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Abstract 
 

A breeding program for Oreochromis mossambicus has been established by CEPAQ (Centro de 

Pesquisa em Aquacultura, translated as The Research Centre in Aquaculture) and is intended to 

develop the local fish farming industries in Mozambique. As much of the area do have high salinity, 

O. mossambicus is considered suitable for cultivation as they have the capacity to grow even in 

high estuarine condition. To genetically improve and produce quality fingerlings of O. 

mossambicus, the base population was created by using the best performing pure strain and strain 

combination as parents in the breeding program.  

The aim of this study was thus to estimate genetic parameters in three strains of Mozambique tilapia 

(Oreochromis mossambicus), this includes the degree of strain additive, reciprocal and heterosis 

effects for different traits. A partial factorial mating design with reciprocal crosses and parentage 

assignment using Genotype-By-Sequencing (GBS) data were used to estimate the proportional 

effect of additive (h2) dominance (d2) and maternal effects (m2) for six different traits in 

Mozambique Tilapia. The study includes observations of 1119 individuals from 300 fullsib 

families. Two different nested statistical models, an Additive-Dominance-Maternal (ADM) model 

and a Sir-Fullsib-Maternal (SFM) model, including their reduced variants, were used to test the 

significance of each effect in the full model.  

The estimates of heritability reported by the ADM models and SFM models were almost similar 

for most traits; e.g. the heritability of Harvest Body Weight (HBW) for the ADM model and SFM 

model were 0.13 and 0.14 respectively. A large amount of dominance was observed for some of 

the traits, e.g. it was 0.45 for harvest body weight when using the SFM model.  

A separate general linear mixed model was also used to describe the strain additive, reciprocal and 

heterosis effects for each trait. For harvest body weight, crossing between S2 and S3 strain yielded 

positive heterosis effect. The reciprocal effects were non-significant for all the crosses and the 

additive strain effect was only significant for the S1 strain. Crossing S2 and S3 strain seems to be 

the best way forward to improve the breeding population, either by a pure-breeding or a cross-

breeding scheme.  
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Introduction 

The production of farmed aquatic species has increased by a factor of four between 1995 and 2015, 

from 12 to 51 million tons. New intensive production systems for shrimps, tilapias, carps, and 

salmonids have largely contributed to this increase. The production of Tilapia and other freshwater 

species are expected to represent around 60 per cent of the total world aquaculture production in 

2030 (FAO, 2018). Among the many Tilapia species, three are particularly popular and 

commercialised; Nile tilapia (Oreochromis niloticus), Mozambique Tilapia (Oreochromis 

mossambicus) and Blue Tilapia (Oreochromis aureus) (Alda Ma. Salia 2008). One special feature 

of O. mossambicus is that they can survive in a wide range of salinities because of their 

osmoregulatory capabilities, as seen by high levels of organic osmolytes and cortisol as well as 

prolactin hormones in blood plasma (Fiess et al., 2007; Whitfield et al., 2006). Unlike other 

freshwater fish, O. mossambicus can spawn in hypersaline conditions, whereas the other fish 

species stop reproducing in brackish water conditions. For example, the presence of a high number 

of juvenile O. mossambicus in St. Lucia indicates successful spawning of the fish in high salty 

conditions (Cyrus et al., 2005; Whitfield et al., 2006). In a comparative study with Nile Tilapia, O. 

mossambicus had better salinity acclimation, both in vivo and in vitro. (Yamaguchi et al., 2018).  

Hybridisation of local species by invasive species is generally considered as a common problem 

when developing commercial strains of that species. The genetic introgression of O. mossambicus 

by two invasive congeneric species (Oreochromis niloticus and Oreochromis andersonii) has 

already been reported in some regions of Mozambique.  

On the other hand, O. mossambicus can be a potential candidate for sustainable aquaculture 

development, due to its unique properties, i.e. outstanding euryhalinity, and its high market values, 

especially the reddish-orange mutant. O. mossambicus has thus been identified as a good candidate 

for a genetic improvement program, both to protect the genetic variation and culture salinity-

resistant pure breed for future breeding (Firmat et al., 2013). Poor-quality broodstock is 

constraining the commercial tilapia production in many areas of Africa and Asia (Modadugu & O. 

Acosta, 2004), and therefore it becomes crucial to develop genetically improved broodstock for the 

commercial cultivation of O. mossambicus.  
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Selective breeding 

Profitable aquaculture production is largely dependent on the access to genetically improved 

broodstock, and selective breeding is thus currently used as an important tool to improve industrial 

aquaculture production (Gjedrem et al., 2012). The selective breeding program is mainly defined 

by the selection intensity, the number of sib families and the mating scheme. The program should 

use a proper selection strategy with the sib-families originating from a pre-planned mating design 

and a sufficient number of breeding candidates per selection round (Bentsen & Gjerde, 1994; 

Gjerde, 2005).  

First, a solid base population should be generated by collecting breeders with a high genetic 

potential. The base population can be collected from the wild populations or domestic populations, 

or from both. Later, to achieve long-term selection response, the additive genetic variability of the 

desired traits should be maintained for every generation by control of inbreeding. The inbreeding 

is controlled by restricting the amount of selected candidates from each family or by applying the 

optimal contribution procedure in every generation (Gjedrem et al., 1991; Gjøen & Bentsen, 1997; 

Nielsen et al. 2011).  

Breeding goal 

In general, animal breeding programs emphasise the gradual genetic improvement of the given 

traits in a breeding program, which is dependent on a long-term and meticulous process. The 

desired traits should also have large genetic variance, must be heritable and measurable with a 

reasonable cost (Gjedrem, 2005). The main breeding goal normally includes growth rate, followed 

by disease resistance and carcass quality. For example, in a Chilean genetic improvement program 

of salmonids, the main breeding goal included resistance to a specific disease alongside the growth 

rate (Lhorente et al., 2019).  

Establishment of a base population 

The base population needs wide genetic variability, which often leads managers to making a 

synthetic F1 population, i.e. a combination of different subpopulations that has considerable 

genetic distance among them. The heterogenetic effects of locus generally increase by mixing 

different fish stocks that have divergent gene pools. As a result, the additive genetic and non-

additive genetic variation can be maintained to achieve genetic gains in subsequent generations 

(Gjedrem, 2005).  In the Genetically Improved Farmed Tilapia (GIFT) breeding program in the 
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Philippines, four wild Nile Tilapia strains and four domestic strains (Eknath et al., 1993) were 

sampled to form the base population. Later, the F1 generation was created from the base population 

by applying low selection intensity and diallel cross design, which again was followed by large 

selection responses in a later generation (Bentsen et al., 1998). 

However, at the time of creating the base population, the genetic-relationship information among 

strain groups or individuals within each strain may not be available. In this case, the best strategy 

is basically to use as many strains as possible or feasible. To exploit potential additive genetic gain 

in the next generations, fish should be sampled from at least four subpopulations. Also, equal 

contribution of each strain should be ensured in the base population, i.e. including an equal number 

of individuals from each strain, in order to maintain a lasting genetic variability (Fernández et al., 

2014; Holtsmark et al., 2006).  

Breeding strategies 

For any breeding program, it is necessary to apply a proper breeding strategy to genetically improve 

the desired traits in the breeding population. Pure breeding and crossbreeding are popular breeding 

strategies and figuring out the proper method relies on the genetic variation of the desired trait, 

either originating from additive and/or non-additive genetic sources. Pure breeding is a common 

breeding strategy and exploits mainly the additive genetic effects. On the other hand, crossbreeding 

is performed between breeds or lines, and generally increases the heterozygosity or heterogenetic 

effect of locus of the desired trait (Gjedrem, 2005). Maluwa & Gjerde (2006b) suggested that a 

proper breeding strategy is necessary to prevent the loss of genetic resources of the founder 

population. To select an optimum breeding strategy, type and amount of the genetic variation of 

the desired traits should be known (William & Pollak, 1985).  

Therefore, understanding the genetic resources of the trait is helpful when setting up the breeding 

objectives and selecting the best suited breeders, in order to maximise the genetic gain. Based on 

the genetic and non-genetic sources, the total phenotypic variance can be partitioned into some 

casual factors, such as genetic, environment and interaction between genetic and environment. The 

genetic part of the variance is further subdivided into an additive portion that can be estimated as 

the average effects of the genes/alleles, the dominance portion caused by dominance interaction 

within locus, and a portion originated from interaction among locus, the epistatic effect. The 

estimated breeding value (EBV), a prediction of the additive effect of the gene, is subject to the 
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selection decision, although the true genetic potential of an animal is not possible to estimate in 

practice (Fisher, 1919; Joshi, 2018; Visscher & Bruce Walsh, 2017). Under the conditions 

described by Cockerham (1954), the partitioning of the genetic variance into genetic and non-

genetic sources is orthogonal, therefore, the inclusion of the terms called dominance and epistatic 

effects should more accurately predict the EBVs (Muñoz et al., 2014). But the presence of the 

Hardy-Weinberg Equilibrium and linkage disequilibrium alters the orthogonal properties of the 

estimates of those variance components (Joshi, 2018).  

The non-additive variance can be as large as the additive genetic variance, or in some cases even 

larger, for different traits and could cause a significant change in the genetic evaluation results 

(Palucci et al., 2007). Although this non-additive genetic variance is not transmissible to the 

offspring, the genetic variances estimated may show significant heterosis effects. This 

heterozygosity, largely derived from the dominance and epistasis effects, indicates the genetic 

potential of the parents’ group, and could be considered for commercial evaluation (Joshi, 2018).  

