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Abstract

Disinfection By-Products (DBPs) are ubiquitous in chlorinated drinking water. US
Environmental Protection Agency (EPA) has stated that DBPs formed in chlorinated
drinking water is a potential health risk to the general public. Numerous studies have
shown association with long-term DBP exposure and bladder, rectal and colon cancer,
as well as reproductive and developmental health e�ects. This is a major public health
issue and a cost to society due to required health treatment, loss of mobility and sickness
days.

DBP levels vary as a function of water residence time, temperature, seasonal variations
of the concentration and reactivity of Natural Organic Matter (NOM) and treatment
methods at the Drinking Water Treatment Plant (DWTP). Due to climate change, more
intense precipitation and higher average temperature, the surface waters’ NOM content
is expected to increase and thus, cause more frequent DBP spikes.

While periodic sampling and analysis of a limited number of drinking water samples are
expensive, there is a need to develop online methods and predictive models to quantify
DBP concentrations in real time in distribution systems. With a rapid development in
the quality of online monitoring sensors, decrease in their costs, expansion of the set of
water quality parameters that can be quantified, now it is time to pursue a consistent
implementation of proactive monitoring of DBPs in drinking water systems.

This study examined DBP data of discrete sampling and online monitoring that have
been generated over 10 years in the Seattle water distribution system. The main objec-
tives with the data processing were to identify potential factors influencing high DBP
concentration and map "hot spots" of the DBP formation in the Seattle Water Supply
System. The results obtained were used to select optimal locations for implementation
of online monitoring sensors in the distribution system. A Cost Benefit Analysis (CBA)
was conducted to estimate the net benefits for the Seattle city to deploy a system of
online monitoring sensors.
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Sammendrag

Desinfeksjonsbiprodukter (DBPs) er en uønsket konsekvens ved desinfesering av drikke-
vann. US Environmental Protection Agency (EPA) har uttalt at klorert drikkevann
er en potensiell helserisiko for allmennheten. Flere studier har påvist en sammenheng
mellom langsiktig eksponering av DBP og blære-, tykktarms- og endetarmskreft, så vel
som reproduktive og utviklingsmessige helsee�ekter. Dette er en trussel for folkehelsen
samt en stor samfunnskostnad på grunn av nødvendig helsebehandling, tap av mobilitet
og sykefravær.

DBP varierer som en funksjon av oppholdstid, temperatur, behandlingsmetoder ved
drikkevannsrenseanlegget og sesongvariasjoner av konsentrasjonen og reaktiviteten til
Naturlig Organisk Materiale (NOM). Som en følge av klimaendringer vil det i fremtiden
bli mer intens nedbør og høyere gjennomsnittstemperaturer, og overvannkilders NOM
innhold forventes øke og dermed føre til hyppigere DBP episoder.

Det er i dag et behov for å utvikle online metoder og prediktive modeller for å kvan-
tifisere DBP-konsentrasjoner i sanntid i distribusjonssystemer, da periodisk prøvetaking
og analyse av et begrenset antall drikkevannsprøver er kostbart og ine�ektivt. Per dags
dato, pågår det en rask utvikling i kvaliteten på online overvåkningssensorer. Samtidig
som online overvåkningssensorer blir rimeligere og mer robuste, utvides også av settet
med vannkvalitetsparametere som kan kvantifiseres. Det er derfor påtide å implementere
en proaktiv overvåking av DBP i drikkevannssystemer.

I denne studien ble DBP-data, som har blitt generert over en tiårsperiode basert på
drikkevannsprøver og online overvåking fra Seattles drikkevannssystem, analysert. Hov-
edmålet med analysen var å identifisere potensielle faktorer som påvirker høy DBP-
konsentrasjon og kartlegge "hot spots" av DBP-formasjonen i Seattles drikkevannssys-
tem. Resultatene som ble oppnådd ble brukt til å velge optimale lokasjoner for im-
plementering av online overvåkningssensorer i distribusjonssystemet. En kostnadsnyt-
teanalyse (CBA) ble utført for å estimere nettofordelene for byen Seattle ved å imple-
mentere overvåkningssensorene i nettet.
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Introduction

1.1 Background

Disinfection of drinking water causes ubiquitous organic compounds known as Disin-
fection By-Product (DBP) to be formed. DBPs are extremely hard to remove from
drinking water once they have been formed. The most e�cient way to reduce DBP
formation, is to remove the DBP precursors and regulate the operational parameters at
the Drinking Water Treatment Plant (DWTP).

Chlorine is the most commonly used disinfection method worldwide and is a cost-
e�ective technique that e�ciently inactivates most microorganisms. It is the only disin-
fectant, in addition to chloramine, that provides residual disinfection to drinking water
in the distribution system, which is crucial to prevent waterborne diseases. However,
chlorine also results in the highest formation of halogenated DBPs.

Previous research has demonstrated clear linkages between the consumption of DBPs
present in drinking water and increased risks of cancer and chronic illness (Richardson
et al., 2007). Increased levels of DBP groups such as Trihalomethanes (THM) and
Haloacetic acids (HAA) have been specifically shown to be associated with higher cancer
risks. This is a major, global public health issue and a financial burden on society due
to required health treatment, loss of mobility and sickness days.

Spectroscopic online monitoring sensors and DBP predicting models can in principle
be e�cient tools to monitor and eventually decrease DBP formation. For the last few
decades, there has been a rapid development in the quality of sensors that can be de-
ployed for online monitoring of water quality. Technological development has decreased
sensor costs and the quantification of related parameters has expanded with the help of
online monitoring sensors. The development of new models relate these sensors’ outputs
with the formation and degradation of DBPs and other micro-pollutants.
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1.2 Problem Statement

The City of Seattle, which uses chlorination in the water supply, has been mandated
to monitor DBP concentrations four times a year at selected locations. There are two
large watersheds in the Seattle area, Cedar and Tolt, supplying drinking water to 1.4
million people. For this thesis, DBP and water quality data from both Cedar and Tolt
DWTP have been provided by the Seattle Public Utilities (SPU).

As several chlorinated DBPs have been linked to cancer and chronic illness, US Environ-
mental Protection Agency (EPA) has stated that DBPs are a potential health risk to the
general public (US EPA, 2005b). This problem is not only valid for Seattle, but is also
a global issue that needs to be addressed. Worldwide, most countries use chlorination
as a primary disinfectant, and incautious use of chlorination will lead to higher DBP
concentrations.

It is therefore of utmost importance for water utilities to gain a complete and real-time
picture of the DBP concentration in the drinking water. The goal is to reduce the overall
DBP concentration and thus, decrease the number of cancer and chronic illness cases
attributed to DBP exposure.

1.3 Objectives of Study

The ambition of the thesis research is to evaluate the potential for adequately time-
resolved water quality monitoring. The monitoring takes advantage of online measured
parameters that act as virtual sensors to predict DBP concentrations in a drinking water
distribution system without taking actual samples therein. The first part of the research
is to process the data and identify potential factors influencing DBP formation. The
results from this will be used to select optimal locations for the online monitoring sensors
in the distribution system.

The second part of the thesis is to investigate the City of Seattle’s benefits and cost
associated with the deployment of online monitoring sensors in the distribution system
through a Cost Benefit Analysis (CBA). The main assumption in the CBA is that
by decreasing the DBP concentration in the distribution system through implemention
online monitoring sensors, the annual number of new bladder cancer cases in the city
would decrease. The results for the analysis will be used to recommend the city’s priority
on the issue.

2



Based on the background and problem statement, the main objectives of the thesis study
are:

1. Process multi-year DBP data available from SPU and identify potential “hot
spots” of DBP formation.

2. Evaluate available DBP and water quality data and other operational conditions
(e.g. pipe condition, re-chlorination) to identity potential factors influencing the
occurrence of high DBP values.

3. Use the interpretation of the DBP and water quality data to select optimal loca-
tions for online monitoring sensors in the distribution system.

4. Estimate savings associated with the deployment of online monitoring versus so-
ciety cost caused by the development of DBP-associated health problems.

5. Ascertain practical e�orts needed to shift from the current paradigm of a post-
factum reactive DBP monitoring to the new paradigm of proactive DBP monitor-
ing.

1.4 Limitations

The thesis has the following limitations:

• Lack of water quality data from the samplings sites in the Seattle drinking water
distribution system (pH, UV Absorbance (UVA), turbidity, chlorine concentra-
tion).

• Narrow DBP data at certain sampling sites and their locations mostly in the
extremities of the Seattle drinking water distribution system.

• Limited epidemiological data to make assumptions for DBP exposure and risk of
bladder cancer used in the CBA.

• Complex e�ects in a large distribution system having multiple factors influencing
DBP formation.
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2
Literature Review

The World Health Organization (WHO) states in its guidelines for drinking-water qual-
ity that the most common health risk associated with drinking water are infectious
diseases caused by pathogenic bacteria, viruses and parasites (World Health Organiza-
tion, 2011). To minimize the risk of these infectious diseases, it is essential to disinfect
drinking water using one or more disinfection methods. The most common methods
for drinking water disinfection are chlorination, while occasionally also ozonation and
Ultraviolet Light (UV) radiation. When these methods are applied to drinking water,
various chemical compounds known as DBPs are formed.

This Chapter contains discussion of DBPs and their health e�ects, DBP regulations,
di�erent disinfection methods, factors influencing DBP formation and the use of online
monitoring sensors to predict DBP concentration in drinking water.

2.1 Disinfection Methods

More than one disinfection method is commonly used in drinking water treatment. The
primary disinfectant inactivates the pathogens while the secondary disinfectant provides
longer lasting disinfection as water flows through the pipes. All the disinfection methods
have advantages and disadvantages, and they all produce some kind of DBPs. In the
next subsections, the di�erent disinfection methods and their respective advantages and
disadvantages, are described and summarized in Table 2.1.

2.1.1 Chlorination

For more than a century, the use of chlorine in drinking water has been a practice
and has eliminated a majority of waterborne diseases. Chlorination is e�ective for
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inactivation of most microorganisms and is a highly cost-e�ective technique for drinking
water disinfection. Chlorine is the most common primary disinfectant in the US.

In addition to its disinfectant characteristics, chlorine is useful for algal, bacterial and
slime growth prevention both in drinking water treatment plans and pipeworks in the
distribution system. Chlorine can also be used to control odour and taste in addition
to provide iron, manganese and colour removal (White, 1986).

When free chlorine (Cl2) is added to water, the following reaction occurs:

Cl2 + H2O ¡ HOCl + H+ + Cl≠ (2.1)

As shown in Equation (2.1), chlorine added to water forms hypochlorous acid (HOCl),
hydrogen ion and chlorine ion. HOCl is a weak acid and partially dissociates in water,
forming hypochlorite ion (OCl≠). The pH determines which species dominates and thus,
the e�ciency of the chlorine disinfection. At a pH less than 7.5, HOCl dominates while
at a higher pH OCl≠ dominates. HOCl is a stronger oxidant than OCl≠ and therefore
disinfection using chlorine is more e�ective at a neutral to acidic pH (EPA, 2013).

The e�ect of chlorine depends in the on the Contact Time (Ct) shown in Equation (2.2):

Ct =
⁄ t

0
C(t)dt (2.2)

where Ct is contact time, C is concentration and dt is time.

The required chlorine contact time (Ctreq) for an e�cient disinfection of bacteria and
viruses, depends on the water source (surface water, groundwater etc.) and the in-
activation requirements for the individual DWTP. The inactivation requirements are
described as log reduction where 1 log = 90% removal, 2 log = 99% removal, 3 log =
99.9% removal etc. Other factors needed to determine Ctreq are minimum temperature,
maximum pH and minimum chlorine residual.

Chloramine

Chloramine (NH2Cl) is a weaker disinfectant than chlorine, requiring a greater contact
time for disinfection at the DWTP. Because of its high Ct values, chloramine is a poor
primary disinfectant. Chloramine is formed when ammonia (NH3) is added to chlorine.
Chloramine is used as a secondary disinfectant and provides a longer-lasting disinfection
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to the drinking water.

Chlorine dioxide

Chlorine dioxide (ClO2) is an explosive hazard and therefore it is synthesized at the point
of use in a DWTP. It is a powerful oxidizing agent that can decompose into chlorite and
chlorate. Chlorine dioxide is proven to be more e�ective in inactivation of Giardia than
free chlorine, but less e�ective against E. coli and rotaviruses.

2.1.2 Ozone

Ozone (O3) is one of the strongest oxidizing agents in water treatment and the most
e�cient disinfectant for all types of microorganisms. The main objective to use ozone as
the first treatment step is the removal of taste and odor, colour and micropollutants from
the water. Ozone is more e�ective than chlorine in inactivating all kinds of bacteria,
viruses and the parasites Giardia and Cryptosoridium (WHO, 2004).

Ozonation has a higher cost than chlorination and does not provide residual disinfection
as ozone rapidly decomposes in water. Ozone is generated on site, converted from liquid
oxygen (O2) to ozone gas (O3) by using electrical plasma discharge. For disinfection
requirements, Equation (2.2) is used for ozonation as well for chlorination. The Ct
product for ozone is shorter than for chlorine, as ozone is more reactive than chlorine.

Figure 2.1: Ozone reaction mechanism as O3 and ¶OH (Lenntech, 2019).
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As shown in Figure 2.1, the oxidation of organic/inorganic compounds occur via O3 or
OH radicals, or a combination of both. When added to water, ozone can decompose into
OH radicals (¶OH) which are the strongest oxidants (Minakata et al., 2012). The OH
radicals react fast with dissolved compounds. Due to its strong oxidizing characteristics,
ozone reacts with Natural Organic Matter (NOM) splitting it into smaller molecules and
also removing color from water.

2.1.3 UV radiation

UV radiation inactivates pathogenic microorganisms by denaturation of DNA, thus mak-
ing the organism unable to replicate. UV is the primary disinfectant for Cryptosoridium
and Giardia (Norsk Vann, 2009). Factors that e�ect the UV e�ciency are turbidity, iron
concentration and magnesium concentration. UV only disinfects water at the point of
contact and it does not provide any residual disinfection to the water in the distribution
system. For UV radiation, the Ct term is also used, but is expressed slightly di�erently
as shown in Equation (2.3):

D = I ◊ t (2.3)

where D is dosage (mJ/cm2), I is the radiation intensity (mW/cm2) and t is time (s).

It is the water’s UV Transmittance (UVT) which determines the UV-plant disinfection
e�ciency. The required UVT e�ciency for approved UV disinfection is individual for
every DWTP. Using UV as a disinfectant requires continuous power supply. If the power
at a DWTP fails, the UV light intensity fails and the system loses its e�ciency to safely
disinfect the water.

2.1.4 Coagulation and filtration

Coagulation and filtration are not disinfection methods per se, but they are very common
water treatment techniques to remove particulates and turbidity from surface waters.
Coagulation has been reported to remove substantial amounts of NOM from surface
waters, which is the number one precursor for DBPs (Liang and Singer, 2003). Thus,
using coagulation and filtration as a pre-treatment step to disinfection in drinking water
can have a big impact on the DBP formation.
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2.1.5 Comparing the disinfection methods

The disinfection methods have individual strengths and weaknesses which are described
in this subsection. To provide an organized overview of the di�erent disinfection meth-
ods, they are presented in Table 2.1.

To sum up the information presented in Table 2.1, chlorine is a cheap and e�ective
disinfectant. Using chloramine, chlorine dioxide or ozone is generally more expensive
than chlorine. In addition, ozone and chlorine dioxide do not provide adequate protec-
tion in the water distribution system due to their instability (Chowdhury et al., 2011).
Alternate disinfection methods may lower the chlorinated DBP concentration, but can
form other toxic byproducts, increase disinfection cost and lead to microbiological re-
contamination in the water distribution system (Sadiq and Rodriguez, 2004).
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Table 2.1: Advantages and disadvantages for the disinfection methods.

Disinfection
method

Advantages Disadvantages

Chlorination

- Highly cost-e�ective disinfectant, by far the cheapest.
- E�ective against most viruses/bacteria.
- Well known and developed disinfection method.
- Provides residual disinfection in distribution system.
- Prevents bacterial and algal growth on pipes.

- Forms the greatest amount of halogenated DBPs.
- Does not inactivate protoza like Giardia and Cryptosoridium.
- Gaseous form dangerous.
- Poor biofilm penetration.
- Can cause pipe corrosion.
- E�ectiveness reduced at higher temperatures; increasing pH decreases

e�ectiveness.
- Taste and odor.

Chloramine

- Forms lower DBPs concentrations than chlorine.
- Longer residual disinfection in the distribution system.
- Relatively inexpensive.
- E�ective against most viruses/bacteria.
- Penetrates biofilm better than chlorine.

- Generated on site, might lead to complications.
- Higher cost treatment than chlorination.
- Weaker disinfectant than chlorine, require longer Ct.
- Forms N-nitrosodimethylamine (NDMA) (more toxic than halogenated DBPs).
- Relatively less e�ective than chlorine against protoza.
- Nitrification potential.
- Taste and odor.
- Can cause pipe corrosion.

Chlorine
dioxide

- Does not form any halogenated DBPs.
- Longer residual disinfection in the distribution system.
- Relatively una�ected by pH.
- More e�ective against a broader range of microbes than chlorine.
- Taste and odor control.

- Relatively expensive.
- Greater skill level required to operate.
- May be a challenge to maintain desired residuals.

Ozonation

- Most e�cient disinfectant with regards to microorganisms.
- Reacts with NOM which reduces the DBP formation potential

by removing the precursors.
- Minimal influence of pH.
- Eliminates taste and odor.

- Lack of disinfection residual.
- Biological regrowth in distribution system.
- High cost treatment.
- Limited information about its DBPs.
- When ozonation is followed by chlorination, concentration of

brominated THMs may increase.

UV

- No chemicals are required.
- No DBPs are formed from UV radiation.
- Normally e�ective against all viruses, bacteria and parasites.
- Requires short contact time.

- Lower dosages may not be e�ective for some viruses and pathogens.
- Dependent on access to stable power supply.
- Lack of disinfection residual.
- High turbidity and organic matter in water reduces the UV e�ciency.
- Requires frequent maintenance.



2.2 DBP Occurrence in Drinking Water

Historically, chlorination revolutionized drinking water treatment, reducing the inci-
dence of waterborne diseases globally. Chlorination and filtration have been haled as
a major public health achievement of the 20th century (Calderon, 2000). DBPs were
initially discovered in 1974 by Rook who identified chloroform and other THMs in chlo-
rinated water (Rook, 1974). Since then, over 600 individual DBPs have been found
through laboratory research. Thus, the main focus in the drinking water research field
is to document and understand the occurrence of DBPs and their e�ect on human health.

DBPs are an unintended consequence of disinfecting drinking water and are formed
when disinfectant reacts with NOM and/or inorganic substances. The main factors
a�ecting the amount of DBPs formed are pH, temperature, reaction time and chlorine
dose. These parameters are further discussed in subsection 2.5.

Figure 2.2 illustrates the main groups of DBPs and their occurrence. The two main
DBP groups are THM and HAA, when combined constitute about 40 percent of the
mass of all DBPs. As shown in Figure 2.2, half of the existing DBP are unidentified and
so are the toxicological health risks they pose to humans.

Figure 2.2: Representation of a typical DBP distribution. Figure adopted from
Krasner et al., 1989.

The speciation of DBP depends on the type of disinfectant, dose, type of organic/inorganic
matter and other precursors present in the drinking water. Table 2.2 shows the signif-
icant DBP species formed when using the di�erent disinfection methods in drinking
water treatment.

