

Master’s Thesis 2019 30 ECTS

Faculty of Science and Technology

Reinforcement learning for grid

control in an electric distribution

system

Vegard Ulriksen Solberg

Environmental Physics and Renewable Energy

Preface

This thesis marks the end of my studies at the Norwegian University of Life Sciences. I
have learned and experienced a lot during my 5 years in Ås, and I can look back at many
great memories. The combination of motivated lecturers, hardworking students and kind
friends have been essential for making my time here as good as it was.

I would like to thank my supervisors Oliver Tomic and Kristian Liland for valuable
discussions and input in the writing process of this thesis. I would also like to show
my gratitude to my supervisors at Statnett, Boye Annfelt Høverstad and Leif Warland,
for helpful and constructive guidance, and for giving me the idea of using reinforcement
learning in an electric power system. I would also thank my friends and family for the
support during the thesis writing. Especially, I would like to thank Helene for always
being there throughout the ups and downs this semester.

Vegard Ulriksen Solberg

Ås, 13.05.2019

i

ii PREFACE

Abstract

The increasing amount of variable renewable energy (VRE) sources such as solar and wind
power in the power mix brings new challenges to existing power system infrastructure. A
fundamental property of an electric power system is that the production of power at all
times must be consumed somewhere in the grid. Therefore, excess power from VRE must
be exported and consumed elsewhere, which can break the power capacity in distribution
lines and damage the voltage quality in an electric grid. A workaround this problem
is that consumers shift their power consumption pattern such that more solar power
is consumed locally during daytime. Methods for achieving a change in consumption
patterns are called demand response programs.

The purpose of this thesis is to make a Python implementation of an automatic and
simplified demand response program by using reinforcement learning (RL), a subcategory
of machine learning. The RL algorithm is allowed to increase or decrease the power
consumption every hour in an electric grid that has a high amount of local solar production
and high peak demand. Decreasing the power consumption can for instance correspond to
a collection of electric vehicles postponing the charging to later in the day. Once the RL
algorithm has modified the power consumption, the resulting line currents and voltages
in grid are calculated. The goal for the algorithm is to learn a behaviour that reduces the
number of current and voltage violations in the grid.

The trained RL algorithm is found to reduce the number of safety violations in the
grid by 14 % in a test simulation. However, investigating the results reveals that the
RL algorithm only avoids safety violations in hours of peak demand, and that it actually
produces more violations during hours of peak solar production. The algorithm is bet-
ter overall because more violations occur during the afternoon. Further investigation is
needed to fine-tune the algorithm such that it behaves well in an entire day.

iii

iv ABSTRACT

Sammendrag

Økt andel uregulerbar fornybar kraftproduksjon som sol- og vindenergi i energimiksen
gir utfordringer for eksisterende infrastruktur i et elektrisk kraftnett. En grunnleggende
egenskap i det elektriske kraftsystemet er at all produsert kraft alltid i sanntid m̊a for-
brukes et sted i kraftnettet. Overskudsenergi fra solproduksjon m̊a derfor transporteres
ut p̊a nettet, som i verste fall kan bryte kapasiteten i kraftledningene og ødelegge spen-
ningskvaliteten i kraftnettet. En løsning p̊a dette problemet er at forbrukere forskyver
forbruksmønsteret sitt slik at mer solkraft forbrukes lokalt p̊a dagtid, slik at kraften ikke
m̊a eksporteres til kraftnettet. Metoder som har som m̊al å endre forbruksmønsteret kalles
program for forbrukerfleksibilitet.

Hovedm̊alet i denne masteroppgaven er å lage en Python-implementasjon av et au-
tomatisk og forenklet program for forbrukerfleksibilitet ved hjelp av forsterkende læring
(FL), en underkategori av maskinlæring. FL-algoritmen f̊ar lov til å øke eller minke kraft-
forbruket hver time i et kraftnett med høy lokal produksjon av solkraft og høyt forbruk
p̊a ettermidagen. Et eksempel p̊a å minke kraftforbruket kan være å utsette ladningen
av flere elbiler til senere. N̊ar FL-algoritmen har modifisert kraftforbruket i nettet, s̊a
kalkuleres de p̊afølgende verdiene for strøm og spenning. Målet til algoritmen er å lære
seg en strategi som reduserer antall ganger verdiene for strøm og spenning g̊ar utenfor
sine respektive sikkerhetsmarginer.

Den trente FL-algoritmen reduserer antall sikkerhetsavvik i kraftnettet med 14 % i
test-simuleringen. Det viser seg imidlertid at algoritmen kun klarer å redusere antallet
sikkerhetsavvik sent p̊a ettermiddagen, n̊ar forbruket er p̊a sitt høyeste. Algoritmen gjør
situasjonen verre i timer med høy kraftproduksjon fra solceller. Totalt sett er den trente
algoritmen bedre siden det er flere sikkerhetsavvik i timer med høyt forbruk. Videre
undersøkelser trengs for å justere algoritmen slik at den lærer seg en strategi som fungerer
hele døgnet.

v

vi SAMMENDRAG

Contents

Preface i

Abstract iii

Sammendrag v

1 Introduction 1

2 Power system 3

2.1 Electric circuit theory . 3

2.2 Reactive components . 5

2.3 Reactive power . 6

2.4 Voltage, current and power as complex numbers 6

2.5 Three-phase electric power . 9

2.6 Per-unit system . 10

2.7 Components in the power system . 11

2.8 Two-bus system . 11

2.9 The power flow equations . 14

2.10 Electric model of a power line . 16

3 Reinforcement learning 17

3.1 Reinforcement learning and machine learning 18

3.2 Elements in a reinforcement algorithm . 18

3.3 Markov decision process . 19

3.4 Value and policy functions . 20

3.5 The exploration - exploitation dilemma 21

3.6 Artificial neural networks . 22

3.7 Actor-critic reinforcement learning . 22

3.8 Deep deterministic policy gradient . 24

3.9 Reward engineering . 28

4 Problem Description 31

4.1 State space . 35

4.2 Action space . 37

4.3 Reward function . 38

4.4 Playing an episode . 40

5 State of the art 43

5.1 Reinforcement learning . 43

5.2 Demand response . 45

vii

viii CONTENTS

6 Implementation 47
6.1 Pandapower . 47

6.1.1 Data structures in pandapower . 48
6.1.2 Plotting results . 49
6.1.3 Controlling a pandapower net . 50

6.2 Gym, stable-baselines and ActiveEnv . 52

7 Results 55
7.1 Feasibility . 55
7.2 Simulation - Free activation . 57

7.2.1 Voltage violations . 59
7.2.2 Current violations . 62
7.2.3 Summary . 64

8 Discussion 67
8.1 Voltage and current impact . 67
8.2 Performance of the trained agent . 71
8.3 Solar power production . 74
8.4 State representation . 74
8.5 Reward function . 76
8.6 Energy imbalance . 77
8.7 Reinforcement learning algorithm . 79

9 Conclusion and future work 81

A Model details 89
A.1 Simulation 1 . 89

B Python code 91
B.1 ActiveEnv . 91
B.2 Training . 99

Chapter 1

Introduction

The electric transmission system is an infrastructure that is vital for the modern society as
virtually everything depends on a reliable and secure supply of electric power. Statnett is
the transmission system operator in Norway and is responsible for stable supply of electric
power and the maintenance of 11 000 kilometers of high voltage transmission lines. The
growing share of variable renewable energy sources is changing the dynamics in the power
system and offers both new challenges and opportunities. A fundamental property of an
electric power grid is that the electric supply and demand must equal each other at all
times. In other words, the electric power generated from all power plants, wind parks and
solar farms must in real-time be consumed somewhere in the grid, either by consumers or
in the form of losses. The power balance is a self-fulfilling fact that always holds, but the
power flow can damage the grid and electric equipment if it is not controlled appropriately.
If too much power is produced, the voltages in the grid will increase in such a way that
electric devices will draw more power from the grid. It is Statnett’s task to balance the
production and supply at all times. Norway has a somewhat easier job in terms of system
control compared to other nations because over 94 % of the electric energy production
comes from hydroelectric power plants [1]. Hydropower plants are flexible and can change
their power production faster and cheaper than thermal power plants running on nuclear,
coal and gas. As renewable energy increases, the flexibility and stability in the power
system decreases. Thermal and hydroelectric power plants have large spinning masses
(the turbines and generators) that gives inertia to the power system. They naturally
resist changes in frequency of the voltage in the grid, which is a very convenient property.
This is unfortunately not a feature solar power or wind power have. This is one of the
reasons that the job of the transmission system operator becomes more complicated as
uncontrollable renewable energy grows.

Another problem with distributed energy resources such as solar power production
is that peak production normally occurs around noon, when the sun is at its highest,
while peak power consumption in residential areas is in the afternoon. In some cases, the
consequence of this is that power during daytime must be exported out to the central
grid due to excess power from solar production, and later it must be imported to meet
the peak power demand. As a result, there are two periods of the day where residential
consumers are highly dependent on the electrical grid. As solar production becomes more
prevalent in residential areas, the amount of power that must be exported out during
daytime increases, possibly challenging the capacity of distribution lines. Similarly, the
amount of power that must be imported in the afternoon can grow over time due to city
growth in urban areas. A possible consequence is that the existing grid must be upgraded
to support higher power flow, which is an investment that is very costly and in some sense

1

2 CHAPTER 1. INTRODUCTION

unnecessary. The consumers could be self-sustained in terms of energy in day, but they
must rely on the grid because production and consumption at all times must equal each
other.

A way to cope with the export/import problem is to consume energy in periods with
high solar power production, instead of in the afternoon. In other word, one could shift
the consumption pattern in a normal day. Naturally, all consumption is not flexible and
cannot be shifted to noon, but devices such as electric vehicles, dishwashers and washing
machines do not necessarily need to consume power in the afternoon. The methods
for impacting the demand pattern of consumers are called demand response programs.
The effect of a successful demand response program is that less power must be exported
and imported during a normal day, possibly avoiding a costly upgrade of distribution
system infrastructure. In addition, renewable energy production can grow faster as the
existing power system infrastructure is no longer a bottleneck. This is especially important
considering the urgent climate crisis we experience, where emissions of carbon-dioxide
must be reduced quickly. Although demand response programs have great benefits, it is
not clear how they should be controlled.

Recent advances in reinforcement learning, a subcategory of machine learning, have
showed that reinforcement learning algorithms can master complex control tasks such as
learning to play games only from pixel inputs and learning chess solely through self-play
[2][3]. It is natural to wonder if the advances in reinforcement learning also can applied
to electric power systems and demand response.

The scope of this thesis is to explore the use of a reinforcement learning algorithm
to control an electric power system through a simplified and ideal program of demand
response. The reinforcement learning algorithm used is called deep deterministic policy
gradient (DDPG), and the goal of this thesis is to answer the following research question
(RQ):

RQ: Is the DDPG algorithm able to reduce the number of safety violations in
a grid with high peak solar power production and high peak demand by the
means of demand response?

First, a theoretic background for electric power systems and reinforcement learning
is given in chapter 2 and 3 respectively. Chapter 4 presents a detailed problem descrip-
tion, before an overview of the state of the art for reinforcement learning and demand
response is given in chapter 5. Chapter 6 describes how make a Python implementation
of a reinforcement learning algorithm that controls an electric grid. Lastly, the DDPG
algorithm is applied on a test case and the results are presented in chapter 7 and discussed
in chapter 8. The most relevant parts of the Python code can be found in appendix B.

Chapter 2

Power system

The reinforcement agent is operating within an electrical power system and it is therefore
necessary to give an introduction to the electrical grid and relevant quantities describing
it. The theory presented in this chapter and more can be found in Alexandra Von Meier’s
book Electric power systems: a conceptual introduction [4].

2.1 Electric circuit theory

Voltage, current and power

An electric circuit is a model that describes how electrical power is transferred from an
electrical source unit to a load. An example of a source is a power socket on the wall
and a load can be a light bulb or a vacuum cleaner. A model of a simple electric circuit
is shown in figure 2.1, where U is placed next to the electrical source and R next to the
load. The electric transmission system is analogous to this configuration, except it with
several electrical sources (power plants) and loads (cities) connected.

U

I

R

Figure 2.1: Simple electric circuit with voltage source U, current I and resistance R.

U is the voltage in the circuit and is a measure of the potential energy between
charges at each terminal of the voltage source. Volt (V) is the unit for voltage, which is
equivalent to joule per coulomb. The current I flowing in the wire is a measure for the
amount of charges passing through a cross section of the circuit wire per second. The
unit for current is ampere (A) or coulomb per second. The resistance R is a measure for
how much an electric load, such as a light bulb, resists the flow of electric charges. The
unit for resistance is ohm, denoted by Ω. The magnitudes of the voltage, current and

3

4 CHAPTER 2. POWER SYSTEM

resistance are governed by Ohm’s law

U = RI (2.1)

where U is the voltage, R is the resistance and I is the current flowing. Another
version of this is equation is found by introducing the admittance Y which is defined as
the inverse of the resistance R, i.e. Y = 1/R. The admittance Y is a measure for how a
load allows the flow charges in a circuit. The unit for admittance is siemens (S). By using
the admittance Y , Ohm’s law can be expressed as

I = UY (2.2)

The power P an electric load consumes can be found easily by multiplying the current
I and voltage drop U over the load

P = UI (2.3)

The unit for power is watt (W) or joule per second.

Kirchoff’s laws

Figure 2.2 shows a circuit with several branches and loads

U

I I2

R2R1

I1

C1 C2

Figure 2.2: Simple electric circuit with several branches and resistors

The current I will split when it reaches and intersection, such that the total current
flowing into the node equal the total current flowing out from it. Referring to figure 2.2
we have that I = I1 + I2. This conservation of current is called Kirchoff’s 1st law or
simply Kirchhoff current law. With the introduction of branches in a circuit, there will
also be closed loops. In figure 2.2 there are two closed loops C1 and C2. Kirchoff’s 2nd
law, also known as Kirchoffs’s voltage law, states that the voltage U over the components
in a closed loop C is equal to zero.∑

i

Ui = 0, Ui ∈ C (2.4)

For the two loops C1, C2 in figure 2.2 we have

U + I1R1 = 0

I1R1 − I2R2 = 0
(2.5)

2.2. REACTIVE COMPONENTS 5

2.2 Reactive components

There are electrical loads that cause a phase shift between the current and voltage in an
electric circuit. For instance, the circuit shown in figure 2.3 has a capacitor as load.

U

I

C

Figure 2.3: Circuit with a capacitor as load

A capacitor is a component that can store an electrical charge Q when a direct current
(DC) voltage source U is applied over it. A capacitor is characterised by the charge Q
it can hold for a given DC voltage U. This quantity is called the capacitance C of the
capacitor and is given by

C =
Q

U
(2.6)

where Q is the charge stored by the capacitor and U is the applied DC voltage. The units
for capacitance is farad (F). Capacitors are relevant because they appear in the electric
modelling of a transmission line. Applying Kirchoff’s voltage law to this circuit when the
source is a sinusoidal signal U sin(ωt) and using equation (2.6) gives

U sin (ωt)− Q(t)

C
= 0, Q(0) = 0 (2.7)

Recognising that the current I is the derivative of Q with respect to time reveals that
the current is given as

I(t) = UωC sin (ωt+ π/2) (2.8)

The solution shows that the current I is phase shifted 90 degrees ahead of the voltage U.
It is convenient to introduce the capacitive reactance Xc as

Xc =
1

ωC
(2.9)

where ω is the angular frequency of the signal and C is the capacitance of the capacitor.
The circuit current can now be expressed on the same form as Ohm’s law

I(t) =
U

Xc
sin(ωt+ π/2) (2.10)

The circuit shown in figure 2.4 is another example of a reactive component that phase
shifts the current. The load is an electromagnetic coil, also called an inductor, and appears
in a wide range of electric components. For instance, an electric transmission line is mainly
modelled as an inductor. The voltage across an electromagnetic coil is proportional to
the time derivative of the current flowing through it due to Faraday’s law of induction.

6 CHAPTER 2. POWER SYSTEM

U

I

L

Figure 2.4: Circuit with an electromagnetic coil as load

The proportional constant is called the inductance L of the coil and it is given in henry H.
Similarly as with the capacitor, Kirchoff’s voltage law gives rise to a differential equation.
Let the voltage source be U sin (ωt)

U sin (ωt)− LI ′(t) = 0, I(0) = 0 (2.11)

The solution of equation (2.11) is

I(t) =
U

ωL
sin(ωt− π/2) (2.12)

The current is shifted 90 degrees behind the voltage in this case. We see that both
inductors and capacitor shift the current by 90 degrees, but in different direction. The
inductive reactance Xc is defined as

Xc = ωL (2.13)

where ω is the angular frequency of the voltage and L is the inductance of the coil.

2.3 Reactive power

For a purely resistive load with no phase shift between current and voltage, the instan-
taneous power transferred to the load as given by equation (2.3) is always positive, as
shown in figure 2.5. This power is called active power, and is measured in watt (W). This
is not the case for reactive loads. The phase shift between current and voltage results in
a pulsating power between the source and the load, as shown in figure 2.5. The pulsating
power resulting from reactive loads is called reactive power Q and has unit var, to distin-
guish it from unidirectional power flow. Figure 2.5 shows that the instantaneous power
resulting from an inductive and capacitive load are opposite of each other. As a result, a
circuit with equal inductive and capacitive reactance connected in parallel will draw zero
instantaneous power from the source. By convention, a capacitive load is defined to sup-
ply reactive power while an inductive load is a reactive power consumer. Consequently,
overhead transmission lines are considered reactive consumers, because they are mainly
inductive.

2.4 Voltage, current and power as complex numbers

Current, voltage, impedance and power are all expressed as complex numbers in an AC
electric power system. Consider the circuit shown in figure 2.6. The resistor will draw

2.4. VOLTAGE, CURRENT AND POWER AS COMPLEX NUMBERS 7

π
2

π 3π
2

2π

−1

1

ωt

P Resistive load

π
2

π 3π
2

2π

−1

1

ωt

P Capacitive load

π
2

π 3π
2

2π

−1

1

ωt

P Inductive load

Figure 2.5: Instantaneous power transferred to the load in a circuit with a pure resistive, induc-
tive and capacitive load that are equal in size

U

I Iq

LR

Ip

Figure 2.6: Circuit with a resistor and an inductance connected i parallel

a current Ip that is in phase with the source voltage. The inductor will draw a current
Iq that lags the voltage by 90 degrees. The resultant current drawn from the source will
therefore be a linear combination of two phase shifted sinusoidal signals. The equations for
summing phase-shifted sinusoidal signals are complicated, and not easy to work with. This
motivates the introduction of complex numbers. Euler’s formula states that a complex
number A can be expressed by

A = Rejωt = R cos (ωt) + jR sin (ωt) (2.14)

where e is the base of the natural logarithm, j is the imaginary unit and R is the
magnitude of A. The currents Ip and Iq can therefore be expressed as the imaginary part
of two complex numbers A1, A2. Treating the currents as complex numbers makes it

8 CHAPTER 2. POWER SYSTEM

easier to sum them because they form a right-angled triangle in the complex plane, as
shown in figure 2.7. One can always convert back to the sinusoidal current by taking the
imaginary part of the complex resultant current I.

I

Ip

Iq

-ϕ

Figure 2.7: Current as complex numbers. Iq is the current drawn by an inductor, and lags the
voltage by 90 degrees. Ip is the current drawn by a resistive load and is in phase with the voltage.
The current I is commonly defined to be lagging, so that I = |I|e−jϕ. By this definition, ϕ is a
positive real number when the current is lagging the voltage.

The resultant current I drawn from the voltage source can now be expressed as

I = |I|e−jϕ = Ip − jIq (2.15)

where |I| and ϕ respectively are the magnitude and phase shift of the current. The
current Iq is 90o behind Ip and is therefore multiplied by −j, which corresponds to a 90o

clockwise rotation in the complex plane. Comparing equation (2.14) and (2.15) shows
that the angular frequency ω is removed, and that the current is simply considered a
complex constant. This has do with the fact that the sum of two synchronous sinusoidal
signals (same ω) inherits the same frequency. One can therefore consider the current at
some arbitrary time, say t=0, and consider it a constant because the phase shift ϕ is
independent of time. The resultant complex current can also be expressed as |I|∠ − ϕ.
The current magnitude |I| is given by the Pythagorean theorem.

|I| =
√
I2p + I2q (2.16)

The phase shift ϕ is described by the trigonometric relation

tanϕ = −Iq
Ip

(2.17)

Inductive and capacitive reactances can also be expressed as complex numbers. A
coil phase shifts the current 90 degrees behind the voltage. Considering the current Iq as
a complex number in Ohm’s law gives that the inductive reactance can be expressed as
jXL, because multiplication by j corresponds to a 90 degree anticlockwise rotation in the
complex plane

U = I · jXL (2.18)

Similarly, a capacitive reactance Xc phase shifts the current 90 degrees a head of the
current. Therefore, it can be expressed as −jXc

U = I · (−jXc) (2.19)

The complex notation also works for a circuit with resistive, inductive and capacitive
components connected in series, as shown in figure 2.8.

2.5. THREE-PHASE ELECTRIC POWER 9

U

R

L

C

Figure 2.8: AC circuit with a resistor, capacitor and coil connected in series

The sum of the resistance and reactances is called the impedance Z of the circuit and
is given as

Z = R+ jXL − jXc (2.20)

Using the complex impedance Z in Ohm’s law describes both the resultant magnitude |I|
and phase angle of the current ϕ in an AC system.

The active and reactive power flowing in a line are also expressed as a complex number.
The apparent power S flowing in a line is defined to be

S = UI∗ = P + jQ = |S|ejϕ (2.21)

Where U is the voltage, I∗ is the complex conjugate of the current, P and Q are
respectively the active and reactive power supplied by the voltage source. The conjugation
of the current is a convenience to make the reactive power Q be a positive number when
the current is lagging the voltage, as is the case for an inductor. According to this
definition, an inductor consumes reactive power while a capacitor is a reactive source.
The magnitude of the apparent power |S| is

|S| =
√
P 2 +Q2 (2.22)

where P and Q are the active and reactive power respectively. The angle of the apparent
power S is the same as the phase angle of the current I.

2.5 Three-phase electric power

A conventional electrical power line transfers power in three conductors that have equal
voltage magnitude and are phase-shifted 120 degrees with respect to each other. An
electrical circuit of a three-phase power system is shown is figure 2.9.

The three conductors are not drawn in illustrations of a power system infrastructure,
but replaced by a one-line diagram. A one-line diagram is well suited for illustrating
power flow, but it should be noted that there in reality is a three-phase system with three
conductors. The voltage magnitude given in a one-line diagram can be expressed either
by the phase voltage |Uph| which is the voltage relative to ground, or the voltage between
the lines |ULL|. The relation between them in a balanced three-phase system is

|ULL| =
√

3|Uph| (2.23)

10 CHAPTER 2. POWER SYSTEM

|U |∠0◦

|U |∠120◦

|U |∠240◦

Ra

Rb

R
c

Za

Zb

Zc

Figure 2.9: Electric model of a three-phase transmission system. Three conductors transfer
power to the loads Ra, Rb and Rc

The apparent power |S| transferred in a three-phase system is given by

|S| =
√

3|ULL||I| (2.24)

where |ULL| is the line voltage magnitude and |I| is the current magnitude in each con-
ductor. The active power P and reactive power Q is determined by

P = |S| cosϕ

Q = |S| sinϕ
(2.25)

where ϕ is the angle between the phase voltage Uph and the current in the same phase.
A symmetric system is assumed, so it is arbitrary which phase is used.

