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A B S T R A C T

Fully automated on-line analysis equipment is available for analysis of somatic cell count (SCC) at every milking
in automatic milking systems. In addition to results from on-line cell counters (OCC), an array of additional cow-
level and quarter-level factors considered important for udder health are recorded in these systems. However,
the amount of variability in SCC that can be explained by available data is unknown, and so is the proportion of
the variability that may be due to physiological or normal variability. Our aim was to increase our knowledge on
OCC as an indicator for disturbances in udder health by assessing the variability in OCC in cows free from clinical
mastitis. The first objective was to evaluate how much of the variability in OCC could be explained by different
potential sources of variability, including intramammary infection (IMI) status (assessed by bacterial culture of
quarter milk samples). The second objective was to evaluate the repeatability of the OCC sensor used in our
study and the agreement between OCC values and SCC measured in a dairy herd improvement (DHI) laboratory.
A longitudinal study was performed in the research herd of the Norwegian University of Life Sciences from
January 5th 2016 to May 22nd 2017. Data from 62,471 milkings from 173 lactations in 129 cows were analyzed.
We used ln-transformed OCC values (in 1000 cells/ml) as the outcome (lnOCC) in linear mixed models, with
random intercepts at cow-level and lactation-level within cow. We were able to explain 15.0% of the variability
in lnOCC with the following fixed effects: lactation stage, parity, milk yield, OCC in residual milk from the
previous milking, inter-quarter difference between the highest and lowest conductivity, season, IMI status, and
genetic lineage. When including the random intercepts, the degree of explanation was 55.2%. The individual
variables explained only a small part of the total variability in lnOCC. We concluded that physiological or normal
variability is probably responsible for a large part of the overall variability in OCC in cows without clinical
mastitis. This is important to consider when using OCC data for research purposes or in decision-support tools.
Sensor repeatability was evaluated by analyzing milk from the same sample multiple times. The coefficient of
variation was 0.11 at an OCC level relevant for detection of subclinical mastitis. The agreement study showed a
concordance correlation coefficient of 0.82 when comparing results from the OCC with results from a DHI
laboratory.

1. Introduction

Management of udder health is essential for maintaining an efficient
and sustainable dairy production. Somatic cell count (SCC) is a widely
used indicator of udder health status in dairy cows, and is used both at
quarter level, cow level, and bulk-tank level (Schukken et al., 2003).
Dairy herd improvement (DHI) programs commonly include monthly
or bimonthly measurements of cow-level SCC for assessing udder health
and implementing selective dry cow therapy strategies (Østerås et al.,

1999; Torres et al., 2008). In automatic milking systems (AMS), fully
automated on-line analysis equipment is available for on-farm analysis
of SCC at every milking (Sørensen et al., 2016). This represents a sub-
stantial increase in the amount of data containing information, e.g., for
udder health management, which may also serve as phenotypes for
breeding programs. In addition to frequent measurements of SCC, a
whole array of additional cow-level and quarter-level factors con-
sidered of importance for udder health are recorded in the AMS at every
milking (Hogeveen et al., 2010). This raises the question regarding the
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extent to which the variability in SCC can be explained by different
explanatory factors, and the proportion of the variability that may be
due to physiological variation within and between cows. Therefore, it is
important that the relevance of using such frequent measurements is
evaluated against known biological states, and that sources of varia-
bility are studied within and between animals before a conclusion on a
given animal’s health status is reached.

A literature review estimated that the geometric mean SCC level in
uninfected quarters was 68,000 cells/mL (Djabri et al., 2002). However,
SCC in milk can increase by tenfold or more during an intramammary
infection (IMI) (de Haas et al., 2002). An IMI caused by bacteria is
considered to be the most common cause of elevated SCC in dairy cows
(Schepers et al., 1997; IDF, 2013). Other reasons for fluctuations in SCC
include, among other causes: systemic disease, trauma to the udder,
lactation stage, parity, and seasonal variation (IDF, 2013). However, a
large proportion of the variability in SCC remains unexplained, even
when accounting for these factors (Schepers et al., 1997). The milking-
to-milking variability in milk composition, including SCC, has been
investigated in previous studies (Quist et al., 2008; Forsbäck et al.,
2010). However, in these studies, data on bacteriological udder health
status were either not included at all (Quist et al., 2008) or only spar-
sely (Forsbäck et al., 2010). Both these studies were of short duration,
being only five and 21 days, respectively. Hence, milking-to-milking
variability in SCC over more prolonged periods in cows with known
bacteriological udder health status has, to our knowledge, not pre-
viously been described.