From Table 2.2, it is clear that chlorine is the disinfectant that is the source of highly sig-
nificant halogenated organic products. The two main DBP groups, THMs and HAAs,
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are both products of chlorine disinfection. Chlorine dioxide produces less halogened
DBP products, and forms chlorite and chlorate which are inorganic DBP products.
Chloramine causes both halogenated and inorganic DBPs to form. Ozone as a disinfec-
tant forms brominated DBPs and bromate which are highly genotoxic and carcinogenic
(Richardson et al., 2007). UV is the only disinfectant that does not produce any kind
of DBPs.

Table 2.2: DBPs species present in disinfected waters (WHO, 2004).

Disinfectant Significant
halogen products

Significant
inorganic products

Significant
non-halogen
products

Chlorine
/Hypochlorous acid

- THMs
- HAAs
- Haloacetonitriles (HANs)
- Chloral hydrate
- Chloropicrin
- Chlorophenols
- N-chloramines
- Halofuranones
- Bromohydrins

- Chlorate (mostly
from hypochlorite)

- Aldehydes
- Cyanoalkanoic acids
- Alkanoic acids
- Benzene
- Carboxylic acids

Chlorine dioxide

- Iodinated THMs,
especially iodoform

- Iodoacetic acid (IAA)
- Triiodoacedic acid (TIAA)

- Chlorite
- Chlorate

Unknown

Chloramine

- HANs
- Cyanogen chloride
- Organic chloramines
- Chloramino acids
- Chloral hydrate
- Halokentones

- Nitrate
- Chlorate
- Hydrazine

- Aldehydes
- Ketones

Ozone

- Bromoform
- Mucobromic acid (MBA)
- Dibromoacetic acid (DBA)
- Dibromoacetone (DBAC)
- Cyanogen bromide

- Chlorate
- Iodate
- Bromate
- Hydrogen peroxide
- Hypobromous acid
- Epoxides
- Ozonates

- Aldehydes
- Ketoacids
- Ketones
- Carboxylic acids

UV None None None

As shown in Table 2.2, chloramine produces similar DBPs as chlorine, but with lower
concentrations. The use of chloramine can result in up to 90 percent reduction in the
THM and HAA levels compared to chlorination (Thompson et al., 2016). One toxic DBP
specifically associated with chloramine is NDMA which is more toxic than THM and
HAA (Richardson, 2005, Ellington et al., 2008). NDMA is found to be a highly genotoxic
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compound and a possible human carcinogen. Studies indicated that the formation of
iodinated DBPs may be higher with chloramination than with chlorination (Ellington
et al., 2008).

The halogen products formed by chlorine dioxide are iodinated THMs, IAA and TIAA
(Ye et al., 2013, Zhang et al., 2015). For the iodinated THMs, iodoform is the major
species formed when chlorine dioxide is used. As shown in Table 2.2, chlorine dioxide
forms the inorganic DBPs chlorite and chlorate. Chlorine dioxide produces limited DBPs
because it neither reacts with NOM to form THMs nor with ammonia to form levels of
chloramines (WHO, 2004). However, traces of HClO can form upon the decay of Cl2 in
water.

In drinking water treatment, the use of ozone as a treatment step before chlorine creates
a significantly smaller amount of chlorinated DBPs as ozonation decreases the ability of
NOM to react with the chlorine (Norsk Vann, 2009). However, when using ozone as a
disinfectant, bromated DBPs can form which are more genotoxic and carcinogenic than
halogenated DBPs. The only DBP created by ozonation regulated in the US is bromate.

As presented in Table 2.2, UV radiation does not produce any known DBPs. Even
though UV radiation as a disinfection method does not form DBPs, there have been
studies conducted to investigate how UV influences DBP formation when combined
with other disinfection methods. A study by Reckhow et al., 2010 revealed that UV
treatment on two separate water sources did not substantially change the THM, HAA
or Total Organic Halogen (TOX) concentrations of the two water sources. There was a
small reduction in the formation of the DBP groups, but it did not exceed 10 percent.

2.2.1 Halogenated DBPs

Halogenated DBPs are formed when chlorine, chloramines or ozone react with NOM in
the water. TOX is a collective parameter for all halogenated DBPs. In Table 2.3, the
main halogenated DBPs classes and their chemical formulas are presented.

THM and HAA are regulated in two groups: Total Trihalomethanes (TTHM) and
HAA5. TTHM comprise of four compounds: chloroform, Bromodichloromethane (BDCM),
Dibromochloromethane (DBCM) and bromoform. HAA5 comprise of five compunds:
monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, bromoacetic acid and
dribromoacetic acid. Figure 2.3 and 2.4 show the chemical structure of the compounds.

HAA9 consists of the same compounds as HAA5 and also includes bromochloroacetic
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acid, bromodichloroacetic acid, bromodichloroacetic acid and tribromoacetic acid. The
HAA9 group is not regulated, but is on the US EPA’s list of unregulated contaminants
to be publicly monitored by water systems (US EPA, 2019).

Table 2.3: Main halogenated DBP classes (Korshin et al., 2002).

Chemical name Abbreviation Chemical formula

Trihalomethanes THM CClxBry, x + y = 3

Haloacetic acids HAA CHxClyBrz, x + y + z = 3

Haloacetonitriles HAN CHxClyBrzCN, x + y + z = 3

Haloketones HK CHxClyBrzCOCH3,x + y + z = 3

Trihalonitromethane THNM CClxBryNO2, x + y = 3

Cyanogen halide CNH Cl-CN, Br-CN

Chloral hydrate CH CCl3-CHO

Figure 2.3: Chemical structure for TTHMs.

Figure 2.4: Chemical structure for HAA5.
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2.2.2 Brominated and inorganic DBPs

In most water sources, bromide and iodide ions are naturally present. The bromide ions
can react with either disinfectants - hypochlorite (HClO) or ozone. If bromide reacts
with hypochlorite, it is oxidized to HBrO which then reacts with NOM to incorporate
bromine into DBPs. Brominated DBPs are of greater health significance than chlori-
nated DBPs as they are found to be more genotoxic and carcinogenic (Richardson et al.,
2007).

If the bromide reacts with ozone, then the inorganic compound bromate is formed.
The formation of bromate is dependent on the presence of bromide and the ammonia
concentration in the water (Sadiq and Rodriguez, 2004). Bromate is one of the eleven
DBPs regulated in the US and is also a known carcinogen.

2.2.3 "New" and emerging DBPs

Today, there is an intensive, ongoing research to identify and understand emerging,
unregulated DBPs. These DBPs include iodo-THMs, iodo-acids, haloamides, haloni-
tromethanes, halofuranones, haloacetonitriles (HAN)s, haloacetaldehydes, nitrosamines
and halobenzoquinones (Thompson et al., 2016).

Studies show that iodo-THMs tend to be more toxic than chlorinated and brominated
THMs (Ellington et al., 2008). Iodo-acid is the most toxic DBP identified to this
date and is estimated to be two times more genotoxic than bromoacetic acid. Recent
research recognizes the DBPs not monitored regularly (in particular, iodinated, nitroge-
nous DBPs) have higher genotoxicities and cytotoxicities than commonly monitored
DBPs, like THM and HAA (Richardson et al., 2007).

2.3 Health E�ects of DBPs

As mentioned above, chlorinated drinking water is linked to over 600 individual DBPs
and adverse health e�ects associated with them. However, the behavioral characteristics
of only about 20 DBPs are known (Sadiq and Rodriguez, 2004). A research study by
Lee et al., 2013 concluded that the cancer risk by overall exposure of THM in tap water
was higher than 10≠6, which is a negligible risk level, as defined by the US EPA.
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Humans are exposed to DBPs through ingestion, inhalation and dermal contact. The
ingestion exposure is through drinking water and dermal contact through showering,
bathing, swimming etc. It is of utmost importance to understand the linkage between
long-term DBP exposure and possible risk to human health.

2.3.1 DBPs, cancer risk and chronic illness

Several studies have linked exposure to DBPs and increased risk of bladder cancer
and colorectal cancer. A study conducted by Villanueva et al., 2004 concluded the
risk of bladder cancer increases with long-term exposure to DBPs at levels observed in
industrialized countries. The study used THM as a marker for DBPs and the primary
data analyzed were from US, Canada, France, Italy and Finland. The DBP exposure
associated with an increased risk of bladder cancer was found to be valid only for men.
For women, no association was found between THM exposure and risk of bladder cancer
in the study. Research shows that the risk of bladder cancer increases with both increase
in concentration and duration of exposure to chlorinated DBPs (King and Marrett,
1996,Villanueva et al., 2007).

A study by King et al., 2000 in southern Ontario, Canada from 1992-94, investigated
possible relations between rectal and colon cancer, and exposure to DBPs. They studied
cases with a 40-year period exposure to THM, representing DBPs, estimating individ-
ual exposure to water source, chlorination status and DBP concentration. The study
included more than 1,500 cases. The study showed that there is an increased risk of
colon cancer among males with long-term exposure to chlorinated DBPs. However, there
was no association with exposure to DBP and colon cancer for females, nor of rectal
cancer for male or females. King et al., 2000 and his research group emphasize on the
limited amount of literature addressing this issue and that the result are only partially
fitting due to this reason. Research by Rahman et al., 2010 found a positive association
between colorectal cancer and exposure to DBPs in drinking water.

In addition to cancer risks, DBPs have been associated with chronic and sub-chronic
illness such as cardiac anomalies, stillbirth, miscarriage, low birth weight and preterm
delivery (Chowdhury et al., 2011, Werler, 2011). Dodds et al., 2004 found evidence
for an increased risk of stillbirth associated with exposure to chlorinated DBPs. The
results from the study shows women with residual total THM level of 80 µg/L had twice
the risk of a stillbirth compared to women with no exposure to THMs. Waller et al.,
1998 and her research team examined the association between spontaneous abortion
and exposure to THM in a study with over 5,000 pregnant women. The women their in
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first trimester drinking more whan five glasses of tapwater containing an average THM
concentration of 75 µg/L or more had an increased risk of spontenous abortion.

2.3.2 Toxicological table and life excess cancer risk

Table 2.4 presents the ratings of toxicological groups for the DBP classes.

Table 2.4: Summary of toxicological DBPs. Table adopted from Sadiq and
Rodriguez, 2004.

Class DBP Compound Rating Detrimental e�ects

THM Chloroform B2
Cancer, liver, kidney
and reproductive e�ects.

Dibromochloromethane C
Nervous system, liver,
kidney and reproductive
e�ects.

Bromodichloromethane B2
Cancer, liver, kidney
and reproductive e�ects

Bromoform C
Cancer, nervous system,
liver and kidney e�ects.

HAA Dichloroacetic acid B2
Cancer, reproductive
and developmental e�ects.

Trichloroacetic acid C
Liver, kidney, spleen,
reproductive and
developmental e�ects.

HAN Trichloroacetonitrile C
Cancer, mutagenic and
clastogenic e�ects.

Halogenated aldehydes
and ketones.

Formaldehyde B1
Mutagenic
(inhalation exposure).

Halophenol 2-Chlorophenol D Cancer, tumour promoter.

Inorganic compounds Bromate B2 Cancer.

Chlorite D
Developmental and
reproductive e�ects.
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The rating groups in Table 2.4 are from US EPA’s Disinfection Profile and Benchmarking
Guidance Manual and is defined as following: B1: Probable human carcinogen (with
some epidemiological evidence), B2: Probable human carcinogen (su�cient laboratory
evidence), C: Possible human carcinogen, D: Non classifiable.

Scientists and epidemiologists assess the threat the individual DBPs impose on public
health by calculating applicable Potency Factors (PF) and categorizing the DBPs in
rating groups. Equation (2.4) describes the Life Excess Cancer Risk (LECR) which
is the lifetime probability of a typical individual developing a cancer. The LECR is
calculated by summing up the products of exposure by each route by its potency factor
using Life Average Exposure (LAE) and PF (Grellier et al., 2015):

LECR =
ÿ

LAEi ◊ PFi (2.4)

where LAE is in mg, PF is in (mg/kg-day)≠1 and i is the exposure route (ingestion,
inhalation or adsorption). The LECR is an upper bound estimate and considered a
conservative overestimate that is protective of public health.

2.3.3 The e�ect of waterborne diseases

Chlorine, chlorine dioxide and chloramine are the only disinfectants that provide an
acceptably stable residual disinfection in a water distribution system, preventing growth
of bacteria and viruses in pipes. Even though chlorinated drinking water contains DBPs,
the consequences of not disinfecting the drinking water adequately are dramatic and
severe. In January 1991, a cholera epidemic broke out in Peru killing 3,100 inhabitants
and sickening more than 400,000 people. The cause of the epidemic was the absence of
safe drinking water and sanitation (Rice and Johnson, 1991).

Lack of proper disinfection of drinking water can also occur in countries with highly
developed infrastructure. In May 2010, a large E.coli disease outbreak in Walkerton,
Canada caused the death of seven people and 2,300 sickened. The reason was con-
tamination of municipal drinking water sources by bacterial pathogens. The amount
of chlorine in the system was lower than required by the utility protocol. Due to the
low chlorine residual, the E.coli overwhelmed the system causing a break out (Salvadori
et al., 2009). WHO states the following in the Guidelines for Drinking-water Qual-
ity: "in all circumstances, disinfection e�ciency should not be compromised trying to
meet the guidelines for DBPs, including chlorination by-products, or trying to reduce

18



concentrations of these substances" (World Health Organization, 2011). In other words,
waterborne pathogens pose a real and immediate threat to human health and thus DBPs
are the lesser of two evils.

2.4 DBP Monitoring and Regulations

Drinking water regulations worldwide are based on known DBPs, their toxicological
information and analytics. This information is not available for most DBPs, due to
incomplete data and research. This might result in possible severe health impacts due
to unregulated DBPs. The WHO international guidelines are described as a minimum
requirement for practice of safe drinking water.

2.4.1 WHO Guidelines

Table 2.5 presents the WHO Guidelines for DBPs in addition to those discussed in this
subsection.

Table 2.5: WHO guidelines for DBPs (World Health Organization, 2011).

DBP Guideline values (mg/L)

Dichloroacetic acid 0.05a

Trichloroacetic acid 0.2

Bromate 0.01a

Chlorite 0.7a

Chloral hydrate 0.01a

Dichloroacetonitrile 0.02a

Dibromoacetonitrile 0.07

Cyanogen chloride 0.07

2,4,6-Trichlorophenol 0.2

Formaldehyde 0.9

a: Provisional guideline value
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The WHO Guidelines for TTHM is represented by Equation (2.5): the sum of the ratio
of the concentration of each THM to its respected guideline value should not exceed 1.

Cbromoform

GVbromoform
+ CBDCM

GVBDCM
+ CDBCM

GVDBCM
+ Cchloroform

GVchloroform
Æ 1 (2.5)

In Equation (2.5), GV is guideline value and C is concentration. The WHO guideline
values are 0.3 mg/L for chloroform, 0.06 mg/L for BDCM, 0.1 mg/L for DBCM and
0.1 mg/L for bromoform (World Health Organization, 2011). The WHO’s remaining
guideline values for DBPs are found in Table 2.5.

The European Union (EU) have standard values for TTHM and bromate where the
regulated standards are 0.1 mg/L and 0.01 mg/L, respectively (ECHA, 2017). The EU
standard values are implemented in the Norwegian drinking water regulation, Drikke-
vannsforskriften.

2.4.2 EPA Drinking Water Regulations

The US EPA sets the The National Primary Drinking Water Regulations (NPDWR).
The NPDWR are the standards for the legally Maximum Contaminant Level (MCL)
and treatments techniques that apply to public water systems. The objective of the
standards is to protect the public health by limiting the level of contaminants in the
drinking water. In the NPDWR, there are MCLs for microorganisms, disinfectants,
DBPs, radionuclides and inorganic and organic chemicals.

The eleven DBPs currently regulated in the US are: TTHM, HAA5, bromate and
chlorite. Table 2.6 shows the EPA regulations for the MCL for DBPs from the NPDWR.

Table 2.6: EPA regulations for MCLs for DBPs (USEPA, 2009).

DBP MCL (mg/L)

Total trihalomethanes (TTHM) 0.080

Halo aceticacids (HAA5) 0.060

Bromate 0.010

Chlorite 1.0

The EPA has developed the regulations which each state has adopted and is responsible
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to enforce. The state can choose to use the same regulations as the EPA, or set a more
stringent standard if desired. The state utilities are required to examine a number of
water quality samples at the treatment plants and in the distribution systems. The
number of samples required are based on source water type, population and number of
treatment plants. If a utility exceeds the MCL on a running annual average, the utility
is required to give a public notification.

2.5 Factors Influencing DBP Formation

The formation of DBPs depend on source water quality characteristics, disinfection
methods used and the location in the treatment process where the disinfection is added.
The most important water quality factors are organic precursors materials, known as
NOM, inorganic species (e.g. bromide ion), water temperature and pH. For the disinfec-
tant, dose, contact time and residual disinfectant concentration are the most important
factors. These factors are discussed in the following subsections.

2.5.1 NOM

NOM is one of the most important influence factor parameter in drinking water treat-
ment and it is measured in Total Organic Carbon (TOC). NOM is the major precursor
for DBPs, in particular of THM and HAA. NOM consists of both hydrophobic and
hydrophilic organic material. Site-specific characteristics of NOM like molecule weight,
structure and functionality a�ects the DBP formation. NOMs are a highly complex
entity and researchers are still working on finding correlations between NOM fractions
properties and DBP formation.

Both the hydrophobic and hydrophilic fractions of NOM influence the THM and HAA
formation. Coagulation of water remove more hydrophobic than hydrophilic NOM frac-
tions, resulting a shift in the THM and HAA distribution (Liang and Singer, 2003).
NOM concentrations in water vary significantly in time and space. Surface water tends
to contain higher concentration of NOM than groundwater and thus treated surface
water also contains higher concentration of DBP.

Water sources with high concentrations of NOM present a severe challenge for water
treatment operations. Not only is NOM the major precursor for DBPs, there are several
other negative impacts caused by NOM. Firstly, NOM adds unwanted colour, taste and
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odour to the water. In addition, NOM causes membrane fouling, blocks activated carbon
filtration processes, influences corrosion on water pipes, leads to regrowth and biofilm
formation in the distribution system and compete for adsorption sites. Eikebrokk et al.,
2018 recently published a field study concluding that the first treatment step in drinking
water treatment (coagulation or nanofiltration) is the most e�cient method to remove
NOM.

In their field study, Eikebrokk et al., 2018, pointed out the predicted e�ect climate
change will have on NOM concentration. It is predicted to be a 15-20 percent increase in
NOM concentration by 2100 in the Nordic countries where the field study was conducted.
All the sites had a positive relationship between NOM concentration and precipitation
amount. Therefore, all utilities participating in the study were recommended to install
in-situ sensors for temperature and rainfall (along with weather forecast) to get an early
warning of potential high NOM concentration episodes.

Established indicators for NOM are UV254, TOC/Dissolved Organic Carbon (DOC) and
fluorescence. UV254 is the absorbance of UV at wavelength 254 nm. UV254 absorbance
also is a well established surrogate measurement for nitrate, turbidity, color, TOC and
DOC (Chow et al., 2013). While TOC/DOC indicates the concentration of organic
substances, UV254 accounts for specific structure and functional groups of NOM. UV254

is a frequently used surrogate parameter used in DBP prediction models, that are further
described in subsection 2.6. Water with higher specific UV absorbance values is more
responsive to removal of organic matter by coagulation than water with lower pecific
UV. In general, coagulation remove more HAA precursors than THM precursors (Liang
and Singer, 2003).

2.5.2 Temperature and pH

Temperature strongly a�ects the kinetics of chlorine consumption and DBP formation
in a distribution system (Roccaro et al., 2008). The rates of decay of both chlorine and
chloramine increase at higher temperature. Due to this, higher amounts of chlorine need
to be added during warmer seasons to ensure adequate levels of residual disinfectant in
the distribution system.