2.6 Per-unit system

An electric power system generally consist of lines with different voltage magnitudes that
can range from a few kV to many hundreds of kV. As a result, it is difficult to see if the
power flow in a line is high or low, because it must always be compared to the voltage
level. To simplify this, quantities are generally measured relative to base values. This is
called the per-unit system. Specifically,

U = |Ub|Upu
I = |Ib|Ipu
S = |Sb|Spu
Z = |Zb|Zpu

(2.26)

The subscripts b and pu denote base and per-unit respectively. The per-unit quantities
are still complex numbers, but are dimensionless. A line is given by a nominal value for

2.7. COMPONENTS IN THE POWER SYSTEM 11

apparent power |Sb| and voltage magnitude |Ub|. The base current |Ib| is defined as

|Ib| =
|Sb|√
3|Ub|

(2.27)

By the definition in equation (2.27), the apparent power in per-unit Spu is given as

Spu =
S

|Sb|
=

√
3UI√

3|Ub||Ib|
= UpuIpu (2.28)

In other words, the apparent power takes the form of a one-phase system, although it in
reality is a three-phase system. A similar motivation gives the definition of the per-unit
impedance base |Zb|

|Zb| =
|Ub|√
3|Ib|

(2.29)

By the definition in equation (2.29), the per-unit voltage Upu is given as

Upu =
U

|Ub|
=

√
3ZI√

3|Zb||Ib|
= ZpuIpu (2.30)

The per-unit notation thus result in the same relation between current, voltage and
impedance as Ohm’s law in a one-phase system.

2.7 Components in the power system

An electrical power system consists of a set of nodes N, commonly referred to as buses,
and a set of branches L that connects some or all of the buses. The branches between
buses can be power lines, cables, transformers or other power electronics equipment. The
buses and branches define the topology of the electrical power system. Figure 2.10 is an
illustration of an electric power system consisting of 5 buses and 7 branches. Note that
the branches are one-line representations of a three-phase system. Formally, this network
is described as

N = {1, 2, 3, 4, 5}
L = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 5), (4, 5)}

(2.31)

A bus is electrically modelled as a point where electrical power is injected. A positive
injected power corresponds to generation of power at that bus. This is the case for a
bus that is connected to a power plant. A negative power injection corresponds to a
consumption of power, as would be the case for a bus connected to a factory producing
aluminium. The sum of power production and consumption determines the net power
injection to that bus. Bus k in an electric power system is physically described by four
quantities: The voltage magnitude |Uk|, the voltage angle δk, the active power injection
Pk and the reactive power injection Qk.

2.8 Two-bus system

Figure 2.11 displays power flow between to buses connected by a transmission line. From
the left we have active power P1 and reactive power Q1 flowing. The power flows through
the line and continues out from bus 2 as P2 and Q2. U1 is the complex representation of

12 CHAPTER 2. POWER SYSTEM

Bus 1

Bus 2 Bus 3

Bus 4 Bus 5

Branch (1,3)Branch (1,2)

Branch (2,3)

Branch (4,5)

Branch (3,4)
Branch (2,4) Branch (3,5)

Figure 2.10: Example of a network with 5 buses and 7 branches connecting them

P1 + jQ1

R+ jX
P2 + jQ2

|U1|∠δ |U2|∠0◦

|I|∠-ϕ

Figure 2.11: Simple two-bus system connected by a line. P and Q are the active and reactive
power flow, R and X are the resistance and reactance of the line, U is the voltage and I is the
current flowing

the voltage at bus 1, U1 = |U1|ejδ. Similarly, U2 = |U2|ej0 = |U2|. The relation between
voltage and current for the system is given by Ohm’s law.

U1 − U2 = (R+ jX)I (2.32)

R is the resistance and X is the reactance of the line, U1 and U2 are the voltages at bus
1 and 2, and I is the current flowing in the line. The impedance Z of the line can be
expressed as Z = |Z|ejε where tan(ε) = X/R. The current I is commonly defined to be
lagging, so that I = |I|e−jϕ. By this definition, ϕ is a positive real number when the
current is lagging the voltage. In figure 2.12, the current, voltages and impedance are
drawn as phasors in the complex plane for a line with zero resistance (R=0).

Using Ohm’s law, the current I in the line can be expressed as

I =
U1 − U2

Z
=
|U1|ejδ − |U2|
|Z|ejε

=
|U1|ej(δ−ε) − |U2|e−jε

|Z|
(2.33)

where |U1| and |U2| are the voltage magnitudes at bus 1 and 2, I is the current flowing in
the line and |Z| is the impedance magnitude for the line. Using the definition of power
flow in (2.3) on bus 1 gives the active power P1

P1 =
|U1|2

|Z|
cos(ε)− |U1||U2|

|Z|
cos(ε− δ) (2.34)

To make it easier to investigate a situation with zero resistive losses in the line (R = 0), it
is convenient to introduce a loss angle α = tan(R/X). By the sum of angles in a triangle,

2.8. TWO-BUS SYSTEM 13

U1

U2

I I

jX
I

δ

ϕ

ϕ

Figure 2.12: Phasors of current and voltages in a two-bus network connected by line with 0
resistance (R=0)

we have the relation α+ ε = π/2. By using the loss angle α, the active power flow at bus
1 P1 can be expressed as

P1 =
|U1|2

|Z|
sin(α) +

|U1||U2|
|Z|

sin(δ − α) (2.35)

A line without resistive losses can now be examined simply by setting α = 0. The resulting
active power flow P1 at bus 1 reduces to

P1 =
|U1||U2|
|Z|

sin(δ) (2.36)

where |U1| and |U2| are the voltage magnitudes at bus 1 and 2, |Z| is the impedance
magnitude of the line and δ is the phase angle at bus 1 with respect to bus 2. The
takeaway from this analysis is that the direction of the active power flow is determined
by the phase angle δ of the voltages between the buses. In a two-bus system, the bus
with the leading voltage is supplying active power, while the lagging voltage is receiving.
Another thing to note is that for an AC power system the voltage magnitude between the
buses may differ in size, and active power can still flow in both directions. This would
not be possible in a DC power system. Figure 2.13 shows the relation between a loss free
power line and a sample line in pandapower, a Python toolkit for power flow analysis.
We see that the active power P for a line with resistive losses is also mainly controlled by
the voltage angle δ. This is especially true around 0 voltage angle δ, which is the region
it generally is located.

−π −π
2

π
2

π

−1

1

δ

PWithout loss
With loss

Figure 2.13: Active power flow P between two buses as a function of voltage angle with no losses
(α = 0) and a loss angle α of 0.13. The bus with a leading voltage angle δ supplies active power,
while the lagging bus voltage is receiving.

14 CHAPTER 2. POWER SYSTEM

A similar argument will give that the reactive power flow Q1 at bus 1 for a line without
resistive losses is given by

Q1 =
|U1|
|Z|

(|U1| − |U2|) (2.37)

where |U1| and |U2| are the voltage magnitudes at bus 1 and 2 respectively and |Z| is
the impedance magnitude of the line. The voltage angle δ is assumed to be small so that
cos(δ) ≈ 1. Equation (2.37) shows that the direction of the reactive power is determined
by the difference of the voltage magnitudes. In other words, the bus with the highest
voltage magnitude is supplying reactive power in a two-bus system.

2.9 The power flow equations

Figure 2.14 is an electrical model of bus k in a power system consisting of n buses. Ik is
the net injected current to the grid from bus k [5]. The current flowing from bus k to bus
i is Ii = (Uk − Ui)Yki. The current flowing out of bus k must equal the injected current
Ik. This gives

Ik = UkYk0 +
n∑

i=1,i 6=k
(Uk − Ui)Yki (2.38)

Yk0

Ik

Ykn Yk1

Yki

Ui

U1Un

Uk

Figure 2.14: Electrical model of a bus in a grid consisting of n buses

Let the admittance components yki be defined as

yki =

{
−Yki if k 6= i
Yk0 +

∑n
j=1,j 6=k Ykj if k = i

(2.39)

It is now possible to express the injected current Ik as a linear combination of all the
bus voltages in the system

Ik =
n∑
i=1

ykiUi (2.40)

2.9. THE POWER FLOW EQUATIONS 15

Equation (2.40) is valid for any bus k. For the case when bus k does not inject any
current, Ik = 0. The voltages and injected currents at all buses can therefore be expressed
compactly as a matrix equation with the bus voltages ordered in a vector Ubus ∈ Cn

Ibus = YbusUbus (2.41)

where Ibus ∈ Cn is a vector whose k-th component is the injected current at bus k.
Ybus ∈ Cnxn is called the admittance matrix of the network and its elements are given
by equation (2.39). It is more convenient to work with power injection instead of current
injection at a bus. The complex conjugate injected apparent power S∗k at bus k can be
found by using equation (2.40)

S∗k = U∗k Ik = U∗k

n∑
i=1

ykiUi =
n∑
i=1

ykiUiU
∗
k (2.42)

Let

Ui = |Ui|ejδi , i = 1, ..., n

yki = |yki|ejλki , i = 1, ..., n, k = 1, ..., n

δki = δk − δi, i = 1, ..., n, k = 1, ..., n

(2.43)

Substitution into equation (2.42) gives

S∗k =

n∑
i=1

|yki||Ui||Uk|e−j(δki−λki) (2.44)

Applying Euler’s formula on equation (2.44) gives the injections of real power Pk and
reactive power Qk at bus k.

Pk =
n∑
i=1

|yki||Ui||Uk| cos (δki − λki)

Qk =
n∑
i=1

|yki||Ui||Uk| sin (δki − λki)
(2.45)

The equations in (2.45) are known as the power flow equations. The admittance yki
of a line is known and is treated as a constant. By inspection of (2.45), it is evident
that there are 4n variables (|Uk|, δk, Pk and Qk at each bus) and 2n equations. Therefore,
2 variables must be specified at each bus to have a unique solution of the power flow
equations.

Types of buses

There are three types of buses in an electric power system [5].

• Slack bus / reference bus

The voltage angle δ at the slack bus is defined to be 0 and the angles at other buses are
measured relative to it. There is only one slack bus in an electrical power system.

• Load bus

16 CHAPTER 2. POWER SYSTEM

A load bus is the most common bus in an electrical grid. The load buses have a fixed
injection of active power P and reactive power Q, as this is determined by the demand
in the market. As a result, it is also called a P-Q bus.

• Voltage controlled bus or generation bus

The voltage magnitude |U | and active power |P | are fixed for the voltage controlled bus,
while the voltage angle δ and reactive power Q are unknown. It is also called a P-V bus.
A bus connected to a hydro power plant is an example of a P-V bus.

Table 2.1 summarises known and unknown quantities at different bus types.

Table 2.1: Known and unknown quantities at different bus types in a system with n buses in
total.

Bus type Known quantities Unknown quantities Number of buses

Voltage control P, |U | Q, δ m
Load bus P, Q |U |, δ n−m− 1
Reference bus |U |, δ P, Q 1

2.10 Electric model of a power line

A transmission line can be electrically modelled by using the π-equivalent circuit, as
shown in figure 2.15

U2

P2 + jQ2

U1

P1 + jQ1

j Y2

R jX

j Y2

Figure 2.15: π-equivalant model for a transmission line.

The transmission line is modelled by a resistance and inductance in series. In addi-
tion, there are two shunt capacitors connected in parallel at each end of the line. The
capacitors are there because the flow of charges will give an associated capacitance that is
proportional with the line length. The π-model splits the admittance Y of the capacitor
into two and puts one part on each end of the line.

Chapter 3

Reinforcement learning

Reinforcement learning is an algorithm that learns through trial and error. The system
consists of an agent that observes a numerical state representing an environment and
responds to that by taking an action. Simply put, the agent will get a positive reward
when it takes good actions and negative rewards for bad actions. When the agent takes a
bad action, it will be less likely to choose that action again later. Similarly, when it gets a
positive reward it will more likely choose a similar action given the same observed state.
By letting the agent see many states and explore different actions, it can eventually learn
a behaviour that yields a lot of positive rewards.

Reinforcement algorithms are similar to how humans and animals learn. Imagine a
dog seeing its owner holding a bag of treats. Obviously, the dog is keen on getting the
treats, but is not sure what to do. The dog sees that the owner is putting his hand in
front of its nose and yelling some command, but does not quit understand what to do.
So, it simply tries doing something. First, it might try to lean forward and smell the
hand. Sadly, this does not result in any treat. Therefore, it continuous to try different
actions, until it eventually happens to lift its front paw in the hand of the owner. At last,
it receives a tasty treat from the owner. It has learned what action to take to get a treat.
Next, the owner might rotate its arm in front of the dog. The dog might try to lift its
front paw again, since that worked last time. Sadly, it does not get a reward this time.
Therefore, it starts to explore new actions until it after some time tries to spin around.
Again, it receives a treat. It has now learned that simply raising its front paw does not
always result in a treat. It has to evaluate its observation before taking an action.

The dog can also learn to be farsighted. For instance, when the dog hears that the
doorbell rings, it wants to run to the door and bark in excitement. If the owner is smart,
it can teach the dog to sit still when visitors come, and give the dog a treat when it
behaves well. Over time, the dog will learn to suppress its excitement when the door
rings, because it has learned that the long-term reward is greater if it behaves well. The
dog is capable of reducing the short-term reward (barking in excitement) for a greater
long-term reward (treat).

The dog training is similar to the mechanisms in a reinforcement learning algorithm.
The dog is the agent that tries to figure out what actions to do, while the owner is the
reward system. The advantage of a reinforcement algorithm is that it does not need a
physical reward, but is happy with a numerical reward. In addition, a computer can
experiment much more quickly and efficiently than a dog can.

17

18 CHAPTER 3. REINFORCEMENT LEARNING

3.1 Reinforcement learning and machine learning

Algorithms in machine learning and artificial intelligence are often divided into either su-
pervised or unsupervised learning. Supervised learning is an algorithm using input data
and labelled output data (target). The algorithm tries to map the input to the target
in a manner that generalises well to unseen input data. Examples of supervised learn-
ing are regression and classification algorithms. Algorithms using unsupervised learning
attempt to find structure in unlabelled data. In other words, the goal is not to find a
mapping between input and output as there is no output data. Examples of unsupervised
learning are clustering and anomaly detection. The terms supervised and unsupervised
do not describe well the mechanisms of reinforcement learning algorithms. A reinforce-
ment learning agent learns from interaction with an environment and receiving rewards
based the action it takes. The agent’s goal is not to use labelled data in some sense or
explicitly finding general structures in the data. As a result, reinforcement learning is
considered a category of its own [6]. However, it should be noted that there are rein-
forcement algorithms that use supervised learning in the learning process. The relation
between supervised, unsupervised and reinforcement learning is shown in figure 3.1

Figure 3.1: The three main categories of machine learning: supervised, unsupervised and rein-
forcement learning

3.2 Elements in a reinforcement algorithm

The agent and the environment with which it is interacting is fundamental to any rein-
forcement learning algorithm. As mentioned in the introduction, an agent is the decision
maker that observes a state s and decides what action a to take. An example can be a
self-driving vehicle that receives an observation s in the form of input from cameras and
sensors placed on the vehicle. The observation s represents the state of the system, and
based on that the self-driving car must choose an action a. The action might be to turn
the wheel to the right, which in turn leads to a new observation from the cameras and
sensors on the vehicle.

The set of possible actions and states are respectively called the action space A and
state space S. For some reinforcement learning tasks, such as chess, the action space
depends on the state s. For instance, it is not allowed to castle if an opponent’s piece is
attacking your king. In such cases, the action space A(s) is given by the state s. The

3.3. MARKOV DECISION PROCESS 19

action space in an electric power system is dependent on the state, for instance if a power
plant or transmission line is out of operation. A central element in the reinforcement
algorithm is the reward function r : S × A → R that evaluates how ”good” action a is
in state s. For instance, the reward given to the agent in car race can be the speed of
the car so that the agent is encouraged to drive fast. It is not always possible to give a
reward after an action is taken, because it is not possible to say if the action was good
or bad. For instance, it is hard to evaluate if a move is bad or good. In such cases, the
reward can be the same as the outcome of the game: +1 for victory, 0 for draw and -1
for loss. This setup is termed Monte Carlo learning. A setup where rewards can be given
after every action is called time-difference learning.

The goal at each time step t is to maximise the rewards in the future. How to formally
define the reward maximising criterion depends on the nature of the task. Some tasks, such
as playing a video game, are called episodic and have well-defined boundaries for initial
and terminal state. On the other hand, the electric power system is a continuous task
that never should end if the agent does its job. For continuous tasks, let the discounted
return rγt at time t be defined as

rγt = rt+1 + γrt+2 + γ2rt+3 + ... =

∞∑
k=t

γk−trk+1 (3.1)

where rt+1 is the reward received after taking action at in state st, and γ ∈ [0, 1] is the
discount factor. The goal of the agent at every time step t can be defined to maximise
the discounted return rγt . The gamma term is a hyper-parameter that can be tuned, and
it determines how relevant future rewards are. If γ = 0, then the agent only considers
the immediate reward as relevant. If γ = 1 then all future rewards count equally to the
total future reward rγt . For values between 0 and 1, the importance of a reward decreases
exponentially with every time step. For instance, if γ = 0.5 the rewards for the next
steps are weighted 0.5, 0.25, 0.125, Having γ smaller than 1 is also a mathematical
convenience that ensures that the discounted return is finite in a continuous task, as long
as the rewards are bounded.

3.3 Markov decision process

A Markov decision process is a mathematical framework describing sequential decision
making and interaction with an environment, where the outcome can be stochastic [6].
The environment starts at t = 0 and is described by an initial state s0 ∈ S. The agent
performs some action a0 ∈ A and receives a reward r1 ∈ R ⊆ R based on how good that
action is. The action a0 interacts with the environment and gives a new state s1. This
starts the sequence of states, actions and rewards.

s0, a0, r1, s1, a1, r2, s2, ... (3.2)

The interaction between the agent and environment is visualised in figure 3.2 as a feedback
loop. The loop continues until the environment reaches a terminal state, for instance when
the self-driving car reaches its destination or if it crashes. The transitions from start state
s0 to terminal state sT constitutes an episode in the reinforcement algorithm.

Formally, a finite Markov decision process M is a tuple

M = 〈S,A,P,R, γ〉 (3.3)

20 CHAPTER 3. REINFORCEMENT LEARNING

Figure 3.2: Interaction in a Markov decision process

where S and A respectively are finite sets of states and actions, P is the matrix with
state transition probabilities, R is a reward function and γ is a discount factor [7]. The
probability of transitioning to the next state st+1 and receiving rt+1 only depends on the
previous state st and action at in a Markov decision process [6]. Formally, a state st is
Markov if and only if

P[st+1|at, st] = P[st+1|at, st, at−1, st−1, ..., a0, s0] (3.4)

where P is the symbol for probability. This is called the Markov property of the state
[7]. In other words, the history of states and actions leading up to the current state is
not relevant for the probability of transitioning to state st+1. Let the transition function
p : S × R × S × A → [0, 1] be the probability of transitioning from state s to s′ and
receiving reward r given the action a

p(s′, r, s, a) = P[st+1 = s′, rt+1 = r|st = s, at = a] (3.5)

If the transition function p in (3.5) is known, it can be used for planning actions in a
reinforcement algorithm.

3.4 Value and policy functions

The reinforcement agent selects an action in a given state through its policy π. The policy
of the agent decides what action to take in a given state by mapping the state space to the
action space, π : S → A. The policy can both be deterministic and stochastic. A deter-
ministic policy maps a given state to the same action every time, while a stochastic policy
maps the state to a probability distribution over the action space. For the deterministic
case, the policy function π is given by

π(s) = a (3.6)

where a is the action chosen by the policy. For the stochastic case, it gives the probability
of choosing action a in state s.

π(a|s) = P(a|s) (3.7)

A central tool in many reinforcement algorithms is to evaluate a certain state before
taking an action. The state-value function V π is defined as the expected discounted future

3.5. THE EXPLORATION - EXPLOITATION DILEMMA 21

return in state s under the policy π.

V π(s) = Eπ[rγt |s = st]

= Eπ[rt+1 + γrt+2 + γ2rt+3 + ...|s = st]
(3.8)

The reason for including ”under the policy π” is that a state is valued differently
depending on the policy used. For instance, the start position in chess will be evaluated
better under the policy of a chess grand master than under the policy of an amateur,
because the grand master has a much higher expected future reward.

The action-value function Qπ, also called the Q-function, quantifies the expected dis-
counted return given the action at in state st and that the policy π is followed thereafter.
In other words, it can evaluate a specific action in a given state, in contrast to the value
function V that only evaluates the state.

Qπ(st, at) = Eπ[rγt |a = at, s = st]

= Eπ[rt+1 + γrt+2 + γ2rt+3 + ...|a = at, s = st]
(3.9)

There is an important recursive relation between the action-value function in two succes-
sive states st and st+1, known as the Bellman equation. Assuming a deterministic policy
π, we have

Qπ(st, at) = E[rt+1 + γrt+2 + γ2rt+3 + ...| st, at]
= E[rt+1 + γQπ(st+1, π(st+1))| st+1]

(3.10)

In other words, the action-value for state st and action at is the expected sum of the
immediate reward rt and the action-value in the next state. The Bellman equation is
used in several reinforcement algorithms to guide the estimates of the Q-values closer to
the true values. For instance, consider a case where the estimated Q-value Qt is 4, with a
discount factor of 0.8 . The agent takes and action, receives the reward +2 and evaluates
the next state and action to be worth 5. According to Bellman’s equation, we have that

2 + 0.8 · 5 = 6 6= 4 (3.11)

The right-hand and left-hand side of the equation are not equal. The true Q-values
satisfies the Bellman equation, so the estimate Qt should be higher, and the difference of
the right and left hand side can be used to update the estimate Qt. In this case, the new
estimate can be 4 + 0.1 · (6− 4) = 4.2, where 0.1 is the learning rate.

The action-value function Qπ and state-value function V π are similar to each other
and can together be used to measure the advantage of an action a. The advantage Aπ(a, s)
of action a in state s under policy π is defined as

Aπ(s, a) = Qπ(s, a)− V π(s) (3.12)

If the advantage is positive, it means that it is better to take action a than following the
action chosen by the policy in state s. Similarly, a negative advantage means that action
a is worse than following the action chosen by the policy.

3.5 The exploration - exploitation dilemma

A problem that arises when constructing a reinforcement learning algorithm is how to
both be able to exploit a good policy and at the same time explore new policies. If an
agent always follows its policy and picks the action it believes is the best, it will never

22 CHAPTER 3. REINFORCEMENT LEARNING

explore new and perhaps better approaches to solve a problem. At the same time, the
agent cannot simply explore new behaviour all the time, since its goal is to maximise
future rewards. Therefore, it must also exploit the behaviour that works. This is called
the exploration-exploitation dilemma in reinforcement learning [6]. There are several
different approaches to this dilemma, one of which is to have two different policies. One
policy is called the target policy that is to be the optimal solution, while the other is
called the behaviour policy and is for exploration of new behaviours [6]. A reinforcement
learning algorithm using a behavioural and target policy is said to be learning off-policy,
because it can learn from the experiences made from another agent [6]. On the other
hand, a reinforcement learning algorithm that only learns from its own experiences is said
to be learning on-policy.

3.6 Artificial neural networks

The use of artificial neural networks (ANN) in machine learning algorithms is one of
the import factors for the recent progress in reinforcement learning [6]. The key role of
neural networks in reinforcement learning is that they are used as function approximators
for the policy function π and action-value function Q. Formally, a neural network is a
function f : Rn → Rm that maps a n-dimensional input space to a m-dimensional output
space. The input space can for instance be the pixel values of a picture, or any other
numerical representation of the state of an environment. The output space of a neural
network approximating the policy function is the action space. For instance in an car
driving environment, the input space could be numerical information about the speed,
lane position, distance to closest car etc., and the output space would have one component
each for the acceleration, break, and angle of the steering wheel.