Although the detection of clinical mastitis in AMS still receives
substantial attention, implementation of preventive measures should be
preferable to reduce production losses, to reduce the use of anti-
microbial drugs, and to improve animal welfare. Detection of sub-
clinical mastitis by SCC plays an important role in mastitis prevention
programs. A recent study investigated the performance of results from
an on-line somatic cell counter (OCC) as an indicator for subclinical
mastitis (Dalen et al., 2019). Although the sensitivity and specificity for
detection of subclinical mastitis were reported to be better than those of
traditional DHI systems (Reksen et al., 2008; Dalen et al., 2019), the
amount of false positive alerts remains challenging. Increasing our
knowledge on potential sources of variability in OCC and determining
how much of the variability can be attributed to specific measurable
factors, might help improve future decision-support tools for udder
health management.

Sensor performance can be described by repeatability (the variation
in the results when the same sample is measured repeatedly) and the
agreement between one method and a reference method (also called
reproducibility) (Dohoo et al., 2009). The agreement between OCC
measurements and SCC measurements from a DHI system has pre-
viously been evaluated in commercial Holstein and Jersey herds
(Sørensen et al., 2016). However, the repeatability of the OCC sensor
has yet to be reported. As variability caused by suboptimal sensor
performance will be incorporated in the total variability in the frequent
OCC measurements, this needs to be evaluated separately in order to
assess how the precision might influence overall variability.

The aim of this study was to increase our knowledge on OCC as an
indicator for disturbances in udder health by assessing the variability in
frequently measured OCC in cows free from clinical mastitis. Our first
objective was to evaluate how much of the variability between fre-
quently measured OCC could be explained by potential explanatory
factors, including subclinical IMI status as determined by bacterial
culture in quarter milk samples (QMS), variability between cows, and
variability between milkings in the same cow, among other factors. To
assess the sensor as a potential source of variability in our data, a
second objective was to evaluate the repeatability of the OCC sensor
used in this study, and the agreement between OCC results and SCC
measured in a DHI laboratory.

2. Material and methods

2.1. Milking-to-milking variability in OCC

2.1.1. Field study and data collection
This study used data collected at the research herd at the Norwegian

University of Life Sciences in a study previously described by Dalen
et al. (2019). Cows in two lactation pens, each holding approximately
50 cows, were investigated over 17 months from January 5th 2016 to
May 22nd 2017. Each lactation pen was equipped with one AMS (De-
Laval VMS, DeLaval International AB, Tumba, Sweden) and an On-line
Cell Counter (DeLaval International AB, Tumba, Sweden) that recorded
cow-level OCC at every milking. Both AMS were adjusted to minimize
the amount of residual milk in the system after milking to reduce the
effect of carryover of milk from the previous cow. First, when a milking
had started, the milk pump was run for a short period to replace the
residual milk in the pump with milk from the current milking. Sec-
ondly, instead of mixing the milk in the receiver jar before sampling,
small pulses of milk were collected during pumping the entire milk
volume. The AMS recorded milking interval, electrical conductivity,
average milk-flow rate, and milk yield at quarter level in every milking.
These data were obtained from the DelPro management system (De-
Laval International AB, Tumba, Sweden). Because OCC is reported at
cow level, a variable describing the average milk-flow rate per milking
(kg/min) at cow level was calculated as the average value for quarters
with non-missing values. Conductivity was also reported per quarter,
and, to convert this into a cow-level indicator of disturbances in udder
health, the difference between the highest and lowest conductivity
among the four quarters (inter-quarter difference) was calculated
(Sheldrake et al., 1983; Nielen et al., 1992). Milk yield per milking (kg)
was reported at cow level. Most cows in the study herd belonged to one
of two genetic groups of Norwegian Red cattle, one selected for high
milk yield and the other for low incidence of clinical mastitis
(Heringstad et al., 2007). Differences in SCC have previously been re-
ported between these two genetic groups (Heringstad et al., 2008).

Aseptic QMS were collected monthly from all lactating cows, and
were frozen after collection and during transport to the laboratory for
microbiological analyses (Hogan et al., 1999). From the cultured bac-
teria, species identification was performed by matrix-assisted laser
desorption ionization-time of flight mass spectrometry (MALDI-TOF
MS) microflex LT (Bruker Corporation, Billerica, USA) (Cheuzeville,
2015). Samples with culture results indicating more than 2 morpholo-
gically different colony types were treated as contaminated and ex-
cluded from further analyses.

