murphy, 493 

2009), the dose-dependent effects observed in this study may likely be due to that polar cod suppressed 494 

the ETC activities to reduce ROS formation under Low BaP stress, whereas elevated the ETC activity 495 

due to higher demand for ATP-dependent defense mechanisms (Song et al., 2016; Blajszczak and Bonini, 496 

2017) under High BaP stress. It is also possible that exposure to High BaP impaired the functions of 497 

ETC complexes by oxidative damages, which in turn facilitated the production of ROS in the 498 

mitochondria due to abnormal redox reactions (Blajszczak and Bonini, 2017). Moreover, studies on the 499 

mammalian models suggest that AhR may interact with the mitochondrial ETC, especially protein 500 

complex V and cause mitochondrial ETC dysfunction (Tappenden et al., 2011; Hwang et al., 2016). In 501 

fish, only one recent study has reported increased complex I and complex IV activities, and proton leak 502 
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on the mitochondrial membrane in the Atlantic killifish (Fundulus heteroclitus) after 24h exposure to 503 

50 mg/kg BaP (Du et al., 2015), which partially supports the current findings. 504 

 505 

4.5 Apoptosis 506 

Apoptotic cell death is normally activated as a consequence of oxidative stress, DNA damage, or 507 

mitochondrial dysfunction to eliminate damaged cells and avoid mutation (Elmore, 2007). Exposure to 508 

BaP is known to induce apoptosis as an MoA in various fish species, such as tilapia (Oreochromis 509 

niloticus) (Holladay et al., 1998), Chinese rare minnow (Yuan et al., 2017) and zebrafish (Gao et al., 510 

2015). The present transcriptional analysis also showed that two key DEGs involved in the regulation 511 

of apoptosis, caspase 9 (casp9, initiator of apoptosis) and caspase 3 (cap3, the executor of apoptosis) 512 

(Takle and Andersen, 2007) were up-regulated by exposure to High BaP (but not Low BaP), indicating 513 

potential activation of caspase-dependent apoptotic signaling. It is however not clear which type of 514 

apoptotic signaling pathway (i.e. intrinsic/mitochondrial or extrinsic/death receptor pathway) was 515 

involved in the activation of the caspases, as none of the upstream genes in the intrinsic apoptotic 516 

signaling, such as apoptosis regulator BAX (intrinsic apoptosis activator) or B-cell lymphoma 2 (Bcl-2, 517 

intrinsic apoptosis inhibitor) were differentially expressed, whereas several DEGs involved in the 518 

extrinsic apoptotic signaling, such as Fas ligand (faslg), and CASP8 and FADD like apoptosis regulator 519 

(cflar) (Jin and El-Deiry, 2005) were found to be suppressed by exposure to High BaP. Although 520 

previous studies suggest that exposure to BaP may up-regulate caspases through activation of the 521 

intrinsic apoptotic signaling both in vivo (Zha et al., 2017) and in vitro (Kobayashi and Yamamoto, 2005; 522 

Santacroce et al., 2015), the detailed mechanisms involved in the activation of caspase-dependent 523 

apoptotic signaling by BaP still remain to be better characterized in polar cod. 524 

 525 

4.6 Protein degradation 526 

Protein degradation is usually accompanied with oxidation of macromolecules and apoptosis to 527 

eliminate damaged proteins or regulatory proteins involved in a variety of toxicological processes 528 
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(Hershko and Ciechanover, 1998; Aiken et al., 2011; Ulrich, 2012). Stress-induced protein degradation 529 

has been extensively studied in mammals under disease situations (Lecker et al., 2006; Reinstein and 530 

Ciechanover, 2006). However, this type of stress response has only been occasionally reported in 531 

wildlife. Another novel finding in the present study was that both Low and High BaP exposure affected 532 

DEGs involved in protein degradation in polar cod, however, in different manners. Exposure to Low 533 

BaP caused down-regulation of DEGs related to proteasome activities, such as proteasome subunit alpha 534 

type 1 (psma1), 4 (psma4) and 7 (psma7). The mechanism underlying this suppressive regulation is 535 

unclear, albeit a recent study on zebrafish also showed that a gene involved in protein ubiquitination, 536 

ubiquitin carboxy-terminal hydrolase L1 (uchl1), was down-regulated after 230d exposure to 5 and 50 537 

nmol/L BaP (Gao et al., 2015). In contrast, exposure to High BaP consistently up-regulated DEGs 538 

involved in the protein ubiquitination pathway, such as ubiquitin carboxyl-terminal hydrolase 5 (usp5), 539 

14 (usp14), ubiquitin-conjugating enzyme E2 variant 1 (ube2v1), ubiquitin carboxyl-terminal hydrolase 540 

isozyme L3 (uchl3), heat shock protein 90 alpha (hsp90aa1) and ten psma genes. These genes play 541 

important roles in different steps of protein ubiquitination, such as ubiquitin-protein conjugation and 542 

proteasomal degradation of target protein (Hershko and Ciechanover, 1998; Flick and Kaiser, 2012). 543 

