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Abstract A special case of the fourth-order Darcy-Bénard problem in a 2D
rectangular porous box is investigated. The present eigenfunctions are of non-
normal mode type in the horizontal and vertical directions. They compose
a time-periodic wave with one-way propagation out of the porous rectangle.
Asymmetry in the horizontal direction generates an oscillatory time-dependence
of the marginal state, similar to Rees and Tyvand (2004a). No analytical
method is known for this non-degenerate eigenvalue problem. Therefore, the
problem was solved numerically by the finite element method (FEM). Three
boundaries of the rectangle are impermeable. The right-hand wall is fully pen-
etrative. The lower boundary and the left-hand wall are heat conductors. The
upper boundary has a given heat flux. The right-hand wall is thermally in-
sulating. As a result, the computed eigenfunctions show complicated periodic
time-dependence. Finally, the critical Rayleigh number and the associated an-
gular frequency are calculated as functions of the aspect ratio, and compared
against the case of normal modes in the vertical direction.

1 Introduction

Thermal convection in a porous layer uniformly heated from below is known
as Darcy-Bénard convection. The linearized onset problem, solved by Horton
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and Rogers [1] and later Lapwood [2], will be referred to as the HRL problem.
The fourth-order HRL eigenvalue problem has been thoroughly investigated,
but mostly within the framework of normal modes. Normal modes are essen-
tially solutions of a second-order equation, which is the Helmholtz equation.
Since the HRL problem is of fourth order, all normal-mode solutions are in
principle degenerate solutions of the full fourth-order problem, as pointed out
by Tyvand and Storesletten [3]. Tyvand, Nøland and Storesletten [4] designed
and solved numerically a 2D problem in a rectangle of the HRL type which is
fully non-degenerate, which means that the onset is governed by a non-normal
mode solution where the horizontal and vertical dependencies cannot be sepa-
rated from one another. Such problems cannot be solved fully analytically by
known methods, and there will be at least one corner where the sets of ther-
momechanical boundary conditions at the meeting boundaries are in mutual
conflict.

Nield [5] introduced non-normal modes in the vertical direction, solving
the HRL problem for all elementary combinations of the Dirichlet or Neu-
mann type for the perturbation temperature and the vertical velocity, where
one thermal and one mechanical condition was applied at each boundary. In
Nield’s work, the solution is automatically a normal mode in the horizontal
directions, since a Fourier component for each horizontal eigenfunction ex-
presses normal modes. However, with physical walls confining a rectangular
geometry, the solution does not have to be of the normal-mode type, unless
wall conditions that give degeneracy are designed. Beck [6] applied normal-
mode solutions to the onset problem for 3D rectangular boxes with thermally
insulating and impermeable vertical walls. The first analytical solution that
did not apply normal modes behavior in one horizontal direction was derived
by Nilsen and Storesletten [7], valid for 2D rectangular boxes. These authors
had to consider normal modes in the vertical direction in order to make the
horizontal eigenvalue problem solvable analytically.

Earlier versions of the HRL problem had only steady onset modes, but
Rees and Tyvand [8] designed a 2D problem (the RT problem) for a porous
rectangle with oscillatory marginal state induced by an asymmetry between
the left-hand and right-hand walls. The RT problem serves as a benchmark
problem for our present problem with non-normal-mode eigenfunctions in 2D.
The oscillatory onset of the RT problem is represented as a wave that origi-
nates at the left-hand wall and travels through the porous box where it exits
through the open right-hand wall. The RT problem cannot be solved exactly
analytically, since the cell walls for an onset mode have variable spacing, and
there exists no critical wave number in the horizontal direction. The solution
of the RT problem is well-behaved and has vertical cell walls, which follows
from the choice of normal-mode compatible conditions in the vertical direc-
tion. Asymptotic solutions for small and large aspect ratios were developed in
the RT paper.

The present paper demonstrates high complexity in a HRL eigenvalue prob-
lem in 2D, even with simple combinations of either Dirichlet of Neumann
conditions at all four walls of a porous rectangle with horizontal and vertical
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sides. These eight conditions at four walls are conventionally expressed as one
thermal condition and one mechanical condition at each wall.

2 Mathematical formulation

A porous medium is considered, with 2D flow in the x, z plane. Its physical
counterpart is a 3D porous medium with impermeable and insulating walls
y = 0 and y = ∆y, where the distance ∆y is sufficiently small compared with
the vertical length scale, implying that the preferred mode of free convection
will be 2D in the x, z plane. The z axis is directed vertically upwards. The
porous medium is homogeneous and isotropic. The assumption of 2D flow in
the x, z plane is valid also for a 3D porous medium with thickness ∆y in
the y direction, if two constraints are met (Storesletten and Tveitereid [12]):
(i) The thermomechanical wall conditions at y = 0 and y = ∆y are those
of impermeable and thermally insulating walls. (ii) The cell width in the x
direction must be sufficiently large compared with ∆y.