2.1.2. IMI status
The culture results from the QMS were used to assign a subclinical

IMI status for each cow throughout the study period. Dalen et al. (2019)
described the methodology in detail. In short, pathogens were divided
into 2 groups; the group of pathogens from which a high cell count
would be expected during an IMI episode was named Pat 1, while
known mastitis pathogens that were not included in Pat 1, were in the
Pat 2 category. Positive culture results were considered to be associated
with an episode of subclinical IMI when fulfilling at least one of the
following three criteria: (1) ≥ 1000 cfu/mL of a single mastitis pa-
thogen were cultured from a single sample in at least 1 quarter, (2) ≥
500 cfu/mL of a mastitis pathogen were cultured from 2 out of 3 con-
secutive milk samples from the same quarter, or (3) ≥ 100 cfu/mL of a
mastitis pathogen were cultured from 3 consecutive milk samples from
the same quarter. These definitions were adapted from Zadoks et al.
(2002). Cows with positive milk cultures that did not meet any of the
above criteria were classified as being transiently colonized (Reksen
et al., 2012). To assign an IMI status to every milking based on the
monthly QMS, we used the mid-point estimation method previously
described by Zadoks et al. (2002), assuming that a shift from one udder
health status to another happened midway between two sampling
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occasions. Furthermore, because the OCC is recorded at the cow level,
the udder health status at quarter level were aggregated into cow-level
diagnoses. When assigning the IMI statuses, we implemented a hier-
archical order in the classification such that a cow could only be as-
signed to the Pat 2 IMI group when there was no simultaneous diagnosis
of a Pat 1 IMI in the same cow during the same period. Based on this set
of criteria, cows were assigned one of the following four udder health
statuses for every milking: No IMI, Pat 1 IMI, Pat 2 IMI, or transient
colonization.

Details on the results from the microbiological analyses performed
on the QMS can be found in Dalen et al. (2019). Briefly, mastitis pa-
thogens were cultured from 1222 out of 5330 QMS, and the pathogens
detected most frequently were Staphylococcus epidermidis (n= 234),
Corynebacterium bovis (n= 225), Staphylococcus chromogens (n= 167),
Staphylococcus aureus (n= 119), and Staphylococcus haemolyticus
(n= 116).

2.1.3. Inclusion and exclusion criteria
A total of 96,524 milkings were performed in the two AMS during

the study period. This included data from 257 full or partial lactations
in 173 cows. Observations fulfilling the following criteria were included
in the analysis: days in milk (DIM) from 5 to 305, milking interval of
4–24 h, and milk yield of ≥ 3.5 kg per milking. Furthermore, ob-
servations with missing or zero OCC values, observations with missing
OCC from the previous milking in the same AMS, and lactations with
data from fewer than 100 days were omitted. All data from lactations
where a case of clinical mastitis had been recorded were excluded from
the analysis.

2.1.4. Statistical analysis
The dataset used in the statistical analyses contained 62,471 milk-

ings from 173 lactations in 129 cows; 85 cows contributed with one
lactation, and 44 cows with two lactations. At lactation level, the dis-
tribution among parities were as follows: 81 first parity, 42 second
parity, and 50 third or higher parities.

We used OCC (in 1000 cells/mL) transformed to a logarithmic scale
(lnOCC) as the outcome variable in linear mixed models (Schepers
et al., 1997; Reksen et al., 2008). The explanatory variables evaluated
are described below and summarized in Table 1. We included the
lnOCC value from the previous milking in the same AMS to adjust for
the carryover effect due to residual milk from the previous cow, as
suggested by Løvendahl and Bjerring (2006). Milk yield per milking
(kg) was included to account for the dilution effect of milk from healthy
quarters in the same cow (Green et al., 2006) and differences in milk
production between cows.

To adjust for possible differences between the two sensors used in
the study, a categorical variable, distinguishing between the two
milking stations, was included in the analysis. The maximum inter-
quarter difference in conductivity per milking was included as an

indicator of pathological processes in one or more quarters (Sheldrake
et al., 1983; Nielen et al., 1992). Previous research has shown that
average milk-flow rate is associated with SCC (Berry et al., 2013), and
the average milk-flow rate per milking was therefore included. Because
both the milk yield and the milk-flow rate per milking are associated
with time since last milking, our models adjusted for this by including
the milking interval in hours (Hogeveen et al., 2001). To account for
changes in SCC related to stage of lactation, DIM and lnDIM were in-
cluded in the model (Reksen et al., 2008). Cows with different parities
differ in SCC level (Laevens et al., 1997), and therefore our model in-
cluded a categorical variable distinguishing between first, second, and
third or later parities. To account for variability in OCC due to genetic
differences between cows, a categorical cow-level variable accounting
for differences between cows according to genetic group (“low mas-
titis”; “high yield”; “unknown”) was included in our model, with “low
mastitis” set as the baseline level (Heringstad et al., 2008). Seasonal
variability was accounted for by including a categorical variable dis-
tinguishing between winter (Dec., Jan., Feb.), spring (Mar., Apr., May),
summer (Jun., Jul., Aug.), and autumn (Sep., Oct., Nov.). Finally, the
IMI status (No IMI, Pat1 IMI, Pat2 IMI, or transient colonization) was
also included in the analysis as a categorical variable.