Generally, the Ct product required to inactivate microorganisms is lower at higher tem-
peratures. The microbial activity is known to be higher in distribution systems with
warmer water (Sadiq and Rodriguez, 2004). Thus, both chlorine consumption and DBP
formation are a�ected by seasonal variations. In summer months both chlorine con-
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sumption and DBP formation is expected to be higher than in winter months.

Another parameter influencing both the e�ciency of disinfection and the formation of
DBPs is pH. A higher concentration of THMs are formed at higher pH than HAAs and
vice-versa (Liang and Singer, 2003, Sadiq and Rodriguez, 2004). In other words, at
lower pH levels there is to be expected a higher HAA formation than for THM.

Most chlorine reactions are pH dependent, resulting in pH to have a significant e�ect on
chlorinated DBPs. The pH of the water system also determines the type and amount
of DBPs formed. For example, a lower, more acidic pH result in formation of less
chloroform, one of the four TTHM (Hung et al., 2017).

2.5.3 Reaction time and chlorine dose

In general, longer reaction time leads to higher formation of DBPs. Studies also reveal
higher disinfection dose yields higher DBP formation potential (Sadiq and Rodriguez,
2004). A study by Liang and Singer, 2003 shows, that with all other factors being stable,
fewer DBPs are formed when the disinfectants are added later in the process.

Chlorination and chloramine are the only disinfectants used for residual disinfection in
the distribution system. The excess chlorine residual increases the formation of DBP
with increased chlorine dose, contact time and concentration of NOM (Norsk Vann,
2009).

An important note is that higher concentrations of DBPs are generally observed in
the extremities of the water distribution system compared to the treated water at the
DWTP. However, HAA may degrade in extremities of the distribution system according
to newer research (Sadiq and Rodriguez, 2004).

2.6 Models to Predict DBP Formations

There are two ways to predict the DBP concentration in a water body: 1) direct anal-
ysis, or 2) modelling. Direct analysis requires skills and e�ort in sample collection and
preservation, in addition to being very costly and having a significant turnaround time.
On the other hand, the advantage of modelling is that one can have multiple mod-
elling targets, use complex reaction mechanisms and have multiple fitting parameters.
Modelling requires site specificity and the use of calibration.
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Surrogate parameters are used to estimate the DBP formation in the models. The
definition of a surrogate parameter is an intrinsic relationship with the parameter of
interest and one that can be easily monitored and quantified (Korshin et al., 2002).
In the following paragraphs, di�erent models variations to predict DBP formation are
discussed.

DBP prediction models are based on either field-scaled or laboratory data, and the
majority of the models are empirically based. Since chlorine is the most popular and
traditional disinfectant, the biggest modelling e�orts have been based on THMs. Most
models are based on multivariate regression analysis where the variables are subjected
to a logarithmic transformation (Sadiq and Rodriguez, 2004).

Two commonly used variables in the DBP prediction models are UV254 and SUVA254.
These are the two variables with the strongest correlation with DBP formation. Specific
Ultraviolet Absorbance (SUVA) is defined in Equation (2.6) and is a good predictor of
the aromatic carbon content of NOM and the DBP formation potential in water.

SUV A254 = UV254
DOC

◊ 100 (2.6)

Studies by Korshin et al., 2002 have explored the use of Di�erential Absorbance Spec-
troscopy (DAS) to predict DBPs. DAS quantifies the change in UV absorbance induced
by chlorine addition as presented in Equation (2.7):

�A⁄ = A
chl
⁄ ≠ A

int
⁄ (2.7)

DAS focuses on the change in UV absorbance resulting from halogenation. The change
in absorbance (�A⁄) is almost entirely attributable to chlorination induced changes in
NOM in a given water sample. Research shows that change in NOM is closely related to
incorporation of chlorine into NOM. Thus, DAS can be used to monitor the halogenation
of NOM, measured by TOX.

The result from the Korshin et al., 2002 shows that formation of individual DBP and
TOX is strongly correlated with DAS. The correlation between �A272 and TOX was
especially strong (R2=0.99). This suggests that DAS can be used in simple and inex-
pensive tests which can further be used to quantify the formation of numerous DBPs.
DAS can be used as both a monitoring tool in the treatment plant and distribution
system or as an analytical tool in tests of alternative treatment processes.
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The correlations between DAS and formation of individual DBPs have the potential to
revolutionize drinking water utilities way of working. The knowledge of the di�eren-
tial absorbance at various points in the distribution system can help one predict the
concentration of DBPs in a way that is both inexpensive and time saving. The di�eren-
tial absorbance can be measured by implementing UV absorbance/fluorescence online
monitoring sensors and import the sensor readings automatically to a SCADA system.
The following section discusses online monitoring sensors and how they can be used to
predict DBP formation.

2.7 Use of Online Monitoring Sensors to Predict
DBP Concentrations

With regards to the health e�ects of DBPs described in section 2.3, there is a need to
develop a more accurate, continuous monitoring of the DBP concentration in drinking
water. The first real-time monitoring was used in the 1980’s to track the pollution levels
in rivers in the industrial areas of Western Europe. The Meuse river in Netherlands and
the Rhine river in Germany experienced pollution at alarming levels and thus, were the
first places that installed in-situ online monitoring instruments (Callaghan et al., 2019).

Since then, the focus has increasingly shifted to obtaining a complete picture of water
quality using a variety of technologies instead of grab sampling and analysis. Today,
there is a number of reliable online/in-situ monitoring instruments on the commercial
market. Online high-frequency monitoring provides insight into the dynamics of water
quality - rapid and short variations in the water quality.

2.7.1 Definitions

Online monitoring is defined as unattended sampling, analysis and report of a chemical,
physical and/or biological parameter (Callaghan et al., 2019). The frequencies of the
online monitoring vary anything from seconds and minutes apart up to one or more
hours.

There are two di�erent online monitoring tools, sensors and analyzers. A sensor responds
directly to a physical stimulus (e.g heat, light, sound, pressure etc.) and transmits the
signal on a display to future monitoring. An analyzer performs an automated version
of an analytical method. In general, online sensors are considered more robust than
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analyzers. For this thesis, the focus is on online monitoring sensors as they best fit the
objectives of the thesis.

Figure 2.5 illustrates the basis of spectroscopic methods used for online monitoring.
Their purpose is to identify and quantify chemical compounds in a water body based on
their unique spectra. As the illustration shows, the beam emits a wavelength adsorbed
by the molecules in the water which re-emits a wavelength detected by a sensor. By
reading the ’new’ wavelength spectra, scientists can map the important drinking water
parameters like TOC, DOC, turbidity, chlorine concentration etc. The use of UV and
fluorescence spectroscopy is further discussed in subsection 2.7.3.

Figure 2.5: Illustration of spectroscopy. Figure by Chui, 2011.

2.7.2 BlueTech Insight Report

BlueTech Research published in 2019 an Insight Report on online water and wastewater
sensors and analyzers (Callaghan et al., 2019). The key takeway from the report is the
utilities’ shift in focus from reliance on grab sampling/analysis to obtaining a complete
picture of water quality by using a wider range of techniques.

The water quality industry is growing rapidly and the emphasis on continuous moni-
toring, online sensors and rapid testing become more profound. The report states that
since the beginning of the 2000’s, more than a 100 new manufacturing companies have
been established commercially. These companies are specifically targeting the water
market and it is estimated that the companies combined will introduce more than 100
new sensor technologies each year.
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Today’s global market for environmental monitoring sensor is large and the BlueTech
report estimates an annual value of 2-3 billion US dollars. This estimate does not include
the expected rapid growth of the industry. The cost of the sensors and analyzers has a
wide range from $ 200 up to $ 50,000. A higher price can be expected for more complex
systems.

According to BlueTech, there are five main factors contributing to growth in the water
monitoring industry: 1) Development and growth of computer power, 2) More sophis-
ticated wireless communication, 3) A�ordability of remote power systems, 4) More so-
phisticated data analysis tools and 5) Development of drone technologies and satellite
sensing. The most advanced online water sensors can measure multiple parameters at
the same time.

In addition to the main factors contributing to growth, legislation and regulations also
have important influence. A new EU Drinking Water Directive, likely to take e�ect in
2020, mandates utilities throughout the bloc to perform risk assessments both during the
drinking water production and distribution process. This generates a legislative push
towards more online monitoring and can rapidly increase the market size significantly.
The new Drinking Water Directive is an important driver for both the development and
the deployment of sensor technology.

In the next decade, a shift towards more robust online measurement equipment is ex-
pected. The sensors will be more reliable, transparent, intelligent and communicative.
Big data management will play a key role in the infrastructure management.

2.7.3 UV absorbance and fluorescence spectrometers

It is a challenge to directly measure the concentration of DBPs in the background of var-
ious natural organic matter. As described in subsection 2.6, one can estimate the DBP
concentration in water based on the changes of NOM and application of UV absorbance
or fluorescence spectroscopy. The UV absorbance and fluorescence spectrometers are
described in this subsection.

UV-Vis absorbance

Ultraviolet Light (UV-Vis) absorbance spectroscopy is now a frequently used tool for
water utilities to optimize the water treatment process and manage the water quality.
In UV-Vis absorption measurements, a spectrophotometer measures the amount of light
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absorbed by the sample and the absorbance of the sample is determined based on the
intensity of light. There are several types of spectrophotometers, single beam and double
beam design, double beam being the most precise (Chow et al., 2013).

UV absorbance measurements can be used for process optimization, source water mon-
itoring and determination of surrogate water quality parameters in treated water. As
mentioned in subsection 2.5.1, UV absorbance is a well established surrogate measure-
ment for a variety of water quality parameters. Further development to extend UV
absorbance as a surrogate parameter to Cl demand and DBP formation have been car-
ried out (Callaghan et al., 2019).

Fluorescence

Fluorescence is a complementary technique to the UV-Vis. Although it occurs in the
same wavelength range as UV-Vis, the photon re-emits a longer wavelength than the one
received when going from the excited to the ground state. Fluorescence spectroscopy
is a potential monitoring tool because of its high sensitivity and selectivity. It is not
as established a measurement method as is UV-Vis in the water industry, but many
promising prototypes have been developed (Li et al., 2016, Tedetti et al., 2013, Ryökevi�
et al., 2010).

The sensitivity of fluorescence spectroscopy may be 10-1000 times higher than that of
UV adsorption (Henderson et al., 2009). There are three generations of lamps used in
UV and fluorescence spectrometer: low pressure mercury lamps (LP-Hg), Xenon lamps
and deep UV LED lamps. The Deep UV LED lamp is the latest new-generation lamp
and is small in size, with a low power demand, low cost and a fast on-o� operation.

2.7.4 Online monitoring sensors on the market

Table 2.7 summarizes some of the most developed online monitoring sensors on the
commercial market. Manufacturers often create a series of similar sensors with slightly
di�erent functions that can be customized to fit the customers needs. The cost of the
individual sensors vary widely and companies are hesitant to publicly quote their prices
on the products.
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Table 2.7: Examples of online monitoring sensors available on the commercial
market.

Company Product Function

RealTech Real Spectrum PL sensor UV-Vis spectrometer providing real-
time continuous monitoring for UV
spectrum 190-750 nm. Multiparameter
sensor in-situ with chemical cleaning.

Xylem
1. UV-VIS spectral sen-

sors

2. YSI EXO2 Multipa-
rameter Sonde

1. UV-Vis sensor best for measure-
ment of TOC or DOC. Has a UV
range of 200-720 nm and has in-
tegrated ultrasonic cleaning.

2. Multiparameter sonde with wire-
less communication and battery
life of 90 days. Can be configu-
rated with other sensors or used
separately.

S::CAN Spectro::lyser UV-Vis spectrometer providing real-
time continuous monitoring for UV
spectrum 200-750 nm. Multiparam-
eter probe in-situ with xenon flash
lamp and automatic cleaning. Recom-
mended by public authorities like the
US EPA.

One of the most developed online monitoring sensors on the market right now are the
sensors from S::CAN, which is discussed in the next subsection.

2.7.5 S::CAN online monitoring system

Chow et al., 2013 conducted a series of case studies using S::CAN online monitoring
systems. The two major and five minor case studies evaluated the robustness of the
S::CAN hardware and the surrogate parameter algorithm which is in-built in the hard-
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ware. The study addressed di�erent issues, the most relevant being development of the
monitoring of new surrogate parameters such as real time monitoring/prediction of DBP
formation.

The S::CAN Spectro::lyser is one of the online instruments on the commercial market
using UV absorbance to predict TOC, DOC, THM/DBP and nitrate concentration.
The sensor does not provide data on absolute concentration, but it can be used as an
alarm tool targeting any sudden changes in the water quality. The sensor’s algorithms
are based on on-site experience instead of standard solutions created in laboratory. The
S::CAN Spectro::lyser has an automatic hydraulic cleaning and can last weeks without
maintenance.

Figure 2.6: The S::CAN Spectro::lyser. Picture from S::CAN, 2017.

The Chow et al., 2013 study compared the S::CAN sensors data predictions with grab
samples from the same water analyzed in the laboratory. The parameters analyzed was
DOC, TOC, UV254, color and Trihalomethanes Formation Potential (THMFP). From
this evaluation, the research team established that good prediction of concentration can
only be obtained for well-characterised waters.

The analytical results from the standard laboratory methods and the S::CAN Spec-
tro::lyser correlated very well using Partial Least Squares (PLS). For UV254, color and
DOC the correlations were R2=0.98, R2=0.96 and R2=0.84, respectively. The overall
conclusion from the case study is that UV absorbance is an applicable measurement that
is convenient and technically achievable. In addition, the use of multiple wavelength sen-
sors with PLS calibration can improve the reliability and accuracy of the measurement.
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2.8 Cost Benefit Analysis

CBA is a method used to assess the economic e�ciency of proposed public policies
through the systematic prediction of social cost and social benefits. The purpose of the
CBA is to find the most e�cient solution by maximizing the social welfare. If the net
positive social benefits outweigh the social cost, then the policy should be implemented
(Boardman et al., 2006).

The alternatives in a CBA are ranked by valuing all the impacts over the lifetime of an
alternative project in monetary units, discounted to a specific year. This unit is called
Net Present Value (NPV) and is defined in Equation (2.8):

NPV = ≠I +
nÿ

t=0

1
(1 + s)t

(Bt ≠ Ct) (2.8)

where I is the investment, s is the Social Discount Rate (SDR) and Bt and Ct denotes
benefit and cost in year t. The basic decision rule if the CBA has only one alternative,
is to adopt the project if the NPV is positive. If the CBA has several alternatives, the
alternative with the largest NPV should be selected.

The steps of a modern CBA is illustrated by Figure 2.7. The first step is to specify the
set of alternatives for the defined problem. The counterfactual is the status quo, which
means no change in government policy. Second step is to determine the standing. This
includes choosing a perspective by deciding whose benefit and cost count. The third
step is to identify the impact categories, catalogue them and select the appropriate
measurement indicators.

Step four is to predict the impacts quantitatively over the life of the project. Further,
in step five, all the impacts are to be monetized. Monetizing is attaching dollar value to
an impact. The value of an output in a CBA is usually measured in terms of willingness
to Pay (WTP). WTP is defined as the maximum price or below a person is willing to
pay for a product. If a person is not willing to pay for an impact, then the impact has
zero value in a CBA.

Step six is to discount benefits and costs to obtain present values. Future benefits and
costs are discounted relative to present benefit and cost in order to obtain their present
value. In step seven, the NPV is calculated for each alternative by using Equation (2.8).
The general rule is to choose the alternative with the largest NPV.

To consider the uncertainties around the assumptions made in the CBA, a sensitivity
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analysis is preformed which is step eight. Both the uncertainties about the predicted
impacts and the monetary valuation of each unit in the impact are considered.

Figure 2.7: Steps for a modern CBA (Boardman et al., 2006).

The final step is to make a recommendation based on the CBA. Here, both the NPV
of each alternative and the sensitivity analysis are considered before making the final
recommendation. Generally, the analysts should recommend the alternative with the
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largest NPV, but the sensitivity analysis might show that another alternative is prefer-
able. It is important to remember the NPVs are predicted values and take that into
account when making a comprehensive recommendation.

This CBA method was used for estimating cost savings and health benefits as a result of
the implementation of a consistent and rigorous online monitoring program, described
in section 3.6.
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3
Methods

This Chapter describes the methods used for analyzing the DBP data from the water
quality samples, and a thorough description of the Seattle DWTPs and the distribution
system. The first part is an introduction to the Seattle Water System followed by a
description of Cedar and Tolt Treatment Facilities and their treatment steps. Secondly,
di�erent aspects of the distribution system are described. Thirdly, the analytical meth-
ods for the data analysis are presented. At the end of the chapter is a description of the
method and cost associations for the CBA.

3.1 Seattle Water System

Seattle is a coastal city in the Pacific Northwest region of the United States. The two
DWTPs providing drinking water for Seattle are Cedar and Tolt Treatment Facilities.
Combined they daily provide water to 1.4 million people in the Seattle area, including
wholesale costumers. The city of Seattle owns the majority of both Cedar and Tolt
watersheds which results in both watersheds being uninhabited and protected. The
two facilities have di�erent treatment methods to disinfect the drinking water. Cedar
Treatment Facility has no filtration and uses ozonation, UV radiation and chlorination
as disinfection methods. Tolt Treatment Facility uses coagulation/filtration to filter the
water and, ozonation and chlorination as disinfection methods. The water treatment
steps for the two facilities are described in detail in the next to subsections.

Figure 3.1 is an illustration of the the water system in Seattle. Tolt watershed is located
east of Seattle while Cedar watershed is located southeast. The area marked yellow in
the illustration is the Seattle Retail Service Area and where the water quality sampling
sites are located. There are five sampling sites in the distribution system for the Cedar
water and seven sampling sites for the Tolt water.
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Figure 3.1: Seattle Regional Water Supply System (Seattle Public Utilites,
2019a)

Seattle is a rapidly expanding city. Since the 1980’s, Seattle’s population has increased
with over 50 percent while the total water consumption has decreased with 26 percent
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(Seattle Public Utilites, 2019a). Figure 3.2 shows the development of the annual water
demand versus population growth for Seattle from 1930 to 2015. Due to utility and
consumer awareness, water consumption has decreased despite the rapid increase in
population. Summer droughts in the Seattle area in the late 80’s and early 90’s made
the Seattle citizens more aware of water consumption. To decrease the total water
consumption, a series of measures were implemented: installation of low pressure shower
heads, low flow toilets and, less water used on lawns and gardens. The measures were
successful; in the mid 1980’s the annual demand in Seattle region per day was about
640 million liters of water per day (ML/d) (170 MGD) while in 2015 it was about 455
ML/d (120 MGD) (Seattle Public Utilites, 2019a).

Figure 3.2: Total Seattle Regional Water System Demand in Million of Gallons
per Day (MGD) from 1930-2015 (Seattle Public Utilites, 2019a).

3.2 Washington State Disinfection Requirements

For disinfection requirements in Washington state, the EPA has delegated the primary
enforcement of authority to Washington State Department of Health. The State Drink-
ing Water Regulations set the requirements for the disinfection of the drinking water.
The requirements are found in the Washington Administration Code (WAC). Table 3.1
shows the disinfection requirements for Cedar and Tolt DWTP set by WAC 246-290-630.

As shown in Table 3.1, the disinfectant requirements in terms of log removal for Cedar is
higher than Tolt for all the contaminants. The treatment plants use di�erent disinfectant
for each contaminant. Cedar uses ozone for Giardia disinfection while Tolt uses ozone
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and filtration. To disinfect Cryptosoridium, Cedar uses UV radiation while Tolt uses
filtration. As for virus disinfection, both Cedar and Tolt use chlorination.

Table 3.1: Disinfection Requirements for Cedar and Tolt in log removal.