The velocity vector v has Cartesian components (u,w). The temperature
field is T (x, z, t), with t denoting time. The undisturbed motionless state has
uniform vertical temperature gradient. The gravitational acceleration g is writ-
ten in vector form as g.

The standard Darcy-Boussinesq equations for convection in a homogeneous
and isotropic porous medium can be written

∇p+
µ

K
v + ρ0β (T − T0)g = 0, (1)

∇ · v = 0, (2)

(ρcp)m
∂T

∂t
+ (ρcp)f v · ∇T = λm∇2T. (3)

In these equations, p is the dynamic pressure, β is the coefficient of thermal
expansion, ρ = ρ0 is the fluid density at the reference temperature T0, µ
is the dynamic viscosity of the saturating fluid, K is the permeability, cp is
the specific heat at constant pressure, and λm is the thermal conductivity of
the saturated porous medium. The subscript m refers to an average over the
solid/fluid mixture, while the subscript f refers to the saturating fluid alone.

We consider a 2D porous medium with a rectangular shape, bounded by
the four sides

x = 0, x = l, z = 0, z = h, (4)

which means that the 2D rectangular porous box has height h and width l.
The lower boundary is taken to be impermeable and perfectly heat-conducting

w = 0, T − T0 = 0, at z = 0, (5)

while the upper boundary is taken to be impermeable and with constant uni-
form heat flux

w = 0,
∂T

∂z
= −∆T

h
, at z = h, (6)
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where ∆T is the temperature difference across the layer in its undisturbed
state. T0 is a reference temperature The left-hand boundary is assumed to be
impermeable and perfectly conducting

u = 0, T − T0 = −∆T
h
z, at x = 0, (7)

while the right-hand boundary is assumed to be (open) fully penetrative and
thermally insulating

∂u

∂x
= 0,

∂T

∂x
= 0, at x = l. (8)

This open-wall condition corresponds to a hydrostatic reservoir surrounding
the porous medium on the right hand side, combined with a thermal condition
of zero heat flux. This combination of kinematic and thermal condition may
seem artificial, but it appears as a consistent limit case of the general thermo-
mechanical Robin conditions for vertical walls, derived by Nyg̊ard and Tyvand
[9]. Barletta and Storesletten [10] applied the thermo-mechanical conditions
of an open and conducting wall for a vertical cylinder.

2.1 Dimensionless equations

From now on we work with dimensionless variables. We reformulate the math-
ematical problem in dimensionless form by means of the transformations

1

h
(x, z)→ (x, z),

h

κm
(u,w)→ (u,w), h∇ → ∇, b

h
→ b,

1

∆T
(T − T0)→ T,

K

µκm
(p− p0)→ p,

(ρcp)fκm
(ρcp)mh2

t→ t,

(9)

where κm = λm/(ρ0cp)f is the thermal diffusivity of the saturated porous
medium. We denote the vertical unit vector by k, directed upwards.

The dimensionless governing equations can then be written

v +∇p−R Tk = 0. (10)

∇ · v = 0 (11)

∂T

∂t
+ v · ∇T = ∇2T, (12)

with the boundary conditions at the lower and upper boundaries

w = T = 0, z = 0, (13)

w =
∂T

∂z
+ 1 = 0, z = 1. (14)

The boundary conditions at the vertical sidewalls are

u = T − z = 0, x = 0, (15)
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∂u

∂x
=
∂T

∂z
= 0, x = L. (16)

Here L denotes the aspect ratio L = l/h. The Rayleigh number R has been
introduced. It is defined as

R =
ρ0gβK∆Th

µκm
. (17)

2.2 Basic solution

The stationary basic solution of eqs. (10)-(14) is given subscript ”b”

vb = 0, Tb = −z, pb = −1

2
R z2. (18)

This basic state of hydrostatic fluid has a linear temperature profile.

