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Implementing an Extended Kalman Filter for estimating

nutrient composition in a sequential batch MBBR pilot

plant
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and Harsha Ratnaweera
ABSTRACT
Online monitoring of water quality parameters can provide better control over various operations in

wastewater treatment plants. However, a lack of physical online sensors, the high price of the available

online water-quality analyzers, and the need for regular maintenance and calibration prevent frequent

use of online monitoring. Soft-sensors are viable alternatives, with advantages in terms of price and

flexibility in operation. As an example, this work presents the development, tuning, implementation,

and validation of an Extended Kalman Filter (EKF) on a grey-box model to estimate the concentration of

volatile fatty acids (VFA), soluble phosphates (PO4-P), ammonia nitrogen (NH4-N) and nitrate nitrogen

(NO3-N) using simple and inexpensive sensors such as pH and dissolved oxygen (DO). The EKF is

implemented in a sequential batch moving bed biofilm reactor (MBBR) pilot scale unit used for

biological phosphorus removal from municipal wastewater. The grey-box model, used for soft sensing,

was constructed by fitting the kinetic data from the pilot plant to a reduced order version of ASM2d

model. The EKF is successfully validated against the standard laboratory measurements, which

confirms its ability to estimate various states during the continuous operation of the pilot plant.
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INTRODUCTION
There has been a rapid increase in the implementation of
advanced control strategies in process industries, including
water resource recovery facilities (WRRF). These control

strategies are essential for the optimal operation of process
plants (O’Brien et al. ). Advanced control strategies
such as model predictive control (MPC) would require
continuous, real-time information of various wastewater

compositions (Liukkonen et al. ).
A number of online instruments for measuring nutrient

composition are available in the market today. However,

their use is often limited to large-scale urban treatment
facilities (Häck & Wiese ). Despite considerable devel-
opments in online instrumentation in the past decade,
physical sensors for real-time measurement of some of the

wastewater quality parameters are either extremely expens-

ive or do not exist. Moreover, sensors available in today’s

market are vulnerable to fouling, drift or other inaccuracies

resulting in unreliable measurement (Olsson & Jeppsson

). A lot of effort is put into fault detecting systems

(either manual or real-time) to remove errors and correct

sensors readings. Most online sensors (both ion selective

and optical) require a lot of attention in terms of data quality

checks, through regular inspection and adjustment (Olsson

). On the other hand, composition analyzers provide

an accurate measurement of parameters such as ammonia,

nitrate, chemical oxygen demand (COD), and phosphates,

but are extremely expensive. Due to these problems, most

WRRF depend on standardized laboratory measurements

rather than online monitoring. However, parameters

such as pH, oxidation-reduction potential (ORP), dissolved
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Figure 1 | Pilot plant layout and the data acquisition system.
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oxygen (DO) and conductivity can be measured with rela-

tive ease and higher accuracy. Therefore, these sensors,
which are often inexpensive, are installed in almost all treat-
ment plants including small to medium WRRF.

Soft sensors are an alternative to expensive composition
analyzers and unreliable in-situ sensors (Thürlimann et al.
). Soft sensors, also denoted as state estimators, virtual
sensors, etc., use system knowledge enclosed in the process

model together with available measurements. These soft-
ware sensors can be used not only as alternative to
expensive analyzers but also as a support system for the

existing composition analyzers by acting as a reliable
backup in case of an instrument malfunction (Haimi et al.
). A detailed compilation of statistical models such as

artificial neural networks (ANN), partial least-square
regression (PLSR) or auto-regressive models (ARX) used
for real-time estimation is provided in Haimi et al. ().
Mechanistic models describing biological processes such as

activated sludge model (ASM) can also be used with state
estimators such as Extended Kalman Filter (EKF) or
Moving Horizon Estimator (MHE) for developing soft sen-

sors (Busch et al. ). However, most of these state
estimators are tested and validated on the BSM 1 simulator.
We have not found reports of implementation of state estima-

tors with mechanistic models for soft sensing in a real system.
The aim of this work is to develop a dynamic state-

estimator to provide real-time estimations of PO4-P, volatile

fatty acids (VFA), NH4-N, and NO3-N in a sequential batch
reactor, by using data obtained from online sensors such as
pH and DO.
MATERIALS AND METHODS