The heterosis, for which the performance of offspring is superior to the parental strains or lines, is 

generally observed when two separate inbred lines or pure strain groups are crossed. Therefore, the 

crossbreeding program acts as a supplement to the additive genetic improvement resulting from 

the pure breeding program. Different crossbreeding strategies can be used to establish an efficient 

breeding program by exploiting heterosis (Fjalestad, 2005), and the crossbreeding program has a 

role in developing the whole breeding program by selecting the best-purebred parent based on 

crossbred performance. Crossbreeding thus has a potential for greater total selection response to 

selection. In addition, crossbreeding helps to protect the genetic assets of the breeding company 

and increases the sustainability of the company in the market without decreasing the additive 

genetic performance (Joshi, 2018).  

Mating design 

As a part of the breeding program, the mating design should be chosen carefully in order to improve 

the genetic resources in subsequent generations (Gjedrem & Robinson, 2014). Different mating 

designs have different capabilities of preserving the genetic variation in a population. Therefore, 

the design is important both for short-term and long-term genetic gain in the breeding program. 

When applying modern selection schemes, it is also required to keep the identification of each 

individual to implement a specific mating design (Dupont-Nivet et al., 2006). In fish breeding, 



11 
 

physical tagging will require that the fish has reached a certain size, which requires the keeping of 

families separate in a multi-tank facility until fish can be tagged, typically until they are 10-15 

grams. This will normally increase the common environmental effects (Gjerde, 2005). 

Alternatively, genetic markers can be used to identify fish and to assign the parents (Dupont-Nivet 

et al., 2006; Gjerde, 2005). By applying a proper identification system, many sib families can be 

achieved, and the desired mating design can be easily implemented. 

In the simplest mating design, called single pair mating design, only one male is used to fertilise 

one female, and the design can in some cases be implemented if the non-additive genetic effects 

and fullsib effects are low (Gjerde, 2005). A more commonly applied system is the nested mating 

design, whereby one sire is mated with two to three dams. Pante et al. (2002) found significant 

amount of dominance variance for harvest bodyweight in rainbow trout when applying this design, 

but the dominance variance was confounded with common environmental effects.  

To better dissect these effects, the factorial mating design is proposed (Berg & Henryon, 1998), 

where each male is mated with several females and the eggs of one female are either partitioned 

into groups which are subsequently fertilised by different males or being mated subsequently to 

different males. As a result, several fullsibs groups, alongside maternal and paternal half-sibs 

groups, are being created (Gjerde, 2005).   This design can reduce the correlation of EBVs among 

parents, resulting in a lower chance of selecting individuals from the same fullsib groups and 

reduced inbreeding (Sørensen et al., 2005).  

Yet another mating system, applied by Joshi et al. (2018), is to apply a full factorial mating design 

that includes reciprocal crosses of for instance two lines. This setup can even better separate 

maternal and non-additive genetic effects. They showed that when maternal and dominance effects 

were also estimated, the ranking of the candidates based on their EBVs changed, which indicates 

that these non-additive genetic effects may influence the selection significantly.  For practical 

reasons, as an alternative of the full factorial mating design, a partial factorial mating design can 

be implemented in the breeding program because it will still be able to dissect out most of the non-

additive and common environmental effects (Dupont-Nivet et al., 2006).  

Using the relationship matrices in the Animal Model 

Pedigree-based relationship matrices can be utilised in linear mixed animal models to estimate the 

breeding values and to estimate the genetic as well as phenotypic parameters. The complete 
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pedigree-based relationship matrix is necessary to predict the unbiased genetic components 

(Kennedy et al., 1988; Kolstad, 2005). For example, in several studies (Raidan et al., 2018); 

(Muñoz et al., 2014) and (Su et al., 2012), the relationship matrices have been used to separate the 

total genetic variance components into additive and non-additive genetic parts.  

As compared to pedigree-based information, the marker-based information seems to be more 

effective in separating the additive and non-additive variance components, where the dense panel 

of SNPs are used to define the genomic information (Muñoz et al., 2014). Also, Joshi (2018) found 

that by using pedigree-based relationship matrices, the source of non-additive genetic variation was 

falsely concluded as dominance. He also showed that the genomic relationship matrices described 

a major portion of the non-additive variance caused by epistasis in that population. But using the 

best genomic prediction methods did still not separate the non-additive genetic variances 

completely from the additive one, at least not in an orthogonal manner.  Therefore, despite the fact 

the non-additive genetic effects improved the accuracy for predicting the EBVs, a serious weakness 

still remain in that the partitioning of additive and non-additive variance is not completely 

orthogonal, even when using SNP markers to construct more accurate genetic relationship matrices 

(Raidan et al., 2018).  

 

Genotyping-by-sequencing 
Estimating the relatedness of the individuals based on marker information can be a very efficient 

way to infer the population substructure and to estimate the breeding values. This marker-based 

realised relationship gives a more accurate estimation of the genetic variants between two closely 

related animals, which can also be used to define the unrecorded pedigree and increase the genetic 

merit (Dodds et al., 2015; Makgahlela et al., 2013). But the high-density SNPs are not developed 

for all aquatic species, so, in the absence of reference genome, genotyping-by-sequencing (GBS) 

can be applied to get unbiased relatedness values, and many broad-scale aquaculture breeding 

programs have thus applied GBS as a DNA-tool in order to reduce the costs. Finally, GBS 

techniques can also be applied in several research fields like genetic diversity, population structure, 

association analysis for economically important traits and genomic selection in aquaculture 

breeding (Robledo et al., 2018). 
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Objectives of the study 

The Centro de Pesquisa em Aquaculture (CEPAQ), translated to English as The Research Centre 

in Aquaculture, is established to develop the Tilapia aquaculture industry in Mozambique. O. 

mossambicus is a potential candidate to boost up the local fish farming industry because of the 

species’ high growing capacity in the high estuarine condition of Mozambique. It was thus decided 

to establish a composite base population, using best performing pure strain and strain combinations 

as a base population for commercial production of quality fingerlings and for running a long-term 

selection program for O. mossambicus. In this study, the harvest body weight and other 

morphometric traits are investigated.  

Therefore, the main goal of this study is to describe the genetic component of the base population 

at CEPAQ and to estimate the effect of crossbreeding among the strains of O. mossambicus. The 

study has the following sub-goals: 

 

• Estimate genetic and phenotypic parameters of the founder population produced in a 

partial factorial mating design among different strains of O. mossambicus.  

• Estimate the genetic strain effects i.e. the strain additive genetic effect, reciprocal cross 

effect, heterosis effect of the different strains and strain combinations tested. 

 

Materials and methods 

Experimental facilities 

CEPAQ is established in the district of Chokwe which is in one of the southern provinces of 

Mozambique, Gaza. The Research Centre has an area of approximately 10 500 ha and the land or 

soil is known for high salinity levels but still suitable for Tilapia farming. The facility is subdivided 

into three areas; the genetic enhancement area, hatchery area and, grow-out area. The research 

centre at the genetic enhancement area is dedicated to the genetic enhancement of the O. 

mossambicus. The Hatchery is developed for producing sex-reversed fingerlings and the grow-out 

area is aimed to develop the protocols and a training facility for the full production cycle. 
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Collection of wild breeders of O. mossambicus 

The genetic enhancement program, CEPAQ was responsible for the collection of the pure breed of 

O. mossambicus from the wild environment, which was a very challenging task. But the sampling 

of the wild breeders was done efficiently by Arjona (2018) and his team members. Different strains 

of O. mossambicus were collected from 12 different sites, clustering into five different main 

locations, first defined as strains, of the southern and central regions of Mozambique, from October 

2016 to June 2017.  Later, fin samples were sent to AgResearch Limited, New Zealand.  The 

following table shows the five different strains of O. mossambicus based on the different locations 

of Mozambique: 

Table 1. Strain distribution over the different location in Mozambique (Arjona, 2018) 

Strain Location Total number of fish 

A Sotiva 346 

B Bons Sinais 594 

C Catuane 219 

D Marrangua 538 

E Govuro, Govuro 3, Ximite, Makuri 357 

 

Experimental design and rearing of fish 

Total 921 wild breeders were selected as breeding candidates from the wild stock of O. 

mossambicus, which were based on some conditions: the fish were in the proper size for 

reproduction(>60g) and had optimal health status. Later the selected population was DNA-sampled 

and PIT-Tagged, after being anaesthetised using a solution of clove oil in ethanol.  

 A partial factorial mating design with reciprocal crosses was used to test the different strains. From 

this, a total of 25 different genotypes were created, including 20 crossbreds and 5 purebreds. To 

utilise manpower and facilities to the maximum, the mating was organised into 10 successive 

batches, each batch consisting of 50 hapas, where 2 replicas of each line were represented. Each 

pair could stay for 2 to 3 weeks in the hapa for successful spawning. All eggs were naturally 

incubated by the female alone in the hapa.  
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From every family, 25 fry were collected and transferred into rearing hapas. After collecting all fry 

in their respective batch, they were transferred into a grow-out pond. The grow-out period of each 

batch was about 100 days. In total, around 10347 fingerlings were stocked in grow-out ponds 

enriched with inorganic fertilisers for growing.  

Collection of data 

After grow-out, the fish were collected by draining out the pond and then gathered by a seine net. 

The traits that were recorded were as follows: harvest body weight HBW (g), total length, TL (cm), 

standard length, SL (cm), head length, HL (cm), body height, BH (cm), and body width, BW (cm).  