2.3 Linearized perturbation equations

In our stability analysis we disturb the static state (18) with perturbed fields

v = vb + v, T = Tb(z) +Θ, p = pb(z) + p′. (19)

with perturbations v, Θ, p′ that are functions of x, z and t. Linearizing eqs.
(10)-(12) with respect to perturbations and eliminating the pressure gives

∇2w = R
∂2Θ

∂x2
, (20)

∂Θ

∂t
− w = ∇2Θ. (21)

The onset of convection may occur with a oscillatory marginal state. The only
known case where the present configuration of a porous rectangular box is
known to give a advected wave solution at marginal stability, was investigated
in the RT paper. Here the two vertical end-walls were mutually asymmetric,
and none of them were compatible to normal-mode solutions. The unsteady
one-way wave process originated as a marginally stable mode at the imper-
meable/conducting left-hand wall, traveling horizontally through the box, to
be transmitted out through the open and thermally insulated right-hand wall.
We introduce the streamfunction Ψ by the relationships

(u,w) =

(
∂Ψ

∂z
,−∂Ψ

∂x

)
, (22)

satisfying the continuity equation (11).
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2.4 The chosen boundary conditions

We first reformulate the above boundary conditions, in terms of the pertur-
bations. The lower boundary is assumed impermeable and perfectly heat con-
ducting

Ψ = Θ = 0, z = 0, (23)

while the upper boundary is impermeable, with constant given heat flux

Ψ =
∂Θ

∂z
= 0, z = 1. (24)

We have hand-picked boundary conditions at the two sidewalls. The left hand
sidewall is impermeable and perfectly heat conducting

Ψ = Θ = 0, x = 0. (25)

while the right hand sidewall is partly penetrative and perfectly thermally
insulating

∂Ψ

∂x
=
∂Θ

∂x
= 0, x = L. (26)

It is hard to facilitate this condition physically. It may be approached to a
reasonable extent by a porous medium made of small metal beads next to
a boundary where the medium on the other side of the boundary is made of
much larger polystyrene beads. This is a possible configuration for approaching
the set (26) of thermo-mechanical conditions, with a saturating fluid with low
thermal conductivity, like oil. General Robin conditions for sidewalls have been
derived in [9], where the present right-hand wall condition is included as a limit
case.

In Figure 1 we present a definition sketch in terms of dimensionless vari-
ables. Here the four corners of the rectangle are denoted by O, A, B, C. Their
respective coordinates are (0, 0), (L, 0), (L, 1) and (0, 1). The local eigenfunc-
tion fields at the onset of convection behave similarly near each of the two
lower corners O and A, and also near each of the two upper corners B and C.
The lower corners O and A have possible local similarities with the analytical
solutions from Nilsen and Storesletten [7], see the local analysis below. There
are no known analytical solutions relevant for the two upper corners B and C.

2.5 The coupled differential equations

There are two coupled second-order equations, to be combined with homoge-
neous boundary conditions for w and θ. We introduce the streamfunction Ψ
and rewrite the coupling equations between Θ and w as

∇2Θ − ∂Θ

∂t
=
∂Ψ

∂x
, (27)

∇2Ψ +R
∂Θ

∂x
= Z(z), (28)
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where the unknown function Z(z) is a constant of integration in the x direction.
Z(z) may be evaluated at any value of x, and we choose x = 0 to find

Z(z) =

(
∇2Ψ +R

∂Θ

∂x

)
x=0

=

(
∂2Ψ

∂x2
+R

∂Θ

∂x

)
x=0

, (29)

applying the boundary conditions (25). From the vertical component of Darcy’s
law (10) we can rewrite this condition as

Z(z) =
∂2p

∂x∂z

∣∣∣∣
x=0

. (30)

The x component of Darcy’s law can be differentiated along the left-hand wall
to give

∂2p

∂x∂z
= −∂

2Ψ

∂z2
= 0, x = 0. (31)

Combining these two conditions at x = 0 implies Z(z) = 0 which simplifies
eq. (28) to

∇2Ψ +R
∂Θ

∂x
= 0. (32)

3 The eigenfunctions at marginal stability

The eigenfunctions Ψ(x, z, t) and Θ(x, z.t) for the onset of convection have
separable time dependence and can be rewritten as

(Ψ,Θ) = (ψ(x, z), θ(x, z))eσt, (33)

where the complex growth rate σ = σr+iσi has been introduced, and i denotes
the imaginary unit.