Pilot plant setup

The sequential batch moving bed Bio-P (SB-MBBR Bio-P)

pilot plant, located in the wastewater laboratory at Norwe-
gian University of Science and Technology (NTNU) was
used to test and validate the soft-sensor algorithm. Figure 1

depicts the pilot plant and the data acquisition system. The
sequential batch reactor (SBR) contains polyurethane car-
riers (with 60% filling) which are exposed to raw
wastewater to ensure biofilm growth and attachment to the

carriers (see Supplementary Figure 1, available with the
online version of this paper). The reactor has a total working
volume of 13 L. It operates with a fixed cycle time of 8 h and

a temperature of 16± 0.5 �C. The carrier media have a cylind-
rical shape (10 mm in diameter and length) with a cross
om https://iwaponline.com/wst/article-pdf/80/2/317/604460/wst080020317.pdf
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inside the cylinder and longitudinal fins outside, providing

a large surface area for biofilm growth (Ødegaard et al.
). The SBR is fed with wastewater from a storage tank,
which receives steady supply of raw wastewater from a

nearby municipal sewer. The storage tank has a total
volume of 3.5 m3 and a residence time of 24 h, which ensures
an uninterrupted supply of wastewater while maintaining suf-

ficient variations in influent wastewater quality.
After ensuring the attachment of active biofilm to the

carrier, the reactor operates in an alternating anaerobic–
aerobic cyclic process with a hydraulic retention time of

8 h (3 h anaerobic, 5 h aerobic, 3 min filling and 3 min emp-
tying). A sieve at the outlet line retains the carriers in the
SBR, allowing just the treated water and detached biomass

to exit the reactor. The reactor operates as a biofilm process
and all active biomass is attached to the carrier media.
Therefore, the SBR can be operated with a 100% volume

exchange ratio, resulting in a cycle time equal to the hydrau-
lic retention time. The system is mechanically agitated using
a custom-made mixer for the entire cycle period. During the

aerobic phase, air is supplied with a constant flow rate of
4.5 L min�1. The algorithm to execute the cycle time and
the operational sequence is stored in the Supervisory Con-
trol and Data Acquisition (SCADA) system of the plant.

During the anaerobic-stage, the active biomass (primarily
PAOs) utilizes the acetate from raw wastewater and converts
it into polyhydroxy-alkanoates (XPHA). As a result, PO4-P

is released due to Poly-P degradation, thus increasing its
concentration in bulk solution. In anaerobic conditions,



Table 1 | State variables describing the model

States Description Unit

SF Readily biodegradable substrate mg COD L�1

SA Fermentation products
(Volatile fatty acids/acetate)

mg COD L�1

XPP Stored poly-phosphate of PAO mg P L�1

XPHA Organic storage products of PAO mg COD L�1

SNH Ammonium mg N L�1

SNO Nitrate mg N L�1

SPO Phosphate mg P L�1

SO Dissolved oxygen mg O2 L
�1
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the readily biodegradable organic matter (BOD) is also con-

verted to VFA by fermentation, and the PAOs utilize it for
further PO4-P release. When aeration begins, the PAOs uti-
lize the stored XPHA as an energy source to grow and take

up PO4-P from the water phase and synthesize new
storage products within the biomass (XPP). The biomass
also contains significant proportions of nitrifying organisms,
which convert NH4-N to NO3-N. The biomass also

contains heterotrophs, which consume BOD during the
aerobic stage.