Cedar Tolt

Giardia 4 3
Cryptosoridium 3 2
Viruses 5 4

3.3 The Treatment Facilities

The two treatment facilities, Cedar Treatment Facility and Tolt Treatment Facility, are
discussed in this section.

3.3.1 Cedar Treatment Facility

Cedar River Watershed has been a drinking water source for the Seattle area for over a
hundred years. The new Cedar Treatment Facility started operation in 2004. It supports
about 60-70 percent of Seattle’s drinking water with up to 680 ML/d. The Cedar
River Watershed consists of 90,500 acres of land and is a highly protected mountain
watershed. No commercial activities are allowed within the watershed to minimize the
risk of spreading contaminants and diseases. A distinct object regarding the Cedar
Treatment Facility is the absence of filtration before initiating disinfection. The main
reason for this is the protection of the watershed and the glacial moraine in the watershed
which provides a natural filtration to the water.

The daily average of water treated per day at Cedar Treatment Facility varies with
season. In the warmest months in summer, July and August, the daily average is about
400 ML/d. From November-March, the winter season, the daily average is between
240-250 ML/d.

The raw water from the Cedar Watershed travels through three locations before it gets
transferred to the distribution system:

1. Landsburg Diversion and Treatment

2. Lake Youngs reservoir
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3. Cedar Treatment Facility

At Landsburg Diversion and Treatment, the raw water is dosed with 1 mg/L free chlorine
(Cl2) to keep the transmission pipes clear. However, when the water enters Lake Youngs,
the chlorine concentration is less than 0.2 mg/L which means the water is still considered
raw water. At Landsburg, the UVT of the water is measured continuously every 15
minutes by a online monitoring sensor.

Further, the water flows from Landsburg to Lake Youngs reservoir where it has a six
months detention time. At Lake Youngs, 3-4 mg/L calcium carbonate (CaCO3) is added
to the water to raise the pH. Next, the water is pumped out of Lake Youngs and flows
to the Cedar Treatment Facility. The treatments steps at the Cedar Treatment Facility
are ozonation, UV radiation and chlorination, respectively. The primary disinfectants
are ozonation and UV, while the secondary disinfectant is chlorination.

Lake Youngs

Lake Youngs serves as the transmission reservoir for the Cedar river water prior to
treatment and has a volume of 42 billion liters. The pumping station at Lake Youngs
is 122 meters o�shore water and 12 meters deep to ensure good water quality. Table
3.2 provides information on the raw water quality in Lake Young. On a regular basis,
the water in Lake Youngs can be describes as soft with high transmittance (UVT), low
turbidity, low organics and for the most of the time low in iron.

Table 3.2: Raw Water Quality in Lake Youngs (Seattle Public Utilites, 2014).

Parameter Unit Average Range

Turbidity NTU 0.4 0.2 - 1.6
Temperature °C 12 2 - 24
pH 7.6 6.9 - 8.6
Alkalinity mg/L as CaCO3 17 12 - 22
Hardness mg/L as CaCO3 24 18 - 28
Iron mg/L 0.04 <0.01 - 0.15
TOC mg/L 0.8 0.3 - 1.7
Transmittance % 96 93 - 98

The water quality in Lake Youngs vary due to seasonal changes. In the spring (from
March to June) algae bloom occurs in the lake and causes management problems for
the utility. In 2008-2019, the genus Lindavia caused algae bloom in Lake Youngs. This
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was an algae species never seen in Lake Young before and had a pronounced negative
impact on both the treatment plant and the distribution system. At Cedar Treatment
Facility, screens, monitors, pumps and pipes were clogged by the algae. There were
additional impacts to the wholesale and residential costumers who had clogging and
loss of pressure in the distribution system.

To prevent the physical changes to the treatment plant and distribution system caused
by the seasonal algae bloom, a change in the water flow got implemented. When there
is algae blooming in Lake Youngs, the raw water is bypassed from the lake. In other
words, the raw water travels directly from Landsburg Diversion to Cedar Treatment
Facility. When bypassed from Landsburg to Cedar, the water travels through a cement
tunnel of 3 meters in diameter, before transferred to two steel pipes which are 1.5 meters
in diameter. Since 2008, Lake Youngs has been bypassed for a time period in the spring,
with the exception of the year 2015. The bypass information was an important factor
when analyzing the raw water data.

Treatment step 1: Ozonation disinfection

The first disinfection treatment step at Cedar Treatment Facility is ozonation. Figure
3.3 illustrates the treatment process of ozonation and UV at Cedar Treatment Facility.
The raw water is pumped out of Lake Young and transferred to the ozone injection
chamber.

Figure 3.3: Illustration of ozonation and UV at Cedar Treatment Facility (Seattle
Public Utilites, 2014).

In the injection chamber, liquid oxygen (O2) is converted to ozone gas (O3) using elec-
trical plasma discharge. The ozone reacts with the water by di�using the gas into the
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injection chamber where the water remains for less then a minute. The average ozone
dosage is 0.3-0.6 mg/L. The water stays in contact with the ozone while it travels from
the injection facility to the UV disinfection facility. The diameter of the pipes are 2
meters and the contact time is estimated to be 9-15 minutes, depending on the flow
rate.

Treatment step 2: Ultraviolet light (UV) disinfection

Before the UV disinfection, any ozone left in the water is removed by adding sodium
bisulfite (NaHSO3) to protect the glass in the UV chamber. At the same location, the
second monitoring of the water’s UVT is measured continuously by an online monitoring
sensor.

In the UV chamber, the contact time of the water being treated is less than a second.
The target minimal dose for UV is 40 mJ/cm2. The UVT of the water needs to be
over 90 percent for the utility to get approval for the UV disinfection. Factors that
a�ect the transmittance of the water are turbidity, iron concentration and magnesium
concentration. These factors are present during a lake turnover. After the water has
been disinfected using UV, an average of 3-5 mg/L CaCO3 is added to raise the pH to
8.2 for corrosion control.

Treatment step 3: Chlorination disinfection

The last disinfection step at Cedar Treatment Facility is chlorination. The water enters
two big circular concrete tanks, called clearwells, that have a combined volume of 75
million liters. The clearwells act as temporary storage reservoirs where the chlorination
disinfection is completed. The contact time in the clearwells vary widely from thirty
minutes and up to two hours.

The disinfectant used is gas chlorine (Cl2) and the target dose for the drinking water
varies with season. In winter months, the target residual dose for Cedar is 1.5 mg/L
while in the summer months it varies between 1.6 mg/L and 1.7 mg/L. The dose of
chlorine added to water varies seasonally between 2.0-2.56 mg/L. There is need for a
higher Cl2 dose in summer than in winter. In summer, the daily average Cl2 used is
between 800-890 kg. To compare, in winter the daily average Cl2 used is 550-600 kg.

After the clearwells, residual chlorine is added at the outlet where water is transferred
to the distribution system. This is an important safeguard to prevent microbial con-
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tamination after treatment.

3.3.2 Tolt Treatment Facility

Tolt watershed has been a drinking water source since 1964 and South Fork Tolt River
is the surface water source. The size of Tolt watershed is about 10,000 acres. The new
Tolt Treatment Facility finished its construction in 2001 and it supports 30-40 percent
of Seattle’s drinking water needs. Tolt Treatment Facility provides up to 455 million
liters drinking water per day. Like the Cedar watershed, the Tolt watershed is closed to
the public, making sure that the water is protected from agricultural, recreational and
residential pollution.

The Tolt water characteristics have some di�erences from the Cedar water which are
important to take notice of. Table 3.3 provides information on the raw water in Tolt.
First of all, the Tolt water has a lower average temperature than Cedar. The temperature
in the Tolt water has an average at 9 °C and with a range of 2-15 °C. In Cedar, the water
temperature average is 12 °C with a range between 2-24 °C. This is because the Tolt
water is at a higher altitude up in the mountains where the air temperature is cooler.

Table 3.3: Raw Water Quality in Tolt (Seattle Public Utilites, 2019b).

Parameter Unit Average Range

Turbidity NTU 0.5 0.2 - 1.5
Temperature °C 9 2 - 15
pH 6.9 6.6 - 7.3
Alkalinity mg/L as CaCO3 5.7 5.3 - 6.5
TOC mg/L 1.3 1.2 - 1.6
Transmittance % 87 82 - 90

The pH of the water in Tolt is slightly lower than the Cedar water. The average pH in
Tolt is 6.9 while the average pH in Cedar is 7.6. In other words, the water in Tolt is
slightly more acidic than in Cedar. The average TOC concentration in the Tolt water
is 1.3 mg/L while in the Cedar water the average is 0.8 mg/L. Therefore, the NOM
concentration in the Tolt watershed will generally be higher than Cedar watershed.

The daily average of water treated per day at Tolt Treatment Facility varies with season
due to higher consumer demand in summer than winter. In the warmest summer months,
July and August, the daily average of water treated at Tolt is between 260-270 ML/d.
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In the winter months, from November-March, the daily average of water treated is about
140-145 ML/d.

The treatment steps in Tolt Treatment Facility are ozonation, coagulation/filtration
and chlorination, respectively. The primary disinfectant is ozonation and the secondary
disinfectant is chlorination. The treatment process for Tolt is illustrated in Figure 3.4.
The only data used from Tolt Treatment Facility are generated from grab samples. The
treatments steps at Tolt are described in detail in the next subsections.

Treatment step 1: Ozonation disinfection

Like in the Cedar Treatment Facility, the first step in Tolt Treatment Facility is ozona-
tion. The raw water flows into the concrete injection chamber where the liquid oxygen
(O2) is converted to ozone (O3) when passing through an electric field. The contact time
remains as the water flows to the coagulation and flocculation treatment, as illustrated
in Figure 3.4.

Figure 3.4: Illustration of the treatment process at Tolt Treatment Facility (Seat-
tle Public Utilites, 2019b).

The ozone dose for Tolt is higher than Cedar because of lower temperatures and higher
TOC concentration. The average ozone dose is 2.9 mg/L and the max ozone dose is 4.8
mg/L for the Tolt water.
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Treatment step 2: Coagulation/Filtration

The primary coagulant used in Tolt Treatment Facility is ferric chloride (FeCl3) and
the coagulant aid is a cationic polymer. The average concentration for both the ferric
chloride and the cationic polymer is 1-2 mg/L. During coagulation, the ferric chloride
neutralizes the negative charge of the suspended particles in the water. The particles
then bind together into heavier flocs that are easier to filter. The flocculation occurs in
the chamber, before entering the filtration system.

For the filtration, the filter bed is a 1.8 meter deep, anthracite coal filter media removing
particulates and pathogens as the water flows through the filter. At Tolt, there are six
installed filters with a capacity each of 90 million liters. The filter is cleaned regularly
by backwashing (reversing the water flow through the filter).

At peak flow (227 ML/d), the hydraulic detention time for the water to go through both
the ozone and flocculation basins is 31.6 minutes. However, in reality the flow of the
water is often a third of that. This often results in a detention time of more than one
hour for the water.

Treatment step 3: Chlorination disinfection

The final treatment step is chlorination. The disinfectant used is chlorine gas (Cl2) and
the calculated dose is between 1.9 mg/L and 2.25 mg/L depending on the season. In
winter months, the daily average chlorine used is about 300 kg, while in summer months
the daily average can be as high as 550 kg. The target residual dose for chlorine at Tolt
is constant at 1.5 mg/L regardless the season.

The clearwells reservoirs at Tolt have a combined storage of 28 million liters. The con-
tact time varies from one to four hours depending on the water demand of the city. At
the clearwells, an average of 10 mg/L CaCO3 is added to raise the pH to 8.2 and to
raise the alkalinity to 19 mg/L. Residual chlorine is added at the outlet where water is
transferred to the distribution system.
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3.4 Seattle Water Distribution System

The distribution system is described in this section. The first subsections describe the
structure and function of the distribution system, followed by a description of the water
quality sampling sites.

3.4.1 Reservoirs, transmission and distribution pipes

The distribution system consists of transmission pipes and distribution pipes transport-
ing the water, and the reservoirs storing it. In addition, there are also local standpipes
and elevated tanks storing a small portion of the water. The transmission pipes are the
main structure of the distribution system and are depicted by the blue lines illustrated
in Figure 3.1. The main transmission pipes’ objective is to transport the water from the
DWTP to the suburban areas marked yellow in Figure 3.1.

The transmission pipes consist of 340 km of large-diameter pipeline. The diameter of
the pipes vary from 0.4 to 2.4 meters. The materials of the pipes are either steel, ductile
iron or concrete. The main transmission pipelines transport the water from Cedar and
Tolt to the reservoirs and standpipes, and sometimes directly to the distribution system.
The distribution system contains about 2720 km of pipelines. The diameter of the pipes
vary from 10 cm to 75 cm and the material is unlined or mortar-lined cast iron, ductile
iron or steel-pipe (Seattle Public Utilites, 2018).

There are nine active reservoirs in the distribution system that SPU operates and main-
tains. The smallest reservoir has a capacity of 28 million liters while the biggest has
a capacity of 230 million liters. Seven of the reservoirs store Cedar water and the re-
maining two store Tolt water. The size and location of the reservoir is important for
determination of water detention time in the distribution system. For the smaller reser-
voirs close to dense populated areas (e.g. Seattle downtown), the detention time of the
water is significantly shorter.

3.4.2 Pipe materials and condition

The age of the transmission lines varies from 20 to 100 years. About 2/3 of the material
in the transmission pipes is steel and most of them have cement lining. The pipes in
the distribution system are of various material and quality. Figure shows 3.5 that 41
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percent of the distribution pipes are old unlined iron pipes and 38 percent is lined with
cast. Most of the unlined cast iron pipes were installed in between the beginning of
1900’s and 1930’s. The oldest pipes in the distribution system are from the 1890’s and
new pipes are installed every year.

Unlined pipelines and bacteriological re-growth are two main factors a�ecting the water
quality. The pipes made of unlined iron and steel are prone to react with the chlorine and
therefore may be exposed to be damaged by corrosion. The rate of corrosion depends on
the corrosivity of the environment (in most cases soil or water). If no protective system
is installed, bare metal steel or ductile iron will rust when exposed to soil or water.
Internal corrosion is managed by chemical adjustments and the use of internal linings.
Around 40 percent of the pipelines in the distribution system do not have corrosion
control (Seattle Public Utilites, 2019a).

Figure 3.5: Pipe material and decade of installation for the distribution pipes
(Seattle Public Utilites, 2019a).

In addition to being prone to corrosion, the unlined cast iron pipes have higher a po-
tential for microbial biofilm growth. A biofilm is a layer of microorganisms which forms
a matrix on the interior of the water pipeline. The biofilms may play a role in corro-
sion, function as a reservoir for pathogens and a�ect the aesthetics of the water (Chan
et al., 2019). To prevent microbial biofilms, SPU re-chlorinate the transmission and
distribution pipes.
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3.4.3 Residual chlorine and re-chlorination

The residual chlorine in the distribution system is one important factor to take into
account when analyzing the data. The target residual dose for Tolt is constant at 1.5
mg/L, while for Cedar the residual chlorine ranges from 1.5-1.7 mg/L due to seasonal
changes. The residual chlorine is monitored continuously when the water leaves the
treatment plant and is measured once every week at the distribution sites. A chlorine
sample is taken daily at several locations along the transmission sites.

If the concentration of the residual chlorine measured is less than 0.2 mg/L at one of
the distribution sites, the utility takes action by either adding more chlorine at the
DWTP or in the distribution system. All re-chlorination in the distribution system
happens in the reservoirs. The chlorine concentration is measured continuously at all
the active reservoirs by an online monitoring senor. If the chlorine dose at a reservoir
borderlines to the minimum target dose (e.g. 1 mg/L), the sensor detects it and chlorine
is automatically added to the water.

Chlorine dosage depends on water temperature and season. If the detention time in the
distribution system is low, the water might be re-chlorinated up to three times before
being used.

3.4.4 Sampling sites

SPU is required to collect water quality samples quarterly in the distribution system
at the twelve locations with the highest THM and HAA concentrations based on the
initial distribution system evaluation. Table 3.4 contains information about the twelve
sampling sites. The sampling and lab procedures at SPU are found in Appendix A.

As presented in Table 3.4, five of the sampling sites are supplied by Cedar water and the
remaining seven of the sampling sites are supplied by Tolt water. All the distribution
pipes transporting the Cedar water mainly consist of unlined cast iron (U) while the
distribution pipes for Tolt mainly are lined cast iron (L). This piece of information is
important for the analysis.

The number of reservoirs column indicates the number of reservoirs the water passes
through before entering the sampling site. The last column states the estimated deten-
tion time spent in total in all the reservoirs. The information in Table 3.4 is of great
significance for the analytical part.
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Table 3.4: The water quality sampling sites in the distribution system.

Sampling site Water
source

Pipe
material

Number
of reservoirs

Est. detention
time in reservoirs

C-1 Cedar U 2 7 to 14

C-2 Cedar U 3 8 to 18

C-3 Cedar U 1 7 to 14

C-4 Cedar U 1 7 to 14

C-5 Cedar U 1 7 to 14

T-1 Tolt L 1 7 to 21

T-2 Tolt L 1 7 to 14

T-3 Tolt L 1 7 to 14

T-4 Tolt L 2 7 to 28

T-5 Tolt L 2 7 to 28

T-6 Tolt L 2 7 to 28

T-7 Tolt L 1 7 to 28

3.5 Data Processing Methods

One of the main objectives of the thesis is to process the multi-year DBP and water qual-
ity data, and evaluate the factors influencing the occurrence of high DBP values. This
subsection describes the methods used when analyzing the data provided by SPU. First
is a presentation of the data sets followed by the methods used in Python, Unscrambler
and the Artificial Neural Networks (ANN) model.

3.5.1 Description of the data

The entire data set presented in this thesis were provided by SPU. During the research
study, several meetings were conducted with SPU personnel at which the details of the
distribution system and water treatment process were discussed.
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The raw data from SPU included:

1. DBP (THM and HAA) data at sampling sites in the distribution system from
2007-2018 (both Tolt and Cedar).

2. TOC data at DWTP from 2007-2018 (both Tolt and Cedar).

3. Online monitoring UVT data from Cedar before and after ozonation from 2008-
2018.

4. Daily averages of chlorine concentration, pH, temperature and turbidity at the
inlet of Cedar and Tolt DWTP from 2010-2018.

5. Daily averages of chlorine concentration, pH and turbidity at the outlet of Cedar
and Tolt DWTP from 2010-2018.

The DBP data consists of quarterly samples from the twelve sampling sites presented
in Table 3.4. The DBP samples are usually taken in the first week of February, May,
August and November. The TOC data are grab samples taken every other week at the
inlet of Cedar and Tolt DWTP. The online monitoring UVT data set from Cedar before
and after ozonation was the most comprehensive data set as it had measurements at
every 15 minute intervals for a decade.

The daily average data at the inlet at Cedar and Tolt DWTP are chlorine concentration,
pH, temperature and turbidity. The same data sets were available for the outlet at Cedar
and Tolt, except for temperature.

3.5.2 Data analysis using Python

The results were processed using Python 3.7.3 software to make graphical representation
of the data. The raw data in the Excel files were uploaded to Pandas library in Python
and transferred into numeric tables. Further, the selection of site in distribution system,
time frame and parameter were conducted and put into a graphical representation using
matplotlib.

In assessment of the online monitoring data from Cedar DWTP, some additional detailed
coding had to be prepared considering the grand size of the raw data. The UVA of the
water was calculated using the following Equation (3.1):
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UV A = log( 100
UV T ) (3.1)

The time resolution was matched by averaging the larger online monitoring data set to
the smaller data set of DBPs. The online monitoring UVA data and the DBP data were
compared of the using longitudinal graphs and scatterplots.