The coupled governing equations can now be written

∇2θ − σθ =
∂ψ

∂x
, (34)

∇2ψ +R
∂θ

∂x
= 0, (35)

with the boundary conditions

ψ = θ = 0, z = 0, (36)

ψ =
∂θ

∂z
= 0, z = 1, (37)

ψ = θ = 0, x = 0, (38)

∂ψ

∂x
=
∂θ

∂x
= 0, x = L. (39)

Marginal stability is defined by σr = 0, while a nonzero angular frequency
ω may appear, defined as ω = σi. It will arise as a new eigenvalue in the
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Fig. 1 Illustration of the governing equations and corresponding boundary conditions of
the coupled eigenvalue problem.

problem, which may also cause the eigenfunctions to be complex, with real
and imaginary parts defined as

ψ(x, z) = ψr + iψi, θ(x, z) = θr + iθi. (40)

The governing equations can now be split in real and imaginary parts as follows

∇2θr + ωθi =
∂ψr
∂x

, (41)

∇2θi − ωθr =
∂ψi
∂x

, (42)

∇2ψr +R
∂θr
∂x

= 0, (43)

∇2ψi +R
∂θi
∂x

= 0. (44)

The full solution for the marginal state of convection must be found numer-
ically, since no analytical solutions are known for this fourth-order eigenvalue
problem without degeneracies in 2D. No Fourier methods are known, but in
principle a double power series solution in terms of x and z could be attempted.
It would at best converge slowly, so a finite element method is a better alter-
native. We use the commercial finite-element package Comsol Multiphysics.

3.1 Local quasi-steady approximations for the eigenfunctions

We will develop analytical approaches concerning the eigenfunctions in the
vicinity of two of the four corners of the porous rectangle. These are based on
earlier work where the onset of convection is non-oscillatory, and may be valid
as first approximations only asymptotically as L� 1.
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3.1.1 Local flow near (0, 0)

The first corner that we consider is the origin O, with coordinates (0, 0). The
local behavior of steady-state eigenfunctions can be deduced from Nilsen and
Storesletten [7], see also Rees and Tyvand [11]. Their solution has a degener-
acy which implies the existence of two different candidates for local solutions,
which we call alternative A1 and alternative A2, when applied to the flow
around the origin. We are only interested in the local spatial dependency of
the eigenfunctions, so we disregard the relative (complex) amplitudes of the
temperature perturbation versus the streamfunction.

Alternative A1
The first alternative for possible local quasi-steady eigenfunctions around the
corner O is

θ ∼ sin(kx) sin(αx) sin(mz),

ψ ∼ cos(kx) sin(αx) sin(mz).
(45)

The local Taylor expansions for eq. (45), representing alternative A1, are given
by

θ ∼ x2z +O(x2z3),

ψ ∼ xz +O(xz3) +O(x3z),
(46)

and we note the qualitative difference between the eigenfunctions: The pertur-
bation temperature has zero normal derivative at the wall CO (x = 0), while
there is a finite vertical velocity along this wall. In the plots below, this alterna-
tive will show relatively great spacing between neighboring isotherms near the
wall CO, and there will be a relatively smaller distance between neighboring
streamlines near the same wall CO. A more precise way of making compar-
isons between our numerical solutions and these local quasi-steady solutions
(46), is to introduce what we call the Local Gradient Angle (LGA), denoted
by γ. The angle γ is defined as the angle between the x axis and the direction
where the local gradient of an eigenfunction intersects the origin. Figure 2
shows an intuitive illustration of the LGA concept, since it corresponds to
the direction where a ray of light emitted from the origin is reflected back
(with the isotherm acting as a mirror surface) along the same direction as it
came from, while all other rays directed differently will be scattered from this
surface.

For defining the LGA for the temperature perturbation, we thus require
the gradient and the position vector to be parallel(

∂θ

∂x
,
∂θ

∂z

)
× (x, z) = 0. (47)

We now assume the temperature perturbation to have a general power depen-
dency of x, taking the local expansion with respect to O as

θ ∼ xnz, (48)
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since the linear z dependence is known because of antisymmetry with respect to
the x axis. This assumed z dependency does not have to be a Taylor expansion,
since it has no physical meaning to extend an eigenfunction on the other side
of the z axis. From the definition (47) and the assumed local field (48) we find
the relationship between the LGA and its exponent n

n = cot2 γ, (49)

since tan γ = z/x.
The present alternative A1 thus determines the LGA as γ = arctan(2−1/2),

for the temperature perturbation. The local solution for the streamfunction is
simpler, since it is symmetric in x and z, implying that the local gradient that
goes through the origin has the ratio z/x = 1 and makes an angle π/4 with
the x axis.