DNA sampling  

The DNA samples were collected from the caudal fins of the fish. The samples were preserved in 

small tubes with 96 trays filled with pure ethanol and then stored in a freezer. 

Genotyping  

The DNA samples including the wild breeders were sent to AgResearch Limited, New Zealand 

and Genotyped by sequencing (GBS). The genomic relationship matrix (G-matrix) was also 

provided by them which was constructed based on the method described by Dodds et al. (2015).  

Initially, 96 samples from the wild fish that were used as parents for the F1 generation, were 

genotyped to establish a suitable set of SNPs to use. In the final genotyping, 36542 SNPs were used 

with a mean sample depth 3.56 and call rate 0.55. The genotyping results can be visualised as a 

heatmap, as shown in Figure 1. As can be seen there, the parents could better be grouped in 3, 

rather than 5, genetic groups; indicated by the darker colour (red) in the connection between related 

individuals. Less related individuals are marked with a light colour (yellow). Later, the five strains 

were thus grouped into three genetic groups or meta-strains, S1-S3, so that fish from Bons Sinais 

and Govuro are termed S1, from Marrangua S2 and from Sotiva and Catuane S3. 
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Figure 1. The heatmap based on estimated genetic relatedness among the wild breeders. 

Parentage assignment 

Based on the genomic relationship matrix, estimates of pairwise relationship, i.e. kinship 

coefficients, were used to create a list of potential parents for each offspring. The parentage 

assignments were done by considering the highest relationship coefficient values between offspring 

and potential parents. The potential parents for each offspring were sorted according to their 

relatedness value, so that, the sire or dam having the highest relatedness value was placed on top 

of the potential parent list. If that first-positioned parent in the list was not valid by matching on 

the recorded mating list, then the second top positioned parent was considered as the assigned 

parent, as with the previous procedure.  For each iteration, targeting to assign true parent, the whole 

dataset was separated into assigned and non-assigned offspring. The whole parentage assignment 

was completed by tailormade scripts written in R and the total procedure is described in figure 2, 

supplement 3. However, this method left some offspring unassigned, and an alternative manually 

assignment procedure was performed for the remaining offspring. Figure-1 Supplement 3 describes 

the manual procedures for assigning parents when batch ID of individuals were available, whereas 

figure-1 Supplement 4, describes the manual procedures when the batch ID of individuals were not 

available. 
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Data recording and correction 

In total, 2202 offspring were genotyped and phenotyped, but only about half of this, 1119 offspring, 

were used for statistical analysis since only male offspring were used in the genetic analysis. This 

was caused by the many females that had reached early sexual maturation, as well as spawned, at 

the time of harvest and thus would not serve as a true representation of the traits measured. Before 

analysis, all type of data records was evaluated or checked for abnormality, the measurements 

which significantly distorted from the sub-group means were marked as well as corrected by re-

checking. Also, while performing the final statistical analysis in ASReml (see below), the outliers 

noted by the program were checked for validity and considered as missing values if it clearly 

negatively deviated from the mean value of a specific batch, as this may indicate that it was not 

growing properly, which could be due to an infection or distress, making it unsuited to measure the 

trait of interest. No significant outliers were detected for TL and SL, whereas, the four other traits 

had some very few of them. The five local strains described earlier (A, B, C, D, and E) were recoded 

into three strains denoted as S1, S2 and S3, as described above. 

Statistical analysis  

All the statistical analyses were performed using ASReml  V4.1 (Butler et al., 2009), for the six 

traits harvest body weight HBW (g), total length, TL (cm), standard length, SL (cm), head length, 

HL (cm), body height, BH (cm), and body width, BW (cm). Three different models were used for 

the statistical analysis: A Sire, Maternal and Fullsib model (SFM) and an Additive, Dominance and 

Maternal model (ADM) and one were Strain additive genetic effects, Reciprocal effects, and 

Heterosis effects (SRH) were estimated:  

SFM model  

The partial factorial mating design used allows the separation of the total variances into several 

components, which in the Sire, Maternal, and Fullsib model (SFM) model are:  

𝑦 = 𝑋𝑏 + 𝑍𝑠𝑆 + 𝑍𝑚𝑀 + 𝑍𝑓𝐹 + 𝑒                   

                                                                                  

where y is the vector of phenotypes; b is the vector of fixed effects, the 10 batches ; S is a vector 

of random Sire effects; M is a vector of random Dam effects, F is a vector of random fullsib effects; 

X, Zs, Zm, and Zf are the corresponding design matrices for the fixed and random effects. The 
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variance of Sire (𝜎2
𝑠
) and variance of Dam (𝜎2

𝑀) were constrained at the same level in models S 

and SF to obtain appropriate additive genetic contributions.  

[

𝑆
𝐷
𝐹
𝑒

] = [

𝐼𝑉𝑆𝑖𝑟𝑒 0 0 0
0 𝐼𝑉𝐷𝑎𝑚 0 0
0 0 𝐼𝑉𝐹𝑠𝑖𝑏 0
0 0 0 𝐼𝑉𝑒

] 

 

The variance of fullsib, 𝜎2
𝐹 was restrained to 0 in S, and unrestrained in SF. Sire variance and dam 

variance in the model SM and SFM were unconstrained, whereas 𝜎2
𝐹 was restrained to be 0 in SM 

and unrestrained in SFM. Phenotypic variance, 𝜎2
𝑃 was calculated as the sum of the variance of 

Sire (𝜎2
𝑠), the variance of Dam (𝜎2

𝑀), the variance of Fullsib (𝜎2
𝐹) and residual variance (𝜎2

𝑒). 

The additive genetic variance, 𝜎2
𝐴 was calculated as 4 × 𝜎2

𝑠 and the dominance variance, 𝜎2
𝐷 

was calculated as  4 × 𝜎2
𝐹. Heritability, Dominance ratio, maternal ratio were calculated as: ℎ2 =

4×𝜎2
𝑠

𝜎2
𝑃

  , 𝑑2 =
4×𝜎2

𝐹 

𝜎2
𝑃

 , 𝑚2 = 
(𝜎2

𝐷−𝜎2
𝑠) 

𝜎2
𝑃

  (Joshi et al., 2018). 

ADM model 

As an alternative to the SFM model, an animal model with Additive, Dominance, and Maternal 

effects (ADM) were also applied: 

𝑦 = 𝑋𝑏 + 𝑍1𝐴 + 𝑍2𝐷 + 𝑍3𝑀 + 𝑒         

where y is the vector of phenotypic records for all traits, b is the vector of fixed effects as in the 

SFM model, A is the vector of individual random additive genetic effects; D is the vector of random 

dominance effects; M is the vector of random maternal effects; and e is the random error effects. 

X, Z1, Z2, and Z3 are the design matrices corresponding to the fixed, additive, dominance, and 

maternal effects. Vectors A and D are fitted for everyone in the pedigree, but the maternal effects, 

M, are pertaining to each fullsib family.  

In the ADM model, 𝜎2
𝑎𝑑𝑑, 𝜎2

𝑑𝑜𝑚, 𝜎2
𝑚𝑎𝑡, and 𝜎2

𝑒 are additive genetic variance, dominance 

variance, maternal variance, and error variance respectively; 
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[

𝐴
𝐷
𝑀
𝑒

] =  

[
 
 
 
 
𝐴𝜎2

𝑎𝑑𝑑 0 0 0

0 𝐷𝜎2
𝑑𝑜𝑚 0 0

0 0 𝐼𝜎2
𝑚𝑎𝑡 0

0 0 0 𝐼𝜎2
𝑒]
 
 
 
 

 

 

A is the additive relationship matrix, D is the Dominance relationship matrix, and I is the identity 

matrix with an appropriate size of the M vector. The phenotypic variance is calculated as 𝜎2
𝑃 =

 𝜎2
𝑎𝑑𝑑 + 𝜎2

𝑑𝑜𝑚 + 𝜎2
𝑚𝑎𝑡 + 𝜎2

𝑒 . The heritability (h2), dominance ratio (d2), and maternal ratio 

(m2) are expressed as the relative to the phenotypic variance of additive genetic variance, 

dominance variance, and maternal variance respectively. To fit the dominance relationship matrix 

in the ADM model, an inverse of the dominance matrix is calculated by using the R package 

“nadiv” as described in Wolak (2012). Models with the dominance, maternal, and both effects 

removed were also tested. 

Goodness of fit for the various models was tested using likelihood ratio tests. The critical values 

for testing H0: σ
2=0 against an alternative H1: σ

2 >0 with type 1 error of 0.05 was taken from the 

90 percentile of χ1
2, i.e., 2.71 (Joshi et al, 2018). 