To check for correlation of the UVA at Cedar DWTP and the DBP concentration at the
sampling sites, a N days iteration model based on summer or winter season was created
in Python. The model is based on the date of the DBP measurement at the sampling
site and goes back N number of days to in the UVA data measured at Cedar DWTP
to check for correlation. Initially the UVA data has a data point every 15 minutes, but
this was made to daily averages.

The inputs in the N days iteration model are the sampling site, Summer or Winter
months, the N number of days and THM or HAA. The output from the model is a list
of the R2 value from Train 1 and Train 2 for the N number of days chosen and the DBP
value at the sampling site.

For the linear regression models, the ordinary least square method in the scikit-learn
library in Python was used to perform Multiple Linear Regression (MLR) to fit the two
linear models. The same tool was used to make graphical representation of the data.

3.5.3 Data analysis using Unscrambler

Unscrambler is an analytical tool frequently used in advanced statistical analysis in vari-
ous industrial segments, while also increasingly used in the water industry for modelling
and prediction of water quality. For the data given by SPU, Unscrambler was used
to conduct a Multivariate Analysis (MVA) to investigate potential correlation between
THM/HAA formation and the water quality parameters.

A MVA is based on indirect measurements (in this case, pH, Cl measurement, temper-
ature etc.) and empirical data form the basis for the analysis. The MVA consists of
two main parts, the Principal Component Analysis (PCA) and the Partial Least Square
Regression (PLSR). The PCA is a qualitative analysis that characterizes the structure
of the data, while the PLSR relates the sets of variables to each other through regression
and prediction graphs.
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3.5.4 Data analysis using the ANN model

ANN are biologically-inspired computer programs which gather knowledge by detecting
the patterns and relationship in data and are trained through experience, not from
programming. As ANNs are well suited to perform pattern recognition, they can be
used to perform time-series prediction and modelling.

The ANN models are created using MATLABs ANN Toolbox. The ANN models were
tested for the data from Cedar DWTP only. The input and output data from Cedar
DWTP was uploaded in the ANN model to train the model using di�erent algorithms.

In the ANN model, the number of samples are randomly divided into the model’s three
steps: training, validation and testing. In training, the fraction of samples are used to
train the model and the network is adjusted according to it’s error. For validation, the
fraction of samples are used to train algorithms to prevent overfitting. In testing, the
fraction of samples are used for an independent test of the ANN network and measure
performance. When creating the model, one has to decide a division of the samples
between the training, validation and testing.

3.6 Cost Benefit Analysis

The main objective with the CBA is to estimate the society’s benefits and costs as-
sociated with the deployment of online monitoring sensors in the distribution system.
For simplicity and due to limited epidemiological data, the only health risk from DBP
exposure considered in this analysis is bladder cancer. In the first subsection, the num-
ber of new annual bladder cancer cases in the Seattle Water System attributed to DBP
exposure is estimated. Then the appropriate assumptions for each step in the CBA are
made. The results from calculating the NPV and sensitivity analysis are to be used to
recommend the city’s priorities on the issue.

3.6.1 Bladder cancer and DBP exposure

To calculate the society’s benefits from installing online monitoring sensors, it is impor-
tant to target the number of new cases of bladder cancer that can be attributed to DBP
exposure. The American Cancer Society, 2019 estimates 1,910 new bladder cancer cases
in Washington state in 2019. SPU provides drinking water to 1.4 million people, which
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is about 19 percent of the Washington state citizens. Assuming equal distribution, that
yields 363 annual new bladder cancer cases in 2019.

The US EPA published in 2005 Economic Analysis for the Final Stage 2 Disinfectants
and Disinfection Byproducts Rule (US EPA, 2005a, US EPA, 2005b). In the economic
analysis, quantification of bladder cancer risk for individuals exposed to DBPs was
calculated using Population Attributable Risk (PAR). Equation (3.2) defines PAR as:

PAR = Attributable cancer cases
Total cancer cases (3.2)

The US EPA analysis used the Villanueva et al., 2004 pooled data analysis as an ap-
proach to quantify estimates for bladder cancer risk. In the Villanueva et al., 2004 study,
the PAR for an average TTHM level >25-50 µg/L is found to be 17.1 percent (US EPA,
2005a). This is the TTHM level for the Seattle system and is used to estimate the
annual new bladder cancer cases attributed to DBP exposure (defined as x in Equation
(3.3)):

PAR = x

363 (3.3)

0.171 = x

363 (3.4)

x = 0.171 ◊ 363 (3.5)

x = 62 (3.6)

From Equation (3.6), the estimated annual new bladder cancer cases attributed to DBP
exposure in the Seattle Water System is 62.

In this CBA, a linear relationship is assumed between the average DBP concentration
and the number of bladder cancer cases attributable to DBPs. This implies if the
average DBP concentration decreases by 10 percent, there will be a similar reduction in
the annual cases of bladder cancer attributable to the DBP exposure. The same linear
relationship assumption was made in the US EPA’s economic analysis (US EPA, 2005b).

3.6.2 The CBA steps

The steps of a modern CBA is presented in Figure 2.7 and the following assumptions
are made for each step in this analysis:
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1. Specify the set of alternatives.
This analysis has two alternatives:

(a) Implementing the online monitoring sensors in the distribution system.

(b) Keeping today’s status quo, i.e. not implementing the online monitoring
sensors.

Because the analysis includes both an infrastructure project and public health
policy, the time period for the analysis is 10 years.

2. Determine standing.
By determining standing one decide whose benefit and cost count. This analysis
has a a provincial perspective meaning the only cost and benefits accounted for
are the Seattle residents, including the cost and benefits for the Washington state.

3. Catalogue impacts and select measurement indicators.
Impacts are defined as the anticipated benefits and cost from of the alternatives.
The choice of measurement indicators depend on data availability and ease of mon-
etization. The impacts and measurement indicators for this analysis are further
discussed in subsection 3.6.3.

4. Predict the impacts quantitatively over project lifetime.
By predicting the impacts for each alternative one quantifies all impacts for each
alternative for the chosen time horizon. The predicted impacts are further dis-
cussed in subsection 3.6.4.

5. Monetize all impacts to present value.
The monetized impacts are further discussed in subsection 3.6.5.

6. Discount benefits and costs to obtain present value.
The SDR used for this CBA is 3 % and 7 % for comparison reasons.

7. Compute the NPV of each alternative.
The NPV computed for each alternative are discussed in the result subsection 4.3
and the calculation for scenario 2 is presented in Appendix E.1.

8. Perform a sensitivity analysis.
Python 3.7.3 was used as a tool to perform the sensitivity analysis. The sensitivity
analysis is further discussed in subsection 3.6.6.

53



9. Make a recommendation.
The recommendation for the city of Seattle is based on the NPV for each alterna-
tive and the sensitivity analysis.

Because alternative b) is maintaining the status quo, only alternative a), implementation
of the online monitoring sensors, is discussed in the following subsections.

3.6.3 Step 3: Catalogue impacts and select measurement indi-
cators

Step 1 and step 2 in the CBA are defined in subsection 3.6.2. This subsection discusses
step 3, the impacts the alternative a) is expected to have on the utility and society. The
measurement indicator for this CBA is the number of new annual bladder cancer cases.

Impact on the utility

When cataloguing impacts, the first subject to evaluate is the link between the infor-
mation the online monitoring sensors provide and the response of the utility. In this
analysis it is assumed that the sensors are 100 percent accurate for simplicity, even
though this is not always the case.

Based on the DBP analysis, it is expected to have excessive DBP levels twice a year,
one DBP spike event at each DWTP. The Cedar DWTP usually experiences a high
DBP spike every spring while Tolt experience a high DBP spike every fall. If the DBP
concentration in the system exceeds 75 percent of the MCL set by the NPDWR, SPU
start making changes to the operation at the DWTP and pay close attention to the
DBP development.

Table 3.5 and 3.6 present the probability of cause for the DBP spike at each DWTP.
The probabilities are estimated based on SPU’s experience with DBP spikes (L Kirby
2019, personal communication, 18 June). When the sensors notify the utility of the
problematically large DBP concentrations in the distribution system, there are several
actions the SPU can take to lower the DBP concentration. The easiest action to carry
out is to lower the detention time of the water in the reservoir by pushing more water
though the system. A second action is lowering the chlorine dose. A third action for
Cedar DWTP is to switch the water source from Lake Youngs to the river or vice versa.
For Tolt DWTP, a third action is to optimize coagulation to remove NOM. The last
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action is to reduce drinking water production at one DWTP and rely on the other
DWTP.

Table 3.5: Probability for DBP spike causes at Cedar DWTP.

Cause of DBP spike Probability of cause

Change of water source 0.8

Algae 0.1

Unknown 0.1

Table 3.6: Probability for DBP spike causes at Tolt DWTP.

Cause of DBP spike Probability of cause

Drought followed by heavy rainfall 0.5

Landslides in watershed 0.3

Coagulation not optimized 0.1

Unknown 0.1

Which action(s) SPU chooses to carry out to reduce the DBP concentration depends
on the cause and feasibility of the action to be carried out. Due to the complexity of
the distribution system and uncertainties around the cost for each action, the cost for
implementation for each action is not considered in the CBA.

Impact on the society

The predicted impacts from implementing alternative a) for the society is a lower risk
of getting cancer or other chronic illnesses from decreased DBP exposure. This leads to
saved cost for the society for cancer and/or other medical treatment. In addition, the
business hours and tax money saved from people not getting sick-leave from work. As
mentioned, bladder cancer is the only health risk considered in this analysis.
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3.6.4 Step 4: Predict impacts quantitatively over project life-
time

By implementing the online monitoring sensors in the distribution system, it is expected
that SPU can detect higher DBP concentrations earlier in the distribution system and
therefore decrease the overall DBP concentration over time.

Three possible scenarios are considered when predicting the online monitoring sensors
impact quantitatively over the project lifetime. The implementation of sensors are
assumed to result in the following scenarios:

• Scenario 1: 10 percent reduction in the overall DBP concentration.

• Scenario 2: 20 percent reduction in the overall DBP concentration.

• Scenario 3: 30 percent reduction in the overall DBP concentration.

The e�ect of the individual three scenarios will be further considered in the CBA.

3.6.5 Step 5: Monetize all impacts to present value

Cost associated with bladder cancer risk

The US EPA’s Cost of Illness Handbook defines society’s total WTP to avoid an illness
as the best evaluation measurement for a CBA. This includes all societal costs associated
with avoiding an individual’s illness: medical cost, work-related cost, educational cost,
cost of support services required by people needing medical attention and the willingness
of individuals to pay to avoid the health risk (O�ce of Pollution Prevention and Toxins,
2007).

However, it is di�cult to make realistic estimate for many of these categories. Therefore,
analysts use alternative measures to calculate the cost saved. Direct medical cost is
the most used measure for lower-bound estimate of avoiding illness. The monetary
information for bladder cancer used in the CBA is adapted from the Cost of Illness
Handbook and only provides the lower-bound estimate for society’s WTP. To convert
the 1996 dollar value given in the Cost of Illness Handbook, the Consumer Price Index
(CPI) Table from US Bureau of Labor Statistics was used to calculate the CPI multiplier
(Bureau of Labor Statistics, 2015).
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Cost associated with online monitoring sensors

The sensors evaluated in this analysis are spectroscopic UV absorbance sensors. There
are four main expenses to consider when evaluating the cost of the online monitoring
sensors: the cost of the sensors themselves, the implementation and IT integration cost
(using the SCATA system), the cost of cabinet installation and the cost of maintenance.

Even though the time period of the analysis is 10 years, the online monitoring sensors
sensors are still of value at the end of this analytical period. However, compared to the
value of reducing the bladder cancer rate, the value of the sensors are negligible.

The last cost to consider is the excess burden of taxation, also known as the opportunity
cost of public funds. Local government projects funded through taxes will have increased
dead-weight loss, called Marginal Excess Tax Burden (METB). METB is the change in
dead-weight loss resulting from raising an additional dollar of tax revenue and is the
dead-weight caused by how taxes distort the market they are levied on. With respect to
local government projects, the marginal tax source is viewed as the property tax. For
this CBA, it is assumed that the whole project is funded by local tax revenue.

3.6.6 Step 8: Perform a sensitivity analysis

The last analytical step of the CBA is to conduct a sensitivity analysis to test the mon-
etary value of the impacts. The sensitivity analysis was conducted in Python 3.7.3 by
three main functions: the variable distribution function, the NPV distribution function
and the p-value function. The sensitivity analysis was conducted for a SDR of 3 % and
a SDR of 7 %.

The variables are presented by either a Poisson, triangular or normal distribution, de-
pending on their lower and upper bounds. The NPV distribution calculated is based on
the variable distribution. The number of iterations for the variable distribution function
were 10,000 and 100,000 for the NPV distribution function. The p-value function calcu-
lates the probability that the NPV is less than zero and prints histogram distributions
for the p-value, NPV mean and the NPV standard deviation.

The results from the CBA is presented in section 4.3.
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4
Results

In this Chapter, the results from the data processing methods described in section 3.5
are presented, based on which the placement of the online monitoring sensors in the
distribution system is decided. At the end of the Chapter, the results and sensitivity
analysis from the CBA are presented.

4.1 Data Analysis of Seattle Water Distribution Sys-
tem

The following section includes the results obtained from the application of data pro-
cessing methods. The first subsection presents the minimum, maximum and average
concentration of THM and HAA at the sampling sites. In the following subsection,
the online monitoring UVA data is presented, followed by the outcomes from Python,
Unscrambler and the ANN model.

4.1.1 DBP concentration at sampling sites

Figure 4.1 presents the DBP concentration at each individual sampling site from 2008-
2018. The green and blue lines represent the THM and HAA concentrations respectively.
The sampling sites C-3, C-5, T-1, T-3, T-6 and T-7 are missing data from 2008-2011.
As observed in Table 4.1-4.4, the Cedar sampling sites have the highest HAA peaks as
compared to the Tolt sampling sites with highest THM peaks.

Table 4.1-4.4 present the minimum, maximum and average THM and HAA concen-
trations for Tolt and Cedar DWTP. Figure 4.1 show longitudial graphs for the data
presented in Table 4.1-4.4.
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Figure 4.1: DBP concentration at the sampling sites from 2008-2018.

Table 4.1 and 4.2 present the min, max and average DBP concentration at Tolt DWTP.
From the two tables, one can observe that the average HAA concentration is a bit higher
than the average THM concentration at the sampling sites. However, the maximum
concentration for THM is higher than for HAA, the THM peaks at T-4, T-5 and T-6
being particularly high.
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Table 4.3 and 4.4 present the minimum, maximum and average DBP concentration at
Cedar DWTP. The THM average for sampling site C-1 to C-5 is approximately 30 µg/L.
The HAA average for sampling site C-1 to C-5 varies from around 20 µg/L to 40 µg/L.
On the other hand, at the Tolt sampling sites, the maximum concentration for HAA
is higher than for THM for Cedar. The sampling sites C-1 and C-2 have the highest
measured HAA peaks at 85.2 µg/L and 72.8 µg/L, respectively.

Table 4.1: Minimum, maximum and average HAA concentration (in µg/L) for
Tolt DWTP from 2008-2018.

Sampling site
HAA
concentration

T-1 T-2 T-3 T-4 T-5 T-6 T-7

Max 48.3 48.6 49 68.2 50.8 48.4 49

Min 16.1 15.1 20.1 16 16.2 16.5 15.5

Average 35 33 30.6 36 32.8 34.8 33

Table 4.2: Minimum, maximum and average THM concentration (in µg/L) for
Tolt DWTP from 2008-2018.

Sampling site
THM
concentration

T-1 T-2 T-3 T-4 T-5 T-6 T-7

Max 62.6 50.5 60.8 73.3 90.7 67.8 58.6

Min 14.9 15.6 19.8 14.6 15.1 14.9 18.2

Average 31 29 32.5 31.4 39.9 30 30.9

Table 4.3: Minimum, maximum and average HAA concentration (in µg/L) for
Cedar DWTP from 2008-2018.

Sampling site
HAA
concentration

C-1 C-2 C-3 C-4 C-5

Max 85.2 72.8 58.1 65.8 54.2

Min 20.8 6.2 17.1 12.1 15.1

Average 39 19.8 32.8 26.4 31.3
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Table 4.4: Minimum, maximum and average THM concentration (in µg/L) for
Cedar DWTP from 2008-2018.

Sampling site
THM
concentration

C-1 C-2 C-3 C-4 C-5

Max 50.4 55.8 51.4 57.7 42

Min 20.3 22 13.1 16.6 17.2

Average 31.8 34.4 31.5 32.5 27.6

4.1.2 The online monitoring at Cedar DWTP

The use of the online monitoring sensors are described in subsection 3.3.1 and the
assessment of the data from the sensors are described in subsection 3.5.2. The UVT
of the water is measured at Landsburg before it flows to Lake Youngs reservoir where
it has a detention time of six months. Further, the water is transferred in two trains,
Train 1 and Train 2 at Cedar DWTP, where the UVT is measured at both trains after
ozonation. Figure 4.2 shows the UVA at Landsburg and the UVA at treatment Train 1
and 2 at Cedar DWTP from 2012-2014.

Figure 4.2: Online monitoring UVA data from Landsburg, Train 1 and Train 2
at Cedar DWTP from 2012-2014.
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As shown in Figure 4.2, the drinking water measured at Landsburg has a higher UVA
value than Train 1 and 2. The UVA fluctuates and is highest in spring for Train 1 and 2.
Figure B.1 in Appendix B.1 presents the online monitoring UVA data from Landsburg
and Train 1 and 2 at Cedar DWTP from 2015-2017. Figure B.1 illustrates that the
sensors can be prone to failure over a longer time period, as the graphs from April to
June 2015 and October to December 2015 are horizontal.

4.1.3 Data analysis using Python

The following subsection presents the results from the MLR graphical representation
conducted in Python. The graphs presented in this subsection uses site C-1 and HAA
prediction as an example. In Appendix B.2, the same graphs for site C-1 and THM
prediction are presented.

pH

Figure 4.3 represents a scatterplot of pH and HAA concentration (parts per billion)
from 2008-2018. The pH is measured at the sampling site on the same date as the HAA
measurement, and ranges from 7.5 to 8.5. As seen in Figure 4.3, the scatterplot shows
no clear relationship between the HAA concentration and pH at site C-1.

Figure 4.3: Scatterplot pH and HAA at sampling site C-1 from 2008-2018.
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Temperature

Figure 4.4 represents a scatterplot of temperature and HAA concentration from 2008-
2018. Similarly, the temperature is measured at the sampling site on the same date
as the HAA measurement, and the temperature ranges from around 6.5 to 22.5 ¶ C.
Synonymous to Figure 4.3, Figure 4.4 also depicts no clear relationship between HAA
concentration and temperature at site C-1.

Figure 4.4: Scatterplot temperature and HAA at sampling site C-1 from 2008-
2018.

TOC

Figure 4.5 represents a scatterplot of TOC and HAA concentration from 2008-2018.
The TOC is measured at Cedar DWTP while the HAA is measured at sampling site
C-1. To develop a reasonable analysis with the data available, the closest sampling date
for HAA was matched with the closest sampling date for TOC. The TOC concentration
ranges from around 0.65 to 1.1 mg/L. In Figure 4.5, one can see a trend for higher HAA
concentrations proportional to higher TOC concentrations, but the relationship is not
significant.
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Figure 4.5: Scatterplot TOC and HAA at sampling site C-1 from 2008-2018.

The figures in Appendix B.3 contain the scatterplots for THM/HAA and TOC for all the
sampling sites in the distribution system. For the Tolt data T-4 to T-8 in Figure B.6 and
B.7, there is no clear relationship between DBP concentration and TOC concentration.
For the Cedar and the remaining Tolt data (T-1 to T-3), the trend line shows a tendency
for higher DBP levels at a higher TOC level. From Figure B.6 and B.7, it is clear that
the TOC concentration in Tolt water is higher than that in Cedar.