When the biofilm layer on the carriers reach a steady

thickness, the system exhibits more than 80% PO4-P
removal. In this period, a constant amount of PO4-P is
added at the beginning of every cycle to avoid low influent

PO4-P concentration due to dilution of wastewater by
storm-water (9± 3 mg P L�1). However, the soluble COD
(127± 30 mg COD L�1), NH4-N (28± 16 mg N L�1) is not
adjusted.

After the biomass activity shows steady conditions, kin-
etic tests are conducted in the reactor. Samples are collected
for the entire cycle every 30 min and immediately filtered

through 0.45 μm filters to determine the concentration of
soluble COD (sCOD), orthophosphate (PO4-P), ammonium
nitrogen (NH4-N) and nitrate nitrogen (NO3-N). All these

compositions are measured using Dr. Lange cuvette and
HACH LANGE GmbH (DR 1900, China) spectropho-
tometer. All analyses are performed immediately during

the cycle test. The DO and pH sensor installed in the pilot
plant are connected to the plants SCADA system. The
data from the online sensors are logged every minute. The
data received from the laboratory analyses and the online

sensors are used to calibrate the model.

Mathematical model

A number of mechanistic models explaining the process of
removal of phosphorus, nitrogen, and carbon in sequential

batch reactors are available in the literature. However,
using a complex model such as ASM2d (Henze et al. )
for estimation and control would be challenging, especially

when the number of measurements available in the reactors
are limited (Jeppsson & Olsson ). The usual approach is
to reduce the number of state variables by either lumping
two or more states or assuming some of the states with rela-

tively slower dynamics as constants (Steffens et al. ).
We find similar model-reduction strategies implemented
on ASM1 model, for use in state estimation and control

(Julien et al. ; Gómez-Quintero et al. ; García-
Usach et al. ).
s://iwaponline.com/wst/article-pdf/80/2/317/604460/wst080020317.pdf
Model reduction strategy

The original ASM2d model (Henze et al. ) consists of 19
states and 21 processes. It describes the growth and decay of

three types of biomass; the phosphate accumulating organ-
isms (XPAO), autotrophs (XAUT) and heterotrophs (XH),
followed by the subsequent uptake and release of various
substrates and storage products in the biomass. The follow-

ing assumptions, similar to the simplification strategies
presented in Zhang et al. (), Cadet () and Li et al.
() were made to reduce the model.

• The effect of particulate hydrolysis reactions appears to
be insignificant in the process and has been ignored.

• The non-reacting states in the model: particulate inert
(XI), soluble inert (SI) and alkalinity (SALK) are
eliminated.

• Since there is no anoxic condition in the SBR’s oper-
ational sequence, all kinetics pertaining to denitrifiers
in the biomass are removed. However, the denitrification
reactions by XPAO has been retained.

• The effect of growth and decay kinetics of all three bio-
mass types can be excluded. Hence, the model only
considers the kinetics of substrate degradation processes.

This reduced order model explains the dynamics of
storage and consumption of soluble substrates such as

readily biodegradable substrate (SF), volatile fatty acids
(SA), phosphates (SPO), ammonia (SNH) and nitrates (SNO).
The model also includes the kinetics of storage products

such as polyhydroxy-alkanoates (XPHA) and polyphosphates
(XPP). The description of substrates and storage products
used in the model is presented in Table 1. The list of pro-

cesses included in the reduced order ASM2d model is
presented in Table 2.
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The following modifications are implemented to reduce

the number of parameters in the process rate kinetics.

• All the biological processes involved in the aerobic

uptake of (SF) are written as a Monod equation with a
rate constant r1 and saturation coefficients KS and KO.

• The maximum fermentation rate qfe is lumped with XH

and represented as a single term r2.

• The rate constant for XPHA storage qPHA is lumped with
XPAO to form a term r3.

• The rate constant for XPP storage qPP is lumped with

XPAO to represent a single term r4.

• The maximum growth rate of autotrophs μAUT and YA is
lumped with XAUT to represent a single term r5. This rate
equation assigned for aerobic growth of autotroph is used
to explain the kinetics of ammonia nitrification.