Alternative A2
A particular degeneracy of the steady local corner problem implies that stream-
lines and isotherms can be interchanged. Therefore there is a second alternative
A2 for possible local eigenfunctions around the corner O, given as

θ ∼ cos(kx) sin(αx) sin(mz),

ψ ∼ sin(kx) sin(αx) sin(mz).
(50)

The corresponding local Taylor expansions for eq. (50), representing alterna-
tive A2, are

θ ∼ xz +O(xz3) +O(x3z),

ψ ∼ x2z +O(x2z3).
(51)

which means that alternative A2 interchanges the roles of the eigenfunctions
in alternative A1. This means that the LGA for θ is γ = π/4, while the LGA
for ψ is γ = arctan(2−1/2). In the plots below, this alternative may reveal
itself by having a small distance between neighboring isotherms near the wall
CO, and a relatively greater distance between neighboring streamlines near
the wall.

These one-term local expansions require |x| � 1 and 0 < z � 1. The three
wave numbers (k,m, α) that are present in the mathematical solution by Rees
and Tyvand [11], lose their significance to the leading order of the Taylor series,
since they do not affect the shapes of the eigenfunctions. The degeneracy that
is responsible for the two distinct alternatives of eigenfunctions, exist because
of the wave number of degeneracy α, which is determined by a Helmholtz
equation.

The numerical solution may determine which of the two quasi-steady can-
didates (45) and (50) for local eigenfunctions that are actually represented
near the origin at marginal stability. However, it is more probable that none
of these alternatives (with a precise integer exponent, either n = 1 or n = 2) is
chosen, since the exact problem has only one solution. The numerical solution
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Fig. 2 Illustration of our concept of ”local gradient angle” (LGA), giving the direction of
the local gradient vector that points through the origin. This concept characterizes a family
of local scalar fields (xnz), here visualized by a ray of light emitted from the origin and
reflected back from the isoline xnz =constant. The only ray that is reflected back to the
origin is aligned along the local gradient angle. The case given in this figure is n=2.

is not likely to switch between two alternatives of quasi-steady local solutions,
since two distinct alternatives will no longer exist once we allow oscillations to
enter the problem. We also note that a superposition of the two local quasi-
steady solutions is not an option, since it does not give a converging value for
the LGA. The LGA and its exponent n as defined by eq. (49) will illustrate
the behavior of the local solution during an oscillation period.

3.1.2 Local flow near (L, 0)

The local behavior of the quasi-steady eigenfunctions near the second corner A
(with coordinates (L, 0)) is similar to the behavior at the origin O. The basic
difference is that we have let the previous expressions for the eigenfunctions
apply to their x derivatives, after having made the coordinate substitution
x→ (x− L).

Alternative A3
The first alternative for possible local eigenfunctions around the corner A is

∂θ

∂x
∼ sin(k(x− L)) sin(α(x− L)) sin(mz),

∂ψ

∂x
∼ cos(k(x− L)) sin(α(x− L)) sin(mz).

(52)
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The local Taylor expansions for eq. (52), representing alternative A3, are given
by

∂θ

∂x
∼ (x− L)2z +O((x− L)2z3),

∂ψ

∂x
∼ (x− L)z +O((x− L)z3) +O((x− L)3z),

(53)

and we note the qualitative difference between the eigenfunctions. The local
streamlines will go perpendicularly out through this wall, with zero tempera-
ture gradient.

Alternative A4
The degeneracy of this local corner problem implies that streamlines and
isotherms can be interchanged. Therefore there is a second alternative A2
for possible local eigenfunctions around the corner A, given as

∂θ

∂x
∼ cos(k(x− L)) sin(α(x− L)) sin(mz),

∂ψ

∂x
∼ sin(k(x− L)) sin(α(x− L)) sin(mz).

(54)

The corresponding local Taylor expansions for eq. (54), representing alterna-
tive A4, are

∂θ

∂x
∼ (x− L)z +O((x− L)z3) +O((x− L)3z),

∂ψ

∂x
∼ (x− L)2z +O((x− L)2z3),

(55)

which means that alternativeA4 interchanges the roles of θ and ψ in alternative
A3.

3.1.3 On the troublesome corners (L, 1) and (0, 1)

The local thermomechanical solution near the third corner B (with coordinates
(L, 1)) will not be analyzed here. B is a troublesome corner, together with the
fourth corner C. The two sides that meet in the corner B (AB and BC) have
boundary conditions incompatible with normal modes, and the solution may
be singular in the corner B. At an infinitesimal distance from the corner B, it
is hard to tell whether the streamlines are normal or parallel to one another.
Near the corner C the situation is similar.