SRH model  

The strain additive genetic effect, reciprocal cross effect, and heterosis effects for all traits were 

estimated using a univariate model termed Strain, Reciprocal, and Heterosis (SRH) model 

(Workagegn, 2019): 

𝑦𝑖𝑗𝑙𝑘 = µ + 𝐵𝑎𝑡𝑐ℎ𝑘 + ∑𝑏𝑎𝑖𝐴𝑖 + ∑𝑏𝑟𝑖𝑅𝑖 + ∑𝑏ℎ𝑗ℎ𝑗 + 𝐴0 + 𝑒𝑖𝑗𝑙𝑘 

where 𝑦𝑖𝑗𝑙𝑘is the record for each trait, on the lth individual of the cross between the ith and jth strain 

groups reared in the kth batch; µ is the overall mean; 𝐵𝑎𝑡𝑐ℎ𝑘 is the fixed effect of the kth batch 

(k=1-10); 𝑏𝑎𝑖is the regression coefficient of the additive genetic effect if the genes originating from 

the ith strain ( i = 1-3), 𝐴𝑖is the proportion of genes in the lth individual originating from the ith strain 

( 𝐴𝑖= 0, 0.5 or 1, and ∑𝐴𝑖 = 1) ; 𝑏𝑟𝑖 is the regression coefficient of the general reciprocal effect 

for the ith strain; 𝑅𝑖is the proportion of genes of the dam of the lth individual originating from ith 

strain ( 𝑅𝑖= 0 or 1 and ∑𝑅𝑖 = 1) ; 𝑏ℎ𝑖𝑗is the regression coefficient of the mean heterosis effect of 

both reciprocals of the jth cross between two different strains ( j = 1-3), ℎ𝑗is the proportion of the 
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total heterosis effect of the jth cross-strain group expressed in the  lth individual, (ℎ𝑗 =

0 𝑜𝑟 1, ∑ ℎ𝑗 = 1  for cross strains or ∑ ℎ𝑗 = 0 for pure strains), 𝐴0 is the random additive 

genetic effect of the lth individual fish, 𝐴0~𝑁( 0, 𝜎2𝐴) where A is the additive genetic relationship 

matrix among all fish population and 𝜎2𝐴 is the additive genetic variance, and 𝑒𝑖𝑗𝑙𝑘 is the random 

residual error of the lth individual. The details of the regression coefficient of the strain genetic 

effects; strain additive genetic effects, strain heterosis effects and strain reciprocal effects are 

shown in table-1 supplementary 7.  
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Results  

Descriptive statistics 

Table 2. shows the descriptive statistics of all the six traits studied. A high but normal coefficient 

of variation (CV) was observed for HBW whereas the morphometric traits typically had lower 

CVs.  

Table 2. Descriptive statistics of Phenotypic measurements  

Traits Mean Min Max CV 

Weight 106 28 261 33.79 

Total length 18.2 11.5 26.8 11.03 

Standard length 14.4 3.2 19.4 10.68 

Head size 4.49 2.9 6.6 12.08 

Body Height 5.79 2.6 8.7 13.63 

Width 2.55 1.5 3.9 13.11 

 

The average CVs of all traits for each strain combination are displayed in Table 3. The purebreds, 

S2S2 and S3S3, with an average harvest bodyweight of 138±33 g and 135±31 g respectively, were 

larger than all the cross-bred strains. Figure-1, Supplement 2, shows the distribution of records for 

each trait within each strain group. The figures indicate that the distribution of observations for 

each trait are not perfect normally distributed, but had more extreme observations than could be 

expected, indicating that both shooters and stunted fish occurred. This may indicate social 

interaction and/or stressed/infected fish.     
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Table-3. Mean and CV for each strain groups among all traits.  

 S1S1  S2S2  S3S3  S1S2   S2S3  S1S3  

Traits Mean CV Mean CV Mean CV Mean CV Mean CV Mean CV 

HBW 126.5 21.0 138.1 23.6 135.7 22.8 130.6 20.9 131.6 23.6 129.1 19.8 

TL 19.49  6.76 19.9 5.89 19.8 6.66 19.7 6.63 19.6 6.9 19.5 6.28 

SL 15.33 6.82 15.7 7.07 15.6 6.70 15.8 6.36 15.5 7.0 15.3 6.47 

HL 4.86 8.16 4.9 7.23 4.88 8.17 4.9 7.93 4.93 7.9 4.8 7.69 

BH 6.36 8.34 6.5 8.60 6.38 9.41 6.3 8.90 6.35 9.5 6.3 8.64 

BW 2.64 10.9 2.8 14.3 2.82 11.27 2.6 10.3 2.72 11.6 2.71 10.6 

 

 

 

ADM and SFM models 
 

Goodness of fit 

Likelihood ratio tests (LRT) were used to decide whether the full models, SFM and ADM, had 

better fit than a simpler model, for each of the traits. The results of LRT for the goodness of fit is 

shown in table 4. For all models with Sire, Dam, and Fullsib effects, the Dam component was 

negligible for all traits. Therefore, the SF model was considered as a best-fit model for most 

traits. The fullsib effect was significant for all traits except for SL and HL but most pronounced 

for TL, HBW and BWD. So, a model with only the sire effect included was preferred for SL and 

HL.  
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Table 4:  Log likelihood values for various models tested and the outcome of Likelihood ratio tests (LRT) among 

them. The * is used to denote the model with the significantly best fit within the hierarchy of models.  

 

 

Variance components analysis  

 Table-1 in Supplements 1 shows all variances for all traits with all SFM and ADM models.  

The estimates of different variance components, expressed as a proportion to the total phenotypic 

variance, are shown graphically in Figure 2. The simple model resulted in greater additive variance 

and heritability for all traits. By adding the dominance and maternal effects in the ADM models, 

the additive genetic variance in most cases decreased.  And indeed, for HL, the additive variance 

was zero or around zero in both the full ADM and SFM models. No maternal ratios were estimated 

because of the negative estimates of maternal variance while using the SFM models.  

Models HBW TL SL BH BW HL 

S -3734.87 -360.375 -159.913* 382.915 1044.44 684.269* 

SM -3734.87 -360.375 -159.913 382.915 1044.44 684.269 

SF -3731.79** -354.06*** -159.09 384.814* 1048.69** 685.55 

SFM -3731.79 -354.064 -159.09 384.814 1048.69 685.55 

A -3817 -365.311 -170.532 368.46 1040.47 667.998 

AD -3816.86 -365.143 -169.116* 369.17 1044.23 668.482 

AM -3813.8** -359.047*** -169.592 370.421* 1044.79 669.496* 

ADM -3813.72 -358.808 -168.165 370.834 1048.16*** 669.931 

*,** and ***: The threshold values for Type-1 errors of *:0.05,**: 0.01, and ***:0.001 were: 1 d. f., 2.71, 5.42, and 

9.55 respectively; for 2 d. f., 4.24, 7.29, and 11.77, respectively. 
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Genetic parameters  

The proportions of the additive variance, dominance variance and maternal variance are 

displayed in figure-2 and in table-1, Supplement1. The heritability, dominance ratio and the 

maternal ratio of the best fit models, SF and ADM models, are shown in Table 6. 

The maternal ratio was not available for the SF model for any of the traits because of the negative 

estimates of maternal variance. However, the maternal effect was significant in all ADM models 

for all traits except SL. The dominance ratio was greater in a portion of total phenotype variance 

in all SF models compared to all ADM models. For BW, the dominance ratio was estimated as 0.30 

 

 
 
Figure 2: Segregation of the phenotypic variance of all traits into additive genetic (h2), dominance (d2), 
maternal (m2), and error component (e2) is shown in this figure. All nested models within ADM and SFM 
models are shown in the vertical axis of the plot.  
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±0.13 using the ADM model, whereas it was 0.53 ±0.22 when using the SF model. The heritability, 

h2, for all traits relied largely on the model fitted and had poor precision. The heritability for HBW, 

SL, and BW was moderate or greater than zero for the best fit models, as shown in Table 6. But 

the heritability of HL, TL and BH were not significantly greater than zero, which means very low 

estimates of heritability for those traits.  

 

 

 

Table 6. Heritability, dominance ratio, and maternal Ratio ±SE for the best fit models. 

S
F

 M
O

D
E

L
 

Traits Heritability Dominance 

Ratio 

Maternal 

Ratio 

HBW 0.14 ±0.11 0.45 ±0.21 - 

TL 0.03 ±0.11 0.72 ±0.29 - 

SL 0.34 ±0.07 - - 

HL 0.12 ±0.08 - - 

BH 0.05 ±0.09 0.36 ±0.20 - 

BW 0.18 ±0.11 0.53 ±0.22 - 

A
D

M
 M

O
D

E
L

 

HBW 0.13 ±0.09 - 0.10 ±0.05 

TL 0.03 ±0.11 - 0.18 ±0.06 

SL 0.28 ±0.06 0.23 ±0.14 - 

HL 0 - 0.06 ±0.03 

BH 0.04±0.08 - 0.08 ±0.05 

BW 0.16 ±0.10 0.30 ±0.13 0.12 ±0.06 

 

SRH Model 

In the SRH model, the additive genetic effects, general reciprocal strain effects and heterosis effects 

of each strain were measured as a fixed effect. A Wald-f test was performed to evaluate the fixed 

effects. Table-6 shows estimates of the additive genetic, reciprocal, and heterosis effects as 

obtained with the SRH model for the six traits investigated. The additive strain effects are given 

relative to the S3 strain, as this strain is put to zero by the ASReml program, whereas reciprocal 

and heterosis effects are shown as absolute values. The estimates of reciprocal effects and heterosis 
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effects were not significant between strains and strain combinations. All the crosses including the 

S1 strain gave negative estimates of the heterosis effect, whereas the crossbred S2S3 strain showed 

positive heterosis effect for HBW, BH, and HL. All heterosis effects were negative for TL, SL, and 

BW among all crossbred strains.  