• All the reactions pertaining to denitrification by PAO are

lumped with XPAO to represent a single term r6.

• The Monod saturation coefficients associated with XPHA

(KPHA) and XPP (KPP) and (KMAX) was lumped with
XPAO to obtain the terms K’

PP, K’
PHA and K’

MAX,

respectively.

After considering the aforementioned modifications,

the rate kinetics can be transformed to the equations men-
tioned in Table 2. All the kinetic parameters mentioned in
this model will be estimated in the model calibration

stage.
State-space equations

The state-space equation denotes the rate of changes in the
state variables. Equation (1) presents the model equation
in the continuous-time state space form; where x ¼
[SF SA XPP XPHA SNH SNO SPO SO] are the state variables
and u¼KLa is the manipulated variable. The process rate
equations fc are presented as a Petersen matrix in Table 2.

_x ¼ fc(x, u) (1)

The reduced order ASM2d model has to be calibrated

before use in a specific case (García-Usach et al. ).
The data obtained from the kinetic studies conducted in
the pilot plant are used to estimate the stoichiometric
and kinetic parameters of the model. The optimization

procedure involving minimization of a quadratic error
function (Marsili-Libelli et al. ; Nair et al. ) is
used to fit the experimental data to the model. The optim-

ization problem statement is presented in Equations
(2)–(4).
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min
p

fOBJ(p) (2)

fobj(p) ¼
XNi

i¼1

(yi �mi(p))
2 (3)

lb � p � ub (4)

‘p’ is a vector consisting of the model parameters that
are to be estimated; the upper and lower bounds of the
parameter vector is represented as ub and lb, respectively.
The objective function fOBJ is defined as the least-
square error between the experimental values yi¼ [sCOD
NH4-N NO3-N PO4-P] and its corresponding model pre-
dicted values mi(p) ¼ [(SA þ SF) SNH SNO SPO]. The half-

saturation constants and stoichiometric parameters were
constrained within �100% and þ150% of the original
ASM2d model parameters, but a wider constraints range is

provided to the rate constants. The initial concentrations
of SF and XPP are also taken as parameters, which would
be estimated by the optimizer. The non-linear optimization

solver function in MATLAB (fmincon) is used to solve the
optimization problem and obtain the parameters.

Observation equations

The observation equation expresses the online measurements
as functions of the state variables (see Supplementary
Table 1, available with the online version of this paper).

The work presented in Serralta et al. () and Aguado
et al. () demonstrates the possibility of expressing the
pH as a function of various ionic species available in the

wastewater treatment system (SA, SPO, SNH, SNO). A generic
equation, which contains a weighted combination of the
linear terms, squared terms, and binary interaction terms, is
used as the preliminary model structure. The mathematical

form of the equation is presented in Equations (5) and (6).
A similar model structure can be found in dosing control pre-
dictors, and are found to fit a wide range of data (Ratnaweera

& Fettig ). The regression learner app in MATLAB is used
to establish a correlation between the ionic species
(θ ¼ [SA SNH SNO SPO]) and the data received from pH sen-

sors and obtain the coefficients αi βi and γi,j. The second
measurement, dissolved oxygen is equivalent to the state SO
in the model. The measurement function h(x) can be

expressed as Equation (7).

pHMODEL ¼ α0þ
Xn
i¼1

αiθi þ
Xn
i¼1

βiθ
2
i þ

Xn�1

i¼1

Xn
j¼iþ1

γi,j θi θj (5)

θ¼ [SA SNH SNO SPO] (6)

h(x)¼ pHMODEL(SA, SNH, SNO, SPO)
SO

� �
(7)
s://iwaponline.com/wst/article-pdf/80/2/317/604460/wst080020317.pdf
State estimator

The Kalman Filter is an optimal state estimator for linear
systems with Gaussian noise. However, a number of
versions of original Kalman Filter algorithm such as