An ANN is organised in different layers, where each layer consists of several nodes or
neurons, as visualised in figure 3.3. The network has a 2-hidden layer architecture, with 4
neurons each. The input features are sent to the input layer of the network which consists
of a neuron for each of the input values. All the input neurons are connected with the
neurons in the next layer by a scalar weight, represented by arrows in figure 3.3. The
first step for determining the value of a neuron in the first hidden layers is by computing
a linear combination of all the input features that are connected to it, and then adding a
bias factor. It should be emphasised that the weights and bias are randomly initialised,
and the whole point of training a neural network is to find appropriate values for them.
Once the linear combination z is computed, it is sent through a non-linear activation
function Φ : R → R, whose output value will determine the value of the neuron. There
are several activation functions that are used, such as the hyperbolic tangent (tanh),
the sigmoid function and rectified linear unit (ReLU). Once all the neurons in a layer
are found, the next layer can be calculated with the same process. When an ANN is
used as an approximator of the action-value function Q, the training process is all about
updating the weights and biases such that the output layer gives the true Q-value for
different states and actions. An advantage of using an ANN to approximate the Q-value
is that the algorithm can evaluate an action in a new and unseen state. This is useful
when the state representation is very large, such as for pictures.

3.7 Actor-critic reinforcement learning

There are two main categories of reinforcement learning algorithms: model-based and
model-free reinforcement learning. A model-based algorithm uses the dynamics of the

3.7. ACTOR-CRITIC REINFORCEMENT LEARNING 23

Figure 3.3: Illustration of a neural network with two hidden layers

system to plan actions. For instance, the transition function p in equation (3.5) gives a
probability distribution over the next state and reward, which can be used for planning
in dynamic programming [7]. The reinforcement algorithm is explicitly using a model of
the environment to choose actions. However, for many situations the transition function
is unknown, and even if it is known it can be computationally very expensive to use in a
reinforcement algorithm.

The second category is called model-free reinforcement learning. As the name suggest,
it requires no model or information about the dynamics in the environment. This is very
useful in situations where there is no transition function that describes the dynamics in
the environment, but experiences can be sampled. Model-free algorithms can be divided
into two subcategories: Value-based and policy-based. The categories are visualised in
figure 3.4.

Figure 3.4: Classes of reinforcement algorithms

The first subcategory of model-free algorithm is called value-based methods, where
the approach is to approximate the action-value function Q, and use that to take an
action. Examples of value-based algorithms are Q-learning, State Action Reward State
Action (SARSA) and Deep Q-Network (DQN) [6]. An advantage of value-based methods

24 CHAPTER 3. REINFORCEMENT LEARNING

is that they can learn off-policy, for instance by learning from the behaviour of experts
[8]. Value-based method are therefore very sample efficient as they do not need to find
optimal moves themselves, but can learn from a behaviour that is known to be good. The
disadvantage is that value-based methods are not well suited for function approximation,
such as neural networks, as they tend to be unstable [6].

Policy-based methods (also called policy gradient) directly parametrise the policy
function π without involving the action-value function Q in the decision-making [6]. In
contrast to value-based methods, they are stable when using function approximation, but
very sample inefficient [8]. In other words, the weakness of value-based methods is the
advantage of the policy-based methods, and vice versa. A natural idea is then to combine
the two methods into a more robust method. This is called an actor-critic model, and is
a mix of policy-based and value-based reinforcement learning, as illustrated in figure 3.5.
The policy π is called the actor, because it chooses the action to take. The action-value
function Q is named the critic because it evaluates the action picked by the actor.

Figure 3.5: Actor-critic in relation to value-based and policy-based methods

3.8 Deep deterministic policy gradient

Silver et. al have developed an off-policy actor-critic reinforcement algorithm called deep
deterministic policy gradient (DDPG) [9]. As the name suggest, the algorithm uses a
deterministic approximation of the policy function instead of a stochastic version. The
advantage with a deterministic policy is that it does not have to integrate over action
space in the search for the best policy. This section will outline the differences between
a stochastic and deterministic policy function. Both cases share similarities with each
other. DDPG models the problem as a Markov decision problem as described in section
3.3.

The initial state distribution is described by p1(s1). There is a reward function r :
S × A → R and an action value function Qπ : S × A → R that evaluates an action a in
state s under the policy π. The policy interacts with the environment by taking actions
and generates a trajectory of states, action and rewards

h1:T = s1, a1, r1, ..., sT , aT , rT (3.13)

The objective function J(π) that the agent will maximise is the expected discounted

3.8. DEEP DETERMINISTIC POLICY GRADIENT 25

return under the policy π from the initial state s0

J(π) = Eπ[rγ0] = Eπ[r1 + γr2 + γ2r3 + ...] (3.14)

Stochastic policy approximation

Consider a parametrised stochastic policy πθ : S → P(A) with parameters θπ that maps
the state space to a probability distribution over the action space. Let p(s → s′, t, π) be
the probability of transitioning from state s to s′ in t time steps. The discounted state
distribution ρπ(s′) is defined as

ρπ(s′) =

∫
S

∞∑
t=1

γt−1p1(s)p(s→ s′, t, π)ds (3.15)

The performance objective can then be expressed as an expectation

J(πθ) =

∫
S
ρπ(s)

∫
A
πθ(a|s)r(a, s)dads

= Es∼ρπ ,a∼πθ [r(s, a)]

(3.16)

The way the agent learns is by computing the gradient of the objective with respect to
the policy parameters θπ and update the weights in that direction. The gradient of the
stochastic policy is given by the policy gradient theorem (Sutton [6]) in equation (3.17).

∇θπJ(πθ) =

∫
S
ρπ(s)

∫
A
∇θππθ(a|s)Qπ(a, s)dads

= Es∼ρπ ,a∼πθ [∇θπ log πθ(a|s)Qπ(a, s)]

(3.17)

Equation (3.17) shows that the parameter update for the stochastic policy needs to inte-
grates over the action space, which can be computationally costly.

Deterministic policy approximation

Consider a deterministic policy µθ : S → A with parameters θµ. Using the same defini-
tions of discounted state distribution ρµ as in equation (3.15), the objective function is
given as

J(µθ) =

∫
S
ρµ(s)r(s, µθ(s))ds = Es∼ρµ [r(s, µθ(s))] (3.18)

Silver et al. [9] proved that the deterministic policy gradient is given as

∇θµJ(µθ) =

∫
S
ρµ(s)∇θµµθ(s)∇aQµ(s, a)|a=µθ(s)ds

= Es∼ρµ [∇θµµθ(s)∇aQµ(s, a)|a=µθ(s)]
(3.19)

In other words, it is the expectation of the matrix-vector product of the policy Jacobian
matrix and the action-value gradient with respect to the actions under policy µθ. By
convention, the columns of ∇θµθ are the gradient of each action dimension. Silver et
al. argue that there are a class of function approximators that follow the gradient of
the action-value function. Let θQ be the parameters of the action-value approximator
Q(s, a|θQ) such that

Q(s, a|θQ) ≈ Qµ(s, a) (3.20)

26 CHAPTER 3. REINFORCEMENT LEARNING

and replace the action-value gradient ∇aQµ(s, a) in equation (3.19) by the gradient of the
approximation ∇aQ(s, a|θQ)

Deterministic off-policy actor-critic

Deep deterministic policy gradient is an off-policy learning algorithm. An off-policy algo-
rithm has two different policies: a target policy µθ(s) that is to be the final policy, and a
stochastic behavioural policy β(s) that is used for exploration to find different strategies.
In other words, the target policy learns from the experiences of the behavioural policy.
The off-policy objective performance in equation (3.18) is altered by replacing the reward
r with the value function V µ under the target policy µ and following the discounted state
distribution of the behavioural policy ρβ.

Jβ(µθ) =

∫
S
ρβ(s)V µ(s)ds

=

∫
S
ρβ(s)Qµ(s, µθ(s))ds

(3.21)

The gradient of the modified objective is

∇θJβ(µθ) ≈
∫
S
ρβ(s)∇θµθ(s|a)Qµ(s, a)ds

= Es∼ρβ [∇θµθ(s)∇aQµ(s, a)|a=µθ(s)]
(3.22)

Critic loss function

The bellman equation in (3.10) can be used in the design of the loss function for the
action-value function approximator Q(s, a|θQ). Let the action-value target yt be defined
as

yt = r(st, at) + γQ(st+1, µ(st+1)|θQ) (3.23)

The action-value loss can be defined as

L(θQ) = Est∼ρβ ,at∼β,rt∼E [Q(st, at|θQ)− yt)2] (3.24)

Notice that the state and action follows the distribution of the behavioural policy β.
The loss is zero if the action value approximator satisfies the Bellman equation in (3.10).
Therefore, the action-value approximator is encouraged to satisfy the Bellman equation.

There are however some practical problems with the loss definition in equation (3.23).
The critic target yt is calculated using Q(s, µ(s)|θQ), which after each parameter update of
θQ may change quickly. Therefore, the critic target can fluctuate rapidly during learning.
We are changing our approximator closer to the target, but the target itself is moving. To
avoid this, Lillicrap et al. suggests a soft update of the target weights [10]. This is done
by creating a copy of the actor µ′ and critic Q′ at the beginning of learning that will serve
as the target approximators. After each parameter update, the original actor and critic
approximator µ,Q are updated as before, while the target weights are soft updated by
θ′ ← τθ+(1−τ)θ′, where τ is a small positive number (τ � 1). The target approximator
are more locked in place, and will slowly change during training compared to the original
approximators. This greatly increase the stability during learning.

3.8. DEEP DETERMINISTIC POLICY GRADIENT 27

Experience replay

It has been proven difficult to use a naive implementation of the described DDPG algo-
rithm with neural network as function approximators [10]. Learning challenging problems
is generally unstable. A problem with the naive approach is that the states and actions
explored by the agent during learning are sequential, and by no means uncorrelated. It
is best that the samples in a batch used for updating the parameters of a neural network
are independent and uncorrelated. A way to get around this problem is by introducing
a replay buffer R where experiences during learning are stored. Specifically, each tuple
(st, at, rt, st+1) is put into the replay buffer. When the weights of the functions approx-
imators are updated, a batch of N random transition tuples is drawn from the replay
buffer. This avoids the problem with correlated samples in the parameter update and
increases the stability of DDPG. In addition, it ensures that the agent does not forget
experiences from early in the training.

Algorithm for DDPG

Algorithm 1: Deep deterministic policy gradient, as described by Lillicrap et al.[10]

Randomly initialise critic network Q(s, a|θQ) and actor µ(s|θµ) with weights θQ

and θµ

Initialise target networks Q′ and µ′ with weights θQ
′ ← θQ and θµ

′ ← θµ

Initialise replay buffer R
for episode 1:M do

Initialise random process N
Receive initial state s1
for t 1:T do

Select at = µ(st|θQ) +Nt
Execute at and observe reward rt and new state st+1

Store transition (st, at, rt, st+1) in replay buffer R
Sample random minibatch of N transitions from the replay buffer
Set critic target yi = r(si, ai) + γQ′(si+1, µ

′(si+1)|θQ
′
)

Update critic by

L =
1

N

N∑
i=1

Q(st, at|θQ)− yt)2 (3.25)

Update actor policy by

∇θµJ ≈
1

N

N∑
i=1

∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θµ)|s=si (3.26)

Soft update the target weights

θQ
′ ← τθQ + (1− τ)θQ

′

θµ
′ ← τθµ + (1− τ)θµ

′ (3.27)

end

end

28 CHAPTER 3. REINFORCEMENT LEARNING

3.9 Reward engineering

Designing the reward for a reinforcement agent is often a challenging and time-consuming
task. For an algorithm attempting to play a game it is usually not a problem, since
the reward could simply be the score in the game, or a positive reward every time the
agent wins an episode. However, for other tasks there will often be a need for a lot of
handcrafted rewards that require domain-specific knowledge. This section will present an
example of this challenge in an electric power system.

P1 + jQ1

R+ jX
P2 + jQ2

|U1|∠δ |U2|∠0◦

|I|∠-ϕ

Figure 3.6: A two bus system connected by a line. P and Q are the active and reactive power
flow, R and X is the resistance and reactance of the line, U is the voltage and I is the line current

Consider the two-bus system shown in figure 3.6. The bus at the left represent a
power plant that produces electric power S1 = P1 + jQ1. The power flows through
the transmission line and with some losses and arrives at bus 2 with apparent power
S2 = P2 + jQ2. An agent using the deep deterministic policy gradient (DDPG) algorithm
was given a simple load balancing task on the power network. The agent controls the
active power production P1 at bus 1, and has to tune it so that bus 2 receives the desired
active load P2. For simplicity, the demanded load at bus 2 is constant at 1.3 MW. The
voltages magnitudes at each bus is locked to 1 p.u, while the reactive power injections
and voltage angle can vary. The reward rt is defined as the negative of the absolute
deviation between the received and desired load at bus 2. The idea is that the agent
should be encouraged to move closer to the desired load. For simplicity, the initial state,
represented as the voltage magnitude, voltage angle the apparent power at each bus, was
always the same. The task should therefore be very manageable for the agent because it
only has to learn one simple behaviour. After training it converged and received rewards
close to 0, indicating that bus 2 got the desired load. The problem was that the agent
produced over 10 times as much active power as bus 2 wanted. Where did the rest go?
It was lost in the line. In other words, the system had under 10 % efficiency. Figure 3.7
shows what was happening. A line cannot transfer an arbitrary amount of active power
due to the power flow equations. As a result, there will be two different production points
for P1 that give the load the desired amount of active power. However, the production
point around 12 MW is obviously not desired, as the system efficiency is below 10 %.
However, one cannot blame the agent for finding this point, and sticking with it. It has
no incentive to change its behaviour when the reward is defined as it is. A natural solution
would be to include a term in the reward that punishes loss in the line. This can be done,
and the agent would probably find the right power production level. This illustrates the
challenges with manual reward shaping.

3.9. REWARD ENGINEERING 29

Figure 3.7: Received load as a function of production of the two-bus system in figure 3.6, and
cost given to the agent

30 CHAPTER 3. REINFORCEMENT LEARNING

Chapter 4

Problem Description

Solar power production occurs during day-time and is, not surprisingly, controlled by the
sun. As photovoltaic modules become more prevalent in residential areas, they will grow
to a size where they produce a significant amount of power that must be transported
out on the grid around noon. Later in the afternoon, power must be imported from the
external grid because the solar power production is low when residential areas consume
power. A normal day will therefore have an import and export period that can challenge
the grid in terms of power capacity and voltage quality. A consequence of this is that
safety bounds for both voltage and line capacity are in danger of being violated. A
strategy for avoiding such problems is called demand response. Albadi and El-Saadany
give the following definition of demand response:

”Demand response can be defined as the changes in electricity usage by end-
use customers from their normal consumption patterns in response to changes
in the price of electricity over time. Further, DR can be also defined as
the incentive payments designed to induce lower electricity use at times of
high wholesale market prices or when system reliability is jeopardised. DR
includes all intentional electricity consumption pattern modifications by end-
use customers that are intended to alter the timing, level of instantaneous
demand, or total electricity consumption”[11].

The idea is to modify the demand of electric power such that the size of the peak power
in network is reduced. An electric transmission system must be designed to withstand
the peak powers, although the network only operates in this period a small proportion
of the time. As an example, the municipality Hvaler in southern Norway multiplies its
population during vacations, which means that the capacity of the transmission lines
to the islands of Hvaler must be built to withstand a very rare peak power situation.
To avoid congestion in the grid, the network operator in Hvaler has introduced a power
term in the electricity bill, to give an incentive to the consumers to change their con-
sumption pattern [12]. Avoiding congestion in the transmission network is not the only
positive consequences of demand response. Vázquez-Canteli and Nagy list the following
advantages[13]:

• Improved grid stability due to increased demand flexibility.

• Shift of peak demand towards periods of peak renewable energy generation.

• Lower thermal costs and electricity prices. Since the peak to average ratio of the
demand decreases, less peaking plants need to be operated.

31

32 CHAPTER 4. PROBLEM DESCRIPTION

• Reduction of the investments in generation, transmission, and distribution assets,
which are sized to meet peak demand.

• Lower capacity reserves requirements.

• Reduced energy bills for consumers.

Demand response can be categorised into two main programs: Price-Based Programs
(PBP) and Incentive-Based Programs (IBP) [11]. PBP and IBS are also respectively called
system-led and market-led programs, which reflect the main mechanism for achieving
demand response. In classical IBP for demand control, costumers are given some sort of
participation payment, such as a discount rate [11]. There is also a market based IBP,
which compensates the costumers based on how much and when they participate. This
thesis will not go into the details of the different demand response programs, but instead
focus on the implementation of a reinforcement algorithm under an ideal assumption
where the agent can change power consumption without a cost. This is done so that it
is possible to evaluate the reinforcement agent solely based on its safety behaviour. In
other words, the goal is to investigate if the agent safely can control the grid using an
ideal demand response program, where flexibility is a free resource. A cost of changing
the demand is presented as a term in the reward function in section 4.3, but is not used
in the trained reinforcement algorithm.

The scope of this thesis is to continually control the absolute demand at different buses
in a power grid, given some interval of flexibility at that bus. It might seem strange to use
continuous control since power consuming units generally cannot be set to an arbitrary
power level. The nature of a power component is binary: it either consumes power or it
does not consume power. Consequently, a valid question is whether a continuous control
setup even is realisable in a real power system. Although individual power consuming
units are binary, a large collection of units connected to a bus can be approximated as
continuous. Imagine 1000 households connected to a bus and that each household has
several power consuming components that can be controlled, such as electric vehicles,
water heater and heat pumps. Assuming these units have some flexibility in terms of
operation time, it is possible to coordinate all these devices in such a way that the power
consumption appear continuous in some interval at the bus. A coordinator that does this
in a power system is called a flexibility aggregator [14].

This thesis will assume the aggregator exists, so the centralised agent can modify
the power consumption continuously in some interval of flexibility. For instance, when
the agent wants to decrease the consumption by 2 MW at a bus, there exists a system
that turns off electric equipment in households connected to that bus such that the total
power change is 2 MW. The advantage of continuous control is that the action space
of the algorithm is dramatically reduced, as there is only one action per bus in the
grid. Controlling individual components in a power grid quickly gives a very large and
impractical action space since the number of possible actions doubles for every additional
control device. In addition, Vázquez-Canteli and Nagy recommended in their literature
review of demand response and reinforcement learning that there should be more case
studies using modern algorithms such as deep deterministic policy gradient (DDPG),
which have a continuous action space [13].

The specific setup in this thesis is based on several assumptions for a hypothetical
future power grid. The electrical power grid used is constructed by the International
Council on Large Electric Systems (CIGRE) as a benchmark network that can be used
to analyse the integration of distributed energy resources [15]. It is a 20 kV distribution

33

network that is predefined in pandapower, the Python toolkit used for power flow calcu-
lations, and can be defined with different renewable energy sources connected at different
buses. The grid used is visualised in figure 4.1.

Figure 4.1: CIGRE network with solar and wind power that is used in the reinforcement learning
algorithm [15]

The left-most feeder has several solar producing units connected and wind power
connected to bus 7. From a power flow perspective, there is no difference between a wind
farm (without voltage regulation) and solar production since they are both modelled as
static generators (PQ-node). For simplicity, the wind farm connected at bus 7 is assumed
to be solar in this thesis, i.e. its power production follows the sun profile through the day.
The time resolution in this task is chosen to be hourly. In other words, the demand and
solar production at every bus is updated every hour, and assumed constant in between
hours. Naturally, the solar intensity varies continuously in an hour, and average values do
not tell if or when clouds are blocking the sun. Because of this, the timescale is not short
enough to help solve immediate problems that require actions within seconds or minutes,
but can be used to plan on an hourly time scale.

There exist demand response programs for large power-consuming industries in sev-
eral European countries, but programs that aggregate the consumption of residential

34 CHAPTER 4. PROBLEM DESCRIPTION

costumers are not implemented in large scale [14]. However, the emerge of the Internet
of things is enabling communication and coordination between small power consuming
equipment in residences, which can be used for demand control. Therefore, the con-
sumption pattern in this thesis will follow the pattern of residential consumers. The daily
demand profile is generated using enlopy, a Python toolkit for energy demand time series
[16]. The demand signal is generated based on data of the energy consumption of private
households.

A data set with satellite-derived solar irradiance in central Norway is used as input
to define the production of solar power [17]. Figure 4.2 plots a time series of the solar
irradiance, and a couple of example days. The solar data is scaled so the maximum value
is 1.

Figure 4.2: The solar irradiance data used in the reinforcement model. The period is 2004-02-11
to 2004-10-03, generated from SoDa [17]. (lon,lat) = (63.395,10.381)

The signal of solar production and power demand is assumed equal at all buses and
scaled up based on the nominal values for consumption. It should be noted that the
nominal values vary from bus to bus, so they do not consume the same amount of power
in absolute terms. For instance, if the demand signal is 0.5, the consumption at each bus
is determined by multiplying 0.5 with their respective nominal power that is predefined
in pandapower. The same is true for the generation of solar power. This reduces the
state space, as there is no need for a unique demand forecast for all the loads. Still, the
reinforcement agent receives the enough information to determine the demand situation
at each bus.

For simplicity, the power factor is assumed constant at every bus. In other words, if
the consumption of active power increases by 1 %, then the reactive power consumption
also increases by 1%. The power factor at each load is the same as the default values
in the CIGRE network. The nominal values of the solar production are intentionally
amplified so that the safety margins for line current and voltage magnitudes in the grid
frequently are violated if no actions are taken. The solar producing units do not output

4.1. STATE SPACE 35

any reactive power, only active power.

It is assumed that the loads at all buses have some flexibility in terms of power
consumption, say 10 % of the actual demand, that can be centrally controlled at every
hour. The reinforcement agent can modify the power consumption independently between
the different buses. For instance, it can increase the consumption by 5 % at one bus, and
decrease it by 2% at another bus in the same hour. The absolute change in consumption
at each load in the net is found by multiplying the demand change by the forecasted
power consumption in that hour. A significant simplification in the simulation is that
the flexibility is assumed constant in all hours, which is far from a realistic scenario.
For instance, decreasing the consumption in an hour corresponds to turning off electrical
equipment, and that equipment cannot be turned off again in the next hour. Activation
of flexibility should decrease the future flexibility. However, by doing this the agent is
given a simpler environment to work in. If a reinforcement algorithm is to be successful
in a realistic modelling of flexibility, it should be successful in a simplified model as well.
This thesis explores the simplified model.

The CIGRE network consists of several power components, such as transformers, lines,
switches and loads. Table 4.1 summarises the different components in the network.

Table 4.1: Component in the CIGRE network

Component Symbol Amount

Bus N 15
Switch - 8
Static generator G 9
Line L 15
Load F 18
Transformer - 2

Table 4.1 shows that there are 18 loads and 15 buses in the system. The reason is
that there are several load elements connected to some buses which makes the number of
loads greater than the number of buses. The net power consumption at a bus is found by
summing over the consumption of all the loads connected to that bus.

4.1 State space

This section presents several spaces that could be useful for the reinforcement algorithm.
Not all the presented spaces are used in the trained reinforcement learning agent which
is analysed in chapter 7.

Let Ssun ⊆ RH be space of the forecasted solar irradiance in the grid H hours into the
future. This gives the agent information about the coming solar production and can be
used for finding control strategies. For instance, consider an hour with high production
of solar power, where the transmission lines are overloaded. If the agent sees that the
forecast predicts a dip in solar production in the next hour due to clouds, it can increase
the local power consumption at solar producing buses, to relieve the overloaded power
lines. It can then safely decrease the consumption the next hour, since the sun is blocked
by the clouds and thereby restore the total energy consumption over the two hours. This
is an example of a desired behaviour that the agent ideally should find. The buses are
assumed to be geographically close, so the solar irradiance is the same everywhere. If a
cloud blocks the sun at bus 1, then it also blocks the sun at all the other buses in the

36 CHAPTER 4. PROBLEM DESCRIPTION

system. This significantly reduces the state space compared to a unique forecast for every
bus.