Due to the lack of independence between repeated OCC measure-
ments within cows and lactations, we used a multi-level modeling ap-
proach. Random intercepts were specified at cow level and lactation
level within cows. The significance of the random intercept terms was
evaluated against a model with a fixed intercept using the likelihood
ratio test. A variance component model was used for calculating the
intraclass correlation coefficient to describe how much of the overall
variability resided at the cow level and at within-cow lactation level. To
model the dependency between the residual error terms within cow and
lactation, the following correlation structures were evaluated: ex-
ponential, compound symmetry, and no within-lactation correlation
between the error terms. The exponential and compound symmetry
correlation structures were specified with the same grouping variables
as the random intercepts, and data was sorted by milking number
within lactations. First-order autocorrelation was also considered, but
was not used due to unequal time intervals between observations. The
model resulting in the lowest Akaike information criterion (AIC) value
was selected. Subsequently, a backwards variable selection procedure
was applied, and statistical significance was considered at P-value<
0.05. The regression modeling was performed in the package ‘nlme’ in
the statistical software R, version 3.6.1 (R Core Team, 2019).

Goodness-of-fit was evaluated by calculating the marginal and
conditional coefficient of determination (Nakagawa and Schielzeth,
2013), which describes the variance explained by the fixed factors only
and the combination of the random and fixed factors, respectively. The
estimates were calculated using the package ‘MuMin’ in the statistical
software R, version 3.6.1 (R Core Team, 2019) based on parameter
estimates from the final model. To evaluate the approximate

Table 1
Summary of explanatory variables evaluated in the study.

Variable Brief descriptiona

Carryover ln-transformed OCC (in 1000 cells/mL) from the previous cow milked in the same AMS.
Milking station Categorical variable distinguishing between the two OCC sensors used in the study.
Milk yield (kg) Adjustment for dilution effect on SCC from healthy quarters and differences in milk production between cows.
Conductivity Difference between highest and lowest conductivity among the four quarters.
Milk flow rate (kg/min) Average milk flow rate from quarters with registered milk flow.
Milking interval (hours) Time since previous milking for the same cow.
Lactation curve A lactation curve described by DIM and the natural logarithm of DIM accounting for changes in OCC related to lactation stage.
Parity Categorical variable for first, second, and third or later lactation.
Lineage Categorical variable distinguishing between different genetic lineages; low mastitis, high milk yield, and unknown.
Seasonal variability Categorical variable; winter, spring, summer, autumn.
IMI status Categorical variable; No IMI, Pat 1 IMI, Pat 2 IMI, transient colonization.

a OCC=on-line somatic cell count; AMS= automatic milking system; SCC= somatic cell count; DIM=days in milk; IMI= intramammary infection; Pat 1
IMI= IMI with mastitis pathogens from which a high somatic cell count would be expected; Pat 2 IMI= IMI with other known mastitis pathogens.
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contribution of the individual variables to the overall fit for the final
model, we used the difference in marginal coefficient of determination
between the final model and models where one term at a time was
omitted. The two parameters of the lactation curve (DIM and lnDIM)
were included simultaneously in all models.

Residual diagnostics were performed by graphical assessment of the
distribution of the residuals calculated for the individual observations
and for the random intercepts, respectively.

To compare the variability in OCC between periods of different IMI
status (no IMI, Pat 1 IMI, Pat 2 IMI, or transient colonization), the
distribution of lnOCC in periods of different IMI statuses was evaluated
graphically using smoothed density curves. In addition, coefficients of
variation were calculated for each of the four IMI statuses, assuming a
log-normal distribution in OCC.

2.2. Agreement between OCC and SCC

To evaluate the agreement between results from the OCC sensor
used in the current study and SCC measurements from a laboratory
accredited by the International Committee for Animal Recording
(ICAR), additional composite milk samples were collected at 16 occa-
sions over 5 weeks for a subset of milkings in one of the two milking
stations. The 64 cows present in one of the two lactation pens were
sampled multiple times. The samples were collected with an automated
milk sampler (DeLaval, Tumba, Sweden), conserved with bronopol (2-
bromo-2-nitropropane-1,3-diol) and shipped refrigerated to the ICAR-
accredited laboratory used for routine milk analyses by the Norwegian
Dairy Herd Recording System. The samples were analyzed in a Bentley
Somacount FCM (Bentley Instruments Inc., Chaska, MN). The dataset
included 1661 OCC values with corresponding SCC measurements from
64 cows.