Unscented Kalman Filter (UKF), and particle filters (PF)
can be used to estimate the states of a non-linear system.
In this case, the Extended Kalman Filter is used as a state

estimator for the SBR. The equations of the EKF are
given in Equations (8)–(15). The equations were written
in the same order in which they were implemented in
the PLC.

x�k ¼ xþk�1 þ Tsfc(xþk�1, uk�1) (8)

yk ¼ h(x�k ) (9)

P�
k ¼ Fk�1P

þ
k�1F

T
k�1 þQk�1 (10)

Kk ¼ P�
kH

T
k (HkP

�
kH

T
k þ Rk�1)

�1 (11)

xþk ¼ x�k þ Kk(zk � yk) (12)

Pþ
k ¼ (I � KkHk) P

�
k (13)

Fk ¼ I þ Ts
@fc
@x

����
xþ
k
,uk

(14)

Hk ¼ @h
@x

����
x�
k
,uk

(15)

The discrete form of state-space equation presented in
Equation (8) is derived from the continuous-time system
function fc (in Equation (1)) by an explicit Euler discretiza-

tion method with a constant sampling time of TS. fc and h
are the nonlinear state transition and measurement func-
tions. In the equations above, xk is the state variable at

time k, zk is the measurement, Q and R are the covariance
matrices of the process and measurement noise, respect-
ively. F is the state transition matrix, and H is the

measurement matrix. I is the identity matrix, x�k is the a
priori estimate of the state, xþk the a posteriori estimate of
the state, Kk the Kalman gain, P�

k the covariance of a
priori estimation error, and Pþ

k the covariance matrix of

the a posteriori estimation error.

Implementing the EKF

Before implementing the estimator to the pilot plant a series
of simulations are conducted to identify the appropriate

tuning parameters that would result in a reasonably good
correction of the states by the EKF. For this purpose, the
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mathematical model and the EKF equation described in the

previous section were implemented in MATLAB. The model
equations are written symbolically and the Jacobian func-
tion in MATLAB’s symbolic toolbox is used to linearize

the process model and obtain the F and H matrix at every
time step. The implementation schematic is presented in
Figure 2. The block mentioned as ‘simulator’ consists of
the mathematical model and ‘plant’ represents the real

pilot plant. The EKF equations are written as a separate sec-
tion in MATLAB, which can accept the measurement zk and
the control variable uk from either a simulator or from the

plant’s SCADA system. This shift from simulator based test-
ing to a pilot plant implementation is done with the switch
S1 and S2, as indicated in Figure 2. During the tuning of

the EKF parameters, the simulated state vector, xk generated
Figure 2 | Implementation schematic of EKF code in simulator and real plant.

om https://iwaponline.com/wst/article-pdf/80/2/317/604460/wst080020317.pdf
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by the model is compared to the estimated state xþk predicted

by the EKF to test the estimator’s ability to provide a reliable
estimation.

The SBR pilot plant SCADA provides an Open Platform

Communication (OPC) server, which enables communi-
cation with other devices through the standard OPC
protocol. A communication layer is written in MATLAB
using its OPC toolbox to pull real-time data from the OPC

server into the MATLAB workspace. This method enables
scripts written in MATLAB to be used directly in any indus-
trial PLC without the hassle of re-writing the code in a

different programming language. While implementing the
EKF in the pilot plant, a few overriding constraints are
included in the estimator algorithm to prevent EKF from

overshooting during the emptying and filling stages of the
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SBR. The states and the auto-covariance matrix are reinitia-

lized at the beginning of every cycle and the estimator is
kept on hold until the anaerobic conditions begin (DO¼ 0)
and the pH sensor value stabilizes. Once the EKF is started,

the algorithm continues to run until the end of the aerobic
stage. When the emptying stage begins, the estimated states
are frozen until the next filling stage begins.
RESULTS AND DISCUSSION