Let Sdemand ⊆ RF ·H be the space of the forecasted power demand H hours into the
future in a grid with F flexible loads. It is also possible to let the total demand in
the market represent the demand state. A problem with this approach is that it only
partially describes the demand situations in the market since the agent does not receive
information about demand at individual loads. An advantage, however, is that the size of
the state vector from Sdemand is much smaller than a corresponding vector for all loads.
Specifically, the CIGRE network that is used has 18 loads, which would make the state
vector 18 times greater.

Let Sbus ⊆ R4N be the space representing the state of all the buses in the net. Specif-
ically

Sbus = {|Ui|, δi, Pi, Qi| i = 1, ..., N} (4.1)

where |Ui|, δi, Pi and Qi respectively are the voltage magnitude, voltage phase angle,
active power injection and reactive power injection at bus i in a N -bus system. This
could give information to the agent about how stressed the system is. For instance, large
values for active power Pi and voltage magnitude |Ui| indicate a stressed situation at bus
i, possibly due to high solar production.

The agent should also get information that ensures that the consumption at a load
merely is shifted and not altered in absolute magnitude. In other words, a state that
contains information about the energy imbalance in the grid. A positive energy imbalance
means that the agent has forced the loads to use more energy than the real demand. If
the agent changes a load by -1 MW for an hour, the agent should ideally increase the
load by 1 MW some time not far into the future. Gemine et al. did this by making a
commitment when the demand is changed at a load. When a load is changed, it follows a
predefined modulation curve for Td time steps (for instance 4 steps) [18]. The modulation
signal is constructed so that it sums to zero over the time period Td, which guarantees
that the total energy consumption of the bus is constant. Note that Gemine et al. did
not implement a reinforcement learning algorithm. The state vector could indicate in
what modulation step a load is at. For instance, if the modulation started at t0 for a
load and the current time step is t0 + 3, then the load component of this vector is 3. The
agent is then always fed with a signal that tells it the commitment stage of that load.
The desired action of the agent at a time step in the commitment period will simply
be ignored so that the load follows the modulation signal. This has the drawback that
the agent’s actions frequently are overridden. Given a modulation period of k steps, the
agent desired action is only performed 1/k times. Hopefully the agent will pick up on this
through the commitment state vector. Formally, the commitment space Scommitment ⊆ RF
can be defined as

Scommitment = {ci| i = 1, ..., F} (4.2)

where ci ∈ {0, 1, .., k} is the commitment stage of flexible load i in a k-period commitment
period in a grid with F flexible loads.

The agent does not have to follow a predefined commitment signal to ensure that
the power consumption is shifted, but can instead be penalised for changing the total
consumption during a day. The agent must then be fed some information about the
energy imbalance at the flexible loads, i.e. if the loads have consumed more or less energy

4.2. ACTION SPACE 37

than the original demand over a period. This could be done by introducing the energy
imbalance Bi,t of flexible load i at time t.

Bi,t =
24∑
k=1

∆Pi,t−k (4.3)

∆Pi,t−k is the change in power consumption k time steps before t at flexible load i.
Simply put, the imbalance Bi,t expresses if a flexible load is in balance in terms of energy
consumption over the last 24 hours. A positive imbalance means the flexible loads have
consumed more power than they originally planned. The goal is to have the imbalance
close to zero, which means that power consumption has been shifted and not altered
in absolute magnitude. Let Simbalance ⊆ RF be the state space representing the power
imbalance, defined by

Simbalance = {Bi| i = 1, ..., F} (4.4)

where Bi is the energy imbalance at flexible load i defined by (4.3). Table 4.2 summarises
the different state spaces that are presented in this section. The reinforcement learn-
ing algorithm will be tested with a subset of the spaces, and the final state variable is
constructed by concatenating the individual state vectors.

Table 4.2: State spaces that can be used in the reinforcement algorithm. H is the forecast horizon,
i.e. the number of hours into the future the agent receives a forecast. N and F are respectively
the number of buses and flexible loads in the net. ri and di are, respectively, the forecasted solar
irradiance and power demand i hour in the future. |Ui|, δi, Pi and Qi are respectively the voltage
magnitude, voltage phase angle, active power injection and reactive power injection at bus i. ci
and Bi are respectively the commitment stage and energy imbalance of flexible load i

State space Symbol Size Definition

Solar forecast Ssun H {rj | j = 1, ...,H}
Demand forecast Sdemand H · F {dj,i| j = 1, ...,H, i = 1, ..., F}
Bus state Sbus 4N {δi, Pi, Qi, |Ui|| i = 1, ..., N}
Commitment state Scommitment F {ci| i = 1, ..., F}
Imbalance state Simbalance F {Bi| i = 1, ..., F}

4.2 Action space

The reinforcement agent can manipulate the power demand at flexible loads in the power
grid. The amount of flexibility at a load is defined to be certain percent of the forecasted
power demand. It is assumed that the flexibility is symmetric so the demand can both
be tuned up and down. The action space in a power grid with F flexible load A ⊆ RF is
defined as

A = {ai| i = 1, ..., F} (4.5)

where ai ∈ [−1, 1] is the activation at flexible load i in the power grid. ai = 1 means that
load i increases its active power consumption as much as possible. The change in demand
∆Pi is then scaled up according to the action signal ai by

∆Pi = fiaiPi,forecast

Pi ← Pi + ∆Pi
(4.6)

where fi is the flexibility, Pi is the active power demand and Pi,forecast is the forecasted
power demand at load i. Note that every flexible load has a unique demand change that

38 CHAPTER 4. PROBLEM DESCRIPTION

is independent of the demand change at the other loads. The resulting reactive power
demand is found by multiplying the active power with a load constant, because the loads
are assumed to have a constant power factor.

It is possible to include more control variables that the agent can control. For instance,
the reinforcement agent could control the tap position of the transformer and the switches
in the system. There is also a CIGRE benchmark network in pandapower that has storage
units in the power net. A possible extension is to let the agent control the charging and
discharging of storage units.

4.3 Reward function

The reward function is a central element in any reinforcement algorithm. The terms cost
and reward are used interchangeably in this thesis. In all cases the reward is the negative
of the cost. By this definition, maximising the reward is the same as minimising the cost.

The reward function should give a signal that is used to reinforce ”good” behaviour.
The goal of the agent is to avoid violations of safety margins for voltage and current in
the power grid. Gemine et al. formulate a reward function aimed to safely operate a
power grid at a low cost, where they punish the agent proportionally to the violation of
safety margins [18]. There are multiple cost terms that can be included, and this section
will present several of these.

There are safety margins in terms of voltage magnitudes in an electric system. In the
Norwegian power system, there are regulations that state that the voltage can vary by
+/- 10 % of nominal levels for voltage levels below 1 kV [19]. This thesis will assume
a stricter safety region around nominal voltage values, motivated by the higher voltage
level in the CIGRE distribution network (22 kV). The default safety margin for voltage
is set to +/- 5 % deviation from nominal voltage. Let Cvoltage,i be the cost for violating
voltage margins at bus i

Cvoltage,i = max(0, |Ui| − Uupper) + max(0, Ulower − |Ui|) (4.7)

where Uupper and Ulower are the upper and lower per-unit voltage limit respectively. The
voltage cost for a bus in the grid with a safety margin of +/- 5 % is visualised in figure
4.3.

Let Ccurrent,i be the cost of violating current margins in line i

Ccurrent,i = max(0, |Ii| − Iupper) (4.8)

where Iupper is the per unit upper current loading limit in lines. Note that the current
loading is not measured in ampere, but is the percentage of used capacity in the trans-
mission line. The current cost is therefore weighted by the capacity of a line. The current
cost for a line is plotted in figure 4.4 for an upper current loading limit of 90 %.

Costumers must be given an incentive to change their consumption pattern in a re-
alistic modelling of a demand response program. In other words, costumers should be
economically compensated when their flexibility is activated. Let the activation cost
Cactivation,i be defined as

Cactivation,i = λ|∆Pi| (4.9)

where |∆Pi| is the absolute change in power consumption at flexible load i and λ is the
flexibility price at the time of activation 1. In other words, the cost is the same if the

1The currency is arbitrary, and does not affect the cost as it can be scaled by the weight of activation

4.3. REWARD FUNCTION 39

Figure 4.3: Voltage cost at a bus in the power system where the lower and upper voltage limits
respectively are 0.95 pu and 1.05 pu

Figure 4.4: Current cost for a line in the power system where the upper current loading is 90 %

consumption is increased or decreased.

It is desired that the flexible loads consume more power during periods with heavy
solar production. In addition, flexible loads should use less energy during peak demand,
both to reduce violations in the grid and to ensure that the total energy consumption
in a day is not altered. The agent should be punished for having a large imbalance.
Consequently, it should be penalised for taking an action that increases the absolute
balance quantity. Let Cimbalance,i be the energy imbalance cost at time t for flexible load

40 CHAPTER 4. PROBLEM DESCRIPTION

i.

Cimbalance,i = |Bi,t| − |Bi,t−1| (4.10)

where the energy imbalance Bi,t is given by equation (4.3). The agent is penalised if the
result of an action increases the energy imbalance in absolute magnitude.

The total cost of an agent at each step is defined as a linear combination over the
voltage, current, activation and imbalance cost

C = κ1

F∑
i=1

Cactivation,i + κ2

L∑
i=1

Ccurrent,i + κ3

N∑
i=1

Cvoltage,i + κ4

F∑
i=1

Cimbalance,i (4.11)

Where L, F and N are the number of lines, flexible loads and buses respectively. The
weights κi can be tuned, based on what the desired behaviour of the agent is. If safety
margins are most important, the weights for cost of activation and imbalance should be
small. Note that it is possible to discard a cost completely by setting its weight equal to
zero. Lastly, the cost must be turned into a reward that a reinforcement algorithm can
use. The reward R is simply defined to be the negative of the cost

R = −C (4.12)

where the total cost C is defined by (4.11). Table 4.3 summarises the different costs and
their definition.

Table 4.3: Cost terms that can be used in the reinforcement algorithm. The subscripts ’upper’
and ’lower’ means the upper and lower safety margins. λ is the unit cost for activation of a
flexible load (£/MWh). ∆Pi is the change in consumption of flexible load i. Bi,t is the daily
energy imbalance as defined in (4.3)

Cost Definition Comment

Voltage max(0, |Ui| − Uupper) + max(0, Ulower − |Ui|) Violation of voltage margin
Current max(0, |Ii| − Iupper) Violation of current margin
Activation λ|∆Pi| Activating flexibility

Imbalance |Bi,t| − |Bi,t−1|
Changing daily energy
consumption

4.4 Playing an episode

This section will describe how the state of the electric grid is updated in an episode. The
reinforcement agent is each hour given a state that represents the system, which includes a
forecast for power demand and solar irradiance. Naturally, no forecasts are perfect, so the
actual power demand and solar irradiance should deviate from the predicted values. This
is done by adding a noise term to the forecasted values. The noise terms for the demand
and solar irradiance are assumed to follow a Gaussian distribution with mean 0 and a
standard deviation that is proportional to the forecast in that hour. The hyperparameters
σsolar and σdemand determine the uncertainty in the forecasts, and the default values are
set to 3 % in both cases.

The reinforcement agent evaluates a state s and picks an action a to perform in each
hour. The action determines the change in power consumption at the flexible loads in the

4.4. PLAYING AN EPISODE 41

power grid. The power flow equations are ready to be solved when the power demand
resulting from the action is computed. There are no voltage regulating generators in the
CIGRE network. Consequently, all the buses in the network are modelled as PQ-buses,
except for the external grid (slack bus) where active power P and voltage angle δ are
known. After the power flow calculations have been performed, the reward is calculated
and used to evaluate the action of the agent. Finally, the forecasts for demand and solar
irradiance are updated and the state st+1 for the next hour is found. This concludes the
processes involved in one time step of the reinforcement model. The learning process is
summarised in pseudo code in algorithm 2

Algorithm 2: Process for updating power demand and solar production in the
electrical power grid

Select state space S, flexibility f ∈ [0, 1], reward function r
for episode 1:M do

Randomly select start day and start hour
Receive initial state s1
for t 1:T do

Let the reinforcement agent select an action at based on st
Set global solar irradiance r based on forecasted solar irradiance rforecast

r = rforecast(1 + ε), ε ∼ N (0, σsolar) (4.13)

for Static generator 1:G do
Update solar production Psun based on nominal value SN

Psun = rSN (4.14)

end
for Load 1:F do

Set power demand P based on forecasted power demand Pforecast

P = Pforecast(1 + ε), ε ∼ N (0, σdemand) (4.15)

end
for Load 1:F do

Update power demand P based on the agent’s action a and flexibility f

P ← P + afPforecast (4.16)

end
Solve the power flow equations
Calculate reward with reward function r
Find next state st+1

end

end

42 CHAPTER 4. PROBLEM DESCRIPTION

Chapter 5

State of the art

5.1 Reinforcement learning

Reinforcement learning is a discipline in rapid development. Reinforcement algorithms
have gained from the recent success of methods in supervised learning, such as convolu-
tional neural networks (CNN) and recurrent neural networks (RNN). Dan Cireşan et al.
had a breakthrough in 2010 when they were able to train a dense neural network using
backpropagation with a graphic processor unit (GPU) instead of a conventional central
processor unit (CPU) [20]. The neural network was trained on the MNIST dataset of
handwritten digits using image augmentation such as rotations, horizontally shearing and
scaling. Their results showed that the time of the backpropagation routine was cut by a
factor of 40 with the use of the GPU and they achieved a record breaking low error rate
of 0.35 % in the classification task. In 2011 the team of Dan Cireşan et al. continued the
development and presented an implementation of backpropagation for CNN using GPU,
cutting the training time from months to days [21].

In 2013, Mnih et al. at DeepMind Technologies implemented a Q-learning algorithm
using CNN as function approximators, inspired by the recent success of supervised learn-
ing [2]. They called their method Deep Q-Network (DQN) and applied it on seven of
the Atari 2600 games. DQN was able beat all previous solutions in all games expect
for space invaders, and achieved super-human performance in three games. DQN only
learns from raw pixel input, without using low dimensional feature engineering of the
input values. In addition, the same network architecture and hyperparameters were used
for all games, proving the generality of DQN. Before DQN, most reinforcement learning
used linear function approximators for the action-values function because nonlinear ap-
proximated had problems with divergence [2]. In addition, Tsitsiklis and Van Roy had
presented a proof of convergence, in addition to a bound on the approximation error for
linear approximators [22].

A problem with using neural networks as a function approximator in online learning is
that samples in reinforcement learning are highly correlated. States visited in chronolog-
ical order are naturally dependent on each other. Therefore, it is difficult to update the
network online, since the gradient estimate will suffer from large variance during training,
heavily depending on the recent visited states. Mnih et al. avoided this problem by using
an experience replay buffer that stores the N last tuples 〈st, at, rt, st+1〉 of experiences
made by the agent. The neural network is updated using stochastic gradient descent
by drawing random samples from the experience replay buffer. In addition to avoiding
correlated samples, it is a more sample efficient approach as a single experience can be
used in different parameter updates [2].

43

44 CHAPTER 5. STATE OF THE ART

In each time step, Mnih et al. converted the last 4 frames from RGB to grayscale
images, reduced them to 84x84 pixels, and stacked into an 84x84x4 image. This was the
state representation that was sent as input to the CNN. The output layer of the neural
network was the action-value for all the actions in that game. Note that the action space
in these games all are discrete actions, i.e. move right, move left, shoot etc. Until DQN,
similar algorithms all relied on some sort of domain knowledge that was used for feature
engineering. DQN, on the other hand, learns to extract the relevant features on its own,
from a stack of grayscale images, through its neural network function approximator.

In 2015, Mnih et al. tested DQN on more atari games, and outperformed 43 of the
47 games where reinforcement learning research previously had been conducted [23]. The
algorithm had a slight modification to that presented in the 2013 paper. The Bellman
equation in (3.10) is the foundation for calculating the target values used for updating the
parameters in the function approximator. However, the parameters of the neural network
are used to calculate the target values which in turn are used to calculate the parameter
update. As a result, the learning situation can become unstable because the target values
are changing as the network parameters are updated. To solve this, they only periodically
updated the parameters used for calculating the target, thereby making it more stable
during training.

Although DQN was a great improvement compared to existing methods, it is not able
to tackle tasks with a continuous action space. A self-driving car must not only decide
to turn left or right, but it must determine the exact turn angle of the wheel. A possible
solution is to discretise the action space, for instance by dividing the possible wheel angles
into 5 possible categories: [−90o,−45o, 0o, 45o, 90o]. This is realisable for tasks consisting
of few independent action variables, albeit the steering would be very abrupt, but the
action space grows exponentially with the number of variables. For instance, imagine a
reinforcement task with 10 independent action variables that all are discretised into 5
categories. The resulting action space is finite, but has a size of 510 ≈ 10, 000, 000. The
consequence is that the final layer in the neural network in the DQN algorithm must
consists of 10 million neurons, which all would have a parameter for all the neurons in the
previous layer, in addition to a bias. The number of parameters in the neural network
would easily surpass 1 billion. Therefore, a better approach is to use policy gradient
methods that are well suited for continuous actions.

In 2016, Lillicrap et al. presented the deep deterministic policy gradient (DDPG) as
an continuous extension of the DQN algorithm [10]. DDPG is an actor-critic model that
builds on the deterministic policy gradient methods presented by Silver at. el in 2014,
where it was shown that deterministic policy methods were better than stochastic meth-
ods, especially in tasks with a large action space [9]. The extension made by Lillicrap et
al. was to use a neural network, as in DQN, as function approximators. Specifically, they
parametrise both the policy (actor) and action-value function (critic) by neural networks.
DDPG also uses the replay buffer to ensure uncorrelated samples during parameter up-
dates. They use a separate target network for both the actor and the critic, in a similar
fashion to DQN where target values parameters only are periodically updated. DDPG
was tested on 33 physics tasks with continuous actions, such as the cartpole and pen-
dulum environment. They trained both on low-dimensional input data, such as angle
velocities, acceleration etc., and also using raw pixels from rendering of the environment.
DDPG performed well on most of the tasks, and was able to beat a model-based planning
algorithm (iLQG) on several occasions, not only using low-dimensional features, but also
using raw pixels as input [10].

The success of neural networks as function approximators continued in 2016 with

5.2. DEMAND RESPONSE 45

AlphaGo (Silver et al.), a reinforcement algorithm trained to play the Chinese board
game Go [24]. Go is a complex game with a large state and action space that computer
programs have been struggling to solve for decades. AlphaGo was the first program to
beat the current world champion of Go, winning 4 of 5 games against Lee Sedol [6].
AlphaGo was not entirely learning from self-play, but was pretrained using expert-moves.
However, an extension of the method, called AlphaGo Zero, learned entirely from self-
play through the use of Monte Carlo tree search and CNN as function approximators.
Finally, Silver et al. introduced AlphaZero, and showed that the same algorithm and
neural network architecture could be generalised to also learn chess and the Japanese
board game Shogi through self-play [3]. AlphaZero was able to beat the current world-
record computer programs in all three games, without any domain-specific knowledge or
handcrafted features.

On April 13 2019, OpenAI Five became the first reinforcement algorithm to beat
a world champion team in an esport event [25]. OpenAi Five played against the world
champions of Dota 2, a multiplayer online battle arena video game consisting of two teams
of 5 playing against each other. The game is highly strategic, where it is important to plan
and collect resources to be able to destroy the opponents main building [26]. Once again,
the successful reinforcement algorithm uses neural network as function approximators,
although the exact algorithm (PPO) is different from DDPG [27]. Still, it shows that
neural networks have not only been revolutionary in supervised learning, but also in
reinforcement learning. OpenAI Five demonstrates one of the main strengths of neural
networks: it continually learns from new input data/experiences. OpenAI Five had a
solid 10-month wall-clock time of training, corresponding to 45 000 year of self-play in
Dota-2 [25].

5.2 Demand response

Demand response is a subject that is well researched. Vázquez-Canteli and Nagy have
conducted a literature search where they make a review of published research concerning
the use of reinforcement learning algorithms and demand response [13]. The different
search terms are summarised in table 5.1 and they used the following combination for a
search in Web of Science: A and {B or (C and D)}

Table 5.1: Search terms used by Vázquez-Canteli and Nagy to find literature about demand
response and reinforcement. learning [13]. * means that singular and plural form were used

A B C D

”Reinforcement learning”
”Demand-side
management”

Heating Building*

Q-learning ”Demand response” Cooling House*
”Electric vehicle*” ”Electricity price*” Residential
HVAC Comfort Home*

Energy Household*
Photovoltaic
PV
Solar

The review includes 105 articles in total, mainly from the literature search in Web of
Science. The studies have objectives such as minimising energy cost, peak energy and
user discomfort. A way of minimising energy cost and peak energy is by shifting the

46 CHAPTER 5. STATE OF THE ART

demand to hours of peak solar production, which in turn helps the power system by
avoiding voltage and current safety violations. However, the goal of the studies included
in Vázquez-Canteli and Nagy’s review do not explicitly use the voltages and line current in
the reinforcement algorithm in a similar way as this thesis. In contrast, the studies often
focuses on the energy system of individual houses or collection of houses. For instance,
Yang et al. focus on controlling a heat pumps, geothermal boreholes and PV modules
to minimise a building’s energy usage [28]. Dusparic et al. use reinforcement learning to
control the charging of electrical vehicles such that the current limit for a transformer is
not violated [29]. The problems are similar, but do not involve the power flow equations
as part of the algorithm. Vázquez-Canteli and Nagy give recommendation for future work
on reinforcement learning and demand response. They propose that more studies should
implement state-of-the-art reinforcement learning algorithms, such as DDPG [13].

Gemine et al. have formulated a similar problem as the research question in this thesis,
allowing the agent to not only change the consumption in but also to curtail generation of
power [18]. They use tests grids of 5, 33 and 77 buses and the goal is to avoid violations
operational limits at a low cost. They include the power flow equations explicitly in the
problem, but do not solve the task using a reinforcement learning algorithm, although
they formulate the problem as a Markov decision process. The safety margins for current
and voltage are taken out of the objective function, and put as constraints into different
mathematical programs. In addition, they do not consider continuous actions.

Zarrabian et al. use Q-learning to avoid line congestion and cascade failure in an
electric transmission system [30]. The agent is punished for increasing the current in an
overloaded line and the agent’s actions space is to increase or decrease the power produced
at generators in the system. Again, the action space is discrete and not continuous as in
this thesis. They test the agent for several scenarios, such as a N-1 and N-1-1 contingency.
A scenario with a loss of a single transmission component is termed a N-1 contingency,
and a scenario with two consequent losses of transmission components is termed N-1-1
contingency. The Q-learning approach is successful, and the agent is able to satisfy all
power system constraints and at the same time avoiding cascading failures [30].

The work of Gemine et al. and Zarrabian et al. are the most relevant studies found
for the research question in this thesis.

Chapter 6

Implementation

This chapter introduces the Python libraries gym, stable-baselines and pandapower,
which are used for setting up the reinforcement learning algorithm and solving the power
flow equations. Also, the class ActiveEnv developed for this thesis is presented.

6.1 Pandapower

The central goal in this thesis is to keep values for current and voltage in an electrical
power system within safety margins. It is therefore necessary to have a way to solve the
power flow equations (2.45) and use the results to see if safety margins are violated. The
tool for solving the power flow equation in this thesis is the Python package pandapower

[31]. They describe themselves in the following way:

”pandapower builds on the data analysis library pandas and the power system
analysis toolbox PYPOWER to create an easy to use network calculation
program aimed at automation of analysis and optimization in power systems.
What started as a convenience wrapper around PYPOWER has evolved into
a stand-alone power systems analysis toolbox with extensive power system
model library, an improved power flow solver and many other power systems
analysis functions.” [32]

Pandapower is a time independent simulation tool that finds steady state solutions
to a power flow problem. The power consumption and production at nodes in the power
system can easily be updated as desired, and the power flow calculation will give the
resulting voltage and current magnitudes.