Both SCC and OCC values were transformed to the natural loga-
rithmic scale. Because neither of the methods could be considered a
gold standard due to differences in sampling equipment, the con-
cordance correlation coefficient (CCC) was chosen for the statistical
analysis. A version of CCC modified to account for repeated measure-
ments within cow was used. The analysis was performed in the package
‘cccrm’ in the statistical software R, version 3.6.1 (R Core Team, 2019).
In addition, a scatterplot with a superimposed 45 ° line (representing
perfect agreement) was used for graphical assessment of the data.

2.3. Repeatability

To evaluate the repeatability of the OCC sensors, a sample of bulk
tank milk (5 L) was collected. The milk was mixed gently, but thor-
oughly, to ensure an even distribution of the milk constituents, before
drawing a number of consecutive 5mL samples in syringes. These
samples were subsequently injected directly in the OCC apparatus,
which was operated in manual mode. The process was repeated as
many times as possible in the available time slot (n= 62) for both OCC
sensors used in the study. The mean OCC value, standard deviation and
coefficient of variation (CV) were calculated for both sensors.

3. Results

3.1. Milking-to-milking variability in OCC

3.1.1. Descriptive results
The arithmetic and geometric mean OCC value in the final dataset

was 96,629 cells/mL and 35,279 cells/mL, respectively. The lowest
OCC value was 1000 cells/mL (detection limit) and the highest was
7,474,000 cells/mL.

The intraclass correlation coefficient calculated from the variance
component model was 0.155 at the cow level, and 0.536 at the lactation
level. Hence, in our data, 15.5% of the variability in lnOCC could be
attributed to differences between cows, and 53.6% to differences be-
tween lactations (within cows). Consequently, 46.4% of the variability
could be attributed to milking-to-milking differences within lactation.

Smoothed density curves showing the distribution of lnOCC values
in periods of no IMI, Pat 1 IMI, Pat 2 IMI and transient colonization are
presented in Fig. 1. The no IMI-group has the highest density between
lnOCC of 2 and 3 (7400 and 20,000 cells/mL, respectively), whereas the
periods of Pat 1 IMI and Pat 2 IMI had their highest densities at an
lnOCC value of around 5 and 4, respectively (148,400 cells/mL and
54,600 cells/mL). Periods classified as transient colonization showed a
similar distribution as periods of No IMI. There was, however, a large
overlap between the lnOCC values between the groups. Supplementing
the graphical assessment in Fig. 1, the coefficients of variation for OCC
in periods of No IMI, Pat 1 IMI, Pat 2 IMI, and transient colonization
were 1.67, 2.13, 1.70, and 1.89, respectively.

3.1.2. Multivariable model
The multivariable linear mixed model, using an exponential corre-

lation structure, was selected based on the lowest AIC. The likelihood
ratio test showed that the random intercept terms of “cow” and “lac-
tation” within cow contributed significantly to a better model fit
(P < 0.001). The estimates from the final model are presented in
Table 2. The model showed that, compared with culture-negative per-
iods, the lnOCC increased on average by 0.43 units in periods of sub-
clinical Pat 1 IMI, and by 0.29 units in periods of subclinical Pat 2 IMI.
At an SCC of 100,000 cells/mL this corresponds to an increase of 54,000
and 33,000 cells, respectively. The regression coefficients for DIM and
lnDIM describe a lactation curve where lnOCC decreases rapidly in
early lactation, reaches a minimum around 70 DIM, and slowly in-
creases towards the initial level during the rest of the 305-d lactation.
Cows belonging to the genetic group selected for high milk yield had
higher lnOCC values than cows in the low mastitis group. The re-
lationship between lnOCC and milk yield was negative; hence higher
milk yield was associated with lower lnOCC. The carryover effect
showed a positive relationship between the lnOCC in a given milking
and the OCC measured in the residual milk from the previous cow
milked in the same AMS. No difference was found between lnOCC in the
two milking stations, and the variable distinguishing between the two
milking stations was omitted from the final model. Only minor changes
in the estimates for the other variables were seen after this omission.

Random effect estimates for the final model, reported as standard
deviations (95% CI), were 0.41 (0.31 – 0.53) for cow, and 0.72 (0.64 –

Fig. 1. Smoothed density plot showing the distribution of ln-transformed On-
line Cell Count (OCC) values (in 1000 cells/mL) in periods of 1) no in-
tramammary infection (No IMI), 2) IMI with known mastitis pathogens from
which a high somatic cell count would be expected (Pat 1 IMI), IMI with other
known mastitis pathogens (Pat 2 IMI), and 3) Transient colonization.

H. Nørstebø, et al. Preventive Veterinary Medicine 172 (2019) 104786

4



0.80) for lactation within cow. Within group standard error (95% CI)
was 0.87 (0.86 – 0.88). The correlation structure parameter ρ2 (95% CI)
was 1.81 (1.76–1.85).