     

 

 

 

 

 
 

 

Table 6. Estimates of additive genetic, reciprocal and total heterosis effects of all phenotypic measurements among the 

crosses of three Mozambique Tilapia strains, (S1= Bons Sinais and Govuro, S2 = Marrangua, S3= Sotiva and Catuane) 

EFFECTS   TRAITS    

RECIPROCAL  HBW   TL   SL  BH  HL  BW 

S3 0.00 0.000 0.00 0.00 0.00 0.00 

S2 2.32 -0.051 0.06 0.05 0.001 0.01 

S1 2.01 0.027 -0.05 0.05 0.01 0.02 

HETEROSIS 
      

S1S3×S3S1 -2.5 -0.045 -0.06 -0.04 0.04 -0.05 

S2S3×S3S2 0.99 -0.041 -0.02 0.05 0.05 -0.02 

S1S2×S2S1 -3.4 -0.132 -0.10 -0.04 0.01 -0.06 

ADDITIVE 

GENETIC 

      

S3  0.00  0.000  0.00  0.00 0.00  0.00 

S2 -7.38 -0.001 -0.08 -0.13 0.02 -0.10** 

S1 -9.87*** -0.455*** -0.39*** -0.05 -0.07 -0.16*** 
Significance levels for test of estimates being different from zero: ***P<0.001, **P<0.01 and *P<0.05 
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Discussion 

Additive and non-additive genetic strain effects 

Among all the strain combinations, S2S3×S3S2 showed positive heterosis effect for HBW, thus 

the crossing between S2 and S3 pure breeds has the best future prospects in the breeding program. 

The other strain combinations had negative heterosis effects. None of the heterosis effects 

estimated for the different crossbred strains was statistically significant (p<0.05) in this study. In 

contrast to this, Workagegn (2019) observed significant heterosis while crossing three different 

strains of O. niloticus in Ethiopia, but no significant additive genetic or reciprocal effects were 

observed among strain groups. In common carp, heterosis has commonly been observed among 

different cross-bred strains, which largely varied by genetic factors, genotype-environment 

interaction and age of the fish (Wohlfarth, 1993). Similarly, the heterosis effect of O. mossambicus 

might also be related to the age of the fish.  

The additive genetic strain effects that are presented in this study are important because it represents 

the performance of a specific strain group, for each of the traits investigated. The results indicate 

that the S1 strain group had inferior performance compared to other strain groups in most of the 

traits. Also, little reciprocal effects were shown among strain groups. The reciprocal effects are 

quite common in many aquatic species and the effect can be confounded with fullsib or common 

environmental effect stemming from the mouth breeding nature of fish (Thanh et al., 2010). 

Bentsen et al. (1998) have observed significant additive genetic and reciprocal cross effects in 

different strains of O. niloticus, which were derived from a diallel cross of eight different strains 

of Nile Tilapia. The presence of some significant reciprocal effects conceptualises the theory that 

progenies of some dam strain groups could outperform the offspring of the sire strain groups. 

However, there was no strong evidence in our study to support the presence of reciprocal effect in 

O. mossambicus for the growth traits.  

Heritability 

In this study, heritability varied quite a lot for the traits measured. Heritability for HBW was about 

0.3± 0.1 using the two simplest models (Table-1, Supplement 1), and this estimate is in accordance 

with other results that are reported earlier in various Tilapia species by other authors, where the 

heritabilities ranged from 0 to 0.42, as shown in table-1 in supplementary 6. These heritability 

estimates differ from the estimates obtained for Nile Tilapia for harvest body weight by (Joshi et 
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al., 2018) where the estimates were very close to zero for harvest body weight, with low standard 

error. The main reason for this was that with their design and models, much of the additive genetic 

variation were transformed into mostly epistatic effects. However, all the estimates of the 

heritability in our results were associated with large standard errors.  

Non-additive genetic variance components 

The components of dominance and maternal effects were estimated by using different models in 

this study, where the total phenotypic variance either had a large portion defined by dominance and 

a small or no portion described by the maternal effects. The variance components estimated by the 

SFM and ADM models which applies three basic components to explain the causal variation (Joshi 

et al., 2018), but the output of variances from both the models differed more in our study because 

the dam component was not estimated in any of the SFM models. 

Maternal effects stem from genetic or non-genetic factors related to the dam, such as differences 

in egg size and egg quality caused by genetic or environmental differences during the sexual 

maturation (Cruz et al., 1997). As mentioned by Joshi (2018), the conventional experimental design 

causes confounding of the different variances but changing the mating system to e.g. a partial 

factorial design, can better separate the additive, maternal and non-additive genetic variances. 

However, even by using a full factorial design, he was not able to separate the variance components 

in an orthogonal manner in his analysis, even when applying a SNP-based genomic relationship 

matrix.  

Best model fitted 

The assumptions assumed when constructing the dominance relationship matrices ignore the fact 

that inbreeding decreases with the heterosis level, but if the inbreeding level is very low no serious 

bias will occur for the estimated dominance effects. The effect is expected to have a mean zero and 

symmetrical distribution. But Joshi (2018) points out that this is not completely true when 

directional dominance is present. No inbreeding was assumed in our study as the level of inbreeding 

is unknown in the wild sub-populations sampled. However, in general, compared to a pedigree-

based BLUP method, genomic prediction methods with use of high density markers are the better 

option when trying to define these variances (Joshi, 2018).  



29 
 

Population subdivision 

As illustrated by the heatmap, the three strains seem to be three clear different genetic groups. In 

addition, the S1 strain seems to be related to Nile Tilapia to some degree (Fig.1). However, the 

heatmap used in this study is based on markers having low call rate, especially among the groups, 

which thus will give a low level of precision when we try to deduce the population substructure. 

But the isolation of the fish sub-populations in the regions sampled give reasons to assume that 

subdivision of the population might have led to genetic drift or bottleneck effects, as the sudden 

occurrence of flood in the area could lead to genetic differences and homogenous isolated 

populations (Crispo & Chapman, 2009). On the other hand, relative levels of genetic diversity that 

was observed among subpopulations might also be caused by the habitats and soil types of the 

regions. According to Falconer and Mackay (1996), the gene frequency or genetic variation 

between subpopulations will influence the level of heterosis in crossbred populations generated 

from two specific lines or strains. In our study, we have presumed that S1, S2 and S3 strain groups 

had different genetic properties based on the available genotype and phenotype data.  

 

Conclusion 

The partial factorial mating design that was used in this breeding program for O. mossambicus 

allowed the separation of variance components pertaining to additive and non-additive genetic 

effects, and substantial amounts of dominance and maternal components were found. A major 

portion of the non-additive variation was defined by the dominance in this pedigree-based analysis. 

However, the standard error of the estimate of heritability, dominance and maternal components 

were large, which illustrated the fact that a large number of observations is required to obtain 

estimates with sufficient accuracy.  

Potentially, genomic prediction methods based on high-quality markers will separate the additive 

genetic and non-additive genetic variance with more accuracy. Therefore, further approaches 

should be undertaken by using the genomic information based on high quality genotyping data in 

order to quantify the accurate non-additive sources of phenotypic variation for the desired trait.  

Differences among strain groups in terms of additive genetic strain effects were also found. Based 

on the observed heterosis effects, the combination of the two strains S2 and S3 is most suitable for 

further genetic improvement based on their additive genetic levels and positive heterosis effect. 
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Supplement 1 

Table-1: The variance components estimation for the different models tested. Standard errors are shown in 

parenthesis. 

Traits Model 𝜎2s 𝜎2
D 𝜎2

F 𝜎2
add 𝜎2

dom 𝜎2mat 𝜎2
e 𝜎2

p h2 d2 m2 

HBW S 26.92(5.96) 

  

107.70(23.87) 

  

299.14(14.13) 326.07(13.97) 0.33(0.07) 

  

HBW SD 26.92(5.96) 0 

 

107.70(23.87) 

 

NV  299.14(14.13) 326.07(13.97) 0.33(0.07) 

 

NV  

HBW SF 12.32(8.86) 

 

37.91(19.54) 49.26(35.38) 151.64(78.01) 

 

290.16(14.05) 340.38(17.10) 0.14(0.11) 0.45(0.21) 

 

HBW SDF 12.32(8.86) 0 37.91(19.54) 49.26(35.38) 151.65(78.01) NV  290.16(14.05) 340.38(17.08) 0.14(0.11) 0.45(0.21) NV  

HBW A    108.89(24.19)   257.01(20.98) 365.91(16.61) 0.29(0.06)   

HBW AD    106.08(24.45) 24.79(46.76)  234.39(46.59) 365.97(16.61) 0.29(0.06) 0.15(0.12)  

HBW AM    49.39(35.61)  32.92(19.71) 277.47(22.79) 365.52(16.58) 0.13(0.09)  0.10(0.05) 

HBW ADM    47.99(35.54) 19.08(46.54) 38.44(19.71) 260.07(47.81) 365.58(16.8) 0.13(0.09) 0.13(0.13) 0.11(0.05) 

TL S 0.058 

  

0.23(0.052) 

  

0.61(0.03) 0.66(0.03) 0.35(0.07) 

  

TL SD 0.058 0 

 

0.23(0.052) 

 

NV  0.61(0.03) 0.66(0.03) 0.35(0.08) 

 

NV  

TL SF 0.006 

 

0.13 0.022(0.077) 0.53(0.03) 

 

0.58(0.03) 0.74(0.067) 0.03(0.1) 0.72(0.29) 

 

TL SDF 0.006 0 0.13 0.022(0.07) 0.53(0.19) NV  0.58(0.03) 0.715(0.038) 0.03(0.11) 0.74(0.24) NV  

TL A    0.23(0.053)   0.49(0.04) 0.73(0.034) 0.32(0.06)   

TL AD    0.22(0.05) 0.055(0.09)  0.45(0.09) 0.73(0.03) 0.31(0.07) 0.07(0.13)  

TL AM    0.03(0.07)  0.13(0.05) 0.57(0.05) 0.73(0.03) 0.03(0.1)  0.18(0.06) 