3.2 Numerical solutions

We have now discussed the four corners, with a warning of possible singularities
in the corners B and C. If so, the numerical solution may represent the outer
solution in the sense of matched asymptotics, with respect to the corners B
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and C. The solution will be well-behaved around the two other corners O and
A of the rectangle, where there are no conflicting boundary conditions. In fact,
the two eigenvalues R and ω have to be solved simultaneously. The solution
is found by iterations with respect to the growth rate σr, in order to achieve
a valid result that fulfills σr = 0 with sufficient accuracy. The imaginary part
that arises numerically for the eigenvalue ω, is equal to −σr. The numerical
search is based on an optimization problem to be solved, where the solver
finally picks the correct ω to reach an imaginary part (−σr) less than 10−5.

3.2.1 The porous square (L = 1)

The natural start is the square domain, which is displayed in Figure 3. The
four eigenfunctions with the lowest Rayleigh numbers are shown. In each case,
five snapshots of the eigenfunctions are displayed, representing half an oscilla-
tion period. The isotherms are represented by solid black lines, supported by
color coding. The streamlines are conveniently represented by white graphs on
the colored background. There are constant intervals in the displayed values
of the perturbation temperature and streamfunction.

The preferred mode for convection has a critical Rayleigh number R =
60.49, which is more than 50% above the classical value of 4π2 (Horton and
Rogers [1]). We observe the curved thermal cell walls, while the flow cells have
internal cell walls that are not so far from being vertical. For the higher on-
set modes, we observe curved cell walls both horizontally and vertically. The
third and fourth onset modes develop recirculating domains within greater
structures that defy the notion of a convection cell, which should not come
as a surprise since there exists no wave number concept in these cases. These
recirculating flow domains tend to be surrounded by wavy flows that are uni-
directional along the lower and upper boundary of the porous layer.

3.2.2 A narrow porous domain (L = 0.5)

Figure 4 shows the four eigenfunctions with the lowest Rayleigh numbers
for a narrow rectangle with the aspect ratio L = 0.5. The curvatures in the
internal cell walls are more pronounced compared with Figure 3. The fourth
set of eigenfunctions reveal the tendency that recirculating domains (with
closed isolines for the temperature perturbation or the streamfunction) are
surrounded by wavy isolines that do not close, but extend through the entire
horizontal width of the rectangle, following the lower and upper boundary.
Interestingly, this situation changes during an oscillation period as far as the
isotherms are concerned: The isolines for the perturbation temperature forms
closed cells during parts of an oscillation period, while these cells open up by
shearing their outer isotherms during other parts of an oscillation period.



14 Peder A. Tyvand, Jonas K. Nøland

Fig. 3 Streamlines (white) and isotherms (black) at equally spaced time intervals over one-
half of a period for convection in a square (aspect ratio L = 1) for the 4 first eigenfunctions.
Time increases from the left to the right.

3.2.3 A moderately wide porous domain (L = 2)

We will now show numerical results for the case L = 2. We first recall some
known analytical results for L� 1. The case of infinite width with the present
conditions for the lower and upper boundaries, was studied by Nield [5], who
established the critical Rayleigh number, with associated wave number and
critical frequency

Rac = 27.10, αc = 2.33, ωc = 0, (56)

and these are asymptotic limits to be approached as L → ∞. The oscillation
vanishes in the asymptotic limit as L→∞, which is known from Nield [5].

Figure 5 shows how the LGA varies over an oscillation period. Figure 6
shows the associated variation of the LGA exponent n during a period of oscil-
lation, found by inserting the computed values of γ in eq. (49). The relevance
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Fig. 4 Streamlines (white) and isotherms (black) at equally spaced time intervals over one-
half of a period for convection in a narrow reactance (aspect ratio L = 0.5) for the 4 first
eigenfunctions. Time increases from the left to the right.
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of one discrete value n = 1 appearing in our above quasi-steady local solutions
is seen in Figure 6, since it will give a reasonable approximation to one of the
two eigenfunctions. The other discrete value n = 2 will not have a similar role,
but most of the higher values of n will be confined to the interval between 1
and 2. Our numerical results confirm the expectation that the leading x de-
pendency near the origin cannot be represented as a Taylor expansion around
x = 0, as the series is one-sided only, requiring x > 0. Our non-singular local
solution with a non-integer exponent for x puts the eigenfunction degeneracy
found by Nilsen and Storesletten [7] in a broader perspective. Their results
were confirmed by Rees and Lage [13] and later generalized by Rees and Ty-
vand [11].

Figures 5−6 show exactly the same behavior for both eigenfunctions over
an oscillation period, but their respective phase shift is not π/2 as one might
expect. This asymmetry in phase shifts between the eigenfunctions implies
that the LGA exponent n for the temperature field will exceed the value
of n for the streamfunction for more than half of the oscillation period. We
offer no explanation for the remarkable discontinous jumps of the LGA that
happen twice during the oscillation period both for the temperature and the
streamfunction.