The marginal and conditional coefficients of determination showed
that the fixed effects in the final model described 15.0% of the varia-
bility in lnOCC, while the fixed and random effects together described
55.2% of the milking-to-milking variability of lnOCC in clinically
healthy udders. The approximate contributions of the individual vari-
ables to the overall marginal coefficient of determination are reported
in Table 2.

3.2. Agreement between OCC and SCC

The CCC between the results from the OCC and the DHI laboratory,
estimated on ln-transformed data, was 0.82 (95% CI: 0.78 - 0.85). The
CCC has a maximum value of 1, representing the situation of perfect
agreement between the two methods.

The agreement between OCC and SCC is displayed in Fig. 2. Al-
though most observations was clustered around the superimposed line
of perfect agreement, it appears that the agreement increases by in-
creasing lnSCC values.

3.3. Repeatability

Results from the repeatability study showed nearly identical results
for the two OCC sensors used in the current study. The 62 analyses
performed on OCC 1 resulted in a mean OCC value (in 1000 cells/mL)
of 112, a standard deviation of 12.8, and consequently a CV of 0.11.
The 62 analyses performed on OCC 2 resulted in a mean OCC value
(1000 cells/mL) of 117.9, a standard deviation of 12.7, also resulting in
a CV of 0.11.

4. Discussion

To the authors’ knowledge, this is the first presentation of the basic
characteristics of frequently measured OCC relative to known IMI
status. Only lactations with no records of clinical mastitis were included
in the analyses. Our findings contribute to a better understanding of the
normal variability in OCC; this is important for further improving the
use of OCC for research, for udder health management in AMS herds,
and for breeding programs.

SCC data are often used in research studies investigating how dif-
ferent aspects of dairy production (e.g., housing, milking routines,
treatment protocols, etc.) might affect udder health (Bielfeldt et al.,
2004; Erdem et al., 2007; Bhutto et al., 2010). The underlying as-
sumption is that a risk factor affects udder health, which, in turn, results
in changes in SCC. A major strength of our study is the close monitoring
of IMI status by monthly QMS bacterial cultures together with detailed
data recorded by the OCC and AMS at every milking. This enables us to
evaluate factors of importance for lnOCC and to assess the variability in
lnOCC obtained at every milking in clinically healthy cows. An im-
portant finding is that inclusion of subclinical IMI status in our model
increased the degree of explanation by only 2.9 percentage points, from
12.1% to 15.0%. This is, however, a conservative estimate because the
effect of IMI on OCC is adjusted by other variables included in the
model. The IMI status used in this study describes persistent infections
with known udder pathogens, which are recognized to be the most
important cause of elevated SCC (IDF, 2013). It is therefore relevant to
discuss some possible explanations why our study resulted in a rela-
tively low degree of explanation attributed to udder health status:
Firstly, this study focused on clinically healthy udders, and lactations
with clinical mastitis were excluded from the analysis. By doing so, the
range of IMI statuses was restricted to subclinical mastitis, and it is
likely that including cases of clinical mastitis would have increased the
degree of explanation in our model. Secondly, quarter milk samples

Table 2
Parameter estimates from the final multivariable model describing ln-trans-
formed on-line somatic cell count measured by DeLaval on-line cell counter in a
Norwegian Red dairy herd. The model included random intercepts at cow- and
lactation-level (within cow), and an exponential correlation structure.

Variablea Coefficient Standard
error

P-value R-squaredb

(%)

Lactation curve: 1.3
Days in milk (DIM) 0.005 0.0003 <0.001
lnDIM −0.358 0.023 < 0.001
Yield at cow level in the
current milking (kg)

−0.038 0.002 < 0.001 1.0

Carryover 0.141 0.002 < 0.001 2.4

Parity:
First (reference) – – – –
Second 0.303 0.148 0.047
Third or later 0.463 0.156 0.005

Udder health status: 2.9
No IMI (reference) – – –
Pat 1 IMI 0.434 0.031 < 0.001
Pat 2 IMI 0.278 0.024 < 0.001
Transient colonization 0.081 0.024 < 0.001
Conductivity (inter-
quarter difference),
mSv

0.381 0.011 < 0.001 1.4

Genetic lineage: 2.7
Low mastitis incidence
(reference)

– – –

High milk yield 0.371 0.137 0.008
Unknown 0.372 0.374 0.322

Milking interval (hours) −0.033 0.002 < 0.001 −0.5
Average milk flow rate
(kg/min)

0.480 0.052 < 0.001 0.8

Season: 0.1
Winter (reference) – – –
Spring −0.051 0.017 0.003
Summer −0.117 0.029 < 0.001
Autumn −0.048 0.024 0.047
Intercept 3.787 0.143 < 0.001

a Carryover= lnOCC from the previous cow milked in the same AMS;
IMI= intramammary infection; Pat 1 IMI= IMI with mastitis pathogens from
which a high somatic cell count would be expected; Pat 2 IMI= IMI with other
known mastitis pathogens.

b R-squared= the change in marginal coefficient of determination
(Nakagawa and Schielzeth, 2013) when a variable was added to a model al-
ready containing all other variables in the final model.