The induction of protein ubiquitination genes clearly indicated that exposure to High BaP activated the 544 

protein degradation machinery in polar cod.  545 

 546 

4.7 Other potential mechanisms 547 

Hormone receptor signaling 548 

Benzo(a)pyrene is proposed to act as an endocrine disruptor in several organisms (Tian et al., 2013; 549 

Kennedy and Smyth, 2015; Wen and Pan, 2015; Regnault et al., 2016). The present study showed that 550 

exposure to Low BaP consistently suppressed DEGs involved in the estrogen receptor (ER) signaling 551 

pathway, such as glucose-6-phosphatase catalytic subunit 3 (g6pc3), mediator complex subunit 10 552 

(med10), RNA polymerase II subunit G (polr2g) and TATA-box binding protein associated factor 11 553 

(taf11). These DEGs, however, were not the core regulator genes (e.g. ERα or ERβ) in the ER signaling, 554 

but more generally involved in RNA polymerase II-mediated transcription regulation (Salgado et al., 555 
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2004; Meka et al., 2005; Robinson et al., 2005; Just et al., 2016). It was therefore not entirely clear 556 

whether the ER signaling in polar cod was inhibited by exposure to Low BaP, albeit the previous studies 557 

on cross-talks between the AhR and ER pathways suggest that activated AhR may inhibit ER activity 558 

through various mechanisms in mammals (Matthews and Gustafsson, 2006; Helle et al., 2016) and fish 559 

(Bemanian et al., 2004; Yan et al., 2012; Hultman et al., 2015). In comparison with Low BaP, exposure 560 

to High BaP up-regulated DEGs involved in the androgen signaling pathway, such as sex hormone 561 

binding globulin (shbg), protein kinase C delta (prkcd), G protein subunit beta 5 (gnb5), heat shock 562 

protein 90 alpha family class A member 1 (hsp90aa1), polr2g and polr2j. Genes such as shbg, prkcd and 563 

gnb5 are involved in the nongenomic actions of androgens (Foradori et al., 2008; Bobe et al., 2010), 564 

whereas polr2g and polr2j are generally involved in RNA polymerase II-mediated transcription 565 

regulation (Meka et al., 2005). The hsp90aa1 gene is also involved in various biological processes, such 566 

as protein stabilization, protein degradation, hypoxic response and regulation of androgen receptor (AR) 567 

signaling (Roberts et al., 2010; De Leon et al., 2011). The evidence taken together suggests that the 568 

androgen signaling pathway in polar cod may be a target for BaP exposure, albeit the mechanism does 569 

not involve modulating the expression of AR itself. This assumption was contradictory to the previous 570 

findings from the mammalian studies where AhR agonists such as BaP are usually anti-androgenic (Kizu 571 

et al., 2003; Okamura et al., 2004), and thus suggest more in-depth studies to clarify the role of BaP or 572 

its metabolites on androgen signaling in polar cod. 573 

 574 

Immune functions 575 

A number of studies suggest that BaP can modulate immune functions in vertebrates (reviewed in EPA 576 

(2017)). In this study, exposure to Low BaP in general down-regulated DEGs involved in lipid antigen 577 

presentation, such as adaptor related protein complex 2 alpha 2 subunit (ap2a2) and adaptor related 578 

protein complex 2 mu 1 subunit (ap2m1). Benzo(a)pyrene has been shown to inhibit cluster of 579 

differentiation 1 (CD1) protein-mediated lipid antigen presentation in human dendritic cells (Sharma et 580 

al., 2017). In fish, however, this inhibitory effect has not been well documented. On the contrary, 581 

exposure to High BaP up-regulated DEGs involved in the antigen presentation pathway, such as major 582 

histocompatibility complex class II DO alpha (hla-doa) and two protein degradation associated psmb 583 
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genes (psmb5 and psmb6), possibly indicating demand for activation of humoral immunity (Myers et 584 

al., 1987). 585 

 586 

Lipid homeostasis 587 

Benzo(a)pyrene has been shown to affect lipid homeostasis in mammals (Layeghkhavidaki et al., 2014; 588 

Wang et al., 2015; Hu et al., 2016), possibly through cross-talks between the AhR signaling and 589 

peroxisome proliferator-activated receptor (PPAR) pathway (Shaban et al., 2005; Borland et al., 2014). 590 

The PPAR signaling pathway is considered the central regulator of lipid metabolism in vertebrates (Ferre, 591 

2004). Perturbations to lipid metabolism by PAH-containing petroleum compounds have also been 592 

documented in several fish studies (Bilbao et al., 2010; Adeogun et al., 2016; Xu et al., 2016; Cocci et 593 

al., 2017; Vieweg et al., 2018). Results from the present study showed that exposure to High BaP in 594 

general down-regulated DEGs involved in the PPARα signaling pathway, such as lipoprotein lipase (lpl, 595 

hydrolysis of triglycerides in lipoproteins), adiponectin receptor 2 (adipor2, fatty acid oxidation), 596 

phospholipase C epsilon 1 (plce1, hydrolysis of polyphosphoinositides), phospholipase C like 2 (plcl2, 597 

hydrolysis of the phospholipids) which are key for lipid metabolism. On the contrary, pparγ was found 598 

to be highly up-regulated by exposure to High BaP. This discrepancy in transcriptional regulation may 599 

attribute to the slightly different roles of PPAR isoforms in the maintenance of lipid homeostasis 600 