This section will describe the different electrical elements available in pandapower
and how they are physically modelled. In addition, it is shown how to take actions in
the power system using the API of pandapower. It should be noted that this thesis uses
version 1.6.1 of pandapower, which has some differences compared to the 2.0.1 version
available at the current time of writing. For instance, the base power unit in the 1.6.1 is
kilowatts, while it for the 2.0.1 is megawatts.

Lines

The method pandapower.create line is used to create a line element that can be con-
nected between two buses. Pandapower offers many standard types lines for both un-
derground cables and overhead transmission lines. Alternatively, a line with custom
parameters for impedance, line length, line diameter etc. can be specified with the

47

48 CHAPTER 6. IMPLEMENTATION

method pandapower.create line from parameters. The lines are modelled using the
π-equivalent model, described in section 2.10.

Generators

Pandapower has two generator types. The first type is simply called generator and is
modelled as a PV-bus. In other words, the active power production P and voltage mag-
nitude |U | are known when solving the power flow equations. Generators can be created
using the method pandapower.create gen, where nominal values for apparent power
and voltage can be specified. The second type is the static generator, where the active
power P and reactive power Q is specified (PQ-bus). Static generators are created using
pandapower.create sgen. Pandapower models power from the consumer perspective,
so negative values for active power P and reactive power Q correspond to generation of
power.

Loads

The load in pandapower is modelled as a PQ-bus, where active and reactive power are
known. In other words, they are modelled like static generators, but are separated in two
different data structures. Loads are created using the method pandapower.create load.
The loads can also be modelled with constant impedance Z, current I and P . In other
words, replacing reactive power with current and impedance.

Transformers

Pandapower offers both two-winding and three-winding transformers that can be cre-
ated from standard types using the pandapower.create transformer method, or from
parameters using the method pandapower.create transformer from parameters. The
transformers can be modelled as a π-transformer or a t-transformer. The transformers
have settings for tap-position and phase-shifting of the voltage, which are possible control
variables for a reinforcement agent.

Storage

The method pandapower.create storage creates a storage element in a power net. The
storage element is modelled as a PQ-node. Because simulations in pandapower is time-
independent and only find steady state solutions, it does not update the capacity of
a storage during power flow calculations. Available energy in the storage element must
therefore be updated manually according to some predefined timescale when several power
flow calculations are performed.

6.1.1 Data structures in pandapower

Pandapower stores information about elements in an electric transmission system in pan-
das DataFrames, which make it easy to inspect the numeric output of a power flow
calculation. Figure 6.1 shows a 4 bus case net and the components included in it.

6.1. PANDAPOWER 49

Figure 6.1: Loading an example net in pandapower

Each of the elements listed has a corresponding pandas DataFrame. The elements
without ”res” at the beginning are parameter tables and have information about nominal
and max/min values for the components. Figure 6.2 shows the parameter table for the
lines and buses in the system.

Figure 6.2: The parameter table for buses and lines in pandapower. There are more columns in
net.line

All of the components will have a result table after the power flow calculation is
performed, using the method pandapower.runpp. Figure 6.3 shows the result tables for
the buses and lines in the net.

6.1.2 Plotting results

It is important to be able to inspect the resulting state after a reinforcement agent per-
forms an action on the system. This can be complicated for large network with many
buses and lines that each have a voltage magnitude, voltage angle and so on. Fortunately,

50 CHAPTER 6. IMPLEMENTATION

Figure 6.3: The result table for lines and buses in pandapower. There are more columns in
net.res line than those shown in the figure

pandapower has support for plotting both grid architecture and results from the power
flow. It is possible to get static plots using matplotlib and interactive plots using plotly
[33]. Figure 6.4 shows the interactive results from a power flow calculation performed on
the Oberrhein power grid using plotly. The lines are coloured based on the line loading
(100% means maximum current), while the buses are coloured based on the voltage mag-
nitude. Such plots help to get an overview of the grid and quickly identify critical areas in
the transmission system. It is possible to zoom into the net since the plot is interactive,
and by clicking on a line or bus you can see the values for voltage, current and power.

6.1.3 Controlling a pandapower net

Reinforcement learning is all about taking actions and getting rewards based on how
good that action was. It must therefore be possible to control certain elements in a
pandapower net. This section will show how to update the demand in the net, and how
to control transformers. The demand update is the only control that is implemented into
the reinforcement algorithm in this thesis.

Transformers in a transmission system can have controllable taps that change the
winding ratio between the low and high voltage side of the transformer. By doing this it
is possible to control the voltage magnitude at buses connected to a transformer. There
also exists phase-shifting transformers that can manipulate the voltage angle between
the low and high voltage side. Transformers in pandapower allow control of both volt-
age magnitude |U | and voltage angle δ. The code in figure 6.5 demonstrates how to
control a transformer in pandapower. First, a two-bus system with a transformer is
created. It is a standard type transformer 25 MVA, 110/20 kV and the external grid
is connected to the high voltage side of the transformer. The taps are placed on the
low voltage side of the transformer with the command net.trafo[’tp side’] = ’lv’.
Performing a power flow calculation gives the result tables without changing the tap
position in the transformer. The voltage angle is manipulated to 20 degrees by specify-
ing net.trafo[’shift degree’]. The voltage magnitude is changed by first specifying

6.1. PANDAPOWER 51

Figure 6.4: Interactive plot of the results from a power flow calculation on the Oberrhein case
power grid using plotly. The grid consists of 179 lines and 180 buses

net.trafo[’tp st percent’] which is the percentage change in voltage magnitude per
tap position. This is set to 10 % and the tap position is set using net.trafo[’tp pos’]

to -1. By running another power flow calculation and inspecting the table net.res bus,
it is evident that the voltage angle is shifted 20 degrees and that the voltage magnitude
is reduced by 10 % with respect to the first power flow calculation.

net.load gives a DataFrame where all each load in the system is represented as a
row. There can be several loads connected to a bus in pandapower. In such cases, the net
power injection at that bus is the sum over all its loads. Figure 6.6 shows how to double
the active and reactive power consumed at the loads. The general pattern for controlling
an element in pandapower is to change the element table, run the power flow calculation
which in turn updates the result table. The solar production at a bus can be set in the
same manner, by updating the values in the net.sgen table.

52 CHAPTER 6. IMPLEMENTATION

Figure 6.5: Code showing how to control the tap position and phase angle for a transformer in
pandapower

6.2 Gym, stable-baselines and ActiveEnv

The Python library gym is a toolkit used for managing environments in a reinforcement
learning algorithm [34]. It is developed by OpenAI and includes thousands of predefined
environments of classical video games and control theory tasks such as the cartpole, swing-
ing pendulum etc. In addition, it is possible to construct own environments that easily
can be used in reinforcement algorithms. OpenAI also has a toolkit called baselines with
implementations of many reinforcements algorithm that can interact with gym environ-
ments [35]. However, the baselines library is currently lacking a unified code structure
between the algorithms and generally have poor documentation. As a result, a fork called
stable-baseline has been created by the AI community, that offers a major cleanup of
the code, with a scikit-learn like interface [36]. Along with this, it supports tensorboard
that can be used to monitor the rewards and objective losses during training.

The implementation of the reinforcement algorithm in this thesis is done using gym and
stable-baselines. Specifically, an environment class called ActiveEnv is implemented,
that follows the standard gym environment structure. The environment is thoroughly

6.2. GYM, STABLE-BASELINES AND ACTIVEENV 53

Figure 6.6: Code showing how to double the consumption at loads in pandapower

tested using pytest. The main job of ActiveEnv is to take in an action chosen by a
reinforcement algorithm, perform that action, find the next state resulting from that
action, and calculate the reward. Specifically, ActiveEnv receives an action vector a where
each component determines the percentage change in power consumption at each flexible
load. First the consumption and production of power at nodes in the net are changed
according to the demand forecast and solar forecast, respectively. The action vector is
then processed and updates the power consumption at each load in the pandapower net.
The power flow equations for the network are then solved using pandapower. Once the
power flow equations have been solved and the new voltage and current magnitudes in
the net are determined, the reward can be calculated. This summarises the steps involved
with one action in the reinforcement algorithm. A more detailed description can be found
in chapter 4.

There are many possible ways of constructing the reward function and state space, as
discussed in chapter 4. The ActiveEnv class has a method that can be used to specify the
setup of the reinforcement learning algorithm, in addition to several parameters. Table
6.1 gives a description of all the parameters together with their default values.

54 CHAPTER 6. IMPLEMENTATION

Table 6.1: Description of the parameters that determine the setup of the ActiveEnv environment

Parameter name Value Description

activation weight 0.0001 Weigh factor for activation cost

current weight 0.01 Weight factor for current cost

demand scale 10 Scale factor for power demand

demand std 0.03
Standard deviation as a ratio of
forecasted demand

episode length 200
Number of steps (hours) before the
environment resets

flexibility 0.1
Quantity describing max demand change
at a load

forecast horizon 4 Number of hours in the forecasts

i upper 90
Upper current limit as percentage of
line capacity

imbalance change False
Imbalance change used to
calculate cost if True

imbalance weight 0.0001 Weight factor for imbalance cost

reactive power True
Determines if reactive power is
modified by the action

reward terms
[’voltage’, ’current’,
’imbalance’,’activation’]

Terms to include in the reward function

solar scale 0.8 Scale factor for solar irradiance

solar std 0.03
Standard deviation as a ratio
of forecasted solar irradiance

state space
[’sun’, ’demand’,
’imbalance’, ’bus’]

State spaces to be included in the model

total imbalance False
Calculates total demand imbalance
in the system if True

v lower 0.95 Lower voltage margin

v upper 1.05 Upper voltage margin

voltage weight 1 Weight factor for voltage cost

Chapter 7

Results

This chapter presents results from a model trained using deep deterministic policy gradient
(DDPG).

7.1 Feasibility

It is important to investigate the potential effect demand response has on current loading
and voltage magnitudes before a model is evaluated. It is not given that it is physically
feasible to avoid safety violations in critical periods by modifying the power consumption
in grid. Certainly, the voltage magnitude at buses in the net will decrease when the con-
sumption is increased, but how much? This section shows that changing the consumption
indeed can affect the voltage and current enough to reduce the number of violations in
CIGRE network.

Figure 7.1: Mean hourly power demand curve and solar irradiance

As mentioned in chapter 4, the main challenges for the network is that large amounts
of power must imported from and exported out to the external grid in a normal day.
Figure 7.1 plots the daily mean solar irradiance signal and power demand used for training

55

56 CHAPTER 7. RESULTS

the reinforcement agent. The first period that is critical for the grid is when the solar
irradiance is at its maximum.

Figure 7.2: Current capacity in a critical line when increasing the power consumption with 25
% in all hours and regular situation. The line connecting bus 1 and 2 in figure 4.1 is showed

Figure 7.2 illustrates the effect of activating flexibility (increasing consumption) has
on the current in a critical line. The consumption of active power is increased by 25 % for
all the loads in every hour. The first and second peak in plot correspond, respectively, to
the solar peak and the power demand peak. It is clear from the first peak that increasing
the consumption decreases the line current. This is because the buses in this period
generate so much solar power that they act as producers and not consumers. Increasing
the consumption means that less power needs to be transported out to the external grid,
which decreases the line current. As a result, the desired behaviour in periods with high
solar irradiation is to increase the consumption.

The effect of increasing consumption in the second peak is the opposite of that in the
first peak. This is because the loads now act as consumers since there is no solar pro-
duction. The active power must therefore be imported from the external grid. Increasing
the consumption in this period simply corresponds to drawing even more power from the
external grid, which in turn increases the line current loading. The desired behaviour in
this period is therefore to lower the power consumption, since this would decrease the
current in the line.

Figure 7.3 illustrates the effect activation of flexibility has on voltage magnitude at a
critical bus bar. In this case, the consumption of active power is decreased by 25 % at all
loads in the network throughout a day. There are two critical periods during a normal
day for this case as well. The effect of decreasing the consumption in periods with high
solar is that the voltage magnitude increases. This can be seen between around hour 13
in figure 7.3. The buses are in this period acting as producers because of the excess solar
power that is transported out to the external grid. Generally, higher production at a bus
bar means higher voltage magnitude. Reducing the consumption means that even more
power from solar production must be sent out to the external grid, raising the voltage
magnitude ever further. Consequently, decreasing the consumption in periods with high

7.2. SIMULATION - FREE ACTIVATION 57

solar irradiance is not a desired behaviour.

Figure 7.3: The voltage magnitude at a critical bus when the power consumption is reduced
with 25 % in all hours and regular situation. Bus bar 9 in 4.1 is used

The second critical period in a normal day can be seen around hour 20 in figure 7.3.
At this point, there is no solar power production, and power must be imported from
the external grid to meet the demand. The voltage magnitude is now lower than its
nominal value because the loads are consumers. Generally, higher consumption means
lower voltage magnitude. Therefore, it is better to reduce the consumption of power in
this period because the voltage magnitudes will be closer to nominal values.

To summarise, it is physically feasible to impact the current and voltage magnitudes
in the CIGRE net such that safety violations can be avoided or reduced by the means of
demand response. The desired behaviour in terms of both current and voltage safety is
to increase consumption in periods with high solar irradiance and decrease it during peak
demand.

7.2 Simulation - Free activation

In this simulation, a reinforcement agent with a constant flexibility of 10 % is trained
with a reward function that does not include the cost of activation. This is not a realistic
case of demand response, since households that offer flexibility should be compensated
for altering their energy profile and the flexibility is not a constant quantity. However,
it shows how an agent would activate flexibility if there was no direct cost associated
with altering the power consumption. The agent is penalised for changing the total daily
energy consumption in the power net. Note that it is not penalised for changing the
daily consumption at individual loads as long as the total consumption in the network
is preserved. The specific reward terms with weights are shown in table 7.1. The cost
function C in a time step with energy imbalance B is

C = 10−2
L∑
i=1

Ccurrent,i + 1
N∑
i=1

Cvoltage,i + 10−4B (7.1)

58 CHAPTER 7. RESULTS

where L and N respectively are the number lines and buses in the system.

Table 7.1: Reward terms and weights for formulation 1

Cost Weight Comment

Voltage 1 Per-unit values
Current 10−2 Percentage of max current
Activation 0 No activation cost
Imbalance 10−4 Units of energy imbalance is kWh

Table 7.2: State used in formulation 1

State space Size Comment

Solar forecast 4 4-hour solar forecast
Demand forecast 4 4-hour demand forecast
Imbalance state 1 Total energy imbalance in the net

The state space is constructed to be as small as possible. The state is represented by
a 4-hour forecast for both solar irradiance and active power demand. The power demand
as a percentage of nominal consumption is assumed equal at all the flexible load, so there
is not an individual power demand for each load. In addition to the forecasts, the total
power imbalance for the whole power network is included. Table 7.2 summarises the state
space

The DDPG agent was trained for 100 000 time steps, with no uncertainty in the
forecasts. In other words, the agent receives perfect information of the solar and demand
situation in the next hours. This can be seen as a model training on historical data for
solar irradiance and demand. Once training is done, the agent is tested in an environment
with uncertainty in both the solar and demand forecasts. The forecast error follows a
Gaussian distribution with standard deviation equal to 3 % of the forecasted value. A
complete summary with all hyperparameters used can be found in appendix A.1.

Figure 7.4 visualises the actions of the trained agent throughout an arbitrary day (24
hours) together with the solar irradiance. Simply put, it is desired that the demand change
follows the curve of the solar irradiance around noon, and goes down in the afternoon.

By inspecting figure 7.4 it is evident that the agent activates flexibility in hours with
high solar production for several of the loads. The plot load = 12 clearly follows this
pattern. On the other hand, the plot for load = 8 shows some peculiar behaviour. The
demand change does not follow the solar profile that day, but is negative most of the day.
This behaviour could be a result of how the reward function is defined in this experiment.
The agent is penalised according to the total energy imbalance in the system, and not at
individual loads. As a result, if the energy imbalance is +1 MWh at one load and -1 MWh
at another load, they perfectly cancel each other, and the agent is not penalised. From the
agent’s perspective, the system is in energy balance, although individual loads may have
a large absolute energy imbalance. This illustrates the problem with constructing state
variable that accounts for the system as a whole, and not individual loads. The agent
uses the same strategy consistently at this load. It can appear as if this load functions as
an energy balance, whose main job is to ensure that the total power imbalance in the grid
is kept as small as possible. However, the behaviour of the agent gives a negative energy
imbalance in the long term, as seen in figure 7.5. The agent controls a 200-hour long
episode, and the energy imbalance quickly decreases and reaches an equilibrium around

7.2. SIMULATION - FREE ACTIVATION 59

-13 MWh. The agent prefers to decrease the total consumption in the system. It indicates
that the reward function needs further parameter tuning.

Figure 7.4: Activation of flexibility at the different flexible loads of the trained agent throughout
a day. The red line is the solar irradiance during the day, which is the same for all loads. The
actions in green is the activation of flexibility. Demand change = 1 means that the flexible load
increases its power consumption with 10 %, while -1 means that it decreases its power consumption
with 10 %. The solar irradiance is unitless, and plotted to show the relation between the action
and solar profile.

7.2.1 Voltage violations

The reward function has an energy imbalance term during training that is meant to
incentives the agent to shift the energy consumption. However, the main goal of the
agent is to keep the values for current and voltage within safety margins. Therefore, it is
interesting to see the rewards of the trained model when only the voltage and current terms
are considered. In other words, the agent is only penalised for violating safety margins
for current and voltage in the grid. The trained model was tested for 500 episodes, each
consisting of 200 steps, and evaluated in terms of voltage penalty and current penalty

60 CHAPTER 7. RESULTS

Figure 7.5: Total energy imbalance in the system during a 200-hour episode controlled by the
trained agent

independently. The statistics for the hours with a non-zero reward using only voltage
reward are presented in table 7.3. Note that every non-zero reward corresponds to a
violation of voltage margin because only the voltage term is used to calculate the reward.
The trained agent reduces the number of voltage violations by 18 % from 8804 to 7253.
Note that there is no guarantee that it is physically feasible to satisfy voltage safety
margins given a demand flexibility of 10 %. In addition to reducing the number of
violations, the trained agent reduces the mean voltage penalty by 8%.

Table 7.3: Statistics of the voltage penalty given to the trained agent and no agent scenario over
500 episodes, each with 200 hours

count mean std 25% 50% 75% max

Agent 7253 0.035 0.037 0.006 0.021 0.052 0.237
No agent 8804 0.037 0.039 0.007 0.023 0.057 0.227

Figure 7.6 shows the voltage penalty distribution for the trained agent and no agent
scenario for hours with violations of voltage safety margins. These hours are termed
critical since there would be voltage violations if no actions were taken. The trained
agent is better in critical situations, as more of the penalties are situated closer to zero.

The statistics presented in table 7.4 show that the mean voltage penalty for the trained
agent is reduced by 24 % in critical hours.

Table 7.4: Statistics of the voltage penalty given in critical hours to the trained agent and no
agent scenario over a 500-episode simulation with 200 hours each

count mean std 25% 50% 75% max

Agent 8804 0.028 0.036 0.000 0.014 0.044 0.237
No agent 8804 0.037 0.039 0.007 0.023 0.057 0.227

All voltage penalties in the no agent scenario for critical hours are sorted and plotted in

7.2. SIMULATION - FREE ACTIVATION 61

Figure 7.6: Box plot of the voltage penalty distribution of the trained agent and no agent
scenario for critical hours where safety margins are violated.

Figure 7.7: Voltage penalties given to the trained agent and no agent scenario in critical hours.
The penalties are sorted for the no agent scenario from least to most severe

figure 7.7. The corresponding voltage penalties given to the trained agent are also plotted.
This is done to see if the trained agent is better in very critical periods with severe voltage
penalties, or if it performs well overall. The plot shows that the trained agent for the
most part receives lower voltage penalties regardless of the size of the violation. Still,
there are occasions where the trained agent is above the no agent scenario in figure 7.7
which corresponds to periods where the trained agent aggravates the voltage magnitudes.
The trained agent makes matters worse in 40% of the critical hours, and increases the
mean penalty with 29 % in those hours. However, the trained agent improves the voltage

62 CHAPTER 7. RESULTS

margins in 60 % of the critical hours, where it decreases the mean voltage penalty by
57%.

Figure 7.8 shows for each hour of a day a box plot of the difference between the
voltage reward given to the trained agent and no agent scenario in critical hours. This
plot illustrates the improvements of the trained agent, measured in terms of the increase
in voltage reward. Evidently, the trained agent is only improving the voltage situations
in the afternoon, in periods of peak demand. This explains the times the agent makes
matters worse in figure 7.7. 40 % of the voltage violations occur before peak demand
hours (18 pm), which is the same as the proportion of the critical hours where the trained
agent makes matters worse.

Figure 7.8: Hourly box plots of the difference in voltage rewards between the trained agent and
no agent scenario in critical hours. Positive values mean that the trained agent is better

Until now, the trained agent has been evaluated in critical hours, where there would
be a safety violation in the no agent scenario. However, the electric grid is within safety
margins 91 % of the time in the 500-episode simulation. It is very important that the
trained agent finds appropriate behaviour in both non-critical and critical hours. Investi-
gating the voltage penalty given to the agent in non-critical hours reveals that the agent
pushes the voltages out of the safety margins 0.6 % of the time. The worst of these
violations is -0.004 in magnitude, which is negligible compared the violations in critical
hours. In other words, the agent behaves well in non-critical hours in terms of voltage.

7.2.2 Current violations

The trained agent is tested in the same 500-episode simulation, each consisting of 200
hours, and evaluated in terms of violations of current safety margins in the power lines.
Specifically, the current cost Ccurrent for a line carrying a current I with capacity Iupper
is Ccurrent = max(0, I − Imax) where Iupper is set to 90 % of the line capacity. The total
current cost is found by summing over all lines. Note that the terms penalty and reward
are used interchangeably, depending on what is most natural. In all cases the reward is
the negative of the penalty. The statistics for the current violation of the trained agent
and no agent scenario are presented in table 7.5

7.2. SIMULATION - FREE ACTIVATION 63

Table 7.5: Statistics of the current penalty given to the trained agent and no agent scenario over
a 500-episode simulation, each with a duration of 200 hours

count mean std 25% 50% 75% max

Agent 1556 0.174 0.146 0.053 0.138 0.268 0.806
No agent 1487 0.161 0.142 0.045 0.121 0.250 0.787

The trained agent increases the number of current violations by 5 % from 1487 to
1556. In addition, the mean magnitude of current penalty increases by 9 %. The agent
has not learned an appropriate behaviour to reduce current overloads in the lines. The
hours in the simulation that have a current violation if no action is taken are termed
critical hours. Figure 7.9 shows the distribution of the current penalties for the trained
agent and no agent scenario in critical hours. The trained agent is worse because its
current penalty distribution is higher than for the no agent scenario.

Figure 7.9: Box plot of the current penalty for the trained agent and no agent scenario in critical
hours

Figure 7.10 plots the current violations for critical hours in the 500-episode simulation
sorted from least to most severe. The hour with the lowest current penalty is the least
critical hour. It is clear that the trained agent for the most part aggravates the situation.
In fact, it only improves the situation in 9% of the critical hours, which for the most part
are less critical in terms of the size of the current penalty.

Figure 7.11 shows hourly box plots for difference in current reward between the trained
agent and the no agent scenario. This figure illustrates which hours of the day the trained
agent performs well. For current penalty, the trained agent aggravates the situation in
all hours before peak demand. The agent improves the situation in terms of current
magnitudes after 18 pm. However, 91 % of the current violations happen during peak
solar production, so the net effect of the improvements is small. 91 % is also the proportion
of times the trained agent makes matters worse in critical hours in terms of the magnitude
of the current violations, as shown in figure 7.10. Figure 7.12 illustrates a period where
current violations occur during peak solar production.