Fig. 2. On-line Cell Count (OCC) results plotted against Somatic Cell Count
(SCC) measured in a DHI laboratory. Scatterplot including 1661 observations
with corresponding OCC and SCC results with a superimposed 45 ° line re-
presenting the situation of perfect agreement between the two methods.
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were collected monthly. It is possible that a higher sampling frequency
would also have increased the degree of explanation between the sub-
clinical mastitis cases as defined in our study and the OCC values ob-
tained at every milking.

As for all biological variables, some degree of normal or physiolo-
gical variation should be expected in SCC. Our results obtained from a
herd of Norwegian Red cows show that the normal variation is likely to
be much higher than can be explained through close monitoring of
clinically healthy cows in sensor systems commonly used in AMS. This
is underlined by the graphical assessment of the distribution of lnOCC,
which shows a large extent of overlap in lnOCC values between periods
without IMI and periods with either IMI or transient colonization.
Nevertheless, the use of SCC in udder health management has con-
tributed to substantial improvements in dairy production by identifying
cows in need of closer attention, e.g., when implementing selective dry
cow therapy (Østerås et al., 1999; Zecconi et al., 2018a; Lipkens et al.,
2019).

In one of the few reports on variability in SCC, Schepers et al. (1997)
estimated variance components for factors affecting SCC at quarter
level from data recorded at approximately monthly intervals and re-
ported that their model explained 50.2% of the variation in ln-trans-
formed SCC. The model of Schepers et al. (1997) included herd and cow
within herd, in addition to season, bacterial diagnoses, stage of lacta-
tion, parity, and clinical mastitis. In their data from seven herds, cow
within herd explained 11% of the overall variability, while herd ex-
plained only 0.6%. In contrast to Schepers et al. (1997), the present
study used OCC data at cow level, and data were recorded at every
milking. It is possible that this difference has introduced additional
variability to our data. In addition to the monthly QMS, our model used
conductivity data measured at every milking as an indicator of changes
in udder health status; this is a possible explanation for reaching a si-
milar overall degree of explanation as that of Schepers et al. (1997).

Mastitis has been included in the breeding program for the
Norwegian Red breed since 1978, resulting in genetic improvement
(Heringstad and Østerås, 2013). More recently, geometric mean SCC
over 305-day lactations have been included in the genetic evaluation
for Norwegian Red (Interbull, 2012). SCC have also been evaluated as
an alternative trait in the absence of reliable data on clinical mastitis,
and a genetic correlation of 0.7 between these two traits shows not only
that SCC is a relevant indicator for clinical mastitis, but also that SCC
and clinical mastitis are genetically different traits (Ødegård et al.,
2003). In our study, clinically healthy cows of the genetic group for
high milk yield had higher lnOCC values than cows bred for low mas-
titis risk, also after adjustment for differences in milk yield. Hence, the
effect of genetic lineage on lnOCC in our final models is likely to be a
true effect of genetic differences in mastitis resistance, rather than a
correlated response of differences in production level. This is in
agreement with previous research results in the same breed (Heringstad
et al., 2008).

The AMS used in our study were adjusted to reduce the amount of
residual milk in the system after each milking (carryover effect).
Nevertheless, our statistical adjustment for the carryover effect was
significant in the multivariable models, and increased the marginal
coefficient of determination by 2.4%. Løvendahl and Bjerring (2006)
and Løvendal et al. (2010) reported up to 20% carryover in various
types of AMS, showing that the impact of carryover, and the need for
adjustment, is pronounced in commercial herds for which the sampling
equipment has not been optimized. As pointed out by Sørensen et al.
(2016), correction of carryover effect is also relevant for DHI samples
collected in AMS. In this case, the carryover effect will not only affect
the SCC measurement, but also the other milk constituents measured in
the same sample. These results show that further improvements in the
sampling equipment are necessary. Furthermore, by obtaining data on
the sampling order, it might be possible for DHI systems to adjust for
the carryover effect and provide more precise estimates for SCC and
other milk constituents.