(Lamichane et al., 2018). It has been suggested that PPARα and PPARβ/δ promote energy dissipation, 601 

whereas PPARγ promotes energy storage in mammals (Dubois et al., 2017). The up-regulation of pparγ 602 

in polar cod may likely indicate demand for lipid synthesis, possibly due to elevated activity of the 603 

mitochondrial energetic machinery which consumes fatty acids as energy sources (Nsiah-Sefaa and 604 

McKenzie, 2016) and/or increased degradation of damaged lipids as a consequence of oxidative stress 605 

induced by BaP metabolism. A recent study also suggested reduced lipid metabolism in polar cod after 606 

dietary exposure to crude oil, as indicated by the down-regulation of cytochrome P4507A1 (cyp7a1), a 607 

gene involved in cholesterol metabolism (Vieweg et al., 2018).  608 

 609 

4.8 Conceptual toxicity pathway network 610 
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On the basis of the hepatic transcriptomic responses in polar cod, a conceptual toxicity pathway network 611 

is proposed for understanding of the dose-dependent toxicity mechanisms of BaP in this Arctic fish 612 

(Figure 5). After exposure to the low dietary doses of BaP (0.4 ug/g), low level of reactive metabolites 613 

may be formed through biotransformation of BaP and potentially disturb the cellular redox homeostasis 614 

by increasing the production of endogenous ROS. To maintain the homeostasis and avoid oxidative 615 

stress, adaptive responses (or compensatory mechanisms, e.g. negative feedback loop) may be induced 616 

to suppress the mitochondrial ETC activity, a major source of endogenous ROS formation (Figure 5-A). 617 

This may consequently reduce the demand for defense mechanisms such as AOX defense and DNA 618 

repair. It is also possible that the BaP metabolites directly disrupt the mitochondrial ETC thus causing 619 

reduction in ATP synthesis.  620 

   Exposure to High BaP activates the AhR-mediated biotransformation, thus generating reactive 621 

metabolites of BaP (Figure 5-B). These metabolites may disturb the redox reactions and produce 622 

excessive ROS, thus inducing oxidative stress and activating the AOX defense. Oxidative damage to 623 

the DNA may activate DNA repair, protein degradation and apoptosis to protect the cells and avoid 624 

mutation. However, since the repair mechanisms usually require energy, the mitochondrial ETC activity 625 

is elevated to produce more ATP, and simultaneously, more endogenous ROS. When the oxidative 626 

damages overwhelm the repair mechanisms, adverse effects at higher level of biological organization 627 

may be induced. 628 

   The present work demonstrate how transcriptional approaches can be used to characterize the MoA of 629 

pollutants, and how functional responses such as bile metabolites can support weight of evidence 630 

considerations using molecular and physiological data. The current approach is as such explorative as 631 

pointing out potential toxicity pathways that can be triggered by stressors, and the logical continuance 632 

of such work is to assess whether these perturbations at the molecular and physiological scale transplant 633 

to adverse (phenotypical) effects that can be associated with reduction of fish health and successful 634 

recruitment to natural populations of polar cod.       635 

 636 
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 637 

Figure 5. Proposed network of hepatic toxicity pathways in Arctic fish after exposure to Low (A) and High (B) levels of benzo(a)pyrene (BaP). 638 

ROS: Reactive oxygen species; ETC: Electron transport chain: AhR: Aryl hydrocarbon receptor. ↑: Increase; ↓: Decrease. 639 

 640 

 641 

5. Conclusions 642 

The present study developed and applied a transcriptomics platform (microarray and qPCR) for 643 

understanding the effects and MoAs of BaP on a key Arctic fish, polar cod. The global transcriptional 644 

analysis in combination with targeted metabolic identification suggest that BaP and its 645 

biotransformation product 3-OH-BaP affected polar cod in a dose-dependent manner, potentially 646 

through induction of oxidative stress, DNA damage and apoptosis as the main MoAs, similarly to that 647 

reported for other vertebrates. Novel MoAs in polar cod such as disturbance of mitochondrial ETC and 648 

induction of protein degradation were also proposed. Although similar biological targets were identified 649 

for both Low and High BaP exposure, the detailed toxicity mechanisms contributing to the MoAs of this 650 

compound were dissimilar, with Low BaP in general suppressing DEGs involved in the defense 651 

pathways and High BaP mainly inducing DEGs in the compensatory mechanisms. Moreover, dose-652 

dependent responses related to disturbance of hormone receptor signaling, perturbation to immune 653 

functions and disruption of lipid homeostasis were also characterized and suggested as additional MoAs 654 
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of BaP in polar cod. The present study reported the first transcriptomic analysis in polar cod. The tools 655 

and knowledge generated may thus serve as a foundation for future mechanistically-based and 656 

phenotypically-anchored impact assessment of environmental pollutants in the Arctic using this 657 

important fish as a forecaster species. 658 
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