UVA

For the N-days iteration model described in subsection 3.5.2, the summer months are
defined as May, June, July and August and the winter months are November, December,
January and February. The objective with the N-days iteration model is to check for
correlation between ’n’ number of preceding days from the date of DBP measurement
and UVA.

The ’n’ number of days tested in the model was 30. Figure 4.6 and 4.7 show the
best result for the N-days iteration model for sampling site C-1. In Figure 4.6, which
represents UVA and HAA in summer months, the best correlation obtained was R2=
0.81, at n=6. The UVA ranges from around 0.006 to 0.02, while the HAA concentration
ranges from around 20 µg/L to 85 µg/L.
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Figure 4.6: Scatterplot of UVA and HAA data for summer months at sampling
site C-1 from 2008-2018.

In Figure 4.7, which represents UVA and HAA in winter months, the best correlation
obtained was R2= 0.55, at n=4. The UVA ranges from around 0.005 to 0.02 while the
HAA concentration ranges from around 25 µg/L to 45 µg/L.

Figure 4.7: Scatterplot of UVA and HAA data for winter months at sampling
site C-1 from 2008-2018.

4.1.4 Data analysis using Unscrambler

The following subsection presents the result from the Unscrambler analysis. The analysis
covers qualitative PCA followed by quantitative PLSR. This analysis was applied to the
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Cedar DWTP data only. Firstly, the entire data set (sampling sites C-1 to C-5) was
modelled, which produced a poor result with a calibrated R2 around 0.4 and 0.47 for
THM and HAA, respectively.

To improve the outcome of the model, separate models were created for each site. The
graphs presented in this subsection use site C-1 and THM prediction. Appendix C.1
contains the graphs for site C-1 and HAA prediction.

PCA

The data was first analyzed with the PCA. Figure 4.8 represents the total loading mean
variables in a loading plot. The loading plot is useful to understand the correlations
between the variables.

The variance in the data is explained by the Principal Component (PC). In this analysis,
PC1 is based on the variances of water quality parameters. PC2 is mostly based on the
variances of dimensions like plant-site distance and number for reservoirs. As shown in
Figure 4.8, the variance in the data is described by 24 % with PC1 and 18 % with PC2.
In total, with two PCs, the variance is described by 42 % for this model.

Figure 4.8: Loading plot for the PCA.

From Figure 4.8, one can observe that some loadings tend to correlate. The loadings
UVA, HAA, turb in and turb out are located on the far right for the PC1 axis which
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indicates correlation. Located on the far left on PC1, temp in, temp pipe and pH in
indicate a correlation on the other side of the scale. For PC2, number of reservoirs is
the most important loading.

Table C.1 represents the loadings for the two PCs. PC1 shows the covariance between
HAA, turb in, turb out, UVA, TOC, THM, Cl pipe and is negatively associated with
Cl out, pH out, pH in, temp in and temp pipe.

Figure 4.9 is a bioplot graph where variables (red) and samples (blue) are represented
in the same plot. The bioplot shows the relationship between the variables and samples.
For instance, samples R21, R25, R11 and R12 have the highest values of turb in, turb
out, TOC in and Cl pipe, but lower values of temperature and pH. While R26 and R35
have high values of temperature and pH, but low values for turb in, turb out, TOC in
and Cl pipe.

Figure 4.9: Bioplot for site C-1 and THM prediction.

In Figure 4.9, most of the samples are clustered around the center of the graphs, indi-
cating a weak relationship between the variables and the samples.

The loading plot presented in Figure 4.10, plots both predictors (X) and response (Y).
In this case, the predictors are the variables and the response is the THM concentration.
Based on the results from Figure 4.10, THM has the highest correlation with TOC in
for site C-1.
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Figure 4.10: Loading plot for site C-1 and THM prediction.

PLSR

The second part of the Unscrambler analysis is the PLSR. In the PLSR, the R2 value
is applied to all prediction versus reference plots.

Figure 4.11 shows the prediction versus reference plot. The blue line is the predicted
calibration and the red line is the cross-validation. The target line is marked in black
which depicts a 100 % correlation. Ideally, all dots should fall on this line. However,
the predicted R2 for calibration with 4 factors is 0.55 for the data in Figure 4.11. The
cross-validation R2 is even lower at a 0.23.

If one would attempt to predict the THM concentration from the model presented in
Figure 4.11, it would be a very rough estimation. For instance, if one were to predict a
THM concentration of 22 µg/L (Reference Y axis), the predicted value would be roughly
27 µg/L (Predicted Y axis). On the other side, if one were to predict a THM concen-
tration of 51 µg/L (Reference Y axis), the model would predict a THM concentration
of 35 µg/L. Both examples are marked with green circles in Figure 4.11.
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Figure 4.11: Prediction versus reference plot for site C-1 and THM prediction.

Figure 4.12 represents the prediction versus reference plot by samples. The blue line
is the predicted calibration, the red line is the cross-validation and the green lines are
the reference (real measured) values. The figure indicates the samples that are failed
to be predicted by the model and the degree of that failure. For instance, for sample
R6 the model predicts a THM concentration of roughly 35 µg/L, while the real samples
measured a THM concentration of over 50 µg/L.

Figure 4.12: Prediction vs reference plot by samples for site C-1 and THM
prediction.

As one can observe from Figure 4.12, the prediction follows a trend, but multiple samples
are predicted with a high error (e.g. as marked by the red circle). The model is decent
at predicting the trends, but fails to predict the THM peaks.
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4.1.5 Data analysis using the ANN model

The ANN model was only tested for Cedar DWTP. The data parameters from the inlet
of the DWTP were daily averages of UVA, TOC, pH, temperature, turbidity and chlorine
concentration. For the outlet of the DWTP, the daily averages of TOC, pH, turbidity
and chlorine concentration were used in the ANN model. The other data parameters
added were THM and HAA concentration at the five sampling sites for Cedar water
(and their site specific chlorine concentration and temperature).

Additional information added to the model were distance from DWTP to sampling
site, distance from the last re-chlorination reservoir to sampling site, the number of
reservoirs involved from DWTP to the sampling site and the estimated detention time
in the reservoirs.

In the ANN model, ’n’ is the number of neurons in the hidden layer of the ANN model.
Increasing ’n’ adds more mathematical functions in the network which improves the
chances of fitting more complex data into the model. The target is the real values of
THM or HAA used while creating the model, shown on the x-axis. The output refers to
the THM or HAA values predicted by using the ANN model. The output in Equation
(4.1) is defined as:

Output = Slope ◊ Target + Intercept (4.1)

To use as a reference point, a perfect model is obtained with a slope = 1 and an intercept
= 0 (See dashed lines in figures). However, this is never achieved.

For this model, the division for Training:Validation:Testing was 75%:15%:10%. The
number of samples from Cedar DWTP were 176. Appendix D.1 contains the graphs for
THM and HAA for n=2 and n=6. From the figures in Appendix D.1 and below, one can
observe an interesting development in the All R2 value for THM and HAA. For THM,
the All R2 value for n=2, n=6, n=10, is 0.59, 0.84 and 0.86, respectively. For HAA, the
All R2 value for n=2, n=6, n=10, is 0.81, 0.86 and 0.85, respectively.

For using the model on THM, the All R2 value increased with the number of neurons
while for HAA All R2 was quite precise at n=2 and actually lower for n=10 than n=6.

Figure 4.13 and 4.14 presents the result from the ANN model using n = 10. As seen
in the figures, there is a R2 for training, validation, testing and All. The R2 for All
is a combination of training, validation and test. This value provides a composite
measurement for the model which includes the model fit, overfitting avoidance and
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repeatability of the model. Figure 4.13 and 4.14 have similar R2 values with All R2

=0.86 for THM and All R2 = 0.85 for HAA. A R2 value above 0.8 in this case, is
considered a good model fit.

Figure 4.13: ANN model for THM with n=10.

Figure 4.14: ANN model for HAA with n=10.
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4.2 Implementation of Online Monitoring Sensors

Based on the DBP concentrations presented in subsection 4.1.1 and the distribution
system described in Chapter 3, the following proposal is made for the implementation
of online monitoring sensors. The proposal is primarily for the Seattle Regional Water
Supply System, but can be used as a template for other water utilities.

The sensors recommended for implementation are spectroscopic UV absorbance sensors.
The sensors are mainly employed to acquire data for DBP predicting models which are
described in section 2.6. The most critical point to implement sensors are in the DWTP.
Three sensors should be implemented at each DWTP: one at the inlet of the DWTP
(before ozonation), one sensor post ozonation and the last sensor in the clearwells after
chlorination.

For a distribution system, it is suggested to implement three sensors per DWTP. The
first sensor is to be placed to the nearest site sampling point to the DWTP. The other
two sensors should be placed at to di�erent points in the extremities of the distribution
system where the DBP concentration tends to be the highest.

In total, there is a need for 12 online monitoring sensors to provide a full image for the
DBP formation both at the DWTP and the distribution system. It is critical that the
UV absorbance sensors have an extremely high precision to ensure a good fitting DBP
prediction modelling.

4.3 Cost Benefit Analysis

This section describes the results and the sensitivity analysis from the CBA. The main
assumption in the CBA is that the implementation of online monitoring sensors will
reduce the overall DBP concentration and thus, reduce the number of new annual blad-
der cancer cases. For each scenario, the following reduction in bladder cancer cases are
estimated based on the methods and assumptions discussed in subsection 3.6.1:

• Scenario 1: 10 percent reduction in the overall DBP concentration.
This constitutes a reduction in 6 new bladder cancer cases, ending up with a total
of 56 new annual bladder cancer cases.

• Scenario 2: 20 percent reduction in the overall DBP concentration.
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This constitutes a reduction in 12 new bladder cancer cases, ending up with a
total of 50 new annual bladder cancer cases.

• Scenario 3: 30 percent reduction in the overall DBP concentration.
This constitutes a reduction in 19 new bladder cancer cases, ending up with a
total of 43 new annual bladder cancer cases.

4.3.1 Monetization of benefits

The CPI multiplier used in the CBA is 1.63 and was calculated using the CPI Table
(Bureau of Labor Statistics, 2015). Table 4.5 represents the cost of bladder cancer
treatment in 1996 US dollar value (from O�ce of Pollution Prevention and Toxins,
2007) and the calculated cost in 2019 dollar for survivors, non-survivors and the average
bladder cancer patient. The bladder cancer cost for each patient group is considered a
"life-time" cost and therefore has a time horizon of 20 years.

Table 4.5: The medical cost in 1996 and 2019 dollar for bladder cancer for
survivor, non-survivor and average patient at a SDR of 3 % and 7 %. Table
adapted from O�ce of Pollution Prevention and Toxins, 2007.

Patient group
SDR 3 %
($ 1996)

SDR 7 %
($ 1996)

SDR 3 %
($ 2019)

SDR 7 %
($ 2019)

Survivors 148,149 120,132 241,483 195,815

Non-survivors 77,983 73,424 127,112 119,681

Average patient 131,081 107,811 213,662 175,732

As seen in Table 4.5, survivors of bladder cancer undergo more expensive treatment
than non-survivors due to their ongoing maintenance and care. The cost of the average
patient is estimated based on age of diagnosis, survival and mortality probabilities for
each year post-diagnosis. For benefits in the CBA, the medical cost of the average
patient is considered, and survivor and non-survivor costs are considered the upper and
lower limits, respectively.
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4.3.2 Monetization of cost

Table 4.6 presents the total cost for the online monitoring sensors over a 10-year lifetime.
As discussed in section 4.2, there is a need for a total of 12 sensors in the Seattle water
system. The cost for each sensor is set to be approximately $ 50,000 based on the online
monitoring sensor market. For each sensor, implementation and IT integration cost is
estimated to be $ 8,000 while the cabinet installation is $ 50,000 per sensor. These
two costs are only valid for the sensors implemented in the distribution system, which
includes a total of six sensors.

The maintenance cost was the only cost that needs to be discounted to Present Value
(PV). The estimated monthly cost for maintenance of the sensors is $ 2,000, which
constitutes a yearly cost of $ 24,000. To calculate the excess burden of taxation, a
METB of $ 0.17 per dollar of revenue was multiplied with the total cost of the projects.

Table 4.6: Total cost for the online monitoring sensors over a 10-year lifetime
with a SDR of 3 % and 7 %.

Cost SDR 3 % ($) SDR 7 % ($)

Purchase 600,000 600,000

Implementation + IT integration 96,000 96,000

Cabinet installation 300,000 300,000

Maintenance 228,725 192,566

Excess burden of taxation 208,203 202,056

4.3.3 Calculation of the NPV

Appendix E.1 provides further insight for the calculation of the NPV for a SDR of 3 %
and 7 % for scenario 2. Table 4.7 and 4.8 presents the PV benefits, PV costs and the
calculated NPV for each scenario.
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Table 4.7: NPV for each scenario with a SDR of 3 %.

Scenario PV benefits ($) PV costs ($) NPV ($)

1 1,281,972 1,432,928 -150,956

2 2,563,944 1,432,928 1,131,016

3 4,059,579 1,432,928 2,626,650

As shown in Table 4.7 and 4.8, the PV cost for each scenarios is constant regardless the
benefits provided. The PV cost is the sum of all the costs presented in Table 4.6. The
PV benefits increase for each scenario and are calculated using the cost for the average
bladder cancer patient multiplied with the reduction of new bladder cancer cases for
each scenario.

Table 4.8: NPV for each scenario with a SDR of 7 %.

Scenario PV benefits ($) PV costs ($) NPV ($)

1 1,054,392 1,390,622 -336,231

2 2,108,783 1,390,622 718,161

3 3,338,907 1,390,622 1,948,285

The NPV equals the di�erence between the PV benefits and PV costs. The NPVs in
Table 4.7 and 4.8 for scenario 1 are negative, while the NPVs for scenario 2 and 3 are
positive. The basic decision rule for an alternative relative to the status quo, is to adopt
the project if the NPV is positive (Boardman et al., 2006). Nonetheless, before making
a final recommendation a sensitivity analysis has to be conducted.

4.3.4 Sensitivity analysis

This subsection presents the result of the sensitivity analysis which is described in
subsection 3.6.6. The sensitivity analysis was conducted for all scenarios with a SDR
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of 3 % and 7 %. The distribution for each variable tested in the sensitivity analysis is
presented in Appendix E.3.

There are seven variables tested in the sensitivity analysis: the number of cancer cases
avoided (n), the cost of cancer treatment (cc), the cost of investment sensors (cs), the
cost of cabinet installation (cci), the cost of implementation and IT integration (cii),
the cost of maintenance (cm) and the METB.

In addition to the traditional sensitivity analysis, the break-even for the number (n)
of new cancer cases annual bladder cancer cases avoided was predicted using the same
Python function. The break-even number represents the breaking point of the minimal
amount of new annual bladder cancer cases avoided, where the NPV is negative more
than 50 percent of the times when running the functions in Python.

Sensitivity analysis for SDR of 3 %

Figure 4.15 presents the results from the sensitivity analysis for scenario 2 with a SDR
of 3 %. Histogram a) shows the distribution of the NPV, histogram b) shows the mean
of the NPV, histogram c) shows the p-value for the mean, which is less than zero and
histrogram d) shows the standard deviation of the NPV. The mean NPV in histogram
b) in Figure 4.15 is around $ 700,000. The mean of the p-value, observed in histogram
c), is 0.176. The standard deviation of the NPV, from historgram d), is $ 1,020,000.

The results for the sensitivity analysis for scenario 1 and 3 are presented in Appendix
E.4. For scenario 1 (see Figure E.11), the mean of the NPV and p-value are -$ 470,000
and 0.825, respectively. The standard deviation of the NPV is $ 695,000. The results
for scenario 3 are presented in Figure E.12. For scenario 3, the mean of the NPV and
p-value are $ 2,060,000 and 0.007, respectively. The standard deviation of the NPV is
$ 2,280,000.

Sensitivity analysis for SDR of 7 %

Figure 4.16 presents the results from the sensitivity analysis for scenario 2 with a SDR
of 7 %. The mean NPV in histogram b) in Figure 4.16 is around $ 380,000. The mean
of the p-value, observed in histogram c), is 0.281. The standard deviation of the NPV,
from histogram d), is $ 720,000.
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Figure 4.15: Results from the sensitivity analysis for scenario 2 with a SDR of
3 %. Histogram a): the NPV distribution, b) the NPV mean, c) the p-value for
NPV<=0, d) the standard deviation for NPV.
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Figure 4.16: Results from the sensitivity analysis for scenario 2 with a SDR of
7 %. Histogram a): the NPV distribution, b) the NPV mean, c) the p-value for
NPV<=0, d) the standard deviation for NPV.
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The results for scenario 1 and 3 are presented in Figure E.13 and E.14, respectively.
Figure E.13 shows that the mean of the NPV is -$ 605,000, the mean of the p-value is
0.91 and the standard deviation of the NPV is $ 740,000 for scenario 1. For scenario 3,
presented in E.14, the mean NPV is $ 1,530,000, the mean of the p-value is 0.015 and
the standard deviation of the NPV is $ 1,720,000.

Break-even number (n) of new annual bladder cancer cases avoided

The figures from testing the break-even number (n) of new annual bladder cancer cases
avoided are presented in Appendix E.5. The break-even number represents the n that
makes the p-value higher than 0.5, which indicates that the NPV is less than zero for
more than 50 % of the cases.

The break-even number n for a SDR of 3 % is 8. The results from the break-even test is
presented in Figure E.15. When n=8, the NPV mean is -$ 80,000, the p-value mean is
0.59 and the standard deviation of NPV is around $ 600,000. For a n=9, the NPV mean
is $ 120,000, the p-value mean is 0.46 and the standard deviation of NPV is $ 650,000.

For a SDR of 7 %, the break-even number n is 9. Figure E.16 presents the result for
the break-even test where the NPV mean is -$ 110,000, the p-value mean is 0.61 and
the standard deviation of NPV is around $ 535,000. When n=10, the NPV mean is $
50,000, the p-value mean is 0.49 and the standard deviation of NPV is $ 550,000.

4.3.5 Final recommendation

Based on the NPV and sensitivity analysis, the recommendation for the Seattle city is
to chose alternative a), implementation of the online monitoring sensors, and implement
the 12 online monitoring sensors in the Seattle Water System. The net social benefits
exceeds the costs for scenario 2 and 3, and the same conclusion can be made from the
uncertainties tested in the sensitivity analysis.
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5
Discussion

This Chapter refers to the results presented in Chapter 4. The following sections dis-
cuss DBP spikes and causes, challenges and limitations in the data processing and, the
strengths and weaknesses of the CBA. The last section is an overall consideration of
online monitoring sensors and DBP monitoring.

5.1 DBP Spikes and Causes

The major challenge with drinking water treatment is that the conditions leading to
better disinfection e�ciency also lead to higher occurrence of DBPs. The following
subsections discuss the DBP causes and the sampling sites in the distribution system.
The first and second main objective in the thesis, process multi-year DBP data and
identifying potential “hot spots” of DBP formation and identifying potential factors
influencing the occurrence of high DBP values, will be addressed in this subsection.
Once the water has left the treatment plant, there are many factors that can a�ect
the water quality in the distribution system which isn’t documented in the data set
analyzed.

5.1.1 Potential DBP "hot-spots"

The twelve sampling sites and their properties were presented the methods chapter, in
Table 3.4. The sampling sites are in general, the sites furthest away from the DWTP.
As discussed in subsection 2.5.3, higher DBP concentrations are generally observed in
the extremities of the distribution system.