Model calibration results

The results of the model calibration step, obtained by the
proposed optimization procedure, are presented in
Table 3. The graphs presented in Figure 3 show the compari-

son between the model predicted values and the data
obtained from the kinetic studies conducted in the pilot
plant. The figure also provides the normalized root-mean-

square error (NRSME) and R2 values obtained during the
model calibration. The R2 values presented in the graph
show that the values predicted by the model are close to
Table 3 | Stoichiometric and Kinetic parameters for the reduced order model

Parameter Parameter

KfeH Saturation coefficient of fermentation

KA Saturation coefficient of acetate

K0
PP Saturation coefficient of polyphosphate

KO Saturation coefficient of oxygen

K0
PHA Saturation coefficient of polyphosphate

KPS Saturation coefficient of phosphorus

K0
MAX Maximum values of XPP

KNO Saturation coefficient of nitrate

KO AOB Saturation coefficient of oxygen (nitrifiers)

KNH AOB Saturation coefficient of ammonia (nitrifiers)

r1 Rate constant for aerobic uptake of BOD

r2 Rate constant for fermentation

r3 Rate constant for PHA storage

r4 Rate constant for PP storage

r5 Rate constant for nitrification

r6 Rate constant for denitrification

YPHA PHA requirement for PP storage

YPO PP requirement per PHA storage

SF0 Initial concentration of biodegradables

XPP0 Initial concentration of PP

kLa Mass transfer coefficient for dissolved oxygen

s://iwaponline.com/wst/article-pdf/80/2/317/604460/wst080020317.pdf
the measured data collected from the pilot plant. Hence,

the model can be considered to provide a good represen-
tation of the SBR process.

The optimization algorithm used for estimating the model

parameters (Equations (2)–(4)) is also included in the
MATLAB code. The model parameters presented in Table 3
can be updated by running the optimizer code with a new
data set obtained from laboratory analysis. This strategy pro-

vides and effective platform for model calibration and
effortless update of parameters whenever a drift is observed
between the laboratory results and estimated values. It also

generates a possibility of adapting model parameters such
that the soft-sensor algorithm can be implemented in any
SBR plant with similar operational sequence.
Tuning parameters of the EKF

The values of xþ0 , Pþ
0 , Q and R described in Equations

(8)–(15) can be used as the tuning parameters of the
Kalman Filter. In practical applications, these parameters
are not known precisely, and therefore, trial-and-error
Model Value Min Max Units

3.58 2 6 g COD m�3

2.20 2 6 g COD m�3

10.19 1 50 g P m�3

2.96 0.1 4 g O2 m
�3

119 1 200 g COD m�3

0.2 0.1 1 g P m�3

132 1 200 g P m�3

1.02 0.1 1.5 g N m�3

1.57 0.1 4 g O2 m
�3

1 0.1 4 g Nm�3

500 50 5000 g COD m�3d�1

135 50 5000 g COD m�3d�1

2690 50 5000 g COD m�3d�1

4110 50 5000 g P m�3d�1

430 50 5000 g N m�3d�1

310 50 5000 g N m�3d�1

1.496 0.1 4.0 g COD g�1 P

0.577 0.1 0.6 g P g�1 COD

45 20 120 mg COD L�1

65 20 120 mg P L�1

912 100 1500 d�1



Figure 3 | Model calibration results – reduced order model versus laboratory measured values.
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tuning must be expected. We have tuned the EKF as
explained below, mainly following the guidelines in

Haugen et al. ().
Tuning of xþ0 : A reasonable value of xþ0 is a representa-

tive steady state, here set equal to the designed operating

point of the process. For an SBR operation, we chose the
design values of influent water quality as xþ0 .

xþ0 ¼ [SF0 SA0 XPP0 XPHA0 SNH0 SNO0 SPO0 SO0]

¼ [45 20 65 0 45 0 5 0]
(16)

Tuning of Pþ
0 : It is commonly set as a diagonal matrix.