Figures 5− 6 represent the preferred eigenfunctions for flow and temper-
ature, having the lowest Rayleigh numbers. Isolines for these preferred eigen-
functions are shown in Figure 7. Here we consider a moderately wide rectangle
with the aspect ratio L = 2. Still the lowest eigenvalue, R = 36.553, is much
higher than the the limit value 27.10 for an infinitely wide rectangle. There is
a significant stabilizing effect of the wall AB where buoyancy is taken away
due to zero temperature perturbation. There is still no critical wave number
concept that can be extracted from the results for L = 2. The eigenfunctions
for L = 2 show interesting combinations of cells that close next to cells that
do not close, both for the streamlines and the isotherms. Figure 7 shows flow
cells that do not split in the vertical direction.

In addition, Figure 8 illustrates the third and fourth eigenfunctions, ranked
according to the Rayleigh number, for the aspect ratio L = 2 (same as
Figure 7). Considering the fourth eigenvalue of the Rayleigh number, an al-
most horizontal cell wall arises near the middle of the porous layer, and it is
approximately a joint cell wall for the streamlines and the isotherms. In fact,
the intricate relationships between streamlines and isotherms seems to be out-
side the reach of analytical solutions. They are in contrast to the quarter of
a wavelength displacement between streamlines and isotherms in the classical
HRL solution.

It should be noted that Figure 7 illustrate cases that are comprised of two
or three full flow cells. In fact, the cell width is not constant for the present
set of boundary conditions, as earlier reported in the RT paper. Constant cell
width is usually the case with known solutions for the onset of convection
in 2D rectangular boxes, but the RT model is an exception. The rectangular
box studied by Rees and Tyvand [8], shows a one-way wave with continuously
varying wavelength being repeatedly generated at x = 0 to be advected out
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Fig. 5 LGA as a function of oscillation phase at the origin, for the lowest eigenvalue of the
thermal and stream eigenfunctions. Aspect ratio L = 2, Rayleigh number R = 36.553 and
ω = 1.155.

Fig. 6 The LGA exponent n = cot2(γ) as a function of phase of oscillation at the origin, for
lowest eigenvalue of the thermal and stream eigenfunctions. Aspect ratio L = 2, Rayleigh
number R = 36.553 and ω = 1.155.
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Fig. 7 Streamlines (white) and isotherms (black) at equally spaced time intervals over
one-half of a period for convection in a wide rectangle (aspect ratio L = 2) for the 2 first
eigenfunctions. Time increases from the top to the bottom.
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Table 1 Comparison of Rayleigh numbers and oscillations frequencies in non-normal mode

Eigenvalue L = 0.5 L = 1.0 L = 1.5 L = 2.0

R1 136.76 60.490 43.025 36.533
ω1 41.681 7.3189 2.5046 1.1549

log10(ω1) 1.6199 0.8644 0.3987 0.0625
R2 262.32 172.74 94.928 65.933
ω2 31.858 28.513 9.3835 4.2043

log10(ω2) 1.5032 1.4550 0.9724 0.62
R3 457.38 284.10 149.66 115.75
ω3 26.046 18.267 1.6446 8.9572

log10(ω3) 1.4157 1.2617 0.2161 0.95217
R4 547.20 360.78 182.16 142.23
ω4 147.48 58.05 20.242 0.70917

log10(ω4) 2.1687 1.7638 1.3063 -0.1492
R5 726.95 355.33 201.48 171.89
ω5 21.813 3.8473 6.1839 2.6892

log10(ω5) 1.3387 0.5852 0.7913 0.4296

of the porous rectangle at x = L. This behavior occurs because of the mutual
asymmetry between the thermomechanical conditions at x = 0 and those at
x = L.

Table I summarizes the case studies with an overview of the Rayleigh
number and the oscillation frequency for different aspect ratios and different
eigenfunctions in non-normal mode.

3.2.4 Critical Rayleigh number as function of aspect ratio

Figure 9 presents the Rayleigh number graphs of the two lowest onset modes,
showing how they vary with aspect ratio L. They are compared with the bench-
mark case of normal-mode Rayleigh numbers. The critical Rayleigh number
diverges in the limit L → 0, as in the RT problem. In the opposite limit
L → ∞, our critical Rayleigh number for the preferred (lowest) onset mode
tends toward the asymptotic limit R = 27.10, known from Nield [5], while the
corresponding asymptotic limit for the RT problem is R = 4π2 (Horton and
Rogers [1]).