Table 4.1-4.4 present the minimum, maximum and average DBP concentrations at the
sampling sites from 2008-2018. Looking at the average THM and HAA concentration,
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SPU is well below the EPA regulations for MCL presented in Table 2.6. However,
the past recent years SPU has experienced high DBP spikes at sampling sites in the
extremities of the distribution system.

As observed in Table 4.3, the HAA concentration peaked at 85.2 µg/L and 72.8 µg/L for
sampling site C-1 and C-2, respectively. The THM concentration at sampling site T-5,
T-6 and T-6, presented in Table 4.1, ranges from 58.6 µg/L to 90.7 µg/L, at maximum.

From an analytical standpoint, the sampling sites in the extremities of the distribution
system are the hardest to analyze. Most of the water quality data from SPU are from
the inlet and outlet at the DWTP and not from the actual sampling sites. The detention
time from the drinking water leaving the treatment plant is significant and several factors
change the water characteristics initially measured at the inlet and outlet of the DWTP
that are presented in the next subsection.

5.1.2 Factors influencing high DBP values

From section 2.5 in literature review, one can make some assumptions on what can be
expected to be found in the given data. A higher formation of THM can be observed
at a higher pH and vice-versa for HAA formation. A higher chlorine concentration used
at the DWTP can cause a higher DBP formation. A higher temperature could result in
a higher DBP formation. Unlined cast iron pipes are prone to corrosion and microbial
biofilms, which can also contribute to a higher DBP formation potential.

Higher concentrations of re-chlorination and a longer reaction time with chlorine leads
to higher formation of DBPs. However, chlorine is needed for residual disinfection and
is critical to avoid waterborne diseases.

Many of the components controlling DBP formation change with season: temperature,
TOC/NOM, microbial activity, and the kinetics controlling chlorination/re-chlorination.
All these factors contribute to a change in DBP formation. Seasonal variations a�ect
both drinking water consumption and quality in a distribution system. The maximum
DBP values are measured in spring and summer months, while minimum values are
measured in winter. In summer months, the detention time can be as short as two
weeks while in winter months it can be up to four weeks. The detention time is one of
the largest uncertainties within the distribution system.

Table 3.5 and 3.6 map the most common events causing a DBP spike in the distribution
system. For Cedar DWTP, change of water source from Lake Youngs to the river or vice
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versa and algal bloom in Lake Youngs are the most common events observed. For Tolt
DWTP, drought followed by heavy rainfall, landslide in the watershed or unoptimized
coagulation are the main reasons for a potential DBP spike.

NOM is by far, the most important influence factor and the major precursor for DBPs.
Seasonality factors that can lead to increased NOM concentration are heavy rainfalls,
drought, the detention time in the distribution system, the pipe material and the pipe
quality (e.g. leaky pikes) in the distribution system. Based on discussions with and
data provided by SPU, it is observed that the tendency of spikes in DBP concentration
do coincide with high precipitation and storm events.

Table 3.4 presents the sampling site characteristics. For sampling sites C-1 to C-5, the
pipe material is unlined cast iron. For sampling site C-1 and C-2, the drinking water
goes through two or three reservoirs where site C-2 has a high estimated detention time
of 8 to 18 days. For the Tolt water sampling sites, T-4 to T-7 have the highest estimated
detention in the which is 7 to 28 days. The pipe material for all Tolt sampling sites are
lined cast iron and the number of reservoirs range from one to two. The biggest water
quality di�erence for Cedar and Tolt, is the higher TOC content in the Tolt water, even
after being treated at Tolt DWTP.

When comparing DBP concentrations presented in Table 4.1-4.4 and the information
in Table 3.4, one can find some tendencies for the Cedar and Tolt drinking water. The
Tolt water tends to have THM spikes while the Cedar water tends HAA spikes. The
biggest di�erences with the Cedar and Tolt water as mentioned above are the TOC
concentration, pipe material and detention time in distribution system, which might
a�ect the distribution of THM and HAA formation.

5.1.3 Climate change and future water supply

In the SPU 2019 Water System Plan, the future impact of climate change and climate
variability on the Seattle Water Supply System are investigated (Seattle Public Utilites,
2019a). The impacts of climate change are various, a�ecting air temperature, humidity,
evaporation, rainfall, showfall, snowpack and runo� in terms of averages, extremes,
timing and distribution.

The timing and magnitude of climate changes and its e�ect on water supply and demand
are uncertain. In their Water System Plan, SPU conducted a climate analysis with
projection from year 2000 to 2050. The results show an increasing trend in average
temperature across all seasons. This causes an amplification of current seasonal patterns;
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winter precipitation may increase and summer precipitation may decrease in the future.
The expected warmer winter temperature result in less snow and more precipitation and
longer droughts in the summer season.

The climate analysis concludes that SPU’s water supply system will be increasingly
vulnerable to the seasonal shift associated with climate change. More frequent and
severe high flow events will e�ect the water quality causing high turbidity events and
algal blooms that can be disruptive to supply operations.

The Eikebrokk et al., 2018 study concluded that summer droughts and heavy winter
rain cause more frequent and higher NOM concentration in water sources, causing more
frequent DBP events and an overall higher DBP concentration. To better track the
e�ect of high NOM concentration episodes, the implementation of online monitoring
sensors in the distribution system and sensors for temperature and rainfall (along with
weather forecast) is recommended.

To understand how the high NOM concentrations a�ect the DBP concentration in the
distribution system, it is recommended to increase the DBP sampling frequency in
addition to implementation of the online monitoring sensors. It is especially important
to take DBP samples after significant and acute NOM events, to better model and
understand how NOM and turbidity a�ect the DBP concentration.

5.2 Challenges and Limitations in Data Processing

The main goal of the data processing is to gain a better understanding on how DBPs are
related to water quality parameters in a real treatment system. Because of the grand
size and the dynamics of the distribution system, there are several limitations to this
study.

The main challenge with the processed data set in this thesis is the lack of DBP data
and the fact that the DBP data is obtained from the sampling sites furthest away from
the DWTP. Another main challenge is the fact that most of the water quality data is
from the DWTP and not from the sampling points in the distribution system. Lastly,
the long detention time of the drinking water in the distribution system is also a serious
challenge.

Because of the long detention time, there are several factors influencing the water quality
from when measured at DWTP to reaching the sampling site. The main factors are pipe
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condition and material, bacteriological re-growth in pipe system, water age, sediments
and detention time of water to mention a few. The following subsections discuss the
strength and weaknesses with the data processing methods used in the study.

5.2.1 Data analysis using Python

To study the relationship between water quality parameters and DBP formation, MLR
models were used. In general, regression models provide an e�cient statistical approach
to isolate and quantify e�ects on DBP formation. The coe�cient of determination,
R2, explains the strength of the relationship between an independent and dependent
variable, referred to as correlation.

When conducting the MLR models on the data set described in subsection 3.5.1, it
quickly became apparent that the MLR modelling would not give any proficient results
due to the data limitations discussed previously. Therefore, no further statistical analysis
(e.g. removal of outliers, boxplots etc.) were conducted on the data set. Sampling site
C-1 was used as an example for the data representation, and all the results from the
other sites were more and less the same as for C-1.

The figures presented for sampling site C-1 in subsection 4.1.3 and Appendix B.2, show
no clear relationship between pH and temperature and DBP formation. Site C-1 is the
site furthest away from the DWTP and by the time the water reaches the sampling site,
most of the DBP is already formed. If the same analysis was done for sampling sites
closer to the DWTP, the MLR would give a better result.

The scatterplots of TOC and DBP at the sampling sites presented in Appendix B.3
show a positive relationship for some of the sampling sites (e.g. C-3 and C-5) while for
other sites the results were inconclusive (e.g. T-4 and T-7). The TOC samples taken
at the Cedar and Tolt TOC and the DBP samples at the treatment site were taken
on separate days. This is an another reason due to which a clear relationship was not
observed.

The purpose of dividing the N-days iteration model into summer and winter months is
the fact that seasonal changes have major impact on the water quality parameters. The
model was first made without considering the seasonal changes and did not give any
clear results.

The N-days iteration model would have given better results if there was more DBP data
for summer and winter months and if the UVA was measured closer to the the sampling
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sites (e.g. if there was an online monitoring sensor in the distribution system). An
other alternative that would provide better results would be if the DBP data was from
sampling sites closer to the DWTP.

5.2.2 Data analysis using Unscrambler

Unscrambler was used to perform a MVA for the Cedar DWTP data. Due to the lack
of water quality data in the distribution system, the calibrated R2 for all the Cedar
sampling sites were 0.4 and 0.47 for THM and HAA, respectively. For a MVA, a cali-
brated R2 has to be 0.8-0.9 or above to conclude a correlation between the variables and
sampling data. Because of the low R2, any patterns found in the MVA were described
as a casualty when interpreting the data.

For the PCA, the variance in the data is explained by 42 % for the model which is quite
low. This implies that the variance THM and THM concentrations measured in the
distribution system only can be described by around 40 % of the variables. For a MVA,
a good data variance explain about 80-90 % for the model. The two PCs are variance of
water quality parameters and variance of dimensions. From the loadings plot in Figure
4.8, one can observe the loadings UVA, HAA, turb in and turb out have the biggest
impact on PC1. From what is discussed in section 2.5, this is plausible as UVA and
turbidity are solid NOM indicators, and NOM is the the major precursor for DBPs.

Sampling site C-1 is used as an example for the THM and HAA predictions. The
graphs for THM predictions are presented in subsection 4.1.4 while the HAA predictions
graphs are presented in Appendix C.1. The bioplot for THM, presented in Figure 4.9
is inconclusive as the samples are clustered around the center of the graph. The HAA
bioplot, presented in Figure C.1, has two more well-defined clusters. From Figure C.1,
one can observe that one sample cluster seems to correlate with the loadings TOC in,
turb in, turb out and UVA.

The loading plot for HAA, presented in Figure C.2, shows that HAA has the strongest
correlation with TOC in, turb in, turb out and UVA. This verifies the tendency observed
in Figure C.1. For the THM loadings plot, in Figure 4.10, one can observe that THM
has the highest correlation with TOC.

The prediction versus reference for both THM and HAA show a low correlation. The
best measured R2 value was 0.55 for the THM prediction. Both models poorly predict
the THM and HAA concentrations based on the reference data. In the prediction versus
reference plot by samples, presented in Figure 4.12 and C.4, the green line represents the
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real event while the blue and red line are prediction and cross-validation respectively.
Figure 4.12 and C.4 show that the model is decent at predicting the seasonal changes.
However, the model fails at prediction the DBP peak events, which is for sample R34
and R35 in Figure C.4 is significant.

5.2.3 Data analysis using the ANN model

The ANN model was only used on Cedar DWTP because of the lack of water quality
data from Tolt DWTP. For future research, it is recommended to test the ANN model
on the data from Tolt DWTP as well. The number of samples from Cedar DWTP used
in the ANN model is 176. The usual number of samples for an ANN model is 200 or
more. To be more confident about the result, more data from the treatment plant would
be needed.

A perfect model in ANN has an All R2 value that equals 1. However, in real life mod-
elling, this can never be achieved. A value about 0.9 is considered very good correlation
between the independent and dependent variable. For the ANN model for Cedar DWTP,
the R2 value was about 0.85 for both THM and HAA which is considered a satisfactory
fit.

In ANN modelling, increasing the number of neurons makes the model complicated to
fit the type of data which usually fails to obtain a correlation using a classical multiple
regression. From the THM graphs in Appendix D.1, one can observe the di�erence in
the All R2 value for two neurons (n=2) and ten neurons (n=10) in the ANN model. For
the HAA, there was not any significant di�erence in the All R2 value for n=2 and n=10.

The biggest weakness with the ANN model is that outliers and other bias errors in the
data are not considered. To get a better fit for the R2 value one can change the division
for Training:Validation:Testing to train the model to create a better fit. However, this
was not done due to lack of time and resources.

From the data analysis, the ANN model was best fit for the DBP data analyzed with a
R2 of 0.85. Both Unscrambler and the ANN model show promising potential to use in
corporation with spectroscopic online monitoring sensors to gain a real-time picture of
the DBP concentration in a drinking water distribution system.

87



5.3 Strengths and Weaknesses of the CBA

The main objective of a CBA is to improve the quality of public decision making by
investigating if a public policy provides the public a good. For this CBA, the main
objective was to investigate if the implementation of online monitoring sensors would
result in cost savings and health benefits for the city of Seattle. The benefits from
implementation of the project is the number of annual new bladder cancer cases avoided
per year due to implementation of online monitoring sensors in the distribution system.

As presented in section 4.3, the NPV for scenario 1 was negative while the NPV for
scenario 2 and 3 were both positive. However, it is important to be aware of that the
final NPV is a product of multiple assumptions and estimates. The following subsections
discuss the weaknesses and strengths with the CBA method, the assumptions made and
the sensitivity analysis.

5.3.1 Assumptions

The main assumptions with the biggest impact for the result of the CBA are the ef-
fectiveness of the sensors, relationship between DBP exposure and bladder cancer rate,
the project’s time peroid and the discount rate.

Because of the complexity of the system, it is hard to predict the impact of installing
the online monitoring sensors in the distribution system will have on the average DBP
concentration. The uncertainty of this made it reasonable to create di�erent scenarios
to look into what impact reducing the average DBP concentration would have on the
city of Seattle. It has been found that reduction of the overall DBP concentration of 20
percent or more can have significant cost savings for the city.

DBP exposure and cancer risk

The EPA states that uncertainty remains around the estimates of quantifying annual
new bladder cancer cases that can be attributed to DBP exposure. It is important to
consider other factors that contributes to the risk of bladder cancer: age, sex, smoking
history, occupation and socioeconomic status. These confounding factors independently
a�ect the risk of developing bladder cancer. Hence, this is a very rough estimate at best
of annual bladder cancer attributed to DBP exposure.
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Another weakness in the CBA, is the assumption of a linear relationship between bladder
cancer cases and DBP exposure. There is limited epidemiological data to establish a true
linear relationship and evaluate this relationship in detail. The same assumption was
made in EPA’s Economic Analysis for the Final Stage 2 Disinfectants and Disinfection
Byproducts Rule report and their key source of supporting data is Villanueva et al., 2004
(US EPA, 2005a, US EPA, 2005b).

Even thought the Villanueva et al., 2004 study supports a potential association between
exposure to chlorinated drinking water and cancer, evidence is insu�cient to establish
a casual relationship (US EPA, 2005b). The epidemiology and toxicology literature
provides important information that contributes to the weight of evidence for health
risks from DBP exposure. But more research is required to confirm and target the
health risks. Weaknesses with the Villanueva et al., 2004 study is that it only considers
the exposure to TTHM and not HAA. In addition, the estimate of PAR ≥ 17.1 %
represents the population in the whole US and not Washington state.

The biggest weakness to this CBA is the lack of consideration of the cessation lag
period. The cessation lag is defined as the anticipated delay between the reduction of
DBP occurrence and the exposure levels following implementation of a new measure
(US EPA, 2005a). In other words, the cessation lag period is the amount of time it
takes to achieve full reduction in the number of attributable bladder cancer cases due
to the reduced DBP concentration.

The cessation lag period is not considered in this CBA because the calculation requires
advanced model fitting and skills that is outside the scope of this thesis. Moreover,
it is recognized that for a more advanced CBA the cessation lag period is essential to
consider.

Monetization and time horizon

For this CBA, the project lifetime was set as 10 years. The CBA was conducted for a
SDR of 3 % and 7 %. The METB used to calculate the excess burden of taxation was
$ 0.17 per dollar of tax revenue. The CPI multiplier used to convert the dollar value is
1.63. The impact of these parameters are discussed below.

After the project time period of 10 years, it is assumed that the online monitoring
sensors have no real value due to rapid technology development and potential change of
DBP regulations. During this 10 year period, many factors can e�ect the function of the
sensors: the IT integration system can become outdated, the sensors might fail or need
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to be replaced, or more advanced and robust multi-parameter sensors are introduced to
the market. Possible scenarios like these are important to be considered in the CBA.

Even though the project’s lifetime is 10 years, the "life-time" cost for bladder cancer
treatment has a time horizon of 20 years. Optimally, the bladder cancer treatment
should be considered over a 10-year time peroid as well. There are two main reasons for
why it is not considered as such - firstly, to find the cost for an average bladder cancer
patient, statistical models are required based on relative survival rates, historical data
and probability calculations. These models are advanced and outside the scope of this
thesis. Secondly, the cost of cancer treatment based on weighted average from year 10
to 20 is negligible compared to the cost from year 1 to 10.

The calculations made in the EPA’s Cost of Illness Handbook for "life-time" cost for
bladder cancer treatment was adapted to the CBA. Because the PV "life-time" cost was
obtained in 1996 dollar value, a CPI multiplier of 1.63 was used to convert the cost to
2019 dollar value. There are several limitations with the 1996 data. Since 1996, cancer
treatment methods have been developed and might be more e�cient today. Due to
technology development, it might be possible to diagnose bladder cancer treatment at an
earlier stage to improve changes of survival. The market value of cancer treatment might
exceed the inflation measured by the CPI, causing cancer treatment to be more expensive
in 2019 than in 1996. All these factors need to be accounted for when examining the
CBA results.

Due to the big di�erence between PV benefits and PV costs when ’n’ is higher than the
break-even number, the SDR does not a�ect the NPV as much as it usually does in a
CBA. However, the sensitivity analysis is still conducted for both a SDR of 3 % and 7
%.

The real value of avoiding bladder cancer is much greater than the benefits calculated
in the CBA. For the CBA, the only benefit considered was the direct medical cost
associated with bladder cancer treatment. In addition to this, one has to consider life
quality, family members involved in the treatment, pain and su�ering. Inferring from
this, it is clear that the benefits of installing the sensors outweigh the cost of the project.

Social discount rate (SDR)

The objective with the SDR is to weigh costs and benefits in the future compared to
costs and benefits realized by society today. SDR is used when calculating NPV which
is the single measure of the project’s value. The choice of SDR might e�ect the outcome
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of the CBA and result in a di�erent policy recommendation.

Economists argue for what the most suitable SDR is. The US government have a
prescribed SDR of 7 % while the British Treasury recommend using a SDR of 3.5 %
(Boardman et al., 2006). For this CBA, the NPV was calculated using a SDR of 3 %
and 7 %.

As presented in subsection 4.3.3, scenario 2 and 3 have a positive NPV with a SDR of
3 % and 7 %. The SDR had a small e�ect on costs as most of the expenses were at
year 0 in the project. For benefits, the choice of SDR has a much greater impact as the
medical costs are discounted over a 20-year time period. This e�ects the NPV which is
considerably lower at a SDR of 7 % than for the NPV at a SDR of 3%.

5.3.2 Sensitivity analysis

The objective of the sensitivity analysis is to investigate how the NPV changes on ad-
justing the assumptions made in the CBA. If the NPV is still positive after running the
analysis for the worst case scenarios, the analyst can with confidence make a recommen-
dation to implement the project investigated.

The sensitivity analysis tests the uncertainties around the assumptions, the social dis-
count rate and predicted number of new annual bladder cancer cases avoided. From the
sensitivity analysis, one can conclude the NPV for scenario 1 (n=6) will be negative in
more than 80 percent of all cases with a SDR of 3 % or 7 %. For a SDR of 3 %, the
mean NPV was -$ 470,000 and the p-value was 0.825 while for a SDR of 7 % the mean
NPV was -$ 605,000 and the p-value was 0.91. However, for scenario 2 and 3, it is very
likely that the NPV will be positive.

The sensitivity analysis results for scenario 2 (n=12) show a positive NPV for a SDR
of 3 % or 7 %. For a SDR of 3 %, the mean NPV was $ 700,000 and the p-value was
0.176 while for a SDR of 7 % the mean NPV was $ 380,000 and the p-value was 0.281.
The results for the sensitivity analysis for scenario 3 (n=19) were satisfactory. For a
SDR of 3 %, the mean NPV was $ 2,060,000 and the p-value was 0.007 while for a SDR
of 7 % the mean NPV was $ 1,530,000 and the p-value was 0.015. Based on this, one
can conclude that the SDR does not a�ect the outcome of the CBA for any of the the
scenarios.