The values are adjusted based on how close our initial esti-
mates are to the real value of states. The knowledge on
raw wastewater composition can help provide a good
guess for the initial composition of some of the states in

the process.
• The raw wastewater does not contain any nitrates, there-
fore the value of SNO is 0 g-N m�3.
om https://iwaponline.com/wst/article-pdf/80/2/317/604460/wst080020317.pdf
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• The stored PHA in the biomass usually depletes before
the cycle ends, therefore we can assume that the initial

concentration of XPHA0¼ 0 mg COD L�1.

• SO¼ 0 mg L�1 since there is no dissolved oxygen in the
anaerobic stage.

• The states SF andXPP do not affect the measurements (pH)
in the anaerobic zone. These states exist in the model
merely for the purpose of maintaining themodel dynamics.

A fixed initial value of XPP¼ 65 mg P L�1 and SF¼ 45 mg
COD L�1 is provided to make the model fit to the kinetic
data. These values should not be confused with the actual
P content in the biomass or the available soluble BOD.

Therefore, the only uncertain initial estimates are SA0,
SNH0, and SPO0. The Pþ

0 corresponding to the states SF0,
XPP0, XPHA0, SNO0, and SO0 can be set to a very low value
or to zero. Therefore, the P matrix at the beginning of the
cycle can be expressed as the following.

Pþ
0 ¼ diag [0 PSA 0 0 PSNH 0 PSPO 0] (17)



Figure 4 | (a)–(b) Simulated vs estimated values of states for a complete cycle of 8 h. (c) State-correction by EKF during the first 30 min of the cycle.

Figure 5 | (a)–(d) Estimated states in the pilot plant for a 3-day period. (e) Turbidity measurement at influent raw water.
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By trial and error, it was found that the following values

provide a good estimation.

PSA ¼ 316 ; PSNH ¼ 0:12; PSPO ¼ 0:10 (18)

Tuning of R: It is estimated as the variance of the

measurement time series collected from the SCADA system.
Tuning of Q: Typically, Q is used as the main, or final,

tuning parameter. It is assumed a diagonal matrix with diag-

onal elements related to the initial guess of the pertinent
state variable through factors li:

Qc ¼ diag([li xþo,i]
2) (19)

In the simulator based testing, proper values of trial-and-
error were found as

{li} ¼ [1 1 1 1 2 1 1 1:5]�10�3 (20)
Figure 6 | Soft-sensor validation. Estimated values (continuous red line) versus labora-

tory measurements (blue discrete points). Please refer to the online version of

this paper to see this figure in colour: http://dx.doi.org/10.2166/wst.2019.272.
Simulator test results

The EKF is updated with the tuning parameters presented in
Equations (16)–(20). The results presented in Figure 4(a) and

4(b) show a comparison between the state variable obtained
from the simulator and the states estimated by the tuned
EKF during an 8 h cycle. The state correction by EKF is

not clearly visible in Figure 4(a) and 4(b) since the estimated
states usually approach the simulated states within the first
30 min of the SBR cycle. Therefore, the simulation result
for the first 30 min is presented in Figure 4(c), where the

state correction by the EKF is noticeable. The convergence
of the estimated value to a randomly selected initial compo-
sition confirms that the EKF parameters are correctly tuned.

Pilot plant implementation results

The tuned EKF algorithm is implemented in the pilot plant

and the estimator results are recorded for a period of two
weeks. Figure 5 presents a subset consisting of estimated
states for a duration of 3 days (nine cycles). The variations

in nutrient composition during the cycle follow similar
trends to those observed in a typical SBR operation, as
presented in literature such as Marsili-Libelli et al. ()
and Sin & Vanrolleghem (). Due to the high holdup

in the buffer tank, the diurnal variations in influent
concentration is barely noticeable. However, a significant
change in influent concentration can be observed during

rain or snowmelt events, causing storm-water infiltration
at the raw wastewater source. These variations can be
om https://iwaponline.com/wst/article-pdf/80/2/317/604460/wst080020317.pdf
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observed in Figure 5(e), which shows the data from the

online turbidity sensor installed in the raw wastewater tank.
The estimation results presented in Figure 5(a)–5(d) show
the increase in the estimated value of SNH, SPO, and SA on

31 October 2018 around 12.00 h. This event corresponds to
the influx of wastewater with a rather higher nutrient concen-
tration at 9:00 AM on the same day. This provides a
qualitative validation for the soft-sensor’s ability to detect

variations in influent wastewater quality (see Supplementary
Table 2, available with the online version of this paper).