TL ADM    0.02(0.08) 0.06(0.09) 0.13(0.05) 0.51(0.09) 0.73(0.03) 0.02(0.11) 0.09(0.13) 0.18(0.06) 

SL S 0.039 

  

0.15(0.035) 

  

0.42(0.02) 0.46(0.02) 0.34(0.07) 

  

SL SD 0.039 0 

 

0.15(0.04) 

 

NV  0.42(0.02) 0.46(0.02) 0.34(0.08) 

 

NV  

SL SF 0.028 

 

0.029 0.11(0.05) 0.11(0.1) 

 

0.41(0.02) 0.47(0.02) 0.23(0.11) 0.24(0.21) 

 

SL SDF 0.028 0 0.029 0.11(0.05) 0.11(0.1) NV  0.41(0.02) 0.47(0.03) 0.24(0.11) 0.24(0.2) NV  

SL A    0.16(0.04)   0.34(0.03) 0.51(0.02) 0.31(0.06)   

SL AD    0.14(0.04) 0.12(0.07)  0.24(0.07) 0.51(0.02) 0.28(0.06) 0.23(0.14)  

SL AM    0.11(0.05)  0.03(0.03) 0.37(0.03) 0.51(0.02) 0.22(0.09)  0.06(0.05) 

SL ADM    0.097(0.05) 0.12(0.07) 0.03(0.03) 0.26(0.07) 0.51(0.02) 0.19(0.09) 0.23(0.14) 0.05(0.05) 

HL S 0.003(0.001) 

  

0.012(0.005) 

  

0.095(0.004) 0.098(0.004) 0.12(0.05) 

  

HL SD 0.003(0.001) 0   0.012(0.005) 

 

NV  0.095(0.004) 0.098(0.004) 0.12(0.05) 

 

NV  

HL SF 0.0002(0.00

2) 

 

0.007(0.005) 0.0007(0.009) 0.029(0.02) 

 

0.094(0.005) 0.10(0.005) 0.007(0.08) 0.29(0.19) 

 

HL SDF 0.0002(0.00

2) 

0 0.007(0.005) 0.0008(0.009) 0.029(0.02) NV  0.094(0.005) 0.10(0.005) 0.007(0.08) 0.29(0.19) NV  

HL A    0.009(0.005)   0.09(0.005) 0.104(0.005) 0.09(0.05)   

HL AD    0.008(0.005) 0.01(0.01)  0.08(0.01) 0.104(0.005) 0.08(0.05) 0.11(0.13)  

HL AM    0  0.006(0.003) 0.09(0.005) 0.10(0.005) 0  0.06(0.03) 

HL ADM    0 0.01(0.013) 0.006(0.003) 0.087(0.01) 0.104(0.005) 0 0.11(0.12) 0.06(0.03) 

BH S 0.009(0.002) 

  

0.034(0.009) 

  

0.161(0.007) 0.17(0.007) 0.19(0.06) 

  

BH SD 0.009(0.002) 0 

 

0.034(0.009) 

 

NV  0.162(0.007) 0.17(0.007) 0.19(0.06) 

 

NV  

BH SF 0.002(0.004) 

 

0.016(0.009) 0.009(0.01) 0.064(0.038) 

 

0.158(0.007) 0.176(0.009) 0.05(0.09) 0.36(0.2) 

 

BH SDF 0.002(0.004) 0 0.016(0.009) 0.009(0.01) 0.064(0.038) NV  0.158(0.007) 0.18(0.009) 0.05(0.09) 0.36(0.2) NV  

BH A    0.033(0.009)   0.15(0.01) 0.18(0.008) 0.18(0.05)   

BH AD    0.031(0.01) 0.024(0.024)  0.13(0.02) 0.18(0.008) 0.17(0.05) 0.13(0.13)  

BH AM    0.008(0.016)  0.016(0.009) 0.15(0.01) 0.18(0.008) 0.04(0.08)  0.08(0.05) 
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BH ADM    0.008(0.016) 0.02(0.02) 0.016(0.009) 0.14(0.024) 0.18(0.008) 0.04(0.08) 0.11(0.13) 0.09(0.05) 

BW S 0.005(0.001) 

  

0.02(0.004) 

  

0.045(0.002) 0.05(0.002) 0.4(0.08) 

  

BW SD 0.005(0.001) 0 

 

0.02(0.004) 

 

NV  0.045(0.002) 0.05(0.002) 0.4(0.08) 

 

NV  

BW SF 0.002(0.001) 

 

0.007(0.003) 0.009(0.005) 0.028(0.013) 

 

0.043(0.002) 0.05(0.003) 0.18(0.11) 0.53(0.22) 

 

BW SDF 0.002(0.001) 0 0.007(0.003) 0.009(0.005) 0.028(0.013) NV  0.043(0.002) 0.053(0.003) 0.18(0.11) 0.53(0.22) NV  

BW A    0.02(0.004)   0.03(0.003) 0.05(0.003) 0.37(0.06)   

BW AD    0.02(0.004) 0.02(0.008)  0.018(0.007) 0.056(0.003) 0.3(0.07) 0.3(0.13)  

BW AM    0.0095(0.006)  0.007(0.003) 0.04(0.004) 0.056(0.003) 0.17(0.10)  0.13(0.06) 

BW ADM    0.009(0.006) 0.02(0.008) 0.007(0.003) 0.06(0.003) 0.06(0.003) 0.16(0.10) 0.30(0.13) 0.12(0.06) 
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Supplement 2 

 

 

 

Figure-1. The boxplots of the distribution of different phenotypes for each strain groups. The 

horizontal bar indicates the median value of each strain group and each colored rectangular 

represents the 25th to 75th percentile of the values of each strain group. And each dot corresponds to 

the phenotype of an individual strain, which is plotted on the y-axis.   

 

 

 

 

 



38 
 

Supplement 3 

 

Figure-1. Description of the parentage assignment by using estimates of G-Matrix 

 

A seperate list of hypothetical sires and dams with 
their respective relatedness values from G-Matrix 
were created batch-by-batch for each offspring. 
Hypothetical sires and dam were targeted to match 
as a couple enlisted in the original mating list of a 
specific batch. If they were matched with an 
original mating list along with their batch 
information, then they were considered as parents 
for that offspring.

1st step: To match with the mating list, 1st maximum 
relatedness values of the hypothetical parent were 
considered. Hypothetical sire having 1st maximum 
relatedness value and hypothetical dam having 1st 
maximum relatedness value for an offspring were 
considered as a couple for a specific batch. And, the couple 
was checked with the original mating list for a specific 
batch, if that sire-dam combination existed. Later, 2nd, 3rd, 
and 4th maximum relatedness values of parents were 
considered to match with the mating list of a specific batch. 

2nd Step: Offspring without any parentage assignment 
were separated. Now, hypothetical sire's nearby relatedness 
value with dam was considered. For example, Hypothetical 
sire having 1st maximum relatedness value and 
hypothetical dam having 2nd maximum relatedness value 
were considered as a partner for a specific batch. If it was 
not matched with the mating list, then 2nd maximum, 3rd 
maximum, and 4th maximum relatedness values were 
considered to match with the mating list like the previous 
step. 

After making several sire and dam 
combination mentioned in the previous steps, 
the rest of the unmatcehd offspring were 
separated. For the rest unmatched offspring, a 
separate manual approach was being used to 
assign parents among them. 
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Supplement 4 

 

Figure-1. The manual steps for parentage assignment when the batch information is correct. 

 

 

 

 

 

 

 

Batch information was 
correct

1st condition: One 
parent was missing

2nd condition:Parent 
was having same batch 

like offspring

Not true : Moved to 
umatched offspring list

True: Assigned another 
parent of same batch 
by looking at original 

mating list

3rd condition:Both 
parents were having 

same batch ID as 
offspring, but were not 
listed togather in the 
original mating list

True: Assigned parents 
using relatedness value 

from G-Matrix; 
considered one parent 
having high G-Matrix 

estimate

Assigned another parent 
by looking at original 

mating list
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Supplement 5 

 

Figure-1. The manual steps for parentage assignment when the strain information is correct. 
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assigned
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Only one parent was 
assigned but that 
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Assign another parent 
based on the strain 
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If multiple sire-dam 
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was used to decide 
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Only one parent was 
assigned but that 

parent was not in the 
same batch as offspring

Assign another parent 
only based on the strain 

information from the 
original mating list and 
batch information was 

altered

If multiple sire-dam 
combinations found for 

one offspring, the 
estimates of G-matrix 

was used to decide 
parent.
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Supplement 6 
 

Table-1: Literature review was performed for the heritability of Body weight related traits in Nile Tilapia. 