64 CHAPTER 7. RESULTS

Figure 7.10: Current penalties in critical hours sorted from least to most severe for the trained
agent and no agent scenario

Figure 7.11: Hourly box plots of the difference in current rewards between the trained agent
and no agent scenario in critical hours. Positive values mean that the trained agent is better

Critical hours in terms of current violations account for 1.6 % of the timesteps in the
500-episode simulation. The trained agent creates current violations in non-critical hours
0.2% of the times, and they are small compared to current violations in critical hours. In
other words, the agent behaves well in non-critical hours in terms of current.

7.2.3 Summary

The trained agent shows a desired behaviour in terms of voltage magnitudes in periods of
peak power demand. The power consumption is decreased in those periods, which keeps

7.2. SIMULATION - FREE ACTIVATION 65

Figure 7.12: Current reward and solar irradiance profile in a three-day period. The agent is not
able to prevent current overloads in hours of peak solar irradiance.

the voltage magnitudes above the lower safety margins. However, the trained agent has
not found a strategy that keeps voltage magnitudes below upper margins in periods with
peak solar production.

The agent performs poorly in terms of avoiding current overloads in the transmission
lines. This is mainly a problem in periods of peak solar production, because there were
relatively few current overloads in the lines in hours of peak demand. Still, because it is
improving the voltage situation during peak demand, it also reduces the current loading
in the transmission lines. Therefore, the agent performs well in terms of current in periods
of peak demand. The behaviour of the agent in hours of peak demand and peak solar
production is summarised in table 7.6.

Table 7.6: Behaviour of the agent in critical periods in terms of current and voltage safety
margins

Current behaviour Voltage behaviour

Peak demand Good Good
Peak solar production Poor Poor

A summary of the performance in terms of voltage and current is presented in table
7.7. Overall, the trained agent reduces the number of voltage and current violations by
14%. However, it increases the mean penalty by 7 % due to its poor behaviour in terms of
avoiding current violations. Still, the trained agent is better in terms of the total penalty
received in the 500-episode simulation because voltage violations are more frequent. The
total penalty in terms of both current and voltage is reduced by 8 %.

66 CHAPTER 7. RESULTS

Table 7.7: Summary of number of violations and mean penalty in terms of current and voltage
for the trained agent and the no agent scenario

Type Agent No agent Change

Current Violations 1556 1487 5%
Mean penalty 0,17 0,16 9 %
Penalty 271 239 14 %

Voltage Violations 7253 8804 -18%
Mean penalty 0,035 0,037 -8%
Penalty 251.3 330.1 -24 %

Total Violations 8809 10291 -14%
Mean penalty 0.059 0.055 7 %
Penalty 522.3 569.1 -8%

Chapter 8

Discussion

8.1 Voltage and current impact

The action of the reinforcement agent determines the percentage change in demand at
each load in the interval [−f, f], where f is the flexibility of demand. Naturally, the load
is varying a lot throughout a day, but the nominal demand also varies a lot from bus to
bus. Figure 8.1 shows the values for nominal apparent power at each bus bar in the power
system, as predefined in pandapower.

Figure 8.1: Bar plot of the nominal apparent power at each bus in the CIGRE network

Bus 1 and 12 clearly stand out, and account for nearly 90 % of the total system
demand. For simplicity, they will be referred to as the dominant buses due their large
demand. Note that there is no solar power connected to them. Because each action
variable is scaled up by the nominal load, it is clear that action +1 for the dominant
buses has a much larger impact in terms of absolute power change than it has on the rest
of the buses. As shown in figure 8.2, The dominant buses are placed in the top of each
feeder 1 and feeder 2, connected to each their 220/22 kV transformer.

It might seem troubling that the dominant buses have much larger nominal values.
However, because they are placed next to the grid, they do not affect the line current in

67

68 CHAPTER 8. DISCUSSION

Figure 8.2: CIGRE network with solar and wind power that is used in the reinforcement learning
algorithm [15]. The dominant buses account for approximately 90 % of the power consumption
in the grid

the rest of the system much. For instance, if the consumption at bus 1 is doubled, the
current through the transformer approximately doubles to supply the demand. Naturally,
this could be very critical for the transformer, but it has a small effect on the line currents
in the power system, because the rest of the loads still draw the same amount of power
from the grid. The line current effect of changing the demand at bus 1 and 12 are not
that decisive as one first might think, due to their position close to the external grid.
On the other hand, they can greatly affect the voltage magnitudes in the grid. Figure
8.3 illustrates the effect increasing the demand at the dominant buses has on the rest of
the buses. The predefined demand values are used for solving the power flow equations
in situation A, while they are doubled for bus 1 in situation B, leaving the other buses
unchanged.

The dominant buses serve as the starting point for the voltage magnitudes because
they are at the beginning of the two feeders. This is true because there are only PQ-buses
in the system and no voltage regulating units. The voltage is static at the external grid,
and gradually falls as we move down the feeders in periods of peak demand. The voltage

8.1. VOLTAGE AND CURRENT IMPACT 69

Figure 8.3: Bar plot for each of the buses showing their voltage magnitude in nominal operation
(A) and after the demand at bus 1 in figure 8.2 is doubled (B). Note that the vertical axis is
truncated

magnitude at bus 1 is reduced when it doubles its demand, which in turn propagates
down the feeder and affects all buses in that feeder. The buses in the right feeder are
unaffected by the demand change at bus 1 because switch 1 (S1) in figure 8.2 is open. The
reinforcement agent is not allowed to double the demand in the reinforcement algorithm,
but figure 8.3 illustrates the decisive effect of the dominant buses in terms of voltage
magnitudes.

A measure of impact is needed to systematically investigate the effects of changing
the demand at a bus. Let the voltage and current impact of a bus respectively be defined
as the sum of the changes in voltage and current loading in the net when modifying
the demand at that bus by a certain percent. Note that the rest of the buses are left
unchanged when calculating the impact. For instance, the voltage impact of bus 1 in
figure 8.3 is the voltage difference of scenario A and B, summed over all buses. The same
can be done for the current impact, which is the difference in current loading summed over
all lines. The current loading in a line is a percentage of the line capacity, not ampere.
The current impact is therefore weighted against the capacity of the line. The impact of a
bus will be discussed for the two critical periods of the day, namely peak solar production
and peak demand. For peak solar production, the average demand and maximum solar
production at 12 am during the 500-episode test simulation are used to define the values
for consumption and production. For peak demand, the average solar production and
maximum demand at 8 pm are used.

Figure 8.4 plots the voltage impact during peak demand for each bus where the de-
mand change ranges from -20 to +20 %. The lower part of the box plots corresponds
to increasing the demand by 20 %, since increasing the consumption in peak demand
lowers the voltage magnitudes in the grid. As already discussed, bus 1 has a large voltage
impact, because it is at the top of feeder 1.

Figure 8.5 plots the current loading impact in peak demand hours for the buses in
the net, where the demand change ranges from -20 to +20 %. The lower part of the box

70 CHAPTER 8. DISCUSSION

Figure 8.4: Box plot for each bus bar showing the voltage impact for a flexibility of demand
ranging from -20 to + 20 % in an hour of peak demand

plots corresponds to decreasing the consumption by 20 %, since less current is needed to
supply the demand. The buses with highest current impact (5, 6, 9, 10) are all located
far down in feeder 1. A change in demand at them has consequences for several lines,
because the current they draw must travel through the lines in the top of the feeder. As
discussed, the current loading impact is low for the dominant buses (1 and 12), despite
the fact that they account for nearly 90 % of the consumption in the system.

Figure 8.5: Box plot for each bus bar showing the current impact during peak demand for a
demand change ranging from -20 to + 20 %

So far, the impacts of the buses have been investigated in hours of peak demand. A
similar simulation in an hour of peak solar production can be done to show the impact

8.2. PERFORMANCE OF THE TRAINED AGENT 71

of the buses in the second critical period. The impact relation between the buses in
peak solar hours is similar to the peak demand period. In other words, if a bus has
a large impact in peak demand, it also has large impact during peak solar production
compared to the other buses. However, the magnitude differs a lot for the two critical
periods. Figure 8.6 plots the current loading impact factor for each bus when the demand
is changed by 10% in hours of peak demand and peak solar production. The current
impacts during peak solar production are lower in all cases, except for bus 1. Similarly,
figure 8.7 shows the difference in voltage impact during peak demand and peak solar
production. The impacts differ because the power consumption generally is lower during
peak solar production. The mean demand during maximum solar production at 12 am
is less than half of the max demand value at 8 pm. Consequently, changing the demand
by 10 % at 12 am results in an absolute power change that is about half the change
during peak demand. The agent simply has less muscles during peak solar production,
because it is physically impossible to affect the grid as much as in the afternoon during
peak demand. This can explain why the trained agent performs well in periods of peak
demand and poorly in periods of peak solar production.

Figure 8.6: Current impact of all the buses in an hour of peak demand and peak solar production.
The demand is changed by 10 %

8.2 Performance of the trained agent

The results from section 7.2 show that the trained agent is able to reduce the number
of safety violation by 14%. However, the trained agent is only able to reduce violations
of voltage safety margins, not current violations. In fact, it increases the number of
current violations by 5 %. Still, there are large differences in terms of the quantity and
magnitude of the current and voltage safety violations. There are almost 6 times more
voltage violations than current violations. This is of course dependent on the voltage
bounds that are used for defining the voltage cost, which in this case are 0.95 and 1.05
pu. Although there are many more voltage violations in a normal day, the average current
violation is more severe. Specifically, the mean current cost is over 4 times greater than

72 CHAPTER 8. DISCUSSION

Figure 8.7: Voltage impact of all the buses in an hour of peak demand and peak solar production.
The demand is changed by 10 %

the mean voltage cost. The nature of the transmission in terms of violations is therefore:
the current violations are sparse and severe, while the voltage violations are numerous
and faint.

Why is the trained agent better at avoiding voltage violation than current violations?
A possible reason is that the agent is penalised more for voltage violations on average. The
total voltage cost is 38 % greater than the total current cost in the 500-episode simulation,
because they are more frequent. It is sensible that the agent learns a behaviour that
reduces the most punishing term, namely the voltage cost. As stated in section 7.2.2, the
trained agent only learned the appropriate behaviour in periods of peak demand. This
can be explained by the time of the day the voltage violations occur. 60 % of the voltage
violations occur during peak demand (after 17 pm) in the 500-episode test simulation. In
other words, voltage violations are the most punishing term and they are most frequent
in the afternoon. Imagine that the agent has the correct behaviour in the beginning of
training, i.e. that it increases consumption during peak solar and decreases it during
peak demand. The agent will experience a greater boost in reward by behaving correctly
in peak demand, because then the voltage cost is highest. In addition, the agent has a
greater voltage and current impact during peak demand, as discussed in section 8.1. Put
differently, it is easier for the agent to learn the correct behaviour during peak demand. It
is natural that the agent first focuses on the low-hanging fruits, and decreases the power
demand.

The agent is worsening the situation in periods of peak solar production. The desired
behaviour in such a situation is to increase the demand, so that less excess solar power
needs to be exported to the grid. However, the trained agent decreases the demand
in periods of peak solar production, since the number of current overload increases. It
is possible that the learned behaviour simply is to decrease the demand at all times,
especially when considering that the energy imbalance in the system is negative, as shown
in figure 7.5.

Figure 8.8 shows the mean action taken by the agent throughout the day in the 500-

8.2. PERFORMANCE OF THE TRAINED AGENT 73

Figure 8.8: Hourly mean values for the change in demand at the buses in the net, as determined
by the trained reinforcement agent. The error region is a 95 % confidence interval of the mean
value

episode simulation, with a 95 % confidence interval. The pattern of the actions is as
desired, because it goes up during peak solar producing and down during peak demand
in the afternoon. However, the change in demand during peak demand is still negative.
The action signal seems to have a negative bias. It is also worth noting that the mean
action is quite low in absolute magnitude. In other words, the agent is not synchronising
the buses such that the entire available flexibility in the system used.

Figure 8.9 shows mean values for demand change throughout a day for each bus. The
buses 1, 6, 8 and 9 are on average negative in every hour, i.e. the agent always reduces
the consumption. As discussed, the different buses have different voltage and load current
impact, and it is interesting to see whether there is a relationship between actions and
load current/voltage impact of the buses. First it can be noted that bus 1 (top left
corner) which has the largest voltage impact in hours of peak demand mainly is negative
in an average day. This can suggest that the trained agent has learned that lowering the
consumption is beneficial in peak demand hours, and therefore has a strong negative bias
that pulls the demand change to negative values throughout the day. The buses with
strongest current impact are 5, 6, 9 and 10, and they do not show a particularly desired
pattern. Only bus 10 increases the power consumption during peak solar. Bus 9, which
has a high current and voltage impact, has a reasonable curve shape, but it is negatively
biased which results in a decrease in power consumption in all hours. Perhaps the most
sensible mean action signal is for bus 11. Still, there is no obvious pattern that suggests
that the trained agent has learned a particularly well-coordinated behaviour. It might
very well be that it is the agent’s negative bias, i.e. its tendency to always decrease power
consumption, that leads to less voltage violations in the grid.

74 CHAPTER 8. DISCUSSION

Figure 8.9: Hourly mean values for the change in demand in the net for each bus, as determined
by the trained reinforcement agent. The error region is a 95% confidence interval

8.3 Solar power production

The nominal solar production level predefined in the network is scaled up by a factor of
40. This is done to challenge the grid by increasing the number of current and voltage
violations in hours of peak solar production. The maximum values for solar production
and consumption at the solar producing buses are presented in figure 8.10. Naturally,
the demand and solar production varies throughout the day. Around maximum solar
production, the relation between the mean solar production and mean consumption is
similar to the relation showed in figure 8.10. The ratio between solar production and
demand at bus 7 is very high, and should probably have been scaled differently than the
other buses. The ratio for the rest of the buses ranges from 1.2 to 2.8.

8.4 State representation

Bus state

There are many different ways of constructing the state space in the reinforcement agent.
In section 4.1 several candidates for the state space were introduced, such as the bus space.

8.4. STATE REPRESENTATION 75

Figure 8.10: Bar plot of the nominal apparent power consumption and solar production at solar
producing buses in the grid

The bus space consists of the active power P , reactive power Q, voltage magnitude |U |
and phase angle δ for all the buses in the system. It was not included in the state space
of the trained reinforcement agent. A reason for this is that the bus state in an hour gives
limited information about the future. Naturally, there is a correlation between the bus
state of the current and next step. For instance, during peak demand in the afternoon,
the demand between two hours are highly correlated, which means that the bus states also
are correlated. However, this information can be found in the demand forecasts. In some
sense, the bus state in the current time step is redundant. During peak solar production,
we can have an hour with heavy production from solar units, but in the next hour the
forecasts says that there will be cloudy. It is not possible to predict the clouds from the
bus state. On the contrary, the agent can be fooled to use the bus state to choose actions,
when it really is the forecast is should use, because the predictive information is hidden
in the forecast. However, the forecasts can be used to predict the next bus state, which
can be helpful information for the agent. The downside is that this will slow down the
training process, because the power flows equation must be solved, possibly several times
if many future bus states are going to be estimated.

State influence of actions

The actions of the agent in a reinforcement learning algorithm interact with the state of
the environment. For instance, an agent playing chess can choose to move a pawn based
on the state representation of the board. This move directly determines the next board
position, and therefore also the next state. The pawn action is very committing since a
pawn can not be moved back. The agent must therefore be very farsighted, and be able
to estimate future rewards precisely. Let us for the sake of argument ignore the imbalance
variable in the state space, and only consider the forecast space. The forecast space used in
this thesis is entirely independent of whether the agent increases or decreases the demand
power demand at a bus. There’s no sophisticated long-term planning that the agent can
do, because the agent does not affect the next forecast state. The optimal behaviour is

76 CHAPTER 8. DISCUSSION

to maximise the immediate reward, because the next forecast state will be the same no
matter what action is taken. Why would you not take the action that maximises the
immediate reward, when your future rewards do not depend on the action? The only
state variable the agent influences is the energy imbalance, which introduces the need for
long term planning and not only to maximise immediate rewards.

The agent would however interact with the state variable in an a more realistic mod-
elling of demand response, where there is a direct cost of activating flexibility, and when
the future flexibility depends on the actions. If batteries also are included in the system,
the agent will affect the future state more than in the experiment analysed in this thesis.
A more realistic demand response model would therefore be more like a classical rein-
forcement learning setup, where an action heavily influences the possible actions in the
future.

It should be noted that the agent still interacts with the environment, although the
forecast state is not affected by the agent’s actions. Altering the consumption affects the
power flow equations, and therefore the number of violations in the power grid.

Bus specific information

The state space used for training the agent does not include information that is bus
specific. The demand, which is expressed as a percentage of nominal power consumption
levels at each bus, is assumed equal at every bus. If the demand at a bus is 60 % of
nominal consumption, then the demand at every other bus is also 60 % of their nominal
consumption. Naturally, this is an oversimplification since demand curves vary from bus
to bus, depending on the type of load connected to the bus. For instance, a bus with
power-intensive industry connected will have different daily curve than a bus with only
residential buildings connected. Furthermore, the state space for a more realistic setup
should include an hourly price of changing the demand.

Constant flexibility

The reinforcement learning agent is trained for a fixed flexibility. In other words, it is
assumed that the consumption at all times can be increased and decreased by a fixed
percentage. This is not a realistic view of flexibility. As an example, the available flex-
ibility can change from workdays and weekends, as industry shuts down and there are
also hourly variations of flexibility throughout a day. In addition, the flexibility at a bus
should be influenced when the consumption in modified. For instance, an electric vehicle
can start charging if the agent increases the consumption at a bus. Naturally, this would
reduce the flexibility of the bus, since the electric vehicle might be fully charged the next
hour, and simply cannot increase its consumption. Changing the power consumption in
an hour will affect the future flexibility in the system. As a result, there must be a term in
the state space that estimates the available flexibility for buses in the system in a realistic
model of demand response.

8.5 Reward function

The reward function is designed to penalise violations of safety margins in the grid.
Specifically, current overloads and violations of voltage safety margin are the factors that
are used to calculate the reward signal. There are however two transformers in the grid,
that also should be included in the reward function. Transformers are not fireproof.

8.6. ENERGY IMBALANCE 77

pandapower has a result table for the transformer, that easily could be integrated in the
reward function. This would make the current impact of the dominant buses greater as
well.

The reward terms for current and voltage respectively sum over every line and bus
bar. By this definition it is mathematically possible that the magnitude of a current
violation in an individual line increases, but the overall penalty is less. For instance,
consider the following scenario. Say that the current loading in three lines are 105%,
104% and 104%. With an upper current loading limit of 90 %, the current cost would
be 15 + 14 + 14 = 43. Imagine that the reinforcement learning agent takes an action
and that the resulting current loading in the three lines are 115 %, 97 % and 97%. The
resulting current cost would then be 25 + 7 + 7 = 39, which is lower than the original one.
According to the reward function, the second scenario is better, although an individual
line is pushed further out of the safety margin, possibly damaging it severely. This is
mathematically possible, but the question is whether this is physically realistic. The
trained reinforcement agent controls the change in consumption in at the buses in the
net. Referring the imagined scenario above, two of the tree lines reduce their current
loading, and the way to achieve this in peak demand is by reducing the consumption at
some buses. This would not affect the power drawn by the other buses or in any way
cause larger current in any other line. On the contrary, decreasing the demand in peak
demand would increase voltage magnitudes in the grid, which in turn would reduce the
line current (S = UI). Consequently, it is not physically realistic that the described
scenario happens in the reinforcement learning setup used in this thesis.

The same scenario is mathematically possible with voltage violations as well. Again,
it is physically unrealistic that it would happen, because if the voltage magnitude at a
bus increases, it will push up the voltage magnitudes in the rest of the buses.

The current and voltage cost increase linearly with the size of the violation. It is not
necessary that the cost increases linearly, and it might be more appropriate to have a
quadratic cost or exponential cost that would penalise large violations harder than the
linear cost. Using a quadratic cost eliminates the mathematically possible reward scenario
described above.

The agent is not penalised for changing the demand in the setup analysed. This is an
unrealistic case of demand response, as costumers should be compensated for changing
their consumption pattern. Why would someone postpone their dishwasher if they did
not get some form for compensation? The reason for excluding the activation cost is that
the agent then can solely focus on reducing the safety violations, without worrying about
the economic side. A more complete reinforcement learning algorithm should include the
activation cost, so that the agent can learn to operate the net safely at a low economic
cost.

8.6 Energy imbalance

Figure 8.11 shows the distribution of imbalance rewards given to the trained agent in
the 500-episode test simulation. The mean imbalance reward is -0.02, which is smaller
than both the mean current and voltage cost in critical hours. However, there is a non-
zero imbalance reward at every time step, in contrast to the current and voltage reward.
The current and voltage reward are only non-zero when there is a violation in the grid,
while an imbalance reward is given in every hour. Therefore, the imbalance cost is by far
the most dominant factor in the total reward given to the agent. The total imbalance
cost in the 500-episode simulation is 2039, almost four times as large as the current and

78 CHAPTER 8. DISCUSSION

voltage costs combined. Naturally, this works against the original goal of reducing the
number of safety violations in the grid. How is the agent suppose learn how to reduce
the number of safety violations, when it is penalised much more for increasing the energy
imbalance in the system? Moreover, why would it not simply learn to reduce the total
energy imbalance? The trivial solution to this is to never change the demand in the grid,
i.e. all actions are 0. Still, this is not the behaviour we observe, as it simply tends to
decrease the energy imbalance in the system.

Figure 8.11: Violin plot of the imbalance reward given to the trained agent in the 500-episode
simulation

The energy imbalance term gives a positive reward if the absolute energy imbalance
in the system moves closer to 0. Thus, it is not penalised for the absolute magnitude of
the energy imbalance in a transition from a state to the next state. This is equivalent to
scenario where a freezing person is satisfied when the temperature changes from −30oC
to −28oC, simply because it is moving closer to 0. Still, it is odd that the agent allows
a decrease the energy imbalance, as this is heavily penalised. A reinforcement learning
algorithm plans ahead and tries to maximise rewards in the future. The energy imbalance
is proportional to the future imbalance reward with the current definition of the imbalance
cost. For instance, if the energy imbalance is -10 MWh, the agent can increase the
consumption by 0.1 MWh the next 100 time steps and reach 0 energy imbalance. The
sum of the imbalance rewards given in the 100 steps is therefore proportional to the
original energy imbalance of -10 MWh. Decreasing the energy consumption can therefore
be seen as an investment that can be cashed in some time in the future by restoring the
energy balance in the system. However, the trained agent does not cash in the imbalance
cost. It is difficult to explain this behaviour. Nonetheless, the formulation of the energy
imbalance cost can be considered a poor and misleading term in the reward function used
in the reinforcement learning algorithm. A better approach is to decrease the weight for
the imbalance cost, and penalise a large absolute energy imbalance.

8.7. REINFORCEMENT LEARNING ALGORITHM 79

8.7 Reinforcement learning algorithm

This thesis has not systematically tested different combinations of hyperparameters in
the reinforcement learning algorithm. The default values for learning rate, neural net-
work architecture and exploratory noise have been used. Naturally, performing a grid
search to find optimal hyperparameters could boost the performance of the algorithm.
Moreover, the training time consisted of 100 000 experiences, which is quite low consider-
ing that neural networks are used as functions approximators. One of the great features
of neural network is that they continually can improve from new and unseen data. This
was demonstrated in OpenAI’s Dota Five reinforcement learning algorithm that had over
10-month wall-clock time training [25]. The relatively primitive behaviour of the trained
agent could simply be a result of too little training time.