Further validation tests were conducted on 4 November

2018. Samples were collected every 30 min during the com-
plete 8-h cycle and the composition of NH4-N, PO4-P, and
NO3-N are measured using standardized laboratory tests.

These values are compared to the states SNH, SPO, and
SNO estimated by the EKF algorithm during the cycle. The
comparison plots along with the NRSME and R2 values
are presented in Figure 6. This demonstrates the EKF’s

potential to estimate the states in the pilot plant.
The estimated value of the effluent water quality is also

recorded for each treatment cycle. This is executed by log-

ging the estimated value of SNH, SPO and SNO at the end
of every SBR cycle. The pilot plant achieves complete

http://dx.doi.org/10.2166/wst.2019.272
http://dx.doi.org/10.2166/wst.2019.272


Figure 7 | Comparison of estimated values of (a) effluent PO4-P, (b) effluent NO3-N and (c) influent NH4-N composition with laboratory measurements.
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nitrification, resulting in a very low effluent ammonia
concentration close to zero. However, the effluent concen-
trations of SNO and SPO are rather susceptible to variations

in raw wastewater quality. These variations can be observed
in Figure 7(a) and 7(b).

The soft-sensor is also used to estimate the ammonia

concentration in the raw wastewater. It is observed that
the concentration of NH4-N stays nearly constant during
the anaerobic stage. However, it can also be observed

from Figure 4(b) that the estimator converges to the real
state variables within the first 30 min of the cycle time.
Therefore, it would be safe to assume the value of SNH

at t¼ 30 min to be very close to the concentration of
ammonia in raw wastewater. The estimated value of SNH

at t¼ 30 min for the entire testing period is presented in
the third plot in Figure 7(c). These estimated values of

the influent and the effluent wastewater composition is
compared to the periodic laboratory measurements.
Except for the erroneous estimates received on 3–5

November 2018 due to an unexpected power failure, the
plots presented in Figure 7(c) demonstrate an acceptable
s://iwaponline.com/wst/article-pdf/80/2/317/604460/wst080020317.pdf
match between the experimental data and the values esti-
mated by the EKF algorithm.
CONCLUSIONS

The grey box model discussed in this article explains the
SBR with sufficient level of accuracy to constitute the
basis of a state estimator for the reactor. The model cali-

bration strategy discussed in this work provides the
flexibility in adapting the model to any plant with similar
process configuration. The validation tests conducted in

the pilot plant demonstrates the possibility to estimate the
concentration of VFA, NO3-N, NH4-N and PO4-P in a
SBR operating in alternative anaerobic–aerobic mode for
the biological phosphorus removal process, by using

physical sensors such as pH and DO. The EKF based soft-
sensor can also provide accurate estimations of the ammo-
nia concentration in the influent wastewater. Since the

EKF algorithm is written in MATLAB’s OPC compatible fra-
mework this soft-sensor code can easily be implemented in
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any treatment plant which has an OPC enabled PLC,

SCADA or a distributed control system (DCS), without
additional hardware requirement or modifications to the
MATLAB code.

The change in biomass concentration over a longer oper-
ational period could lead to minor drift in state estimation.
However, periodic model calibration and parameter re-
tuning can resolve this problem. The optimization code esti-

mating the model parameters is also included as a part of
the overall estimator package. This allows the model to be
recalibrated with relative ease. A cost-effective method of

state-estimation using soft sensors can be a prelude to imple-
menting advanced model based control strategies in
wastewater treatment and recovery processes.
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