With the high degree of normal variability in OCC and the large
extent of overlap in OCC in periods with and without IMI, it seems
likely that identification of new biomarkers or combinations of bio-
markers that are better at distinguishing pathological from physiolo-
gical processes in the udder would be of benefit to the dairy industry.
The difference in electrical conductivity between the quarter with the
highest and lowest value was significantly related to OCC, which is in
agreement with previous research (Nielen et al., 1992); a higher dif-
ference was associated with increasing OCC. Like SCC, electrical con-
ductivity is used as an indicator of ongoing inflammatory processes in
the udder. However, conductivity has been shown to have poor diag-
nostic test properties for the detection of subclinical mastitis (Norberg
et al., 2004). Although the combination of electrical conductivity and
SCC has been found to improve detection of clinical mastitis (Kamphuis
et al., 2008), it is not known whether this is also the case for subclinical
mastitis. A number of alternative biomarkers, such as L-lactate dehy-
drogenase, N-acetyl-β-D-glucosaminidase activity, and milk amyloid A,
have been evaluated for the detection of clinical mastitis (Chagunda
et al., 2006; Gerardi et al., 2009). The use of these on commercial farms
is limited, and only L-lactate dehydrogenase has been implemented in
on-farm systems (DeLaval Herd Navigator; DeLaval, Tumba, Sweden).
Furthermore, the concentration of these biomarkers in milk is related to
a compromised blood-milk barrier, and they are therefore less suitable
for detection of subclinical mastitis. Methods differentiating between
cell types in milk have recently been developed for the use in DHI la-
boratories (Damm et al., 2017), but it is still unclear how much useful
information this adds over traditional SCC measurements (Zecconi
et al., 2018b). Another aspect is the dilution effect of milk from healthy
quarters, which represents an important limitation of using composite
milk samples for detection of changes in milk arising in one quarter.
Forsbäck et al. (2010) studied the variability in milk constituents at
quarter level and argued that repeated measurements at quarter level
provides more accurate information on udder health than cow-level
data.

Sørensen et al. (2016) evaluated the agreement between OCC results
and SCC results from a DHI laboratory in seven commercial herds, and
reported generally good agreement between the two methods (mean
R2=0.86), although their results differed between herds and breeds. In
line with Sørensen et al. (2016) the results from the current study in-
dicates that the agreement between the two methods was reasonably
good (CCC=0.82) also in this herd of Norwegian red cows. However,
the graphical assessment revealed that the results differed substantially
between methods in some cases, and that this trend was more pro-
nounced at low lnSCC values. This needs to be taken into consideration
when operating at low thresholds for defining subclinical mastitis.

The repeatability of the OCC sensor, as evaluated by coefficient of
variation, was identical for the two devices used in our study
(CV=0.11) at an OCC-level comparable to threshold values for the
detection of IMI (e.g. 132.000 cells/mL at Sp= 90% for the detection of
Pat 1 IMI; Dalen et al., 2019). For comparison, the manufacturer of the
Bentley Somacount, which was used at the DHI lab, reports a CV≤ 0.06
at 100,000 cells/mL (Bentley Instruments Inc., Chaska, MN). However,
the present study was performed by manually injecting the milk sample
into the apparatus, hence any additional variability caused by the
sampling method could not be quantified. It should also be noted that
the current study evaluated the repeatability at one OCC level only, and
that data for other OCC levels is needed before concluding on the re-
peatability for the whole range of possible OCC values.

Milking interval was included in the final model and showed a
significant relationship with the outcome variable. Nevertheless, with
the chosen method for evaluating the contribution of the individual
variables to the overall degree of explanation, milking interval appar-
ently had a negative impact. This can be interpreted as an artifact
arising from the combination of milking interval as a fixed effect and
the correlation structure included in our model to account for the de-
pendency between residual error terms within cow and lactation.
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Because milking interval can be considered a measure of the temporal
proximity between two observations, including this variable in the
model will affect the correlation structure parameters. This way, when
removing milking interval from the model, a larger proportion of the
variance was accounted for by the random effects, resulting in the si-
tuation where omitting milking interval as a fixed effect apparently led
to a higher marginal degree of explanation. In lack of a more sophis-
ticated method, we acknowledge that the results should be interpreted
as approximate contributions to the overall model fit.

We recognize that our study has some limitations that should be
considered when interpreting the results. The data were obtained from
a single Norwegian Red herd, and although the herd, including man-
agement practices, housing, milking procedure etc., is comparable to
herds on commercial Norwegian farms of the same size, extrapolation
to other herds and other breeds should be done with caution.

5. Conclusion

This study identified several factors associated with fluctuations in
frequently measured OCC values in clinically healthy cows in an AMS
herd. However, these factors only explained a small proportion of the
overall variability in the data, and a large degree of the overall varia-
bility remain unexplained despite close monitoring of the IMI status by
monthly quarter milk samples. The unexplained variability likely re-
presents physiological fluctuations in OCC, which is important to con-
sider when using frequently measured OCC in research or for herd
management purposes.
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