Heritability Trait Species Authors 

0.23(0.08) Daily weight gain Nile Tilapia (García-Ruiz et al., 2019) 

0.41(0.22) Bodyweight at Slaughter Nile tilapia (García-Ruiz et al., 2019) 

0.25 (0.04) Harvest body weight Nile Tilapia 

(GIFT) 

(Marjanovic et al., 2016) 

0 or 0.06 (0.03) Harvest Bodyweight Nile Tilapia (Joshi et al., 2018) 

0.15 to 0.41 (0.04) Harvest Weight Nile Tilapia (Khaw et al., 2009) 

0.31(0.11) Bodyweight Nile Tilapia 

(GIFT) 

(Nguyen et al., 2010) 

0.34 (0.069) Live Weight Nile Tilapia (Ponzoni et al., 2005) 
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Supplement 7 
Table-1: Coefficients in the first generation (F1) derived from a diallel cross, for additive genetic (Ai), for reciprocal 

(Ri), and for total heterosis strain cross (hj) effects 

Strain 

cross 

Ai Ri hj 

F×M S1 S2 S3 S1 S2 S3 S1S2×S2S1/ 

S2S1×S1S2 

S2S3×S3S2/ 

S3S2×S2S3 

S1S3×S3S1/ 

S3S1×S1S3 

S1×S1 1 0 0 1 0 0 0 0 0 

S1×S2 0.5 0.5 0 1 0 0 1 0 0 

S1×S3 0.5 0 0.5 1 0 0 0 0 1 

S2×S2 0 1 0 0 1 0 0 0 0 

S2×S1 0.5 0.5 0 0 1 0 1 0 0 

S2×S3 0 0.5 0.5 0 1 0 0 1 0 

S3×S3 0 0 1 0 0 1 0 0 0 

S3×S1 0.5 0 0.5 0 0 1 0 0 1 

S3×S2 0 0.5 0.5 0 0 1 0 1 0 
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Supplement 8 
S8- 1. R-code: Recoding strain and maternal effects 

 

#Loading the phenotypic file. 

alltotal<-read.csv(file.choose(),header = T) 

refinedall<-alltotal[,c(1:6,27:30)] 

 

## Changing the Sire strain code 

 

refinedall$Sire_str<-ifelse(refinedall$Sire_str=="A","S3", 

                    ifelse(refinedall$Sire_str=="C","S3", 

                    ifelse(refinedall$Sire_str=="D","S2", 

                      ifelse(refinedall$Sire_str=="B","S1", 

                      ifelse(refinedall$Sire_str=="E","S1",NA) 

                             ) 

                           ) 

                                                                 )) 

 

##Changing the Dam Strain code 

 

refinedall$Dam_str<-ifelse(refinedall$Dam_str=="A","S3", 

                            ifelse(refinedall$Dam_str=="C","S3", 

                                   ifelse(refinedall$Dam_str=="D","S2", 

                                          ifelse(refinedall$Dam_str=="B","S1", 

                                                 ifelse(refinedall$Dam_str=="E","S1",NA) 

                                          ) 

                                   ) 

                            )) 

#Making the unique Sire and Dam Strain combination code for three strains 

 

refinedall$combination<-paste(refinedall$Sire_str,refinedall$Dam_str,sep = "") 

table(refinedall$combination) 

refinedall$combination<-ifelse(refinedall$combination=="S2S1","S1S2", 

                               ifelse(refinedall$combination=="S3S2","S2S3", 

                                      ifelse(refinedall$combination=="S3S1","S1S3", 

                                             ifelse(refinedall$combination=="S1S1","S1S1", 

                                                    ifelse(refinedall$combination=="S2S2","S2S2", 

                                                           ifelse(refinedall$combination=="S3S3","S3S3", 

                                                                  ifelse(refinedall$combination=="S1S3","S1S3", 

                                                                          ifelse(refinedall$combination=="S2S3","S2S3", 

                                                                                 ifelse(refinedall$combination=="S1S2","S1S2

" 

       ,NA))))))))) 

library(dplyr) 
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## Setting up the code for Strain additive genetic effects 

refinedall$S1S1<-refinedall$combination 

refinedall$S1S1<-ifelse(refinedall$S1S1=="S1S1",1, 

                        ifelse(refinedall$S1S1=="S1S2",0.5, 

                        ifelse(refinedall$S1S1=="S1S3",0.5,0))) 

table(refinedall$S1S1) 

refinedall$S2S2<-refinedall$combination 

refinedall$S2S2<-ifelse(refinedall$S2S2=="S2S2",1, 

                        ifelse(refinedall$S2S2=="S2S3",0.5, 

                               ifelse(refinedall$S2S2=="S1S2",0.5,0))) 

table(refinedall$S2S2) 

refinedall$S3S3<-refinedall$combination 

refinedall$S3S3<-ifelse(refinedall$S3S3=="S3S3",1, 

                        ifelse(refinedall$S3S3=="S2S3",0.5, 

                               ifelse(refinedall$S3S3=="S1S3",0.5,0))) 

table(refinedall$S3S3) 

##Setting up the code for heterosis effects 

 

refinedall$hS1S2<-refinedall$combination 

refinedall$hS1S2<-ifelse(refinedall$hS1S2=="S1S2",1,0) 

table(refinedall$hS1S2) 

refinedall$hS2S3<-refinedall$combination 

refinedall$hS2S3<-ifelse(refinedall$hS2S3=="S2S3",1,0) 

table(refinedall$hS2S3) 

refinedall$hS1S3<-refinedall$combination 

refinedall$hS1S3<-ifelse(refinedall$hS1S3=="S1S3",1,0) 

table(refinedall$hS1S3) 

 

#Setting up the code for Reciprocal effects 

refinedall$mS1<-refinedall$Dam_str 

refinedall$mS1<-ifelse(refinedall$mS1=="S1",1,0) 

table(refinedall$mS1) 

refinedall$mS2<-refinedall$Dam_str 

refinedall$mS2<-ifelse(refinedall$mS2=="S2",1,0) 

table(refinedall$mS2) 

refinedall$mS3<-refinedall$Dam_str 

refinedall$mS3<-ifelse(refinedall$mS3=="S3",1,0) 

table(refinedall$mS3) 

colnames(refinedall) 

refinedall<-refinedall[,-c(11,18)] 

write.csv(refinedall,file = "pheno3strain.csv") 

refinedall1<-refinedall[,-c(6)] 

colnames(refinedall1) 

refinedall1<-refinedall1[,c(1:5,10:19,6:9)] 
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library(data.table) 

refinedall1<-setnames(refinedall1,"S1S1","aS1") 

refinedall1<-setnames(refinedall1,"S2S2","aS2") 

refinedall1<-setnames(refinedall1,"S3S3","aS3") 

write.table(refinedall1,file = "pheno3strain.txt",sep = "\t") 

summary(refinedall1) 

table(refinedall1$aS1) 

write.csv(refinedall1,file = "pheno3strain.csv") 

 

S8-2 . Making the dominance relationship matrix for ASReml 

library(nadiv) 

pedigree<-read.delim(file.choose(),header = T) # loading the pedigree file 

pednew<-prepPed(pedigree) # making the pedigree file suitable for the package 

listD<-makeD(pednew, parallel = F)$listDinv # making the dominance matrix 

write.table(listD,file = "domAsparse.giv",row.names = F) 

 

S8-3. Command file for the SRH model in ASReml 

Model for SRH 

Id !P 

Sire !A  

Dam !A 

Sirestr !A   

Damstr  !A   

Batch  !A 10 !DV* 

Eggdate !A 

Weight !DV* 

combination !A 

aS1  

aS2  

aS3  

hS1S2  

hS2S3  

hS1S3  

mS1  

mS2  

mS3 

Tot_L !DV* 

Stnd_L !DV* 

Head  !DV* 

Heigth !DV* 
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Width !DV*  

  

pedigree.txt !SKIP 1 !Make 

phenomodifiedV2.csv !SKIP 1 !CSV !AISING !MAXIT=1000 

 

Weight ~ mu Batch aS3 aS2 aS1 hS1S3 hS2S3 hS1S2 mS3 mS2 mS1 !r Id 

#Tot_L ~ mu Batch aS1 aS2 aS3 hS1S2 hS2S3 hS1S3 mS1 mS2 mS3 !r Id 

#Stnd_L ~ mu Batch aS1 aS2 aS3 hS1S2 hS2S3 hS1S3 mS1 mS2 mS3 !r Id 

#Heigth ~ mu Batch aS1 aS2 aS3 hS1S2 hS2S3 hS1S3 mS1 mS2 mS3 !r Id 

#Head ~ mu Batch aS1 aS2 aS3 hS1S2 hS2S3 hS1S3 mS1 mS2 mS3 !r Id 

#Width ~ mu Batch aS1 aS2 aS3 hS1S2 hS2S3 hS1S3 mS1 mS2 mS3 !r Id 

 

S8-4, Command File for the SFM models in ASReml 

##Similar methods for all traits 

for All SFM models 

Id !P 

Sire !A  

Dam !A 

Sirestr !A   

Damstr  !A   

Batch  !A 10 !DV* 

Eggdate !A 

Weight !DV* 

combination !A 

aS1  

aS2  

aS3  

hS1S2  

hS2S3  

hS1S3  

mS1  

mS2  

mS3 

Tot_L !DV* 

Stnd_L !DV* 

Head  !DV* 

Heigth !DV* 

Width !DV*  

  

pedigree.txt !SKIP 1 !Make 

phenomodifiedV2.csv !SKIP 1 !CSV !AISING !MAXIT=1000 

 

# Weight ~ mu Batch !r Sire and(Dam) fac(Sire,Dam) 

# Weight ~ mu Batch !r Sire and(Dam) ide(Dam) 
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# Weight ~ mu Batch !r Sire and(Dam) 

# Weight ~ mu Batch !r Sire and(Dam) ide(Dam) fac(Sire,Dam) 

 

VPREDICT !DEFINE 

F VarA 1 * 4 

#F VarC 2 - 1 

F VarC 3 - 1 

F VarD 2 * 4 

F VarP 1 +2+ 3 + 4 

H h2 VarA VarP 

H c2 VarC VarP 

H d2 VarD VarP 
 

S8-5, Command File for the ADM models in ASReml 

##Similar methods for all traits 

Model without female with dominance matrix 

Id !P 

Sire !p 

Dam !A  

Sirestr 3 !A  

Damstr 3 !A  

Batch 10 !A  

Eggdate !A 
Weight  

combi !A 

aS1  

aS2  

aS3 

hS1S2 

hS2S3 

hS1S3 

mS1 

mS2 

mS3 

Tot_L !DV* 

Stnd_L !DV* 

Head !DV* 

Heigth !DV* 

Width !DV* 

 

pedigree.txt !SKIP1 !make 

domAsparse.giv !SKIP1 

phenomodifiedV2.csv !SKIP1 !AISING !MAXIT=1000 

 

#Weight ~ mu Batch !r Id  
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#Weight ~ mu Batch !r Id fac(Sire,Dam) 

#Weight~ mu Batch !r Id giv(Id) 

#Weight ~ mu Batch !r Id giv(Id) fac(Sire,Dam) 

Weight ~ mu Batch !r Id 

 

 

!PIN !DEFINE 

#F VarA 1  # Subjected to change based on the model 

F VarA 2 

F VarC 1 

#F VarC 2 #Subjected to change based on the model 

F VarD 3 

#F VarD 2 #Subjected to change based on the model 

F VarP 1 + 2 + 3 + 4  

H h2 VarA VarP 

H c2 VarC VarP 

H D2 VarD VarP 

 

S8- 6, For the parentage assignment – R codes. 