Deep deterministic policy gradient is an off-policy reinforcement learning algorithm,
which means that it is capable of learning from the experiences of others. stable baseline

offers a method that can clone an expert behaviour using supervised learning. Consider-
ing the large action space (16 independent variables), it would probably be beneficial to
pretrain the agent using the experiences of a simple baseline that increases the consump-
tion during peak solar production, and decreases it during peak demand. The probability
that the agent by chance coordinates its action such that the consumption is increased at
all loads is the same as flipping a coin 16 times and getting tails every time. Pretraining
would guide the agent such that it does not have to spend all the training time to find the
basic behaviour, but can start exploring strategies that are closely related to the baseline.

Figure 8.12: Actor loss during training of four different DDPG agents, where small hyperpa-
rameter changes have been performed.

The learning process is found to be sensitive to the hyperparameters in the rein-
forcement algorithm. Figure 8.12 plots the loss of the actor network during training for
4 different training sessions, with small changes in hyperparameters. The loss curves
change a lot during training, and indicate that training of the environment is sensitive
to hyperparameters, which is a known weakness in DDPG [37]. It might be beneficial
to test other reinforcement algorithms. For instance, Soft Actor-Critic is a reinforcement
algorithm available in stable baseline that outperforms DDPG in several continuous

80 CHAPTER 8. DISCUSSION

control tasks, and is shown to be stable during training for several different seeds [37].
Proximal Policy Optimization algorithms are also potential candidates [27].

There have frequently been comments about the desired behaviour of the agent in
this thesis. A legitimate question is whether a reinforcement learning algorithm is needed
if one can say what the desired behaviour is. Why not simply increase consumption as
much as possible in hours of peak solar production, and then decrease it in hours of peak
demand, as this is always referred to as the desired behaviour? This can be a reasonable
baseline to which the reinforcement algorithm can be compared. The trained agent has
not been tested against a baseline in this thesis, but it is unlikely that it would beat
it. The trained agent only managed to decrease consumption in hours of peak demand,
and made the situation worse elsewhere. The simple baseline described would probably
beat the trained agent because it would reduce the violations in periods of peak solar
production as well. Admittedly, a reinforcement learning algorithm is perhaps somewhat
overkill considering the action space, reward function and state representation used in
the simulation. However, when factors such as price of flexibility, batteries, transformer
control and user discomfort are included, the task quickly gets more complicated. It is no
quick way to determine the desired behaviour of the agent in such a setup, where there
are many more strategies. Still, it is necessary to inspect the deep deterministic policy
gradient algorithm in a simpler task, where its behaviour can be analysed and discussed,
and build on those experiences when expanding the setup further.

Chapter 9

Conclusion and future work

The main goal in this thesis is to see if reinforcement learning and demand response
can be used to safely operate a power grid with distributed solar energy production.
The motivation is that costly upgrades of the electric transmission infrastructure can be
avoided if the algorithm succeeds. The following research question was formulated in
chapter 1:

RQ: Is the deep deterministic policy gradient algorithm able to reduce the
number of safety violations in a grid with high peak solar power production
and high peak demand by the means of demand response?

The short answer to the research question is yes. The agent was able reduce the number
of safety violations by 14 % by changing the power consumption in the net. However,
investigating the results revealed that the reinforcement algorithm only avoids safety
violations in hours of peak demand and actually produced more violations during hours
of peak solar production. In total, there are more violations during peak demand than
during peak solar production, so the net effect is a decrease in the number of violations.
As discussed in chapter 8, the behaviour of the algorithm is found to be quite primitive,
and there is room for improvement. This thesis has not performed an extensive tuning
of the model, but instead used default values for hyperparameters and focused on the
results that emerge from them. Therefore, it is natural to assume that improvements can
be found, for instance by increasing the training time or pretraining the reinforcement
algorithm.

The implementation of the power system environment is based on several simplifica-
tions, such as a constant power factor, equal demand signals and constant flexibility in
the net. This is done so it is possible to analyse the behaviour of the algorithm. The
implementation can be extended to be more in accordance with a real model for de-
mand response and tested for different combinations of hyperparameters. The agent’s
action space can also be extended to control transformers, switches and charging of stor-
age units. This is a way to handle the challenges that comes with increased amount
of distributed solar production in the electrical power net. Reinforcement learning is a
particularly attractive approach for solving this task because the environment can be
simulated efficiently, providing the agent with many experiences from which it can learn.
A successful reinforcement learning algorithm managing a demand response program can
accelerate the incorporation of more renewable energy into the power mix, as costly and
time-consuming upgrades of infrastructure can be avoided. This is of great utility, not
only from a power system perspective, but also as a measure to achieve the goals of the
Paris agreement.

81

82 CHAPTER 9. CONCLUSION AND FUTURE WORK

Future work

There are several natural next steps to continue the work presented in this thesis.

Pretraining

The reinforcement agent in this thesis learns entirely from self-play and receives no input
of how it should behave. However, the deep deterministic policy gradient method can
be pretrained on a dataset with behaviour that is known to be good. Pretraining gives
the agent a good starting point from which it can start experimenting with different
behaviours and find proper strategies. This is especially attractive since the action space
is very large, which means that a lot of training time is used to explore basic behaviour.

Hyperparameter search

There are many hyperparameters that can be tuned in reinforcement learning, as in most
machine learning algorithms. This thesis has not performed an optimal hyperparameter
search. A key parameter that should be tested more thoroughly is the training time, as
neural network networks are good at continuously learning from new data, and the action
space is large.

Realistic demand response model

The model of the demand response program used in this thesis is based on several sim-
plifications. The power system is assumed to offer a demand flexibility that is constant
and symmetric in all hours. Concretely, the power consumption can in every hour be
changed continuously in the interval [-10%, 10%]. Realistically, changing the consump-
tion affects the future flexibility in the system. In addition, the trained agent can change
the consumption freely without any cost in this thesis. This is unrealistic, since people
are not going to change their consumption patterns without an form for compensation.
Future work should have a more realistic modelling of a demand response program. This
would result in the need for more long-term planning because an action greatly affects the
future possible actions. Reinforcement algorithms are well suited for tasks that require
farsighted strategies.

More control variables

The action in the reinforcement algorithm is to change consumption in the grid. A
natural extension of this is to let the agent control more elements, such as tap-changing
transformers, and charging of batteries. Both transformers and batteries can be controlled
using pandapower, the Python power flow simulation tool used in this thesis.

Finer time scale

The trained reinforcement agent performs an action every hour. Therefore, it is not
able to tackle problems in real-time by activating flexibility. Instead, it is appropriate
for planning the activation of flexibility in the next hours. A finer time-resolution, for
instance every minute, could be implemented in a demand response program that can
operate close to real-time.

83

Wind power

Wind power is a variable renewable energy source that is not consider in this thesis.
Consequently, only a solar forecast is sent to the reinforcement agent. An extension of
the setup can integrate wind power in the network as well, and test how the reinforcement
agent tackles different sources of renewable energy production.

Other reinforcement algorithms

The Python code developed for activation of flexibility follows the structure of a gen-
eral gym environment in Python, and can consequently be applied to different reinforce-
ment algorithms without doing any modification of the code. The DDPG algorithm is
known to be unstable and need a lot of hyperparameter tuning. The Python toolkit
stable baseline offers several possible reinforcement learning algorithms, such as Prox-
imal Policy Optimization and Soft Actor Critic, which can improve stability without
compromising performance.

84 CHAPTER 9. CONCLUSION AND FUTURE WORK

Bibliography

[1] Magne Holstad and Thomas Aanensen. Elektrisitet. 2019. url: https://www.

ssb.no/energi- og- industri/statistikker/elektrisitet/aar (visited on
05/12/2019).

[2] Volodymyr Mnih et al. “Playing Atari with Deep Reinforcement Learning”. In:
CoRR abs/1312.5602 (2013). arXiv: 1312.5602. url: http://arxiv.org/abs/
1312.5602.

[3] David Silver et al. “Mastering Chess and Shogi by Self-Play with a General Re-
inforcement Learning Algorithm”. In: CoRR abs/1712.01815 (2017). arXiv: 1712.
01815. url: http://arxiv.org/abs/1712.01815.

[4] Alexandra Von Meier. Electric power systems: a conceptual introduction. Wiley,
2006.

[5] Stephen Frank and Steffen Rebennack. “An introduction to optimal power flow:
Theory, formulation, and examples”. In: IIE Transactions 48.12 (2016), pp. 1172–
1197. doi: 10.1080/0740817X.2016.1189626. eprint: https://doi.org/10.
1080/0740817X.2016.1189626. url: https://doi.org/10.1080/0740817X.
2016.1189626.

[6] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
Second. The MIT Press, 2018. isbn: 978-0262039246. url: http://incompleteideas.
net/book/the-book-2nd.html.

[7] David Silver. UCL course on reinforcement learning. 2015. url: http://www0.cs.
ucl.ac.uk/staff/d.silver/web/Teaching.html (visited on 04/18/2019).

[8] Ofir Nachum et al. “Bridging the Gap Between Value and Policy Based Reinforce-
ment Learning”. In: CoRR abs/1702.08892 (2017). arXiv: 1702.08892. url: http:
//arxiv.org/abs/1702.08892.

[9] David Silver et al. “Deterministic Policy Gradient Algorithms”. In: Proceedings of
the 31st International Conference on Machine Learning. Ed. by Eric P. Xing and
Tony Jebara. Vol. 32. Proceedings of Machine Learning Research 1. Bejing, China:
PMLR, June 2014, pp. 387–395. url: http://proceedings.mlr.press/v32/

silver14.html.

[10] Timothy P. Lillicrap et al. “Continuous control with deep reinforcement learning”.
In: CoRR abs/1509.02971 (2015). arXiv: 1509.02971. url: http://arxiv.org/
abs/1509.02971.

[11] M. H. Albadi and E. F. El-Saadany. “A summary of demand response in electricity
markets”. English. In: Electric Power Systems Research 78.11 (Nov. 2008), pp. 1989–
1996. issn: 0378-7796. doi: 10.1016/j.epsr.2008.04.002.

85

https://www.ssb.no/energi-og-industri/statistikker/elektrisitet/aar
https://www.ssb.no/energi-og-industri/statistikker/elektrisitet/aar
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
https://doi.org/10.1080/0740817X.2016.1189626
https://doi.org/10.1080/0740817X.2016.1189626
https://doi.org/10.1080/0740817X.2016.1189626
https://doi.org/10.1080/0740817X.2016.1189626
https://doi.org/10.1080/0740817X.2016.1189626
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://arxiv.org/abs/1702.08892
http://arxiv.org/abs/1702.08892
http://arxiv.org/abs/1702.08892
http://proceedings.mlr.press/v32/silver14.html
http://proceedings.mlr.press/v32/silver14.html
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
https://doi.org/10.1016/j.epsr.2008.04.002

86 BIBLIOGRAPHY

[12] Kjetil Mæland. Betalte 500 kroner i strøm for én natt p̊a hytta. 2015. url: https:
//www.nettavisen.no/na24/betalte-500-kroner-i-strom-for-en-natt-pa-

hytta/3423150520.html (visited on 05/07/2019).

[13] José R Vázquez-Canteli and Zoltán Nagy. “Reinforcement learning for demand
response: a review of algorithms and modeling techniques”. In: Applied energy 235
(2019), pp. 1072–1089.

[14] Elta Koliou et al. “Demand response in liberalized electricity markets: Analysis of
aggregated load participation in the German balancing mechanism”. In: Energy 71
(2014), pp. 245–254.

[15] Convener Kai Strunz et. al. “Benchmark Systems for Network Integration of Re-
newable and Distributed Energy Resources”. In: Electra 273 (Apr. 2014), pp. 85–
89.

[16] K. Kavvadias. Enlopy: Python toolkit for energy load time series. url: http://
github.com/kavvkon/enlopy.

[17] SoDa. SoDa - Solar radiation data. 2019. url: http://www.soda-pro.com/about-
us (visited on 04/08/2019).

[18] Quentin Gemine, Damien Ernst, and Bertrand Cornélusse. “Active network man-
agement for electrical distribution systems: problem formulation and benchmark”.
In: CoRR abs/1405.2806 (2014). arXiv: 1405.2806. url: http://arxiv.org/abs/
1405.2806.

[19] Olje- og energidepartementet. Forskrift om leveringskvalitet i kraftsystemet. 2019.
url: https://lovdata.no/dokument/SF/forskrift/2004-11-30-1557 (visited
on 05/07/2019).

[20] Dan Claudiu Ciresan et al. “Deep Big Simple Neural Nets Excel on Handwritten
Digit Recognition”. In: CoRR abs/1003.0358 (2010). arXiv: 1003.0358. url: http:
//arxiv.org/abs/1003.0358.

[21] Dan C. Cireşan et al. “Flexible, High Performance Convolutional Neural Networks
for Image Classification”. In: Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence - Volume Volume Two. IJCAI’11. Barcelona,
Catalonia, Spain: AAAI Press, 2011, pp. 1237–1242. isbn: 978-1-57735-514-4. doi:
10.5591/978-1-57735-516-8/IJCAI11-210. url: http://dx.doi.org/10.5591/
978-1-57735-516-8/IJCAI11-210.

[22] John N. Tsitsiklis and Benjamin Van Roy. An analysis of temporal-difference learn-
ing with function approximation. Tech. rep. IEEE Transactions on Automatic Con-
trol, 1997.

[23] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”.
In: Nature 518.7540 (Feb. 2015), pp. 529–533. issn: 00280836. url: http://dx.
doi.org/10.1038/nature14236.

[24] David Silver et al. “Mastering the game of Go with deep neural networks and tree
search”. In: Nature 529 (2016), pp. 484–503. url: http://www.nature.com/

nature/journal/v529/n7587/full/nature16961.html.

[25] OpenAI. How to Train Your OpenAI Five. url: https://openai.com/blog/how-
to-train-your-openai-five/ (visited on 04/22/2019).

[26] Dota 2 Wiki. Dota 2. url: https://dota2.gamepedia.com/Dota_2 (visited on
04/22/2019).

https://www.nettavisen.no/na24/betalte-500-kroner-i-strom-for-en-natt-pa-hytta/3423150520.html
https://www.nettavisen.no/na24/betalte-500-kroner-i-strom-for-en-natt-pa-hytta/3423150520.html
https://www.nettavisen.no/na24/betalte-500-kroner-i-strom-for-en-natt-pa-hytta/3423150520.html
http://github.com/kavvkon/enlopy
http://github.com/kavvkon/enlopy
http://www.soda-pro.com/about-us
http://www.soda-pro.com/about-us
http://arxiv.org/abs/1405.2806
http://arxiv.org/abs/1405.2806
http://arxiv.org/abs/1405.2806
https://lovdata.no/dokument/SF/forskrift/2004-11-30-1557
http://arxiv.org/abs/1003.0358
http://arxiv.org/abs/1003.0358
http://arxiv.org/abs/1003.0358
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-210
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-210
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-210
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature14236
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
https://openai.com/blog/how-to-train-your-openai-five/
https://openai.com/blog/how-to-train-your-openai-five/
https://dota2.gamepedia.com/Dota_2

BIBLIOGRAPHY 87

[27] John Schulman et al. “Proximal Policy Optimization Algorithms”. In: CoRR (2017).
arXiv: 1707.06347. url: http://arxiv.org/abs/1707.06347.

[28] Lei Yang et al. “Reinforcement learning for optimal control of low exergy buildings”.
In: Applied Energy 156 (2015), pp. 577–586.

[29] Ivana Dusparic et al. “Multi-agent residential demand response based on load fore-
casting”. In: 2013 1st IEEE Conference on Technologies for Sustainability (SusTech).
IEEE. 2013, pp. 90–96.

[30] Sina Zarrabian, Rabie Belkacemi, and Adeniyi A Babalola. “Reinforcement learning
approach for congestion management and cascading failure prevention with experi-
mental application”. In: Electric Power Systems Research 141 (2016), pp. 179–190.

[31] L. Thurner et al. “pandapower — An Open-Source Python Tool for Convenient
Modeling, Analysis, and Optimization of Electric Power Systems”. In: IEEE Trans-
actions on Power Systems 33.6 (Nov. 2018), pp. 6510–6521. issn: 0885-8950. doi:
10.1109/TPWRS.2018.2829021.

[32] About pandapower. url: https://www.pandapower.org/about (visited on 04/17/2019).

[33] Plotly Technologies Inc. Collaborative data science. 2019. url: https://plot.ly.

[34] Greg Brockman et al. OpenAI Gym. 2016. eprint: arXiv:1606.01540.

[35] Prafulla Dhariwal et al. OpenAI Baselines. https://github.com/openai/baselines.
2017.

[36] Ashley Hill et al. Stable Baselines. https : / / github . com / hill - a / stable -

baselines. 2018.

[37] Tuomas Haarnoja et al. “Soft Actor-Critic: Off-Policy Maximum Entropy Deep
Reinforcement Learning with a Stochastic Actor”. In: CoRR abs/1801.01290 (2018).
arXiv: 1801.01290. url: http://arxiv.org/abs/1801.01290.

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.1109/TPWRS.2018.2829021
https://www.pandapower.org/about
https://plot.ly
arXiv:1606.01540
https://github.com/openai/baselines
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290

88 BIBLIOGRAPHY

Appendix A

Model details

A.1 Simulation 1

Table A.1 shows the parameters used in the ActiveEnv class in the simulation in this
thesis.

Table A.1: Parameters in the ActiveEnv class used in the simulation in this thesis

Parameter name Value

activation weight 0
current weight 0.01
demand scale 10
demand std 0
episode length 200
flexibility 0.1
forecast horizon 4
i upper 90
imbalance change True
imbalance weight 0.0001
reactive power True
reward terms [’voltage’, ’current’, ’imbalance’]
solar scale 0.8
solar std 0
state space [’sun’, ’demand’, ’imbalance’]
total imbalance True
v lower 0.95
v upper 1.05
voltage weight 1

The used implementation of DDPG is stable baselines.ddpg.ddpg.DDPG. The agent
was trained for 100 000 steps, which took around 1 hour with a 2 core Intel(R) Core(TM)
i3-7100U CPU @ 2.40 GHz. The memory limit (size of the experience replay buffer) was
also set to 100 000. The rest of the arguments are the same as the default values.

stable baselines.ddpg.policies.LnMlpPolicy is the policy that is used for train-
ing the model. It is a dense neural network with an architecture of 2 hidden layer,
each with 64 neurons and layer normalisation. The exploratory noise added to the de-
terministic policy is stable baselines.ddpg.noise.OrnsteinUhlenbeckActionNoise

with standard hyperparameters: mean=0, sigma=0.2, theta=0.15.

89

90 APPENDIX A. MODEL DETAILS

Appendix B

Python code

The complete Python code written for this thesis can be found on GitHub: https:

//github.com/vegraux/master_thesis

B.1 ActiveEnv

1 # −∗− coding : utf−8 −∗−
2

3 ”””
4 Gym environment implementing demand response in a pandapower net .
5 ”””
6 import os
7 import dotenv
8 dotenv . load dotenv ()
9 import gym

10 import matp lo t l i b . pyplot as p l t
11 from gym import spaces
12 from gym . u t i l s import s eed ing
13 import numpy as np
14 from gym power . sample net import c i g r e ne twork
15 from pandapower . networks import c r ea t e c i g r e ne twork mv
16 import copy
17 import pandapower as pp
18 from pandapower import ppException
19 import pandas as pd
20

21 a u t h o r = ’ Vegard So lberg ’
22 e m a i l = ’ vegard . u l r i k s e n . solberg@nmbu . no ’
23 DATA PATH = os . getenv (’DATA PATH’)
24

25

26 c l a s s ActiveEnv (gym . Env) :
27 params = { ’ e p i s o d e l e n g t h ’ : 200 ,
28 ’ reward terms ’ : [’ vo l t age ’ , ’ cu r r ent ’ , ’ imbalance ’ ,
29 ’ a c t i v a t i o n ’] ,
30 ’ vo l t age we igh t ’ : 1 ,
31 ’ cu r r en t we ight ’ : 0 . 01 ,
32 ’ imbalance weight ’ : 1e−8,
33 ’ a c t i v a t i o n w e i g h t ’ : 1e−4,
34 ’ f o r e c a s t h o r i z o n ’ : 4 ,
35 ’ f l e x i b i l i t y ’ : 0 . 1 ,
36 ’ s o l a r s c a l e ’ : 0 . 8 ,
37 ’ demand scale ’ : 10 ,
38 ’ s t a t e s p a c e ’ : [’ sun ’ , ’ demand ’ , ’ bus ’ , ’ imbalance ’] ,

91

https://github.com/vegraux/master_thesis
https://github.com/vegraux/master_thesis

92 APPENDIX B. PYTHON CODE

39 ’ v upper ’ : 1 . 05 ,
40 ’ v lower ’ : 0 . 95 ,
41 ’ i uppe r ’ : 90 ,
42 ’ demand std ’ : 0 . 03 ,
43 ’ s o l a r s t d ’ : 0 . 03 ,
44 ’ t o t a l imba l ance ’ : False ,
45 ’ r e ac t i v e power ’ : True ,
46 ’ imbalance change ’ : Fa l se }
47

48 de f s e t paramete r s (s e l f , new parameters) :
49 ”””
50 s e t s params f o r the environment
51 : param new parameters : New parameter va lue
52 : type new parameters : d i c t i o n a r y
53 ”””
54 a l l owed keys = [’ e p i s o d e l e n g t h ’ , ’ reward terms ’ , ’ vo l t age we igh t ’ ,
55 ’ cu r r en t we ight ’ , ’ imbalance weight ’ ,
56 ’ f o r e c a s t h o r i z o n ’ , ’ a c t i v a t i o n w e i g h t ’ ,
57 ’ f l e x i b i l i t y ’ , ’ s t a t e s p a c e ’ , ’ s o l a r s c a l e ’ ,
58 ’ demand scale ’ , ’ v lower ’ , ’ v upper ’ , ’ i uppe r ’ ,
59 ’ demand std ’ , ’ s o l a r s t d ’ , ’ t o t a l imba l ance ’ ,
60 ’ r e ac t i v e power ’ , ’ imbalance change ’]
61 non negat ive = [’ vo l t age we igh t ’ , ’ cu r r ent we ight ’ ,
62 ’ imbalance weight ’ , ’ a c t i v a t i o n w e i g h t ’]
63 z e r o t o o n e = [’ f l e x i b i l i t y ’]
64 f o r key in new parameters :
65 i f key not in a l l owed keys :
66 r a i s e KeyError (’ I n v a l i d parameter name : ’ + key)
67 i f key in non negat ive and new parameters [key] < 0 :
68 r a i s e ValueError (’ I n v a l i d parameter value , negat ive va lue s ’
69 ’ not a l lowed : ’ + key)
70 i f key in z e r o t o o n e and (
71 new parameters [key] < 0 or new parameters [key] > 1) :
72 r a i s e ValueError (’ I n v a l i d parameter value , va lue must be ’
73 ’ between 0 and 1 : ’ + key)
74

75 s e l f . params = {∗∗ s e l f . params , ∗∗new parameters}
76

77 i f (’ s t a t e s p a c e ’ in new parameters) or \
78 (’ t o t a l imba l ance ’ in new parameters) :
79 s e l f . ob s e rva t i on space = spaces . Box(low=−np . in f , high=np . in f ,
80 shape=s e l f . g e t o b s () . shape ,
81 dtype=np . f l o a t 3 2)
82

83 = s e l f . r e s e t (r e s e t t i m e=False)
84

85 de f i n i t (s e l f , do ac t i on=True , force commitments=False ,
86 seed=None) :
87 s e l f . np random = None
88 s e l f . s e ed = s e l f . seed (seed)
89 # time a t t r i b u t e s
90 s e l f . c u r r e n t s t e p = 0
91 s e l f . e p i s o d e s t a r t h o u r = s e l f . s e l e c t s t a r t h o u r ()
92 s e l f . e p i s o d e s t a r t d a y = s e l f . s e l e c t s t a r t d a y ()
93