3.2.5 Critical oscillation frequency as function of aspect ratio

Figure 10 presents the critical oscillation frequencies of the two lowest onset
modes, showing how they vary with aspect ratio L. The benchmark normal-
mode case is compared with the non-normal-mode frequencies. First we note
that the oscillation frequencies tend to infinity as L→ 0, both in the present
case and in the RT model. This infinite-frequency limit follows from a simple
argument of dimensional analysis. The oscillations in a narrow rectangular
box will then have l2/κm as their physical time scale, since the oscillations
express a communication between the two vertical walls CO and AB. Thus
a different time scale replaces the assumed time scale h2/κm according to
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Fig. 8 Streamlines (white) and isotherms (black) at equally spaced time intervals over one-
half of a period for convection in a square (aspect ratio L = 2) for the third and the fourth
eigenfunction. Time increases from the left to the right.
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Fig. 9 Two lowest Rayleigh numbers at marginal stability as a function of aspect ratio (L)
in comparison with benchmark Normal-Mode. The filled circles refer to the cases displayed
in Figures 3 − 6. A numerical search generates continuous curves with a 0.025 resolution
for the aspect ratio (L).

the dimensionless description. The time scale for ω that is assumed in the
low aspect ratio limit of Figure 9 is therefore much smaller than the one
implicitly assumed, being reduced by a factor l2/h2 = L2 when L� 1. Smaller
time scale of oscillations implies quicker oscillations, which explains why the
dimensionless oscillations frequencies go to infinity as L→ 0 in Figure 10. Our
only asymptotic estimate for the oscillations in the wide rectangle limit is the
obvious leading-order limit, that the oscillations vanish in the limit L → ∞,
known from Nield [5].

3.2.6 Swapping between different modes

Figure 11 shows that the modes experience slight jumps in the Rayleigh num-
ber as a function of the aspect ratio in the numerical search. The jumps happen
at the intersection points where two different eigenfunctions meet, and where
a new eigenfunction takes over as the nth lowest Rayleigh number.
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Fig. 10 Oscillatory frequency at marginal stability as a function of aspect ratio (L) in
comparison with benchmark Normal-Mode. The filled circles refer to the cases displayed in
Figures 3−6. A numerical search for the two lowest Rayleigh numbers generates continuous
curves with a 0.025 resolution for the aspect ratio (L).

Fig. 11 Illustration of slight jumps in the six lowest Rayleigh numbers with a 0.025 reso-
lution for the aspect ratio (L).

4 Summary and conclusions

The mathematical theory of fourth-order eigenvalue problems is not very well
developed in comparison with the harmonic analysis of second-order problems.
The linearized Darcy-Bénard problem of convection onset (the HRL problem)
in porous enclosures is one of the simplest fourth-order eigenvalue problems
describing dissipative processes. The present work couples two causes for com-
plexity that are not included in the classical HRL problem.

– An oscillatory onset mode of convection, due to an asymmetry between the
left-hand and right-hand walls, none of which are compatible with normal
modes.
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– Boundary conditions incompatible with normal modes also at the upper
boundary of the rectangular porous enclosure.

Thus we have designed an eigenvalue problem with boundary conditions
incompatible with normal modes both horizontally and vertically, resulting
in a complexity in eigenfunctions beyond the known HRL solutions from the
literature. The critical Rayleigh number and the associated angular frequency
of oscillation are not far away from the results for the benchmark RT problem
(Rees and Tyvand [8]). At the large aspect ratio limit, vanishing oscillations
reproduce two different but known onset problems solved by Nield [5].

Genuine differences between the present oscillatory problem and the RT
problem appear in the local thermo-mechanical eigenfunctions. The RT prob-
lem does not possess a wave number parameter, but there is a spatially varying
cell width. As a contrast, no wave number exists in the present problem. There
is not even a clear notion of cell walls, and the cells change their shapes during
their propagation through the porous cavity.

The present work reveals some of the little known inherent complexities of a
genuinely fourth-order eigenvalue problem without degeneracies. Our choice of
thermomechanical boundary conditions for the rectangular geometry give two
corners that allow local expansions for the eigenfunctions. We have introduced
the concept of LGA (Local Gradient Angle), for condensing information from
the numerical solution. It is particularly useful near corners where both the
eigenfunctions satisfy Dirichlet conditions. Two other corners of the rectangle
have conflicting conditions for the walls that meet there. It is likely that the
thermo-mechanical eigenfunctions have mild (integrable) singularities in these
two corners, posing analytical challenges that are left for future work.
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