#loading the csv, genomic relationship matrix file  

matrix<-read.csv(file.choose(),header = TRUE, sep = ",") 

row.names(matrix) 

colnames(matrix) 

list<-data.frame(matrix$seqID) 

list$seq<-1:nrow(list) 

library(data.table) 

list<-setnames(list,"matrix.seqID","seqID") 

#loading the converter files. For the batch information 

tilapiasample<-read.csv(file.choose(),header = TRUE) 

tilapiasample<-tilapiasample[,c(2,3,6)] 

combinedlist<-merge(list,tilapiasample,by="seqID",all=TRUE)  

## Seperating the matrix based on sire and dam 

parentcode<-read.csv(file.choose(),header = TRUE) 

parentcode<-merge(parentcode,sireanddamcode,by.x = "Parents",by.y = "Tag_ID",all.x = TRUE) 

parentcode<-parentcode[!duplicated(parentcode$Parents),] 
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parentcode<-na.omit(parentcode) 

 

library(Hmisc) 

submatrix<-matrix[which(rownames(matrix)%in%parentcode$seqID),] 

submatrix<-submatrix[,which(colnames(submatrix)%nin%parentcode$seqID)] 

submatrix[1:4,1:4] 

submatrix<-merge(submatrix,parentcode,by = "seqID") 

submatrix[1:4,2236:2240] 

library(dplyr) 

siresubmatrix<-filter(submatrix,code=="s") 

damsubmatrix<-filter(submatrix,code=="d") 

##loading the maxn function for the maximum relatedness value 

maxn<-function(n)function(x)order(x,decreasing = TRUE)[n] 

#1st maximum relatedness value of sire results 

sire1results<-apply(siresubmatrix[,c(2:2237)],2,maxn(1)) 

sire1results<-data.frame(sire1results) 

sire1results$value<-apply(siresubmatrix[,c(2:2237)],2,function(x)x[maxn(1)(x)]) 

sire1results<-setnames(sire1results,"sire1results","seq" 

) 

sire1results$offspring<-rownames(sire1results) 

colnames(sire1results) 

siresubmatrix[1:4,2236:2240] 

submatrixsirelist<-siresubmatrix[,c(2238)] 

submatrixsirelist<-data.frame(submatrixsirelist) 

submatrixsirelist$seq<-1:nrow(submatrixsirelist) 

colnames(submatrixsirelist) 
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colnames(submatrixsirelist) 

submatrixsirelist$value<-NULL 

submatrixsirelist$offspring<-NULL 

sire1results$submatrixsirelist<-NULL 

combinesire1<-merge(submatrixsirelist,sire1results,by="seq") 

#1st maximum relatedness value of dam results 

damsubmatrix[1:4,2236:2240] 

submatrixdamlist<-damsubmatrix[,c(2238)] 

submatrixdamlist<-data.frame(submatrixdamlist) 

submatrixdamlist$seq<-1:nrow(submatrixdamlist) 

dam1results<-apply(damsubmatrix[,c(2:2237)],2,maxn(1)) 

dam1results<-data.frame(dam1results) 

dam1results$value<-apply(damsubmatrix[,c(2:2237)],2,function(x)x[maxn(1)(x)]) 

dam1results<-setnames(dam1results,"dam1results","seq" 

) 

dam1results$offspring<-rownames(dam1results) 

colnames(dam1results) 

colnames(submatrixdamlist) 

submatrixdamlist$value<-NULL 

submatrixdamlist$offspring<-NULL 

dam1results$submatrixdamlist<-NULL 

combinedam1<-merge(submatrixdamlist,dam1results,by="seq") 

combinedsiredam1<-merge(combinesire1,combinedam1,by="offspring") 

#add the batch(dont need to repeat) 

batch<-read.csv(file.choose(),header = TRUE) 

batch<-merge(batch,combinedlist,by="Tag_ID",all.x = TRUE) 

batch<-na.omit(batch) 

#tagging with batch 
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combinedsiredam1<-merge(combinedsiredam1,batch,by.x="offspring",by.y = "seqID",all.x = 

TRUE,all.y = FALSE) 

combinedsiredam1<-na.omit(combinedsiredam1) 

combinedsiredam1$testcode<-

paste(combinedsiredam1$submatrixsirelist,combinedsiredam1$submatrixdamlist,combinedsireda

m1$Batch_ID,sep="") 

####loading the main results (do not need to repeat) 

mainresults<-read.csv(file.choose(),header = TRUE) 

mainresults$maincode<paste(mainresults$SIRE,mainresults$DAM,mainresults$Batch_ID,sep=""

) 

combinedsiredam1$results<-combinedsiredam1$testcode%in%mainresults$maincode 

as.data.frame(table(combinedsiredam1$results)) 

matchedlist1<-dplyr::filter(combinedsiredam1,results=="TRUE") 

rm(combinedam1,combinesire1,sire1results,dam1results,siresubmatrix,damsubmatrix) 

#Writing the file with 1st maximum relatedness value of parent 

write.csv(matchedlist1,file = "Gmatchwith1stmaxsire1stmaxdam.csv") 

#refining the submatrix 

submatrix<-submatrix[,which(colnames(submatrix)%nin%matchedlist1$offspring)] 

#getting sire&damsubmatrix 

library(dplyr) 

siresubmatrix<-filter(submatrix,code=="s") 

damsubmatrix<-filter(submatrix,code=="d") 

#getting the sire1results (sire with first maximum relatedness value) 

submatrix[1:4,445:448] 

sire1results<-apply(siresubmatrix[,c(2:445)],2,maxn(1)) 

sire1results<-data.frame(sire1results) 

sire1results$value<-apply(siresubmatrix[,c(2:445)],2,function(x)x[maxn(1)(x)]) 

library(data.table) 

sire1results<-setnames(sire1results,"sire1results","seq" 

) 
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sire1results$offspring<-rownames(sire1results) 

colnames(sire1results) 

siresubmatrix[1:4,445:448] 

submatrixsirelist<-siresubmatrix[,c(446)] 

submatrixsirelist<-data.frame(submatrixsirelist) 

submatrixsirelist$seq<-1:nrow(submatrixsirelist) 

colnames(submatrixsirelist) 

submatrixsirelist$value<-NULL 

submatrixsirelist$offspring<-NULL 

sire1results$submatrixsirelist<-NULL 

combinesire1<-merge(submatrixsirelist, sire1results,by="seq") 

###getting the dam2 results (Dam with second maximum relatedness values) 

#seprating the dam matrix 

colnames(damsubmatrix) 

damsubmatrix[1:4,444:448] 

submatrixdamlist<-damsubmatrix[,c(446)] 

submatrixdamlist<-data.frame(submatrixdamlist) 

submatrixdamlist$seq<-1:nrow(submatrixdamlist) 

#2nd dam results 

dam2results<-apply(damsubmatrix[,c(2:445)],2,maxn(2)) 

dam2results<-data.frame(dam2results) 

dam2results$value<-apply(damsubmatrix[,c(2:445)],2,function(x)x[maxn(2)(x)]) 

dam2results<-setnames(dam2results,"dam2results","seq") 

dam2results$offspring<-rownames(dam2results) 

colnames(dam2results) 

colnames(submatrixdamlist) 

submatrixdamlist$value<-NULL 

submatrixdamlist$offspring<-NULL 
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dam2results$submatrixdamlist<-NULL 

combinedam2<-merge(submatrixdamlist,dam2results,by="seq") 

combinedsiredam2<-merge(combinesire1,combinedam2,by="offspring") 

#tagging with batch 

combinedsiredam2<-merge(combinedsiredam2,batch,by.x="offspring",by.y = "seqID",all.x = 

TRUE,all.y = FALSE) 

##matching the results with original mating list 

combinedsiredam2$testcode<-

paste(combinedsiredam2$submatrixsirelist,combinedsiredam2$submatrixdamlist,combinedsireda

m2$Batch_ID,sep="") 

combinedsiredam2$results<-combinedsiredam2$testcode%in%mainresults$maincode 

as.data.frame(table(combinedsiredam2$results)) 

matchedlist2<-dplyr::filter(combinedsiredam2,results=="TRUE") 

# writing the output file with 1st and 2nd maximum relatedness value of parent 

write.csv(matchedlist2,file = "Gmatch2with1stmaxsire2ndmaxdam.csv") 
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