94 s e l f . do ac t i on = do ac t i on
95

96 # power g r id
97 s e l f . base powergr id = c ig r e ne twork ()
98 pp . runpp (s e l f . base powergr id)
99 s e l f . powergrid = copy . deepcopy (s e l f . base powergr id)

B.1. ACTIVEENV 93

100 s e l f . l o a d idx = np . arange (l en (s e l f . powergrid . load))
101 s e l f . l a s t a c t i o n = np . z e r o s l i k e (s e l f . l o a d idx)
102 s e l f . p q r a t i o = s e l f . c a l c p q r a t i o ()
103

104 # s t a t e v a r i a b l e s , f o r e c a s t + commitment
105 s e l f . s o l a r d a t a = s e l f . l o a d s o l a r d a t a ()
106 s e l f . demand data = s e l f . load demand data ()
107 s e l f . s o l a r f o r e c a s t s = s e l f . g e t e p i s o d e s o l a r f o r e c a s t ()
108 s e l f . demand forecasts = s e l f . g e t ep i s ode demand fo r e ca s t ()
109 s e l f . s e t demand and so lar ()
110 s e l f . force commitments = force commitments
111 s e l f . commitments = np . z e ro s (l en (s e l f . powergrid . load)) != 0
112 s e l f . resu l t ing demand = np . z e ro s (s e l f . params [’ e p i s o d e l e n g t h ’])
113 s e l f . imbalance = s e l f . empty imbalance ()
114

115 s e l f . ob s e rva t i on space = spaces . Box(low=−np . in f , high=np . in f ,
116 shape=s e l f . g e t o b s () . shape ,
117 dtype=np . f l o a t 3 2)
118 s e l f . a c t i o n s p a c e = spaces . Box(−1. , 1 . ,
119 shape=s e l f . l a s t a c t i o n . shape ,
120 dtype=np . f l o a t 3 2)
121

122 s e l f . l o a d d i c t = s e l f . g e t l o a d d i c t ()
123

124 de f g e t l o a d d i c t (s e l f) :
125 ”””
126 : r e turn : d i c t i o n a r y mapping columns name to index
127 ”””
128 l oads = s e l f . powergrid . load
129 re turn { c o l : index f o r (index , c o l) in enumerate (l oads) }
130

131 de f c a l c p q r a t i o (s e l f) :
132 ”””
133 Power f a c t o r f o r l oads are assumed constant .
134 This method f i n d s the PQ−r a t i o f o r a l l l oads
135 (same as f o r d e f a u l t c i g r e network)
136 ”””
137 net = crea te c i g r e ne twork mv (with der=”pv wind”)
138 p q r a t i o = net . load [’ q kvar ’] / net . load [’ p kw ’]
139 re turn p q r a t i o
140

141 de f ge t demand forecas t (s e l f) :
142 ”””
143 Finds the f o r e c a s t e d hour ly demand f o r the next T hours
144 ”””
145 f o r e c a s t s = []
146 t = s e l f . c u r r e n t s t e p
147 hor izon = s e l f . params [’ f o r e c a s t h o r i z o n ’]
148 f o r load in s e l f . demand forecasts :
149 d a y f o r e c a s t = load [t : t + hor izon]
150 f o r e c a s t s . append (d a y f o r e c a s t)
151

152 re turn f o r e c a s t s
153

154 de f g e t s o l a r f o r e c a s t (s e l f) :
155 ”””
156 Returns s o l a r f o r e c a s t f o r the next look ahead hours .
157 ”””
158 t = s e l f . c u r r e n t s t e p
159 hor izon = s e l f . params [’ f o r e c a s t h o r i z o n ’]
160 re turn s e l f . s o l a r f o r e c a s t s [t : t + hor i zon]

94 APPENDIX B. PYTHON CODE

161

162 de f g e t s c a l e d s o l a r f o r e c a s t (s e l f) :
163 ”””
164 s c a l e s each s o l a r panel product ion with nominal va lue s .
165 ”””
166 s o l a r p u = s e l f . s o l a r f o r e c a s t s
167 nomina l s o l a r = s e l f . powergrid . sgen [’ sn kva ’]
168 s c a l e d s o l a r = []
169 f o r s o l in s o l a r p u :
170 s c a l e d s o l a r . append ((s o l ∗ nomina l s o l a r) . sum ())
171 re turn np . array (s c a l e d s o l a r)
172

173 de f g e t s c a l e d d e m a n d f o r e c a s t (s e l f) :
174 demand pu = s e l f . demand forecasts [0]
175 scaled demand = []
176 l oads = s e l f . powergrid . load
177

178 f o r demand in demand pu :
179 scaled demand . append ((demand ∗ l oads [’ sn kva ’]) . sum ())
180 re turn np . array (scaled demand)
181

182 de f s e l e c t s t a r t h o u r (s e l f) :
183 ”””
184 S e l e c t s s t a r t hour f o r the ep i sode
185 ”””
186 re turn s e l f . np random . cho i c e (24)
187

188 de f s e l e c t s t a r t d a y (s e l f) :
189 ”””
190 S e l e c t s s t a r t day (date) f o r the data in the ep i sode
191 ”””
192 t ry :
193 demand data = s e l f . demand data
194 except Att r ibuteError :
195 demand data = s e l f . load demand data ()
196

197 demand days = (demand data . index [−1] − demand data . index [0])
198 demand days = demand days . days
199 ep i sode days = (s e l f . params [’ e p i s o d e l e n g t h ’] // 24) + 1 # margin
200 re turn s e l f . np random . cho i c e (demand days − ep i sode days)
201

202 de f seed (s e l f , seed=None) :
203 s e l f . np random , seed = seed ing . np random (seed)
204 re turn [seed]
205

206 de f r e s e t (s e l f , r e s e t t i m e=True) :
207 s e l f . c u r r e n t s t e p = 0
208

209 s e l f . powergrid = copy . deepcopy (s e l f . base powergr id)
210 i f r e s e t t i m e :
211 s e l f . e p i s o d e s t a r t h o u r = s e l f . s e l e c t s t a r t h o u r ()
212 s e l f . e p i s o d e s t a r t d a y = s e l f . s e l e c t s t a r t d a y ()
213

214 s e l f . s o l a r f o r e c a s t s = s e l f . g e t e p i s o d e s o l a r f o r e c a s t ()
215 s e l f . demand forecasts = s e l f . g e t ep i s ode demand fo r e ca s t ()
216 s e l f . s e t demand and so lar ()
217 s e l f . imbalance = s e l f . empty imbalance ()
218 s e l f . resu l t ing demand = np . z e ro s (s e l f . params [’ e p i s o d e l e n g t h ’])
219

220 re turn s e l f . g e t o b s ()
221

B.1. ACTIVEENV 95

222 de f empty imbalance (s e l f) :
223 ”””
224 Creates imbalance array , a l l 0 .
225 ”””
226 n r l o a d s = len (s e l f . l o ad idx)
227 e p i s o d e l e n g t h = s e l f . params [’ e p i s o d e l e n g t h ’]
228 re turn np . z e r o s ((nr loads , e p i s o d e l e n g t h))
229

230 de f g e t b u s s t a t e (s e l f) :
231 ”””
232 Return the vo l tage , a c t i v e and r e a c t i v e power at every bus
233 ”””
234

235 re turn s e l f . powergrid . r e s bu s . va lue s . f l a t t e n ()
236

237 de f g e t e p i s o d e s o l a r f o r e c a s t (s e l f) :
238 ”””
239 Method that r e tu rn s the s o l a r f o r e c a s t f o r the e n t i r e ep i sode
240 ”””
241 e p i s o d e l e n g t h = s e l f . params [’ e p i s o d e l e n g t h ’]
242 hor izon = s e l f . params [’ f o r e c a s t h o r i z o n ’]
243 s t a r t = s e l f . e p i s o d e s t a r t h o u r + s e l f . e p i s o d e s t a r t d a y ∗ 24
244 nr hours = e p i s o d e l e n g t h + hor izon + 1 # margin o f 1
245 s o l a r f o r e c a s t = s e l f . s o l a r d a t a [s t a r t : s t a r t + nr hours] . va lue s
246 re turn s o l a r f o r e c a s t . r a v e l () ∗ s e l f . params [’ s o l a r s c a l e ’]
247

248 de f g e t ep i s ode demand fo r e ca s t (s e l f) :
249 ”””
250 ge t s the f o r e c a s t s f o r a l l l oads in the ep i sode
251 ”””
252 e p i s o d e l e n g t h = s e l f . params [’ e p i s o d e l e n g t h ’]
253 hor izon = s e l f . params [’ f o r e c a s t h o r i z o n ’]
254 demand scale = s e l f . params [’ demand scale ’]
255

256 s t a r t = s e l f . e p i s o d e s t a r t h o u r + s e l f . e p i s o d e s t a r t d a y ∗ 24
257 nr hours = e p i s o d e l e n g t h + hor izon + 1 # margin o f 1
258 demand forecast = s e l f . demand data [s t a r t : s t a r t + nr hours] . va lue s
259 re turn [demand forecast . r a v e l () ∗ demand scale]
260

261 de f get commitment state (s e l f) :
262 ”””
263 Transforms commitments array from booleans to 0 ,1
264 ”””
265 commitments = np . z e r o s (s e l f . commitments . shape)
266 commitments [s e l f . commitments] = 1
267 re turn commitments
268

269 de f l o a d s o l a r d a t a (s e l f) :
270 s o l a r p a t h = os . path . j o i n (DATA PATH, ’ h o u r l y s o l a r d a t a . csv ’)
271 s o l a r = pd . r ead c sv (s o l a r p a t h)
272 s o l a r . index = pd . to date t ime (s o l a r . i l o c [: , 0])
273 s o l a r . index . name = ’ time ’
274 s o l a r = s o l a r . i l o c [: , [1]]
275

276 re turn s o l a r
277

278 de f load demand data (s e l f) :
279 demand path = os . path . j o i n (DATA PATH, ’ hourly demand data . csv ’)
280 demand = pd . r ead c sv (demand path)
281 demand . index = pd . to date t ime (demand . i l o c [: , 0])
282 demand . index . name = ’ time ’

96 APPENDIX B. PYTHON CODE

283 demand = demand . i l o c [: , [1]]
284

285 re turn demand
286

287 de f check commitment (s e l f , a c t i on) :
288 ”””
289 Checks i f a load has a commitment in terms o f product ion due
290 to i t s a c t i on from l a s t step , and mod i f i e s the cur rent ac t i on to the
291 oppos i t e o f the l a s t act ion , so the consumption i s not a l t e r e d .
292 ”””
293 i f s e l f . force commitments :
294 ac t i on [s e l f . commitments] = − s e l f . l a s t a c t i o n [s e l f . commitments

]
295

296 new commitments = (ac t i on != 0)
297 new commitments [s e l f . commitments] = Fal se
298 s e l f . commitments = new commitments
299 s e l f . l a s t a c t i o n = act i on
300 re turn ac t i on
301 e l s e :
302 re turn ac t i on
303

304 de f g e t o b s (s e l f) :
305 ”””
306 r e tu rn s the s t a t e f o r the power system
307 ”””
308 s t a t e = []
309 i f ’ demand ’ in s e l f . params [’ s t a t e s p a c e ’] :
310 demand forecasts = s e l f . ge t demand forecas t ()
311 f o r demand in demand forecasts :
312 s t a t e += l i s t (demand)
313

314 i f ’ sun ’ in s e l f . params [’ s t a t e s p a c e ’] :
315 s o l a r f o r e c a s t s = s e l f . g e t s o l a r f o r e c a s t ()
316 s t a t e += l i s t (s o l a r f o r e c a s t s)
317

318 i f ’ bus ’ in s e l f . params [’ s t a t e s p a c e ’] :
319 b u s s t a t e = s e l f . g e t b u s s t a t e ()
320 s t a t e += l i s t (b u s s t a t e)
321

322 i f s e l f . force commitments :
323 commitment state = s e l f . get commitment state ()
324 s t a t e += l i s t (commitment state)
325

326 i f ’ imbalance ’ in s e l f . params [’ s t a t e s p a c e ’] :
327 balance = s e l f . c a l c imba lance () / 30000
328 i f s e l f . params [’ t o t a l imba l ance ’] :
329 s t a t e += [balance . sum ()]
330 e l s e :
331 s t a t e += l i s t (ba lance)
332

333 re turn np . array (s t a t e)
334

335 de f ca l c imba lance (s e l f) :
336 ”””
337 Ca l cu l a t e s how much power the agent ows to the system ,
338 i . e the amount o f ext ra energy the loads have r e c e i v e d
339 the l a s t 24 hours . Reward func t i on p e n a l i s e s a l a r g e imbalance .
340 ”””
341 t = s e l f . c u r r e n t s t e p
342 i f t > 24 :

B.1. ACTIVEENV 97

343 m o d i f i c a t i o n s = s e l f . imbalance [: , t − 24 : t]
344

345 e l i f t > 0 :
346 m o d i f i c a t i o n s = s e l f . imbalance [: , : t]
347

348 e l s e :
349 m o d i f i c a t i o n s = np . z e r o s ((l en (s e l f . l o ad idx) , 1))
350

351 re turn m o d i f i c a t i o n s . sum(a x i s =1)
352

353 de f l og r e su l t ing demand (s e l f) :
354 ”””
355 Logs the r e s u l t i n g demand in an ep i sode a f t e r the agent has taken
356 i t s a c t i o n s
357 ”””
358 l oads = s e l f . powergrid . load [’ p kw ’]
359 s e l f . resu l t ing demand [s e l f . c u r r e n t s t e p] = loads . sum ()
360

361 de f t a k e a c t i o n (s e l f , a c t i on) :
362 ”””
363 Takes the ac t i on vector , s c a l e s i t and mod i f i e s the f l e x i b l e l oads
364 ”””
365 nominal load = s e l f . powergrid . load [’ sn kva ’]
366 f o r e c a s t e d l o a d = nominal load ∗ s e l f . ge t demand forecas t () [0] [0]
367

368 ac t i on ∗= s e l f . params [’ f l e x i b i l i t y ’] ∗ f o r e c a s t e d l o a d
369 i f s e l f . force commitments :
370 ac t i on = s e l f . check commitment (ac t i on)
371

372 s e l f . imbalance [: , s e l f . c u r r e n t s t e p] = ac t i on
373

374 p index = s e l f . l o a d d i c t [’ p kw ’]
375 q index = s e l f . l o a d d i c t [’ q kvar ’]
376

377 s e l f . powergrid . load . i l o c [s e l f . l oad idx , p index] += act i on
378 i f s e l f . params [’ r eac t i v e power ’] :
379 s e l f . powergrid . load . i l o c [
380 s e l f . l oad idx , q index] += act i on ∗ s e l f . p q r a t i o
381

382 t ry :
383 pp . runpp (s e l f . powergrid)
384 s e l f . l og r e su l t ing demand ()
385 re turn Fal se
386

387 except ppException :
388 re turn True
389

390 de f se t demand and so lar (s e l f) :
391 ”””
392 Updates the demand and s o l a r product ion accord ing to the f o r e c a s t s ,
393 with some no i s e .
394 ”””
395 net = s e l f . powergrid
396 s o l s t d = s e l f . params [’ s o l a r s t d ’]
397 s o l a r p u = s e l f . g e t s o l a r f o r e c a s t () [0]
398 s o l a r p u += s o l a r p u ∗ s o l s t d ∗ s e l f . np random . randn ()
399

400 demand std = s e l f . params [’ demand std ’]
401 demand pu = s e l f . ge t demand forecas t () [0] [0]
402 demand pu += demand pu ∗ demand std ∗ s e l f . np random . randn ()
403

98 APPENDIX B. PYTHON CODE

404 net . sgen [’ p kw ’] = − s o l a r p u ∗ net . sgen [’ sn kva ’]
405 net . load [’ p kw ’] = demand pu ∗ net . load [’ sn kva ’]
406 net . load [’ q kvar ’] = net . load [’ p kw ’] ∗ s e l f . p q r a t i o
407

408 de f ca l c r eward (s e l f , o ld imbalance , act ion , i n c l u d e l o s s=False) :
409 ”””
410 Ca l cu l a t e s the reward in a time step
411 ”””
412

413 s t a t e l o s s = 0
414 i f ’ vo l t age ’ in s e l f . params [’ reward terms ’] :
415 weight = s e l f . params [’ vo l t age we igh t ’]
416 v = s e l f . powergrid . r e s bu s [’ vm pu ’]
417 v min = s e l f . params [’ v lower ’]
418 v max = s e l f . params [’ v upper ’]
419 v lower = sum(v min − v [v < v min]) ∗ weight
420 v over = sum(v [v > v max] − v max) ∗ weight
421 s t a t e l o s s += (v lower + v over)
422

423 i f ’ cu r r ent ’ in s e l f . params [’ reward terms ’] :
424 weight = s e l f . params [’ cu r r ent we ight ’]
425 i = s e l f . powergrid . r e s l i n e [’ l o a d i n g p e r c e n t ’]
426 i max = s e l f . params [’ i uppe r ’]
427 i o v e r = sum(i [i > i max] − i max) ∗ weight
428 s t a t e l o s s += i o v e r
429

430 i f ’ imbalance ’ in s e l f . params [’ reward terms ’] :
431 balance = s e l f . c a l c imba lance ()
432 weight = s e l f . params [’ imbalance weight ’]
433 i f s e l f . params [’ imbalance change ’] :
434 balance change = np . abs (balance) − np . abs (o ld imba lance)
435 s t a t e l o s s += balance change . sum () ∗ weight
436 e l s e :
437 s t a t e l o s s += np . abs (balance) . sum () ∗ weight
438

439 i f ’ a c t i v a t i o n ’ in s e l f . params [’ reward terms ’] :
440 f l e x = s e l f . params [’ f l e x i b i l i t y ’]
441 weight = s e l f . params [’ a c t i v a t i o n w e i g h t ’]
442 ac t i on ∗= f l e x ∗ s e l f . powergrid . load [’ p kw ’]
443 a c t l o s s = np . abs (ac t i on) . sum () ∗ weight
444 s t a t e l o s s += a c t l o s s
445

446 i f i n c l u d e l o s s :
447 i l o s s = sum(s e l f . powergrid . r e s l i n e [’ pl kw ’])
448 s t a t e l o s s += i l o s s
449

450 re turn − s t a t e l o s s
451

452 de f p lot demand and so lar (s e l f , hours =100) :
453 ”””
454 V i s u a l i s e the t o t a l s o l a r product ion and
455 demand f o r buses in the system
456 ”””
457 load = s e l f . g e t s c a l e d d e m a n d f o r e c a s t ()
458 s o l = s e l f . g e t s c a l e d s o l a r f o r e c a s t ()
459 resu l t ing demand = s e l f . resu l t ing demand
460 f i g , ax = p l t . subp lo t s ()
461 p l t . p l o t (s o l [: hours] , axes=ax)
462 p l t . p l o t (load [: hours] , axes=ax)
463 p l t . p l o t (resu l t ing demand [: hours] , axes=ax)
464 p l t . l egend ([’ s o l a r ’ , ’ demand ’ , ’ modi f i ed ’])

B.2. TRAINING 99

465 p l t . show ()
466

467 de f s tep (s e l f , a c t i on) :
468 ep l ength = s e l f . params [’ e p i s o d e l e n g t h ’]
469 s e l f . s e t demand and so lar ()
470 o ld ba l ance = s e l f . c a l c imba lance ()
471 i f s e l f . do ac t i on :
472 ep i s o de o ve r = s e l f . t a k e a c t i o n (ac t i on)
473 e l s e :
474 pp . runpp (s e l f . powergrid)
475 ep i s o de o ve r = False
476

477 s e l f . c u r r e n t s t e p += 1
478 reward = s e l f . ca l c r eward (o ld ba lance , a c t i on)
479

480 i f (s e l f . c u r r e n t s t e p >= ep l ength) or e p i s od e o ve r :
481 ob = s e l f . r e s e t ()
482 e l s e :
483 ob = s e l f . g e t o b s ()
484

485 re turn ob , reward , ep i sode over , {}
486

487 de f render (s e l f , mode=’human ’ , c l o s e=False) :
488 pass

B.2 Training

1 # −∗− coding : utf−8 −∗−
2

3 ”””
4 Training the re in fo r cement agent us ing s t a b l e b a s e l i n e s
5 ”””
6 a u t h o r = ’ Vegard So lberg ’
7 e m a i l = ’ vegard . u l r i k s e n . solberg@nmbu . no ’
8

9 from gym power . envs . ac t ive network env import ActiveEnv
10 from s t a b l e b a s e l i n e s . common . vec env . dummy vec env import DummyVecEnv
11 from s t a b l e b a s e l i n e s . ddpg . p o l i c i e s import LnMlpPolicy
12 from s t a b l e b a s e l i n e s . ddpg . no i s e import Ornste inUhlenbeckActionNoise
13 from s t a b l e b a s e l i n e s import DDPG
14 import numpy as np
15

16 powerenv = ActiveEnv ()
17 powerenv . s e t paramete r s ({ ’ s t a t e s p a c e ’ : [’ sun ’ , ’ demand ’ , ’ imbalance ’] ,
18 ’ reward terms ’ : [’ vo l t age ’ , ’ cu r r ent ’ , ’ imbalance ’] })
19

20 powerenv = DummyVecEnv ([lambda : powerenv])
21 action mean = np . z e ro s (powerenv . a c t i o n s p a c e . shape)
22 act ion s igma = 0 .3 ∗ np . ones (powerenv . a c t i o n s p a c e . shape)
23 a c t i o n n o i s e = Ornste inUhlenbeckActionNoise (mean=action mean ,
24 sigma=act ion s igma)
25

26 t s t e p s = 100000
27 l o g d i r = ’C:\\ Users \\ vegar \\Dropbox\\Master\\ l o g s ’
28 powermodel = DDPG(LnMlpPolicy , powerenv ,
29 verbose =2,
30 a c t i o n n o i s e=a c t i o n n o i s e ,
31 gamma=0.99 ,
32 t en so rboa rd l og=logd i r ,
33 memory limit=i n t (100000) ,

100 APPENDIX B. PYTHON CODE

34 n b t r a i n s t e p s =50,
35 n b r o l l o u t s t e p s =100 ,
36 c r i t i c l r =0.001 ,
37 a c t o r l r =0.0001 ,
38 no rma l i z e ob s e r va t i on s=False)
39 powermodel . l e a rn (t s t e p s)

	Preface
	Abstract
	Sammendrag
	Introduction
	Power system
	Electric circuit theory
	Reactive components
	Reactive power
	Voltage, current and power as complex numbers
	Three-phase electric power
	Per-unit system
	Components in the power system
	Two-bus system
	The power flow equations
	Electric model of a power line

	Reinforcement learning
	Reinforcement learning and machine learning
	Elements in a reinforcement algorithm
	Markov decision process
	Value and policy functions
	The exploration - exploitation dilemma
	Artificial neural networks
	Actor-critic reinforcement learning
	Deep deterministic policy gradient
	Reward engineering

	Problem Description
	State space
	Action space
	Reward function
	Playing an episode

	State of the art
	Reinforcement learning
	Demand response

	Implementation
	Pandapower
	Data structures in pandapower
	Plotting results
	Controlling a pandapower net

	Gym, stable-baselines and ActiveEnv

	Results
	Feasibility
	Simulation - Free activation
	Voltage violations
	Current violations
	Summary

	Discussion
	Voltage and current impact
	Performance of the trained agent
	Solar power production
	State representation
	Reward function
	Energy imbalance
	Reinforcement learning algorithm

	Conclusion and future work
	Model details
	Simulation 1

	Python code
	ActiveEnv
	Training