For the results from scenario 3, both the SDR of 3 % and 7 % had a large NPV standard
deviation which reflects a large amount of variation in the NPV data. The p-value of

91



0.007 and 0.015 indicates for the 100,000 times the analysis ran, the NPV was less than
zero in 0.7 % and 1.5 % of the cases for a SDR of 3 % and 7 %, respectively.

The break-even test showed that the break-even number is n=8 and n=9 for a SDR of 3
% and 7 %, respectively. This indicates that only a few number of annual new bladder
cancer cases need to be avoided to make the implementation of the sensors worth the
cost.

Although the NPV for scenario 1 is negative, the only cost considered in this CBA is
the medical cost associated with bladder cancer, which is a lower-bound estimate. In
reality, the real cost of bladder cancer is much higher than this lower-bound estimate.
In addition, other health e�ects from DBP exposure such as colorectal cancer, stillbirth,
miscarriages and other chronic illnesses are not considered in this CBA. Thus, the real
society cost of DBP exposure is much greater than what is assumed in this CBA.

From conducting the sensitivity analysis, it is clear that the number of new annual
cancer cases avoided (n) and the cost of cancer treatment (cc) are the two variables that
a�ect the outcome of the NPV. These are also the two most uncertain assumptions in
the CBA due to lack of research and data. However, based on the assumptions made in
the CBA and the sensitivity analysis, it is clear that alternative a), implementing the
online monitoring sensors in the distribution system, should be chosen.

5.4 Overall Considerations of DBP Monitoring

This section addresses the third and fifth main objective for the thesis, the selection
of optimal locations for online monitoring sensors in the distribution system and the
ascertain of practical e�orts needed for a paradigm shift from a post-factum reactive
DBP monitoring to a new proactive DBP monitoring. The subsections discuss imple-
mentation of online monitoring sensors, risk minimization versus DBP regulation and,
DBP monitoring using online monitoring sensors and predictive DBP models.

5.4.1 Implementation of online monitoring sensors

In the current practice, the SPU notes the DBP concentrations at certain sampling
points in the distribution system every 90 days. This information is not enough to
create a full picture of the DBP formation in the distribution system and its influencing
factors.
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From analyzing the Seattle Water System and conducting a CBA, it is recommended
for SPU to implement spectroscopic UV absorbance sensors at the DWTP and in the
distribution system. By using DAS as the surrogate parameter, the utility could gain
a real-time overall picture of the DBP formation. Section 4.2 in the results chapter
provides a description of the implementation of the online monitoring sensors and can
be used as a template for other utilities as well.

The greatest value of the spectroscopic UV absorbance sensors is the information they
provide. By being notified of a potential increase in DBP concentration timely, the
utilities can take early action and prevent a high DBP spike. That being said, it is not
given that implementing the sensors will reduce the overall DBP concentration for every
case. The e�ect of the sensors depends on the season and water supply and demand as
the prevention actions are not feasible to carry out all year round.

Facing climate change and frequent DBP spikes in the future, it will be come even more
important to gain a complete picture of the DBP concentration and other water quality
parameters with time. Online monitoring sensors will play an essential role for water
utilities to obtain a overall picture at both the DWTP and in the distribution system.

The online monitoring sensors at Landsburg Diversion and Treatment and Cedar DWTP,
discussed in the methods chapter, are only used to get credit for the UV disinfection
at Cedar DWTP. These are not to be confused with the spectroscopic UV absorbance
sensors discussed in this subsection.

5.4.2 Risk minimization versus DBP regulation

Presently, DBP concentrations in drinking water are controlled worldwide by setting reg-
ulatory guidelines for a specific compound. These guidelines are based on identification
of former compounds and available toxicological data. Unfortunately, for most DBPs,
this information is not available leading to extrapolation of potential health impacts.

The low levels of DBP data combined with expensive sampling procedures mean that
in practice, only a handful of DBP are regularly monitored. There is a need to conduct
multidisciplinary research to map out all the existing DBPs, and their impact on human
health.

An article by Drikas and Fabris, 2018, published in the Australian Water E-journal,
points out that the current regulations limiting specific DBP compounds are not able
to adequately account for the potential health impacts of DBPs. Introduction to addi-
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tional DBP guidelines may not be the necessarily the best approach to encourage water
utilities to run a more proactive and e�ective water treatment. The article suggests a
more e�ective approach would be to establish regulations that encourage change in the
operational practice to reduce the overall DBP risk.

Hereunder, the article mentions monitoring absorbance change, DAS, as an alternative
to monitor and control DBP formation. This can be done by using spectroscopic UV
absorbance or fluorescence sensors, which has shown significant potential to assist DBP
management in the future.

In summary, online monitoring sensors are a provident and suitable approach to address
a more comprehensive measure of DBP formation. The sensors are a great tool for
utilities to prevent DBP formation by earlier start regulation for greater removal of
DBP precursors such as NOM.

5.4.3 DBP monitoring using online monitoring sensors

The concept of real time DBP formation monitoring is ideal for water quality managers.
Using UV spectrometers to monitor DBP formation is an e�cient tool, especially for
water systems with historically high DBP levels. Installing online monitoring sensors
makes the utility aware of the DBP concentration at all time and by that improve the
operational factors at the DWTP. Studies show better control of operational factors
may contribute to a reduction of DBPs (Sadiq and Rodriguez, 2004).

One key point using online monitoring sensors is the importance of cross-checking the
online monitoring data with actual laboratory analysis. The purpose is to validate the
online data both for stable water conditions and during times of water quality changes.

With regards to practical e�orts for a substantial shift to proactive DBP monitoring,
several barriers preventing water utilities to install online monitoring systems need to
be broken. The primary barrier is the utilities’ experience of issues with the online
monitoring instruments. Early experience of unstable sensors when the online sensors
first were introduced to the commercial market made the utilities lose confidence in the
product. Fouling is a big issue with the sensors and at present time there are still no
good cleaning techniques available for the sensors.

In addition to maintenance di�culties, the sensors are a big investment. In most cases,
the utility has to take the initiative to make a purchase by itself and get approval
from the city. It is therefore important for the water utilities to be motivated to make
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proactive changes to gain an overall water quality picture.

The third barrier is the regulation of manual routine monitoring requiring utilities to
take quarterly samples regardless of data obtained from the online sensors. Due to this,
utilities do not find it necessary to implement the online monitoring instruments. Even
if utilities choose to implement online monitoring sensors, they are still required to do
the routine grab samples in the distribution system.

Even with these barriers, the overall picture in the water quality industry is a rapid
expansion in continuous monitoring (Callaghan et al., 2019). In the future, there are
expected to be more stringent regulations pushing towards online monitoring in distribu-
tion systems. With development of more technology advanced sensors, there is expected
to be a paradigm shift from reactive DBP monitoring to proactive DBP monitoring.

5.4.4 DBP monitoring using predictive models

The results from Unscrambler and ANN presented in subsection 4.1.4 and 4.1.5, show
that one can predict the DBP formation with access to basic water quality parameters
like pH, turbidity, temperature and color.

Some of the results from the Unscrambler and ANN were inconclusive due to the lack
of data in the distribution system, with access only to the inlet and outlet data at the
DWTP. Nonetheless, the results show that one can easily predict DBP concentration
by taking regular grab samples at the DWTP and in the distribution system.

This is useful in particular for developing countries who wish to track the DBP con-
centration in the drinking water. For many developing countries, the drinking water is
heavily chlorinated without considering the consequences of high DBP concentration.
To prevent the DBP concentration to exceed the WHO guidelines, grab samples in com-
bination with DBP predictive models is a powerful and e�ective method to predict and
prevent high DBP concentration in drinking water.

In the future, with more sophisticated wireless communication and a�ordability of re-
mote power system, online monitoring sensors can be a solution to track DBP formation
for developing countries as well as for industrialized countries.
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6
Conclusions

In this thesis, a series of possible concepts to monitor DBPs in a drinking water dis-
tribution system have been presented. From the analytical research in this thesis, it
can be concluded that it is possible to make DBP predictions from basic water quality
parameters. In a global context, this a great tool to improve the public health and
makes it possible for developing countries to track DBP formation in the distribution
system by using simple sampling procedures and DBP models.

From processing the multi-year DBP data, the "hot spots" of DBP formation was found
to be in the extremities of the distribution system. NOM was found to be the most
important influence factor influencing the occurrence of high DBP values. Other key
DBP influencing factors are detention time, pipe material, chlorine reaction time, tem-
perature and pH. Many of these factors change with season, causing most DBP spikes
to occur during seasonality changes.

Based on the data analysis, the optimal locations for the online monitoring sensors are
at the DWTP (at the inlet of the DWTP, post ozonation and in the clearwells post
chlorination), the nearest site sampling point to the DWTP and in the extremities of
the distribution system.

From the CBA, it is proven to be beneficial for the City of Seattle to implement online
monitoring sensors to prevent future DBP spikes and lower the overall DBP concentra-
tion. From the assumptions made in the CBA, this will eventually result in a decrease
in new bladder cancer cases. The break-even number for the lowest amount of new
bladder cancer cases to be avoided was found to be nine for a SDR of 7 %, for the NPV
to be positive and thus, implementation to be successful.

Practical e�orts for a paradigm shift towards proactive DBP monitoring include more
stringent DBP regulations, utilities being motivated to make monitor changes, and more
accurate, robust and inexpensive online monitoring sensors.
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6.1 Future Recommendations

The documented research on DBP formation in a real time distribution system is lim-
ited. To make progress in this field, there is a need to develop a more suitable, collective
sampling procedure. It also requires an improved dialogue between research institutions
and water utilities. Without a more frequent data sampling from locations in the dis-
tribution system and DBP data, it is di�cult for researchers to make any analytical
predictions.

Future recommendation on how to better monitor and map DBP formation based on
the research in this thesis:

1. For water utilities to measure water quality parameters not only at the inlet and
outlet of the DWTP, but also at the sampling sites in the distribution system.

2. For water utilities to create a water quality database to track the development of
DBP formation in the system over time.

3. For urban areas, it is an advantage to install online monitoring sensors at the
DWTP and in the distribution system, to continuously monitoring the DBP con-
centration.

4. To better understand the correlation between DBP formation and water quality
parameters, there is a need for a more frequent DBP sampling procedure than
every three months. This is specifically important during acute events causing
DBP spikes.

5. At last, more comprehensive research on DBP species and their impact on human
health is needed. In the future, it is important to focus on the operational, epi-
demiological and regulatory purposes by conducting multidisciplinary research to
map out the real health e�ects of DBPs.
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A
Sampling and Lab Procedures at

SPU

A.1 Sampling Procedures in the Distribution Sys-
tem

The concentration of the DBPs, THM and HAA, are measured from the quarterly
water quality samples in the distribution system. The samples are completed the first
week of February, May, August and November of every year. The sta� collecting the
DBP samples in the distribution system follow a strict protocol routine. The THM
samples are collected in two 40 mL clear glass vials glass containing sodium thiosulfate
preservative. The HAA sample are collected a 125 mL amber glass bottle containing
ammonium chloride. The procedure of collection of samples is as following:

1. Keep the samples on chilled ice during the sampling route.

2. Remove the filters attached to the sampling tap.

3. To assure a representative sample, open the tap and let water run about three
minutes until it reaches a constant temperature.

4. For the THM sample: fill the vial to slightly just above the rim, without aeration.
Make sure there are no bubbles in the sample. Repeat for both clear glasses.

5. For the HAA sample: Fill the amber glass to the rim. No need to care about the
bubbles.

6. Label each bottle with temperature and chlorine measurements, in addition to
date and site code. Refrigerate the samples and bring it to the lab the same day.

It is essential that the samples are executed according to the standard procedure to
ensure correct data from the distribution system. The most important to take notice
from this procedure is that the THM sample cannot contain aeration while the HAA
sample can.
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A.2 Lab Procedures at SPU

It takes about two weeks to process a DBP sample in the lab. The laboratory at Seattle
Public Utilities follow the Standard Operating Procedure (SOP) when analyzing the
drinking water samples. The SOP for determination of HAA is the EPA method 552.3:
’Determination of HAA in Drinking Water by Liquid-Liquid Extraction, Derivatization
and Gas Chromatography with Electron Capture Detection’. For determination of THM
the SOP used is EPA method 524.2 revision 4.1: ’Measurement of Purgeable Organic
Compounds in Water by Capillary Column Gas Chromatography/Mass Spectrometry’.
Below are the summaries of the SOPs for HAA and THM.

A.2.1 Lab Procedures for HAA

40 mL volume of sample Methyl-tert-butyl-ether (MTBE) containing an internal stan-
dard is adjusted to a pH less than 0.5. The HAAs have been partitioned into organic
phase before being converted to their methyl esters by the addition of acidic methanol.
Then the sample is heated for two hours. The methylated HAAs (in solvent phase) are
separated from the acidic methanol by adding 7 mL of concentrated aqueous solution
of sodium sulfate.

The remaining extract is neutralized with a solution of saturated sodium bicarbonate
(NaHCO3) and the solvent layer is removed for analysis. The analytes are identified
and quantitated by capillary column Gas Chromatography (GS) using an Electron Cap-
ture Detector (ECD). Finally, the analytes are quantitated using procedural calibration
standards (EPA method 552.3).

A.2.2 Lab Procedures for THM

The volatile organic compounds and the surrogates are extracted from the sample ma-
trix by bubbling an inert gas through the aqueous sample. The extracted samples
are trapped in a tube containing suitable sorbent materials. The sorbent tube is then
heated and backflushed with helium. This desorbs the trapped sample into a capillary
GS column interfaced to a Mass Spectrometer (MS). The analytes are quantitated us-
ing procedural standard calibration. This also includes the surrogate analytes, whose
concentration are known in every sample (EPA method 524.2 revision 4.1).
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B
Graphs from Python

B.1 Online Monitoring UVA Data

Figure B.1: Online monitoring UVA data from Landsburg, Train 1 and 2 at
Cedar DWTP from 2015-2017.
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B.2 Scatterplots THM prediction at C-1

Figure B.2: Scatterplot pH and THM at sampling site C-1 from 2008-2018.

Figure B.3: Scatterplot temperature and THM at sampling site C-1 from 2008-
2018.
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Figure B.4: Scatterplot TOC and THM at sampling site C-1 from 2008-2018.

Figure B.5: Scatterplot UVA and THM data for summer months at sampling
site C-1 from 2008-2018. For n=4, R2= 0.51.
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B.3 DBP and TOC Scatterplot

Figure B.6: Scatterplot of TOC and HAA5 concentrations at the sampling sites
from 2008-2018.
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Figure B.7: Scatterplot of TOC and TTHM concentrations at the sampling sites
from 2008-2018.
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C
Unscrambler

C.1 Graphs from Unscrambler

Figure C.1: Bioplot for site C-1 and HAA prediction.

Figure C.2: Loading plot for site C-1 and HAA prediction.
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Table C.1: The loadings for PC-1 and PC-2.

Loading UVA
%

TOC in
(mg/L)

pH in Temp in
(°C)

Turb in
(NTU)

pH out Turb out
(NTU)

Cl out
(mg/L)

PC-1 0.287 0.18 -0.4 -0.4 0.38 -0.15 0.31 -0.13
PC-2 0.113 -0.27 -0.1 -0.1 -0.14 -0.13 -0.11 -0.06

TOC out
mg/L

Distance
plant-site

(km)

Last
rechlor-

site
(km)

Number of
reservoirs
involved

THM
(µg/L)

HAA
(µg/L)

Cl
pipe

(mg/L)

Temp
pipe
°C

0.18 -0.0437 -0.0429 0.00388 0.15 0.31 0.15 -0.37
-0.27 -0.487 -0.492 0.465 -0.03 -0.090 -0.2 -0.16

Figure C.3: Prediction vs reference plot for site C-1 and HAA prediction.

Figure C.4: Prediction vs reference plot by samples for site C-1 and HAA pre-
diction. The blue line is predicted calibration, the red line is cross-validation and
the green lines is reference values.
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D
ANN Model

D.1 Graphs from ANN Model

Figure D.1: ANN model for THM with n=2.

112



Figure D.2: ANN model for THM with n=6.
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Figure D.3: ANN model for HAA with n=2.
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Figure D.4: ANN model for HAA with n=6.
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E
CBA Calculations

E.1 Scenario 2 with SDR of 3 %

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

	
	

116



117



E.2 Scenario 2 with SDR of 7 %
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E.3 Sensitivity Analysis - Distribution Histograms
for Variables

The number of iterations for the variable histograms are 100,000.

Figure E.1: Poisson distribution for number of new annual cancer cases avoided
with a mean of n=6.
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Figure E.2: Poisson distribution for number of new annual cancer cases avoided
with a mean of n=12.

Figure E.3: Poisson distribution for number of new annual cancer cases avoided
with a mean of n=19.
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Figure E.4: Triangular distribution for cost of cancer treatment with a SDR of 3
%. The minimum, maximum and average costs for the distribution is from Table
4.6.

Figure E.5: Triangular distribution for cost of cancer treatment with a SDR of 7
%. The minimum, maximum and average costs for the distribution is from Table
4.6.
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Figure E.6: Normal distribution for cost of sensor investment with a mean of $
600,000 and standard deviation of $ 70,000.

Figure E.7: Normal distribution for cost of cabinet installation with a mean of
$ 360,000 and standard deviation of $ 21,000.
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Figure E.8: Normal distribution for cost of implementation and IT integration
with a mean of $ 96,000 and standard deviation of $ 8,500.

Figure E.9: Normal distribution for yearly cost of maintenance with a mean of
$ 24,000 and standard deviation of $ 1,900.
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Figure E.10: Poisson distribution for marginal excess burden of taxation with a
mean of $ 0.17, minimum of $ 0.10 and maximum of $ 0.40.

E.4 Sensitivity Analysis - Results

		

	
	

a) b) 

c) d) 

Figure E.11: Results from the sensitivity analysis for scenario 1 with a SDR of
3 %. Histogram a): the NPV distribution, b) the NPV mean, c) the p-value for
NPV<=0, d) the standard deviation for NPV.
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a) b) 

c) d) 

Figure E.12: Results from the sensitivity analysis for scenario 3 with a SDR of
3 %. Histogram a): the NPV distribution, b) the NPV mean, c) the p-value for
NPV<=0, d) the standard deviation for NPV.

	 	
	
	
	
	
	
	
	
	

a) b) 

c) d) 

Figure E.13: Results from the sensitivity analysis for scenario 1 with a SDR of
7 %. Histogram a): the NPV distribution, b) the NPV mean, c) the p-value for
NPV<=0, d) the standard deviation for NPV.
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a) b) 

c) d) 

Figure E.14: Results from the sensitivity analysis for scenario 3 with a SDR of
7 %. Histogram a): the NPV distribution, b) the NPV mean, c) the p-value for
NPV<=0, d) the standard deviation for NPV.
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E.5 Sensitivity Analysis - Break Even Number of
New Annual Bladder Cancer Cases Avoided

	
	

a) b) 

c) d) 

Figure E.15: Break even number (n=8) of annual new bladder cancer cases
avoided for a SDR of 3 %. Histogram a): the NPV distribution, b) the NPV
mean, c) the p-value for NPV<=0, d) the standard deviation for NPV.

	
	

a) b) 

c) d) 

Figure E.16: Break even number (n=9) of annual new bladder cancer cases
avoided for a SDR of 7 %. Histogram a): the NPV distribution, b) the NPV
mean, c) the p-value for NPV<=0, d) the standard deviation for NPV.
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